Sample records for industrial process streams

  1. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  2. Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation.

    PubMed

    Maes, Synthia; Claus, Mathias; Verbeken, Kim; Wallaert, Elien; De Smet, Rebecca; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-11-15

    The increased use and criticality of platinum asks for the development of effective low-cost strategies for metal recovery from process and waste streams. Although biotechnological processes can be applied for the valorization of diluted aqueous industrial streams, investigations considering real stream conditions (e.g., high salt levels, acidic pH, metal speciation) are lacking. This study investigated the recovery of platinum by a halophilic microbial community in the presence of increased salt concentrations (10-80 g L -1 ), different salt matrices (phosphate salts, sea salts and NH 4 Cl) and a refinery process stream. The halophiles were able to recover 79-99% of the Pt at 10-80 g L -1 salts and at pH 2.3. Transmission electron microscopy suggested a positive correlation between intracellular Pt cluster size and elevated salt concentrations. Furthermore, the halophiles recovered 46-95% of the Pt-amine complex Pt[NH 3 ] 4 2+ from a process stream after the addition of an alternative Pt source (K 2 PtCl 4 , 0.1-1.0 g L -1 Pt). Repeated Pt-tetraamine recovery (from an industrial process stream) was obtained after concomitant addition of fresh biomass and harvesting of Pt saturated biomass. This study demonstrates how aqueous Pt streams can be transformed into Pt rich biomass, which would be an interesting feed of a precious metals refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Method for sequestering CO.sub.2 and SO.sub.2 utilizing a plurality of waste streams

    DOEpatents

    Soong, Yee [Monroeville, PA; Allen, Douglas E [Salem, MA; Zhu, Chen [Monroe County, IN

    2011-04-12

    A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO.sub.2 and SO.sub.2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes. The benefits of this integrated approach to coincidental treatment of multiple industrial waste byproduct streams include neutralization of caustic byproduct such as bauxite residue, thereby decreasing the risk associated with the long-term storage and potential environmental of storing caustic materials, decreasing or obviating the need for costly treatment of byproduct brines, thereby eliminating the need to purchase CaO or similar scrubber reagents typically required for SO.sub.2 treatment of such gasses, and directly using CO.sub.2 from flue gas to neutralize bauxite residue/brine mixtures, without the need for costly separation of CO.sub.2 from the industrial byproduct gas stream by processes such as liquid amine-based scrubbers.

  4. Modeling the economics of landfilling organic processing waste streams

    NASA Astrophysics Data System (ADS)

    Rosentrater, Kurt A.

    2005-11-01

    As manufacturing industries become more cognizant of the ecological effects that their firms have on the surrounding environment, their waste streams are increasingly becoming viewed not only as materials in need of disposal, but also as resources that can be reused, recycled, or reprocessed into valuable products. Within the food processing sector are many examples of various liquid, sludge, and solid biological and organic waste streams that require remediation. Alternative disposal methods for food and other bio-organic manufacturing waste streams are increasingly being investigated. Direct shipping, blending, extrusion, pelleting, and drying are commonly used to produce finished human food, animal feed, industrial products, and components ready for further manufacture. Landfilling, the traditional approach to waste remediation, however, should not be dismissed entirely. It does provide a baseline to which all other recycling and reprocessing options should be compared. This paper discusses the implementation of a computer model designed to examine the economics of landfilling bio-organic processing waste streams. Not only are these results applicable to food processing operations, but any industrial or manufacturing firm would benefit from examining the trends discussed here.

  5. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  6. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  7. Method of dye removal for the textile industry

    DOEpatents

    Stone, Mark L.

    2000-01-01

    The invention comprises a method of processing a waste stream containing dyes, such as a dye bath used in the textile industry. The invention comprises using an inorganic-based polymer, such as polyphosphazene, to separate dyes and/or other chemicals from the waste stream. Membranes comprising polyphosphazene have the chemical and thermal stability to survive the harsh, high temperature environment of dye waste streams, and have been shown to completely separate dyes from the waste stream. Several polyphosplhazene membranes having a variety of organic substituent have been shown effective in removing color from waste streams.

  8. Toxicity evaluation of the process effluent streams of a petrochemical industry.

    PubMed

    Reis, J L R; Dezotti, M; Sant'Anna, G L

    2007-02-01

    The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.

  9. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  10. 40 CFR 63.149 - Control requirements for certain liquid streams in open systems within a chemical manufacturing...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... streams in open systems within a chemical manufacturing process unit. 63.149 Section 63.149 Protection of... open systems within a chemical manufacturing process unit. (a) The owner or operator shall comply with... Air Pollutants From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage...

  11. TECHNICAL MANUAL: A SURVEY OF EQUIPMENT AND METHODS FOR PARTICULATE SAMPLING IN INDUSTRIAL PROCESS STREAMS

    EPA Science Inventory

    The manual lists and describes the instruments and techniques that are available for measuring the concentration or size distribution of particles suspended in process streams. The standard, official, well established methods are described as well as some experimental methods and...

  12. Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes

    NASA Astrophysics Data System (ADS)

    Urdaneta-B, A. H.; Schmidt, P. S.

    1980-09-01

    A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.

  13. Industrial wastes and public health: some historical notes, Part I, 1876-1932.

    PubMed Central

    Tarr, J A

    1985-01-01

    This article has focused on the relatively low priority accorded industrial wastes compared to human wastes by the public health community in the period from 1876 through 1932. The critical reason for this prioritization was the potential for acute health effects from human wastes as compared with the belief that industrial wastes had only indirect effects. State departments of health normally only responded to industrial wastes when they endangered the potable nature of water supplies or interfered with water and sewage treatment processes. Within the public health community, however, a relatively small group of interdisciplinary professionals argued for attention to the indirect health effects of industrial wastes and their impacts on the total stream environment. In conjunction with other groups interested in clean streams--such as sportsmen and manufacturers who required high quality process water--they pushed for a broader state legislative mandate in regard to pollution control. Some states created new bureaus or boards with responsibility for industrial wastes and the larger stream environment but the attack on industrial pollution remained limited in this period. The final significant development regarding industrial pollution and public health concerned the formulation by Streeter-Phelps of the Public Health Service of a theory of stream purification with a set of general quantitative indicators. This application was of particular importance in regard to the high-oxygen consuming nature of organic industrial wastes and the wide variety of effluents that existed. Industrial wastes constituted what Harvey Brooks, in his essay "Science Indicators and Science Priorities" calls a very "messy" research problem--one that does "not lend itself to elegant and widely applicable generalizations."(ABSTRACT TRUNCATED AT 250 WORDS) Images p1061-a p1061-b p1063-a p1065-a PMID:3895993

  14. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    PubMed

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  15. Survey of advanced nuclear technologies for potential applications of sonoprocessing.

    PubMed

    Rubio, Floren; Blandford, Edward D; Bond, Leonard J

    2016-09-01

    Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Side Streams of Plant Food Processing As a Source of Valuable Compounds: Selected Examples.

    PubMed

    Schieber, Andreas

    2017-02-28

    Industrial processing of plant-derived raw materials generates enormous amounts of by-products. On one hand, these by-products constitute a serious disposal issue because they often emerge seasonally and are prone to microbial decay. On the other hand, they are an abundant source of valuable compounds, in particular secondary plant metabolites and cell wall materials, which may be recovered and used to functionalize foods and replace synthetic additives with ingredients of natural origin. This review covers 150 references and presents select studies performed between 2001 and 2016 on the recovery, characterization, and application of valuable constituents from grape pomace, apple pomace, potato peels, tomato pomace, carrot pomace, onion peels, by-products of citrus, mango, banana, and pineapple processing, side streams of olive oil production, and cereal by-products. The criteria used were economic importance, amounts generated, relevance of side streams as a source of valuable compounds, and reviews already published. Despite a plethora of studies carried out on the utilization of side streams, relatively few processes have yet found industrial application.

  17. Production of bio-based fiber gums from the waste streams resulting from the commercial processing of corn bran and oat hulls

    USDA-ARS?s Scientific Manuscript database

    The U.S. food and non-food industries would benefit from the development of a domestically produced crude, semi-pure and pure bio-based fiber gum from corn bran and oat hulls processing waste streams. When corn bran and oat hulls are processed to produce a commercial cellulose enriched fiber gel, th...

  18. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non-combustibles (such as stone/rock and glass particles), was found in the reject material stream. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  20. The upcycling of post-industrial PP/PET waste streams through in-situ microfibrillar preparation

    NASA Astrophysics Data System (ADS)

    Delva, Laurens; Ragaert, Kim; Cardon, Ludwig

    2015-12-01

    Post-industrial plastic waste streams can be re-used as secondary material streams for polymer processing by extrusion or injection moulding. One of the major commercially available waste stream contains polypropylene (PP) contaminated with polyesters (mostly polyethylene tereftalate - PET). An important practical hurdle for the direct implementation of this waste stream is the immiscibility of PP and PET in the melt, which leads to segregation within the polymer structure and adversely affects the reproducibility and mechanical properties of the manufactured parts. It has been indicated in literature that the creation of PET microfibrils in the PP matrix could undo these drawbacks and upcycle the PP/PET combination. Within the current research, a commercially available virgin PP/PET was evaluated for the microfibrillar preparation. The mechanical (tensile and impact) properties, thermal properties and morphology of the composites were characterized at different stages of the microfibrillar preparation.

  1. Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers.

    PubMed

    Hansen, Everton; Rodrigues, Marco Antônio Siqueira; Aquim, Patrice Monteiro de

    2016-10-01

    This article discusses the mapping of opportunities for the water reuse in a cascade based system in a petrochemical industry in southern Brazil. This industrial sector has a large demand for water for its operation. In the studied industry, for example, approximately 24 million cubic meters of water were collected directly from the source in 2014. The objective of this study was to evaluate the implementation of the reuse of water in cascade in a petrochemical industry, focusing on the reuse of aqueous streams to replenish losses in the cooling towers. This is an industrial scale case study with real data collected during the years 2014 and 2015. Water reuse was performed using heuristic approach based on the exploitation of knowledge acquired during the search process. The methodology of work consisted of the construction of a process map identifying the stages of production and water consumption, as well as the characterization of the aqueous streams involved in the process. For the application of the industrial water reuse as cooling water, mass balances were carried out considering the maximum concentration levels of turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters turbidity, pH, conductivity, alkalinity, calcium hardness, chlorides, sulfates, silica, chemical oxygen demand and suspended solids as parameters. The adopted guideline was the fulfillment of the water quality criteria for each application in the industrial process. The study showed the feasibility for the reuse of internal streams as makeup water in cooling towers, and the implementation of the reuse presented in this paper totaled savings of 385,440 m(3)/year of water, which means a sufficient volume to supply 6350 inhabitants for a period of one year, considering the average water consumption per capita in Brazil; in addition to 201,480 m(3)/year of wastewater that would no longer be generated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A new hyperspectral imaging based device for quality control in plastic recycling

    NASA Astrophysics Data System (ADS)

    Bonifazi, G.; D'Agostini, M.; Dall'Ava, A.; Serranti, S.; Turioni, F.

    2013-05-01

    The quality control of contamination level in the recycled plastics stream has been identified as an important key factor for increasing the value of the recycled material by both plastic recycling and compounder industries. Existing quality control methods for the detection of both plastics and non-plastics contaminants in the plastic waste streams at different stages of the industrial process (e.g. feed, intermediate and final products) are currently based on the manual collection from the stream of a sample and on the subsequent off-line laboratory analyses. The results of such analyses are usually available after some hours, or sometimes even some days, after the material has been processed. The laboratory analyses are time-consuming and expensive (both in terms of equipment cost and their maintenance and of labour cost).Therefore, a fast on-line assessment to monitor the plastic waste feed streams and to characterize the composition of the different plastic products, is fundamental to increase the value of secondary plastics. The paper is finalized to describe and evaluate the development of an HSI-based device and of the related software architectures and processing algorithms for quality assessment of plastics in recycling plants, with particular reference to polyolefins (PO). NIR-HSI sensing devices coupled with multivariate data analysis methods was demonstrated as an objective, rapid and non-destructive technique that can be used for on-line quality and process control in the recycling process of POs. In particular, the adoption of the previous mentioned HD&SW integrated architectures can provide a solution to one of the major problems of the recycling industry, which is the lack of an accurate quality certification of materials obtained by recycling processes. These results could therefore assist in developing strategies to certify the composition of recycled PO products.

  3. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  4. Engineering Methane and Carbon Dioxide Pathways to Turn Renewable Biogas into Higher-Value Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenfield, Derek; Helman, Noah; Clarke, Elizabeth

    The United States has a critical need for green manufacturing technologies that can produce a wide range of renewable products at low cost. Industrial Microbes develops biological processes that produce renewable chemicals from organic waste streams. The target chemical for this Phase I project is used to make paints, coatings, and polymers for a multi-billion-dollar market. In addition to the benefits from its green process, the company estimates that the new manufacturing process described here will result in 20-40% cost savings when used at commercial scale. This is possible because the company’s process utilizes waste biogas, an inexpensive feedstock, andmore » is highly efficient: the only byproduct is clean water. For this Phase I project, Industrial Microbes successfully built an enzyme pathway that solves the most difficult challenges of converting biogas into the target chemical. These challenges include the conversion of methane into soluble methanol; the identification of highly-active enzymes; and the production of the target chemical. The company has also completed proof-of-concept by demonstrating that its production strain can utilize raw biogas from a wastewater treatment plant. Achieving these goals required several breakthroughs in transferring enzymes from exotic microorganisms into a commercial one, used commonly for industrial-scale production. In Phase II, Industrial Microbes will work toward commercializing this process by improving carbon efficiency and speed of chemical production. Organic waste streams such as biogas are an underutilized source of renewable carbon and energy; efficient use of such waste streams will reduce the United States’ reliance on petroleum and lower greenhouse gas emissions. The process described here is one of few industrial processes that can convert biogas into commodity products, rather than burning it for energy. If renewable products can be made from biogas economically, companies and governments will find it attractive to collect organic waste streams for biogas production. This can prevent waste from ending up in landfills, where it breaks down into the greenhouse gases methane and carbon dioxide: landfills emit the equivalent greenhouse gases of 35 million cars every year. New uses of biogas will also help lower costs for making carbon-neutral biofuels, since biofuel production also generates waste that can be turned into biogas.« less

  5. Conversion of Agricultural Streams and Food-Processing By-Products to Value-Added Compounds Using Filamentous Fungi.

    PubMed

    Chan, Lauryn G; Cohen, Joshua L; de Moura Bell, Juliana Maria Leite Nobrega

    2018-03-25

    The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.

  6. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    DOEpatents

    Chaiko, David J.; Mego, William A.

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  7. Method for processing aqueous wastes

    DOEpatents

    Pickett, John B.; Martin, Hollis L.; Langton, Christine A.; Harley, Willie W.

    1993-01-01

    A method for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply.

  8. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  9. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  10. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  11. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  12. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry.

    PubMed

    Yazdani, Syed Shams; Gonzalez, Ramon

    2007-06-01

    Although biofuels such as biodiesel and bioethanol represent a secure, renewable and environmentally safe alternative to fossil fuels, their economic viability is a major concern. The implementation of biorefineries that co-produce higher value products along with biofuels has been proposed as a solution to this problem. The biorefinery model would be especially advantageous if the conversion of byproducts or waste streams generated during biofuel production were considered. Glycerol-rich streams generated in large amounts by the biofuels industry, especially during the production of biodiesel, present an excellent opportunity to establish biorefineries. Once considered a valuable 'co-product', crude glycerol is rapidly becoming a 'waste product' with a disposal cost attributed to it. Given the highly reduced nature of carbon in glycerol and the cost advantage of anaerobic processes, fermentative metabolism of glycerol is of special interest. This review covers the anaerobic fermentation of glycerol in microbes and the harnessing of this metabolic process to convert abundant and low-priced glycerol streams into higher value products, thus creating a path to viability for the biofuels industry. Special attention is given to products whose synthesis from glycerol would be advantageous when compared with their production from common sugars.

  13. The effect of feed composition on anaerobic co-digestion of animal-processing by-products.

    PubMed

    Hidalgo, D; Martín-Marroquín, J M; Corona, F

    2018-06-15

    Four streams and their mixtures have been considered for anaerobic co-digestion, all of them generated during pig carcasses processing or in related industrial activities: meat flour (MF), process water (PW), pig manure (PM) and glycerin (GL). Biochemical methane potential assays were conducted at 37 °C to evaluate the effects of the substrate mix ratio on methane generation and process behavior. The results show that the co-digestion of these products favors the anaerobic fermentation process when limiting the amount of meat flour in the mixture to co-digest, which should not exceed 10%. The ratio of other tested substrates is less critical, because different mixtures reach similar values of methane generation. The presence in the mixture of process water contributes to a quick start of the digester, something very interesting when operating an industrial reactor. The analysis of the fraction digested reveals that the four analyzed streams can be, a priori, suitable for agronomic valorization once digested. Copyright © 2017. Published by Elsevier Ltd.

  14. Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1976-12-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  15. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  16. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  17. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  18. 40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...

  19. Industrial applications of new sulphur biotechnology.

    PubMed

    Janssen, A J; Ruitenberg, R; Buisman, C J

    2001-01-01

    The emission of sulphur compounds into the environment is undesirable because of their acidifying characteristics. The processing of sulphidic ores, oil refining and sulphuric acid production are major sources of SO2 emissions. Hydrogen sulphide is emitted into the environment as dissolved sulphide in wastewater or as H2S in natural gas, biogas, syngas or refinery gases. Waste streams containing sulphate are generated by many industries, including mining, metallurgical, pulp and paper and petrochemical industries. Applying process technologies that rely on the biological sulphur cycle can prevent environmental pollution. In nature sulphur compounds may cycle through a series of oxidation states (-2, 0, +2, +4, +6). Bacteria of a wide range of genera gain metabolic energy from either oxidising or reducing sulphur compounds. Paques B.V. develops and constructs reactor systems to remove sulphur compounds from aqueous and gaseous streams by utilising naturally occurring bacteria from the sulphur cycle. Due to the presence of sulphide, heavy metal removal is also achieved with very high removal efficiencies. Ten years of extensive laboratory and pilot plant research has, to date, resulted in the construction of over 30 full-scale installations. This paper presents key processes from the sulphur cycle and discusses recent developments about their application in industry.

  20. Method for processing aqueous wastes

    DOEpatents

    Pickett, J.B.; Martin, H.L.; Langton, C.A.; Harley, W.W.

    1993-12-28

    A method is presented for treating waste water such as that from an industrial processing facility comprising the separation of the waste water into a dilute waste stream and a concentrated waste stream. The concentrated waste stream is treated chemically to enhance precipitation and then allowed to separate into a sludge and a supernate. The supernate is skimmed or filtered from the sludge and blended with the dilute waste stream to form a second dilute waste stream. The sludge remaining is mixed with cementitious material, rinsed to dissolve soluble components, then pressed to remove excess water and dissolved solids before being allowed to cure. The dilute waste stream is also chemically treated to decompose carbonate complexes and metal ions and then mixed with cationic polymer to cause the precipitated solids to flocculate. Filtration of the flocculant removes sufficient solids to allow the waste water to be discharged to the surface of a stream. The filtered material is added to the sludge of the concentrated waste stream. The method is also applicable to the treatment and removal of soluble uranium from aqueous streams, such that the treated stream may be used as a potable water supply. 4 figures.

  1. Biocatalysis: applications and potentials for the chemical industry.

    PubMed

    Thomas, Stuart M; DiCosimo, Robert; Nagarajan, Vasantha

    2002-06-01

    The chemical industry is exploring the use of renewable feed stocks to improve sustainability, prompting the exploration of bioprocesses for the production of chemicals. Attractive features of biological systems include versatility, substrate selectivity, regioselectivity, chemoselectivity, enantioselectivity and catalysis at ambient temperatures and pressures. However, a challenge facing bioprocesses is cost competitiveness with chemical processes because capital assets associated with the existing commercial processes are high. The chemical industry will probably use biotechnology with existing feed stocks and processes to extract higher values from feed stocks, process by-products and waste streams. In this decade, bioprocesses that offer either a process or a product advantage over traditional chemical routes will become more widely used.

  2. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review

    USGS Publications Warehouse

    Nimick, David A.; Gammons, Christopher H.; Parker, Stephen R.

    2011-01-01

    This review summarizes biogeochemical processes that operate on diel, or 24-h, time scales in streams and the changes in aqueous chemistry that are associated with these processes. Some biogeochemical processes, such as those producing diel cycles of dissolved O2 and pH, were the first to be studied, whereas processes producing diel concentration cycles of a broader spectrum of chemical species including dissolved gases, dissolved inorganic and organic carbon, trace elements, nutrients, stable isotopes, and suspended particles have received attention only more recently. Diel biogeochemical cycles are interrelated because the cyclical variations produced by one biogeochemical process commonly affect another. Thus, understanding biogeochemical cycling is essential not only for guiding collection and interpretation of water-quality data but also for geochemical and ecological studies of streams. Expanded knowledge of diel biogeochemical cycling will improve understanding of how natural aquatic environments function and thus lead to better predictions of how stream ecosystems might react to changing conditions of contaminant loading, eutrophication, climate change, drought, industrialization, development, and other factors.

  3. SEPARATIONS RESEARCH AT THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - TOWARDS RECOVERY OF VOCS AND METALS USING MEMBRANES AND ADSORPTION PROCESSES

    EPA Science Inventory

    The USEPA's National Risk Management Research Laboratory is investigating new separations materials and processes for removal and recovery of volatile organic compounds (VOCs) and toxic metals from wastestreams and industrial process streams. Research applying membrane-based perv...

  4. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  5. Elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, Maria; Hu, Zhicheng

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  6. Current EU-27 technical potential of organic waste streams for biogas and energy production.

    PubMed

    Lorenz, Helge; Fischer, Peter; Schumacher, Britt; Adler, Philipp

    2013-11-01

    Anaerobic digestion of organic waste generated by households, businesses, agriculture, and industry is an important approach as method of waste treatment - especially with regard to its potential as an alternative energy source and its cost-effectiveness. Separate collection of biowaste from households or vegetal waste from public green spaces is already established in some EU-27 countries. The material recovery in composting plants is common for biowaste and vegetal waste. Brewery waste fractions generated by beer production are often used for animal feeding after a suitable preparation. Waste streams from paper industry generated by pulp and paper production such as black liquor or paper sludge are often highly contaminated with toxic substances. Recovery of chemicals and the use in thermal processes like incineration, pyrolysis, and gasification are typical utilization paths. The current utilization of organic waste from households and institutions (without agricultural waste) was investigated for EU-27 countries with Germany as an in-depth example. Besides of biowaste little is known about the suitability of waste streams from brewery and paper industry for anaerobic digestion. Therefore, an evaluation of the most important biogas process parameters for different substrates was carried out, in order to calculate the biogas utilization potential of these waste quantities. Furthermore, a calculation of biogas energy potentials was carried out for defined waste fractions which are most suitable for anaerobic digestion. Up to 1% of the primary energy demand can be covered by the calculated total biogas energy potential. By using a "best-practice-scenario" for separately collected biowaste, the coverage of primary energy demand may be increased above 2% for several countries. By using sector-specific waste streams, for example the German paper industry could cover up to 4.7% and the German brewery industry up to 71.2% of its total energy demand. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. 40 CFR 60.701 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor Processes § 60.701 Definitions. As used in... means by individual stream components, not carbon equivalents. Car-seal means a seal that is placed on a...

  8. Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production.

    PubMed

    Shahzad, Khurram; Narodoslawsky, Michael; Sagir, Muhammad; Ali, Nadeem; Ali, Shahid; Rashid, Muhammad Imtiaz; Ismail, Iqbal Mohammad Ibrahim; Koller, Martin

    2017-09-01

    The utilization of industrial waste streams as input materials for bio-mediated production processes constitutes a current R&D objective not only to reduce process costs at the input side but in parallel, to minimize hazardous environmental emissions. In this context, the EU-funded project ANIMPOL elaborated a process for the production of polyhydroxyalkanoate (PHA) biopolymers starting from diverse waste streams of the animal processing industry. This article provides a detailed economic analysis of PHA production from this waste biorefinery concept, encompassing the utilization of low-quality biodiesel, offal material and meat and bone meal (MBM). Techno-economic analysis reveals that PHA production cost varies from 1.41 €/kg to 1.64 €/kg when considering offal on the one hand as waste, or, on the other hand, accounting its market price, while calculating with fixed costs for the co-products biodiesel (0.97 €/L) and MBM (350 €/t), respectively. The effect of fluctuating market prices for offal materials, biodiesel, and MBM on the final PHA production cost as well as the investment payback time have been evaluated. Depending on the current market situation, the calculated investment payback time varies from 3.25 to 4.5years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Atmospheric Release of Organic Chlorinated Compounds from the Activated-Sludge Wastewater Treatment Process.

    DTIC Science & Technology

    1980-05-01

    industrial wastes are from several types of industries but the waste 25 from one manufacturer included several chlorinated precusors of pesticides and flame...Saturator of Watls C Fine Noodle Control Volvo D Mogesgt:c Stirrer with Rod in (2 liter) 3 Nock Round bottomn Flook I. Islt Stream Port 2 IWOt fItirogon

  10. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams.

    PubMed

    Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz

    2016-04-01

    Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed.

  11. Electrophoretic Process For Purifying Wastewater

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.

    1992-01-01

    Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.

  12. Contaminants in urban waters—Science capabilities of the U.S. Geological Survey

    USGS Publications Warehouse

    Jastram, John D.; Hyer, Kenneth E.

    2016-04-29

    Streams and estuaries with urban watersheds commonly exhibit increased streamflow and decreased base flow; diminished stream-channel stability; excessive amounts of contaminants such as pesticides, metals, industrial and municipal waste, and combustion products; and alterations to biotic community structure. Collectively, these detrimental effects have been termed the “urban-stream syndrome.” Water-resource managers seek to lessen the effects on receiving water bodies of new urban development and remediate the effects in areas of existing urbanization. Similarly, the scientific community has produced extensive research on these topics, with researchers from the U.S. Geological Survey (USGS) leading many studies of urban streams and the processes responsible for the urban-stream syndrome. Increasingly, USGS studies are evaluating the effects of management and restoration activities to better understand how urban waters respond to the implementation of management practices. The USGS has expertise in collecting and interpreting data for many physical, chemical, and ecological processes in urban waters and, thus, provides holistic assessments to inform managers of urban water resources.

  13. Lessons Learned from an Industry, Government and University Collaboration to Restore Stream Habitats and Mitigate Effects

    NASA Astrophysics Data System (ADS)

    Jones, Nicholas E.; Scrimgeour, Garry J.; Tonn, William M.

    2017-01-01

    Restoration ecologists conduct both basic and applied research using a diversity of funding and collaborative models. Over the last 17 years we have assessed the effectiveness of a stream compensation project in Canada's north, where an independent university-based research program was a condition of the regulatory approval process. This resulted in a non-traditional university-government-industry partnership. Here we share seven lessons that we learned from our collective experiences with the research partnership and use the Ekati diamond mine as a case study to illustrate and support lessons learned. Our advice includes opinions on the importance of: engaging collaborators early, defining roles and responsibilities, data sharing and standardization, the use of natural streams to set restoration targets, expect setbacks and surprises, treating restoration as an opportunity to experiment, and how to define success. Many of the lessons learned are broadly applicable to those whom embark on research collaborations among industry, universities, and consulting companies within a regulatory framework and may be of particular value to collaborators in early stages of their career.

  14. Impact of potential phosphate mining on the hydrology of Osceola National Forest, Florida

    USGS Publications Warehouse

    Miller, James A.; Hughes, G.H.; Hull, R.W.; Vecchioli, John; Seaber, P.R.

    1978-01-01

    Potentially exploitable phosphate deposits underlie part of Osceola National Forest, Fla. Hydrologic conditions in the forest are comparable with those in nearby Hamilton County, where phosphate mining and processing have been ongoing since 1965. Given similarity of operations, hydroloigc effects of mining in the forest are predicted. Flow of stream receiving phosphate industry effluent would increase somewhat during mining, but stream quality would not be greatly affected. Local changes in the configuration of the water table and the quality of water in the surficial aquifer will occur. Lowering of the potentiometric surface of the Floridan aquifer because of proposed pumpage would be less than five feet at nearby communities. Flordian aquifer water quality would be appreciably changed only if industrial effluent were discharged into streams which recharge the Flordian through sinkholes. The most significant hydrologic effects would occur at the time of active mining: long-term effects would be less significant. (Woodard-USGS)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elicio, Andy U.

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform amore » review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.« less

  16. Modeling of industrial stream and resources of machine-building enterpriser complex of wood preparation

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-03-01

    Theoretical bases of linkage of material streams of the machine-building enterprise and the automated system of decision-making are developed. The process of machine-building manufacture is submitted by the existential system. The equation of preservation of movement is based on calculation of volume of manufacture. The basis of resource variables includes capacities and operators of the equipment. Indignations such as a defect and failure are investigated in the existential basis. The equation of a stream of details on a manufacturing route is made. The received analytical expression expresses a condition of a stream of movement of details in view of influence of work of the equipment and traumatism of the personnel.

  17. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    PubMed

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Supercritical fluid regeneration of adsorbents

    NASA Astrophysics Data System (ADS)

    Defilippi, R. P.; Robey, R. J.

    1983-05-01

    The results of a program to perform studies supercritical (fluid) carbon dioxide (SCF CO2) regeneration of adsorbents, using samples of industrial wastewaters from manufacturing pesticides and synthetic solution, and to estimate the economics of the specific wastewater treatment regenerations, based on test data are given. Processing costs for regenerating granular activated carbon GAC) for treating industrial wastewaters depend on stream properties and regeneration throughput.

  19. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  20. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Treesearch

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  1. Mercury removal from water streams through the ion exchange membrane bioreactor concept.

    PubMed

    Oehmen, Adrian; Vergel, Dario; Fradinho, Joana; Reis, Maria A M; Crespo, João G; Velizarov, Svetlozar

    2014-01-15

    Mercury is a highly toxic heavy metal that causes human health problems and environmental contamination. In this study, an ion exchange membrane bioreactor (IEMB) process was developed to achieve Hg(II) removal from drinking water and industrial effluents. Hg(II) transport through a cation exchange membrane was coupled with its bioreduction to Hg(0) in order to achieve Hg removal from concentrated streams, with minimal production of contaminated by-products observed. This study involves (1) membrane selection, (2) demonstration of process effectiveness for removing Hg from drinking water to below the 1ppb recommended limit, and (3) process application for treatment of concentrated water streams, where >98% of the Hg was removed, and the throughput of contaminated water was optimised through membrane pre-treatment. The IEMB process represents a novel mercury treatment technology with minimal generation of contaminated waste, thereby reducing the overall environmental impact of the process. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Ultrafiltration of thin stillage from conventional and e-mill dry grind processes.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Wang, Ping; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2011-05-01

    We used ultrafiltration (UF) to evaluate membrane filtration characteristics of thin stillage and determine solids and nutrient compositions of filtered streams. To obtain thin stillage, corn was fermented using laboratory methods. UF experiments were conducted in batch mode under constant temperature and flow rate conditions. Two regenerated cellulose membranes (10 and 100 kDa molecular weight cutoffs) were evaluated with the objective of retaining solids as well as maximizing permeate flux. Optimum pressures for 10 and 100 kDa membranes were 207 and 69 kPa, respectively. Total solids, ash, and neutral detergent fiber contents of input TS streams of dry grind and E-Mill processes were similar; however, fat and protein contents were different (p < 0.05). Retentate obtained from conventional thin stillage fractionation had higher mean total solids contents (27.6% to 27.8%) compared to E-Mill (22.2% to 23.4%). Total solids in retentate streams were found similar to those from commercial evaporators used in industry (25% to 35% total solids). Fat contents of retentate streams ranged from 16.3% to 17.5% for the conventional process. A 2% increment in fat concentration was observed in the E-Mill retentate stream. Thin stillage ash content was reduced 60% in retentate streams.

  3. Electrochemical decomposition of fluorinated wetting agents in plating industry waste water.

    PubMed

    Fath, Andreas; Sacher, Frank; McCaskie, John E

    2016-01-01

    Electrochemical decomposition of fluorinated surfactants (PFAS, perfluorinated alkyl substances) used in the plating industry was analyzed and the decomposition process parameters optimized at the laboratory scale and production scale of a 500-liter reactor using lead electrodes. The method and system was successfully demonstrated under production conditions to treat PFAS) with up to 99% efficiency in the concentration range of 1,000-20,000 μg/l (1 ppm-20 ppm). The treatment also reduced hexavalent chromium (Cr(6+)) ions to trivalent chromium (Cr(3+)) ions in the wastewater. If the PFAS-containing wastewater is mixed with other wastewater streams, specifically from nickel plating drag out solution or when pH values >5, the treatment process is ineffective. For the short chain PFAS, (perfluorobutylsulfonate) the process was less efficient than C6-C8 PFAS. The process is automated and has safety procedures and controls to prevent hazards. The PFAS were decomposed to hydrogen fluoride (HF) under the strong acid electrochemical operating conditions. Analytical tests showed no evidence of organic waste products remaining from the process. Conventional alternative PFAS removal systems were tested on the waste streams and compared with each other and with the-E-destruct (electrochemical oxidation) process. For example, ion exchange resin (IX resin) treatment of wastewater to complex and remove PFAS was found to be seven times more efficient when compared to the conventional activated carbon absorption (C-treat) process. However, the E-destruct process is higher in capacity, exhibits longer service life and lower operating costs than either IX or C-treat methods for elimination of PFAS from these electroplating waste streams.

  4. Technical specifications for mechanical recycling of agricultural plastic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briassoulis, D., E-mail: briassou@aua.gr; Hiskakis, M.; Babou, E.

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plasticmore » waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW.« less

  5. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  6. In-camera video-stream processing for bandwidth reduction in web inspection

    NASA Astrophysics Data System (ADS)

    Jullien, Graham A.; Li, QiuPing; Hajimowlana, S. Hossain; Morvay, J.; Conflitti, D.; Roberts, James W.; Doody, Brian C.

    1996-02-01

    Automated machine vision systems are now widely used for industrial inspection tasks where video-stream data information is taken in by the camera and then sent out to the inspection system for future processing. In this paper we describe a prototype system for on-line programming of arbitrary real-time video data stream bandwidth reduction algorithms; the output of the camera only contains information that has to be further processed by a host computer. The processing system is built into a DALSA CCD camera and uses a microcontroller interface to download bit-stream data to a XILINXTM FPGA. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The camera communicates to a host computer via an RS-232 link to the microcontroller. Static memory is used to both generate a FIFO interface for buffering defect burst data, and for off-line examination of defect detection data. In addition to providing arbitrary FPGA architectures, the internal program of the microcontroller can also be changed via the host computer and a ROM monitor. This paper describes a prototype system board, mounted inside a DALSA camera, and discusses some of the algorithms currently being implemented for web inspection applications.

  7. Adaptive inferential sensors based on evolving fuzzy models.

    PubMed

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the challenges of the modern advanced process industry.

  8. When wastewater has worth: Water reconditioning opportunities in the food industry to achieve sustainable food manufacturing (abstract)

    USDA-ARS?s Scientific Manuscript database

    A major sustainability goal of food processing wastewater (FPWW) management is to not only decrease environmental pollution but also utilize valuable co-products present in the FPWW. Many processed food products, especially those from fruits and vegetables, result in FPWW streams that contain compou...

  9. 40 CFR 60.562-1 - Standards: Process emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Compound (VOC) Emissions from the Polymer Manufacturing Industry § 60.562-1 Standards: Process emissions... vent stream from a control device shall have car-sealed opened all valves in the vent system from the emission source to the control device and car-sealed closed all valves in vent system that would lead the...

  10. Daily water-temperature records for Utah streams, 1944-68

    USGS Publications Warehouse

    Whitaker, G.L.

    1970-01-01

    Temperature is an important and sometimes critical factor for many uses of water. Temperature affects the usefulness of the water for recreation, fish and wildlife propagation, industrial cooling, food processing, and manufacturing. Temperature also affects the ability of the water to accommodate biologic and vegetative types of life.The purpose of this report is to summarize in tabular form the water- temperature data that have been collected by the U.S. Geological Survey on a daily basis for streams in Utah. A few stream sites near the boundaries of Utah in neighboring States have been included. These sites are on streams which either flow out of or into Utah, and they may provide information of value in studies dealing with water quality in the State.

  11. The potential environmental impact of waste from cellulosic ethanol production.

    PubMed

    Menetrez, Marc Y

    2010-02-01

    The increasing production of ethanol has been established as an important contributor to future energy independence. Although ethanol demand is increasing, a growing economic trend in decreased profitability and resource conflicts have called into question the future of grain-based ethanol production. Growing emphasis is being placed on utilizing cellulosic feedstocks to produce ethanol, and the need for renewable resources has made the development of cellulosic ethanol a national priority. Cellulosic ethanol production plants are being built in many areas of the United States to evaluate various feedstocks and processes. The waste streams from many varying processes that are being developed contain a variety of components. Differences in ethanol generation processes and feedstocks are producing waste streams unique to biofuel production, which could be potentially harmful to the environment if adequate care is not taken to manage those risks. Waste stream management and utilization of the cellulosic ethanol process are equally important components of the development of this industry.

  12. Method for high temperature mercury capture from gas streams

    DOEpatents

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  13. EVALUATION OF CHEMICAL RELEASES AND WORKER EXPOSURES FROM FILTER PRESS OPERATIONS

    EPA Science Inventory

    The exposures (inhalation and dermal) and releases (air, water, solids, and process streams) associated with the filtration of industrial wastewater sludge from an electronics manufacturing plant were characterized. Chemical releases and worker exposures for a target chemical (t...

