Science.gov

Sample records for industrial scale coal

  1. Coal industry annual 1997

    SciTech Connect

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  2. Coal industry annual 1996

    SciTech Connect

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  3. Coal Industry Annual 1995

    SciTech Connect

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  4. Coal industry annual 1993

    SciTech Connect

    Not Available

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  5. Development and Testing of Industrial Scale Coal Fired Combustion System, Phase 3

    SciTech Connect

    Bert Zauderer

    1998-09-30

    Coal Tech Corp's mission is to develop, license & sell innovative, lowest cost, solid fuel fired power systems & total emission control processes using proprietary and patented technology for domestic and international markets. The present project 'DEVELOPMENT & TESTING OF INDUSTRIAL SCALE, COAL FIRED COMBUSTION SYSTEM, PHASE 3' on DOE Contract DE-AC22-91PC91162 was a key element in achieving this objective. The project consisted of five tasks that were divided into three phases. The first phase, 'Optimization of First Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor', consisted of three tasks, which are detailed in Appendix 'A' of this report. They were implemented in 1992 and 1993 at the first generation, 20 MMBtu/hour, combustor-boiler test site in Williamsport, PA. It consisted of substantial combustor modifications and coal-fired tests designed to improve the combustor's wall cooling, slag and ash management, automating of its operation, and correcting severe deficiencies in the coal feeding to the combustor. The need for these changes was indicated during the prior 900-hour test effort on this combustor that was conducted as part of the DOE Clean Coal Program. A combination of combustor changes, auxiliary equipment changes, sophisticated multi-dimensional combustion analysis, computer controlled automation, and series of single and double day shift tests totaling about 300 hours, either resolved these operational issues or indicated that further corrective changes were needed in the combustor design. The key result from both analyses and tests was that the combustor must be substantially lengthened to maximize combustion efficiency and sharply increase slag retention in the combustor. A measure of the success of these modifications was realized in the third phase of this project, consisting of task 5 entitled: 'Site Demonstration with the Second Generation 20 MMBtu/hr Air-Cooled Slagging Coal Tech Combustor'. The details of the task 5 effort are

  6. Baseload, industrial-scale wind power: An alternative to coal in China

    SciTech Connect

    Lew, D.J.; Williams, R.H.; Xie Shaoxiong; Zhang Shihui

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  7. Industrial- and utility-scale coal-water fuel demonstration projects

    SciTech Connect

    Hathi, V.; Ramezan, M.; Winslow, J.

    1993-01-01

    Laboratory-, pilot-, and large-scale CWF combustion work has been performed primarily in Canada, China, Italy, Japan, Korea, Sweden, and the United States, and several projects are still active. Sponsors have included governments, utilities and their research arms, engine manufacturers, equipment suppliers, and other organizations in attempts to show that CWF is a viable alternative to premium fuels, both in cost and performance. The objective of this report is to present brief summaries of past and current industrial- and utility-scale CWF demonstrations in order to determine what lessons can be learned from these important, highly visible projects directed toward the production of steam and electricity. Particular emphasis is placed on identifying the CWF characteristics; boiler type, geometry, size, and location; length of the combustion tests; and the results concerning system performance, including emissions.

  8. Employment opportunities in the coal industry

    SciTech Connect

    McMillan, T.R.

    1985-02-01

    Examining the short- and long-term job prospects for engineers in the coal industry might include looking at coal tonnage projections, future export markets, federal regulations, and the decrease in overall graduates. But coal is the US' most competitive basic industry. As such, why not go back to basics. That is, there are three basic challenges that need to be faced by students, faculty, and members of the coal industry. These challenges are counseling, career placement, and professionalism.

  9. Canada's coal industry: full swing ahead

    SciTech Connect

    Stone, K.

    2007-03-15

    The article presents facts and figures about Canada's coal industry in 2006 including production, exports, imports, mines in operation, the Genesee 3 coal-fired generation unit, the Dodds-Roundhill Gasification Project, and new coal mine development plans. The outlook for 2007 is positive, with coal production expected to increase from 67 Mt in 2006 to 70 Mt in 2007 and exports expected to increase from 28 Mt in 2006 to 30 Mt in 2007.

  10. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  11. 1982-1983 world coal industry report and directory

    SciTech Connect

    Not Available

    1982-01-01

    The coal industry in Australia, Canada, China, West Germany, India, Poland, South Africa, the USSR, England, and the United States are reported. The directory listings for each country are a compilation of information from government ministries, coal boards, bureaus of mines, and individual coal mining companies. More than 100 individual coal mines are listed, along with such information as coal seam thickness, coal analysis, and major equipment. (JMT)

  12. Status and outlook of industrial coal briquetting technology in China

    SciTech Connect

    Liu, S.; Xu, Z.; Li, W.; Tian, B.

    1997-12-31

    Considering that the lump coal supply falls short of demands, great amounts of fine coal and slime are stockpiled, waste energy is extensive, and environmental pollution is serious, this paper summarizes the present situation of industrial coal briquetting technologies and their applications, and evaluates the advantages and disadvantages of several different coal briquette technologies widely used. The authors think that the energetic development of industrial coal briquetting technology is an effective and feasible option to fully utilize fine coal and slime, mitigate the contradiction between supply and demand for lump coal, reduce the production cost of users, as well as decrease and control environmental pollution caused by coal utilization. It is a practical solution for clean coal in China. At present, the research for developing industrial coal briquetting technologies is in the selection and adoption of suitable binders which need dry processing and can produce high strength and waterproof briquettes.

  13. Research on the competitiveness and development strategy of china's modern coal chemical industry

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Han, Y. J.; Yu, Z. F.

    2016-08-01

    China's modern coal chemical industry has grown into a certain scale after over a decade of development, and remarkable progress has been made in key technologies. But as oil price collapsed since 2015, the economic benefit of the industry also slumped, with loud controversies in China over the necessity of modern coal chemical industry. The research believes that the modern coal chemical industry plays a positive role in the clean and sustainable exploitation of coal in China. It makes profit when oil price is no lower than 60/bbl, and outperforms petrochemical in terms of cost effectiveness when the price is between 60/bbl and 80/bbl. Given the low oil price and challenges posed by environmental protection and water restraints, we suggest that the state announce a guideline quickly, with adjusted tax policies and an encouragement to technological innovation, so that the modern coal chemical industry in China can grow sound and stable.

  14. Industrial scale gene synthesis.

    PubMed

    Notka, Frank; Liss, Michael; Wagner, Ralf

    2011-01-01

    The most recent developments in the area of deep DNA sequencing and downstream quantitative and functional analysis are rapidly adding a new dimension to understanding biochemical pathways and metabolic interdependencies. These increasing insights pave the way to designing new strategies that address public needs, including environmental applications and therapeutic inventions, or novel cell factories for sustainable and reconcilable energy or chemicals sources. Adding yet another level is building upon nonnaturally occurring networks and pathways. Recent developments in synthetic biology have created economic and reliable options for designing and synthesizing genes, operons, and eventually complete genomes. Meanwhile, high-throughput design and synthesis of extremely comprehensive DNA sequences have evolved into an enabling technology already indispensable in various life science sectors today. Here, we describe the industrial perspective of modern gene synthesis and its relationship with synthetic biology. Gene synthesis contributed significantly to the emergence of synthetic biology by not only providing the genetic material in high quality and quantity but also enabling its assembly, according to engineering design principles, in a standardized format. Synthetic biology on the other hand, added the need for assembling complex circuits and large complexes, thus fostering the development of appropriate methods and expanding the scope of applications. Synthetic biology has also stimulated interdisciplinary collaboration as well as integration of the broader public by addressing socioeconomic, philosophical, ethical, political, and legal opportunities and concerns. The demand-driven technological achievements of gene synthesis and the implemented processes are exemplified by an industrial setting of large-scale gene synthesis, describing production from order to delivery.

  15. Determining the research needs of the surface coal mining industry

    SciTech Connect

    Zell, L.M.

    1982-12-01

    This paper reveals avenues open to the coal industry to help gain technology and research information needed to meet the requirements of the Surface Mining Control and Reclamation Act of 1977. It discusses projects of the Department of Energy's (DOE) Office of Coal Mining and the Mining and Reclamation Council of America (MARC) to help meet the environmental needs as well as the coal industry needs.

  16. Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation (typical EBT Coal Hopper Car) with scale. 3 Bay Steel Hopper Car with side extensions raising coal carrying capacity to 80,000 pounds. Note cars on either side lack extensions limiting their coal capacity to 70,000 pounds - East Broad Top Railroad & Coal Company, State Route 994, West of U.S. Route 522, Rockhill Furnace, Huntingdon County, PA

  17. Development and testing of industrial scale coal fired combustion systems, Phase 3. Sixth quarterly technical progress report, April 1, 1993--June 30, 1993

    SciTech Connect

    Zauderer, B.

    1993-09-22

    The most significant effort in the quarter was the completion of the conversion of the exit nozzle from adiabatic operation to air cooled operation. This conversion was implemented midway in the task 2 test effort, and the final two tests in task 2 were with the cooled nozzle. It performed as per design. The second significant result was the successful implementation of a computer controlled combustor wall cooling procedure. The hot side combustor liner temperature can now be maintained within a narrow range of less than 5OF at the nominal wall temperature of 2000F. This is an essential requirement for long term durability of the combustor wall. The first tests with the computer control system were implemented in June 1993. A third development in this period was the decision to replace the coal feeder that had been in use since coal fired operation began in late 1987. Since that time, this commercial device has been modified numerous times in order to achieve uniform coal feed. Uniform feed was achieved in 1991. However, the feeder operation was not sufficiently reliable for commercial use. The new feeder has the same design as the sorbent feeders that have been successfully used since 1987. This design has much better speed control and it can be rapidly restarted when the feed auger becomes jammed with tramp material. The last task 2 test was a long duration coal fired test with almost 12 hours of coal fired operation until the 4 ton coal bin was empty. It was the longest coal firing period of the task 2 tests. The exit nozzle cooling maintained the wall temperature in the desired operating range.

  18. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  19. Commissioning an Engineering Scale Coal Gasifier

    SciTech Connect

    Reid, Douglas J.; Bearden, Mark D.; Cabe, James E.

    2010-07-01

    This report explains the development, commissioning, and testing of an engineering scale slagging coal gasifier at PNNL. The initial objective of this project was to commission the gasifier with zero safety incidents. The commissioning work was primarily an empirical study that required an engineering design approach. After bringing the gasifier on-line, tests were conducted to assess the impact of various operating parameters on the synthesis gas (syngas) product composition. The long-term intent of this project is to produce syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in catalyst, materials, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for greater than 4 hours using coal feedstock. In addition, alternate designs that allow for increased flexibility regarding the fuel sources that can be used for syngas production is desired. Continued modifications to the fuel feed system will be pursued to address these goals. Alternative feed mechanisms such as a coal/methanol slurry are being considered.