  14. Solvent recovery opportunities in the pharmaceutical industry.

    PubMed

    Barton, P I

    2000-11-01

    Opportunities for recovering and recycling waste solvent streams in the pharmaceutical industry are reviewed. A major obstacle to solvent recovery and recycling is the existence of azeotropic compositions, and thus separation barriers, in the mixtures in question. Advances in the understanding of these complex separation problems are discussed. Recent progress on novel designs for small-scale, flexible azeotropic separation processes is reviewed. Also considered is the alternative and complementary approach of integrating solvent use within a batch process so that the formation of hard-to-separate azeotropic compositions is prevented.

  15. Enzymatic Catalytic Beds For Oxidation Of Alcohols

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.; Schussel, Leonard J.

    1993-01-01

    Modules containing beds of enzymatic material catalyzing oxidation of primary alcohols and some other organic compounds developed for use in wastewater-treatment systems of future spacecraft. Designed to be placed downstream of multifiltration modules, which contain filters and sorbent beds removing most of non-alcoholic contaminants but fail to remove significant amounts of low-molecular-weight, polar, nonionic compounds like alcohols. Catalytic modules also used on Earth to oxidize primary alcohols and other compounds in wastewater streams and industrial process streams.

  16. Continuous online Fourier transform infrared (FT-IR) spectrometry analysis of hydrogen chloride (HCl), carbon dioxide (CO2), and water (H2O) in nitrogen-rich and ethylene-rich streams.

    PubMed

    Stephenson, Serena; Pollard, Maria; Boit, Kipchirchir

    2013-09-01

    The prevalence of optical spectroscopy techniques being applied to the online analysis of continuous processes has increased in the past couple of decades. The ability to continuously "watch" changing stream compositions as operating conditions change has proven invaluable to pilot and world-scale manufacturing in the chemical and petrochemical industries. Presented here is an application requiring continuous monitoring of parts per million (ppm) by weight levels of hydrogen chloride (HCl), water (H2O), and carbon dioxide (CO2) in two gas-phase streams, one nitrogen-rich and one ethylene-rich. Because ethylene has strong mid-infrared (IR) absorption, building an IR method capable of quantifying HCl, H2O, and CO2 posed some challenges. A long-path (5.11m) Fourier transform infrared (FT-IR) spectrometer was used in the mid-infrared region between 1800 and 5000 cm(-1), with a 1 cm(-1) resolution and a 10 s spectral update time. Sample cell temperature and pressure were controlled and measured to minimize measurement variability. Models using a modified classical least squares method were developed and validated first in the laboratory and then using the process stream. Analytical models and process sampling conditions were adjusted to minimize interference of ethylene in the ethylene-rich stream. The predictive capabilities of the measurements were ±0.5 ppm for CO2 in either stream; ±1.1 and ±1.3 ppm for H2O in the nitrogen-rich and ethylene-rich streams, respectively; and ±1.0 and ±2.4 ppm for HCl in the nitrogen-rich and ethylene-rich streams, respectively. Continuous operation of the instrument in the process stream was demonstrated using an automated stream switching sample system set to 10 min intervals. Response time for all components of interest was sufficient to acquire representative stream composition data. This setup provides useful insight into the process for troubleshooting and optimizing plant operating conditions.

  17. Membrane applications and research in food processing: An assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, C.M.; Leeper, S.A.; Engelau, D.E.

    This assessment is intended to aid in planning separations research and development projects aimed at reducing energy consumption in the food industry. The food processing industry uses approximately 1.5 quadrillion Btu per year, 2% of the US national annual energy consumption. Food processing involves a variety of liquid feed, product, and waste streams and makes extensive use of thermal operations such as drying, evaporation, pasteurization, and distillation. As such, it is a candidate for energy conservation through the use of membrane separations. The assessment is organized according to Standard Industry Classification (SIC) Code for the food industry. Individual subindustries consideredmore » are: (a) Meat Processing, Dairy Products, Preserved Fruit and Vegetables, Grain Milling, Bakery Products, Sugar and Confectionery products, Edible Fats and Oils, and Beverages. Topics covered include: (a) background information on food processing and membrane separations, (b) a review of current and developing membrane separations for the food industry, (c) energy consumption and processes used in individual subindustries, (d) separations in the subindustries that could be augmented or replaced by membrane processes, (e) industry practices and market conditions that could affect adoption of new technologies, and (f) prioritized recommendations for DOE-OIP supported research to further use of membrane separations in the food industry. 435 refs.« less

  18. POLLUTION PREVENTION IN THE METAL FINISHING INDUSTRY

    EPA Science Inventory

    A broad overview of the metal finishing processes in pollution prevention. The volume of hazardous/toxic waste streams produced from metal finishing operations is significant. It is common for product surfaces to undergo more than 10 finishing steps. The elimination of any of ...

  19. Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes

    PubMed Central

    2016-01-01

    The speed and throughput of analytical platforms has been a driving force in recent years in the “omics” technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition. PMID:27983788

  20. Data streaming for metabolomics: Accelerating data processing and analysis from days to minutes

    DOE PAGES

    Montenegro-Burke, J. Rafael; Aisporna, Aries E.; Benton, H. Paul; ...

    2016-12-16

    The speed and throughput of analytical platforms has been a driving force in recent years in the “omics” technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, whichmore » capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Here, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition.« less

  1. Data Streaming for Metabolomics: Accelerating Data Processing and Analysis from Days to Minutes.

    PubMed

    Montenegro-Burke, J Rafael; Aisporna, Aries E; Benton, H Paul; Rinehart, Duane; Fang, Mingliang; Huan, Tao; Warth, Benedikt; Forsberg, Erica; Abe, Brian T; Ivanisevic, Julijana; Wolan, Dennis W; Teyton, Luc; Lairson, Luke; Siuzdak, Gary

    2017-01-17

    The speed and throughput of analytical platforms has been a driving force in recent years in the "omics" technologies and while great strides have been accomplished in both chromatography and mass spectrometry, data analysis times have not benefited at the same pace. Even though personal computers have become more powerful, data transfer times still represent a bottleneck in data processing because of the increasingly complex data files and studies with a greater number of samples. To meet the demand of analyzing hundreds to thousands of samples within a given experiment, we have developed a data streaming platform, XCMS Stream, which capitalizes on the acquisition time to compress and stream recently acquired data files to data processing servers, mimicking just-in-time production strategies from the manufacturing industry. The utility of this XCMS Online-based technology is demonstrated here in the analysis of T cell metabolism and other large-scale metabolomic studies. A large scale example on a 1000 sample data set demonstrated a 10 000-fold time savings, reducing data analysis time from days to minutes. Further, XCMS Stream has the capability to increase the efficiency of downstream biochemical dependent data acquisition (BDDA) analysis by initiating data conversion and data processing on subsets of data acquired, expanding its application beyond data transfer to smart preliminary data decision-making prior to full acquisition.

  2. Using combinations of metal isotopes as tracers of tailings pond discharges to subsurface aquifers in the Athabasca Oil Sands area, Canada.

    NASA Astrophysics Data System (ADS)

    Gammon, P. R.; Savard, M. M.; Ahad, J. M.; Girard, I.

    2016-12-01

    The Athabasca Oil Sands (AOS) industry in Alberta, Canada deposits voluminous waste streams in Earth's largest tailings ponds (TPs). Detecting and tracing contaminant discharge from TPs to subsurface aquifers has proven difficult because tailings have the same composition as the surrounding environment of unmined oil sand. To trace pond discharge to the subsurface therefore relies on the waste stream hosting additions or alterations induced by mining or industrial processes. Inorganic element or contaminant concentration data have proven ineffective at tracing because there is insufficient alteration of the chemical constituents or their ratios. Metal isotopes have not generally been applied to tracing emissions even though isotopic fractionation is likely induced via the high temperature and pH industrial process. We have generated Mg, Li, Pb and Zn isotopic data for a range of groundwater wells and TPs. Mg isotopes are excellent for distinguishing deep saline brines that are pumped into the waste stream during mine dewatering. Li isotopes appear to be heavily fractionated during processing, which produces a heavy isotopic signature that is an excellent tracer of production water. Pb isotopes discriminate Pb derived from oil-sand versus bedrock carbonate. Juxtapositions of TPs, carbonates and near-surface aquifers are common and of significant regulatory concern, making Pb isotopes particularly useful. Zn isotopic data indicates similarities to Pb isotopes, but are difficult to obtain due to low concentrations. Combining the isotopic data with concentration data and hydrologic models will assist in determining the fluxes of discharges from the TPs to near-surface aquifers. The range of environmental contexts of AOS TPs is limited and thus monitoring discharges to nearby aquifers from TPs could feasibly be accomplished using tailored suites of metal isotopes.

  3. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    PubMed

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  4. A novel cell factory for efficient production of ethanol from dairy waste.

    PubMed

    Liu, Jianming; Dantoft, Shruti Harnal; Würtz, Anders; Jensen, Peter Ruhdal; Solem, Christian

    2016-01-01

    Sustainable and economically feasible ways to produce ethanol or other liquid fuels are becoming increasingly relevant due to the limited supply of fossil fuels and the environmental consequences associated with their consumption. Microbial production of fuel compounds has gained a lot of attention and focus has mostly been on developing bio-processes involving non-food plant biomass feedstocks. The high cost of the enzymes needed to degrade such feedstocks into its constituent sugars as well as problems due to various inhibitors generated in pretreatment are two challenges that have to be addressed if cost-effective processes are to be established. Various industries, especially within the food sector, often have waste streams rich in carbohydrates and/or other nutrients, and these could serve as alternative feedstocks for such bio-processes. The dairy industry is a good example, where large amounts of cheese whey or various processed forms thereof are generated. Because of their nutrient-rich nature, these substrates are particularly well suited as feedstocks for microbial production. We have generated a Lactococcus lactis strain which produces ethanol as its sole fermentation product from the lactose contained in residual whey permeate (RWP), by introducing lactose catabolism into a L. lactis strain CS4435 (MG1363 Δ(3) ldh, Δpta, ΔadhE, pCS4268), where the carbon flow has been directed toward ethanol instead of lactate. To achieve growth and ethanol production on RWP, we added corn steep liquor hydrolysate (CSLH) as the nitrogen source. The outcome was efficient ethanol production with a titer of 41 g/L and a yield of 70 % of the theoretical maximum using a fed-batch strategy. The combination of a low-cost medium from industrial waste streams and an efficient cell factory should make the developed process industrially interesting. A process for the production of ethanol using L. lactis and a cheap renewable feedstock was developed. The results demonstrate that it is possible to achieve sustainable bioconversion of waste products from the dairy industry (RWP) and corn milling industry (CSLH) to ethanol and the process developed shows great potential for commercial realization.

  5. Extraterrestrial materials processing and construction

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.

    1978-01-01

    Applications of available terrestrial skills to the gathering of lunar materials and the processing of raw lunar materials into industrial feed stock were investigated. The literature on lunar soils and rocks was reviewed and the chemical processes by which major oxides and chemical elements can be extracted were identified. The gathering of lunar soil by means of excavation equipment was studied in terms of terrestrial experience with strip mining operations on earth. The application of electrostatic benefication techniques was examined for use on the moon to minimize the quantity of materials requiring surface transport and to optimize the stream of raw materials to be transported off the moon for subsequent industrial use.

  6. Sawmill profile : new Forest Products Lab report defines the makeup of North America's softwood sawmill industry

    Treesearch

    Henry Spelter; Matthew Alderman

    2005-01-01

    As of July 2005, the main stream of the softwood lumber industry in the U.S. and Canada consisted of about 1,067sawmills. These sawmills had a combined capacity of 189 million m3 (80 billion BF), employed about 99,000, produced about 172 million m3 (nominal, 73 billion BF) of lumber, and in the process consumed about 280 million m3 of wood.

  7. A NOVEL SEPARATION TECHNOLOGY FOR REMOVAL RECOVERY OF METALS FROM AQUEOUS SOLUTIONS

    EPA Science Inventory

    Recovery/Recycling of metal ions from industrial process waste streams is a preferred alternative to disposal by conventional techniques. This paper presents methods for preparation of inorganic chemically active adsorbents to be used in fixed bed adsorbers. Methods for immobiliz...

  8. Toxic Acid Gas Absorber Design Considerations for Air Pollution Control in Process Industries

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2008-01-01

    This paper analyses the design parameters for an absorber used for removal of toxic acid gas (in particular sulfur dioxide) from a process gas stream for environmental health protection purposes. Starting from the equilibrium data, Henry's law constant was determined from the slope of the y-x diagram. Based on mass balances across the absorber,…

  9. Tools for developing a quality management program: proactive tools (process mapping, value stream mapping, fault tree analysis, and failure mode and effects analysis).

    PubMed

    Rath, Frank

    2008-01-01

    This article examines the concepts of quality management (QM) and quality assurance (QA), as well as the current state of QM and QA practices in radiotherapy. A systematic approach incorporating a series of industrial engineering-based tools is proposed, which can be applied in health care organizations proactively to improve process outcomes, reduce risk and/or improve patient safety, improve through-put, and reduce cost. This tool set includes process mapping and process flowcharting, failure modes and effects analysis (FMEA), value stream mapping, and fault tree analysis (FTA). Many health care organizations do not have experience in applying these tools and therefore do not understand how and when to use them. As a result there are many misconceptions about how to use these tools, and they are often incorrectly applied. This article describes these industrial engineering-based tools and also how to use them, when they should be used (and not used), and the intended purposes for their use. In addition the strengths and weaknesses of each of these tools are described, and examples are given to demonstrate the application of these tools in health care settings.

  10. Alternative Procedure of Heat Integration Tehnique Election between Two Unit Processes to Improve Energy Saving

    NASA Astrophysics Data System (ADS)

    Santi, S. S.; Renanto; Altway, A.

    2018-01-01

    The energy use system in a production process, in this case heat exchangers networks (HENs), is one element that plays a role in the smoothness and sustainability of the industry itself. Optimizing Heat Exchanger Networks (HENs) from process streams can have a major effect on the economic value of an industry as a whole. So the solving of design problems with heat integration becomes an important requirement. In a plant, heat integration can be carried out internally or in combination between process units. However, steps in the determination of suitable heat integration techniques require long calculations and require a long time. In this paper, we propose an alternative step in determining heat integration technique by investigating 6 hypothetical units using Pinch Analysis approach with objective function energy target and total annual cost target. The six hypothetical units consist of units A, B, C, D, E, and F, where each unit has the location of different process streams to the temperature pinch. The result is a potential heat integration (ΔH’) formula that can trim conventional steps from 7 steps to just 3 steps. While the determination of the preferred heat integration technique is to calculate the potential of heat integration (ΔH’) between the hypothetical process units. Completion of calculation using matlab language programming.

  11. Combined analysis of job and task benzene air exposures among workers at four US refinery operations

    PubMed Central

    Shin, Jennifer (Mi); Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2016-01-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers’ exposures to benzene over the past 30 years. PMID:26862134

  12. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    PubMed

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (<180 min) samples characterizing 24 tasks were evaluated. Personal air sample data from four individual refineries were pooled based on a number of factors including (1) the consistent sampling approach used by refinery industrial hygienists over time, (2) the use of similar exposure controls, (3) the comparability of benzene content of process streams and end products, (4) the ability to assign uniform job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  13. Gas stream purifier

    NASA Technical Reports Server (NTRS)

    Adam, Steven J.

    1994-01-01

    A gas stream purifier has been developed that is capable of removing corrosive acid, base, solvent, organic, inorganic, and water vapors as well as particulates from an inert mixed gas stream using only solid scrubbing agents. This small, lightweight purifier has demonstrated the ability to remove contaminants from an inert gas stream with a greater than 99 percent removal efficiency. The Gas Stream Purifier has outstanding market and sales potential in manufacturing, laboratory and science industries, medical, automotive, or any commercial industry where pollution, contamination, or gas stream purification is a concern. The purifier was developed under NASA contract NAS9-18200 Schedule A for use in the international Space Station. A patent application for the Gas Stream Purifier is currently on file with the United States Patent and Trademark Office.

  14. Feruloyl esterases from Schizophyllum commune to treat food industry side-streams.

    PubMed

    Nieter, Annabel; Kelle, Sebastian; Linke, Diana; Berger, Ralf G

    2016-11-01

    Agro-industrial side-streams are abundant and renewable resources of hydroxycinnamic acids with potential applications as antioxidants and preservatives in the food, health, cosmetic, and pharmaceutical industries. Feruloyl esterases (FAEs) from Schizophyllum commune were functionally expressed in Pichia pastoris with extracellular activities of 6000UL(-1). The recombinant enzymes, ScFaeD1 and ScFaeD2, released ferulic acid from destarched wheat bran and sugar beet pectin. Overnight incubation of coffee pulp released caffeic (>60%), ferulic (>80%) and p-coumaric acid (100%) indicating applicability for the valorization of food processing wastes and enhanced biomass degradation. Based on substrate specificity profiling and the release of diferulates from destarched wheat bran, the recombinant FAEs were characterized as type D FAEs. ScFaeD1 and ScFaeD2 preferably hydrolyzed feruloylated saccharides with ferulic acid esterified to the O-5 position of arabinose residues and showed an unprecedented ability to hydrolyze benzoic acid esters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Evaluating impacts of pulp and paper mill process changes on bioactive contaminant loading to St. Louis Bay.

    EPA Science Inventory

    As a convergence point for human waste streams, wastewater treatment plants are recognized as point sources through which contaminants originating from domestic, industrial, and commercial activities enter surface waters. Effluent from the Western Lake Superior Sanitary District ...

  16. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory

    PubMed Central

    Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468

  17. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.

    PubMed

    Xing, Lizhi; Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.

  18. Industrial production of acetone and butanol by fermentation-100 years later.

    PubMed

    Sauer, Michael

    2016-07-01

    Microbial production of acetone and butanol was one of the first large-scale industrial fermentation processes of global importance. During the first part of the 20th century, it was indeed the second largest fermentation process, superseded in importance only by the ethanol fermentation. After a rapid decline after the 1950s, acetone-butanol-ethanol (ABE) fermentation has recently gained renewed interest in the context of biorefinery approaches for the production of fuels and chemicals from renewable resources. The availability of new methods and knowledge opens many new doors for industrial microbiology, and a comprehensive view on this process is worthwhile due to the new interest. This thematic issue of FEMS Microbiology Letters, dedicated to the 100th anniversary of the first industrial exploitation of Chaim Weizmann's ABE fermentation process, covers the main aspects of old and new developments, thereby outlining a model development in biotechnology. All major aspects of industrial microbiology are exemplified by this single process. This includes new technologies, such as the latest developments in metabolic engineering, the exploitation of biodiversity and discoveries of new regulatory systems such as for microbial stress tolerance, as well as technological aspects, such as bio- and down-stream processing. © FEMS 2016.

  19. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  20. Where Did All the Streams Go? Effects of Urbanization on Hydrologic Permanence of Headwater Streams

    EPA Science Inventory

    Headwater streams represent a majority (up to 70%) of the stream length in the United States; however, these small streams are often piped or filled to accommodate residential, commercial, and industrial development. Legal protection of headwater streams under the Clean Water Ac...

  1. Food and processing residues in California: resource assessment and potential for power generation.

    PubMed

    Matteson, Gary C; Jenkins, B M

    2007-11-01

    The California agricultural industry produces more than 350 commodities with a combined yearly value in excess of $28 billion. The processing of many of these crops results in the production of residue streams, and the food processing industry faces increasing regulatory pressure to reduce environmental impacts and provide for sustainable management and use. Surveys of food and other processing and waste management sectors combined with published state data yield a total resource in excess of 4 million metric tons of dry matter, with nearly half of this likely to be available for utilization. About two-thirds of the available resource is produced as high-moisture residues that could support 134 MWe of power generation by anaerobic digestion and other conversion techniques. The other third is generated as low-moisture materials, many of which are already employed as fuel in direct combustion biomass power plants. The cost of energy conversion remains high for biochemical systems, with tipping or disposal fees of the order of $30-50Mg(-1) required to align power costs with current market prices. Identifying ways to reduce capital and operating costs of energy conversion, extending operating seasons to increase capacity factors through centralizing facilities, combining resource streams, and monetizing environmental benefits remain important goals for restructuring food and processing waste management in the state.

  2. 40 CFR 60.705 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...

  3. 40 CFR 60.705 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Volatile Organic Compound Emissions From Synthetic Organic Chemical Manufacturing Industry (SOCMI) Reactor... used or where the reactor process vent stream is introduced as the primary fuel to any size boiler or... equipment or reactors; (2) Any recalculation of the TRE index value performed pursuant to § 60.704(f); and...

  4. Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride

    USDA-ARS?s Scientific Manuscript database

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...

  5. 40 CFR 62.15410 - What definitions must I know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... period during which the municipal waste combustion unit combusts fossil fuel or other solid waste fuel... combusts municipal solid waste with nonmunicipal solid waste fuel (for example, coal, industrial process... permit that limits it to combusting a fuel feed stream which is 30 percent or less (by weight) municipal...

  6. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  7. Implementation of a quantum cascade laser-based gas sensor prototype for sub-ppmv H2S measurements in a petrochemical process gas stream.

    PubMed

    Moser, Harald; Pölz, Walter; Waclawek, Johannes Paul; Ofner, Johannes; Lendl, Bernhard

    2017-01-01

    The implementation of a sensitive and selective as well as industrial fit gas sensor prototype based on wavelength modulation spectroscopy with second harmonic detection (2f-WMS) employing an 8-μm continuous-wave distributed feedback quantum cascade laser (CW-DFB-QCL) for monitoring hydrogen sulfide (H 2 S) at sub-ppm levels is reported. Regarding the applicability for analytical and industrial process purposes aimed at petrochemical environments, a synthetic methane (CH 4 ) matrix of up to 1000 ppmv together with a varying H 2 S content was chosen as the model environment for the laboratory-based performance evaluation performed at TU Wien. A noise-equivalent absorption sensitivity (NEAS) for H 2 S targeting the absorption line at 1247.2 cm -1 was found to be 8.419 × 10 -10  cm -1  Hz -1/2 , and a limit of detection (LOD) of 150 ppbv H 2 S could be achieved. The sensor prototype was then deployed for on-site measurements at the petrochemical research hydrogenation platform of the industrial partner OMV AG. In order to meet the company's on-site safety regulations, the H 2 S sensor platform was installed in an industry rack and equipped with the required safety infrastructure for protected operation in hazardous and explosive environments. The work reports the suitability of the sensor prototype for simultaneous monitoring of H 2 S and CH 4 content in the process streams of a research hydrodesulfurization (HDS) unit. Concentration readings were obtained every 15 s and revealed process dynamics not observed previously.

  8. The Breakup Mechanism and the Spray Pulsation Behavior of a Three-Stream Atomizer

    NASA Astrophysics Data System (ADS)

    Ng, Chin; Dord, Anne; Aliseda, Alberto

    2011-11-01

    In many processes of industrial importance, such as gasification, the liquid to gas mass ratio injected at the atomizer exceeds the limit of conventional two-fluid coaxial atomizers. To maximize the shear rate between the atomization gas and the liquid while maintaining a large contact area, a secondary gas stream is added at the centerline of the spray, interior to the liquid flow, which is annular in this configuration. This cylindrical gas jet has low momentum and does not contribute to the breakup process, which is still dominated by the high shear between the concentric annular liquid flow and the high momentum gas stream. The presence of two independently controlled gas streams leads to the appearance of a hydrodynamic instability that manifests itself in pulsating liquid flow rates and droplet sizes. We study the dependency of the atomization process on the relative flow rates of the three streams. We measure the size distribution, droplet number density and total liquid volumetric flow rate as a function of time, for realistic Weber and Ohnesorge numbers. Analysis of the temporal evolution of these physical variables reveals the dominant frequency of the instability and its effect on the breakup and dispersion of droplets in the spray. We present flow visualization and Phase Doppler Particle Analyzer results that provide insight into the behavior of this complex coaxial shear flow.

  9. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  10. Occurrence and distribution of fish species in the Great and Little Miami River basins, Ohio and Indiana, pre-1900 to 1998

    USGS Publications Warehouse

    Harrington, Stephanie

    1999-01-01

    Historically, 133 fish species representing 25 families have been documented in the Great and Little Miami River Basins. Of these, 132 species have been reported in the basins since 1901, 123 since 1955, 117 since 1980, and 113 post-1990. Natural processes and human activities have both been shown to be major factors in the alteration of fish-community structure and the decrease in species diversity. In the late 1800's, dam construction and the removal of riparian zones restricted fish migration and altered habitat. Industrialization and urbanization increased considerably in the 1900's, further degrading stream habitat and water quality. Species requiring riffles and clean, hard stream bottoms were the most adversely affected. The use of agricultural and industrial chemicals prompted fish-consumption advisories and an increase in studies reporting the occurrence of external fish anomalies. Over the last 20 years, water quality has improved in part because of the upgrading of wastewater-treatment facilities; and, as a result, many streams of the Great and Little Miami River Basins generally meet or exceed existing water-quality standards. Although significant improvements have occurred in the basins, continued efforts to improve water quality and restore the physical habitat of streams will be necessary to increase fish abundance and biodiversity

  11. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less

  12. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. Themore » NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.« less

  13. Dyes removal from textile wastewater using graphene based nanofiltration

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Rizki, Z.; Zunita, M.; Dharmawijaya, P. T.

    2017-05-01

    Wastewater produced from textile industry is having more strict regulation. The major pollutant of wastewater from textile industry is Dyes. Dyes have several harsh properties i.e toxic, volatile, complexing easily with mineral ions that are dissolved in water (decreasing the amount of important mineral ions in water), and hard to disintegrate, therefore it must be removed from the waste stream. There are several methods and mechanisms to remove dyes such as chemical and physical sorption, evaporation, biological degradation, and photocatalytic system that can be applied to the waste stream. Membrane-based separation technology has been introduced in dyes removal treatment and is well known for its advantages (flexibility, mild operating condition, insensitive to toxic pollutant). Graphene and its derivatives are novel materials which have special properties due to its ultrathin layer and nanometer-size pores. Thus, the materials are very light yet strong. Moreover, it has low cost and easy to fabricate. Recently, the application of graphene and its derivatives in nanofiltration membrane processes is being widely explored. This review investigates the potentials of graphene based membrane in dyes removal processes. The operating conditions, dyes removal effectiveness, and the drawbacks of the process are the main focus in this paper.

  14. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  15. Gas-to-gasoline plant half complete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.

    New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less

  16. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  17. Engineering fluid flow using sequenced microstructures

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Sollier, Elodie; Masaeli, Mahdokht; Xie, Yu; Ganapathysubramanian, Baskar; Stone, Howard A.; di Carlo, Dino

    2013-05-01

    Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.

  18. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover.

    PubMed

    Kadam, Kiran L; Chin, Chim Y; Brown, Lawrence W

    2008-05-01

    A new biorefining process is presented that embodies green processing and sustainable development. In the spirit of a true biorefinery, the objective is to convert agricultural residues and other biomass feedstocks into value-added products such as fuel ethanol, dissolving pulp, and lignin for resin production. The continuous biomass fractionation process yields a liquid stream rich in hemicellulosic sugars, a lignin-rich liquid stream, and a solid cellulose stream. This paper generally discusses potential applications of the three streams and specifically provides results on the evaluation of the cellulose stream from corn stover as a source of fermentation sugars and specialty pulp. Enzymatic hydrolysis of this relatively pure cellulose stream requires significantly lower enzyme loadings because of minimal enzyme deactivation from nonspecific binding to lignin. A correlation was shown to exist between lignin removal efficiency and enzymatic digestibility. The cellulose produced was also demonstrated to be a suitable replacement for hardwood pulp, especially in the top ply of a linerboard. Also, the relatively pure nature of the cellulose renders it suitable as raw material for making dissolving pulp. This pulping approach has significantly smaller environmental footprint compared to the industry-standard kraft process because no sulfur- or chlorine-containing compounds are used. Although this option needs some minimal post-processing, it produces a higher value commodity than ethanol and, unlike ethanol, does not need extensive processing such as hydrolysis or fermentation. Potential use of low-molecular weight lignin as a raw material for wood adhesive production is discussed as well as its use as cement and feed binder. As a baseline application the hemicellulosic sugars captured in the hydrolyzate liquor can be used to produce ethanol, but potential utilization of xylose for xylitol fermentation is also feasible. Markets and values of these applications are juxtaposed with market penetration and saturation.

  19. Quantifying fish responses to forestry—lessons from the trask watershed study

    Treesearch

    Jason Dunham; Douglas Bateman; David Hockman-Wert; Nathan Chelgren; David Leer

    2013-01-01

    We describe demographic processes and species interactions that infl uence Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) in small streams that are part of an eff ort designed to evaluate forest harvest impacts in the Trask Watershed, an industrial forest located in northwest Oregon, USA. Spatial variation in recruitment, individual growth...

  20. Laser-Beam-Absorption Chemical-Species Monitor

    NASA Technical Reports Server (NTRS)

    Gersh, Michael; Goldstein, Neil; Lee, Jamine; Bien, Fritz; Richtsmeier, Steven

    1996-01-01

    Apparatus measures concentration of chemical species in fluid medium (e.g., gaseous industrial process stream). Directs laser beam through medium, and measures intensity of beam after passage through medium. Relative amount of beam power absorbed in medium indicative of concentration of chemical species; laser wavelength chosen to be one at which species of interest absorbs.

  1. Human Behavior Based Exploratory Model for Successful Implementation of Lean Enterprise in Industry

    ERIC Educational Resources Information Center

    Sawhney, Rupy; Chason, Stewart

    2005-01-01

    Currently available Lean tools such as Lean Assessments, Value Stream Mapping, and Process Flow Charting focus on system requirements and overlook human behavior. A need is felt for a tool that allows one to baseline personnel, determine personnel requirements and align system requirements with personnel requirements. Our exploratory model--The…

  2. Passing a smoke-free law in a pro-tobacco culture: a multiple streams approach.

    PubMed

    Greathouse, Lisa W; Hahn, Ellen J; Okoli, Chizimuzo T C; Warnick, Todd A; Riker, Carol A

    2005-08-01

    This article describes a case study of the policy development and political decision-making process involved in the enactment of Lexington, Kentucky's smoke-free law. The multiple streams framework is used to analyze the development of the law in a seemingly unlikely and challenging political environment. Proponents developed a dissemination research plan targeted at policy makers and the public to demonstrate the need for a comprehensive law. The existence of a strong coalition of health care providers and health care systems including the board of health, as well as long-standing tobacco control expertise and a strong legal team, were essential ingredients for success. A deliberate strategy to expose the tobacco industry was effective in preparing policy makers for the opponents' policy arguments. As expected, a hospitality industry association was formed to oppose the ordinance, resulting in a legal challenge that delayed enactment of the law.

  3. Scrubbers with a level head

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedersen, G.C.; Bhattachararjee, P.K.

    1997-11-01

    The available methods for removing pollutants from a gas stream are numerous, to say the least. A popular method, scrubbers allow users to separate gases and solids by allowing the gas to come into contact with a liquid stream. In the end, the pollutants are washed away in the effluent, and the gas exits the system to be used in later processes or to be released into the atmosphere. For many years, counter-flow scrubber methods have been used for the lion`s share of the work in industries such as phosphate fertilizer and semiconductor chemicals manufacturing. Now these industries are exploringmore » the use of cross-flow scrubber design, which offers consistently high efficiency and low operating costs. In addition, the unit`s horizontal orientation makes maintenance easier than typical tower scrubbers. For certain classes of unit operations, cross-flow is now being recognized as a strong alternative to conventional counterflow technology.« less

  4. P.C. disposal decisions: a banking industry case study

    NASA Astrophysics Data System (ADS)

    Shah, Sejal P.; Sarkis, Joseph

    2002-02-01

    The service industry and the manufacturing industry are interlinked in a supply chain situation. Part of the effectiveness of some manufacturing industry environmental performance based on remanufacturing and recycling is dependent on service industry decisions. In the information technology arena, personal computers (PCs) are the hard equipment of the service industry. The end-of-life decisions made by the service industry, and in this case the banking industry will have implications for the amount of systems within the waste or reverse logistics stream for manufacturers. Looking at some of the issues (and presenting a model for evaluation) related to decision making concerning end-of-life disposition for PCs is something this paper investigates. The analytical hierarchy process (AHP) is applied in this circumstance. The development of the model, its application, and results, provide the basis for much of the discussion in this paper.

  5. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams.

    PubMed

    Mathews, Stephanie L; Pawlak, Joel; Grunden, Amy M

    2015-04-01

    Lignocellulose is a term for plant materials that are composed of matrices of cellulose, hemicellulose, and lignin. Lignocellulose is a renewable feedstock for many industries. Lignocellulosic materials are used for the production of paper, fuels, and chemicals. Typically, industry focuses on transforming the polysaccharides present in lignocellulose into products resulting in the incomplete use of this resource. The materials that are not completely used make up the underutilized streams of materials that contain cellulose, hemicellulose, and lignin. These underutilized streams have potential for conversion into valuable products. Treatment of these lignocellulosic streams with bacteria, which specifically degrade lignocellulose through the action of enzymes, offers a low-energy and low-cost method for biodegradation and bioconversion. This review describes lignocellulosic streams and summarizes different aspects of biological treatments including the bacteria isolated from lignocellulose-containing environments and enzymes which may be used for bioconversion. The chemicals produced during bioconversion can be used for a variety of products including adhesives, plastics, resins, food additives, and petrochemical replacements.

  6. Membrane-based systems for carbon capture and hydrogen purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berchtold, Kathryn A

    2010-11-24

    This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services.more » Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.« less

  7. Factors of Stream Instability in Urban Centres of Southern Nigeria: Case Study of Port Harcourt City River Systems.

    NASA Astrophysics Data System (ADS)

    Amangabara, G. T.

    2006-05-01

    There are two main drainage rivers in the Port Harcourt Metropolis - The Ntamogba and the Woji creek (Abam, 2004). There are a few other drainage rivers that are equally important e.g. the Nwaja River that drains Rumukalagbor, Elekahia, New GRA Phases IV and V, Presidential Housing Estate and Sun Ray publications Area of Aba Road. These river systems drain the entire Port Harcourt City dividing the City into three major drainage zones. Since the discovery of oil in Nigeria in the 1950s, the country has been suffering the negative environmental consequences of oil development. The growth of the country's oil industry, combined with population explosion and a lack of environmental regulations, led to substantial damage to Nigeria's environment, especially in the Niger Delta region, the center of the country's oil industry. Uncontrolled population movement as well as spontaneous housing development on marginal lands such as stream corridors, has led to the degradation of all major stream channels in the Nation's oil capital - Port Harcourt City. The longitudinal profiles and cross sections of reaches of three major streams (Ntamogba, Nwaja, and Oginigba streams) were investigated. Land use maps of 1979 1999 and 2004 were used. Our result showed that 1). Almost all of the stream corridors have been built up without adequate plan 2). The natural grades have been distorted by channelisation for the purpose of flood evacuation without geomorphic consideration .3). Our research also shows that the interface of saline water and fresh water has extended upstream affecting urban infrastructure. 4) localized damming and sedimentation behind hydraulic structures were common occurrences) our overall result indicate that two episodes of channel incision on Oginigba stream had increased slope reduced sinuosity increased entrenchment and reduce width-depth ratio . Conclusively the factors of the instability of theses urban streams are manly the processes of urbanization which include waste dumping channelisation and unregulated housing development in the channel corridors. KEY WORDS: stream instability, marginal lands, stream corridor, saline environment, spontaneous, geomorphic, channelisation

  8. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor K.

    Emerging Big Data applications in areas like e-commerce and energy industry require both online and on-demand queries to be performed over vast and fast data arriving as streams. These present novel challenges to Big Data management systems. Complex Event Processing (CEP) is recognized as a high performance online query scheme which in particular deals with the velocity aspect of the 3-V’s of Big Data. However, traditional CEP systems do not consider data variety and lack the capability to embed ad hoc queries over the volume of data streams. In this paper, we propose H2O, a stateful complex event processing framework,more » to support hybrid online and on-demand queries over realtime data. We propose a semantically enriched event and query model to address data variety. A formal query algebra is developed to precisely capture the stateful and containment semantics of online and on-demand queries. We describe techniques to achieve the interactive query processing over realtime data featured by efficient online querying, dynamic stream data persistence and on-demand access. The system architecture is presented and the current implementation status reported.« less

  9. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  10. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-07-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  11. Catalyst for elemental sulfur recovery process

    DOEpatents

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  12. Sustainability assessment of shielded metal arc welding (SMAW) process

    NASA Astrophysics Data System (ADS)

    Alkahla, Ibrahim; Pervaiz, Salman

    2017-09-01

    Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.

  13. Understanding the Spatial and Temporal Variations in Hormone Transport within the Stream Ecosystem

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; Ward, A. S.; Basu, N. B.

    2012-12-01

    Agricultural, urban, and industrial activities, including land application of manures and discharge of municipal and industrial wastewater, act as point and nonpoint sources for steroid hormones in soils, water, and sediments. Hormones are endocrine disruptors, and their occurrence in stream ecosystems has been implicated in the decline of certain species and change of sex in fish. Laboratory studies indicate that steroid hormones tend to have moderately large sorption coefficients and relatively short half-lives, from a few hours to a few days, suggesting that their persistence and subsequent leaching from soils will be limited. However, these chemicals continue to be detected in streams, indicating that laboratory studies may not capture the coupled hydrologic and biogeochemical dynamics occurring at the field or stream-reach scale. Understanding the spatial and temporal persistence of these chemicals downstream of a confined animal feeding operation (CAFO) or wastewater treatment plant (WWTP) requires a coupled hydrologic and biogeochemical model that takes into account multiple interacting species, sediment processes, and different aerobic and anaerobic reaction pathways and rates. In this study, we focus on two hormones, estrone (E1) and 17β-estradiol (E2), with redox dynamics controlling the conversion between E1 and E2. A 1D stream-reach model with a main-channel and a hyporheic zone was developed similar to the commonly used OTIS model. Processes such as photolysis, decay, and sorption to sediments were included in the model framework. The inclusion of coupled reactions, with specific reaction rates and pathways driven by different reaction pathway, that in turn can be dynamic during a storm event (for example, increasing discharge might lead to more aerobic conditions), was the novelty of the approach. The modeling framework was then used to quantify the relative importance of the different reaction pathways under varying flow conditions, and evaluate the persistence of these chemicals as a function of hydrologic and biogeochemical controls.

  14. Using Financial Incentives to Manage the Solid Waste Stream.

    ERIC Educational Resources Information Center

    Spindler, Charles J.

    1991-01-01

    This paper reviews two approaches to solid waste stream management that encourage recycling in the beverage industry, a model categorizing public policies directed at diverting postconsumer waste from the waste system, and industry initiatives in the context of these policies. Preemptive and compelled partnerships represent innovations in…

  15. Essential Aspects in Assessing the Safety Impact of Interactions between a Drug Product and Its Associated Manufacturing System.

    PubMed

    Jenke, Dennis

    2012-01-01

    An emerging trend in the biotechnology industry is the utilization of plastic components in manufacturing systems for the production of an active pharmaceutical ingredient (API) or a finished drug product (FDP). If the API, the FDP, or any solution used to generate them (for example, process streams such as media, buffers, and the like) come in contact with a plastic at any time during the manufacturing process, there is the potential that substances leached from the plastic may accumulate in the API or FDP, affecting safety and/or efficacy. In this article the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the article outlines the safety assessment process for manufacturing systems, specifically addressing the topics of risk management and the role of compendial testing. Finally, the proper use of vendor-supplied extractables information is considered. Manufacturing suites used to produce biopharmaceuticals can include components that are made out of plastics. Thus it is possible that substances could leach out of the plastics and into manufacturing solutions, and it is further possible that such leachables could accumulate in the pharmaceutical product. In this article, the author develops a terminology that addresses process streams associated with the manufacturing process. Additionally, the author proposes a process by which the impact on product safety of such leached substances can be assessed.

  16. Adoption of Stream Fencing Among Dairy Farmers in Four New Zealand Catchments

    NASA Astrophysics Data System (ADS)

    Bewsell, Denise; Monaghan, Ross M.; Kaine, Geoff

    2007-08-01

    The effect of dairy farming on water quality in New Zealand streams has been identified as an important environmental issue. Stream fencing, to keep cattle out of streams, is seen as a way to improve water quality. Fencing ensures that cattle cannot defecate in the stream, prevents bank erosion, and protects the aquatic habitat. Stream fencing targets have been set by the dairy industry. In this paper the results of a study to identify the factors influencing dairy farmers’ decisions to adopt stream fencing are outlined. Qualitative methods were used to gather data from 30 dairy farmers in four New Zealand catchments. Results suggest that farm contextual factors influenced farmers’ decision making when considering stream fencing. Farmers were classified into four segments based on their reasons for investing in stream fencing. These reasons were fencing boundaries, fencing for stock control, fencing to protect animal health, and fencing because of pressure to conform to local government guidelines or industry codes of practice. This suggests that adoption may be slow in the absence of on-farm benefits, that promotion of stream fencing needs to be strongly linked to on-farm benefits, and that regulation could play a role in ensuring greater adoption of stream fencing.

  17. 6.0 Monitoring recovery from calcium depletion and nitrogen saturation

    Treesearch

    Walter C. Shortle; Peter S. Murdoch; Kevin T. Smith; Rakesh Minocha; Gregory B. Lawrence

    2008-01-01

    Atmospheric emissions from industrial processes in the early part of the 20th century resulted in acidic deposition in the Northeastern U.S., a phenomenon known as "acid rain." Acid rain has been implicated in acidification of sensitive waterways, nitrate enrichment of surface waters, and fish population declines in poorly buffered mountain streams (Baldigo...

  18. Black Box Thinking: Analysis of a Service Outsourcing Case in Insurance

    ERIC Educational Resources Information Center

    Witman, Paul D.; Njunge, Christopher

    2016-01-01

    Often, users of information systems (both automated and manual) must analyze those systems in a "black box" fashion, without being able to see the internals of how the system is supposed to work. In this case of business process outsourcing, an insurance industry customer encounters an ongoing stream of customer service issues, with both…

  19. Use of crushed recycled glass in the construction of local roadways current status of recycled glass collection and processing in the State of Ohio.

    DOT National Transportation Integrated Search

    2017-05-01

    Junliang (Julian) Tao, ORCiD: 0000-0002-3772-3099 : Glass cullet is produced from crushing waste glass collected in municipal and industrial waste streams to a specific size. In Ohio, it is primarily used in new glass container manufacturing. One pos...

  20. Electronic wastes

    NASA Astrophysics Data System (ADS)

    Regel-Rosocka, Magdalena

    2018-03-01

    E-waste amount is growing at about 4% annually, and has become the fastest growing waste stream in the industrialized world. Over 50 million tons of e-waste are produced globally each year, and some of them end up in landfills causing danger of toxic chemicals leakage over time. E-waste is also sent to developing countries where informal processing of waste electrical and electronic equipment (WEEE) causes serious health and pollution problems. A huge interest in recovery of valuable metals from WEEE is clearly visible in a great number of scientific, popular scientific publications or government and industrial reports.

  1. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    DOE PAGES

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; ...

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility ofmore » microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.« less

  2. Thermochemical Wastewater Valorization via Enhanced Microbial Toxicity Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Thelhawadigedara, Lahiru Niroshan Jayakody; Johnson, Christopher W

    Thermochemical (TC) biomass conversion processes such as pyrolysis and liquefaction generate considerable amounts of wastewater, which often contains highly toxic compounds that are incredibly challenging to convert via standard wastewater treatment approaches such as anaerobic digestion. These streams represent a cost for TC biorefineries, and a potential valorization opportunity, if effective conversion methods are developed. The primary challenge hindering microbial conversion of TC wastewater is toxicity. In this study, we employ a robust bacterium, Pseudomonas putida, with TC wastewater streams to demonstrate that aldehydes are the most inhibitory compounds in these streams. Proteomics, transcriptomics, and fluorescence-based immunoassays of P. putidamore » grown in a representative wastewater stream indicate that stress results from protein damage, which we hypothesize is a primary toxicity mechanism. Constitutive overexpression of the chaperone genes, groEL, groES, and clpB, in a genome-reduced P. putida strain improves the tolerance towards multiple TC wastewater samples up to 200-fold. Moreover, the concentration ranges of TC wastewater are industrially relevant for further bioprocess development for all wastewater streams examined here, representing different TC process configurations. Furthermore, we demonstrate proof-of-concept polyhydroxyalkanoate production from the usable carbon in an exemplary TC wastewater stream. Overall, this study demonstrates that protein quality control machinery and repair mechanisms can enable substantial gains in microbial tolerance to highly toxic substrates, including heterogeneous waste streams. When coupled to other metabolic engineering advances such as expanded substrate utilization and enhanced product accumulation, this study generally enables new strategies for biological conversion of highly-toxic, organic-rich wastewater via engineered aerobic monocultures or designer consortia.« less

  3. The Conversion and Sustainable Use of Alumina Refinery Residues: Global Solution Examples

    NASA Astrophysics Data System (ADS)

    Fergusson, Lee

    This paper introduces current industry best practice for the conversion of alumina refinery residues (or "red mud") from hazardous waste to benign, inert material. The paper will examine four neutralization methods and Basecon Technology, a sustainable conversion process. The paper will consider ways through which this converted material can be combined and processed for sustainable applications in the treatment of hazardous waste streams (such as industrial wastewater and sludges, biosolids, and CCA wastes), contaminated brownfield sites, and mine site wastes. Recent discoveries and applications, such as the successful treatment of high levels of radium in drinking water in the USA, will also be discussed. Examples of global solutions and their technical merits will be assessed.

  4. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.

  5. The passage of tobacco control law 174 in Lebanon: reflections on the problem, policies and politics.

    PubMed

    Nakkash, R T; Torossian, L; El Hajj, T; Khalil, J; Afifi, R A

    2018-06-01

    Progress in tobacco control policy making has occurred worldwide through advocacy campaigns involving multiple players- civil society groups, activists, academics, media and policymakers. The Framework Convention on Tobacco Control (FCTC)-the first ever global health treaty-outlines evidence-based tobacco control policies. Lebanon ratified the FCTC in 2005, but until 2011, tobacco control policies remained rudimentary and not evidence-based. Beginning in 2009, a concerted advocacy campaign was undertaken by a variety of stakeholders with the aim of accelerating the process of adopting a strong tobacco control policy. The campaign was successful, and Law 174 passed the Lebanese Parliament in August 2011. In this article, we analyse the policy making process that led to the adoption of Law 174 using Kingdon's model. The analysis relies on primary and secondary data sources including historical records of key governmental decisions, documentation of the activities of the concerted advocacy campaign and in-depth interviews with key stakeholders. We describe the opening of a window of opportunity as a result of the alignment of the problem, policy and politics streams. Furthermore, findings revealed that despite the challenge of persistent tobacco industry interference and established power relations between the industry, its allies and policymakers; policy entrepreneurs succeeded in supporting the alignment of the streams, and influencing the passage of the law. Kingdon's multiple stream approach was useful in explaining how tobacco control became an emerging policy issue at the front of the policy agenda in Lebanon.

  6. Direct Deposition of Metal (DDM) as a Repair Process for Metallic Military Parts

    DTIC Science & Technology

    2013-01-20

    metal powder has properties metallurgically compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer...Methodology Background During the DDM process, the energy of a high power industrial laser beam and a concentric stream of metallic alloy powder ...compatible with the substrate material. As the laser beam advances along a predefined tool path in a layer by layer fashion, metal powder is deposited

  7. Method of purifying a gas stream using 1,2,3-triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunald; Tang, Chau

    2014-12-09

    A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.

  8. Industrial symbiosis: corn ethanol fermentation, hydrothermal carbonization, and anaerobic digestion.

    PubMed

    Wood, Brandon M; Jader, Lindsey R; Schendel, Frederick J; Hahn, Nicholas J; Valentas, Kenneth J; McNamara, Patrick J; Novak, Paige M; Heilmann, Steven M

    2013-10-01

    The production of dry-grind corn ethanol results in the generation of intermediate products, thin and whole stillage, which require energy-intensive downstream processing for conversion into commercial animal feed products. Hydrothermal carbonization of thin and whole stillage coupled with anaerobic digestion was investigated as alternative processing methods that could benefit the industry. By substantially eliminating evaporation of water, reductions in downstream energy consumption from 65% to 73% were achieved while generating hydrochar, fatty acids, treated process water, and biogas co-products providing new opportunities for the industry. Processing whole stillage in this manner produced the four co-products, eliminated centrifugation and evaporation, and substantially reduced drying. With thin stillage, all four co-products were again produced, as well as a high quality animal feed. Anaerobic digestion of the aqueous product stream from the hydrothermal carbonization of thin stillage reduced chemical oxygen demand (COD) by more than 90% and converted 83% of the initial COD to methane. Internal use of this biogas could entirely fuel the HTC process and reduce overall natural gas usage. Copyright © 2013 Wiley Periodicals, Inc.

  9. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less

  10. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, M; Kochergin, V; Hess, R

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less

  11. Integrating separation and conversion - Conversion of biorefinery process streams to biobased chemicals and fuels

    Treesearch

    Joseph J. Bozell; Berenger Biannic; Diana Cedeno; Thomas Elder; Omid Hosseinaei; Lukas Delbeck; Jae-Woo Kim; C.J. O' Lenick; Timothy Young

    2014-01-01

    Abstract The concept of the integrated biorefinery is critical to developing a robust biorefining industry in the USA.Within this model, the biorefinery will produce fuel as a highvolume output addressing domestic energy needs and biobased chemical products (high-value organics) as an output providing necessary economic support for fuel production. This paper will...

  12. Control technology appendices for pollution control technical manuals. Final report, June 1982-February 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.

  13. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less

  14. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to bettermore » evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.« less

  15. Removal of common organic solvents from aqueous waste streams via supercritical C02 extraction: a potential green approach to sustainable waste management in the pharmaceutical industry.

    PubMed

    Leazer, Johnnie L; Gant, Sean; Houck, Anthony; Leonard, William; Welch, Christopher J

    2009-03-15

    Supercritical CO2 extraction of aqueous streams is a convenient and effective method to remove commonly used solvents of varying polarities from aqueous waste streams. The resulting aqueous layers can potentially be sewered; whereas the organic layer can be recovered for potential reuse. Supercritical fluid extraction (SFE) is a technology that is increasingly being used in commercial processes (1). Supercritical fluids are well suited for extraction of a variety of media, including solids, natural products, and liquid products. Many supercritical fluids have low critical temperatures, allowing for extractions to be done at modestly low temperatures, thus avoiding any potential thermal decomposition of the solutes under study (2). Furthermore, the CO2 solvent strength is easily tuned by adjusting the density of the supercritical fluid (The density is proportional to the pressure of the extraction process). Since many supercritical fluids are gases at ambient temperature, the extract can be concentrated by simply venting the reaction mixture to a cyclone collection vessel, using appropriate safety protocols.

  16. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  17. Plasma for electrification of chemical industry: a case study on CO2 reduction

    NASA Astrophysics Data System (ADS)

    van Rooij, G. J.; Akse, H. N.; Bongers, W. A.; van de Sanden, M. C. M.

    2018-01-01

    Significant growth of the share of (intermittent) renewable power in the chemical industry is imperative to meet increasingly stricter limits on CO2 exhaust that are being implemented within Europe. This paper aims to evaluate the potential of a plasma process that converts input CO2 into a pure stream of CO to aid in renewable energy penetration in this sector. A realistic process design is constructed to serve as a basis for an economical analysis. The manufacturing cost price of CO is estimated at 1.2 kUS ton-1 CO. A sensitivity analysis shows that separation is the dominant cost factor, so that improving conversion is currently more effective to lower the price than e.g. energy efficiency.

  18. Vinasses: characterization and treatments.

    PubMed

    España-Gamboa, Elda; Mijangos-Cortes, Javier; Barahona-Perez, Luis; Dominguez-Maldonado, Jorge; Hernández-Zarate, G; Alzate-Gaviria, Liliana

    2011-12-01

    The final products of the ethanol industry are alcoholic beverages, industrial ethanol and biofuels. They are produced by the same production process, which includes fermentation and distillation of raw materials which come from plant biomass. At the end of the distillation process a waste effluent is obtained called vinasse or stillage. The direct disposal of stillages on land or in groundwater (rivers, streams or lakes), or even for the direct irrigation of crops, pollutes the environment due to their high organic contents, dissolved solids and many other compounds which are toxic or could be contaminants under certain environmental conditions. This work reviews the characterization of vinasses from different feedstock sources and the main treatments for conditioning the soluble solids of vinasses before their disposal.

  19. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.

    PubMed

    Fatourehchi, Niloufar; Sohrabi, Morteza; Dabir, Bahram; Royaee, Sayed Javid; Haji Malayeri, Adel

    2014-02-05

    Solid-liquid enzyme reactions constitute important processes in biochemical industries. The isomerization of d-glucose to d-fructose, using the immobilized glucose isomerase (Sweetzyme T), as a typical example of solid-liquid catalyzed reactions has been carried out in one stage and multi-stage novel type of impinging streams reactors. Response surface methodology was applied to determine the effects of certain pertinent parameters of the process namely axial velocity (A), feed concentration (B), nozzles' flow rates (C) and enzyme loading (D) on the performance of the apparatus. The results obtained from the conversion of glucose in this reactor were much higher than those expected in conventional reactors, while residence time was decreased dramatically. Residence time distribution (RTD) in a one-stage impinging streams reactor was investigated using colored solution as the tracer. The results showed that the flow pattern in the reactor was close to that in a continuous stirred tank reactor (CSTR). Based on the analysis of flow region in the reactor, gamma distribution model with bypass (GDB) was applied to study the RTD of the reactor. The results indicated that RTD in the impinging streams reactor could be described by the latter model. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cyanide bioremediation: the potential of engineered nitrilases.

    PubMed

    Park, Jason M; Trevor Sewell, B; Benedik, Michael J

    2017-04-01

    The cyanide-degrading nitrilases are of notable interest for their potential to remediate cyanide contaminated waste streams, especially as generated in the gold mining, pharmaceutical, and electroplating industries. This review provides a brief overview of cyanide remediation in general but with a particular focus on the cyanide-degrading nitrilases. These are of special interest as the hydrolysis reaction does not require secondary substrates or cofactors, making these enzymes particularly good candidates for industrial remediation processes. The genetic approaches that have been used to date for engineering improved enzymes are described; however, recent structural insights provide a promising new approach.

  1. Magnesium in North America: A Changing Landscape

    NASA Astrophysics Data System (ADS)

    Slade, Susan

    The changing landscape of North American manufacturing in the context of global competition is impacting the market of all raw materials, including magnesium. Current automotive fuel economy legislation and pending legislation on the emissions of greenhouse gases are impacting magnesium's largest consuming industries, such as aluminum, automotive components, steel and transition metals. These industries are all considering innovative ways to efficiently incorporate the needed raw materials into their processes. The North American magnesium market differs from other regions based on maturity, supply streams, changing manufacturing capabilities and trade cases, combined with the transformation of North American manufacturing.

  2. Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams

    PubMed Central

    Bennamoun, Mohammed

    2014-01-01

    In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses. PMID:24817888

  3. Streamstats: U.S. Geological Survey Web Application for Streamflow Statistics for Connecticut

    USGS Publications Warehouse

    Ahearn, Elizabeth A.; Ries, Kernell G.; Steeves, Peter A.

    2006-01-01

    Introduction An important mission of the U. S. Geological Survey (USGS) is to provide information on streamflow in the Nation's rivers. Streamflow statistics are used by water managers, engineers, scientists, and others to protect people and property during floods and droughts, and to manage land, water, and biological resources. Common uses for streamflow statistics include dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower-facility design and regulation; and flood-plain mapping for establishing flood-insurance rates and land-use zones. In an effort to improve access to published streamflow statistics, and to make the process of computing streamflow statistics for ungaged stream sites easier, more accurate, and more consistent, the USGS and the Environmental Systems Research Institute, Inc. (ESRI) developed StreamStats (Ries and others, 2004). StreamStats is a Geographic Information System (GIS)-based Web application for serving previously published streamflow statistics and basin characteristics for USGS data-collection stations, and computing streamflow statistics and basin characteristics for ungaged stream sites. The USGS, in cooperation with the Connecticut Department of Environmental Protection and the Connecticut Department of Transportation, has implemented StreamStats for Connecticut.

  4. Recommendations and Proposed Strategic Plan: Water Sector Decontamination Priorities

    DTIC Science & Technology

    2008-10-01

    safety and health issues of the utility personnel that may be exposed to treatment processes down stream from the treatment Conducting research on...Government Coordinating Council (GCC). This letter serves as our official transmittal of the Work Group’s final product . As the Co-Chairs...Priorities Page xv LIST OF ACRONYMS ACEIH American Council of Education on Industrial Hygiene AMWA Association of Metropolitan Water Agencies ANSI

  5. STABLE GENETIC STRUCTURE OF CENTRAL STONEROLLER POPULATIONS IN A POLLUTED URBAN STREAM

    EPA Science Inventory

    Mill Creek, which runs through Cincinnati, Ohio, is one of the most severely polluted urban streams in the United States. The creek is threatened by streamside landfills and toxic waste sites along the streams banks (including five designated superfund sites), industrial and res...

  6. Industrial-Strength Streaming Video.

    ERIC Educational Resources Information Center

    Avgerakis, George; Waring, Becky

    1997-01-01

    Corporate training, financial services, entertainment, and education are among the top applications for streaming video servers, which send video to the desktop without downloading the whole file to the hard disk, saving time and eliminating copyrights questions. Examines streaming video technology, lists ten tips for better net video, and ranks…

  7. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  8. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, October--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 2--3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler {number_sign}4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfur ormore » sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL Demonstration Program began September 10, 1991 and is approximately 22 months in duration.« less

  9. Cots Correlator Platform

    NASA Astrophysics Data System (ADS)

    Schaaf, Kjeld; Overeem, Ruud

    2004-06-01

    Moore’s law is best exploited by using consumer market hardware. In particular, the gaming industry pushes the limit of processor performance thus reducing the cost per raw flop even faster than Moore’s law predicts. Next to the cost benefits of Common-Of-The-Shelf (COTS) processing resources, there is a rapidly growing experience pool in cluster based processing. The typical Beowulf cluster of PC’s supercomputers are well known. Multiple examples exists of specialised cluster computers based on more advanced server nodes or even gaming stations. All these cluster machines build upon the same knowledge about cluster software management, scheduling, middleware libraries and mathematical libraries. In this study, we have integrated COTS processing resources and cluster nodes into a very high performance processing platform suitable for streaming data applications, in particular to implement a correlator. The required processing power for the correlator in modern radio telescopes is in the range of the larger supercomputers, which motivates the usage of supercomputer technology. Raw processing power is provided by graphical processors and is combined with an Infiniband host bus adapter with integrated data stream handling logic. With this processing platform a scalable correlator can be built with continuously growing processing power at consumer market prices.

  10. Periodic processes in vapor phase biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, W.M.; Irvine, R.L.

    1998-07-01

    Most industrial processes and environmental remediation activities generate large volumes of air contaminated with low concentrations of volatile organic compounds. Carbon adsorption is the most widely used conventional treatment technology, but it has many drawbacks including secondary waste streams and excessive regeneration costs. Biofiltration, a microbial-based treatment technology, removes and biodegrades contaminants from a wide variety of waste streams without the disadvantages of carbon adsorption. In biofiltration, contaminated air flows through a packed bed containing microorganisms which convert contaminants primarily into carbon dioxide, water, and biomass. This paper describes how periodically operated, controlled unsteady state conditions were imposed on biofiltersmore » which used a new polyurethane foam medium that couples high porosity, suitable pore size, and low density with an ability to sorb water. The potential benefits associated with the controlled, unsteady-state operation of biofilters containing this new polyurethane foam medium are described herein. An example system treating a toluene contaminated waste gas is presented.« less

  11. Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abitz, R.J.

    1996-12-31

    Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less

  12. Serial Interface through Stream Protocol on EPICS Platform for Distributed Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Das Gupta, Arnab; Srivastava, Amit K.; Sunil, S.; Khan, Ziauddin

    2017-04-01

    Remote operation of any equipment or device is implemented in distributed systems in order to control and proper monitoring of process values. For such remote operations, Experimental Physics and Industrial Control System (EPICS) is used as one of the important software tool for control and monitoring of a wide range of scientific parameters. A hardware interface is developed for implementation of EPICS software so that different equipment such as data converters, power supplies, pump controllers etc. could be remotely operated through stream protocol. EPICS base was setup on windows as well as Linux operating system for control and monitoring while EPICS modules such as asyn and stream device were used to interface the equipment with standard RS-232/RS-485 protocol. Stream Device protocol communicates with the serial line with an interface to asyn drivers. Graphical user interface and alarm handling were implemented with Motif Editor and Display Manager (MEDM) and Alarm Handler (ALH) command line channel access utility tools. This paper will describe the developed application which was tested with different equipment and devices serially interfaced to the PCs on a distributed network.

  13. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    NASA Astrophysics Data System (ADS)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  14. Instream sand and gravel mining: Environmental issues and regulatory process in the United States

    USGS Publications Warehouse

    Meador, M.R.; Layher, A.O.

    1998-01-01

    Sand and gravel are widely used throughout the U.S. construction industry, but their extraction can significantly affect the physical, chemical, and biological characteristics of mined streams. Fisheries biologists often find themselves involved in the complex environmental and regulatory issues related to instream sand and gravel mining. This paper provides an overview of information presented in a symposium held at the 1997 midyear meeting of the Southern Division of the American Fisheries Society in San Antonio, Texas, to discuss environmental issues and regulatory procedures related to instream mining. Conclusions from the symposium suggest that complex physicochemical and biotic responses to disturbance such as channel incision and alteration of riparian vegetation ultimately determine the effects of instream mining. An understanding of geomorphic processes can provide insight into the effects of mining operations on stream function, and multidisciplinary empirical studies are needed to determine the relative effects of mining versus other natural and human-induced stream alterations. Mining regulations often result in a confusing regulatory process complicated, for example, by the role of the U.S. Army Corps of Engineers, which has undergone numerous changes and remains unclear. Dialogue among scientists, miners, and regulators can provide an important first step toward developing a plan that integrates biology and politics to protect aquatic resources.

  15. An Analysis of Music Fan towards Music Streaming Purchase Intention of Thailand's Music Industry

    ERIC Educational Resources Information Center

    Sanitnarathorn, Pannawit

    2018-01-01

    Digital music streaming are climbing but overall music revenue is declining with digital music piracy being blamed as the culprit. In a 10 year period from 2003 to 2013, global music sales dropped from $US23.3 to $US15 billion dollars with Thailand's music industry following the trend dropping from $US 304 million in 2010 to $US 279 million in…

  16. Political and Economic Geomorphology: The Effect of Market Forces on Stream Restoration Designs

    NASA Astrophysics Data System (ADS)

    Singh, J.; Doyle, M. W.; Lave, R.; Robertson, M.

    2013-12-01

    Stream restoration in the U.S. is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy application creates conditions in which restored stream ';credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of this relatively new mechanism to finance stream restoration on design and construction is unknown. This research explores whether the introduction of a credit-based mitigation apparatus results in streams designed to maximize credit yields (i.e., ';credit-chasing') rather than focusing on restoring natural systems or functions. In other words, are market-based restored streams different from those designed for non-market purposes? We quantified geomorphic characteristics (e.g. hydraulic geometry, sinuosity, profile, bed sediment, LWD) of three types of streams: (1) a random sample of non-restored reaches, (2) streams restored for compensatory mitigation, and (3) streams restored under alternative funding sources (e.g., government grant programs, non-profit activities). We also compared the location of the types of stream reaches to determine whether there is a spatiality of restored streams. Physical data were complemented with a series of semi-structured interviews with key personnel in the stream restoration industry to solicit information on the influence of policy interpretation and market-driven factors on the design process. Preliminary analysis suggests that restoration is driving a directional shift in stream morphology in North Carolina. As a simple example, in the Piedmont, non-restored and restored channels had mean sinuosity of 1.17 and 1.23, respectively (p < 0.10). In the mountain region, non-restored and restored channels had mean sinuosity of 1.07 and 1.21, respectively (p < 0.01). In addition, restored streams were disproportionately located in very small catchments, and designs seemed to be only marginally related to the location of the stream. Provisional findings also indicate that the differences between mitigation and non-mitigation designs were less than expected. Interview data support this observation; design engineers and entrepreneurial credit providers (i.e., mitigation bankers) apparently viewed the design process as a somewhat standard, non-malleable practice. Sustaining long-term relationships with regulators, who must approve the sale of restored stream credits, was seen as critically important rather than the marginal gains to be made by manipulating particular stream designs to glean more credits. Overall, preliminary results demonstrate that regulatory frameworks, economic incentives and social relationships played a key role in driving stream restoration design in North Carolina, often homogenizing design practices and limiting ';credit chasing.'

  17. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing.

    PubMed

    Zingaro, Kyle A; Nicolaou, Sergios A; Papoutsakis, Eleftherios T

    2013-11-01

    Microbial strains are increasingly used for the industrial production of chemicals and biofuels, but the toxicity of components in the feedstock and product streams limits process outputs. Selected or engineered microbes that thrive in the presence of toxic chemicals can be assessed using tolerance assays. Such assays must reasonably represent the conditions the cells will experience during the intended process and measure the appropriate physiological trait for the desired application. We review currently used tolerance assays, and examine the many parameters that affect assay outcomes. We identify and suggest the use of the best-suited assays for each industrial bioreactor operating condition, discuss next-generation assays, and propose a standardized approach for using assays to examine tolerance to toxic chemicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Captured streams and springs in combined sewers: a review of the evidence, consequences and opportunities.

    PubMed

    Broadhead, A T; Horn, R; Lerner, D N

    2013-09-01

    Captured streams and springs may be flowing in combined sewers, increasing clean baseflow in pipes and wastewater treatment works (WwTWs), reducing pipe capacity and increasing treatment costs. The UK water industry is aware of this in principle, but there has been no explicit discussion of this in the published literature, nor have there been any known attempts to manage it. Instead, the current focus is on the similar intrusion of groundwater infiltration through pipe cracks and joints. We have conducted a thorough review of literature and international case studies to investigate stream and spring capture, finding several examples with convincing evidence that this occurs. We identify three modes of entry: capture by conversion, capture by interception, and direct spring capture. Methods to identify and quantify capture are limited, but the experience in Zurich suggests that it contributed 7-16% of the baseflow reaching WwTWs. There are negative impacts for the water industry in capital and operational expenditure, as well as environmental and social impacts of loss of urban streams. For a typical WwTW (Esholt, Bradford) with 16% of baseflow from captured streams and springs, we conservatively estimate annual costs of £ 2 million to £ 7 million. A detailed case study from Zurich is considered that has successfully separated captured baseflow into daylighted streams through the urban area, with multiple economic, environmental and social benefits. We conclude that there is a strong case for the UK water industry to consider captured streams and springs, quantify them, and assess the merits of managing them. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Viscosity of aqueous solutions of n-methyldiethanolamine and of diethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, T.T.; Maham, Y.; Hepler, L.G.

    1994-04-01

    Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), di-2-propanolamine (DIPA), and bis[2-(hydroxyamino)ethyl] ether (DGA) are good solvents for the removal of acid gases such as CO[sub 2] and H[sub 2]S from the gas streams of many processes in the natural gas, petroleum, ammonia synthesis, and some chemical industries. The viscosity of aqueous solutions of methyldiethanolamine (MDEA) and of diethanolamine (DEA) have been measured at five temperatures in the range 25--80 C throughout the whole concentration range. The viscosity has been correlated as a function of composition for use in industrial calculations.

  20. Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry.

    PubMed

    Blöcher, C

    2007-01-01

    Industrial wastewater, especially from chemical and pharmaceutical production, often contains substances that need to be eliminated before being discharged into a biological treatment plant and following water bodies. This can be done within the production itself, in selected waste water streams or in a central treatment plant. Each of these approaches has certain advantages and disadvantages. Furthermore, a variety of wastewater treatment processes exist that can be applied at each stage, making it a challenging task to choose the best one in economic and ecological terms. In this work a general approach for that and examples from practice are discussed.

  1. Automated Production of Movies on a Cluster of Computers

    NASA Technical Reports Server (NTRS)

    Nail, Jasper; Le, Duong; Nail, William L.; Nail, William

    2008-01-01

    A method of accelerating and facilitating production of video and film motion-picture products, and software and generic designs of computer hardware to implement the method, are undergoing development. The method provides for automation of most of the tedious and repetitive tasks involved in editing and otherwise processing raw digitized imagery into final motion-picture products. The method was conceived to satisfy requirements, in industrial and scientific testing, for rapid processing of multiple streams of simultaneously captured raw video imagery into documentation in the form of edited video imagery and video derived data products for technical review and analysis. In the production of such video technical documentation, unlike in production of motion-picture products for entertainment, (1) it is often necessary to produce multiple video derived data products, (2) there are usually no second chances to repeat acquisition of raw imagery, (3) it is often desired to produce final products within minutes rather than hours, days, or months, and (4) consistency and quality, rather than aesthetics, are the primary criteria for judging the products. In the present method, the workflow has both serial and parallel aspects: processing can begin before all the raw imagery has been acquired, each video stream can be subjected to different stages of processing simultaneously on different computers that may be grouped into one or more cluster(s), and the final product may consist of multiple video streams. Results of processing on different computers are shared, so that workers can collaborate effectively.

  2. Water-elevation, stream-discharge, and ground-water quality data in the Alaska Railroad Industrial Area, Fairbanks, Alaska, May 1993 to May 1995

    USGS Publications Warehouse

    Kriegler, A.T.; Lilly, M.R.

    1995-01-01

    From May 1993 to May 1995, the U.S. Geological Survey in cooperation with the Alaska Department of Natural Resources, Division of Mining and Water Management collected data on ground-water and surface-water elevations, stream discharge, and ground-water quality in the Alaska Railroad Industrial area in Fairbanks, Alaska. The data- collection efforts were coordinated with environmental efforts being made in the study area by the Alaska Railroad Corporation. These data were collected as part of an effort to characterize the hydrogeology of the Alaska Railroad Industrial area and to define the extent of petroleum hydrocarbons in the area. Ground-water data were collected at 52 observation wells, surface-water data at 12 sites, stream discharge data at 9 sites, and chemical water-quality data at 32 observation wells.

  3. A one-dimensional, steady-state, dissolved-oxygen model and waste-load assimilation study for Little Laughery Creek, Ripley and Franklin counties, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wilber, William G.; Peters, James G.

    1980-01-01

    A digital model calibrated to conditions in Little Laughery Creek triutary and Little Laughery Creek, Ripley and Franklin Counties, Ind., was used to predict alternatives for future waste loadings that would be compatible with Indiana stream water-quality standards defined for two critical hydrologic conditions, summer and winter low flows. Natural streamflow during the summer and annual 7-day, 10-year low flow is zero. Headwater flow upstream from the wastewater-treatment facilities consists solely of process cooling water from an industrial discharger. This flow is usually less than 0.5 cubic foot per second. Consequently, benefits from dilution are minimal. As a result, current and projected ammonia-nitrogen concentrations from the municipal discharges will result in in-stream ammonia-nitrogen concentrations that exceed the Indiana ammonia-nitrogen toxicity standards (maximum stream ammonia-nitrogen concentrations of 2.5 and 4.0 milligrams per liter during summer and winter low flows, respectively). Benthic-oxygen demand is probably the most significant factor affecting Little Laughery Creek and is probably responsible for the in-stream dissolved-oxygen concentration being less than the Indiana stream dissolved-oxygen standard (5.0 milligrams per liter) during two water-quality surveys. After municipal dischargers complete advanced waste-treatment facilities, benthic-oxygen demand should be less significant in the stream dissolved-oxygen dynamics. (USGS)

  4. Continuous micro-vortex-based nanoparticle manipulation via focused surface acoustic waves.

    PubMed

    Collins, David J; Ma, Zhichao; Han, Jongyoon; Ai, Ye

    2016-12-20

    Despite increasing demand in the manipulation of nanoscale objects for next generation biological and industrial processes, there is a lack of methods for reliable separation, concentration and purification of nanoscale objects. Acoustic methods have proven their utility in contactless manipulation of microscale objects mainly relying on the acoustic radiation effect, though the influence of acoustic streaming has typically prevented manipulation at smaller length scales. In this work, however, we explicitly take advantage of the strong acoustic streaming in the vicinity of a highly focused, high frequency surface acoustic wave (SAW) beam emanating from a series of focused 6 μm substrate wavelength interdigital transducers patterned on a piezoelectric lithium niobate substrate and actuated with a 633 MHz sinusoidal signal. This streaming field serves to focus fluid streamlines such that incoming particles interact with the acoustic field similarly regardless of their initial starting positions, and results in particle displacements that would not be possible with a travelling acoustic wave force alone. This streaming-induced manipulation of nanoscale particles is maximized with the formation of micro-vortices that extend the width of the microfluidic channel even with the imposition of a lateral flow, occurring when the streaming-induced flow velocities are an order of magnitude larger than the lateral one. We make use of this acoustic streaming to demonstrate the continuous and differential focusing of 100 nm, 300 nm and 500 nm particles.

  5. Technical specifications for mechanical recycling of agricultural plastic waste.

    PubMed

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  7. Sorption and modeling of mass transfer of toxic chemical vapors in activated-carbon fiber-cloth adsorbers

    USGS Publications Warehouse

    Lordgooei, M.; Sagen, J.; Rood, M.J.; Rostam-Abadi, M.

    1998-01-01

    A new activated-carbon fiber-cloth (ACFC) adsorber coupled with an electrothermal regenerator and a cryogenic condenser was designed and developed to efficiently capture and recover toxic chemical vapors (TCVs) from simulated industrial gas streams. The system was characterized for adsorption by ACFC, electrothermal desorption, and cryogenic condensation to separate acetone and methyl ethyl ketone from gas streams. Adsorption dynamics are numerically modeled to predict system characteristics during scale-up and optimization of the process in the future. The model requires diffusivities of TCVs into an activated-carbon fiber (ACF) as an input. Effective diffusivities of TCVs into ACFs were modeled as a function of temperature, concentration, and pore size distribution. Effective diffusivities for acetone at 65 ??C and 30-60 ppmv were measured using a chromatography method. The energy factor for surface diffusion was determined from comparison between the experimental and modeled effective diffusivities. The modeled effective diffusivities were used in a dispersive computational model to predict mass transfer zones of TCVs in fixed beds of ACFC under realistic conditions for industrial applications.

  8. Online sensing and control of oil in process wastewater

    NASA Astrophysics Data System (ADS)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  9. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.

  10. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    PubMed

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50% of the total volume and 50-60% of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ≥350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.

  11. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries.

    PubMed

    Agrawal, Archana; Sahu, K K

    2009-11-15

    Every metal and metallurgical industry is associated with the generation of waste, which may be a solid, liquid or gaseous in nature. Their impacts on the ecological bodies are noticeable due to their complex and hazardous nature affecting the living and non-living environment which is an alarming issue to the environmentalist. The increasingly stringent regulations regarding the discharge of acid and metal into the environment, and the increasing stress upon the recycling/reuse of these effluents after proper treatment have focused the interest of the research community on the development of new approaches for the recovery of acid and metals from industrial wastes. This paper is a critical review on the acidic waste streams generated from steel and electroplating industries particularly from waste pickle liquor and spent bleed streams. Various aspects on the generation of these streams and the methods used for their treatment either for the recovery of acid for reuse or disposal are being dealt with. Major stress is laid upon the hydrometallurgical methods such as solvent extraction.