  20. Preliminary assessment of coal-based industrial energy systems

    SciTech Connect

    Not Available

    1980-01-01

    This report presents the results of a study, performed by Mittelhauser Corp. and Resource Engineering, Inc. to identify the potential economic, environmental, and energy impacts of possible New Source Performance Standards for industrial steam generators on the use of coal and coal-derived fuels. A systems-level approach was used to take mine-mouth coal and produce a given quantity of heat input to a new boiler at an existing Chicago industrial-plant site. The technologies studied included post-combustion clean-up, atmospheric fluidized-bed combustion, solvent-refined coal liquids, substitute natural gas, and low-Btu gas. Capital and operating costs were prepared on a mid-1985 basis from a consistent set of economic guidelines. The cases studied were evaluated using three levels of air emission controls, two coals, two boiler sizes, and two operating factors. Only those combinations considered likely to make a significant impact on the 1985 boiler population were considered. The conclusions drawn in the report are that the most attractive applications of coal technology are atmospheric fluidized-bed combustion and post-combustion clean-up. Solvent-refined coal and probably substitute natural gas become competitive for the smaller boiler applications. Coal-derived low-Btu gas was found not to be a competitive boiler fuel at the sizes studied. It is recommended that more cases be studied to broaden the applicability of these results.

  1. Digging Deeper: Crisis Management in the Coal Industry

    ERIC Educational Resources Information Center

    Miller, Barbara M.; Horsley, J. Suzanne

    2009-01-01

    This study explores crisis management/communication practices within the coal industry through the lens of high reliability organization (HRO) concepts and sensemaking theory. In-depth interviews with industry executives and an analysis of an emergency procedures manual were used to provide an exploratory examination of the status of crisis…

  2. Coal combustion: Science and technology of industrial and utility applications

    SciTech Connect

    Feng, J.

    1988-01-01

    Despite the competition of oil and gas and the increasing importance of nuclear power, coal is still one of the main sources of energy in the world. In some regions of the world, the reserve of oil and natural gas is nearly depleted. The supply of such fuels relies on shipment from foreign countries, and may be vulnerable to political crisis, while coals are still abundant and easily available. Therefore, the technology of burning coal for energy, which seems rather old, has not lost its vitality and is in fact developing fast. Because of industry development, especially in developing countries, more and more coal is burned each year. If coal is not burned properly, it may pollute the environment and affect the ecological balance of the surrounding regions. Great attention has been paid to curb these issues, and significant progress has been achieved. Technology of desulfurization of flue gases, low nitrogen oxide coal burners, and also the technology of clean burning of coal by fluidized-bed combustion have all been developed and commercialized. Further improvements are under development. At the same time, new techniques have been used in the measurements and diagnoses of coal combustion. These new techniques facilitate more efficient and cleaner burning of coal. Although coal combustion is a very complicated physiochemical phenomenon, the use of the computer enables and pushes forward the theoretical analysis of coal combustion. Besides, the mathematical modelling of the coal combustion process is also a fast progressing field of research and encouraging results have been obtained by scientists throughout the world. This book compiles the papers presented in the conference on the subject of clean cool technology and fluidized-bed combustion.

  3. Development and testing of industrial scale, coal fired combustion system, Phase 3. Third quarterly technical progress report, July 1, 1992--September 30, 1992

    SciTech Connect

    Zauderer, B.

    1992-10-17

    In the third quarter of calendar year 1992, work continued on Task l. ``Design, Installation, and Shakedown of the Modifications to the 20 MMBtu/hr Air Cooled Combustor and Boiler Components``. Task 2. ``Preliminary Systems Tests`` and Task 4 ``Economics and Commercialization Plan``. In task 1, the design of the planned modifications were mostly completed. The equipment to implement these modifications was procured, and most of the installation of this equipment was completed. Finally, a series of two shakedown tests was performed to test the operability of these modifications. As previously reported, no modifications to the combustor were made. All the changes were improvements in overall combustor-boiler operation, maintenance and repair of components, and addition of diagnostics. In addition, during shakedown tests of these modifications the need for additional improvements or modifications became apparent, and these were or a-re being implemented. The major improvements focused on coal and sorbent storage, transport, and combustor injection, real time control of ash deposition in the boiler, unproved combustor wall cooling, expanded computer control and diagnostics, and refurbishment of the scrubber and combustor temperature measurements. AD this work has been described in a detailed topical report on task 1, which was recently submitted to DOE, and it will not be repeated here. Instead the focus of this report will be on the analysis of the test results obtained in the two shakedown tests. This work was partly reported in the 7th 8th and 9th monthly reports. An important result of these tests has been the observation of high (over 85%) SO{sub 2} reduction obtained with sorbent injection in the combustor.

  4. Pyrite problems in the coal mining industry. Information circular/1994

    SciTech Connect

    Miron, Y.

    1993-09-01

    The presence of pyrite (FeS2) in coal can cause or contribute to several problems for the coal mining industry. These problems, which include spontaneous combustion, roof falls, floor heave, and accidental explosions in coal surface mining when ammonium nitrate-fuel oil (ANFO) explosives are used, result from pyrite oxidation. Pyrite oxidizes exothermically in the presence of air and moisture to form a large variety of products, including hydrated ferrous and ferric sulfates, and sulfuric acid. Some of the products are reactive chemicals and strong oxidants. The volume of many of these oxidation products exceeds the original volume of the pyrite; as a result, the adjacent coal disintegrates and its surface increases, rendering it more susceptible to oxidation. The heat from pyrite oxidation raises the temperature of the adjacent coal, accelerating the oxidation and self-heating rates of the coal. Additional hazards are fires or explosions caused by the frictional ignition of methane when the pyrite in the coal is struck by a cutting bit during mining.

  5. Program for large-scale underground-coal-gasification tests

    NASA Astrophysics Data System (ADS)

    Hammesfahr, F. W.; Winter, P. L.

    1982-11-01

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. An effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities.

  6. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  7. Managing Scarce Water Resources in China's Coal Power Industry.

    PubMed

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  8. Managing Scarce Water Resources in China's Coal Power Industry

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  9. New petrochemical compositions for use in the coal industry

    SciTech Connect

    D.O. Safieva; E.V. Surov; O.G. Safiev

    2008-12-15

    Various aspects of the use of antifreezing agents in the coal industry are considered. It has been found that, unlike previously proposed compositions, these agents can be prepared based on the products of a single process, the vacuum distillation of fuel oil.

  10. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    DOE PAGESBeta

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂more » per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.« less

  11. Early opportunities of CO₂ geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, R. T.; Davidson, C. L.

    2014-12-31

    Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO₂ emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO₂ sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation. These emission sources together emit 430 million tons CO₂ per year, of which about 30% are emit high-purity and pure CO₂ (CO₂ concentration >80% and >98.5% respectively). Four typical source-sink pairs are chosen for techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO₂ capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO₂. When a 15USD/t CO₂ tax and 20USD/t for CO₂ sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  12. Development program to support industrial coal gasification. Quarterly report 1

    SciTech Connect

    1982-01-15

    The Development Program to Support Industrial Coal Gasification is on schedule. The efforts have centered on collecting background information and data, planning, and getting the experimental program underway. The three principal objectives in Task I-A were accomplished. The technical literature was reviewed, the coals and binders to be employed were selected, and tests and testing equipment to be used in evaluating agglomerates were developed. The entire Erie Mining facility design was reviewed and a large portion of the fluidized-bed coal gasification plant design was completed. Much of the work in Task I will be experimental. Wafer-briquette and roll-briquette screening tests will be performed. In Task II, work on the fluidized-bed gasification plant design will be completed and work on a plant design involving entrained-flow gasifiers will be initiated.

  13. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    SciTech Connect

    Bauman, R.F.; Coless, L.A.; Davis, S.M.

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  14. Wood/coal cofiring in industrial stoker boilers

    SciTech Connect

    Cobb, J.T. Jr.; Elder, W.W.; Freeman, M.C.

    1999-07-01

    Realizing that a significant reduction in the global emissions of fossil carbon dioxide may require the installation of a wide variety of control technologies, options for large and small boilers are receiving attention. With over 1,500 coal-fired stoker boilers in the US, biomass co-firing is of interest, which would also open markets for waste wood which is presently landfilled at significant costs ranging from $20--200/ton. While much cofiring occurs inside the fence, where industrial firms burn wastes in their site boilers, other opportunities exist. Emphasis has been placed on stoker boilers in the northeastern US, where abundant supplies of urban wood waste are generally known to exist. Broken pallets form a significant fraction of this waste. In 1997, the cofiring of a volumetric mixture of 30% ground broken pallet material and 70% coal was demonstrated successfully at the traveling-grate stoker boilerplant of the Pittsburgh Brewing Company. Fourteen test periods, with various wood/coal mixtures blended on site, and two extended test periods, using wood/coal mixtures blended at the coal terminal and transported by truck to the brewery, were conducted. The 30% wood/70% coal fuel was conveyed through the feed system without difficulty, and combusted properly on the grate while meeting opacity requirements with low SO{sub 2} and NO{sub x} emissions. Efforts are underway to commercialize a wood/coal blend at the brewery, to identify specific urban wood supplies in the Pittsburgh region and to conduct a demonstration at a spreader stoker.

  15. Risk assessment relationships for evaluating effluents from coal industries.

    PubMed

    Cuddihy, R G

    1983-06-01

    Public awareness of the risks associated with traditional coal combustion and newer coal gasification and liquefaction industries is increasing. Assessing the health risks for people exposed to effluents from these industries generally involves four major steps: (1) characterizing the pollutant sources, (2) projecting the release and dispersion of toxic substances in workplaces and in the environment, (3) estimating their uptake by people through inhalation and ingestion and their contact with skin, and (4) evaluating their potential for causing health effects. Pollutants of special concern include toxic gases, carcinogenic organic compounds and trace metals. Relationships between the levels of pollutants released to the environment and the magnitudes of human exposures and methods of formulating exposure-dose-effect relationships for use in human risk assessment are discussed.

  16. Microcomputer based simulation of coal preparation plants: a planning and performance analysis tool for operating personnel in the coal industry

    SciTech Connect

    Chaves, M.M.

    1983-01-01

    The performance of a coal preparation plant can be simulated using an existing process simulation program and a large mainframe computer. Large computers, however, are not common in a preparation plant environment. The objective of this study was to transfer the simulation technology from a large scale mainframe computer environment to a small scale microcomputer environment. This was accomplished by logically decomposing and physically restructuring the existing program; adding interactive data entry/revision modules; providing a series of modules to control the execution of the individual programs; and adding the facility to review summary output on-line. The completed project was assessed by representatives from industry, government, and academia. The assessors state that the microcomputer based simulator is a valuable planning and analysis tool for design and operations engineers in the coal industry. The simulator created during this project utilized the microcomputer technolgy which was available in 1981-1982. Since that time, technological advances in the field of microcomputers have appeared in the marketplace. These advances involve extended memory capacities, higher density storage disks and faster execution times.

  17. The role of coal in industrialization: A case study of Nigeria

    SciTech Connect

    Akarakiri, J.B. )

    1989-01-01

    Coal is a mineral matter found in layers or beds in sedimentary rocks. It is a very highly variable substance. In addition to the variations from lignite to bituminous and anthracite, there are vast differences in its heating value, amount of volatiles, sulfur, moisture and so on. The chemical and physical properties of coal make it an important industrial raw material. There is proven 639 million tonnes of coal reserves in Nigeria. This paper examines the potential and current role of coal in the industrialization of Nigeria. Industries are now dependent on fuel oil as a source of fuel because of its economic and technological advantages over coal. Coal is a source of industrial energy for the future after the known oil reserves might have been exhausted. In the short term, coal can be used as a material for chemicals, iron and steel production as well as a substitute for wood energy in the process of industrialization.

  18. Economics of the coal industry east of the Mississippi, 1973-1982

    USGS Publications Warehouse

    Bhagwat, S.B.