  12. Thiacrown polymers for removal of mercury from waste streams

    DOEpatents

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2002-01-01

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  13. Thiacrown polymers for removal of mercury from waste streams

    DOEpatents

    Baumann, Theodore F.; Reynolds, John G.; Fox, Glenn A.

    2004-02-24

    Thiacrown polymers immobilized to a polystyrene-divinylbenzene matrix react with Hg.sup.2+ under a variety of conditions to efficiently and selectively remove Hg.sup.2+ ions from acidic aqueous solutions, even in the presence of a variety of other metal ions. The mercury can be recovered and the polymer regenerated. This mercury removal method has utility in the treatment of industrial wastewater, where a selective and cost-effective removal process is required.

  14. Kinetics study of carbon dioxide absorption reaction into the promoted methyldiethanolamine solution

    NASA Astrophysics Data System (ADS)

    Sitorus, Yasmikha Tiurlan Susanti; Taurina, Hanna Sucita; Altway, Ali; Rahmawati, Yeni; Nurkhamidah, Siti

    2017-05-01

    The absorption of carbon dioxide (CO2) is important in the industrial world. In industries, especially petrochemical, oil, and natural gas sectors, separation process of CO2 gas which is a corrosive gas (acid gas) is required. So, the separation process of CO2 gas stream is important, one of the methods used to remove CO2 from the gas stream is reactive absorption process using the promoted methyldiethanolamine (MDEA) solution. Therefore, this study is aimed to obtain the reaction kinetics data of CO2 absorption in MDEA solution using arginine as a promoter. Arginine was chosen because of its amino acid molecule which is reactive, so it can accelerate the reaction rate of MDEA. Moreover, this study also made a comparison between the reactivity of MDEA solution using arginine and MDEA solution using other promoters (glycine and piperazine) for CO2 absorption. The method used is absorption using laboratory scale of Wetted Wall Column (WWC) equipment at 1 atm. This study provides the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that CO2 absorption rate at 323.15 K without any additon of arginine is 2.33 × 10-7 kmol/sec. By addition of 0.5 and 1 wt% of arginine, the absorption rate becomes 4 × 10-7 kmol/sec (2 times larger) and 6 × 10-7 kmol/sec (3 times larger). These results show that the addition of arginine as a promoter can increase the absorption rate of CO2 in MDEA solution and cover the weaknesses of MDEA solution. Based on the experimental result, the reaction kinetics constant for arginine is 1.91 × 1025 exp (-12296/T) (m3/kmol.s). Although, arginine reaction rate constant is lower than glycine and piperazine.

  15. Baking properties and biochemical composition of wheat flour with bran and shorts.

    PubMed

    Kaprelyants, Leonid; Fedosov, Sergey; Zhygunov, Dmytro

    2013-11-01

    Bran, being a by-product of grain grinding, is characterised by a high biological value and is thus widely used in food production. In this study, different streams of bran and shorts from the wheat graded milling process were incorporated into wheat flour at levels of 5, 11, 17 and 23% (w/w) to investigate their influence on the nutritional and baking properties of flour. Bran and shorts streams improved the baking properties of flour blends. The best result in the case of graded flour blends with different bran products was obtained at the 95:5 ratio. The products containing peripheral parts of grain had higher proteolytic enzyme and superoxide dismutase activities and lower trypsin inhibitor content and β-amylase activity compared with graded flour. Streams of wheat milled fractions including peripheral parts of grain increase the content of bioactive substances and dietary fibre in blends with wheat graded flour. © 2013 Society of Chemical Industry.

  16. 40 CFR 401.11 - General definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal... interstate commerce; and intrastate lakes, rivers, and streams which are utilized for industrial purposes by..., person, territorial seas, contiguous zone, biological monitoring, schedule of compliance, and industrial...

  17. 40 CFR 401.11 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal... interstate commerce; and intrastate lakes, rivers, and streams which are utilized for industrial purposes by..., person, territorial seas, contiguous zone, biological monitoring, schedule of compliance, and industrial...

  18. 40 CFR 401.11 - General definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., radioactive materials, heat, wrecked or discarded equipment, rock, sand, cellar dirt and industrial, municipal... interstate commerce; and intrastate lakes, rivers, and streams which are utilized for industrial purposes by..., person, territorial seas, contiguous zone, biological monitoring, schedule of compliance, and industrial...

  19. Applying Value Stream Mapping to reduce food losses and wastes in supply chains: A systematic review.

    PubMed

    De Steur, Hans; Wesana, Joshua; Dora, Manoj K; Pearce, Darian; Gellynck, Xavier

    2016-12-01

    The interest to reduce food losses and wastes has grown considerably in order to guarantee adequate food for the fast growing population. A systematic review was used to show the potential of Value Stream Mapping (VSM) not only to identify and reduce food losses and wastes, but also as a way to establish links with nutrient retention in supply chains. The review compiled literature from 24 studies that applied VSM in the agri-food industry. Primary production, processing, storage, food service and/or consumption were identified as susceptible hotspots for losses and wastes. Results further revealed discarding and nutrient loss, most especially at the processing level, as the main forms of loss/waste in food, which were adapted to four out of seven lean manufacturing wastes (i.e. defect, unnecessary inventory, overproduction and inappropriate processing). This paper presents the state of the art of applying lean manufacturing practices in the agri-food industry by identifying lead time as the most applicable performance indicator. VSM was also found to be compatible with other lean tools such as Just-In-Time and 5S which are continuous improvement strategies, as well as simulation modelling that enhances adoption. In order to ensure successful application of lean practices aimed at minimizing food or nutrient losses and wastes, multi-stakeholder collaboration along the entire food supply chain is indispensable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. On-line monitoring of methanol and methyl formate in the exhaust gas of an industrial formaldehyde production plant by a mid-IR gas sensor based on tunable Fabry-Pérot filter technology.

    PubMed

    Genner, Andreas; Gasser, Christoph; Moser, Harald; Ofner, Johannes; Schreiber, Josef; Lendl, Bernhard

    2017-01-01

    On-line monitoring of key chemicals in an industrial production plant ensures economic operation, guarantees the desired product quality, and provides additional in-depth information on the involved chemical processes. For that purpose, rapid, rugged, and flexible measurement systems at reasonable cost are required. Here, we present the application of a flexible mid-IR filtometer for industrial gas sensing. The developed prototype consists of a modulated thermal infrared source, a temperature-controlled gas cell for absorption measurement and an integrated device consisting of a Fabry-Pérot interferometer and a pyroelectric mid-IR detector. The prototype was calibrated in the research laboratory at TU Wien for measuring methanol and methyl formate in the concentration ranges from 660 to 4390 and 747 to 4610 ppmV. Subsequently, the prototype was transferred and installed at the project partner Metadynea Austria GmbH and linked to their Process Control System via a dedicated micro-controller and used for on-line monitoring of the process off-gas. Up to five process streams were sequentially monitored in a fully automated manner. The obtained readings for methanol and methyl formate concentrations provided useful information on the efficiency and correct functioning of the process plant. Of special interest for industry is the now added capability to monitor the start-up phase and process irregularities with high time resolution (5 s).

  1. Air- and stream-water-temperature trends in the Chesapeake Bay region, 1960-2014

    USGS Publications Warehouse

    Jastram, John D.; Rice, Karen C.

    2015-12-14

    Water temperature is a basic, but important, measure of the condition of all aquatic environments, including the flowing waters in the streams that drain our landscape and the receiving waters of those streams. Climatic conditions have a strong influence on water temperature, which is therefore naturally variable both in time and across the landscape. Changes to natural water-temperature regimes, however, can result in a myriad of effects on aquatic organisms, water quality, circulation patterns, recreation, industry, and utility operations. For example, most species of fish, insects, and other organisms, as well as aquatic vegetation, are highly dependent on water temperature. Warming waters can result in shifts in floral and faunal species distributions, including invasive species and pathogens previously unable to inhabit the once cooler streams. Many chemical processes are temperature dependent, with reactions occurring faster in warmer conditions, leading to degraded water quality as contaminants are released into waterways at greater rates. Circulation patterns in receiving waters, such as bays and estuaries, can change as a result of warmer inflows from streams, thereby affecting organisms in those receiving waters. Changes in abundance of some aquatic species and (or) degradation of water quality can reduce the recreational value of water bodies as waters are perceived as less desirable for water-related activities or as sportfish become less available for anglers. Finally, increasing water temperatures can affect industry and utilities as the thermal capacity is reduced, making the water less effective for cooling purposes.Chesapeake Bay is the largest estuary in the United States. Eutrophication, the enrichment of a water body with excess nutrients, has plagued the bay for decades and has led to extensive restoration efforts throughout the bay watershed. The warming of stream water can exacerbate eutrophication through increased release of nutrients from in-stream sediments, so understanding changes in stream-water temperature throughout the bay watershed is critical to resource managers seeking to restore the bay ecosystem.The U.S. Environmental Protection Agency (EPA) uses indicators that “represent the state or trend of certain environmental or societal conditions … to track and better understand the effects of changes in the Earth’s climate” (U.S. Environmental Protection Agency, 2014). Updates to these indicators are published biennially by the EPA. The U.S. Geological Survey (USGS), in cooperation with the EPA, has completed analyses of air- and stream-water-temperature trends in the Chesapeake Bay region to be included as an indicator in a future release of the EPA report.

  2. Tracing organic and inorganic pollution sources of soils and water resources in Güzelhisar Basin of Aegean Region, Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander

    2017-04-01

    This study was carried out to determine the residue level of major concern organic and inorganic pollutants in Güzelhisar Basin of Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. Soil samples were collected from GPS determined points at 0-30 and 30-60 cm depth of a grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar stream. The area was grouped into three main areas as West, Middle, and East region. Water and sediment samples were collected from the Güzelhisar stream and from Güzelhisar dam every 30 kilometers which is already contaminated due to industrial facilities in Aliaga, is used to irrigate the agricultural land. Soil pH of the research area was determined within the range from 5.87 to 6.61. Topsoil contamination was examined for all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with increasing distance from the coast with a simultaneous decrease in pH. Due to the analysis of the organic pollutants, a continuous load with the herbicide trifluralin was determined with a few clearly raised points to a possible load of the stream water. Although HCH-Isomers were not found, DDT (DDT and transformation products) residues were ascertained in the soil samples. With regard to the analysis of the water samples of the Güzelhisar stream and dam, a background load with trifluralin was found which is to be explained with transport processes with regard to utilization of trifluralin in the agricultural areas.

  3. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    PubMed

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  4. The morphology of streams restored for market and nonmarket purposes: Insights from a mixed natural-social science approach

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Singh, Jai; Lave, Rebecca; Robertson, Morgan M.

    2015-07-01

    We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider and geomorphically more homogenous than nonrestored streams. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Thus, social forces shape the morphology of restored streams.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R.S.; Boustany, K.

    The PRISM gas membrane separation system has been commercially proven for over 5 yr in the chemical and refinery processing industry. The system has been used successfully in the field for removal of CO2 from streams containing 10 to 90% CO2. The on-stream time of the system has equalled availability of feed gas. It has operated with H2S and other contaminants with no deleterious effects. The only pretreatment required is to maintain the shell side gas at 20 to 25 F above the dew point. Variation in feed gas rates and composition present no operating problem. The proposed system ismore » a skid-mounted modular unit that is easily adaptable to variations in feed volume and CO2 content. The economic advantages in capital and operating costs are demonstrated.« less

  6. Photofermentative hydrogen production from wastes.

    PubMed

    Keskin, Tugba; Abo-Hashesh, Mona; Hallenbeck, Patrick C

    2011-09-01

    In many respects, hydrogen is an ideal biofuel. However, practical, sustainable means of its production are presently lacking. Here we review recent efforts to apply the capacity of photosynthetic bacteria to capture solar energy and use it to drive the nearly complete conversion of substrates to hydrogen and carbon dioxide. This process, called photofermentation, has the potential capacity to use a variety of feedstocks, including the effluents of dark fermentations, leading to the development of various configurations of two-stage systems, or various industrial and agricultural waste streams rich in sugars or organic acids. The metabolic and enzymatic properties of this system are presented and the possible waste streams that might be successfully used are discussed. Recently, various immobilized systems have been developed and their advantages and disadvantages are examined. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2005-01-01

    Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.

  8. Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing

    DTIC Science & Technology

    2012-12-14

    Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing Matei Zaharia Tathagata Das Haoyuan Li Timothy Hunter Scott Shenker Ion...SUBTITLE Discretized Streams: A Fault-Tolerant Model for Scalable Stream Processing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...time. However, current programming models for distributed stream processing are relatively low-level often leaving the user to worry about consistency of

  9. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    DOE PAGES

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less

  10. Deconstruction of Lignin Model Compounds and Biomass-Derived Lignin using Layered Double Hydroxide Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chmely, S. C.; McKinney, K. A.; Lawrence, K. R.

    2013-01-01

    Lignin is an underutilized value stream in current biomass conversion technologies because there exist no economic and technically feasible routes for lignin depolymerization and upgrading. Base-catalyzed deconstruction (BCD) has been applied for lignin depolymerization (e.g., the Kraft process) in the pulp and paper industry for more than a century using aqueous-phase media. However, these efforts require treatment to neutralize the resulting streams, which adds significantly to the cost of lignin deconstruction. To circumvent the need for downstream treatment, here we report recent advances in the synthesis of layered double hydroxide and metal oxide catalysts to be applied to the BCDmore » of lignin. These catalysts may prove more cost-effective than liquid-phase, non-recyclable base, and their use obviates downstream processing steps such as neutralization. Synthetic procedures for various transition-metal containing catalysts, detailed kinetics measurements using lignin model compounds, and results of the application of these catalysts to biomass-derived lignin will be presented.« less

  11. TRACE GAS CONCENTRATIONS IN STREAMS - EARLY WARNING INDICATORS OF STREAM IMPAIRMENT?

    EPA Science Inventory

    Surface water contamination and resultant impairment of aquatic ecosystem functioning are serious environmental problems, caused in large part by land use changes and excess organic waste inputs associated with agriculture and residential and industrial development. Headwater st...

  12. [Wet oxidation of toxic industrial waste with oxygenated water].

    PubMed

    Alfieri, M; Colombo, G; Velotti, R

    1991-01-01

    The industrial toxic waste streams hot treatment technology with hydrogen peroxide and catalysts, developed by the research laboratories of Montefluos in Bollate, allows the abatement of many organic and bio-toxic pollutants. Some treatment examples are here reported. The examples, performed on a laboratory scale, relate to industrial waste streams with a high COD (100000-200000 mg/l) in which it was possible to obtain an abatement over the 90% of pollutants like phenols, formaldehyde, dimethylformamide and phenyl acetate. The application range of this technology is similar to that of oxygen or air wet oxidation, but it has remarkable advantages due to the lower plant, maintenance and energy costs, because the treatment is performed using much more bland conditions (atmospheric pressure and 90-100 degrees C of temperature). The aim of the bio-toxic pollutants abatement and COD reduction (70-80%) is to allow the final bio-digestion waste streams with high organic content, but too diluted to be directly incenerated at a suitable cost.

  13. Interactive brain shift compensation using GPU based programming

    NASA Astrophysics Data System (ADS)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  14. Impact of Climate Change on Soil and Groundwater Chemistry Subject to Process Waste Land Application

    NASA Astrophysics Data System (ADS)

    McNab, W. W.

    2013-12-01

    Nonhazardous aqueous process waste streams from food and beverage industry operations are often discharged via managed land application in a manner designed to minimize impacts to underlying groundwater. Process waste streams are typically characterized by elevated concentrations of solutes such as ammonium, organic nitrogen, potassium, sodium, and organic acids. Land application involves the mixing of process waste streams with irrigation water which is subsequently applied to crops. The combination of evapotranspiration and crop salt uptake reduces the downward mass fluxes of percolation water and salts. By carefully managing application schedules in the context of annual climatological cycles, growing seasons, and process requirements, potential adverse environmental impacts to groundwater can be mitigated. However, climate change poses challenges to future process waste land application efforts because the key factors that determine loading rates - temperature, evapotranspiration, seasonal changes in the quality and quantity of applied water, and various crop factors - are all likely to deviate from current averages. To assess the potential impact of future climate change on the practice of land application, coupled process modeling entailing transient unsaturated fluid flow, evapotranspiration, crop salt uptake, and multispecies reactive chemical transport was used to predict changes in salt loading if current practices are maintained in a warmer, drier setting. As a first step, a coupled process model (Hydrus-1D, combined with PHREEQC) was calibrated to existing data sets which summarize land application loading rates, soil water chemistry, and crop salt uptake for land disposal of process wastes from a food industry facility in the northern San Joaquin Valley of California. Model results quantify, for example, the impacts of evapotranspiration on both fluid flow and soil water chemistry at shallow depths, with secondary effects including carbonate mineral precipitation and ion exchange. The calibrated model was then re-run assuming different evapotranspiration and crop growth regimes, and different seasonally-adjusted applied water compositions, to elucidate possible impacts to salt loading reactive chemistry. The results of the predictive modeling indicate the extent to which salts could be redistributed within the soil column as a consequence of climate change. The degree to which these findings are applicable to process waste land application operations at other sites was explored by varying the soil unsaturated flow parameters as a model sensitivity assessment. Taken together, the model results help to quantify operational changes to land application that may be necessary to avoid future adverse environmental impacts to soil and groundwater.

  15. An economical route to high quality lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andre, J.P.; Hahn, S.K.; Kwon, S.H.

    1996-12-01

    The current rends in the automotive and industrial markets toward more efficient engines, longer drain intervals, and lower emissions all contribute to placing increasingly stringent performance requirements on lubricants. The demand for higher quality synthetic and non-conventional basestocks is expected to grow at a much faster rate than that of conventional lube basestocks to meet these higher performance standards. Yukong Limited has developed a novel technology (the Yukong UCO Lube Process) for the economic production of high quality, high-viscosity-index lube basestocks from a fuels hydrocracker unconverted oil stream. A pilot plant based on this process has been producing oils formore » testing purposes since May 1994. A commercial facility designed to produce 3,500 BPD of VHVI lube basestocks cane on-stream at Yukong`s Ulsan refinery in October 1995. The Badger Technology Center of Raytheon Engineers and Constructors assisted Yukong during the development of the technology and prepared the basic process design package for the commercial facility. This paper presents process aspects of the technology and comparative data on investment and operating costs. Yukong lube basestock product properties and performance data are compared to basestocks produced by conventional means and by lube hydrocracking.« less

  16. Method for enhanced atomization of liquids

    DOEpatents

    Thompson, Richard E.; White, Jerome R.

    1993-01-01

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  17. An approach to industrial water conservation--a case study involving two large manufacturing companies based in Australia.

    PubMed

    Agana, Bernard A; Reeve, Darrell; Orbell, John D

    2013-01-15

    This study presents the application of an integrated water management strategy at two large Australian manufacturing companies that are contrasting in terms of their respective products. The integrated strategy, consisting of water audit, pinch analysis and membrane process application, was deployed in series to systematically identify water conservation opportunities. Initially, a water audit was deployed to completely characterize all water streams found at each production site. This led to the development of a water balance diagram which, together with water test results, served as a basis for subsequent enquiry. After the water audit, commercially available water pinch software was utilized to identify possible water reuse opportunities, some of which were subsequently implemented on site. Finally, utilizing a laboratory-scale test rig, membrane processes such as UF, NF and RO were evaluated for their suitability to treat the various wastewater streams. The membranes tested generally showed good contaminant rejection rates, slow flux decline rates, low energy usage and were well suited for treatment of specific wastewater streams. The synergy between the various components of this strategy has the potential to reduce substantial amounts of Citywater consumption and wastewater discharge across a diverse range of large manufacturing companies. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  18. Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries.

    PubMed

    Molitor, Bastian; Richter, Hanno; Martin, Michael E; Jensen, Rasmus O; Juminaga, Alex; Mihalcea, Christophe; Angenent, Largus T

    2016-09-01

    Technological solutions to reduce greenhouse gas (GHG) emissions from anthropogenic sources are required. Heavy industrial processes, such as steel making, contribute considerably to GHG emissions. Fermentation of carbon monoxide (CO)-rich off gases with wild-type acetogenic bacteria can be used to produce ethanol, acetate, and 2,3-butanediol, thereby, reducing the carbon footprint of heavy industries. Here, the processes for the production of ethanol from CO-rich off gases are discussed and a perspective on further routes towards an integrated biorefinery at a steel mill is given. Recent achievements in genetic engineering as well as integration of other biotechnology platforms to increase the product portfolio are summarized. Already, yields have been increased and the portfolio of products broadened. To develop a commercially viable process, however, the extraction from dilute product streams is a critical step and alternatives to distillation are discussed. Finally, another critical step is waste(water) treatment with the possibility to recover resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Concentrate minimization and water recovery enhancement using pellet precipitator in a reverse osmosis process treating textile wastewater.

    PubMed

    Sahinkaya, Erkan; Sahin, Ahmet; Yurtsever, Adem; Kitis, Mehmet

    2018-06-09

    Industrial wastewater reuse together with zero or near zero liquid discharges have been a growing trend due to the requirement of sustainable water management mandated by water scarcity and tightening discharge regulations. Studies have been conducted on the reclamation of textile industry wastewater using RO processes. However a lot of scientific attention has been drawn upon limiting the amount of concentrate generated from RO processes, which depends on the concentrations of scale forming ions in the concentrate stream. Hence, this study aims at investigating the applicability of an ultra-filtration (UF) membrane integrated pellet reactor to remove scale forming ions, i.e. Ca 2+ , Mg 2+ and Si from the concentrate of a pilot-scale textile industry RO process, for the first time in the literature. The resulting effluent was further tested in a secondary RO process to decrease concentrate volume and increase total water recovery. The pellet reactor operated at an extremely low hydraulic retention time of 0.1 h removed scale forming ions, i.e. Ca 2+ , Mg 2+ , with 90-95% efficiency, which improved the secondary RO process performance up to 92-94% overall water recovery, i.e. near zero liquid discharge was reached. Ozonation of the concentrate partially removed COD and color, which further improved the secondary RO filtration performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Potential environmental effects of energy conservation measures in northwest industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to differentmore » energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.« less

  1. A pilot plant for removing chromium from residual water of tanneries.

    PubMed

    Landgrave, J

    1995-02-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.

  2. A pilot plant for removing chromium from residual water of tanneries.

    PubMed Central

    Landgrave, J

    1995-01-01

    The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented. PMID:7621802

  3. RISK ASSESSMENT FOR THE DYE AND PIGMENT ...

    EPA Pesticide Factsheets

    This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assessment focuses on potential risks from volatilization and leaching to groundwater of constituents disposed in surface impoundments and landfills with either clay liners or composite liners. This product will be used by EPA decision makers to assist in determining whether certain waste streams generated by the dyes and pigments industries should be designated as hazardous.

  4. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Sajidu, S. M. I.; Masamba, W. R. L.; Henry, E. M. T.; Kuyeli, S. M.

    The population of the city of Blantyre has grown rapidly over the past few years without keeping pace with the national economy. The most visibly affected areas of this increase in population are access to adequate clean water, solid waste collection and disposal, sanitary and sewerage facilities. The objective of this study was to evaluate water quality in streams and wastewater treatment plants (WWTP) in the City of Blantyre, Malawi. Study locations included Limbe WWTP, Soche WWTP, Limbe, Mudi and Nasolo streams. Water samples were collected by grab sampling technique in February 2005. Phosphates, nitrates and sulphates were determined by vanadomolybdophosphoric acid colorimetric, salicylate colorimetric and turbidimetric methods, respectively. Metals were analysed using atomic absorption spectroscopy. Concentrations of lead, cadmium, iron, manganese, zinc, chromium and nickel were much higher than the World Health safe limits for drinking water in all the sampled streams after they had passed through industrial areas. Nitrates and sulphates concentrations at all sampling points were found to be lower than the safe limits for drinking water of 50 mg/l and 250 mg/l, respectively. However, phosphate concentrations were above the safe limit of 0.5 mg/l. It was also observed that biochemical oxygen demand (BOD 5) levels were above the World Health Organisation limit of 20 mg/l at all sites except Mudi and Limbe streams before passing through industrial areas. This was an indication of pollution in the streams. Values of pH and total dissolved solids (TDS) were within the recommended standards. The results suggest that streams in Blantyre City get polluted by heavy metals and nutrients which could be due to uncontrolled industrial waste disposal, vehicular emissions and agricultural activities. Regular monitoring of the water quality and enforcement of environmental protection laws are needed in order to control pollution in the city.

  5. A historical review of additives and modifiers used in paving asphalt refining processes in the United States.

    PubMed

    Mundt, Diane J; Adams, Robert C; Marano, Kristin M

    2009-11-01

    The U.S. asphalt paving industry has evolved over time to meet various performance specifications for liquid petroleum asphalt binder (known as bitumen outside the United States). Additives to liquid petroleum asphalt produced in the refinery may affect exposures to workers in the hot mix paving industry. This investigation documented the changes in the composition and distribution of the liquid petroleum asphalt products produced from petroleum refining in the United States since World War II. This assessment was accomplished by reviewing documents and interviewing individual experts in the industry to identify current and historical practices. Individuals from 18 facilities were surveyed; the number of facilities reporting use of any material within a particular class ranged from none to more than half the respondents. Materials such as products of the process stream, polymers, elastomers, and anti-strip compounds have been added to liquid petroleum asphalt in the United States over the past 50 years, but modification has not been generally consistent by geography or time. Modifications made to liquid petroleum asphalt were made generally to improve performance and were dictated by state specifications.

  6. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less

  7. Agile Development Methods for Space Operations

    NASA Technical Reports Server (NTRS)

    Trimble, Jay; Webster, Chris

    2012-01-01

    Main stream industry software development practice has gone from a traditional waterfall process to agile iterative development that allows for fast response to customer inputs and produces higher quality software at lower cost. How can we, the space ops community, adopt state of the art software development practice, achieve greater productivity at lower cost, and maintain safe and effective space flight operations? At NASA Ames, we are developing Mission Control Technologies Software, in collaboration with Johnson Space Center (JSC) and, more recently, the Jet Propulsion Laboratory (JPL).

  8. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  9. A case in support of implementing innovative bio-processes in the metal mining industry.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID

    2009-09-29

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.

  11. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    DOEpatents

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  12. Activities of the Institute of Chemical Processing of Coal at Zabrze

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreszer, K.

    1995-12-31

    The Institute of Chemical Processing of Coal at Zabrze was established in 1955. The works on carbochemical technologies have been, therefore, carried out at the Institute for 40 years. The targets of the Institute`s activities are research, scientific and developing works regarding a sensible utilization of fuels via their processing into more refined forms, safe environment, highly efficient use of energy carriers and technological products of special quality. The Institute of Chemical Processing of Coal has been dealing with the following: optimized use of home hard coals; improvement of classic coal coking technologies, processing and utilization of volatile coking products;more » production technologies of low emission rate fuels for communal management; analyses of coal processing technologies; new technologies aimed at increasing the efficiency of coal utilization for energy-generating purposes, especially in industry and studies on the ecological aspects of these processes; production technologies of sorbents and carbon activating agents and technologies of the utilization; rationalization of water and wastes management in the metallurgical and chemical industries in connection with removal of pollution especially dangerous to the environment from wastes; utilization technologies of refined materials (electrode cokes, binders, impregnating agents) for making electrodes, refractories and new generation construction carbon materials; production technologies of high quality bituminous and bituminous and resin coating, anti-corrosive and insulation materials; environmentally friendly utilization technologies for power station, mine and other wastes, and dedusting processes in industrial gas streams.« less

  13. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    PubMed

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  14. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA

    2007-05-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  15. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.

    2005-11-08

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  16. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2005-05-03

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  17. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2003-06-24

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  18. New design environment for defect detection in web inspection systems

    NASA Astrophysics Data System (ADS)

    Hajimowlana, S. Hossain; Muscedere, Roberto; Jullien, Graham A.; Roberts, James W.

    1997-09-01

    One of the aims of industrial machine vision is to develop computer and electronic systems destined to replace human vision in the process of quality control of industrial production. In this paper we discuss the development of a new design environment developed for real-time defect detection using reconfigurable FPGA and DSP processor mounted inside a DALSA programmable CCD camera. The FPGA is directly connected to the video data-stream and outputs data to a low bandwidth output bus. The system is targeted for web inspection but has the potential for broader application areas. We describe and show test results of the prototype system board, mounted inside a DALSA camera and discuss some of the algorithms currently simulated and implemented for web inspection applications.

  19. Pollution profile and biodegradation characteristics of fur-suede processing effluents.

    PubMed

    Yildiz Töre, G; Insel, G; Ubay Cokgör, E; Ferlier, E; Kabdaşli, I; Orhon, D

    2011-07-01

    This study investigated the effect of stream segregation on the biodegradation characteristics of wastewaters generated by fur-suede processing. It was conducted on a plant located in an organized industrial district in Turkey. A detailed in-plant analysis of the process profile and the resulting pollution profile in terms of significant parameters indicated the characteristics of a strong wastewater with a maximum total COD of 4285 mg L(-1), despite the excessive wastewater generation of 205 m3 (ton skin)(-1). Respirometric analysis by model calibration yielded slow biodegradation kinetics and showed that around 50% of the particulate organics were utilized at a rate similar to that of endogenous respiration. A similar analysis on the segregated wastewater streams suggested that biodegradation of the plant effluent is controlled largely by the initial washing/pickling operations. The effect of other effluent streams was not significant due to their relatively low contribution to the overall organic load. The respirometric tests showed that the biodegradation kinetics of the joint treatment plant influent of the district were substantially improved and exhibited typical levels reported for tannery wastewater, so that the inhibitory impact was suppressed to a great extent by dilution and mixing with effluents of the other plants. The chemical treatment step in the joint treatment plant removed the majority of the particulate organics so that 80% of the available COD was utilized in the oxygen uptake rate (OUR) test, a ratio quite compatible with the biodegradable COD fractions of tannery wastewater. Consequently, process kinetics and especially the hydrolysis rate appeared to be significantly improved.

  20. Modeling Land Application of Food-Processing Wastewater in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Rubin, Y.; Benito, P.; Miller, G.; McLaughlin, J.; Hou, Z.; Hermanowicz, S.; Mayer, U.

    2007-12-01

    California's Central Valley contains over 640 food-processing plants, serving a multi-billion dollar agricultural industry. These processors consume approximately 7.9 x 107 m3 of water per year. Approximately 80% of these processors discharge the resulting wastewater, which is typically high in organic matter, nitrogen, and salts, to land, and many of these use land application as a treatment method. Initial investigations revealed elevated salinity levels to be the most common form of groundwater degradation near land application sites, followed by concentrations of nitrogen compounds, namely ammonia and nitrate. Enforcement actions have been taken against multiple food processors, and the regulatory boards have begun to re-examine the land disposal permitting process. This paper summarizes a study that was commissioned in support of these actions. The study has multiple components which will be reviewed briefly, including: (1) characterization of the food-processing related waste stream; (2) fate and transport of the effluent waste stream in the unsaturated zone at the land application sites; (3) fate and transport of the effluent waste stream at the regional scale; (4) predictive uncertainty due to spatial variability and data scarcity at the land application sites and at the regional scale; (5) problem mitigation through off-site and in-situ actions; (6) long-term solutions. The emphasis of the talk will be placed on presenting and demonstrating a stochastic framework for modeling the transport and attenuation of these wastes in the vadose zone and in the saturated zone, and the related site characterization needs, as affected by site conditions, water table depth, waste water application rate, and waste constituent concentrations.

  1. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  2. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  3. Improving Prediction Accuracy of “Central Line-Associated Blood Stream Infections” Using Data Mining Models

    PubMed Central

    Noaman, Amin Y.; Jamjoom, Arwa; Al-Abdullah, Nabeela; Nasir, Mahreen; Ali, Anser G.

    2017-01-01

    Prediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections. For our study, we selected datasets of healthcare-associated infections from US National Healthcare Safety Network and consumer survey data from Hospital Consumer Assessment of Healthcare Providers and Systems. Our experiments show that central line-associated blood stream infections (CLABSIs) can be successfully predicted using AdaBoost method with an accuracy up to 89.7%. This will help in implementing effective clinical surveillance programs for infection control, as well as improving the accuracy detection of CLABSIs. Also, this reduces patients' hospital stay cost and maintains patients' safety. PMID:29085836

  4. Solid-phase materials for chelating metal ions and methods of making and using same

    DOEpatents

    Harrup, Mason K.; Wey, John E.; Peterson, Eric S.

    2003-06-10

    A solid material for recovering metal ions from aqueous streams, and methods of making and using the solid material, are disclosed. The solid material is made by covalently bonding a chelating agent to a silica-based solid, or in-situ condensing ceramic precursors along with the chelating agent to accomplish the covalent bonding. The chelating agent preferably comprises a oxime type chelating head, preferably a salicylaldoxime-type molecule, with an organic tail covalently bonded to the head. The hydrocarbon tail includes a carbon-carbon double bond, which is instrumental in the step of covalently bonding the tail to the silica-based solid or the in-situ condensation. The invented solid material may be contacted directly with aqueous streams containing metal ions, and is selective to ions such as copper (II) even in the presence of such ions as iron (III) and other materials that are present in earthen materials. The solid material with high selectivity to copper may be used to recover copper from mining and plating industry streams, to replace the costly and toxic solvent extraction steps of conventional copper processing.

  5. Prioritized Contact Transport Stream

    NASA Technical Reports Server (NTRS)

    Hunt, Walter Lee, Jr. (Inventor)

    2015-01-01

    A detection process, contact recognition process, classification process, and identification process are applied to raw sensor data to produce an identified contact record set containing one or more identified contact records. A prioritization process is applied to the identified contact record set to assign a contact priority to each contact record in the identified contact record set. Data are removed from the contact records in the identified contact record set based on the contact priorities assigned to those contact records. A first contact stream is produced from the resulting contact records. The first contact stream is streamed in a contact transport stream. The contact transport stream may include and stream additional contact streams. The contact transport stream may be varied dynamically over time based on parameters such as available bandwidth, contact priority, presence/absence of contacts, system state, and configuration parameters.

  6. Microbial biofilms for the removal of Cu²⁺ from CMP wastewater.

    PubMed

    Mosier, Aaron P; Behnke, Jason; Jin, Eileen T; Cady, Nathaniel C

    2015-09-01

    The modern semiconductor industry relies heavily on a process known as chemical mechanical planarization, which uses physical and chemical processes to remove excess material from the surface of silicon wafers during microchip fabrication. This process results in large volumes of wastewater containing dissolved metals including copper (Cu(2+)), which must then be filtered and treated before release into municipal waste systems. We have investigated the potential use of bacterial and fungal biomass as an alternative to the currently used ion-exchange resins for the adsorption of dissolved Cu(2+) from high-throughput industrial waste streams. A library of candidate microorganisms, including Lactobacillus casei and Pichia pastoris, was screened for ability to bind Cu(2+) from solution and to form static biofilm communities within packed-bed adsorption columns. The binding efficiency of these biomass-based adsorption columns was assessed under various flow conditions and compared to that of industrially used ion-exchange resins. We demonstrated the potential to regenerate the biomass within the adsorption columns through the use of a hydrochloric acid wash, and subsequently reuse the columns for additional copper binding. While the binding efficiency and capacity of the developed L. casei/P. pastoris biomass filters was inferior to ion-exchange resin, the potential for repeated reuse of these filters, coupled with the advantages of a more sustainable "green" adsorption process, make this technique an attractive candidate for use in industrial-scale CMP wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    PubMed

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  8. Recovery, reuse and recycling by the United States wood packaging industry: 1993-2006

    Treesearch

    Robert J. Bush; Philip A. Araman; E. Bradley Hager

    2007-01-01

    The packaging industry is an important market for wood materials, especially low grade hardwoods. Approximately one-third of U.S. hardwood lumber production is utilized in the production of pallets and containers. The industry recovers significant volumes of pallets and containers from the waste stream for re-use, repair, and recycling. Industry by-products (both wood...

  9. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.

    PubMed

    Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun

    2015-11-01

    Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Current and Prospective Li-Ion Battery Recycling and Recovery Processes

    NASA Astrophysics Data System (ADS)

    Heelan, Joseph; Gratz, Eric; Zheng, Zhangfeng; Wang, Qiang; Chen, Mengyuan; Apelian, Diran; Wang, Yan

    2016-10-01

    The lithium ion (Li-ion) battery industry has been growing exponentially since its initial inception in the late 20th century. As battery materials evolve, the applications for Li-ion batteries have become even more diverse. To date, the main source of Li-ion battery use varies from consumer portable electronics to electric/hybrid electric vehicles. However, even with the continued rise of Li-ion battery development and commercialization, the recycling industry is lagging; approximately 95% of Li-ion batteries are landfilled instead of recycled upon reaching end of life. Industrialized recycling processes are limited and only capable of recovering secondary raw materials, not suitable for direct reuse in new batteries. Most technologies are also reliant on high concentrations of cobalt to be profitable, and intense battery sortation is necessary prior to processing. For this reason, it is critical that a new recycling process be commercialized that is capable of recovering more valuable materials at a higher efficiency. A new technology has been developed by the researchers at Worcester Polytechnic Institute which is capable of recovering LiNi x Mn y Co z O2 cathode material from a hydrometallurgical process, making the recycling system as a whole more economically viable. By implementing a flexible recycling system that is closed-loop, recycling of Li-ion batteries will become more prevalent saving millions of pounds of batteries from entering the waste stream each year.

  11. Streaming Visual Analytics Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.

    How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less

  12. Investigations of fungal fruiting bodies as biosorbents for the removal of heavy metals from industrial processing streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muraleedharan, T.R.; Venkobachar, C.; Leela, I.