    1987-01-01

    Government regulations on health, safety and environment have been poppular blamed for the declining productivity in U.S. coal mines since 1970. The stagnation in the coal industry east of the Mississippi is alleged to have been caused by this declining productivity and by the growth of cheaper and cleaner coal production west of the Mississippi. Economic evidence suggests, however, that productivity declines were more due to a relative lowering of labor costs in comparison with coal prices and due to work stoppages. The development of western coals fields was spurred by growth in local demand and had only a relatively small impact on coal production east of the Mississippi. Problems of the eastern coal industry are rooted mainly in slow economic growth in eastern U.S. which must be addressed in the long-term interests of the eastern coal industry. ?? 1987.

  19. Early opportunities of CO2 geological storage deployment in coal chemical industry in China

    SciTech Connect

    Wei, Ning; Li, Xiaochun; Liu, Shengnan; Dahowski, Robert T.; Davidson, Casie L.

    2014-11-12

    Abstract: Carbon dioxide capture and geological storage (CCS) is regarded as a promising option for climate change mitigation; however, the high capture cost is the major barrier to large-scale deployment of CCS technologies. High-purity CO2 emission sources can reduce or even avoid the capture requirements and costs. Among these high-purity CO2 sources, certain coal chemical industry processes are very important, especially in China. In this paper, the basic characteristics of coal chemical industries in China is investigated and analyzed. As of 2013 there were more than 100 coal chemical plants in operation or in late planning stages. These emission sources together emit 430 million tons CO2 per year, of which about 30% are emit high-purity and pure CO2 (CO2 concentration >80% and >99% respectively).Four typical source-sink pairs are studied by a techno-economic evaluation, including site screening and selection, source-sink matching, concept design, and experienced economic evaluation. The technical-economic evaluation shows that the levelized cost of a CO2 capture and aquifer storage project in the coal chemistry industry ranges from 14 USD/t to 17 USD/t CO2. When a 15USD/t CO2 tax and 15USD/t for CO2 sold to EOR are considered, the levelized cost of CCS project are negative, which suggests a net economic benefit from some of these CCS projects. This might provide China early opportunities to deploy and scale-up CCS projects in the near future.

  20. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  1. Some Problems of Industrial Scale-Up.

    ERIC Educational Resources Information Center

    Jackson, A. T.

    1985-01-01

    Scientific ideas of the biological laboratory are turned into economic realities in industry only after several problems are solved. Economics of scale, agitation, heat transfer, sterilization of medium and air, product recovery, waste disposal, and future developments are discussed using aerobic respiration as the example in the scale-up…

  2. Non traditional uses of coal ash: Steel industry applications

    SciTech Connect

    Hauke, D.

    1997-09-01

    Coal fly ash is used by the steel industry as an insulating cover to retain heat in ladles of molten steel and as a slag foamer in electric arc furnaces (EAFs) to prolong the life of consumable components and to aid extraction of impurities from the molten steel. The fly ashes that are used in the steel industry are generated from stoker boilers and have a relatively wide particle-size distribution. The powder-type materials used by steel mills to insulate ladles of molten metal include rice hull ash, a heat treated montmorillonite clay mineral (calcined clay), a fly ash from a stoker boiler called LadleJacket, and coke breeze. These ladle insulators should be flowable, coarse, and have a wide particle-size distribution. A study to compare the insulating characteristics of ladle insulators, conducted by the American Foundrymen`s Society Cast Metals Institute, indicated that the ladle insulated with LadleJacket exhibited a lower rate of heat loss than either the rice hull ash or calcined clay. To prolong the life of carbon electrodes and refractory in EAFs and to promote extraction of contaminants from the steel, carbon-based ingredients are injected into the slag to cause it to foam. Typically, high-carbon products such as coke breeze (coke fines) are used as slag foamers. A new product called Carbon Plus, which is a coarse, high-carbon fly ash from a coal-fired stoker boiler, is now being used as a slag foamer in the steel industry.

  3. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  4. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs

    NASA Astrophysics Data System (ADS)

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results indicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (<0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.

  5. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs.

    PubMed

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results inidicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (< 0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively. PMID:12683639

  6. Time scales of organic contaminant dissolution from complex source zones: coal tar pools vs. blobs.

    PubMed

    Eberhardt, Christina; Grathwohl, Peter

    2002-11-01

    Groundwater contamination due to complex organic mixtures such as coal tar, creosote and fuels is a widespread problem in industrialized regions. Although most compounds in these mixtures are biodegradable, the contaminant sources are very persistent for many decades after the contamination occurred (e.g., more than 100 years ago at gasworks sites). This limited bioavailability is due to slow dissolution processes. This study presents results from a large scale tank experiment (8 m long) on the long-term (354 days) dissolution kinetics of BTEX and PAHs from a 2.5 m long coal tar pool and 0.5 m long (smear) zone containing coal tar blobs distributed in a coarse sand. The results inidicate (1) that Raoult's law holds for estimation of the saturation aqueous concentrations of the coal tar constituents, (2) that for the dissolution of smear zones longer than approximately 0.1 m and with more than 3-5% residual saturation, the local equilibrium assumption is valid and (3) that although very small (< 0.1 mm), the transverse vertical dispersivity dominates the pool dissolution processes. Typical time scales for removal of the pollutants from the blob zone and the pool are in the order of a few weeks to more than 10,000 years, respectively.

  7. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  8. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  9. Reviving industrial coal use: a cast study of the United Kingdom

    SciTech Connect

    Skea, J.F.

    1983-01-01

    Industrial coal use in the United Kingdom (UK) has been projected to rise between three and fivefold by the end of the century. This paper discusses the policy background to these large projected increases and considers the extent to which they might be realized in practice. Industrial coal use in the UK is unlikely to be constrained either by environmental impacts or distribution bottlenecks. The possible uses for coal in industry are examined, and the steam-raising (boiler) markets are identified as being most accessible to coal penetration. A model of the fuel-choice decision at industrial-boiler installations is outlined and is used in conjunction with steam-raising market projections to quantify possible future levels of coal demand. The model is sensitive to assumptions about fuel prices, industrial investment criteria, and government intervention. It is concluded that coal-use projections developed immediately after the 1973-1974 oil crisis are too optimistic, but that there is still considerable uncertainty about how high future coal demand might be. The reasons underlying these conclusions are discussed. The relevance of the findings for countries other than the UK is briefly considered. 33 references, 4 figures, 8 tables.

  10. Ash characterization in laboratory-scale oxy-coal combustor

    EPA Science Inventory

    Oxygen enriched coal (oxy-coal) combustion is a developing technology. During oxy-coal combustion, combustion air is separated and the coal is burned in a mixture of oxygen and recycled flue gas. The resulting effluent must be further processed before the C02 can be compressed, t...

  11. Markets for small-scale, advanced coal-combustion technologies

    SciTech Connect

    Placet, M.; Kenkeremath, L.D.; Streets, D.G.; Dials, G.E.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1988-12-01

    This report examines the potential of using US-developed advanced coal technologies (ACTs) for small combustors in foreign markets; in particular, the market potentials of the member countries of the Organization of Economic Co-operation and Development (OECD) were determined. First, the United States and those OECD countries with very low energy demands were eliminated. The remaining 15 countries were characterized on the basis of eight factors that would influence their decision to use US ACTs: energy plan and situation, dependence on oil and gas imports, experience with coal, residential/commercial energy demand, industrial energy demand, trade relationship with the United States, level of domestic competition with US ACT manufacturers, and environmental pressure to use advanced technology. Each country was rated high, medium-high, low-medium, or low on each factor, based on statistical and other data. The ratings were then used to group the countries in terms of their relative market potential (good, good but with impediments, or limited). The best potential markets appear to be Spain, Italy, turkey, Greece, and Canada. 25 refs., 1 fig., 37 tabs.

  12. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  13. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  14. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    B.K. PAREKH; D. TAO; J.G. GROPPO

    1998-02-03

    The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the UKCAER will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean-coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high-sulfur and low-sulfur clean coal. The Mayflower Plant processes coals from five different seams, thus the dewatering studies results could be generalized for most of the bituminous coals.

  15. Corrosion performance of alumina scales in coal gasification environments

    SciTech Connect

    Natesan, K.

    1997-02-01

    Corrosion of metallic structural materials in complex gas environments of coal gasification is a potential problem. The corrosion process is dictated by concentrations of two key constituents: sulfur as H{sub 2}S and Cl as HCl. This paper examines the corrosion performance of alumina scales that are thermally grown on Fe-base alloys during exposure to O/S mixed-gas environments. The results are compared with the performance of chromia-forming alloys in similar environments. The paper also discusses the available information on corrosion performance of alloys whose surfaces were enriched with Al by the pack-diffusion process, by the electrospark deposition process, or by weld overlay techniques.

  16. Laboratory-scale study of the suppression of PCDD/F emission during coal and MSW co-incineration.

    PubMed

    Lu, Sheng-yong; Yan, Jian-hua; Li, Xiao-dong; Ni, Ming-jiang; Cen, Ke-fa

    2007-01-01

    The experimental test of co-incinerating Chinese raw municipal solid waste (MSW) and coal in a laboratory-scale tubular reactor was first reported in present study, and the emission of normal gas components and the effects of the S/C1 molar ratio or coal mixing percentages on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) emission were investigated and discussed. The results indicated that OCDD was the only PCDD homologues since others like TCDD-HpCDD was hardly detected, while as the categories of PCDF homologues were comparatively much more general. The amount of PCDD was much larger than that of PCDF in all operating conditions. Since sigma PCDF/sigma PCDD<1, the dominant role of the precursor formation was proven in our experimental conductions. With increasing the coal addition to MSW (from 0 to 16%), PCDD and PCDF were reduced considerably. Coal and MSW may suppress the PCDD/F emissions efficiently (over 95%) during the MSW incineration process. The PCDD/F suppression results of the present study could be helpful guidance to the industrial application of Chinese MSW and auxiliary coal co-incineration processes. The PCDD/F stack emission data of two industrial incinerators using co-incineration technology in China seem to have a great positive reduction of PCDDs/Fs.

  17. Do coal consumption and industrial development increase environmental degradation in China and India?

    PubMed

    Shahbaz, Muhammad; Farhani, Sahbi; Ozturk, Ilhan

    2015-03-01

    The present study is aimed to explore the relationship between coal consumption, industrial production, and CO2 emissions in China and India for the period of 1971-2011. The structural break unit root test and cointegrating approach have been applied. The direction of causal relationship between the variables is investigated by applying the VECM Granger causality test. Our results validate the presence of cointegration among the series in both countries. Our results also validate the existence of inverted U-shaped curve between industrial production and CO2 emissions for India, but for China, it is a U-shaped relationship. Coal consumption adds in CO2 emissions. The causality analysis reveals that industrial production and coal consumption Granger cause CO2 emissions in India. In the case of China, the feedback effect exists between coal consumption and CO2 emissions. Due to the importance of coal in China and India, any reduction in coal consumption will negatively affect their industrial value added as well as economic growth.

  18. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  19. Estimates and Predictions of Coal Workers’ Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study

    PubMed Central

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers’ pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males’ life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337

  20. Estimates and Predictions of Coal Workers' Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study.

    PubMed

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers' pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males' life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China. PMID:26845337

  1. Estimates and Predictions of Coal Workers' Pneumoconiosis Cases among Redeployed Coal Workers of the Fuxin Mining Industry Group in China: A Historical Cohort Study.

    PubMed

    Han, Bing; Liu, Hongbo; Zhai, Guojiang; Wang, Qun; Liang, Jie; Zhang, Mengcang; Cui, Kai; Shen, Fuhai; Yi, Hongbo; Li, Yuting; Zhai, Yuhan; Sheng, Yang; Chen, Jie

    2016-01-01

    This research was aimed at estimating possible Coal workers' pneumoconiosis (CWP) cases as of 2012, and predicting future CWP cases among redeployed coal workers from the Fuxin Mining Industry Group. This study provided the scientific basis for regulations on CWP screening and diagnosis and labor insurance policies for redeployed coal workers of resource-exhausted mines. The study cohort included 19,116 coal workers. The cumulative incidence of CWP was calculated by the life-table method. Possible CWP cases by occupational category were estimated through the average annual incidence rate of CWP and males' life expectancy. It was estimated that 141 redeployed coal workers might have suffered from CWP as of 2012, and 221 redeployed coal workers could suffer from CWP in the future. It is crucial to establish a set of feasible and affordable regulations on CWP screening and diagnosis as well as labor insurance policies for redeployed coal workers of resource-exhausted coal mines in China.

  2. Industrial pulverized coal low-NO{sub x} burner. Phase 1, Final report

    SciTech Connect

    Not Available

    1993-12-01

    Arthur D. Little, Inc., jointly with its university partner, the Massachusetts Institute of Technology, and its industrial partner, Hauck Manufacturing Corporation, is developing a low NO{sub x} pulverized coal burner for use in industrial processes, including those which may require preheated air or oxygen enrichment. The design of the burner specifically addresses the critical performance requirements of industrial systems, namely: high heat release rates, short flames, even heat flux distribution, and high combustion efficiency. The design is applicable to furnaces, industrial boilers, and cement kilns. The development program for this burner includes a feasibility analysis, performance modelling, development of the burner prototype design, and assessment of the economic viability of the burner. The Phase 1 activities covered by this report consisted of three principal tasks: preliminary burner design; fluid flow/combustion modelling and analyses; and market evaluation. The preliminary design activities included the selection of a design coal for the Phase 1 design, preliminary design layout, and preliminary sizing of the burner components. Modelling and analysis were conducted for the coal pyrolysis zone, the rich combustion zone and the lean bumout zone. Both chemical kinetics and one-dimensional coal combustion modelling were performed. The market evaluation included a review of existing industrial coal use, identification of potential near- and long-term markets and an assessment of the optimum burner sizes.

  3. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.; Rawls, P.

    1995-11-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

  4. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    NASA Astrophysics Data System (ADS)

    Fadhil, S. S. A.; Hasini, H.; Shuaib, N. H.

    2013-06-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential "ring-like" region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  5. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    EPA Science Inventory

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  6. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    SciTech Connect

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H.

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  7. Abandoned coal mining sites: using ecotoxicological tests to support an industrial organic sludge amendment.

    PubMed

    Chiochetta, Claudete G; Radetski, Marilice R; Corrêa, Albertina X R; Tischer, Vinícius; Tiepo, Erasmo N; Radetski, Claudemir M

    2013-11-01

    The different stages involved in coal mining-related activities result in a degraded landscape and sites associated with large amounts of dumped waste material. Remediation of these contaminated soils can be carried out by application of industrial organic sludge if the concerns regarding the potential negative environmental impacts of this experimental practice are properly addressed. In this context, the objective of this study was to use ecotoxicological tests to determine the quantity of organic industrial sludge that is required as a soil amendment to restore soil production while avoiding environmental impact. Chemical analysis of the solids (industrial sludge and soil) and their leachates was carried out as well as a battery of ecotoxicity tests on enzymes (hydrolytic activity), bacteria, algae, daphnids, earthworms, and higher plants, according to standardized methodologies. Solid and leachate samples of coal-contaminated soil were more toxic than those of industrial sludge towards enzyme activity, bacteria, algae, daphnids, and earthworms. In the case of the higher plants (lettuce, corn, wild cabbage, and Surinam cherry) the industrial sludge was more toxic than the coal-contaminated soil, and a soil/sludge mixture (66:34% dry weight basis) had a stimulatory effect on the Surinam cherry biomass. The ecotoxicological assessment of the coal-contaminated soil remediation using sludge as an amendment is very important to determine application rates that could promote a stimulatory effect on agronomic species without negatively affecting the environment.

  8. Recent regulatory experience of low-Btu coal gasification. Volume I. Recommendations to industrial users

    SciTech Connect

    Lethi, Minh- Triet; Hart, Dabney G.

    1980-02-01

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five curent low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the first of three volumes. It contains the major findings of the study and recommendations to potential industrial users of low-Btu coal gasification. Recommendations to regulatory agencies are presented in the second volume. Individual case studies are documented in the third volume.

  9. Characteristics of coking coal burnout

    SciTech Connect

    Nakamura, M.; Bailey, J.G.

    1996-12-31

    An attempt was made to clarify the characteristics of coking coal burnout by the morphological analysis of char and fly ash samples. Laboratory-scale combustion testing, simulating an ignition process, was carried out for three kinds of coal (two coking coals and one non-coking coal for reference), and sampled chars were analyzed for size, shape and type by image analysis. The full combustion process was examined in industrial-scale combustion testing for the same kinds of coal. Char sampled at the burner outlet and fly ash at the furnace exit were also analyzed. The difference between the char type, swelling properties, agglomeration, anisotropy and carbon burnout were compared at laboratory scale and at industrial scale. As a result, it was found that coking coals produced chars with relatively thicker walls, which mainly impeded char burnout, especially for low volatile coals.

  10. The changing structure of the US coal industry: An update, July 1993

    SciTech Connect

    Not Available

    1993-07-29

    Section 205(a)(2) of the Department of Energy Organization Act of 1977 requires the Administrator of the Energy Information Administration (EIA) to carry out a central, comprehensive, and unified energy data and information program that will collect, evaluate, assemble, analyze, and disseminate data and information relevant to energy resources, reserves, production, demand, technology, and related economic and statistical information. The purpose of this report is to provide a comprehensive overview of changes in the structure of the US coal industry between 1976 and 1991. The structural elements examined include the number of mines, average mine size, the size distribution of mines, and the size distribution of coal firms. The report measures changes in the market shares of the largest coal producers at the national level and in various regions. The Central Appalachian low-sulfur coal market is given special attention, and the market for coal reserves is examined. A history of mergers in the coal industry is presented, and changes in the proportions of US coal output that are produced by various types of companies, including foreign-controlled firms, are described. Finally, the impact of post-1991 mergers on the structure of the industry is estimated. The legislation that created the EIA vested the organization with an element of statutory independence. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high-quality information and to perform objective, credible analyses in support of deliberations by both public and private decisionmakers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  11. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    SciTech Connect

    Suardini, P.J.

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  12. Liquid Fuels from Coal: From R&D to an Industry

    ERIC Educational Resources Information Center

    Swabb, L. E., Jr.

    1978-01-01

    Government support of coal liquefaction Research and Development has created the conditions that make possible the development of needed technology. With the proper government incentives, pioneer plants will lead to lower costs, and this, plus rising prices, will create the conditions necessary to develop a multi-plant industry. (Author/MA)

  13. APPLICATION OF REBURNING TO COAL-FIRED INDUSTRIAL BOILERS IN TAIWAN

    EPA Science Inventory

    The paper gives an overview of the characteristics of coal-fired industrial boilers in Taiwan and projections of the cost and performance data for retrofitting several boilers with reburning. The impacts of reburning fuel type on the reburning system design and cost effectivenes...

  14. The Coal Employment Project--How Women Can Make Breakthroughs into Nontraditional Industries.

    ERIC Educational Resources Information Center

    Women's Bureau (DOL), Washington, DC.

    Based on a project carried out by the Women's Bureau of the U.S. Department of Labor, this program guide provides a plan for helping women gain entrance into nontraditional industries. The guide uses as background and examples in the planning process the coal employment project that began in 1977 to make intensive efforts to help women get jobs in…

  15. Industrial pulverized coal low NO{sub x} burner. Phase 1

    SciTech Connect

    Not Available

    1993-02-23

    The objective of Phase 1 of this program is to develop a novel low NO{sub x} pulverized coal burner, which offers near-term commercialization potential, uses preheated combustion air of up to 1000{degree}F, and which can be applied to high-temperature industrial heating furnaces, chemical process furnaces, fired heaters, and boilers. In the low NO{sub x} coal burner concept, the flue gas is recycled to the burner by jet pump action provided by the momentum of the primary air flow. The recycled flue gas is used to convey the pulverized coal to the jet pump where mixing with the primary air takes place. Ignition occurs downstream of the jet mixing section. The recycled flue gas is at high temperature. When the pulverized coal is entrained, it is heated by conduction from the flue gas. The coal is pyrolyzed to a large extent before being mixed with the primary air. These pyrolysis products are the source of energy for the downstream flame. In this process, the fuel nitrogen associated with pyrolysis products can be converted to molecular nitrogen in the pyrolysis flame if the oxygen is held to substoichiometric concentrations based upon the burning species (pyrolysis products and some char). Pyrolysis products combustion is believed to be the primary source of NO{sub x} emissions in coal combustors. Progress is described.

  16. Co-combustion of coal and solid waste (municipal and industrial solid wastes)

    SciTech Connect

    Ketlogetswe, C.

    1996-12-31

    This work determines the thermal characteristics of various mixtures of carpet waste as an illustrative solid waste. Generally the results revealed that combustion of a mixture of coal with carpet waste yields high fuel bed temperature, in comparison with the combustion of pure solid waste. High fuel bed temperatures of 1,340 C to 1,520 C obtained during the combustion of a mixture of coal with PVC carpet waste would be ideal for energy recovery. The fuel bed temperature of 1,290 C obtained during the combustion of 100% PVC carpet waste suggests that the combustion of general industrial solid waste may be expected to yield a fuel bed temperature of about 1,400 C which would be suitable for energy recovery in the form of power generation or steam generation for general use. The results also revealed that combustion of a mixture of coal and municipal solid waste may require 30% to 35% coal to achieve a fuel bed temperature of about 1,300 C. From economical viewpoint, the % of coal must be kept to a minimum, at least 20% coal or less.

  17. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1992--September 1992

    SciTech Connect

    Not Available

    1992-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. ne primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order toevaluate its potential marketability. During the current reporting period, three preliminary coal-fired tests were successfully completed. These tests used industrial boiler flyash, sewer sludge ash, and waste glass collet as feedstocks. The coal-fired ash vitrification tests are considered near term potential commercial applications of the CMS technology. The waste glass cullet provided necessary dam on the effect of coal firing with respect to vitrified product oxidation state. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the proof-of-concept tests are continuing. The economic evaluation of commercial scale CMS processes is continuing. Preliminary designs for 15, 25, 100 and 400 ton/day systems are in progress. This dam will serve as input data to the life cycle cost analysis which will be-an integral part of the CMS commercialization plan.

  18. Coal-fired boiler costs for industrial applications

    SciTech Connect

    Kurzius, S.C.; Barnes, R.W.

    1982-04-01

    Several of the current sources of information provide data on coal-fired steam boiler costs. As published, these data give widely varying and possibly inconsistent conclusions. This study was undertaken to determine the extent to which the differences in the various sets of published data bases could be resolved and, if possible, to arrive at more reliable cost correlations to be used in Oak Ridge Energy Demand Models. Our principal finding is that it is indeed possible to restate the costs within each data base on a more consistent basis. When this is done, reasonable engineering correlations of all the cost data versus steam plant capacity can be made over the 10,000 to 5000,000 lb/hr range.