    1994-09-01

    The revival of interest in biotechnology has fueled research in many sectors of environmental biotechnology. The present paper describes research utilizing adsorbents prepared from wood-rotting mushrooms growing wild in tropical forests. Nine species of mushrooms were screened using copper(II) as the model adsorbate. While may species showed excellent potential, comparable to biosorbents reported in literature, Ganodernma lucidum emerged as the best biosorbent. This biosorbent was further developed for use in a packed-bed bioreactor for treatment of rare earth processing effluents. Electron paramagnetic studies confirmed that adsorption is by chemical binding to the biosorbent.

  13. NRG CO 2NCEPT - Confirmation Of Novel Cost-effective Emerging Post-combustion Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Matthew; Armpriester, Anthony

    Under DOE's solicitation DE-FOA-0001190, NRG and Inventys conceptualized a Large-Scale pilot (>10MWe) post-combustion CO 2 capture project using Inventys' VeloxoThermTM carbon capture technology. The technology is comprised of an intensified thermal swing adsorption (TSA) process that uses a patented architecture of structured adsorbent and a novel process design and embodiment to capture CO 2 from industrial flue gas streams. The result of this work concluded that the retrofit of this technology is economically and technically viable, but that the sorbent material selected for the program would need improving to meet the techno-economic performance requirements of the solicitation.

  14. Feature integration and object representations along the dorsal stream visual hierarchy

    PubMed Central

    Perry, Carolyn Jeane; Fallah, Mazyar

    2014-01-01

    The visual system is split into two processing streams: a ventral stream that receives color and form information and a dorsal stream that receives motion information. Each stream processes that information hierarchically, with each stage building upon the previous. In the ventral stream this leads to the formation of object representations that ultimately allow for object recognition regardless of changes in the surrounding environment. In the dorsal stream, this hierarchical processing has classically been thought to lead to the computation of complex motion in three dimensions. However, there is evidence to suggest that there is integration of both dorsal and ventral stream information into motion computation processes, giving rise to intermediate object representations, which facilitate object selection and decision making mechanisms in the dorsal stream. First we review the hierarchical processing of motion along the dorsal stream and the building up of object representations along the ventral stream. Then we discuss recent work on the integration of ventral and dorsal stream features that lead to intermediate object representations in the dorsal stream. Finally we propose a framework describing how and at what stage different features are integrated into dorsal visual stream object representations. Determining the integration of features along the dorsal stream is necessary to understand not only how the dorsal stream builds up an object representation but also which computations are performed on object representations instead of local features. PMID:25140147

  15. Towards a New Approach to Mid-Level Qualifications. Research Report

    ERIC Educational Resources Information Center

    Moodie, Gavin; Wheelahan, Leesa; Fredman, Nick; Bexley, Emmaline

    2015-01-01

    The authors look at the roles that vocations, vocational streams and productive capabilities can play in improving links between mid-level qualifications and occupational outcomes. Support for vocational streams and productive capabilities varied by industry but there is the potential to progress these concepts in each of the industries…

  16. 40 CFR 63.1595 - List of definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a POTW that accepts a waste stream regulated by an industrial NESHAP and provides treatment and...-containing waste stream to the POTW for treatment to comply with 40 CFR part 61, Subpart FF—National Emission... receive grant assistance under the Subchapter II of the Clean Water Act, and any federally owned treatment...

  17. Treatment efficiency and economic feasibility of biological oxidation, membrane filtration and separation processes, and advanced oxidation for the purification and valorization of olive mill wastewater.

    PubMed

    Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D

    2017-05-01

    Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Landscape characteristics of a stream and wetland mitigation banking program.

    PubMed

    BenDor, Todd; Sholtes, Joel; Doyle, Martin W

    2009-12-01

    In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator data collection, storage, and quality control. These results have significant implications given new federal requirements for ecological consistency within mitigation programs. Our results also indicate some of the landscape-scale implications of using market-based approaches to ecological restoration in general.

  19. Commercialization of Immobilized Amino-Siliane/Amine or Biochar Sorbents for the Capture of Carbon Dioxide from Various Methane Gas Streams. Abstract - Cooperative Research and Development Agreement between BioEnergy Development, LLC and National Energy Technology Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, McMahan L.; Shipley, Greg

    Currently, landfill gases are flared-off, which creates carbon dioxide (CO 2) and particulate matter air emissions, while still containing small amounts of unburned methane (CH 4). All of these pollutants contribute to environmental health hazards and global climate change. The same is true with industrial processes that use thermal technologies to process biomass, as these also generate the pollutant gases and particulates. In conjunction with BioEnegy Development (BED), NETL researchers will adapt the Basic Immobilized Amine Sorbent (BIAS) material technology for use in BED’s biorefineries. The goal of this proposed work is to develop NETL’s immobilized hydrophobic amino-silane/amine pellets inmore » combination with BED’s biochar materials (derived from the pyrolysis of biomass) into a commercially-accepted means of capturing/recovering CH 4 and CO 2 gases from landfills. Overall, the NETL-BioEnergy Development partnership will focus on the development and application of this carbon management sorbent technology to commercial carbon capture processes and promotion of clean methane based fuel streams.« less

  20. Crickets Are Not a Free Lunch: Protein Capture from Scalable Organic Side-Streams via High-Density Populations of Acheta domesticus

    PubMed Central

    Lundy, Mark E.; Parrella, Michael P.

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production. PMID:25875026

  1. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus.

    PubMed

    Lundy, Mark E; Parrella, Michael P

    2015-01-01

    It has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature. The biomass accumulation was strongly influenced by the quality of the diet (p<0.001), with the nitrogen (N) content, the ratio of N to acid detergent fiber (ADF) content, and the crude fat (CF) content (y=N/ADF+CF) explaining most of the variability between feed treatments (p = 0.02; R2 = 0.96). In addition, for populations of crickets that were able to survive to a harvestable size, the feed conversion ratios measured were higher (less efficient) than those reported from studies conducted at smaller scales and lower population densities. Compared to the industrial-scale production of chickens, crickets fed a poultry feed diet showed little improvement in protein conversion efficiency, a key metric in determining the ecological footprint of grain-based livestock protein. Crickets fed the solid filtrate from food waste processed at an industrial scale via enzymatic digestion were able to reach a harvestable size and achieve feed and protein efficiencies similar to that of chickens. However, crickets fed minimally-processed, municipal-scale food waste and diets composed largely of straw experienced >99% mortality without reaching a harvestable size. Therefore, the potential for A. domesticus to sustainably supplement the global protein supply, beyond what is currently produced via grain-fed chickens, will depend on capturing regionally scalable organic side-streams of relatively high-quality that are not currently being used for livestock production.

  2. Tracking Extra Tropical Cyclones to Explore how the Jet Stream Shifted During The Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Garrett, H.

    2016-12-01

    The behavior of the jet stream during the last glacial maximum (LGM 21ka) has been the focus of multiple studies but remains highly debated. Proxy data shows that during this time in the United States, the northwest was drier than modern conditions and the southwest was wetter than modern conditions. To explain this there are two competing hypothesis, one which suggests that the jet stream shifted uniformly south and the other which suggests a stronger jet that split shifting both north and south. For this study we used TECA, to reanalyze model out-put, looking at the frequency and patterns of Extra Tropical Cyclones (ETC's), which have been found to be steered by the jet stream. We used the CCSM4 model based on its agreement with proxy data, and compared data from both the LGM and pre-industrial time periods. Initial results show a dramatic shift of ETC's north by about 10º-15º degrees and a decrease in frequency compared to pre-industrial conditions, coupled with a less pronounced southward shift of 5º-10º degrees.This evidence supports the idea that the jet stream split during the LGM. A stronger understanding of jet stream behavior will help to improve future models and prediction capabilities to prepare for hydro-climate change in drought sensitive areas.

  3. Device for staged carbon monoxide oxidation

    DOEpatents

    Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph

    1993-01-01

    A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

  4. TERMINAL ELECTRON ACCEPTING PROCESSES IN THE ALLUVIAL SEDIMENTS OF A HEADWATER STREAM

    EPA Science Inventory

    Chemical fluxes between catchments and streams are influenced by biochemical processes in the groundwater-stream water (GW-SW) ecotone, the interface between stream surface water and groundwater. Terminal electron accepting processes (TEAPs) that are utilized in respiration of ...

  5. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  6. Hybrid biological, electron beam and zero-valent nano iron treatment of recalcitrant metalworking fluids.

    PubMed

    Thill, Patrick G; Ager, Duane K; Vojnovic, Borivoj; Tesh, Sarah J; Scott, Thomas B; Thompson, Ian P

    2016-04-15

    Hybrid approaches for the remediation and detoxification of toxic recalcitrant industrial wastewater were investigated. The focus was waste metalworking fluid, which was selected as a representative model of other waste streams that are toxic, recalcitrant and that require more sustainable routes of safe disposal. The hybrid approaches included biodegradation, electron beam irradiation and zero-valent nano iron advanced oxidation processes that were employed individually and in sequence employing a factorial design. To compare process performance operationally exhausted and pristine metalworking fluid were compared. Sequential hybrid electron beam irradiation, biological, nanoscale zero-valent iron and biological treatment lead to synergistic detoxification and degradation of both recalcitrant streams, as determined by complementary surrogates and lead to overall improved COD removal of 92.8 ± 1.4% up from 85.9 ± 3.4% for the pristine metalworking fluid. Electron beam pre-treatment enabled more effective biotreatment, achieving 69.5 ± 8% (p = 0.005) and 24.6 ± 4.8% (p = 0.044) COD reductions. Copyright © 2016. Published by Elsevier Ltd.

  7. Towards a carbon-negative sustainable bio-based economy.

    PubMed

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Van Breusegem, Frank; De Mey, Marjan; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy.

  8. Towards a carbon-negative sustainable bio-based economy

    PubMed Central

    Vanholme, Bartel; Desmet, Tom; Ronsse, Frederik; Rabaey, Korneel; Breusegem, Frank Van; Mey, Marjan De; Soetaert, Wim; Boerjan, Wout

    2013-01-01

    The bio-based economy relies on sustainable, plant-derived resources for fuels, chemicals, materials, food and feed rather than on the evanescent usage of fossil resources. The cornerstone of this economy is the biorefinery, in which renewable resources are intelligently converted to a plethora of products, maximizing the valorization of the feedstocks. Innovation is a prerequisite to move a fossil-based economy toward sustainable alternatives, and the viability of the bio-based economy depends on the integration between plant (green) and industrial (white) biotechnology. Green biotechnology deals with primary production through the improvement of biomass crops, while white biotechnology deals with the conversion of biomass into products and energy. Waste streams are minimized during these processes or partly converted to biogas, which can be used to power the processing pipeline. The sustainability of this economy is guaranteed by a third technology pillar that uses thermochemical conversion to valorize waste streams and fix residual carbon as biochar in the soil, hence creating a carbon-negative cycle. These three different multidisciplinary pillars interact through the value chain of the bio-based economy. PMID:23761802

  9. Full cost accounting for the life cycle of coal.

    PubMed

    Epstein, Paul R; Buonocore, Jonathan J; Eckerle, Kevin; Hendryx, Michael; Stout Iii, Benjamin M; Heinberg, Richard; Clapp, Richard W; May, Beverly; Reinhart, Nancy L; Ahern, Melissa M; Doshi, Samir K; Glustrom, Leslie

    2011-02-01

    Each stage in the life cycle of coal-extraction, transport, processing, and combustion-generates a waste stream and carries multiple hazards for health and the environment. These costs are external to the coal industry and are thus often considered "externalities." We estimate that the life cycle effects of coal and the waste stream generated are costing the U.S. public a third to over one-half of a trillion dollars annually. Many of these so-called externalities are, moreover, cumulative. Accounting for the damages conservatively doubles to triples the price of electricity from coal per kWh generated, making wind, solar, and other forms of nonfossil fuel power generation, along with investments in efficiency and electricity conservation methods, economically competitive. We focus on Appalachia, though coal is mined in other regions of the United States and is burned throughout the world. © 2011 New York Academy of Sciences.

  10. Students' Reflections on Industry Placement: Comparing Four Undergraduate Work-Integrated Learning Streams

    ERIC Educational Resources Information Center

    Hughes, Karen; Mylonas, Aliisa; Benckendorff, Pierre

    2013-01-01

    This paper compares four work-integrated learning (WIL) streams embedded in a professional Development course for tourism, hospitality and event management students. Leximancer was used to analyze key themes emerging from reflective portfolios completed by the 137 students in the course. Results highlight that student learning outcomes and…

  11. The effect of an industrial effluent on an urban stream benthic community: water quality vs habitat quality.

    PubMed

    Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G

    2003-01-01

    We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.

  12. Visual and visuomotor processing of hands and tools as a case study of cross talk between the dorsal and ventral streams.

    PubMed

    Almeida, Jorge; Amaral, Lénia; Garcea, Frank E; Aguiar de Sousa, Diana; Xu, Shan; Mahon, Bradford Z; Martins, Isabel Pavão

    2018-05-24

    A major principle of organization of the visual system is between a dorsal stream that processes visuomotor information and a ventral stream that supports object recognition. Most research has focused on dissociating processing across these two streams. Here we focus on how the two streams interact. We tested neurologically-intact and impaired participants in an object categorization task over two classes of objects that depend on processing within both streams-hands and tools. We measured how unconscious processing of images from one of these categories (e.g., tools) affects the recognition of images from the other category (i.e., hands). Our findings with neurologically-intact participants demonstrated that processing an image of a hand hampers the subsequent processing of an image of a tool, and vice versa. These results were not present in apraxic patients (N = 3). These findings suggest local and global inhibitory processes working in tandem to co-register information across the two streams.

  13. The influence of industrial and agricultural waste on water quality in the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil).

    PubMed

    da Rocha, Monyque Palagano; Dourado, Priscila Leocadia Rosa; de Souza Rodrigues, Mayara; Raposo, Jorge Luiz; Grisolia, Alexeia Barufatti; de Oliveira, Kelly Mari Pires

    2015-07-01

    Water quality monitoring is used to determine the impact of human activities on the environment. We evaluated water quality in the Água Boa stream, located within the municipality of Dourados, State of Mato Grosso do Sul, Brazil, by analyzing physico-chemical, chemical, and microbiological parameters, as well as chlorophyll concentrations. Five sets of water samples were collected between December 2012 and November 2013 from three locations within the stream. The results showed the presence of Escherichia coli and antibiotic-resistant Pseudomonas spp. strains and high concentrations of organic matter (total dissolved solids), inorganic species (Mg, Ca, and Fe), and agrochemical residues (thiamethoxam). The main stream water contaminants are derived from urban, industrial, and agricultural activities within the watershed. Given the presence of contaminants, it is important that such findings are disseminated in order to highlight the risks that contact with this water may pose to human health. To preserve the environment and improve site conditions, people would need to participate by demanding that normative national and international standards be respected and that the situation be supervised by the competent governmental agencies; this would make it possible to reverse or minimize contamination problems within the Água Boa stream.

  14. The hospital tech laboratory: quality innovation in a new era of value-conscious care.

    PubMed

    Keteyian, Courtland K; Nallamothu, Brahmajee K; Ryan, Andrew M

    2017-08-01

    For decades, the healthcare industry has been incentivized to develop new diagnostic technologies, but this limitless progress fueled rapidly growing expenditures. With an emphasis on value, the future will favor information synthesis and processing over pure data generation, and hospitals will play a critical role in developing these systems. A Michigan Medicine, IBM, and AirStrip partnership created a robust streaming analytics platform tasked with creating predictive algorithms for critical care with the potential to support clinical decisions and deliver significant value.

  15. Task-oriented quality assessment and adaptation in real-time mission critical video streaming applications

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2015-02-01

    In recent years video traffic has become the dominant application on the Internet with global year-on-year increases in video-oriented consumer services. Driven by improved bandwidth in both mobile and fixed networks, steadily reducing hardware costs and the development of new technologies, many existing and new classes of commercial and industrial video applications are now being upgraded or emerging. Some of the use cases for these applications include areas such as public and private security monitoring for loss prevention or intruder detection, industrial process monitoring and critical infrastructure monitoring. The use of video is becoming commonplace in defence, security, commercial, industrial, educational and health contexts. Towards optimal performances, the design or optimisation in each of these applications should be context aware and task oriented with the characteristics of the video stream (frame rate, spatial resolution, bandwidth etc.) chosen to match the use case requirements. For example, in the security domain, a task-oriented consideration may be that higher resolution video would be required to identify an intruder than to simply detect his presence. Whilst in the same case, contextual factors such as the requirement to transmit over a resource-limited wireless link, may impose constraints on the selection of optimum task-oriented parameters. This paper presents a novel, conceptually simple and easily implemented method of assessing video quality relative to its suitability for a particular task and dynamically adapting videos streams during transmission to ensure that the task can be successfully completed. Firstly we defined two principle classes of tasks: recognition tasks and event detection tasks. These task classes are further subdivided into a set of task-related profiles, each of which is associated with a set of taskoriented attributes (minimum spatial resolution, minimum frame rate etc.). For example, in the detection class, profiles for intruder detection will require different temporal characteristics (frame rate) from those used for detection of high motion objects such as vehicles or aircrafts. We also define a set of contextual attributes that are associated with each instance of a running application that include resource constraints imposed by the transmission system employed and the hardware platforms used as source and destination of the video stream. Empirical results are presented and analysed to demonstrate the advantages of the proposed schemes.

  16. Valve For Extracting Samples From A Process Stream

    NASA Technical Reports Server (NTRS)

    Callahan, Dave

    1995-01-01

    Valve for extracting samples from process stream includes cylindrical body bolted to pipe that contains stream. Opening in valve body matched and sealed against opening in pipe. Used to sample process streams in variety of facilities, including cement plants, plants that manufacture and reprocess plastics, oil refineries, and pipelines.

  17. Dissolved Solids in Streams of the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Anning, D. W.; Flynn, M.

    2014-12-01

    Studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey's National Water-Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model to improve the understanding of dissolved solids in streams of the United States. Using the SPARROW model, annual dissolved-solids loads from 2,560 water-quality monitoring stations were statistically related to several spatial datasets serving as surrogates for dissolved-solids sources and transport processes. Sources investigated in the model included geologic materials, road de-icers, urban lands, cultivated lands, and pasture lands. Factors affecting transport from these sources to streams in the model included climate, soil, vegetation, terrain, population, irrigation, and artificial-drainage characteristics. The SPARROW model was used to predict long-term mean annual conditions for dissolved-solids sources, loads, yields, and concentrations in about 66,000 stream reaches and corresponding incremental catchments nationwide. The estimated total amount of dissolved solids delivered to the Nation's streams is 272 million metric tons (Mt) annually, of which 194 million Mt (71%) are from geologic sources, 38 million Mt (14%) are from road de-icers, 18 million Mt (7%) are from pasture lands, 14 million Mt (5 %) are from urban lands, and 8 million Mt (3%) are from cultivated lands. The median incremental-catchment yield delivered to local streams is 26 metric tons per year per square kilometer [(Mt/yr)/km2]. Ten percent of the incremental catchments yield less than 4 (Mt/yr)/km2, and 10 percent yield more than 90 (Mt/yr)/km2. In 13% of the reaches, predicted flow-weighted concentrations exceed 500 mg/L—the U.S. Environmental Protection Agency secondary non-enforceable drinking-water standard.

  18. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    NASA Astrophysics Data System (ADS)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  19. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    PubMed Central

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-01-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry. PMID:27786308

  20. The removal of precious metals by conductive polymer filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, M.E.

    The growing demand for platinum-group metals (PGM) within the DOE complex and in industry, the need for modern and clean processes, and the increasing volume of low-grade material for secondary PGM recovery has a direct impact on the industrial practice of recovering and refining precious metals. There is a tremendous need for advanced metal ion recovery and waste minimization techniques, since the currently used method of precipitation-dissolution is inadequate. Los Alamos has an integrated program in ligand-design and separations chemistry which has developed and evaluated a series of water- soluble metal-binding polymers for recovering actinides and toxic metals from varietymore » of process streams. A natural extension of this work is to fabricate these metal-selective polymers into membrane based separation unites, i.e., hollow-fiber membranes. In the present investigation, the material for a novel hollow-fiber membrane is characterized and its selectivity for PGM reported. Energy and waste savings and economic competitiveness are also described.« less

  1. Precipitation of ammonium from concentrated industrial wastes as struvite: a search for the optimal reagents.

    PubMed

    Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev

    2010-07-01

    Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.

  2. Performance evaluation of cross-flow membrane system for wastewater reuse from the wood-panels industry.

    PubMed

    Dizge, Nadir

    2014-01-01

    The objectives of this investigation were to perform a series of lab-scale membrane separation experiments under various operating conditions to investigate the performance behaviour of nanofiltration membrane (NF 270) for wastewater reuse from the wood-panels industry. The operating condition effects, e.g. cross-flow velocity (CFV), trans membrane pressure (TMP) and temperature, on the permeate flux and contaminant rejection efficiency were investigated. Moreover, three different samples: (1) raw wastewater collected from the wood-panels industry; (2) ultrafiltration pre-treated wastewater (UF-NF); and (3) coagulation/flocculation pre-treated wastewater (CF-NF) were employed in this study. The UF-NF was proposed as a pre-treatment process because it could reduce the chemical oxygen demand (COD) effectively with lower energy consumption than CF-NF. The performance of NF 270 membrane was assessed by measurements of the many parameters (pH, conductivity, total dissolved solids, COD, suspended solids, total nitrogen, nitrite, nitrate, and total phosphate) under various operating conditions. It was noted that the contaminant rejection was affected by changing TMP and CFV. It was concluded that the purified water stream can be recycled into the process for water reuse or safely disposed to the river.

  3. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.

  4. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOEpatents

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  5. Assessing Lost Ecosystem Service Benefits Due to Mining-Induced Stream Degradation in the Appalachian Region: Economic Approaches to Valuing Recreational Fishing Impacts

    EPA Science Inventory

    Sport fishing is a popular activity for Appalachian residents and visitors. The region’s coldwater streams support a strong regional outdoor tourism industry. We examined the influence of surface coal mining, in the context of other stressors, on freshwater sport fishing in...

  6. Mechanism of removal of undesirable residual amylase, insoluble starch, and select colorants from refinery streams by powdered activated carbons

    USDA-ARS?s Scientific Manuscript database

    There is a need in the world-wide sugar industry to find a practical and economical solution to remove or inactivate residual alpha-amylases that are high temperature stable from factory or refinery streams. A survey of refineries that used amylase and had activated carbon systems for decolorization...

  7. Oil palm biomass as an adsorbent for heavy metals.

    PubMed

    Vakili, Mohammadtaghi; Rafatullah, Mohd; Ibrahim, Mahamad Hakimi; Abdullah, Ahmad Zuhairi; Salamatinia, Babak; Gholami, Zahra

    2014-01-01

    Many industries discharge untreated wastewater into the environment. Heavy metals from many industrial processes end up as hazardous pollutants of wastewaters.Heavy metal pollution has increased in recent decades and there is a growing concern for the public health risk they may pose. To remove heavy metal ions from polluted waste streams, adsorption processes are among the most common and effective treatment methods. The adsorbents that are used to remove heavy metal ions from aqueous media have both advantages and disadvantages. Cost and effectiveness are two of the most prominent criteria for choosing adsorbents. Because cost is so important, great effort has been extended to study and find effective lower cost adsorbents.One class of adsorbents that is gaining considerable attention is agricultural wastes. Among many alternatives, palm oil biomasses have shown promise as effective adsorbents for removing heavy metals from wastewater. The palm oil industry has rapidly expanded in recent years, and a large amount of palm oil biomass is available. This biomass is a low-cost agricultural waste that exhibits, either in its raw form or after being processed, the potential for eliminating heavy metal ions from wastewater. In this article, we provide background information on oil palm biomass and describe studies that indicate its potential as an alternative adsorbent for removing heavy metal ions from wastewater. From having reviewed the cogent literature on this topic we are encouraged that low-cost oil-palm-related adsorbents have already demonstrated outstanding removal capabilities for various pollutants.Because cost is so important to those who choose to clean waste streams by using adsorbents, the use of cheap sources of unconventional adsorbents is increasingly being investigated. An adsorbent is considered to be inexpensive when it is readily available, is environmentally friendly, is cost-effective and be effectively used in economical processes. The advantages that oil palm biomass has includes the following:available and exists in abundance, appears to be effective technically, and can be integrated into existing processes. Despite these advantages, oil palm biomasses have disadvantages such as low adsorption capacity, increased COD, BOD and TOC. These disadvantages can be overcome by modifying the biomass either chemically or thermally. Such modification creates a charged surface and increases the heavy metal ion binding capacity of the adsorbent.

  8. Evaluating the Effects of Culvert Designs on Ecosystem Processes in Northern Wisconsin Streams

    Treesearch

    J. C. Olson; A. M. Marcarelli; A.L. Timm; S.L. Eggert; R.K. Kolka

    2017-01-01

    Culvert replacements are commonly undertaken to restore aquatic organism passage and stream hydrologic and geomorphic conditions, but their effects on ecosystem processes are rarely quantified. The objective of this study was to investigate the effects of two culvert replacement designs on stream ecosystem processes. The stream simulation design, where culverts...

  9. Differentiating the Spatiotemporal Distribution of Natural and Anthropogenic Processes on River Water-Quality Variation Using a Self-Organizing Map With Factor Analysis.

    PubMed

    Wang, Yeuh-Bin; Liu, Chen-Wuing; Lee, Jin-Jing

    2015-08-01

    To elucidate the historical improvement and advanced measure of river water quality in the Taipei metropolitan area, this study applied the self-organizing map (SOM) technique with factor analysis (FA) to differentiate the spatiotemporal distribution of natural and anthropogenic processes on river water-quality variation spanning two decades. The SOM clustered river water quality into five groups: very low pollution, low pollution, moderate pollution, high pollution, and very high pollution. FA was then used to extract four latent factors that dominated water quality from 1991 to 2011 including three anthropogenic process factors (organic, industrial, and copper pollution) and one natural process factor [suspended solids (SS) pollution]. The SOM revealed that the water quality improved substantially over time. However, the downstream river water quality was still classified as high pollution because of an increase in anthropogenic activity. FA showed the spatiotemporal pattern of each factor score decreasing over time, but the organic pollution factor downstream of the Tamsui River, as well as the SS factor scores in the upstream major tributary (the Dahan Stream), remained within the high pollution level. Therefore, we suggest that public sewage-treatment plants should be upgraded from their current secondary biological processing to advanced treatment processing. The conservation of water and soil must also be reinforced to decrease the SS loading of the Dahan Stream from natural erosion processes in the future.

  10. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE PAGES

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.; ...

    2018-03-01

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  11. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  12. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2002-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  13. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOEpatents

    Bingham, Dennis N.; Wilding, Bruce M.; McKellar, Michael G.

    2000-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  14. Taking the Mystery Out of Enzymes.

    ERIC Educational Resources Information Center

    DeYoung, H. Garrett

    1984-01-01

    Discusses structure and function of enzymes, design of new enzymes and enzyme substitutes, and enzyme uses in industry, medicine, and wastewater treatment. The latter is a low-cost method which can remove as much as 99 percent of toxic substances found in many industrial wastewater streams. (JN)

  15. Hydrogen Production and Purification from Coal and Other Heavy Feedstocks Year 6 - Activity 1.4 - Development of a National Center for Hydrogen Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Grant

    2012-03-15

    Air Products and Chemicals, Inc., is developing the sour pressure swing adsorption (PSA) technology which can be used to reject acid gas components (hydrogen sulfide [H{sub 2}S] and carbon dioxide [CO{sub 2}]) from sour syngas streams such as coal gasification syngas. In the current work, tests were conducted to investigate the impact of continuous exposure of real sour syngas and dilute levels of hydrochloric acid (HCl) and ammonia (NH{sub 3}) on the preferred adsorbent of that process. The results show a modest (~10%–15%) decrease in CO{sub 2} adsorption capacity after sour syngas exposure, as well as deposition of metals frommore » carbonyl decomposition. Continuous exposure to HCl and NH{sub 3} yield a higher degree of CO{sub 2} capacity degradation (up to 25%). These tests represent worst-case approaches since the exposure is continuous and the HCl and NH{sub 3} levels are relatively high compare to an industrial sour syngas stream. Long-term PSA tests are needed to unequivocally evaluate the impact of cyclic exposure to these types of streams.« less

  16. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.

    PubMed

    Trujillo, Francisco Javier; Knoerzer, Kai

    2011-11-01

    High power ultrasound reactors have gained a lot of interest in the food industry given the effects that can arise from ultrasonic-induced cavitation in liquid foods. However, most of the new food processing developments have been based on empirical approaches. Thus, there is a need for mathematical models which help to understand, optimize, and scale up ultrasonic reactors. In this work, a computational fluid dynamics (CFD) model was developed to predict the acoustic streaming and induced heat generated by an ultrasonic horn reactor. In the model it is assumed that the horn tip is a fluid inlet, where a turbulent jet flow is injected into the vessel. The hydrodynamic momentum rate of the incoming jet is assumed to be equal to the total acoustic momentum rate emitted by the acoustic power source. CFD velocity predictions show excellent agreement with the experimental data for power densities higher than W(0)/V ≥ 25kWm(-3). This model successfully describes hydrodynamic fields (streaming) generated by low-frequency-high-power ultrasound. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  17. Gasoline toxicology: overview of regulatory and product stewardship programs.

    PubMed

    Swick, Derek; Jaques, Andrew; Walker, J C; Estreicher, Herb

    2014-11-01

    Significant efforts have been made to characterize the toxicological properties of gasoline. There have been both mandatory and voluntary toxicology testing programs to generate hazard characterization data for gasoline, the refinery process streams used to blend gasoline, and individual chemical constituents found in gasoline. The Clean Air Act (CAA) (Clean Air Act, 2012: § 7401, et seq.) is the primary tool for the U.S. Environmental Protection Agency (EPA) to regulate gasoline and this supplement presents the results of the Section 211(b) Alternative Tier 2 studies required for CAA Fuel and Fuel Additive registration. Gasoline blending streams have also been evaluated by EPA under the voluntary High Production Volume (HPV) Challenge Program through which the petroleum industry provide data on over 80 refinery streams used in gasoline. Product stewardship efforts by companies and associations such as the American Petroleum Institute (API), Conservation of Clean Air and Water Europe (CONCAWE), and the Petroleum Product Stewardship Council (PPSC) have contributed a significant amount of hazard characterization data on gasoline and related substances. The hazard of gasoline and anticipated exposure to gasoline vapor has been well characterized for risk assessment purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID

    2009-09-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.

  19. Quality Assurance By Laser Scanning And Imaging Techniques

    NASA Astrophysics Data System (ADS)

    SchmalfuB, Harald J.; Schinner, Karl Ludwig

    1989-03-01

    Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.

  20. Conservation of batik: Conseptual framework of design and process development

    NASA Astrophysics Data System (ADS)

    Syamwil, Rodia

    2018-03-01

    Development of Conservation Batik concept becomes critical due to the recessive of traditional batik as the intangible cultural heritage of humanity. The existence of printed batik, polluting process, and new stream design becomes the consequences of batik industry transformation to creative industry. Conservation Batik was proposed to answer all the threats to traditional batik, in the aspect of technique, process, and motif. However, creativities are also critical to meet consumer satisfaction. Research and development was conducted, start with the initial research in formulating the concept, and exploration of ideas to develop the designs of conservation motifs. In development steps, cyclical process to complete motif with high preferences, in the aspect of aesthetics, productivity, and efficiency. Data were collected through bibliography, documentation, observation, and interview, and analyzed in qualitative methods. The concept of Conservation Batik adopted from the principles of Universitas Negeri Semarang (UNNES) vision, as well as theoretical analyses, and expert judgment. Conservation Batik are assessed from three aspect, design, process, and consumer preferences. Conservation means the effort of safeguarding, promoting, maintaining, and preserving. Concervation Batik concept could be interpreted as batik with: (1) traditional values and authenticity; (2) the values of philosophycal meanings; (3) eco-friendly process with minimum waste; (4) conservation as idea resources of design; and (5) raising up of classic motifs.

  1. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.

    PubMed

    Barbosa, V L; Tandlich, R; Burgess, J E

    2007-07-01

    Platinum group metal (PGM) refining processes produce large quantities of wastewater, which is contaminated with the compounds that make up the solvents/extractants mixtures used in the process. These compounds often include solvesso, beta-hydroxyxime, amines, amides and methyl isobutyl ketone. A process to clean up PGM refinery wastewaters so that they could be re-used in the refining process would greatly contribute to continual water storage problems and to cost reduction for the industry. Based on the concept that organic compounds that are produced biologically can be destroyed biologically, the use of biological processes for the treatment of organic compounds in other types of waste stream has been favoured in recent years, owing to their low cost and environmental acceptability. This review examines the available biotechnologies and their effectiveness for treating compounds likely to be contained in precious metal extraction process wastewaters. The processes examined include: biofilters, fluidized bed reactors, trickle-bed bioreactors, bioscrubbers, two-phase partitioning bioreactors, membrane bioreactors and activated sludge. Although all processes examined showed adequate to excellent removal of organic compounds from various gaseous and fewer liquid waste streams, there was a variation in their effectiveness. Variations in performance of laboratory-scale biological processes are probably due to the inherent change in the microbial population composition due to selection pressure, environmental conditions and the time allowed for adaptation to the organic compounds. However, if these factors are disregarded, it can be established that activated sludge and membrane bioreactors are the most promising processes for use in the treatment of PGM refinery wastewaters.

  2. Dual-stream modulation failure: a novel hypothesis for the formation and maintenance of delusions in schizophrenia.

    PubMed

    Speechley, William J; Ngan, Elton T C

    2008-01-01

    Delusions, a cardinal feature of schizophrenia, are characterized by the development and preservation of false beliefs despite reason and evidence to the contrary. A number of cognitive models have made important contributions to our understanding of delusions, though it remains unclear which core cognitive processes are malfunctioning to enable individuals with delusions to form and maintain erroneous beliefs. We propose a modified dual-stream processing model that provides a viable and testable mechanism that can account for this debilitating symptom. Dual-stream models divide decision-making into two streams: a fast, intuitive and automatic form of processing (Stream 1); and a slower, conscious and deliberative process (Stream 2). Our novel model proposes two key influences on the way these streams interact in everyday decision-making: conflict and emotion. Conflict: in most decision-making scenarios one obvious answer presents itself and the two streams converge onto the same conclusion. However, in instances where there are competing alternative possibilities, an individual often experiences dissonance, or a sense of conflict. The detection of this conflict biases processing towards the more deliberative Stream 2. Emotion: highly emotional states can result in behavior that is reflexive and action-oriented. This may be due to the power of emotionally valenced stimuli to bias reasoning towards Stream 1. We propose that in schizophrenia, an abnormal response to these two influences results in a pathological schism between Stream 1 and Stream 2, enabling erroneous intuitive explanations to coexist with contrary logical explanations of the same event. Specifically, we suggest that delusions are the result of a failure to reconcile the two streams due to both a failure of conflict to bias decision-making towards Stream 2 and an accentuated emotional bias towards Stream 1.

  3. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    NASA Astrophysics Data System (ADS)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  4. Separation process using pervaporation and dephlegmation

    DOEpatents

    Vane, Leland M.; Mairal, Anurag P.; Ng, Alvin; Alvarez, Franklin R.; Baker, Richard W.

    2004-06-29

    A process for treating liquids containing organic compounds and water. The process includes a pervaporation step in conjunction with a dephlegmation step to treat at least a portion of the permeate vapor from the pervaporation step. The process yields a membrane residue stream, a stream enriched in the more volatile component (usually the organic) as the overhead stream from the dephlegmator and a condensate stream enriched in the less volatile component (usually the water) as a bottoms stream from the dephlegmator. Any of these may be the principal product of the process. The membrane separation step may also be performed in the vapor phase, or by membrane distillation.

  5. Performance Characterization of a Prototype Ultra-Short Channel Monolith Catalytic Reactor for Air Quality Control Applications

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Roychoudhury, S.; Tatara, J. D.

    2005-01-01

    Contaminated air and process gases, whether in a crewed spacecraft cabin atmosphere, the working volume of a microgravity science or ground-based laboratory experiment facility, or the exhaust from an automobile, are pervasive problems that ultimately effect human health, performance, and well-being. The need for highly-effective, economical decontamination processes spans a wide range of terrestrial and space flight applications. Adsorption processes are used widely for process gas decontamination. Most industrial packed bed adsorption processes use activated carbon because it is cheap and highly effective. Once saturated, however, the adsorbent is a concentrated source of contaminants. Industrial applications either dump or regenerate the activated carbon. Regeneration may be accomplished in-situ or at an off-site location. In either case, concentrated contaminated waste streams must be handled appropriately to minimize environmental impact. As economic and regulatory forces drive toward minimizing waste and environmental impact, thermal catalytic oxidation is becoming more attractive. Through novel reactor and catalyst design, more complete contaminant destruction and greater resistance to poisoning can achieved leading to less waste handling, process down-time, and maintenance. Performance of a prototype thermal catalytic reactor, based on ultra-short channel monolith (USCM) catalyst substrate design, under a variety of process flow and contaminant loading conditions is discussed. The experimental results are evaluated against present and future air quality control and process gas purification processes used on board crewed spacecraft.

  6. Moving research to patient applications through commercialization: understanding and evaluating the role of intellectual property.

    PubMed

    Patino, Robert M

    2010-03-01

    The advancement of research from discovery to the delivery of medical care can be limited without the support of industry to sponsor its continued development. Federal government financial support is generally crucial in early-stage development through funding from the NIH, National Science Foundation, and other federal agencies; however, government support generally stops shortly after basic research discoveries have been reported. Much of the cessation of financial support derives from the government's regulatory responsibilities, as sponsoring the commercialization of a product conflicts with regulation of the approval for clinical use of a drug or device. Furthermore, differences in goals, resources, and flexibility render government, as compared with private industry, inefficient and less responsive to market demands with regard to stream-lining the development of and enhancing the quality of products and services offered. Thus, industry and private investment provide the bridge that converts new discoveries into healthcare products that are available to consumers and patients. This conversion occurs through commercialization, which involves both high risks and high rewards. Taking advantage of the commercialization option for research development requires an understanding of the technology transfer process. This article reviews 5 topics: 1) industry motivation to invest in academic research; 2) institutional considerations in partnering with industry; 3) academia's interactions with inventors in the commercialization process; 4) the research institution's route to commercialization, and 5) the role of intellectual property and commercialization in the advancement of healthcare.