  19. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  20. Sources and Distribution of Trace Elements in Soils Near Coal-Related Industries.

    PubMed

    Shangguan, Yuxian; Wei, Yuan; Wang, Linquan; Hou, Hong

    2016-04-01

    The degree of contamination of soil and the potential ecological risks associated with five different coal-burning industries were assessed in Shanxi Province, China. Results showed that the trace element concentrations in soil close to the coal industries were higher than those in the background soils, and the enrichment factors were >1. The potential ecological risk indexes ranged from 99 to 328 for the five coal-related industries. Results also illustrated that the trace elements were transported through the atmosphere. Concentrations of B, Hg, Mo, Pb, Se, Cr, Cu, Ni, V, Zn, and Mn were high in the area around the steel plant. Principal component analysis and redundancy analysis indicated that the sources of Se, Mo, Hg, Cd, As, Cr, B, Ni, and Cu were mainly anthropogenic, whereas Pb, V, Cu, Zn, and Mn were from natural sources. The soil Hg and Se contents were simulated by an artificial neural network model, which showed that Hg and Se in soils were from atmospheric deposits and their spatial distributions were related to the dominant wind direction. The potential ecological risk from Hg was much higher (one order of magnitude) than that from the other trace elements, which highlights the fact that it deserves urgent attention. Control of emissions from the burning of coal and other raw materials (such as iron and phosphate ores) should also be prioritized. PMID:26428004

  1. Pollution tolerance and distribution pattern of plants in surrounding area of coal-fired industries.

    PubMed

    Dwivedi, A K; Tripathi, B D

    2007-04-01

    Higher concentration of SO2 and particulate matters was reported in surrounding areas of coal-fired industries which influences the distribution pattern of plants. Sensitive plant species are abolished from such areas, however, only pollution tolerant species survive under stress conditions. The present study was designed to investigate the vegetation composition around coal-fired industries i.e. brick industries. To categorise plants as sensitive or resistant air pollution tolerance index (APTI) value was calculated. Out of 99 plants studied, Ricinus communis with APTI 81.10 was found to be the most resistant wild plant showing uniform distribution at all the polluted sites. On the other hand, Lepidium sativum with APTI 5.27 was recorded as the most sensitive plant and found to be present only at the less polluted sites.

  2. The mine management professions in the twentieth-century Scottish coal mining industry

    SciTech Connect

    Perchard, A.

    2007-07-01

    This book seeks to redress the exclusion of colliery managers and other mining professionals from the history of British, and particularly Scottish, coal industries. This is accomplished by examining these groups within the most crucial period of their ascendancy in the Scottish coal mining industry, 1930-1966. This work seeks to place such persons within their context and to examine their roles, statuses and behaviours through their relationships with employees and the execution of their functions, also examining their terms and conditions of employment, the outlook of their professional associations, and that of their union. Through all this, Dr. Perchard illustrates how this growing consciousness amongst managerial employees in the industry was accompanied by an intense public discussion, within the mining professions, over their future shape, principles and occupational standards.

  3. Solid by-products of coal combustion: Fly ash as a source of industrial minerals

    SciTech Connect

    Bhagwat, S.B.; Rapp, D.M.; Bukowski, J.M.

    1996-12-31

    Fly ash is one of the most important by-products of coal combustion. It is a complex mix of cenospheres, reactive glasses, magnetite and carbon, in addition to minor quantities of other minerals. Fly ash components are determined by the type of coal, the combustion technology, material collection system and the temperature of combustion. The changing mix of coal burned in power plants is increasingly making the fly ash characteristics independent of the locally mined coal. Fly ash is thus becoming a raw material independent of the existence of a local coal mining industry. Currently, about 65 million tons of fly ash are generated annually in the United States. This is equivalent to the crushed stone production of such highly industrialized states as Illinois. Only about twenty percent of the total fly ash are currently used, mostly in low value applications such as road building materials and concrete additions. The fly ash currently represents an environmental and financial liability to electric utilities. The increasingly competitive and boundaryless electricity market in the US increases the incentive to look at fly ash in terms of its individual components and recognize their potential as industrial minerals in the production of value added materials. For example, zeolites and other adsorbents could be produced from reactive glasses, magnetite could be used in pigments and ferrite manufacture, activated carbon could serve in pollution control and cenospheres could be used to make lightweight ceramics. If one begins to look at fly ash as a source of industrial minerals and not as a waste product, this change in perspective could turn a financial and environmental liability into an economic opportunity.

  4. Unique nature of the coal mining industry-are the labor law rules determining when two employers should be treated as one different for the coal industry?

    SciTech Connect

    Roles, F.J.

    1995-11-01

    Modern United States labor law dates from the 1935 enactment of the Wagner Act. Its definition of {open_quotes}employer{close_quotes} has remained the same over the the nearly sixty years of its application. The Courts and the Board have developed detailed criteria deciding when two or more employers should be considered one under that definition. Since the 1984 decision in B.F.I., those criteria have been uniformly accepted and applied. There is nothing unique about the coal industry warranting a change or a different application of the criteria.

  5. Strategy for large scale solubilization of coal - characterization of Neurospora protein and gene

    SciTech Connect

    Patel, A.; Chen, Y.P.; Mishra, N.C.

    1995-12-31

    Low grade coal placed on mycelial mat of Neurospora crassa growing on Petri plate was found to be solubilized by this fungus. A heat stable protein has been purified to near homogeneity which can solubilize low grade coal in in vitro. The biochemical properties of the Neurospora protein will be presented. The nature of the product obtained after solubilization of coal by Neurospora protein in vivo and in vitro will also be presented. The N-terminus sequence of the amino acids of this protein will be used to design primer for possible cloning of gene for Neurospora protein capable of solubilization of coal in order to develop methodology for coal solubilization on a large scale.

  6. The production of high load coal-water mixtures on the base of Kansk-Achinsk Coal Basin

    SciTech Connect

    Demidov, Y.; Bruer, G.; Kolesnikova, S.

    1995-12-01

    The results of the {open_quotes}KATEKNIIugol{close_quotes} work on the problems of high load coal-water mixtures are given in this article. General principles of the mixture production, short characteristics of Kansk-Achinsk coals, the experimental results of the coal mixture production on a test-industrial scale, the suspension preparation on the base of coal mixtures, technical-economical indexes of tested coal pipeline variants based on Kansk-Achinsk coals are described.

  7. [Emission characteristics of PM10 from coal-fired industrial boiler].

    PubMed

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  8. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  9. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.

    PubMed

    Lee, S W

    2001-11-01

    Recent awareness of suspected adverse health effects from ambient particulate matter (PM) emission has prompted publication of new standards for fine PM with aerodynamic diameter less than 2.5 microm (PM2.5). However, scientific data on fine PM emissions from various point sources and their characteristics are very limited. Source apportionment methods are applied to identify contributions of individual regional sources to tropospheric particulate concentrations. The existing industrial database developed using traditional source measurement techniques provides total emission rates only, with no details on chemical nature or size characteristics of particulates. This database is inadequate, in current form, to address source-receptor relationships. A source dilution system was developed for sampling and characterization of total PM, PM2.5, and PM10 (i.e., PM with aerodynamic diameter less than 10 pm) from residual oil and coal combustion. This new system has automatic control capabilities for key parameters, such as relative humidity (RH), temperature, and sample dilution. During optimization of the prototype equipment, three North American coal blends were burned using a 0.7-megawatt thermal (MWt) pulverized coal-fired, pilot-scale boiler. Characteristic emission profiles, including PM2.5 and total PM soluble acids, and elemental and carbon concentrations for three coal blends are presented. Preliminary results indicate that volatile trace elements such as Pb, Zn, Ti, and Se are preferentially enriched in PM2.5. PM2.5 is also more concentrated in soluble sulfates relative to total PM. Coal fly ash collected at the outlet of the electrostatic precipitator (ESP) contains about 85-90% PM10 and 30-50% PM2.5. Particles contain the highest elemental concentrations of Si and Al while Ca, Fe, Na, Ba, and K also exist as major elements. Approximately 4-12% of the materials exists as soluble sulfates in fly ash generated by coal blends containing 0.2-0.8% sulfur by mass

  10. Global emissions of hydrogen chloride and chloromethane from coal combustion, incineration and industrial activities: Reactive Chlorine Emissions Inventory

    NASA Astrophysics Data System (ADS)

    McCulloch, Archie; Aucott, Michael L.; Benkovitz, Carmen M.; Graedel, Thomas E.; Kleiman, Gary; Midgley, Pauline M.; Li, Yi-Fan

    1999-04-01

    Much if not all of the chlorine present in fossil fuels is released into the atmosphere as hydrogen chloride (HCl) and chloromethane (CH3Cl, methyl chloride). The chlorine content of oil-based fuels is so low that these sources can be neglected, but coal combustion provides significant releases. On the basis of national statistics for the quantity and quality of coal burned during 1990 in power and heat generation, industrial conversion and residential and commercial heating, coupled with information on the chlorine contents of coals, a global inventory of national HCl emissions from this source has been constructed. This was combined with an estimate of the national emissions of HCl from waste combustion (both large-scale incineration and trash burning) which was based on an estimate of the global quantity released from this source expressed per head of population. Account was taken of reduced emissions where flue gases were processed, for example to remove sulphur dioxide. The HCl emitted in 1990, comprising 4.6 ± 4.3 Tg Cl from fossil fuel and 2 ± 1.9 Tg Cl from waste burning, was spatially distributed using available information on point sources such as power generation utilities and population density by default. Also associated with these combustion sources are chloromethane emissions, calculated to be 0.075 ± 0.07 Tg as Cl (equivalent) from fossil fuels and 0.032 ± 0.023 Tg Cl (equivalent) from waste combustion. These were distributed spatially exactly as the HCl emissions, and a further 0.007 Tg Cl in chloromethane from industrial process activity was distributed by point sources.

  11. Coal fly ash: the most powerful tool for sustainability of the concrete industry

    SciTech Connect

    Mehta, P.K.

    2008-07-01

    In the last 15 years the global cement industry has almost doubled its annual rate of direct emissions of carbon dioxide. These can be cut back by reducing global concrete consumption, reducing the volume of cement paste in mixtures and reducing the proportion of portland clinker in cement. It has recently been proved that use of high volumes of coal fly ash can produce low cost, durable, sustainable cement and concrete mixtures that would reduce the carbon footprint of both the cement and the power generation industries. 2 photos.

  12. Interaction between carbon dioxide and coal: atomic-scale characteristics and electronic structures

    NASA Astrophysics Data System (ADS)

    Liu, Yingdi; Wang, Sanwu

    2015-03-01

    Geologic sequestration of CO2 in unmineable coal seams has been suggested to mitigate the effect of the increasing of the atmospheric CO2 concentration on global warming. Extensive experimental studies have been performed for the injection of CO2 into coalbeds. However, the atomic-level mechanism for the interaction between CO2 and coal has not been fully explored. We report first-principles density-functional calculations and ab initio molecular dynamics simulations for the interaction between CO2 and the coal network. In particular, we report results about atomic-scale and electronic properties of the interaction. We also report a comparison with the interaction between CH4 and coal. This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  13. Use of sorbents of hot-contact coal carbonization in the power industry

    SciTech Connect

    A.I. Blokhin; F.E. Keneman; A.V. Sklyarov; B.S. Fedoseev

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization (HCCC) in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC (sorbents activated crushed brown-coal coke (ABD)). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  14. Industry perspectives on increasing the efficiency of coal-fired power generation

    SciTech Connect

    Torrens, I.M.; Stenzel, W.C.

    1997-12-31

    Independent power producers will build a substantial fraction of expected new coal-fired power generation in developing countries over the coming decades. To reduce perceived risk and obtain financing for their projects, they are currently building and plan to continue to build subcritical coal-fired plants with generating efficiency below 40%. Up-to-date engineering assessment leads to the conclusion that supercritical generating technology, capable of efficiencies of up to 45%, can produce electricity at a lower total cost than conventional plants. If such plants were built in Asia over the coming decades, the savings in carbon dioxide emissions over their lifetime would be measured in billions of tons. IPPs perceive supercritical technology as riskier and higher cost than conventional technology. The truth needs to be confirmed by discussions with additional experienced power engineering companies. Better communication among the interested parties could help to overcome the IPP perception issue. Governments working together with industry might be able to identify creative financing arrangements which can encourage the use of more efficient pulverized clean coal technologies, while awaiting the commercialization of advanced clean coal technologies like gasification combined cycle and pressurized fluidized bed combustion.

  15. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  16. POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE

    SciTech Connect

    X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

    1999-08-01

    Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

  17. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  18. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  19. Coal weathering studies

    SciTech Connect

    Alvarez, R.; Barriocanal, C.; Casal, M.D.; Diez, M.A.; Gonzalez, A.I.; Pis, J.J.; Canga, C.S.

    1996-12-31

    Weathering studies were carried out on coal/blend piles stored in the open yard at the INCAR facilities. Firstly, a typical and complex coal blend used by the Spanish Steel Company, ENSIDESA, prepared and ground at industrial scale, was stored. Several methods have been applied for detecting weathering in coals, Gieseler maximum fluidity being the most sensitive indicator of the loss of thermoplastic properties. Carbonization tests were carried out in a semi-industrial and a movable-wall ovens available at the INCAR Coking Test Plant. In addition to the measurements of internal gas pressure and cooling pressure, laboratory tests to measure expansion/contraction behavior of coals were performed. There is a clear decrease in internal gas pressure with weathering, measured in the semi-industrial oven. A decrease in wall pressure after two months of weathering followed by a period of stabilization lasting practically ten months were observed. As regards coke quality, no significant changes were produced over a storing period of ten months, but after this date impairment was observed. The behavior of selected individual coals stored without grinding, which are components of the blend, was rather different. Some coals showed a maximum wall pressure through the weathering period. Coke quality improved with some coals and was impaired with others due to weathering. It should be pointed out that slight weathering improved coke quality not only in high-volatile and fluid coals but also in medium-volatile coals.

  20. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers.

  1. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. PMID:27023281

  2. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  3. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry.

  4. Water-carbon trade-off in China's coal power industry.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz; Mo, Hongpin; Zhao, Zhongnan; Liu, Zhu

    2014-10-01

    The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity.

  5. Microbial detoxification of sewage of the coal-tar chemical industry

    SciTech Connect

    Golovleva, L.A.; Finkelshtein, Z.I.; Baskunov, B.P.; Alieva, R.M.; Shustova, L.G.

    1995-03-01

    A collection of microorganisms actively degrading the components of wastes of the coal-tar chemical industry-phenols, cresols, xenols, naphthalenes, phenathren-has been created. The active strains were represented mainly by pseduomonads-Pseudomonas aureofaciens, P. fluorescens, and Pseudomonas sp. These strains reduced the content of the cresol-xylenol and polyaromatic fractions by 70% during 7 days of fermentation. The isolated strains could also grow on individual aromatic compounds-isomeric cresols, naphalene, phenanthrene. The structure of five intermediate products of phenanthrene oxidation was revealed. 5 refs., 3 figs., 2 tabs.

  6. Use of Sorbents of Hot-Contact Coal Carbonization in the Power Industry

    SciTech Connect

    Blokhin, A. I.; Keneman, F. E.; Sklyarov, A. V.; Fedoseev, B. S.

    2003-11-15

    The many years of experience in the use of sorbents of hot-contact coal carbonization in the power industry is used for substantiation of their prospects for solving problems of power and materials saving and improving the reliability and safety of operation of power equipment. Results of tests of sorbents in systems of water conditioning of thermal power plants, cleaning of return condensates, mazut- and oil-contaminated process wastewaters, makeup water in heat networks, and biosorption cleaning of sewerage are presented. The sorption methods of cleaning are shown to have many advantages, to save expensive ion-exchange resins and reagents, to decrease the cost of desalinated water, and to prolong the service of power equipment. Comparative data are presented for basic commercial kinds of activated carbon and HCCC sorbents (ABD). The technical characteristics of sorbents of hot-contact coal carbonization are shown to be at the level of commercial sorbents or be higher at a much lower cost (by a factor of 2.5 - 3). It is shown that the creation of several HCCC installations with an output of 25 - 30 thousand tons of sorbents a year at coal-fired power plants will solve many water-cleaning problems of the 'EES Rossii' Co. ('The United Power Systems of Russia') and make it a monopolistic producer of activated carbon in the Russian market.

  7. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    SciTech Connect

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out of 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.

  8. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    DOE PAGESBeta

    Liu, Manzhi; Shen, Bo; Han, Yafeng; Price, Lynn; Xu, Mingchao

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less

  9. Study of application of ERTS-A imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. The mine refuse inventory maps were prepared in response to a need by both the State and the coal industry. The lack of information on the scope of the problem handicapped all people concerned in drafting realistic legislation for a severance tax on coal production to raise funds for restoration of refuse sites. The inventory was conducted rapidly and economically, and demonstrated the benefits which can be derived through remote sensing methods.

  10. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL FIRED PROCESSES

    SciTech Connect

    Leon Glicksman; Hesham Younis; Richard Hing-Fung Tan; Michel Louge; Elizabeth Griffith; Vincent Bricout

    1998-04-30

    Pressurized fluidization is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal combustor at high inlet gas velocity to increase the flow of reactants, at an elevated pressure to raise the overall efficiency of the process. Unfortunately, commercialization of large pressurized fluidized beds is inhibited by uncertainties in scaling up units from the current pilot plant levels. In this context, our objective is to conduct a study of the fluid dynamics and solid capture of a large pressurized coal-fired unit. The idea is to employ dimensional similitude to simulate in a cold laboratory model the flow in a Pressurized Circulating Fluid Bed ''Pyrolyzer,'' which is part of a High Performance Power System (HIPPS) developed by Foster Wheeler Development Corporation (FWDC) under the DOE's Combustion 2000 program.

  11. Capital and the state in regional economic development: the case of the coal industry in central Appalachia

    SciTech Connect

    Duncan, C.L.

    1985-01-01

    This study examines theories of development policy to assess their relevance for the problems of persistently poor regions within advanced capitalist societies. The central premises of three sets of theories are explored using a multi-method approach that combines quantitative analysis of the impact of growth in the coal industry in rural Kentucky between 1960 and 1980, and qualitative analysis of the perspectives of coal industry executives on development in the coal fields. Theories are categorized into neoclassical, redistributionist and critical paradigms because this typology clarifies the differences in the role of capital and the state in development strategies. Results of analyses of economic and social change in rural Kentucky challenge neoclassical development theory. Greater economic growth in coal counties did not bring greater social progress. The analysis supports the redistributionist and critical theorists' thesis that widespread distribution of economic benefits is important to development. Counties with better distribution of income and work had better conditions in 1980, and coal counties have the greatest economic inequality. Comments of coal industry executives confirm the critical theorists' argument that capital resists State policies to redistribute economic surplus for investment in development.

  12. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Phase III development contract DE-AC22-91PC91161 for a Coal-Fired Combustion System for Industrial Process Heating Applications'' is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec's Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  13. Integrated process control for recirculating cooling water treatment in the coal chemical industry.

    PubMed

    Pei, Y S; Guo, W; Yang, Z F

    2011-01-01

    This work focused on the integrated process of the recirculating cooling water (RCW) treatment to achieve approximate zero emission in the coal chemical industry. The benefits of fractional and comprehensive RCW treatment were quantified and qualified by using a water and mass balance approach. Limits of cycle of concentrations and some encountered bottlenecks were used to ascertain set target limits for different water sources. Makeup water was mixed with water produced from reverse osmosis (RO) in the proportion of 6:4, which notably reduced salts discharge. Side infiltration, which settled down suspended solids, can reduce energy consumption by over 40%. An automated on-line monitoring organic phosphorus inhibitor feed maintains the RCW system stability in comparison to the manual feed. Two-step electrosorb technology (EST) instead of an acid feed can lead cycle of concentration of water to reach 7.0. The wastewater from RO, EST and filter was transferred into a concentration treatment system where metallic ions were adsorbed by permanent magnetic materials. Separation of water and salts was completed by using a magnetic disc separator. Applying the integrated process in a coal chemical industry, a benefit of 1.60 million Yuan annually in 2 years was gained and approximate zero emission was achieved. Moreover, both technical and economic feasibility were demonstrated in detail.

  14. Corrosivities in a pilot-scale combustor of a British and two Illinois coals with varying chlorine contents

    USGS Publications Warehouse

    Chou, I.-Ming; Lytle, J.M.; Kung, S.C.; Ho, K.K.

    2000-01-01

    Many US boiler manufacturers have recommended limits on the chlorine (Cl) content (< 0.25% or < 0.3%) of coals to be used in their boilers. These limits were based primarily on extrapolation of British coal data to predict the probable corrosion behavior of US coals. Even though Cl-related boiler corrosion has not been reported by US utilities burning high-Cl Illinois coals, the manufacturer's limits affect the marketability of high-Cl Illinois coals. This study measured the relative rates of corrosion caused by two high-Cl coals (British and Illinois) and one low-Cl Illinois baseline coal under identical pilot-scale combustion conditions for about 1000 h which gave reliable comparisons. Temperatures used reflected conditions in boiler superheaters. The corrosion probes were fabricated from commercial alloy 304SS frequently used at the hottest superheater section of utility boilers. The results showed no evidence of direct correlation between the coal chlorine content and rate of corrosion. A correlation between the rate of corrosion and the metal temperature was obvious. The results suggested that the different field histories of corrosivity from burning high-Cl Illinois coal and high-Cl British coal occurred because of different metal temperatures operated in US and UK utility boilers. The results of this study can be combined into a database, which could be used for lifting the limits on chlorine contents of coals burned in utility boilers in the US.

  15. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; B. Luvsansambuu; A.D. Walters

    2000-10-01

    Work continued during the past quarter to improve the performance of the POC-scale unit. For the charging system, a more robust ''turbocharger'' has been fabricated and installed. All of the internal components of the charger have been constructed from the same material (i.e., Plexiglas) to prevent particles from contacting surfaces with different work functions. For the electrode system, a new set of vinyl-coated electrodes have been constructed and tested. The coated electrodes (i) allow higher field strengths to be tested without of risk of arcing and (ii) minimize the likelihood of charge reversal caused by particles colliding with the conducting surfaces of the uncoated electrodes. Tests are underway to evaluate these modifications. Several different coal samples were collected for testing during this reporting period. These samples included (i) a ''reject'' material that was collected from the pyrite trap of a pulverizer at a coal-fired power plant, (ii) an ''intermediate'' product that was selectively withdrawn from the grinding chamber of a pulverizer at a power plant, and (iii) a run-of-mine feed coal from an operating coal preparation plant. Tests were conducted with these samples to investigate the effects of several key parameters (e.g., particle size, charger type, sample history, electrode coatings, etc.) on the performance of the bench-scale separator.