  7. Moving Research to Patient Applications through Commercialization: Understanding and Evaluating the Role of Intellectual Property

    PubMed Central

    2010-01-01

    The advancement of research from discovery to the delivery of medical care can be limited without the support of industry to sponsor its continued development. Federal government financial support is generally crucial in early-stage development through funding from the NIH, National Science Foundation, and other federal agencies; however, government support generally stops shortly after basic research discoveries have been reported. Much of the cessation of financial support derives from the government's regulatory responsibilities, as sponsoring the commercialization of a product conflicts with regulation of the approval for clinical use of a drug or device. Furthermore, differences in goals, resources, and flexibility render government, as compared with private industry, inefficient and less responsive to market demands with regard to stream-lining the development of and enhancing the quality of products and services offered. Thus, industry and private investment provide the bridge that converts new discoveries into healthcare products that are available to consumers and patients. This conversion occurs through commercialization, which involves both high risks and high rewards. Taking advantage of the commercialization option for research development requires an understanding of the technology transfer process. This article reviews 5 topics: 1) industry motivation to invest in academic research; 2) institutional considerations in partnering with industry; 3) academia's interactions with inventors in the commercialization process; 4) the research institution's route to commercialization, and 5) the role of intellectual property and commercialization in the advancement of healthcare. PMID:20353687

  8. A failure of conflict to modulate dual-stream processing may underlie the formation and maintenance of delusions.

    PubMed

    Speechley, W J; Murray, C B; McKay, R M; Munz, M T; Ngan, E T C

    2010-03-01

    Dual-stream information processing proposes that reasoning is composed of two interacting processes: a fast, intuitive system (Stream 1) and a slower, more logical process (Stream 2). In non-patient controls, divergence of these streams may result in the experience of conflict, modulating decision-making towards Stream 2, and initiating a more thorough examination of the available evidence. In delusional schizophrenia patients, a failure of conflict to modulate decision-making towards Stream 2 may reduce the influence of contradictory evidence, resulting in a failure to correct erroneous beliefs. Delusional schizophrenia patients and non-patient controls completed a deductive reasoning task requiring logical validity judgments of two-part conditional statements. Half of the statements were characterized by a conflict between logical validity (Stream 2) and content believability (Stream 1). Patients were significantly worse than controls in determining the logical validity of both conflict and non-conflict conditional statements. This between groups difference was significantly greater for the conflict condition. The results are consistent with the hypothesis that delusional schizophrenia patients fail to use conflict to modulate towards Stream 2 when the two streams of reasoning arrive at incompatible judgments. This finding provides encouraging preliminary support for the Dual-Stream Modulation Failure model of delusion formation and maintenance. 2009 Elsevier Masson SAS. All rights reserved.

  9. Process for recovering organic components from liquid streams

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1991-01-01

    A separation process for recovering organic components from liquid streams. The process is a combination of pervaporation and decantation. In cases where the liquid stream contains the organic to be separated in dissolved form, the pervaporation step is used to concentrate the organic to a point above the solubility limit, so that a two-phase permeate is formed and then decanted. In cases where the liquid stream is a two-phase mixture, the decantation step is performed first, to remove the organic product phase, and the residue from the decanter is then treated by pervaporation. The condensed permeate from the pervaporation unit is sufficiently concentrated in the organic component to be fed back to the decanter. The process can be tailored to produce only two streams: an essentially pure organic product stream suitable for reuse, and a residue stream for discharge or reuse.

  10. A critical assessment of in-flight particle state during plasma spraying of YSZ and its implications on coating properties and process reliability

    NASA Astrophysics Data System (ADS)

    Srinivasan, Vasudevan

    Air plasma spray is inherently complex due to the deviation from equilibrium conditions, three dimensional nature, multitude of interrelated (controllable) parameters and (uncontrollable) variables involved, and stochastic variability at different stages. The resultant coatings are complex due to the layered high defect density microstructure. Despite the widespread use and commercial success for decades in earthmoving, automotive, aerospace and power generation industries, plasma spray has not been completely understood and prime reliance for critical applications such as thermal barrier coatings on gas turbines are yet to be accomplished. This dissertation is aimed at understanding the in-flight particle state of the plasma spray process towards designing coatings and achieving coating reliability with the aid of noncontact in-flight particle and spray stream sensors. Key issues such as the phenomena of optimum particle injection and the definition of spray stream using particle state are investigated. Few strategies to modify the microstructure and properties of Yttria Stabilized Zirconia coatings are examined systematically using the framework of process maps. An approach to design process window based on design relevant coating properties is presented. Options to control the process for enhanced reproducibility and reliability are examined and the resultant variability is evaluated systematically at the different stages in the process. The 3D variability due to the difference in plasma characteristics has been critically examined by investigating splats collected from the entire spray footprint.

  11. Organic waste compounds as contaminants in Milwaukee-area streams

    USGS Publications Warehouse

    Baldwin, Austin K.; Corsi, Steven R.; Magruder, Christopher; Magruder, Matthew; Bruce, Jennifer L.

    2015-09-22

    Organic waste compounds (OWCs) are ingredients and by-products of common agricultural, industrial, and household substances that can contaminate our streams through sources like urban runoff, sewage overflows, and leaking septic systems. To better understand how OWCs are affecting Milwaukee-area streams, the U.S. Geological Survey, in cooperation with the Milwaukee Metropolitan Sewerage District, conducted a three-year study to investigate the presence and potential toxicity of 69 OWCs in base flow, stormflow, pore water, and sediment at 14 stream sites and 3 Milwaukee harbor locations. This fact sheet summarizes the major findings of this study, including detection frequencies and concentrations, potential toxicity, the prevalence of polycyclic aromatic hydrocarbons (PAHs), and the influence of urbanization.

  12. Applying Value Stream Mapping Technique for Production Improvement in a Manufacturing Company: A Case Study

    NASA Astrophysics Data System (ADS)

    Jeyaraj, K. L.; Muralidharan, C.; Mahalingam, R.; Deshmukh, S. G.

    2013-01-01

    The purpose of this paper is to explain how value stream mapping (VSM) is helpful in lean implementation and to develop the road map to tackle improvement areas to bridge the gap between the existing state and the proposed state of a manufacturing firm. Through this case study, the existing stage of manufacturing is mapped with the help of VSM process symbols and the biggest improvement areas like excessive TAKT time, production, and lead time are identified. Some modifications in current state map are suggested and with these modifications future state map is prepared. Further TAKT time is calculated to set the pace of production processes. This paper compares the current state and future state of a manufacturing firm and witnessed 20 % reduction in TAKT time, 22.5 % reduction in processing time, 4.8 % reduction in lead time, 20 % improvement in production, 9 % improvement in machine utilization, 7 % improvement in man power utilization, objective improvement in workers skill level, and no change in the product and semi finished product inventory level. The findings are limited due to the focused nature of the case study. This case study shows that VSM is a powerful tool for lean implementation and allows the industry to understand and continuously improve towards lean manufacturing.

  13. Global industrial impact coefficient based on random walk process and inter-country input-output table

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Dong, Xianlei; Guan, Jun

    2017-04-01

    Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.

  14. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  15. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  16. 40 CFR 63.1595 - List of definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., gauge wells) that are necessary for operation, inspection, maintenance, and repair of the treatment unit... emitted (fe monthly) using fe monthly = ΣE/ΣL. HAP means hazardous air pollutant(s). Industrial POTW means a POTW that accepts a waste stream regulated by an industrial NESHAP and provides treatment and...

  17. 'Fishing' for Alternatives to Mountaintop Mining in Southern West Virginia

    EPA Science Inventory

    Mountaintop removal mining (MTR) is a major industry in southern West Virginia with many detrimental effects for small to mid-sized streams, and interest in alternative, sustainable industries is on the rise. As a first step in a larger effort to assess the value of sport fisheri...

  18. 75 FR 20085 - Subpart B-Advanced Biofuel Payment Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... biofuels industry is very capital intensive, the Agency is proposing multi-year contracts to enable advanced biofuels producers the assurance of a multi-year revenue stream. This approach is consistent with the goal of creating a stable industry. Finally, the Agency is proposing a two- tiered payment...

  19. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  20. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  1. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.

  2. Industrial hygiene walk-through survey report of E. I. Dupont de Nemours and Company, Inc. , Chocolate Bayou Plant, Alvin, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fajen, J.M.

    1985-05-01

    A walkthrough survey of EI duPont deNemours and Company, Incorporated, Alvin, Texas was conducted in November, 1984. The purpose of the survey was to obtain information on the 1,3-butadiene monomer manufacturing process and the potential for exposure. The facility manufactured a crude product stream containing 1,3-butadiene as a coproduct of its ethylene process. The crude was refined to a 99.5% 1,3-butadiene product. The refining process occurred in a closed system, tightly maintained for economic, fire, and health-hazard reasons. The product was transferred by way of a pipeline to storage spheres for later transport off site. The facility used an open-loopmore » cylinder (bomb) technique for quality control sampling. All pumps were equipped with single mechanical seals, which were in the process of being replaced by tandem seals. Since 1962, the facility had experienced process changes and three changes of ownership. Because of these changes, records from previous owners of industrial hygiene monitoring were not available. Job titles identified as having potential exposure were processors, wage employee supervisors, production engineers, and laboratory technicians. The author concludes that a closed-loop manual quality-control sampling system should be installed to reduce exposure from this source.« less

  3. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    PubMed Central

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  4. Stream dynamics: An overview for land managers

    Treesearch

    Burchard H. Heede

    1980-01-01

    Concepts of stream dynamics are demonstrated through discussion of processes and process indicators; theory is included only where helpful to explain concepts. Present knowledge allows only qualitative prediction of stream behavior. However, such predictions show how management actions will affect the stream and its environment.

  5. Leaf litter processing in West Virginia mountain streams: effects of temperature and stream chemistry

    Treesearch

    Jacquelyn M. Rowe; William B. Perry; Sue A. Perry

    1996-01-01

    Climate change has the potential to alter detrital processing in headwater streams, which receive the majority of their nutrient input as terrestrial leaf litter. Early placement of experimental leaf packs in streams, one month prior to most abscission, was used as an experimental manipulation to increase stream temperature during leaf pack breakdown. We studied leaf...

  6. Riparian communities associated with pacific northwest headwater streams: assemblages, processes, and uniqueness.

    Treesearch

    John S. Richardson; Robert J. Naiman; Frederick J. Swanson; David E. Hibbs

    2005-01-01

    Riparian areas of large streams provide important habitat to many species and control many instream processes - but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from...

  7. Functional Process Zones Characterizing Aquatic Insect Communities in Streams of the Brazilian Cerrado.

    PubMed

    Godoy, B S; Simião-Ferreira, J; Lodi, S; Oliveira, L G

    2016-04-01

    Stream ecology studies see to understand ecological dynamics in lotic systems. The characterization of streams into Functional Process Zones (FPZ) has been currently debated in stream ecology because aquatic communities respond to functional processes of river segments. Therefore, we tested if different functional process zones have different number of genera and trophic structure using the aquatic insect community of Neotropical streams. We also assessed whether using physical and chemical variables may complement the approach of using FPZ to model communities of aquatic insects in Cerrado streams. This study was conducted in 101 streams or rivers from the central region of the state of Goiás, Brazil. We grouped the streams into six FPZ associated to size of the river system, presence of riparian forest, and riverbed heterogeneity. We used Bayesian models to compare number of genera and relative frequency of the feeding groups between FPZs. Streams classified in different FPZs had a different number of genera, and the largest and best preserved rivers had an average of four additional genera. Trophic structure exhibited low variability among FPZs, with little difference both in the number of genera and in abundance. Using functional process zones in Cerrado streams yielded good results for Ephemeroptera, Plecoptera, and Trichoptera communities. Thus, species distribution and community structure in the river basin account for functional processes and not necessarily for the position of the community along a longitudinal dimension of the lotic system.

  8. The chemistry of iron, aluminum, and dissolved organic material in three acidic, metal-enriched, mountain streams, as controlled by watershed and in-stream processes

    USGS Publications Warehouse

    McKnight, Diane M.; Bencala, Kenneth E.

    1990-01-01

    Several studies were conducted in three acidic, metal-enriched, mountain streams, and the results are discussed together in this paper to provide a synthesis of watershed and in-stream processes controlling Fe, Al, and DOC (dissolved organic carbon) concentrations. One of the streams, the Snake River, is naturally acidic; the other two, Peru Creek and St. Kevin Gulch, receive acid mine drainage. Analysis of stream water chemistry data for the acidic headwaters of the Snake River shows that some trace metal solutes (Al, Mn, Zn) are correlated with major ions, indicating that watershed processes control their concentrations. Once in the stream, biogeochemical processes can control transport if they occur over time scales comparable to those for hydrologic transport. Examples of the following in-stream reactions are presented: (1) photoreduction and dissolution of hydrous iron oxides in response to an experimental decrease in stream pH, (2) precipitation of Al at three stream confluences, and (3) sorption of dissolved organic material by hydrous iron and aluminum oxides in a stream confluence. The extent of these reactions is evaluated using conservative tracers and a transport model that includes storage in the substream zone.

  9. Apparatus for the liquefaction of a gas and methods relating to same

    DOEpatents

    Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID

    2009-12-29

    Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.

  10. Revealing the dual streams of speech processing.

    PubMed

    Fridriksson, Julius; Yourganov, Grigori; Bonilha, Leonardo; Basilakos, Alexandra; Den Ouden, Dirk-Bart; Rorden, Christopher

    2016-12-27

    Several dual route models of human speech processing have been proposed suggesting a large-scale anatomical division between cortical regions that support motor-phonological aspects vs. lexical-semantic aspects of speech processing. However, to date, there is no complete agreement on what areas subserve each route or the nature of interactions across these routes that enables human speech processing. Relying on an extensive behavioral and neuroimaging assessment of a large sample of stroke survivors, we used a data-driven approach using principal components analysis of lesion-symptom mapping to identify brain regions crucial for performance on clusters of behavioral tasks without a priori separation into task types. Distinct anatomical boundaries were revealed between a dorsal frontoparietal stream and a ventral temporal-frontal stream associated with separate components. Collapsing over the tasks primarily supported by these streams, we characterize the dorsal stream as a form-to-articulation pathway and the ventral stream as a form-to-meaning pathway. This characterization of the division in the data reflects both the overlap between tasks supported by the two streams as well as the observation that there is a bias for phonological production tasks supported by the dorsal stream and lexical-semantic comprehension tasks supported by the ventral stream. As such, our findings show a division between two processing routes that underlie human speech processing and provide an empirical foundation for studying potential computational differences that distinguish between the two routes.

  11. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  12. Optimized heat exchange in a CO2 de-sublimation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Larry; Terrien, Paul; Tessier, Pascal

    The present invention is a process for removing carbon dioxide from a compressed gas stream including cooling the compressed gas in a first heat exchanger, introducing the cooled gas into a de-sublimating heat exchanger, thereby producing a first solid carbon dioxide stream and a first carbon dioxide poor gas stream, expanding the carbon dioxide poor gas stream, thereby producing a second solid carbon dioxide stream and a second carbon dioxide poor gas stream, combining the first solid carbon dioxide stream and the second solid carbon dioxide stream, thereby producing a combined solid carbon dioxide stream, and indirectly exchanging heat betweenmore » the combined solid carbon dioxide stream and the compressed gas in the first heat exchanger.« less

  13. Spatial heterogeneity of stream environmental conditions and macroinvertebrates community in an agriculture dominated watershed and management implications for a large river (the Liao River, China) basin.

    PubMed

    Gao, Xin; Niu, Cuijuan; Chen, Yushun; Yin, Xuwang

    2014-04-01

    Understanding the effects of watershed land uses (e.g., agriculture, urban industry) on stream ecological conditions is important for the management of large river basins. A total of 41 and 56 stream sites (from first to fourth order) that were under a gradient of watershed land uses were monitored in 2009 and 2010, respectively, in the Liao River Basin, Northeast China. The monitoring results showed that a total of 192 taxa belonging to four phyla, seven classes, 21 orders and 91 families were identified. The composition of macroinvertebrate community in the Liao River Basin was dominated by aquatic insect taxa (Ephemeroptera and Diptera), Oligochaeta and Molluscs. The functional feeding group GC (Gatherer/Collector) was dominant in the whole basin. Statistical results showed that sites with less watershed impacts (lower order sites) were characterized by higher current velocity and habitat score, more sensitive taxa (e.g., Ephemeroptera), and the substrate was dominated by high percentage of cobble and pebble. The sites with more impacts from agriculture and urban industry (higher order sites) were characterized by higher biochemical (BOD5) and chemical oxygen demand (COD), more tolerant taxa (e.g., Chironominae), and the substrate was dominated by silt and sand. Agriculture and urban-industry activities have reduced habitat condition, increased organic pollutants, reduced macroinvertebrate abundance, diversity, and sensitive taxa in streams of the lower Liao River Basin. Restoration of degraded habitat condition and control of watershed organic pollutants could be potential management priorities for the Basin.

  14. Microbial utilization of lignin: available biotechnologies for its degradation and valorization.

    PubMed

    Palazzolo, Martín A; Kurina-Sanz, Marcela

    2016-10-01

    Lignocellulosic biomasses, either from non-edible plants or from agricultural residues, stock biomacromolecules that can be processed to produce both energy and bioproducts. Therefore, they become major candidates to replace petroleum as the main source of energy. However, to shift the fossil-based economy to a bio-based one, it is imperative to develop robust biotechnologies to efficiently convert lignocellulosic streams in power and platform chemicals. Although most of the biomass processing facilities use celluloses and hemicelluloses to produce bioethanol and paper, there is no consolidated bioprocess to produce valuable compounds out of lignin at industrial scale available currently. Usually, lignin is burned to provide heat or it remains as a by-product in different streams, thus arising environmental concerns. In this way, the biorefinery concept is not extended to completion. Due to Nature offers an arsenal of biotechnological tools through microorganisms to accomplish lignin valorization or degradation, an increasing number of projects dealing with these tasks have been described recently. In this review, outstanding reports over the last 6 years are described, comprising the microbial utilization of lignin to produce a variety of valuable compounds as well as to diminish its ecological impact. Furthermore, perspectives on these topics are given.

  15. Structures linking physical and biological processes in headwater streams of the Maybeso watershed, Southeast Alaska

    Treesearch

    Mason D. Bryant; Takashi Gomi; Jack J. Piccolo

    2007-01-01

    We focus on headwater streams originating in the mountainous terrain of northern temperate rain forests. These streams rapidly descend from gradients greater than 20% to less than 5% in U-shaped glacial valleys. We use a set of studies on headwater streams in southeast Alaska to define headwater stream catchments, link physical and biological processes, and describe...

  16. Extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2000-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  17. Apparatus for extraction of contaminants from a gas

    DOEpatents

    Babko-Malyi, Sergei

    2001-01-01

    A method of treating industrial gases to remove contaminants is disclosed. Ions are generated in stream of injectable gas. These ions are propelled through the contaminated gas as it flows through a collection unit. An electric field is applied to the contaminated gas. The field causes the ions to move through the contaminated gases, producing electrical charges on the contaminants. The electrically charged contaminants are then collected at one side of the electric field. The injectable gas is selected to produce ions which will produce reactions with particular contaminants. The process is thus capable of removing particular contaminants. The process does not depend on diffusion as a transport mechanism and is therefore suitable for removing contaminants which exist in very low concentrations.

  18. Deviation diagnosis and analysis of hull flat block assembly based on a state space model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiying; Dai, Yinfang; Li, Zhen

    2012-09-01

    Dimensional control is one of the most important challenges in the shipbuilding industry. In order to predict assembly dimensional variation in hull flat block construction, a variation stream model based on state space was presented in this paper which can be further applied to accuracy control in shipbuilding. Part accumulative error, locating error, and welding deformation were taken into consideration in this model, and variation propagation mechanisms and the accumulative rule in the assembly process were analyzed. Then, a model was developed to describe the variation propagation throughout the assembly process. Finally, an example of flat block construction from an actual shipyard was given. The result shows that this method is effective and useful.

  19. Organic solvent regeneration of granular activated carbon

    NASA Astrophysics Data System (ADS)

    Cross, W. H.; Suidan, M. T.; Roller, M. A.; Kim, B. R.; Gould, J. P.

    1982-09-01

    The use of activated carbon for the treatment of industrial waste-streams was shown to be an effective treatment. The high costs associated with the replacement or thermal regeneration of the carbon have prohibited the economic feasibility of this process. The in situ solvent regeneration of activated carbon by means of organic solvent extraction was suggested as an economically alternative to thermal regeneration. The important aspects of the solvent regeneration process include: the physical and chemical characteristics of the adsorbent, the pore size distribution and energy of adsorption associated with the activated carbon; the degree of solubility of the adsorbate in the organic solvent; the miscibility of the organic solvent in water; and the temperature at which the generation is performed.

  20. Treatment of gas from an in situ conversion process

    DOEpatents

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  1. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE PAGES

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.; ...

    2016-09-05

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less

  2. Aqueous stream characterization from biomass fast pyrolysis and catalytic fast pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Brenna A.; Michener, William E.; Ramirez, Kelsey J.

    Here, biomass pyrolysis offers a promising means to rapidly depolymerize lignocellulosic biomass for subsequent catalytic upgrading to renewable fuels. Substantial efforts are currently ongoing to optimize pyrolysis processes including various fast pyrolysis and catalytic fast pyrolysis schemes. In all cases, complex aqueous streams are generated containing solubilized organic compounds that are not converted to target fuels or chemicals and are often slated for wastewater treatment, in turn creating an economic burden on the biorefinery. Valorization of the species in these aqueous streams, however, offers significant potential for substantially improving the economics and sustainability of thermochemical biorefineries. To that end, heremore » we provide a thorough characterization of the aqueous streams from four pilot-scale pyrolysis processes: namely, from fast pyrolysis, fast pyrolysis with downstream fractionation, in situ catalytic fast pyrolysis, and ex situ catalytic fast pyrolysis. These configurations and processes represent characteristic pyrolysis processes undergoing intense development currently. Using a comprehensive suite of aqueous-compatible analytical techniques, we quantitatively characterize between 12 g kg -1 of organic carbon of a highly aqueous catalytic fast pyrolysis stream and up to 315 g kg -1 of organic carbon present in the fast pyrolysis aqueous streams. In all cases, the analysis ranges between 75 and 100% of mass closure. The composition and stream properties closely match the nature of pyrolysis processes, with high contents of carbohydrate-derived compounds in the fast pyrolysis aqueous phase, high acid content in nearly all streams, and mostly recalcitrant phenolics in the heavily deoxygenated ex situ catalytic fast pyrolysis stream. Overall, this work provides a detailed compositional analysis of aqueous streams from leading thermochemical processes -- analyses that are critical for subsequent development of selective valorization strategies for these waste streams.« less

  3. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, January--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation, Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or low sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 22 months in duration. During the 6 months of scheduled operations period, expected to begin January 1992, data will be collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants.« less

  4. Comparison of ethanol production from corn cobs and switchgrass following a pyrolysis-based biorefinery approach.

    PubMed

    Luque, Luis; Oudenhoven, Stijn; Westerhof, Roel; van Rossum, Guus; Berruti, Franco; Kersten, Sascha; Rehmann, Lars

    2016-01-01

    One of the main obstacles in lignocellulosic ethanol production is the necessity of pretreatment and fractionation of the biomass feedstocks to produce sufficiently pure fermentable carbohydrates. In addition, the by-products (hemicellulose and lignin fraction) are of low value, when compared to dried distillers grains (DDG), the main by-product of corn ethanol. Fast pyrolysis is an alternative thermal conversion technology for processing biomass. It has recently been optimized to produce a stream rich in levoglucosan, a fermentable glucose precursor for biofuel production. Additional product streams might be of value to the petrochemical industry. However, biomass heterogeneity is known to impact the composition of pyrolytic product streams, as a complex mixture of aromatic compounds is recovered with the sugars, interfering with subsequent fermentation. The present study investigates the feasibility of fast pyrolysis to produce fermentable pyrolytic glucose from two abundant lignocellulosic biomass sources in Ontario, switchgrass (potential energy crop) and corn cobs (by-product of corn industry). Demineralization of biomass removes catalytic centers and increases the levoglucosan yield during pyrolysis. The ash content of biomass was significantly decreased by 82-90% in corn cobs when demineralized with acetic or nitric acid, respectively. In switchgrass, a reduction of only 50% for both acids could be achieved. Conversely, levoglucosan production increased 9- and 14-fold in corn cobs when rinsed with acetic and nitric acid, respectively, and increased 11-fold in switchgrass regardless of the acid used. After pyrolysis, different configurations for upgrading the pyrolytic sugars were assessed and the presence of potentially inhibitory compounds was approximated at each step as double integral of the UV spectrum signal of an HPLC assay. The results showed that water extraction followed by acid hydrolysis and solvent extraction was the best upgrading strategy. Ethanol yields achieved based on initial cellulose fraction were 27.8% in switchgrass and 27.0% in corn cobs. This study demonstrates that ethanol production from switchgrass and corn cobs is possible following a combined thermochemical and fermentative biorefinery approach, with ethanol yields comparable to results in conventional pretreatments and fermentation processes. The feedstock-independent fermentation ability can easily be assessed with a simple assay.

  5. Catalyzed CO.sub.2-transport membrane on high surface area inorganic support

    DOEpatents

    Liu, Wei

    2014-05-06

    Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.

  6. THE USE OF RECYCLED SOLID AUTOMOTIVE PAINT WASTES AS INGREDIENTS IN AUTOMOTIVE SEALANT PRODUCTS - PHASE I

    EPA Science Inventory

    About 75,000,000 lbs. of paint sludge is generated by the U.S. automotive industry each year. This type of waste (and similar streams in other industries) make a significant contribution to landfills. A proposed solution is to recycle the paint sludge into compounding ingredients...

  7. THE USE OF RECYCLED SOLID AUTOMOTIVE PAINT WASTES AS INGREDIENTS IN AUTOMOTIVE SEALANT PRODUCTS - PHASE II

    EPA Science Inventory

    About 75,000,000 lbs of paint sludge is generated by the U.S. automotive industry each year. This type of waste and (similar streams from other industries) make significant contributions to landfills. The solution proposed by ASTER, Inc., proven feasible during the Phase I of thi...

  8. COMPARISON OF THE EFFECT OF AMERICAN BISON AND CATTLE ON PASTURE AND DIRECT ACCESS STREAMS

    EPA Science Inventory

    If the Bison are managed in a low impact method then we can count on meat that is free of antibiotics, added hormones, and other industry byproducts. In fact, Federal regulations prohibit the use of artificial growth hormones in bison, and industry protocols prohibit the use ...

  9. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  10. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  11. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  12. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  13. 40 CFR 266.107 - Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Industrial Furnaces § 266.107 Standards to control hydrogen chloride (HCl) and chlorine gas (Cl2) emissions... streams, including hazardous waste, fuels, and industrial furnace feed stocks shall not exceed the levels...: terrain-adjusted effective stack height, good engineering practice stack height, terrain type, land use...

  14. When Research Criticizes an Industry

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2007-01-01

    When Robert W. Van Kirk released a study in January about selenium contamination in trout streams in southeastern Idaho, he expected some flak from the influential phosphate-mining industry. He did not expect to feel pressured by the administration of his own institution, Idaho State University, where he is an associate professor of mathematics.…

  15. Quantitative measurement of stream respiration using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    Gonzalez Pinzon, R. A.; Acker, S.; Haggerty, R.; Myrold, D.

    2011-12-01

    After three decades of active research in hydrology and stream ecology, the relationship between stream solute transport, metabolism and nutrient dynamics is still unresolved. These knowledge gaps obscure the function of stream ecosystems and how they interact with other landscape processes. To date, measuring rates of stream metabolism is accomplished with techniques that have vast uncertainties and are not spatially representative. These limitations mask the role of metabolism in nutrient processing. Clearly, more robust techniques are needed to develop mechanistic relationships that will ultimately improve our fundamental understanding of in-stream processes and how streams interact with other ecosystems. We investigated the "metabolic window of detection" of the Resazurin (Raz)-Resorufin (Rru) system (Haggerty et al., 2008, 2009). Although previous results have shown that the transformation of Raz to Rru is strongly correlated with respiration, a quantitative relationship between them is needed. We investigated this relationship using batch experiments with pure cultures (aerobic and anaerobic) and flow-through columns with incubated sediments from four different streams. The results suggest that the Raz-Rru system is a suitable approach that will enable hydrologists and stream ecologists to measure in situ and in vivo respiration at different scales, thus opening a reliable alternative to investigate how solute transport and stream metabolism control nutrient processing.

  16. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-03

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential.

  17. Modeling nutrient retention at the watershed scale: Does small stream research apply to the whole river network?

    NASA Astrophysics Data System (ADS)

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2013-06-01

    are conveyed from terrestrial and upstream sources through drainage networks. Streams and rivers contribute to regulate the material exported downstream by means of transformation, storage, and removal of nutrients. It has been recently suggested that the efficiency of process rates relative to available nutrient concentration in streams eventually declines, following an efficiency loss (EL) dynamics. However, most of these predictions are based at the reach scale in pristine streams, failing to describe the role of entire river networks. Models provide the means to study nutrient cycling from the stream network perspective via upscaling to the watershed the key mechanisms occurring at the reach scale. We applied a hybrid process-based and statistical model (SPARROW, Spatially Referenced Regression on Watershed Attributes) as a heuristic approach to describe in-stream nutrient processes in a highly impaired, high stream order watershed (the Llobregat River Basin, NE Spain). The in-stream decay specifications of the model were modified to include a partial saturation effect in uptake efficiency (expressed as a power law) and better capture biological nutrient retention in river systems under high anthropogenic stress. The stream decay coefficients were statistically significant in both nitrate and phosphate models, indicating the potential role of in-stream processing in limiting nutrient export. However, the EL concept did not reliably describe the patterns of nutrient uptake efficiency for the concentration gradient and streamflow values found in the Llobregat River basin, posing in doubt its complete applicability to explain nutrient retention processes in stream networks comprising highly impaired rivers.

  18. Incorporation of whey permeate, a dairy effluent, in ethanol fermentation to provide a zero waste solution for the dairy industry.

    PubMed

    Parashar, Archana; Jin, Yiqiong; Mason, Beth; Chae, Michael; Bressler, David C

    2016-03-01

    This study proposes a novel alternative for utilization of whey permeate, a by-product stream from the dairy industry, in wheat fermentation for ethanol production using Saccharomyces cerevisiae. Whey permeates were hydrolyzed using enzymes to release fermentable sugars. Hydrolyzed whey permeates were integrated into wheat fermentation as a co-substrate or to partially replace process water. Cold starch hydrolysis-based simultaneous saccharification and fermentation was done as per the current industrial protocol for commercial wheat-to-ethanol production. Ethanol production was not affected; ethanol yield efficiency did not change when up to 10% of process water was replaced. Lactic acid bacteria in whey permeate did not negatively affect the co-fermentation or reduce ethanol yield. Whey permeate could be effectively stored for up to 4 wk at 4 °C with little change in lactose and lactic acid content. Considering the global abundance and nutrient value of whey permeate, the proposed strategy could improve economics of the dairy and biofuel sectors, and reduce environmental pollution. Furthermore, our research may be applied to fermentation strategies designed to produce value-added products other than ethanol. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    PubMed

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Classification of diesel pool refinery streams through near infrared spectroscopy and support vector machines using C-SVC and ν-SVC.

    PubMed

    Alves, Julio Cesar L; Henriques, Claudete B; Poppi, Ronei J

    2014-01-03

    The use of near infrared (NIR) spectroscopy combined with chemometric methods have been widely used in petroleum and petrochemical industry and provides suitable methods for process control and quality control. The algorithm support vector machines (SVM) has demonstrated to be a powerful chemometric tool for development of classification models due to its ability to nonlinear modeling and with high generalization capability and these characteristics can be especially important for treating near infrared (NIR) spectroscopy data of complex mixtures such as petroleum refinery streams. In this work, a study on the performance of the support vector machines algorithm for classification was carried out, using C-SVC and ν-SVC, applied to near infrared (NIR) spectroscopy data of different types of streams that make up the diesel pool in a petroleum refinery: light gas oil, heavy gas oil, hydrotreated diesel, kerosene, heavy naphtha and external diesel. In addition to these six streams, the diesel final blend produced in the refinery was added to complete the data set. C-SVC and ν-SVC classification models with 2, 4, 6 and 7 classes were developed for comparison between its results and also for comparison with the soft independent modeling of class analogy (SIMCA) models results. It is demonstrated the superior performance of SVC models especially using ν-SVC for development of classification models for 6 and 7 classes leading to an improvement of sensitivity on validation sample sets of 24% and 15%, respectively, when compared to SIMCA models, providing better identification of chemical compositions of different diesel pool refinery streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  2. Hydrogen production from food wastes and gas post-treatment by CO{sub 2} adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redondas, V.; Gomez, X., E-mail: xagomb@unileon.es; Garcia, S.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The dark fermentation process of food wastes was studied over an extended period. Black-Right-Pointing-Pointer Decreasing the HRT of the process negatively affected the specific gas production. Black-Right-Pointing-Pointer Adsorption of CO{sub 2} was successfully attained using a biomass type activated carbon. Black-Right-Pointing-Pointer H{sub 2} concentration in the range of 85-95% was obtained for the treated gas-stream. - Abstract: The production of H{sub 2} by biological means, although still far from being a commercially viable proposition, offers great promise for the future. Purification of the biogas obtained may lead to the production of highly concentrated H{sub 2} streams appropriate formore » industrial application. This research work evaluates the dark fermentation of food wastes and assesses the possibility of adsorbing CO{sub 2} from the gas stream by means of a low cost biomass-based adsorbent. The reactor used was a completely stirred tank reactor run at different hydraulic retention times (HRTs) while the concentration of solids of the feeding stream was kept constant. The results obtained demonstrate that the H{sub 2} yields from the fermentation of food wastes were affected by modifications in the hydraulic retention time (HRT) due to incomplete hydrolysis. The decrease in the duration of fermentation had a negative effect on the conversion of the substrate into soluble products. This resulted in a lower amount of soluble substrate being available for metabolisation by H{sub 2} producing microflora leading to a reduction in specific H{sub 2} production. Adsorption of CO{sub 2} from a gas stream generated from the dark fermentation process was successfully carried out. The data obtained demonstrate that the column filled with biomass-derived activated carbon resulted in a high degree of hydrogen purification. Co-adsorption of H{sub 2}S onto the activated carbon also took place, there being no evidence of H{sub 2}S present in the bio-H{sub 2} exiting the column. Nevertheless, the concentration of H{sub 2}S was very low, and this co-adsorption did not affect the CO{sub 2} capture capacity of the activated carbon.« less

  3. XTCE: XML Telemetry and Command Exchange Tutorial, XTCE Version 1

    NASA Technical Reports Server (NTRS)

    Rice, Kevin; Kizzort, Brad

    2008-01-01

    These presentation slides are a tutorial on XML Telemetry and Command Exchange (XTCE). The goal of XTCE is to provide an industry standard mechanism for describing telemetry and command streams (particularly from satellites.) it wiill lower cost and increase validation over traditional formats, and support exchange or native format.XCTE is designed to describe bit streams, that are typical of telemetry and command in the historic space domain.

  4. An Advanced Commanding and Telemetry System

    NASA Astrophysics Data System (ADS)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  5. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  6. Quantitative characterization of the aqueous fraction from hydrothermal liquefaction of algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Aqueous streams generated from hydrothermal liquefaction contain approximately 30% of the total carbon present from the algal feed. Hence, this aqueous carbon must be utilized to produce liquid fuels and/or specialty chemicals for economic sustainability of hydrothermal liquefaction on industrial scale. In this study, aqueous fractions produced from the hydrothermal liquefaction of fresh water and saline water algal cultures were analyzed using a wide variety of analytical instruments to determine their compositional characteristics. This study will also inform researchers designing catalysts for down-stream processing such as high-pressure catalytic conversion of organics in aqueous phase, catalytic hydrothermal gasification, and biological conversions.more » Organic chemical compounds present in all eight aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compounds include organic acids, nitrogen compounds and aldehydes/ketones. Conventional gas chromatography and liquid chromatography methods were utilized to quantify the identified compounds. Inorganic species in the aqueous stream of hydrothermal liquefaction of algae were identified using ion chromatography and inductively coupled plasma optical emission spectrometer. The concentrations of organic chemical compounds and inorganic species are reported. The amount quantified carbon ranged from 45 to 72 % of total carbon in the aqueous fractions.« less

  7. Healthy e-health? Think 'environmental e-health'!

    PubMed

    Scott, Richard E; Saunders, Chad; Palacios, Moné; Nguyen, Duyen Thi Kim; Ali, Sajid

    2010-01-01

    The Environmental e-Health Research and Training Program has completed its scoping study to understand the breadth of a new field of research: Environmental e-Health. Nearly every aspect of modern life is associated, directly or indirectly, with application of technology, from a cup of coffee, through transportation to and from work, to appliances in the home and industrial activities. In recent decades the rapidly increasing application of information and communications technologies (ICT) has added to the cacophony of technological 'noise' around us. Research has shown that technology use, including ICTs, has impact upon the environment. Studying environmental impact in such a complex global setting is daunting. e-Health is now being used as a convenient microcosm of ICT application within which to study these impacts, and is particularly poignant given that e-Health's environmental harms conflict with its noble goals of 'doing no harm'. The study has identified impacts, both benefits and harms in all three life-cycle phases for e-Health: up-stream (materials extraction, manufacturing, packaging, distribution), mid-stream (use period), and down-stream (end-of-life processes--disposal, recycling). In addition the literature shows that a holistic 'Life Cycle Assessment' approach is essential to understand the complexity of the setting, and determine the true balance between total harms and total benefits, and for whom.