  16. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 2

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  17. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 1

    SciTech Connect

    Miller, Bruce; Winton, Shea

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  18. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 3

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or ~28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to the

  19. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 5

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  20. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal Final Report - Part 4

    SciTech Connect

    Miller, Bruce; Shea, Winton

    2010-12-31

    Since 1998, The Pennsylvania State University successfully managed the Consortium for Premium Carbon Products from Coal (CPCPC), which was a vehicle for industry-driven research on the promotion, development, and transfer of innovative technologies on premium carbon products from coal to the U.S. industry. The CPCPC was an initiative led by Penn State, its cocharter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provided the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity continued under cooperative agreement No. DE-FC26-03NT41874, which started October 1, 2003 and ended December 31, 2010. The objective of the second agreement was to continue the successful operation of the CPCPC. The CPCPC enjoyed tremendous success with its organizational structure, which included Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC was its industry-led council that selected proposals submitted by CPCPC members to ensure CPCPC target areas had strong industrial support. CPCPC had 58 member companies and universities engaged over the 7-year period of this contract. Members were from 17 states and five countries outside of the U.S. During this period, the CPCPC Executive Council selected 46 projects for funding. DOE/CPCPC provided $3.9 million in funding or an average of $564,000 per year. The total project costs were $5.45 million with $1.5 million, or {approx}28% of the total, provided by the members as cost share. Total average project size was $118,000 with $85,900 provided by DOE/CPCPC. In addition to

  1. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  2. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly technical progress report, January-March 1994

    SciTech Connect

    Mishra, N.C.

    1994-06-01

    In order to develop a system for large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms (Faison). In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  3. Large scale solubilization of coal and bioconversion to utilizable energy. Fifth quarterly technical report, January 1, 1995--March 31, 1995

    SciTech Connect

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  4. Semi industrial scale RVNRL preparation, products manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Zin, Wan Manshol Bin W.

    1998-06-01

    Natural rubber latex vulcanisation by radiation aims towards the preparation of prevulcanised natural rubber latex in the name of RVNRL for use to produce chemical-free and environment-friendly latex products. Scale up RVNRL preparation is proven possible when a semi-commercial latex irradiator was commissioned in MINT in March 1996. The plant is designed to irradiate up to 6 000 cubic meters per annum of natural rubber latex. RVNRL has the required properties and successfully used on industrial scale production of quality gloves and balloons.

  5. EVALUATION OF THE IMPACT OF CHLORINE ON MERCURY OXIDATION IN A PILOT-SCALE COAL COMBUSTION--THE EFFECT OF COAL BLENDING

    EPA Science Inventory

    Coal-fired power plants are a major source of mercury (Hg) released into the environment and the utility industry is currently investigating options to reduce Hg emissions. The EPA Clean Air Mercury Rule (CAMR) depends heavily on the co-benefit of mercury removal by existing and ...

  6. Impending impacts of Title III and Title V of the Clean Air Act Amendments of 1990 on the coal industry

    SciTech Connect

    Kerch, R.L.

    1994-12-31

    The coal industry has already begun to feel the affects of the acid deposition title, particularly in Illinois. Two challenges to the producers and sellers of coal; i.e., (1) Title III, Hazardous Air Pollutants and what is in store for customers, and (2) Title V, Operating Permits, which may affect production facilities are discussed. The utilities are temporarily exempted from Title III. The Great Waters report suggests that mercury will be regulated, and it looks like risk assessments will be based on coal analysis rather than on actual emission measurements. Stack sampling is difficult, expensive and slow. Coal cleaning is important in reducing trace elements. Electrostatic precipitators also remove trace elements. ESPs are less effective for mercury and selenium because they are emitted in the gas phase. FGD can remove hazardous air pollutants, but it is not well documented.

  7. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3

    SciTech Connect

    Not Available

    1991-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  8. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    SciTech Connect

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M.

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  9. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3

    SciTech Connect

    Not Available

    1992-01-01

    The US Department of Energy's Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  10. Evaluation of water resources around Barapukuria coal mine industrial area, Dinajpur, Bangladesh

    NASA Astrophysics Data System (ADS)

    Howladar, M. Farhad; Deb, Pulok Kanti; Muzemder, A. T. M. Shahidul Huqe; Ahmed, Mushfique

    2014-09-01

    Water is a very important natural resource which can be utilized in renewable or non-renewable forms but before utilizing, the evaluation of the quality of this resource is crucial for a particular use. However, the problems of water quality are more severe in areas where the mining and mineral processes' industries are present. In mining processes, several classes of wastes are produced which may turn into ultimately the sources of water quality and environmental degradation. In consequences, the evaluations of water quality for livestock, drinking, irrigation purposes and environmental implications have been carried out around the Barapukuria Coal Mining Industry under different methods and techniques such as primarily the field investigation; secondly the laboratory chemical analysis and thirdly justified the suitability of the laboratory analysis with statistical representation and correlation matrix, Schoeller plot, Piper's Trilinear diagram, Expanded Durov diagram, Wilcox diagram, US salinity diagram, Doneen's chart and others. The results of all surface and ground water samples analysis show that the characteristics and concentrations of all the major physical and chemical parameters such as pH, EC, TDS, Na+, K+, Ca2+, Mg2+, Fetotal, Cl-, HCO3 -, CO3 2- and SO4 2- are varied from one sample to other but well analogous with the WHO and EQS standard limit for all purposes in the area where the abundance of the major ions is as follows: Ca2+ > Na+ > Mg2+ > K+ > Fetotal = HCO3 - > SO4 2- > Cl- > CO3 2-. The graphical exposition of analytical data demonstrates two major hydrochemical facies for example: calcium-bicarbonate (Ca2+- HCO3 -) and magnesium-bicarbonate (Mg2+- HCO3 -) type facies which directly support the shallow recently recharged alkaline water around the industry. The calculated values for the evaluation classification of water based on TDS, Na%, EC, SAR, PI, RSC, MH, and TH replicate good to excellent use of water for livestock, drinking and

  11. Fields of Coal: An analysis of industry and sedimentology in Dolores, Texas

    NASA Astrophysics Data System (ADS)

    Oaden, A.; Besonen, M. R.

    2013-12-01

    characterize the sediments is underway. Basic conclusions indicate the present environment to be minimally affected by the coal operations and resulting tipple pile, but with a large variance over time in mineralogy and composition of sediment, with further research necessary to determine the full effects of industry in the area.

  12. Occupational health and safety regulation in the coal mining industry: public health at the workplace

    SciTech Connect

    Weeks, J.L. )

    1991-01-01

    The strategy for preventing occupational disease and injury in the coal mining industry employs several elements. Standards are set and enforced; technical assistance, research, and development are provided; and surveillance is conducted. Compensation for black lung is a vivid reminder of the consequences of failure to prevent disease. And, workers are represented by a union that encourages active participation in all aspects of this strategy. There are significant problems in each of these elements. Regulatory reform threatens to weaken many standards, there is a decline in government research budgets, surveillance is not well monitored, and compensation for black lung is significantly more difficult to obtain now than in the past. Moreover, the conservative governments of the past decade are not friendly towards unions. Nevertheless, the fundamental structure of disease and injury prevention remains intact and, more importantly, it has a historical record of success. The Mine Safety and Health Act provided for a wide array of basic public health measures to prevent occupational disease and injury in the mining industry. These measures have been effective in reducing both risk of fatal injury and exposure to respirable coal mine dust. They are also associated with temporary declines in productivity. In recent years, however, productivity has increased, while risk of fatal injury and exposure to respirable dust have declined. At individual mines, productivity with longwall mining methods appear to be associated with increases in exposure to respirable dust. These trends are not inconsistent with similar trends following implementation of regulations by OSHA. When OSHA promulgated regulations to control exposure to vinyl chloride monomer, enforcement of the standard promoted significant efficiencies in vinyl chloride production (5).21 references.

  13. A coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  14. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes

    SciTech Connect

    Jun Cheng; Junhu Zhou; Jianzhong Liu; Xinyu Cao; Kefa Cen

    2009-05-15

    To recycle industrial wastes and reduce SO{sub 2} pollutant emission in coal combustion, the mineralogical compositions, porosity structures, surface morphologies, and desulfurization properties of three calcium and sodium industrial wastes were investigated via X-ray diffraction (XRD), porosimeter, scanning electron microscopy (SEM), and a fixed-bed reactor. (1) White lime mud (WLM) mainly composed of CaCO{sub 3} with Na{sub 2}O and K{sub 2}O impurities has smaller CaCO{sub 3} particles and a higher surface area than limestone. But calcined WLM has larger CaO particles and a lower surface area than limestone calcined at 1200{sup o}C for 300 s. (2) Calcium carbide residue (CCR) mainly composed of Ca(OH)2, has the highest surface area and smaller Ca(OH){sub 2} particles than the CaCO{sub 3} particles in WLM. Its surface area monotonously and dramatically decreases at 1200{sup o}C for 300 s, but the sintered CaO particles are still smaller than those in the limestone. (3) When brine sludge (BS), mainly composed of NaCl and CaCO{sub 3}, is heated at 1200{sup o}C for 300 s, the NaCl/CaO eutectic solvent facilitates the aggregation of some complex composites to form many larger particles. (4) WLM gives the highest desulfurization efficiency of 80.4% at 1000{sup o}C and 65.0% at 1100{sup o}C in coal combustion. Combined CCR and limestone give a synergistic desulfurization efficiency of 45.8% at 1200{sup o}C. BS with a molar ratio of Na/Ca at 1:15 effectively promotes the synergistic desulfurization efficiency of combined CCR and limestone to a peak of 54.9% at 1200{sup o}C. 23 refs., 10 figs., 3 tabs.

  15. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities

    NASA Astrophysics Data System (ADS)

    Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  16. Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.

    PubMed

    Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S

    2016-03-01

    Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.

  17. Large scale solubilization of coal and bioconversion to utilizable energy. Quarterly technical progress report, September--December 1993

    SciTech Connect

    Mishra, N.C.

    1993-12-31

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms (Faison, 1991). In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. The main objectives are: (1) Cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) Development of a large scale electrophoretic separation of coal-drived products obtained after microbial solubilization; (b) Identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; and (3) Bioconversion of coal-derived products into utilizable fuel.

  18. Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland - Upper Silesian Industrial Region.

    PubMed

    Smolka-Danielowska, Danuta

    2010-11-01

    The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg(-1), 40 K-689 Bq kg(-1), 232Th - 100.8 Bq kg(-1), 235U-13.5 Bq kg(-1), 238U-50 Bq kg(-1) and 228Ac - 82.4 Bq kg(-1).

  19. A coal-fired combustion system for industrial processing heating applications. Quarterly technical progress report, January 1995--March 1995

    SciTech Connect

    1995-04-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler fly ash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler fly ash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NOx burners on the PENELEC boilers. Therefore, a substantial portion of the required thermal input came from the fly ash.