  8. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams

    USGS Publications Warehouse

    Buxton, Herbert T.; Kolpin, Dana W.

    2002-01-01

    A recent study by the Toxic Substances Hydrology Program of the U.S. Geological Survey (USGS) shows that a broad range of chemicals found in residential, industrial, and agricultural wastewaters commonly occurs in mixtures at low concentrations downstream from areas of intense urbanization and animal production. The chemicals include human and veterinary drugs (including antibiotics), natural and synthetic hormones, detergent metabolites, plasticizers, insecticides, and fire retardants. One or more of these chemicals were found in 80 percent of the streams sampled. Half of the streams contained 7 or more of these chemicals, and about one-third of the streams contained 10 or more of these chemicals. This study is the first national-scale examination of these organic wastewater contaminants in streams and supports the USGS mission to assess the quantity and quality of the Nation's water resources. A more complete analysis of these and other emerging water-quality issues is ongoing.

  9. Use of ultrasound in leather processing industry: effect of sonication on substrate and substances--new insights.

    PubMed

    Sivakumar, Venkatasubramanian; Swaminathan, Gopalaraman; Rao, Paruchuri Gangadhar; Muralidharan, Chellappa; Mandal, Asit Baran; Ramasami, Thirumalachari

    2010-08-01

    Influence of ultrasound (US) on various unit operations in leather processing has been studied with the aim to improve the process efficiency, quality, reduce process time and achieve near-zero discharge levels in effluent streams as a cleaner option. Effect of US on substrate (skin/leather) matrix as well as substances used in different unit operations have been studied and found to be useful in the processing. Absorption of US energy by leather in process vessel at different distances from US source has been measured and found to be significant. Effect of particle-size of different substances due to sonication indicates positive influence on the diffusion through the matrix. Our experimental results suggest that US effect is better realized for the cases with pronounced diffusion hindrance. Influence of US on bioprocessing of leather has been studied and found beneficial. Attempts have also been made to improve the US aided processing using external aids. Operating US in pulse mode operation could be useful in order to reduce the electrical energy consumption. Use of US has also been studied in the preparation of leather auxiliaries involving mass-transfer resistance. Preliminary cost analysis carried out for ultrasound-assisted leather-dyeing process indicates scale-up possibility. Therefore, US application provide improvement in process efficiency as well as making cleaner production methods feasible. Hence, overall results suggest that use of US in leather industry is imminent and potential viable option in near future. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Element Distribution in Silicon Refining: Thermodynamic Model and Industrial Measurements

    NASA Astrophysics Data System (ADS)

    Næss, Mari K.; Kero, Ida; Tranell, Gabriella; Tang, Kai; Tveit, Halvard

    2014-11-01

    To establish an overview of impurity elemental distribution among silicon, slag, and gas/fume in the refining process of metallurgical grade silicon (MG-Si), an industrial measurement campaign was performed at the Elkem Salten MG-Si plant in Norway. Samples of in- and outgoing mass streams, i.e., tapped Si, flux and cooling materials, refined Si, slag, and fume, were analyzed by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), with respect to 62 elements. The elemental distributions were calculated and the experimental data compared with equilibrium estimations based on commercial and proprietary, published databases and carried out using the ChemSheet software. The results are discussed in terms of boiling temperatures, vapor pressures, redox potentials, and activities of the elements. These model calculations indicate a need for expanded databases with more and reliable thermodynamic data for trace elements in general and fume constituents in particular.

  11. Application of flotation for the separation of metal-loaded zeolites.

    PubMed

    Matis, Kostas A; Zouboulis, Anastasios I; Gallios, George P; Erwe, Torsten; Blöcher, Christoph

    2004-04-01

    Several industrial wastewater streams may contain heavy metal ions, which must be effectively removed, before the discharge or reuse of treated waters could take place. Different bonding materials, presenting selectivity and fast reaction kinetics for the removal of metals, have been examined for this purpose. The objective of the present paper was to investigate the application of dispersed-air flotation for the separation of metal-loaded sorbents. Two similar zeolite samples were applied as effective bonding agents for the removal of zinc, a toxic metal commonly found in many industrial wastewaters. This combined process, termed sorptive flotation, involves the preliminary scavenging of metal ions, by using the appropriate sorbent particles (usually present as ultrafine particulates), followed by flotation for the effective separation of them. The obtained results were very promising, as both metal and sorbent were effectively removed/separated from the dispersion.

  12. Metabolic engineering of industrial platform microorganisms for biorefinery applications--optimization of substrate spectrum and process robustness by rational and evolutive strategies.

    PubMed

    Buschke, Nele; Schäfer, Rudolf; Becker, Judith; Wittmann, Christoph

    2013-05-01

    Bio-based production promises a sustainable route to myriads of chemicals, materials and fuels. With regard to eco-efficiency, its future success strongly depends on a next level of bio-processes using raw materials beyond glucose. Such renewables, i.e., polymers, complex substrate mixtures and diluted waste streams, often cannot be metabolized naturally by the producing organisms. This particularly holds for well-known microorganisms from the traditional sugar-based biotechnology, including Escherichia coli, Corynebacterium glutamicum and Saccharomyces cerevisiae which have been engineered successfully to produce a broad range of products from glucose. In order to make full use of their production potential within the bio-refinery value chain, they have to be adapted to various feed-stocks of interest. This review focuses on the strategies to be applied for this purpose which combine rational and evolutive approaches. Hereby, the three industrial platform microorganisms, E. coli, C. glutamicum and S. cerevisiae are highlighted due to their particular importance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOEpatents

    Kaschemekat, Jurgen; Baker, Richard W.

    1994-01-01

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  14. Water resources of Jackson and Independence Counties, Arkansas; Contributions to the Hydrology of the United States

    USGS Publications Warehouse

    Albin, Donald R.; Hines, Marion S.; Stephens, John W.

    1967-01-01

    The present (1965) water use in Jackson and Independence Counties is about 55.6 million gallons per day, and quantities sufficient for any foreseeable use are available. Supplies for the large-scale uses--municipal, industrial, and irrigation--can best be obtained from wells in the Coastal Plain and from streams in the highlands. Wells in the Coastal Plain will yield 1,000-2,000 gallons of water per minute when screened at depths from 100 to 150 feet in alluvial sand and gravel of Quaternary age. The water will require treatment for the removal of iron and the reduction of hardness to be suitable for municipal and industrial uses. Wells in the highlands generally yield less than 50 gallons per minute of water that is of good quality, though hard. The dependable flow of .the White River at Newport is about 4.2 billion gallons per day. The dependable 'base flows of the small streams tributary to the White River in the Salem Plateau and Springfield Plateau sections range from 0.25 to 5 million gallons per day, and the dependable flow of Polk Bayou at Batesville is about 21 million gallons per day. These streams can be utilized for water supply with little or no artificial storage required. Streams in the Boston Mountains section and in the Arkansas Valley section recede to very low flow or to no flow during extended dry periods, but dependable, supplies can be obtained from these streams 'by construction of storage facilities Water from all the highland streams is af excellent chemical quality except that it generally is hard.

  15. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review.

    PubMed

    Mu'azu, Nuhu Dalhat; Jarrah, Nabeel; Zubair, Mukarram; Alagha, Omar

    2017-09-21

    Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment.

  16. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review

    PubMed Central

    Jarrah, Nabeel; Zubair, Mukarram; Alagha, Omar

    2017-01-01

    Due to their industrial relevance, phenolic compounds (PC) are amongst the most common organic pollutants found in many industrial wastewater effluents. The potential detrimental health and environmental impacts of PC necessitate their removal from wastewater to meet regulatory discharge standards to ensure meeting sustainable development goals. In recent decades, one of the promising, cost-effective and environmentally benign techniques for removal of PC from water streams has been adsorption onto sewage sludge (SS)-based activated carbon (SBAC). This is attributed to the excellent adsorptive characteristics of SBAC and also because the approach serves as a strategy for sustainable management of huge quantities of different types of SS that are in continual production globally. This paper reviews conversion of SS into activated carbons and their utilization for the removal of PC from water streams. Wide ranges of topics which include SBAC production processes, physicochemical characteristics of SBAC, factors affecting PC adsorption onto SBAC and their uptake mechanisms as well as the regeneration potential of spent SBAC are covered. Although chemical activation techniques produce better SBAC, yet more research work is needed to harness advances in material science to improve the functional groups and textural properties of SBAC as well as the low performance of physical activation methods. Studies focusing on PC adsorptive performance on SBAC using continuous mode (that are more relevant for industrial applications) in both single and multi-pollutant aqueous systems to cover wide range of PC are needed. Also, the potentials of different techniques for regeneration of spent SBAC used for adsorption of PC need to be assessed in relation to overall economic evaluation within realm of environmental sustainability using life cycle assessment. PMID:28934127

  17. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams.

    PubMed

    Dong, Xiaoyu; Li, Bin; He, Fengzhi; Gu, Yuan; Sun, Meiqin; Zhang, Haomiao; Tan, Lu; Xiao, Wen; Liu, Shuoran; Cai, Qinghua

    2016-04-19

    Stream metacommunities are structured by a combination of local (environmental filtering) and regional (dispersal) processes. The unique characters of high mountain streams could potentially determine metacommunity structuring, which is currently poorly understood. Aiming at understanding how these characters influenced metacommunity structuring, we explored the relative importance of local environmental conditions and various dispersal processes, including through geographical (overland), topographical (across mountain barriers) and network (along flow direction) pathways in shaping benthic diatom communities. From a trait perspective, diatoms were categorized into high-profile, low-profile and motile guild to examine the roles of functional traits. Our results indicated that both environmental filtering and dispersal processes influenced metacommunity structuring, with dispersal contributing more than environmental processes. Among the three pathways, stream corridors were primary pathway. Deconstructive analysis suggested different responses to environmental and spatial factors for each of three ecological guilds. However, regardless of traits, dispersal among streams was limited by mountain barriers, while dispersal along stream was promoted by rushing flow in high mountain stream. Our results highlighted that directional processes had prevailing effects on metacommunity structuring in high mountain streams. Flow directionality, mountain barriers and ecological guilds contributed to a better understanding of the roles that mountains played in structuring metacommunity.

  18. Mercury in the nation's streams - Levels, trends, and implications

    USGS Publications Warehouse

    Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.

    2014-01-01

    Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution.Three key factors determine the level of mercury contamination in fish - the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas.In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present.Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations.This report summarizes selected stream studies conducted by the U.S. Geological Survey (USGS) since the late 1990s, while also drawing on scientific literature and datasets from other sources. Previous national mercury assessments by other agencies have focused largely on lakes. Although numerous studies of mercury in streams have been conducted at local and regional scales, recent USGS studies provide the most comprehensive, multimedia assessment of streams across the United States, and yield insights about the importance of watershed characteristics relative to mercury inputs. Information from other environments (lakes, wetlands, soil, atmosphere, glacial ice) also is summarized to help understand how mercury varies in space and time.

  19. Chromium: A Stress-Processing Framework for Interactive Rendering on Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, G,; Houston, M.; Ng, Y.-R.

    2002-01-11

    We describe Chromium, a system for manipulating streams of graphics API commands on clusters of workstations. Chromium's stream filters can be arranged to create sort-first and sort-last parallel graphics architectures that, in many cases, support the same applications while using only commodity graphics accelerators. In addition, these stream filters can be extended programmatically, allowing the user to customize the stream transformations performed by nodes in a cluster. Because our stream processing mechanism is completely general, any cluster-parallel rendering algorithm can be either implemented on top of or embedded in Chromium. In this paper, we give examples of real-world applications thatmore » use Chromium to achieve good scalability on clusters of workstations, and describe other potential uses of this stream processing technology. By completely abstracting the underlying graphics architecture, network topology, and API command processing semantics, we allow a variety of applications to run in different environments.« less

  20. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  1. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  2. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  3. Increased functional connectivity in the ventral and dorsal streams during retrieval of novel words in professional musicians.

    PubMed

    Dittinger, Eva; Valizadeh, Seyed Abolfazl; Jäncke, Lutz; Besson, Mireille; Elmer, Stefan

    2018-02-01

    Current models of speech and language processing postulate the involvement of two parallel processing streams (the dual stream model): a ventral stream involved in mapping sensory and phonological representations onto lexical and conceptual representations and a dorsal stream contributing to sound-to-motor mapping, articulation, and to how verbal information is encoded and manipulated in memory. Based on previous evidence showing that music training has an influence on language processing, cognitive functions, and word learning, we examined EEG-based intracranial functional connectivity in the ventral and dorsal streams while musicians and nonmusicians learned the meaning of novel words through picture-word associations. In accordance with the dual stream model, word learning was generally associated with increased beta functional connectivity in the ventral stream compared to the dorsal stream. In addition, in the linguistically most demanding "semantic task," musicians outperformed nonmusicians, and this behavioral advantage was accompanied by increased left-hemispheric theta connectivity in both streams. Moreover, theta coherence in the left dorsal pathway was positively correlated with the number of years of music training. These results provide evidence for a complex interplay within a network of brain regions involved in semantic processing and verbal memory functions, and suggest that intensive music training can modify its functional architecture leading to advantages in novel word learning. © 2017 Wiley Periodicals, Inc.

  4. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  5. Implications for Ecosystem Services of Watershed Processes that affect the Transport and Transformations of Mercury in an Adirondack Stream Basin

    NASA Astrophysics Data System (ADS)

    Burns, D. A.; Riva-Murray, K.; Bradley, P. M.

    2012-12-01

    Mercury (Hg) is a potent neurotoxin that can affect the health of humans and wildlife through the ingestion of methyl Hg. Mercury contamination of ecosystems originates from human activities such as mining, coal burning and other industrial emissions, and the use of Hg-containing products. Natural sources such as volcanic and geothermal emissions and the weathering of Hg-bearing minerals also contribute to Hg contamination, but are believed to be minor sources in most ecosystems. Various ecosystem disturbances including fires, forest harvesting, and the submergence of land by impoundment may also contribute to Hg ecosystem contamination by mobilizing stores that have previously originated from the sources described above. Mercury from a mix of regional and global emissions sources is transported in the atmosphere to remote landscapes that are distant from local emissions sources. The Adirondacks of New York State is a forested, mountainous region characterized by abundant lakes and streams, and is distant from local emissions sources. Recreational fishing, wildlife viewing, hiking, and hunting are valued ecosystem services in this region. Here, we report on the relevance to ecosystem services of findings based on five years of Hg data collection of stream water, groundwater, invertebrates, and fish in the upper Hudson River basin in the central part of the Adirondack region. The New York State Dept. of Health has issued fish consumption advisories for the entire Adirondacks based on elevated levels previously measured in lakes and rivers of this region. Our work seeks improved understanding and models of the landscape sources and watershed processes that control the transformation of Hg to its methyl form (MeHg), the transport of MeHg to streams, and bioaccumulation of MeHg in aquatic food webs. Mean annual atmospheric Hg deposition was 6.3 μg/m2/yr during 2007-09, compared to mean annual filtered total Hg stream yields of 1.66 μg/m2/yr and filtered MeHg stream yields of 0.095 μg/m2/yr in a sub-basin of the upper Hudson during this same period. Our work shows that Hg in stream biota, which is largely in the methyl form, is strongly related to MeHg measured in the water column; food web factors that affect Hg bioaccumulation also play a role. In brook trout, the top aquatic predator in the food web of the upper Hudson, Hg concentrations average about 0.1 μg/g, a level believed to affect fish behavior, and a few values were greater than 0.3 μg/g, a level at which human fish consumption advisories are issued. Landscape-based regression models that account for about 80% of the variation in stream MeHg concentrations at 25 sites across the upper Hudson basin include metrics of riparian area and open water indicating the importance of these landscape types in affecting methylation rates, losses of MeHg (through demethylation and other processes), and the transport of MeHg to surface waters. These and other study results indicate that factors such as watershed geomorphology, seasonal variations in discharge and air temperature, and the location and connection of riparian wetlands to streams are the strongest factors that affect stream MeHg concentrations and therefore, the potential ecosystem services provided by fish and other wildlife in the Adirondack region.

  6. Public Policy Implications of the Transition to a Subscription-Based Economic Structure for the Television Industry.

    ERIC Educational Resources Information Center

    Baldwin, Thomas F.; Wirth, Michael O.

    This paper argues that the United States television industry is in a transitional period between the dominance of an advertiser-supported system and an advertiser-subscription system, and that a "dual revenue stream" system of subscription and advertising will eventually relegate the advertiser-only support system to a secondary role.…

  7. System for processing an encrypted instruction stream in hardware

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Richard L.; Nickless, William K.; Conrad, Ryan C.

    A system and method of processing an encrypted instruction stream in hardware is disclosed. Main memory stores the encrypted instruction stream and unencrypted data. A central processing unit (CPU) is operatively coupled to the main memory. A decryptor is operatively coupled to the main memory and located within the CPU. The decryptor decrypts the encrypted instruction stream upon receipt of an instruction fetch signal from a CPU core. Unencrypted data is passed through to the CPU core without decryption upon receipt of a data fetch signal.

  8. Opportunities and challenges in developing a whole-of-government national food and nutrition policy: lessons from Australia's National Food Plan.

    PubMed

    Carey, Rachel; Caraher, Martin; Lawrence, Mark; Friel, Sharon

    2016-01-01

    The present article tracks the development of the Australian National Food Plan as a 'whole of government' food policy that aimed to integrate elements of nutrition and sustainability alongside economic objectives. The article uses policy analysis to explore the processes of consultation and stakeholder involvement in the development of the National Food Plan, focusing on actors from the sectors of industry, civil society and government. Existing documentation and submissions to the Plan were used as data sources. Models of health policy analysis and policy streams were employed to analyse policy development processes. Australia. Australian food policy stakeholders. The development of the Plan was influenced by powerful industry groups and stakeholder engagement by the lead ministry favoured the involvement of actors representing the food and agriculture industries. Public health nutrition and civil society relied on traditional methods of policy influence, and the public health nutrition movement failed to develop a unified cross-sector alliance, while the private sector engaged in different ways and presented a united front. The National Food Plan failed to deliver an integrated food policy for Australia. Nutrition and sustainability were effectively sidelined due to the focus on global food production and positioning Australia as a food 'superpower' that could take advantage of the anticipated 'dining boom' as incomes rose in the Asia-Pacific region. New forms of industry influence are emerging in the food policy arena and public health nutrition will need to adopt new approaches to influencing public policy.

  9. Using diatom assemblages to assess urban stream conditions

    USGS Publications Warehouse

    Walker, C.E.; Pan, Y.

    2006-01-01

    We characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions. Diatoms, water chemistry, and physical variables of riffles at 19 urban and 28 rural stream sites were sampled and assessed during the summer base flow period. Near stream land use was characterized using GIS. In addition, one urban and one rural site were sampled monthly throughout a year to assess temporal variation of diatom assemblages between the urban and rural stream sites. Canonical correspondence analysis (CCA) showed that the 1st ordination axis distinctly separated rural and urban sites. This axis was correlated with conductivity (r = 0.75) and % near-stream commercial/industrial land use (r = 0.55). TWINSPAN classified all sites into four groups based on diatom assemblages. These diatom-based site groups were significantly different in water chemistry (e.g., conductivity, dissolved nutrients), physical habitat (e.g., % stream substrate as fines), and near-stream land use. CCA on the temporal diatom data set showed that diatom assemblages had high seasonal variation along the 2nd axis in both urban and rural sites, however, rural and urban sites were well separated along the 1st ordination axis. Our results suggest that changes in diatom assemblages respond to urban impacts on stream conditions. ?? Springer 2006.

  10. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin.

    PubMed

    Kang, Joo-Hyon; Lee, Seung Won; Cho, Kyung Hwa; Ki, Seo Jin; Cha, Sung Min; Kim, Joon Ha

    2010-07-01

    This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.

    PubMed

    Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-04-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.

  12. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision

    PubMed Central

    Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-01-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  13. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    PubMed

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center.

    PubMed

    Cima, Robert R; Brown, Michael J; Hebl, James R; Moore, Robin; Rogers, James C; Kollengode, Anantha; Amstutz, Gwendolyn J; Weisbrod, Cheryl A; Narr, Bradly J; Deschamps, Claude

    2011-07-01

    Operating rooms (ORs) are resource-intense and costly hospital units. Maximizing OR efficiency is essential to maintaining an economically viable institution. OR efficiency projects often focus on a limited number of ORs or cases. Efforts across an entire OR suite have not been reported. Lean and Six Sigma methodologies were developed in the manufacturing industry to increase efficiency by eliminating non-value-added steps. We applied Lean and Six Sigma methodologies across an entire surgical suite to improve efficiency. A multidisciplinary surgical process improvement team constructed a value stream map of the entire surgical process from the decision for surgery to discharge. Each process step was analyzed in 3 domains, ie, personnel, information processed, and time. Multidisciplinary teams addressed 5 work streams to increase value at each step: minimizing volume variation; streamlining the preoperative process; reducing nonoperative time; eliminating redundant information; and promoting employee engagement. Process improvements were implemented sequentially in surgical specialties. Key performance metrics were collected before and after implementation. Across 3 surgical specialties, process redesign resulted in substantial improvements in on-time starts and reduction in number of cases past 5 pm. Substantial gains were achieved in nonoperative time, staff overtime, and ORs saved. These changes resulted in substantial increases in margin/OR/day. Use of Lean and Six Sigma methodologies increased OR efficiency and financial performance across an entire operating suite. Process mapping, leadership support, staff engagement, and sharing performance metrics are keys to enhancing OR efficiency. The performance gains were substantial, sustainable, positive financially, and transferrable to other specialties. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. Development of the Hydroecological Integrity Assessment Process for Determining Environmental Flows for New Jersey Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Nieswand, Steven P.

    2007-01-01

    The natural flow regime paradigm and parallel stream ecological concepts and theories have established the benefits of maintaining or restoring the full range of natural hydrologic variation for physiochemical processes, biodiversity, and the evolutionary potential of aquatic and riparian communities. A synthesis of recent advances in hydroecological research coupled with stream classification has resulted in a new process to determine environmental flows and assess hydrologic alteration. This process has national and international applicability. It allows classification of streams into hydrologic stream classes and identification of a set of non-redundant and ecologically relevant hydrologic indices for 10 critical sub-components of flow. Three computer programs have been developed for implementing the Hydroecological Integrity Assessment Process (HIP): (1) the Hydrologic Indices Tool (HIT), which calculates 171 ecologically relevant hydrologic indices on the basis of daily-flow and peak-flow stream-gage data; (2) the New Jersey Hydrologic Assessment Tool (NJHAT), which can be used to establish a hydrologic baseline period, provide options for setting baseline environmental-flow standards, and compare past and proposed streamflow alterations; and (3) the New Jersey Stream Classification Tool (NJSCT), designed for placing unclassified streams into pre-defined stream classes. Biological and multivariate response models including principal-component, cluster, and discriminant-function analyses aided in the development of software and implementation of the HIP for New Jersey. A pilot effort is currently underway by the New Jersey Department of Environmental Protection in which the HIP is being used to evaluate the effects of past and proposed surface-water use, ground-water extraction, and land-use changes on stream ecosystems while determining the most effective way to integrate the process into ongoing regulatory programs. Ultimately, this scientifically defensible process will help to quantify the effects of anthropogenic changes and development on hydrologic variability and help planners and resource managers balance current and future water requirements with ecological needs.

  16. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Y.; Barnes, J.; Fox, S.

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. Wemore » have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.« less

  17. Machine vision system for automated detection of stained pistachio nuts

    NASA Astrophysics Data System (ADS)

    Pearson, Tom C.

    1995-01-01

    A machine vision system was developed to separate stained pistachio nuts, which comprise of about 5% of the California crop, from unstained nuts. The system may be used to reduce labor involved with manual grading or to remove aflatoxin contaminated product from low grade process streams. The system was tested on two different pistachio process streams: the bi- chromatic color sorter reject stream and the small nut shelling stock stream. The system had a minimum overall error rate of 14% for the bi-chromatic sorter reject stream and 15% for the small shelling stock stream.

  18. Ammonia Monitor

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L. (Inventor); Akse, James R. (Inventor); Thompson, John O. (Inventor); Atwater, James E. (Inventor)

    1999-01-01

    Ammonia monitor and method of use are disclosed. A continuous, real-time determination of the concentration of ammonia in an aqueous process stream is possible over a wide dynamic range of concentrations. No reagents are required because pH is controlled by an in-line solid-phase base. Ammonia is selectively transported across a membrane from the process stream to an analytical stream to an analytical stream under pH control. The specific electrical conductance of the analytical stream is measured and used to determine the concentration of ammonia.

  19. Emission control system

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor); Chung, J. Landy (Inventor)

    2009-01-01

    Methods and apparatus utilizing hydrogen peroxide are useful to reduce SOx and mercury (or other heavy metal) emissions from combustion flue gas streams. The methods and apparatus may further be modified to reduce NOx emissions. Continuous concentration of hydrogen peroxide to levels approaching or exceeding propellant-grade hydrogen peroxide facilitates increased system efficiency. In this manner, combustion flue gas streams can be treated for the removal of SOx and heavy metals, while isolating useful by-products streams of sulfuric acid as well as solids for the recovery of the heavy metals. Where removal of NOx emissions is included, nitric acid may also be isolated for use in fertilizer or other industrial applications.

  20. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. On the organization of the perisylvian cortex: Insights from the electrophysiology of language. Comment on "Towards a Computational Comparative Neuroprimatology: Framing the language-ready brain" by M.A. Arbib

    NASA Astrophysics Data System (ADS)

    Brouwer, Harm; Crocker, Matthew W.

    2016-03-01

    The Mirror System Hypothesis (MSH) on the evolution of the language-ready brain draws upon the parallel dorsal-ventral stream architecture for vision [1]. The dorsal ;how; stream provides a mapping of parietally-mediated affordances onto the motor system (supporting preshape), whereas the ventral ;what; stream engages in object recognition and visual scene analysis (supporting pantomime and verbal description). Arbib attempts to integrate this MSH perspective with a recent conceptual dorsal-ventral stream model of auditory language comprehension [5] (henceforth, the B&S model). In the B&S model, the dorsal stream engages in time-dependent combinatorial processing, which subserves syntactic structuring and linkage to action, whereas the ventral stream performs time-independent unification of conceptual schemata. These streams are integrated in the left Inferior Frontal Gyrus (lIFG), which is assumed to subserve cognitive control, and no linguistic processing functions. Arbib criticizes the B&S model on two grounds: (i) the time-independence of the semantic processing in the ventral stream (by arguing that semantic processing is just as time-dependent as syntactic processing), and (ii) the absence of linguistic processing in the lIFG (reconciling syntactic and semantic representations is very much linguistic processing proper). Here, we provide further support for these two points of criticism on the basis of insights from the electrophysiology of language. In the course of our argument, we also sketch the contours of an alternative model that may prove better suited for integration with the MSH.

  2. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Lin, Haiqing [Mountain View, CA; Thompson, Scott [Brecksville, OH; Daniels, Ramin [San Jose, CA

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  3. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Kevin A.; Fritz, Hermann M.; French, Steven P.

    The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology.

  5. Heat pipes for terrestrial applications in dehumidification systems

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1988-01-01

    A novel application of heat pipes which greatly enhances dehumidification performance of air-conditioning systems is presented. When an air-to-air heat pipe heat exchanger is placed between the warm return air and cold supply air streams of an air conditioner, heat is efficiently transferred from the return air to the supply air. As the warm return air precools during this process, it moves closer to its dew-point temperature. Therefore, the cooling system works less to remove moisture. This paper discusses the concept, its benefits, the challenges of incorporating heat pipes in an air-conditioning system, and the preliminary results from a field demonstration of an industrial application.

  6. Robot Would Reconfigure Modular Equipment

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    1993-01-01

    Special-purpose sets of equipment, packaged in identical modules with identical interconnecting mechanisms, attached to or detached from each other by specially designed robot, according to proposal. Two-arm walking robot connects and disconnects modules, operating either autonomously or under remote supervision. Robot walks along row of connected modules by grasping successive attachment subassemblies in hand-over-hand motion. Intended application for facility or station in outer space; robot reconfiguration scheme makes it unnecessary for astronauts to venture outside spacecraft or space station. Concept proves useful on Earth in assembly, disassembly, or reconfiguration of equipment in such hostile environments as underwater, near active volcanoes, or in industrial process streams.

  7. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  8. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  9. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first majormore » recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.« less

  10. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    PubMed

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  11. Starting a health care system green team.

    PubMed

    Mejia, Elisa A; Sattler, Barbara

    2009-07-01

    The health care industry is often overlooked as a major source of industrial pollution, but as this becomes more recognized, many health care facilities are beginning to pursue green efforts. The OR is a prime example of an area of health care that is working to lessen its environmental impact. Nurses can play key roles in identifying areas of waste and presenting ideas about recovering secondary materials. For instance, although infection prevention measures encourage one-time use of some products, nurses can investigate how to reprocess these items so they can be reused. This article examines how the efforts of a Green Team can affect a hospital's waste stream. A health care Green Team can facilitate a medical facility's quest for knowledge and awareness of its effect on the waste stream and environment.

  12. Where’s Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene

    PubMed Central

    Chang, Hung-Cheng; Grossberg, Stephen; Cao, Yongqiang

    2014-01-01

    The Where’s Waldo problem concerns how individuals can rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object in it. This article develops the ARTSCAN Search neural model to clarify how brain mechanisms across the What and Where cortical streams are coordinated to solve the Where’s Waldo problem. The What stream learns positionally-invariant object representations, whereas the Where stream controls positionally-selective spatial and action representations. The model overcomes deficiencies of these computationally complementary properties through What and Where stream interactions. Where stream processes of spatial attention and predictive eye movement control modulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and attentive top-down interactions. Gain fields control the coordinate transformations that enable spatial attention and predictive eye movements to carry out this role. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects. What stream cognitive names or motivational drives can prime a view- and positionally-invariant object category of a desired target object. A volitional signal can convert these primes into top-down activations that can, in turn, prime What stream view- and positionally-specific categories. When it also receives bottom-up activation from a target, such a positionally-specific category can cause an attentional shift in the Where stream to the positional representation of the target, and an eye movement can then be elicited to foveate it. These processes describe interactions among brain regions that include visual cortex, parietal cortex, inferotemporal cortex, prefrontal cortex (PFC), amygdala, basal ganglia (BG), and superior colliculus (SC). PMID:24987339

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Rui; Praggastis, Brenda L.; Smith, William P.

    While streaming data have become increasingly more popular in business and research communities, semantic models and processing software for streaming data have not kept pace. Traditional semantic solutions have not addressed transient data streams. Semantic web languages (e.g., RDF, OWL) have typically addressed static data settings and linked data approaches have predominantly addressed static or growing data repositories. Streaming data settings have some fundamental differences; in particular, data are consumed on the fly and data may expire. Stream reasoning, a combination of stream processing and semantic reasoning, has emerged with the vision of providing "smart" processing of streaming data. C-SPARQLmore » is a prominent stream reasoning system that handles semantic (RDF) data streams. Many stream reasoning systems including C-SPARQL use a sliding window and use data arrival time to evict data. For data streams that include expiration times, a simple arrival time scheme is inadequate if the window size does not match the expiration period. In this paper, we propose a cache-enabled, order-aware, ontology-based stream reasoning framework. This framework consumes RDF streams with expiration timestamps assigned by the streaming source. Our framework utilizes both arrival and expiration timestamps in its cache eviction policies. In addition, we introduce the notion of "semantic importance" which aims to address the relevance of data to the expected reasoning, thus enabling the eviction algorithms to be more context- and reasoning-aware when choosing what data to maintain for question answering. We evaluate this framework by implementing three different prototypes and utilizing five metrics. The trade-offs of deploying the proposed framework are also discussed.« less

  14. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  15. Geospatial Data Stream Processing in Python Using FOSS4G Components

    NASA Astrophysics Data System (ADS)

    McFerren, G.; van Zyl, T.

    2016-06-01

    One viewpoint of current and future IT systems holds that there is an increase in the scale and velocity at which data are acquired and analysed from heterogeneous, dynamic sources. In the earth observation and geoinformatics domains, this process is driven by the increase in number and types of devices that report location and the proliferation of assorted sensors, from satellite constellations to oceanic buoy arrays. Much of these data will be encountered as self-contained messages on data streams - continuous, infinite flows of data. Spatial analytics over data streams concerns the search for spatial and spatio-temporal relationships within and amongst data "on the move". In spatial databases, queries can assess a store of data to unpack spatial relationships; this is not the case on streams, where spatial relationships need to be established with the incomplete data available. Methods for spatially-based indexing, filtering, joining and transforming of streaming data need to be established and implemented in software components. This article describes the usage patterns and performance metrics of a number of well known FOSS4G Python software libraries within the data stream processing paradigm. In particular, we consider the RTree library for spatial indexing, the Shapely library for geometric processing and transformation and the PyProj library for projection and geodesic calculations over streams of geospatial data. We introduce a message oriented Python-based geospatial data streaming framework called Swordfish, which provides data stream processing primitives, functions, transports and a common data model for describing messages, based on the Open Geospatial Consortium Observations and Measurements (O&M) and Unidata Common Data Model (CDM) standards. We illustrate how the geospatial software components are integrated with the Swordfish framework. Furthermore, we describe the tight temporal constraints under which geospatial functionality can be invoked when processing high velocity, potentially infinite geospatial data streams. The article discusses the performance of these libraries under simulated streaming loads (size, complexity and volume of messages) and how they can be deployed and utilised with Swordfish under real load scenarios, illustrated by a set of Vessel Automatic Identification System (AIS) use cases. We conclude that the described software libraries are able to perform adequately under geospatial data stream processing scenarios - many real application use cases will be handled sufficiently by the software.

  16. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Treesearch

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  17. Evaluation of low-residue soldering for military and commercial applications: A report from the Low-Residue Soldering Task Force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iman, R.L.; Anderson, D.J.; Burress, R.V.

    1995-06-01

    The LRSTF combined the efforts of industry, military, and government to evaluate low-residue soldering processes for military and commercial applications. These processes were selected for evaluation because they provide a means for the military to support the presidential mandate while producing reliable hardware at a lower cost. This report presents the complete details and results of a testing program conducted by the LRSTF to evaluate low-residue soldering for printed wiring assemblies. A previous informal document provided details of the test plan used in this evaluation. Many of the details of that test plan are contained in this report. The testmore » data are too massive to include in this report, however, these data are available on disk as Excel spreadsheets upon request. The main purpose of low-residue soldering is to eliminate waste streams during the manufacturing process.« less

  18. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  19. SOXAL combined SO{sub x}/NO{sub x} flue gas control demonstration. Quarterly report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    AQUATECH Systems, a business unit of Allied-Signal Inc., proposes to demonstrate the technical viability and cost effectiveness of the SOXAL process a combined SO{sub x}/NO{sub x} control process on a 3 MW equivalent flue gas slip stream from Niagara Mohawk Power Corporation Dunkirk Steam Station Boiler No. 4, a coal fired boiler. The SOXAL process combines 90+% sulfur dioxide removal from the flue gas using a sodium based scrubbing solution and regeneration of the spent scrubbing liquor using AQUATECH Systems` proprietary bipolar membrane technology. This regeneration step recovers a stream of sulfur dioxide suitable for subsequent processing to salable sulfurmore » or sulfuric acid. Additionally 90+% control of NO{sub x} gases can be achieved in combination with conventional urea/methanol injection of NO{sub 2} gas into the duct. The SOXAL process is applicable to both utility and industrial scale boilers using either high or lower sulfur coal. The SOXAL demonstration Program began September 10, 1991 and is approximately 26 months in duration. During the 6 months of scheduled operations, between January and July of 1993, data was collected from the SOXAL system to define: SO{sub 2} and NO{sub x} control efficiencies; Current efficiency for the regeneration unit; Sulfate oxidation in the absorber; Make-up reagent rates; Product quality including concentrations and compositions; System integration and control philosophy; and Membrane stability and performance with respect to foulants. The program is expected to be concluded in November 1993.« less

  20. Compact full-motion video hyperspectral cameras: development, image processing, and applications

    NASA Astrophysics Data System (ADS)

    Kanaev, A. V.

    2015-10-01

    Emergence of spectral pixel-level color filters has enabled development of hyper-spectral Full Motion Video (FMV) sensors operating in visible (EO) and infrared (IR) wavelengths. The new class of hyper-spectral cameras opens broad possibilities of its utilization for military and industry purposes. Indeed, such cameras are able to classify materials as well as detect and track spectral signatures continuously in real time while simultaneously providing an operator the benefit of enhanced-discrimination-color video. Supporting these extensive capabilities requires significant computational processing of the collected spectral data. In general, two processing streams are envisioned for mosaic array cameras. The first is spectral computation that provides essential spectral content analysis e.g. detection or classification. The second is presentation of the video to an operator that can offer the best display of the content depending on the performed task e.g. providing spatial resolution enhancement or color coding of the spectral analysis. These processing streams can be executed in parallel or they can utilize each other's results. The spectral analysis algorithms have been developed extensively, however demosaicking of more than three equally-sampled spectral bands has been explored scarcely. We present unique approach to demosaicking based on multi-band super-resolution and show the trade-off between spatial resolution and spectral content. Using imagery collected with developed 9-band SWIR camera we demonstrate several of its concepts of operation including detection and tracking. We also compare the demosaicking results to the results of multi-frame super-resolution as well as to the combined multi-frame and multiband processing.

  1. New metrics for evaluating channel networks extracted in grid digital elevation models

    NASA Astrophysics Data System (ADS)

    Orlandini, S.; Moretti, G.

    2017-12-01

    Channel networks are critical components of drainage basins and delta regions. Despite the important role played by these systems in hydrology and geomorphology, there are at present no well-defined methods to evaluate numerically how two complex channel networks are geometrically far apart. The present study introduces new metrics for evaluating numerically channel networks extracted in grid digital elevation models with respect to a reference channel network (see the figure below). Streams of the evaluated network (EN) are delineated as in the Horton ordering system and examined through a priority climbing algorithm based on the triple index (ID1,ID2,ID3), where ID1 is a stream identifier that increases as the elevation of lower end of the stream increases, ID2 indicates the ID1 of the draining stream, and ID3 is the ID1 of the corresponding stream in the reference network (RN). Streams of the RN are identified by the double index (ID1,ID2). Streams of the EN are processed in the order of increasing ID1 (plots a-l in the figure below). For each processed stream of the EN, the closest stream of the RN is sought by considering all the streams of the RN sharing the same ID2. This ID2 in the RN is equal in the EN to the ID3 of the stream draining the processed stream, the one having ID1 equal to the ID2 of the processed stream. The mean stream planar distance (MSPD) and the mean stream elevation drop (MSED) are computed as the mean distance and drop, respectively, between corresponding streams. The MSPD is shown to be useful for evaluating slope direction methods and thresholds for channel initiation, whereas the MSED is shown to indicate the ability of grid coarsening strategies to retain the profiles of observed channels. The developed metrics fill a gap in the existing literature by allowing hydrologists and geomorphologists to compare descriptions of a fixed physical system obtained by using different terrain analysis methods, or different physical systems described by using the same methods.

  2. The current status of the U.S. MTBE industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, G.M.

    1995-12-31

    This paper reviews the status of the MTBE industry from its beginnings as a result of the Clean Air Act Amendments and the need for the use of oxygenates in non-attainment areas. During 1990--93 three world scale merchant plants were constructed and in 1994 two more were brought on stream. The paper tabulates reasons why MTBE gained the lion`s share of the oxygenates market. Finally the paper discusses the problems that now plague the industry and their causes.

  3. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  4. VPipe: Virtual Pipelining for Scheduling of DAG Stream Query Plans

    NASA Astrophysics Data System (ADS)

    Wang, Song; Gupta, Chetan; Mehta, Abhay

    There are data streams all around us that can be harnessed for tremendous business and personal advantage. For an enterprise-level stream processing system such as CHAOS [1] (Continuous, Heterogeneous Analytic Over Streams), handling of complex query plans with resource constraints is challenging. While several scheduling strategies exist for stream processing, efficient scheduling of complex DAG query plans is still largely unsolved. In this paper, we propose a novel execution scheme for scheduling complex directed acyclic graph (DAG) query plans with meta-data enriched stream tuples. Our solution, called Virtual Pipelined Chain (or VPipe Chain for short), effectively extends the "Chain" pipelining scheduling approach to complex DAG query plans.

  5. Investigating category- and shape-selective neural processing in ventral and dorsal visual stream under interocular suppression.

    PubMed

    Ludwig, Karin; Kathmann, Norbert; Sterzer, Philipp; Hesselmann, Guido

    2015-01-01

    Recent behavioral and neuroimaging studies using continuous flash suppression (CFS) have suggested that action-related processing in the dorsal visual stream might be independent of perceptual awareness, in line with the "vision-for-perception" versus "vision-for-action" distinction of the influential dual-stream theory. It remains controversial if evidence suggesting exclusive dorsal stream processing of tool stimuli under CFS can be explained by their elongated shape alone or by action-relevant category representations in dorsal visual cortex. To approach this question, we investigated category- and shape-selective functional magnetic resonance imaging-blood-oxygen level-dependent responses in both visual streams using images of faces and tools. Multivariate pattern analysis showed enhanced decoding of elongated relative to non-elongated tools, both in the ventral and dorsal visual stream. The second aim of our study was to investigate whether the depth of interocular suppression might differentially affect processing in dorsal and ventral areas. However, parametric modulation of suppression depth by varying the CFS mask contrast did not yield any evidence for differential modulation of category-selective activity. Together, our data provide evidence for shape-selective processing under CFS in both dorsal and ventral stream areas and, therefore, do not support the notion that dorsal "vision-for-action" processing is exclusively preserved under interocular suppression. © 2014 Wiley Periodicals, Inc.

  6. 76 FR 78968 - Environmental Impact Statement: Cook and DuPage Counties, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-20

    ..., Region One Engineer, Illinois Department of Transportation, 201 West Center Court, Schaumburg, Illinois... affected are: residential, commercial, and industrial properties; streams and floodplains; wetlands; and...

  7. Foundations for Streaming Model Transformations by Complex Event Processing.

    PubMed

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  8. A Stream Morphology Classification for Eco-hydraulic Purposes Based on Geospatial Data: a Solute Transport Application Case

    NASA Astrophysics Data System (ADS)

    Jiménez Jaramillo, M. A.; Camacho Botero, L. A.; Vélez Upegui, J. I.

    2010-12-01

    Variation in stream morphology along a basin drainage network leads to different hydraulic patterns and sediment transport processes. Moreover, solute transport processes along streams, and stream habitats for fisheries and microorganisms, rely on stream corridor structure, including elements such as bed forms, channel patterns, riparian vegetation, and the floodplain. In this work solute transport processes simulation and stream habitat identification are carried out at the basin scale. A reach-scale morphological classification system based on channel slope and specific stream power was implemented by using digital elevation models and hydraulic geometry relationships. Although the morphological framework allows identification of cascade, step-pool, plane bed and pool-riffle morphologies along the drainage network, it still does not account for floodplain configuration and bed-forms identification of those channel types. Hence, as a first application case in order to obtain parsimonious three-dimensional characterizations of drainage channels, the morphological framework has been updated by including topographical floodplain delimitation through a Multi-resolution Valley Bottom Flatness Index assessing, and a stochastic bed form representation of the step-pool morphology. Model outcomes were tested in relation to in-stream water storage for different flow conditions and representative travel times according to the Aggregated Dead Zone -ADZ- model conceptualization of solute transport processes.

  9. Influence of urban activity in modifying water parameters, concentration and uptake of heavy metals in Typha latifolia L. into a river that crosses an industrial city.

    PubMed

    Strungaru, Stefan-Adrian; Nicoara, Mircea; Jitar, Oana; Plavan, Gabriel

    2015-01-01

    Heavy metals like Cu, Cd, Pb, Ni, Co and Cr can naturally be found almost all over this planet in various amounts. Urban activities such as heavy metal industry, traffic and waste can rapidly increase the metal concentrations in a fresh water ecosystem. This study was done in natural conditions to capture as many aspects in heavy metals pollution and bioremediation of Nicolina River, Romania considered a stream model which is under anthropogenic pressure. Water, sediment and leaves samples of Typha latifolia L. were collected during October 2013 and analyzed in order to assess certain heavy metals (Cu, Cd, Pb, Ni, Co and Cr) from each sampling site using GF-HR-CS-AAS with platform. Heavy metals in significant concentrations in cattail samples were correlated with the water parameters to show the possibility to use the cattail leaves as indicators in heavy metals pollution with potential in bioremediation because they can be easily harvested in autumn and this species is spread worldwide. The levels of metals concentrations in leaves were: Cu > Ni > Cr > Pb > Co knowing that copper is an essential element for plants. The sampling time was important to draw the river diagnosis for heavy metal pollution. The samples were collected, from river, after more than 60 days without rain same as a "human patient" prepared for blood test. Cobalt was considered the metal marker because it was an element with the lowest level of usage in the city. Compared with it only lead, cadmium and copper were used intensively in the industrial activities. T. latifolia L. can be use as an indicator for the health of the studied stream and it was noticed that the heavy metals were not accumulated, although the metal uptake was influenced by sediments and water parameters. The alkalinity of the studied river acts as an inhibitor in the bioremediation process of cattail for cadmium and copper. Lead was uptake by leaves and the water parameters influenced it but it wasn't concentrated enough in leaves to propose this species in lead bioremediation process for Nicolina River.

  10. Sewage treatment method

    DOEpatents

    Fassbender, Alex G.

    1995-01-01

    The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.

  11. Strategies for Transporting Data Between Classified and Unclassified Networks

    DTIC Science & Technology

    2016-03-01

    datagram protocol (UDP) must be used. The UDP is typically used when speed is a higher priority than data integrity, such as in music or video streaming ...and the exit point of data are separate and can be tightly controlled. This does effectively prevent the comingling of data and is used in industry to...perform functions such as streaming video and audio from secure to insecure networks (ref. 1). A second disadvantage lies in the fact that the

  12. The Morphology of Streams Restored for Market and Nonmarket Purposes: Insights From a Mixed Natural-Social Science Approach

    NASA Astrophysics Data System (ADS)

    Singh, J.; Doyle, M.; Lave, R.; Robertson, M.

    2015-12-01

    Stream restoration is increasingly driven by compensatory mitigation; impacts to streams associated with typical land development activities must be offset via restoration of streams elsewhere. This policy creates an environment where restored stream 'credits' are traded under market-like conditions, comparable to wetland mitigation, carbon offsets, or endangered species habitat banking. The effect of mitigation on restoration design and construction is unknown. We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. Physical study sites are located in the state of North Carolina, USA. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider, shallower and geomorphically more homogeneous than nonrestored streams. For example, nonrestored streams are typically characterized by more than an order of magnitude variability in radius of curvature and meander wavelength within a single study reach. By contrast, the radius of curvature in many restored streams does not vary for nearly the entire project reach. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that social forces shape the morphology of restored streams. Designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Home to a fairly mature stream mitigation banking market, North Carolina can provide lessons for other states or countries with younger mitigation banking programs (e.g., Oregon and Montana) as well as places considering their introduction.

  13. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream

    EPA Science Inventory

    Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and...

  14. Serial and Parallel Processing in the Primate Auditory Cortex Revisited

    PubMed Central

    Recanzone, Gregg H.; Cohen, Yale E.

    2009-01-01

    Over a decade ago it was proposed that the primate auditory cortex is organized in a serial and parallel manner in which there is a dorsal stream processing spatial information and a ventral stream processing non-spatial information. This organization is similar to the “what”/“where” processing of the primate visual cortex. This review will examine several key studies, primarily electrophysiological, that have tested this hypothesis. We also review several human imaging studies that have attempted to define these processing streams in the human auditory cortex. While there is good evidence that spatial information is processed along a particular series of cortical areas, the support for a non-spatial processing stream is not as strong. Why this should be the case and how to better test this hypothesis is also discussed. PMID:19686779

  15. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine.

    PubMed

    Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S

    2006-10-01

    Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).

  16. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blengini, Gian Andrea, E-mail: blengini@polito.it; CNR-IGAG, Institute of Environmental Geology and Geo-Engineering, Corso Duca degli Abruzzi 24, 10129 Turin; Busto, Mirko, E-mail: mirko.busto@polito.it

    Highlights: Black-Right-Pointing-Pointer A new eco-efficient recycling route for post-consumer waste glass was implemented. Black-Right-Pointing-Pointer Integrated waste management and industrial production are crucial to green products. Black-Right-Pointing-Pointer Most of the waste glass rejects are sent back to the glass industry. Black-Right-Pointing-Pointer Recovered co-products give more environmental gains than does avoided landfill. Black-Right-Pointing-Pointer Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production.more » Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.« less

  17. Removal of ammonia solutions used in catalytic wet oxidation processes.

    PubMed

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  18. EFFECTS OF HYDROLOGY ON NITROGEN PROCESSING IN A RESTORED URBAN STREAM

    EPA Science Inventory

    In 2001, EPA undertook an intensive research effort to evaluate the impact of stream restoration on water quality at a degraded stream in an urban watershed. An essential piece of this comprehensive study was to characterize, measure and quantify stream ground water/ stream wate...

  19. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  20. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  1. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  2. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  3. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  4. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner.

    PubMed

    Koller, Martin; Maršálek, Lukáš; de Sousa Dias, Miguel Miranda; Braunegg, Gerhart

    2017-07-25

    Sustainable production of microbial polyhydroxyalkanoate (PHA) biopolyesters on a larger scale has to consider the "four magic e": economic, ethical, environmental, and engineering aspects. Moreover, sustainability of PHA production can be quantified by modern tools of Life Cycle Assessment. Economic issues are to a large extent affected by the applied production mode, downstream processing, and, most of all, by the selection of carbon-rich raw materials as feedstocks for PHA production by safe and naturally occurring wild type microorganisms. In order to comply with ethics, such raw materials should be used which do not interfere with human nutrition and animal feed supply chains, and shall be convertible towards accessible carbon feedstocks by simple methods of upstream processing. Examples were identified in carbon-rich waste materials from various industrial braches closely connected to food production. Therefore, the article shines a light on hetero-, mixo-, and autotrophic PHA production based on various industrial residues from different branches. Emphasis is devoted to the integration of PHA-production based on selected raw materials into the holistic patterns of sustainability; this encompasses the choice of new, powerful microbial production strains, non-hazardous, environmentally benign methods for PHA recovery, and reutilization of waste streams from the PHA production process itself. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection.

    PubMed

    Hariz, Harizah Bajunaid; Takriff, Mohd Sobri

    2017-09-01

    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO 2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.

  6. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  7. Potential metal recovery from waste streams

    USGS Publications Warehouse

    Smith, Kathleen S.; Hageman, Philip L.; Plumlee, Geoffrey S.; Budahn, James R.; Bleiwas, Donald I.

    2015-01-01

    ‘Waste stream’ is a general term that describes the total flow of waste from homes, businesses, industrial facilities, and institutions that are recycled, burned or isolated from the environment in landfills or other types of storage, or dissipated into the environment. The recovery and reuse of chemical elements from waste streams have the potential to decrease U.S. reliance on primary resources and imports, and to lessen unwanted dispersion of some potentially harmful elements into the environment. Additional benefits might include reducing disposal or treatment costs and decreasing the risk of future environmental liabilities for waste generators. Elemental chemistry and mineralogical residences of the elements are poorly documented for many types of waste streams.

  8. Streamgaging in Pennsylvania: 1883-2009

    USGS Publications Warehouse

    Durlin, Randall R.

    2009-01-01

    The Commonwealth of Pennsylvania contains 83,602 miles of streams within its borders. These streams are natural resources that influence the lives and economy of Pennsylvania residents daily. The water resources are used on a daily basis for recreation, power generation, drinking water, agriculture, industry, and many other uses, emphasizing the importance of this valuable resource. The effects of too much or too little water can be devastating to communities throughout the Commonwealth. The amount of water (flow) in a stream has been a critical piece of information since before the founding of Pennsylvania. In 1612, John Smith navigated the 'Sasquesahanough' River while exploring the newly discovered territory. In 1630, Dutch pioneers traveled up the Delaware River to settle in Bucks County.

  9. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  10. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  11. 76 FR 33401 - Environmental Impact Statement: Cook and DuPage Counties, Illinois

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-08

    ...., Deputy Director of Highways, Region One Engineer, Illinois Department of Transportation, 201 West Center... environmental resources that may be affected are: residential, commercial, and industrial properties; streams...

  12. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  13. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  14. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  15. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  16. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Hyatt, D.E.; Bustard, C.J.; Sjostrom, S.

    1998-11-10

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 11 figs.

  17. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Ebner, T.G.; Stewart, R.M.; Bustard, C.J.

    1999-04-13

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency. 5 figs.

  18. Method and apparatus for decreased undesired particle emissions in gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Bustard, Cynthia Jean

    1999-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  19. Method for removing undesired particles from gas streams

    DOEpatents

    Durham, Michael Dean; Schlager, Richard John; Ebner, Timothy George; Stewart, Robin Michele; Hyatt, David E.; Bustard, Cynthia Jean; Sjostrom, Sharon

    1998-01-01

    The present invention discloses a process for removing undesired particles from a gas stream including the steps of contacting a composition containing an adhesive with the gas stream; collecting the undesired particles and adhesive on a collection surface to form an aggregate comprising the adhesive and undesired particles on the collection surface; and removing the agglomerate from the collection zone. The composition may then be atomized and injected into the gas stream. The composition may include a liquid that vaporizes in the gas stream. After the liquid vaporizes, adhesive particles are entrained in the gas stream. The process may be applied to electrostatic precipitators and filtration systems to improve undesired particle collection efficiency.

  20. Algal Energy Conversion and Capture

    NASA Astrophysics Data System (ADS)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  1. Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat.

    PubMed

    Koutinas, A A; Wang, R; Webb, C

    2004-03-05

    Restructuring and optimization of the conventional fermentation industry for fuel and chemical production is necessary to replace petrochemical production routes. Guided by this concept, a novel biorefinery process has been developed as an alternative to conventional upstream processing routes, leading to the production of a generic fermentation feedstock from wheat. The robustness of Aspergillus awamori as enzyme producer is exploited in a continuous fungal fermentation on whole wheat flour. Vital gluten is extracted as an added-value byproduct by the conventional Martin process from a fraction of the overall wheat used. Enzymatic hydrolysis of gluten-free flour by the enzyme complex produced by A. awamori during fermentation produces a liquid stream rich in glucose (320 g/L). Autolysis of fungal cells produces a micronutrient-rich solution similar to yeast extract (1.6 g/L nitrogen, 0.5 g/L phosphorus). The case-specific combination of these two liquid streams can provide a nutrient-complete fermentation medium for a spectrum of microbial bioconversions for the production of such chemicals as organic acids, amino acids, bioethanol, glycerol, solvents, and microbial biodegradable plastics. Preliminary economic analysis has shown that the operating cost required to produce the feedstock is dependent on the plant capacity, cereal market price, presence and market value of added-value byproducts, labor costs, and mode of processing (batch or continuous). Integration of this process in an existing fermentation plant could lead to the production of a generic feedstock at an operating cost lower than the market price of glucose syrup (90% to 99% glucose) in the EU, provided that the plant capacity exceeds 410 m(3)/day. Further process improvements are also suggested. Copyright 2004 Wiley Periodicals, Inc.

  2. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions.

    PubMed

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-04-01

    Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3-l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L -1 optically pure (98%) L-lactic acid in 20 h from 50 g L -1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus . The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Production of bioethanol from multiple waste streams of rice milling.

    PubMed

    Favaro, Lorenzo; Cagnin, Lorenzo; Basaglia, Marina; Pizzocchero, Valentino; van Zyl, Willem Heber; Casella, Sergio

    2017-11-01

    This work describes the feasibility of using rice milling by-products as feedstock for bioethanol. Starch-rich residues (rice bran, broken, unripe and discolored rice) were individually fermented (20%w/v) through Consolidated Bioprocessing by two industrial engineered yeast secreting fungal amylases. Rice husk (20%w/v), mainly composed by lignocellulose, was pre-treated at 55°C with alkaline peroxide, saccharified through optimized dosages of commercial enzymes (Cellic® CTec2) and fermented by the recombinant strains. Finally, a blend of all the rice by-products, formulated as a mixture (20%w/v) according to their proportions at milling plants, were co-processed to ethanol by optimized pre-treatment, saccharification and fermentation by amylolytic strains. Fermenting efficiency for each by-product was high (above 88% of the theoretical) and further confirmed on the blend of residues (nearly 52g/L ethanol). These results demonstrated for the first time that the co-conversion of multiple waste streams is a promising option for second generation ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. What are the governing processes during low-flows in a chalk catchment?

    NASA Astrophysics Data System (ADS)

    Lubega Musuuza, Jude; Coxon, Gemma; Hutton, Chris; Howden, Nicholas; Woods, Ross; Freer, Jim; Wagener, Thorsten

    2016-04-01

    Low flows are important because they lead to the prioritisation of different consumptive water usages, imposition of restrictions and bans, raising of water tariffs and higher production costs to industry. The partitioning of precipitation into evaporation, storage and runoff depends on the local variability in meteorological variables and site-specific characteristics e.g., topography, soils and vegetation. The response of chalk catchments to meteorological forcing especially precipitation is of particular interest because of the preferential flow through the weathered formation. This makes the observed stream discharge groundwater-dominated and hence, out of phase with precipitation. One relevant question is how sensitive the low flow characteristics of such a chalk catchment is to changes in climate and land use. It is thus important to understand all the factors that control low stream discharge periods. In this study we present the results from numerical sensitivity analysis experiments performed with a detailed physically-based model on the Kennet, a sub-catchment of the River Thames, in the UK during the historical drought years of the 1970's.

  5. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  6. Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing.

    PubMed

    Oechslin, Mathias S; Gschwind, Markus; James, Clara E

    2018-04-01

    As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.

  7. Data Streams: An Overview and Scientific Applications

    NASA Astrophysics Data System (ADS)

    Aggarwal, Charu C.

    In recent years, advances in hardware technology have facilitated the ability to collect data continuously. Simple transactions of everyday life such as using a credit card, a phone, or browsing the web lead to automated data storage. Similarly, advances in information technology have lead to large flows of data across IP networks. In many cases, these large volumes of data can be mined for interesting and relevant information in a wide variety of applications. When the volume of the underlying data is very large, it leads to a number of computational and mining challenges: With increasing volume of the data, it is no longer possible to process the data efficiently by using multiple passes. Rather, one can process a data item at most once. This leads to constraints on the implementation of the underlying algorithms. Therefore, stream mining algorithms typically need to be designed so that the algorithms work with one pass of the data. In most cases, there is an inherent temporal component to the stream mining process. This is because the data may evolve over time. This behavior of data streams is referred to as temporal locality. Therefore, a straightforward adaptation of one-pass mining algorithms may not be an effective solution to the task. Stream mining algorithms need to be carefully designed with a clear focus on the evolution of the underlying data. Another important characteristic of data streams is that they are often mined in a distributed fashion. Furthermore, the individual processors may have limited processing and memory. Examples of such cases include sensor networks, in which it may be desirable to perform in-network processing of data stream with limited processing and memory [1, 2]. This chapter will provide an overview of the key challenges in stream mining algorithms which arise from the unique setup in which these problems are encountered. This chapter is organized as follows. In the next section, we will discuss the generic challenges that stream mining poses to a variety of data management and data mining problems. The next section also deals with several issues which arise in the context of data stream management. In Sect. 3, we discuss several mining algorithms on the data stream model. Section 4 discusses various scientific applications of data streams. Section 5 discusses the research directions and conclusions.

  8. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Water requirements of the styrene, butadiene and synthetic-rubber industries

    USGS Publications Warehouse

    Durfor, Charles N.

    1963-01-01

    About 710 million gallons of makeup water is withdrawn daily by the styrene, butadiene, styrene-butadiene rubber (SBR), and specialty-rubber industries; 88 percent of this water is used only for once-through cooling. About 429 million gallons of water daily (mgd) is withdrawn by the butadiene industry; 158 ragd is withdrawn by the styrene industry; 94 mgd is used to make special-purpose synthetic rubber; and 29 mgd is used in the direct manufacture of SBR. The amount of makeup water withdrawn to produce SBR ranges from 11,400 to 418,000 gallons per long ton of finished rubber. The amount of makeup water withdrawn depends upon the type of rubber, the processes used to make SBR and its intermediates (styrene and butadiene), and the availability of water at the styrene, butadiene, and SBR plants. The amount of makeup water used to make styrene ranged from 2.19 to 123 gallons per pound; to make butadiene, ranged from 5.38 to 22.0 gallons per pound; and in the direct manufacture of SBR, ranged from 0.883 to 10.2 gallons per pound of finished rubber. The amount of makeup water withdrawn for use in the manufacture of special-purpose synthetic rubber ranged from 8.45 to 104 gallons per pound. About 64 percent of the makeup water was obtained from salty water sources. These waters, which were used only in once-through cooling, contained as much as 35,000 ppm of dissolved solids. About 26 percent of the makeup water was obtained from fresh-water streams and lakes, and most of the other makeup waters were obtained from ground water. Less than 1 percent of the makeup water was obtained from reprocessed municipal sewage. Most makeup water from fresh-water streams, lakes, and wells contained less than 1,000 ppm of dissolved solids, and most makeup water used in the manufacture of SBR contained less than 500 ppm of dissolved solids. The maximum hardness of the untreated fresh makeup waters; used in the manufacture of SBR was less than 500 ppm. About 97 percent of the makeup water withdrawn was discharged to surface waters; the warmed salty waters were returned to their source. The remaining 3 percent, or about 23.6 mgd, of makeup water was used consumptively. The styrene industry consumptively used about 2.0 percent of its intake; the butadiene industry, about 4.5 percent; the specialty-rubber industry, about 9.1 percent; and the SBR industry, about 11 percent. The water shipped in the synthetic-rubber products increased the consumptive use of water by these industries.

  10. Process for the physical segregation of minerals

    DOEpatents

    Yingling, Jon C.; Ganguli, Rajive

    2004-01-06

    With highly heterogeneous groups or streams of minerals, physical segregation using online quality measurements is an economically important first stage of the mineral beneficiation process. Segregation enables high quality fractions of the stream to bypass processing, such as cleaning operations, thereby reducing the associated costs and avoiding the yield losses inherent in any downstream separation process. The present invention includes various methods for reliably segregating a mineral stream into at least one fraction meeting desired quality specifications while at the same time maximizing yield of that fraction.

  11. Analytic Strategies of Streaming Data for eHealth.

    PubMed

    Yoon, Sunmoo

    2016-01-01

    New analytic strategies for streaming big data from wearable devices and social media are emerging in ehealth. We face challenges to find meaningful patterns from big data because researchers face difficulties to process big volume of streaming data using traditional processing applications.1 This introductory 180 minutes tutorial offers hand-on instruction on analytics2 (e.g., topic modeling, social network analysis) of streaming data. This tutorial aims to provide practical strategies of information on reducing dimensionality using examples of big data. This tutorial will highlight strategies of incorporating domain experts and a comprehensive approach to streaming social media data.

  12. Nitrogen processing by grazers in a headwater stream: riparian connections

    DOE PAGES

    Hill, Walter R.; Griffiths, Natalie A.

    2016-10-19

    Primary consumers play important roles in the cycling of nutrients in headwater streams, storing assimilated nutrients in growing tissue and recycling them through excretion. Though environmental conditions in most headwater streams and their surrounding terrestrial ecosystems vary considerably over the course of a year, relatively little is known about the effects of seasonality on consumer nutrient recycling these streams. Here, we measured nitrogen accumulated through growth and excreted by the grazing snail Elimia clavaeformis (Pleuroceridae) over the course of 12 months in Walker Branch, identifying close connections between in-stream nitrogen processing and seasonal changes in the surrounding forest.

  13. Method and apparatus for separation of heavy and tritiated water

    DOEpatents

    Lee, Myung W.

    2001-01-01

    The present invention is a bi-thermal membrane process for separating and recovering hydrogen isotopes from a fluid containing hydrogen isotopes, such as water and hydrogen gas. The process in accordance with the present invention provides counter-current cold and hot streams of the fluid separated with a thermally insulating and chemically transparent proton exchange membrane (PEM). The two streams exchange hydrogen isotopes through the membrane: the heavier isotopes migrate into the cold stream, while the lighter isotopes migrate into the hot stream. The heavy and light isotopes are continuously withdrawn from the cold and hot streams respectively.

  14. A multistream model of visual word recognition.

    PubMed

    Allen, Philip A; Smith, Albert F; Lien, Mei-Ching; Kaut, Kevin P; Canfield, Angie

    2009-02-01

    Four experiments are reported that test a multistream model of visual word recognition, which associates letter-level and word-level processing channels with three known visual processing streams isolated in macaque monkeys: the magno-dominated (MD) stream, the interblob-dominated (ID) stream, and the blob-dominated (BD) stream (Van Essen & Anderson, 1995). We show that mixing the color of adjacent letters of words does not result in facilitation of response times or error rates when the spatial-frequency pattern of a whole word is familiar. However, facilitation does occur when the spatial-frequency pattern of a whole word is not familiar. This pattern of results is not due to different luminance levels across the different-colored stimuli and the background because isoluminant displays were used. Also, the mixed-case, mixed-hue facilitation occurred when different display distances were used (Experiments 2 and 3), so this suggests that image normalization can adjust independently of object size differences. Finally, we show that this effect persists in both spaced and unspaced conditions (Experiment 4)--suggesting that inappropriate letter grouping by hue cannot account for these results. These data support a model of visual word recognition in which lower spatial frequencies are processed first in the more rapid MD stream. The slower ID and BD streams may process some lower spatial frequency information in addition to processing higher spatial frequency information, but these channels tend to lose the processing race to recognition unless the letter string is unfamiliar to the MD stream--as with mixed-case presentation.

  15. Customer-Focused E-Learning: The Industry.

    ERIC Educational Resources Information Center

    Barron, Tom

    2000-01-01

    Describes the trend toward customer-focused electronic learning by web retailers. Reasons for the shift include filling a support role, providing a service that competitors do not have, and adding to the revenue stream. (JOW)

  16. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  17. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  18. 40 CFR 227.13 - Dredged materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal or industrial wastes or by runoff from terrestrial sources such as agricultural lands. (b) Dredged... energy such as streams with large bed loads or coastal areas with shifting bars and channels; or (2...

  19. A Review of the Pollution Abatement Programs Relating to the Petroleum Refinery Industry in the Great Lakes Basin

    DTIC Science & Technology

    1982-11-01

    of spent acids and caustics . The oil content of disposed wastes is 6,200 metric tons per year or approximately .01% of the average crude refinery rate...ALKYLATION "The major discharge from sulfuric acid alkylation are the spent caustics from the neutralization of hydrocarbon streams leaving the sulfuric... spent caustic waste stream. Any leaks or spills that involve loss of fluorides constitute a serious and difficult pollution problem. Formation of

  20. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  1. COLA: Optimizing Stream Processing Applications via Graph Partitioning

    NASA Astrophysics Data System (ADS)

    Khandekar, Rohit; Hildrum, Kirsten; Parekh, Sujay; Rajan, Deepak; Wolf, Joel; Wu, Kun-Lung; Andrade, Henrique; Gedik, Buğra

    In this paper, we describe an optimization scheme for fusing compile-time operators into reasonably-sized run-time software units called processing elements (PEs). Such PEs are the basic deployable units in System S, a highly scalable distributed stream processing middleware system. Finding a high quality fusion significantly benefits the performance of streaming jobs. In order to maximize throughput, our solution approach attempts to minimize the processing cost associated with inter-PE stream traffic while simultaneously balancing load across the processing hosts. Our algorithm computes a hierarchical partitioning of the operator graph based on a minimum-ratio cut subroutine. We also incorporate several fusion constraints in order to support real-world System S jobs. We experimentally compare our algorithm with several other reasonable alternative schemes, highlighting the effectiveness of our approach.

  2. Source Apportionment of Suspended Sediment Sources using 137Cs and 210Pbxs

    NASA Astrophysics Data System (ADS)

    Lamba, J.; Karthikeyan, K.; Thompson, A.

    2017-12-01

    A study was conducted in the Pleasant Valley Watershed (50 km 2) in South Central Wisconsin to better understand sediment transport processes using sediment fingerprinting technique. Previous studies conducted in this watershed showed that resuspension of fine sediment deposited on the stream bed is an important source of suspended sediment. To better understand the role of fine sediment deposited on the stream bed, fallout radionuclides,137Cs and 210Pbxs were used to determine relative contribution to suspended sediment from in-stream (stream bank and stream bed) and upland sediment sources. Suspended sediment samples were collected during the crop growing season. Potential sources of suspended sediment considered in this study included cropland, pasture and in-stream (stream bed and stream bank). Suspended sediment sources were determined at a subwatershed level. Results of this study showed that in-stream sediment sources are important sources of suspended sediment. Future research should be conducted to better understand the role of legacy sediment in watershed-level sediment transport processes.

  3. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.

    PubMed

    Wang, Quanxin; Burkhalter, Andreas

    2013-01-23

    Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.

  4. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... stream is not introduced as or with the primary fuel, a temperature monitoring device in the fire box...-throughput transfer racks, as applicable, shall meet the requirements of this section. (2) The vent stream... thermal units per hour) or greater. (ii) A boiler or process heater into which the vent stream is...

  5. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  6. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  7. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  8. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... includes direct-contact cooling water. Spent caustic waste stream means the continuously flowing process... compounds from process streams, typically cracked gas. The spent caustic waste stream does not include spent..., and the C4 butadiene storage equipment; and spent wash water from the C4 crude butadiene carbonyl wash...

  9. M-Stream Deficits and Reading-Related Visual Processes in Developmental Dyslexia

    ERIC Educational Resources Information Center

    Boden, Catherine; Giaschi, Deborah

    2007-01-01

    Some visual processing deficits in developmental dyslexia have been attributed to abnormalities in the subcortical M stream and/or the cortical dorsal stream of the visual pathways. The nature of the relationship between these visual deficits and reading is unknown. The purpose of the present article was to characterize reading-related perceptual…

  10. Streaming data analytics via message passing with application to graph algorithms

    DOE PAGES

    Plimpton, Steven J.; Shead, Tim

    2014-05-06

    The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less

  11. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, I.C.; Baker, R.W.

    1985-09-17

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O[sub 2]/N[sub 2] selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15 [times] 10[sup [minus]8] cm[sup 3]-cm/cm[sup 2]-sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible. 2 figs.

  12. Method and apparatus for producing oxygen and nitrogen and membrane therefor

    DOEpatents

    Roman, Ian C.; Baker, Richard W.

    1985-01-01

    Process and apparatus for the separation and purification of oxygen and nitrogen as well as a novel membrane useful therein are disclosed. The process utilizes novel facilitated transport membranes to selectively transport oxygen from one gaseous stream to another, leaving nitrogen as a byproduct. In the method, an oxygen carrier capable of reversibly binding molecular oxygen is dissolved in a polar organic membrane which separates a gaseous feed stream such as atmospheric air and a gaseous product stream. The feed stream is maintained at a sufficiently high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane, while the product stream is maintained at a sufficiently low oxygen pressure to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. In an alternate mode of operation, the feed stream is maintained at a sufficiently low temperature and high oxygen pressure to keep the oxygen carrier in its oxygenated form at the interface of the feed stream with the membrane and the product stream is maintained at a sufficiently high temperature to keep the carrier in its deoxygenated form at the interface of the product stream with the membrane. Under such conditions, the carrier acts as a shuttle, picking up oxygen at the feed side of the membrane, diffusing across the membrane as the oxygenated complex, releasing oxygen to the product stream, and then diffusing back to the feed side to repeat the process. Exceptionally and unexpectedly high O.sub.2 /N.sub.2 selectivity, on the order of 10 to 30, is obtained, as well as exceptionally high oxygen permeability, on the order of 6 to 15.times.10.sup.-8 cm.sup.3 -cm/cm.sup.2 -sec-cmHg, as well as a long membrane life of in excess of 3 months, making the process commercially feasible.

  13. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.

    PubMed

    Kumari, Deepika; Qian, Xin-Yi; Pan, Xiangliang; Achal, Varenyam; Li, Qianwei; Gadd, Geoffrey Michael

    2016-01-01

    Rapid urbanization and industrialization resulting from growing populations contribute to environmental pollution by toxic metals and radionuclides which pose a threat to the environment and to human health. To combat this threat, it is important to develop remediation technologies based on natural processes that are sustainable. In recent years, a biomineralization process involving ureolytic microorganisms that leads to calcium carbonate precipitation has been found to be effective in immobilizing toxic metal pollutants. The advantage of using ureolytic organisms for bioremediating metal pollution in soil is their ability to immobilize toxic metals efficiently by precipitation or coprecipitation, independent of metal valence state and toxicity and the redox potential. This review summarizes current understanding of the ability of ureolytic microorganisms for carbonate biomineralization and applications of this process for toxic metal bioremediation. Microbial metal carbonate precipitation may also be relevant to detoxification of contaminated process streams and effluents as well as the production of novel carbonate biominerals and biorecovery of metals and radionuclides that form insoluble carbonates. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Industrial energy-efficiency improvement program

    NASA Astrophysics Data System (ADS)

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.

  15. 40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...

  16. 40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...

  17. 40 CFR 63.11970 - What are my initial compliance requirements for process wastewater?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for process wastewater? 63.11970 Section 63.11970 Protection of Environment ENVIRONMENTAL... What are my initial compliance requirements for process wastewater? (a) Demonstration of initial compliance for process wastewater streams that must be treated. For each process wastewater stream that must...

  18. How to Increase Value in the Footwear Supply Chain

    NASA Astrophysics Data System (ADS)

    Fornasiero, Rosanna; Tescaro, Mauro; Scarso, Enrico; Gottardi, Giorgio

    The Lean approach has been implemented in many different sectors as a methodology to improve industrial performance at company level. In the latest years this approach has been further developed in literature and in practice to integrate the principles of agility, adaptability and the mass customization paradigm where product and services have to be designed together to meet specific requirements, and where value originated by the supply chain enhance the value of single company thanks to the use of ICT and remote control. In this paper we analyze the Beyond-Lean paradigm and propose a path for companies in the footwear sector to improve their performance based on high-value-added products and processes. A detailed process analysis based on Value Stream Mapping is used to define criticalities and suggest improvements paths both at technological and organizational level.

  19. High precision laser processing of sensitive materials by Microjet

    NASA Astrophysics Data System (ADS)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  20. Integrating complex business processes for knowledge-driven clinical decision support systems.

    PubMed

    Kamaleswaran, Rishikesan; McGregor, Carolyn

    2012-01-01

    This paper presents in detail the component of the Complex Business Process for Stream Processing framework that is responsible for integrating complex business processes to enable knowledge-driven Clinical Decision Support System (CDSS) recommendations. CDSSs aid the clinician in supporting the care of patients by providing accurate data analysis and evidence-based recommendations. However, the incorporation of a dynamic knowledge-management system that supports the definition and enactment of complex business processes and real-time data streams has not been researched. In this paper we discuss the process web service as an innovative method of providing contextual information to a real-time data stream processing CDSS.

Top