  20. Industrial experiments for the application of ultrasound on scale control in the Chinese sugar industry.

    PubMed

    Hu, Aijun; Zheng, Jie; Qiu, Taiqiu

    2006-05-01

    The industrialized application of a technique of scale control by ultrasound was investigated in this paper. The results indicated that not only the viscosity of sugar solution was reduced, but also the heat transfer coefficient and evaporation intensity of the evaporation system were improved by 42.4% and 15.2% respectively, and the scale was removed remarkably with no significant effects on white sugar quality. In addition, chemical detergent was not necessary, so no chemical contamination existed and labour intensity was reduced in this technique. Furthermore, the ultrasonic equipment is easy to operate and has good performance in terms of high continuity and automisation.

  1. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system, controls, and then test the complete system in order to evaluate its potential marketability. The past quarter began with a two-day test performed in January to determine the cause of pulsations in the batch feed system observed during pilot-scale testing of surrogate TSCA incinerator ash performed in December of 1993. Two different batch feedstocks were used during this test: flyash and cullet. The cause of the pulsations was traced to a worn part in the feeder located at the bottom of the batch feed tank. The problem was corrected by replacing the wom part with the corresponding part on the existing coal feed tank. A new feeder for the existing coal tank, which had previously been ordered as part of the new coal handling system, was procured and installed. The data from the pilot-scale tests performed on surrogate TSCA incinerator ash during December of 1993 was collected and analyzed. All of the glass produced during the test passed both the Toxicity characteristics Leach Procedure (TCLP) and the Product Consistency Test (PCT) by approximately two orders of magnitude.

  2. Production cost and air emissions impacts of coal cycling in power systems with large-scale wind penetration

    NASA Astrophysics Data System (ADS)

    Oates, David Luke; Jaramillo, Paulina

    2013-06-01

    Wind power introduces variability into electric power systems. Due to the physical characteristics of wind, most of this variability occurs at inter-hour time-scales and coal units are therefore technically capable of balancing wind. Operators of coal-fired units have raised concerns that additional cycling will be prohibitively costly. Using PJM bid-data, we observe that coal operators are likely systematically under-bidding their startup costs. We then consider the effects of a 20% wind penetration scenario in the coal-heavy PJM West area, both when coal units bid business as usual startup costs, and when they bid costs accounting for the elevated wear and tear that occurs during cycling. We conclude that while 20% wind leads to increased coal cycling and reduced coal capacity factors under business as usual startup costs, including full startup costs shifts the burden of balancing wind onto more flexible units. This shift has benefits for CO2, NOX, and SO2 emissions as well as for the profitability of coal plants, as calculated by our dispatch model.

  3. CFD modeling of commercial-scale entrained-flow coal gasifiers

    SciTech Connect

    Ma, J.; Zitney, S.

    2012-01-01

    Optimization of an advanced coal-fired integrated gasification combined cycle system requires an accurate numerical prediction of gasifier performance. Computational fluid dynamics (CFD) has been used to model the turbulent multiphase reacting flow inside commercial-scale entrained-flow coal gasifiers. Due to the complexity of the physical and chemical processes involved, the accuracy of sub-models requires further improvement. Built upon a previously developed CFD model for entrained-flow gasification, the advanced physical and chemical sub-models presented in this paper include a moisture vaporization model with consideration of high mass transfer rate and a coal devolatilization model with more species to represent coal volatiles and the heating rate effect on volatile yield. The global gas phase reaction kinetics is also carefully selected. To predict a reasonable peak temperature of the coal/O{sub 2} flame inside an entrained-flow gasifier, the reserve reaction of H{sub 2} oxidation is included in the gas phase reaction model. The enhanced CFD model is applied to simulate two typical commercial-scale oxygen-blown entrained-flow configurations including a single-stage down-fired gasifier and a two-stage up-fired gasifier. The CFD results are reasonable in terms of predicted carbon conversion, syngas exit temperature, and syngas exit composition. The predicted profiles of velocity, temperature, and species mole fractions inside the entrained-flow gasifier models show trends similar to those observed in a diffusion-type flame. The predicted distributions of mole fractions of major species inside both gasifiers can be explained by the heterogeneous combustion and gasification reactions and the homogeneous gas phase reactions. It was also found that the syngas compositions at the CFD model exits are not in chemical equilibrium, indicating the kinetics for both heterogeneous and gas phase homogeneous reactions are important. Overall, the results achieved here

  4. Large-Scale Digital Geologic Map Databases and Reports of the North Coal District in Afghanistan

    USGS Publications Warehouse

    Hare, Trent M.; Davis, Philip A.; Nigh, Devon; Skinner, James A.; SanFilipo, John R.; Bolm, Karen S.; Fortezzo, Corey M.; Galuszka, Donna; Stettner, William R.; Sultani, Shafiqullah; Nader, Billal

    2008-01-01

    members of the coal team: Engineer Saifuddin Aminy (Team Leader); Engineer Gul Pacha Azizi; Engineer Abdul Haq Barakati; Engineer Abdul Basir; Engineer Mohammad Daoud; Engineer Abdullah Ebadi; Engineer Abdul Ahad Omaid; Engineer Spozmy; and Engineer Shapary Tokhi. The ongoing efforts of Engineer Mir M. Atiq Kazimi (Team leader); Engineer M. Anwar Housinzada; and Engineer Shereen Agha of the AGS Records Department to organize and catalogue the AGS material were invaluable in locating and preserving these data. The efforts of the entire AGS staff to personally preserve these data during war time, in the absence of virtually any supporting infrastructure, was truly remarkable. The efforts by the British Geological Survey (BGS) to assist the AGS in archiving these data, and the personal assistance provided by BGS (notably Robert McIntosh), to the USGS teams were also appreciated. The logistical support provided by the U.S. Embassy in Kabul, particularly the Afghanistan Reconstruction Group, was critical to the success of the USGS teams while in Afghanistan. Finally, the efforts of the Minister of the Ministry of Mines and Industries (M. Ibrahim Adel) to support the USGS coal resource assessment in Afghanistan, in both his current and former role as President of the Mines Affairs Department was vital to this effort.

  5. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    NASA Astrophysics Data System (ADS)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  6. Development of a coal/water-slurry-fueled diesel engine for industrial cogeneration: Final and summary report

    SciTech Connect

    Nydick, S.E.

    1987-02-01

    Purpose of the program was to foster the long-range development of a coal/water slurry fuel fired slow-speed, two-stroke diesel engine for efficient and economical power generation in the 8 to 30 MW range for use in industrial cogeneration applications. Five Topical Reports have been prepared. This report contains a short description of the process used to select four coal/water slurries for testing in a single cylinder, slow-speed engine and the test facility and a summary of the program results. The program results conclusively showed that the thermal efficiency of a coal/water engine is comparable to that of a diesel fueled engine and produces considerably lower amounts of exhaust emissions. Furthermore, it appears that the slight decrease in efficiency observed for some of the slurries is related to the additional friction at the piston/ring cylinder liner interface when firing coal/water slurry fuels, rather than any differences in combustion. The engine wear, particularly at the piston ring/cylinder liner interface, is considerably greater than that which occurs with liquid fuels. However, it is concluded that by means of technological advances in materials, design changes and new lubrication concepts, are reliable and economical coal/water slurry slow speed engine could be developed.

  7. A comparison study of ash formation during pilot-scale combustion of pulverized coal and coal-water slurry fuels

    SciTech Connect

    Miller, S.F.

    1992-01-01

    The objective of this study was to investigate the effect of fuel form. specifically pulverized coal and coal-water slurry fuel (CWSF), on the particle size distribution (PSD) and inorganic composition of the ash formed during combustion. Three areas of primary interest were fuel particle and droplet size distribution, mineral matter PSD, and the composition and occurrence of inorganics in the fuel. The reactions of pyrite, silicates, aluminosilicates, and alkali and alkaline earth elements during combustion are traced. Two coals, a West Virginia Elk Creek high volatile A bituminous coal and the North Dakota Beulah lignite, were fired as a standard utility grind pulverized fuel and a CWSF at 316.2 MJ/h at 20% excess air in the Penn State Combustion Laboratory down-fired combustor. Fuel PSD and droplet size distribution of the pulverized coal and CWSF are important in determining the PSD of the respective ash when the PSD of the mineral matter and the composition and occurrence of the inorganics in the two fuels are similar, as in the case of the Elk Creek fuels. The mechanism for ash formation in both Elk Creek fuels was coalescence and agglomeration of the inorganics in the coal. The Elk Creek CWSF ash was coarser than the pulverized coal ash due to the larger CWSF char size formed during atomization. The average diameter of the inorganic particles identified in the pulverized coal ash was 2.6 times smaller than those identified in the fuel. The mechanism for ash formation in the Beulah CWSF was coalescence and agglomeration of inherent mineral matter. The average diameter of the inorganic particles identified in the CWSF ash was 3.3 times larger than those identified in the fuel.

  8. "Rule of Thumb Methods No Longer Suffice": Development of British Coal Industry Education and Training 1900-circa 1970 and Lessons for Present-Day Education Policy-Makers

    ERIC Educational Resources Information Center

    Walker, Martyn A.

    2015-01-01

    This paper traces the origins and development of coal mining education and training in Britain from 1900 to the 1970s, by which time the coal industry had substantially declined. It looks at the progress from working-class self-help to national policy in support of education and training. The research makes use of college prospectuses and…

  9. THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES

    SciTech Connect

    Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

    2003-11-24

    This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

  10. Radiotracer investigation in an industrial-scale oxidizer.

    PubMed

    Pant, H J; Sharma, V K

    2015-05-01

    A radiotracer investigation was carried out in an industrial-scale oxidizer. The main objectives of the investigation were to measure residence time distribution (RTD) of organic process fluid, determine the mean residence time (MRT) and investigate the degree of axial mixing. Bromine-82 as p-dibromo biphenyl was used as a radiotracer for measuring RTD of the organic process fluid. The MRT of the fluid in the oxidizer was determined to be 390min. An ideal stirred tank model with a plug flow reactor in recirculation stream was used to simulate the measured RTD data and was found suitable for describing flow in the system. Based on the model simulation the mean residence times in oxidizer and recycle stream were estimated. The results of the investigation showed that the oxidizer behaved as a well-mixed reactor whereas the recycle stream behaved as a plug flow reactor. PMID:25766114

  11. Recovery Act: Oxy-Combustion Techology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project completion date was April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a

  12. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  13. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1993--December 1993

    SciTech Connect

    1994-01-30

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing the system modification installation designs, completing the TSCA ash testing, and conducting additional industry funded testing. Final detailed installation designs for the integrated test system configuration are being completed.

  14. Metabolic engineering of strains: from industrial-scale to lab-scale chemical production.

    PubMed

    Sun, Jie; Alper, Hal S

    2015-03-01

    A plethora of successful metabolic engineering case studies have been published over the past several decades. Here, we highlight a collection of microbially produced chemicals using a historical framework, starting with titers ranging from industrial scale (more than 50 g/L), to medium-scale (5-50 g/L), and lab-scale (0-5 g/L). Although engineered Escherichia coli and Saccharomyces cerevisiae emerge as prominent hosts in the literature as a result of well-developed genetic engineering tools, several novel native-producing strains are gaining attention. This review catalogs the current progress of metabolic engineering towards production of compounds such as acids, alcohols, amino acids, natural organic compounds, and others.

  15. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    PubMed

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment.

  16. Large scale solubilization of coal and bioconversion to utilizable energy. Technical progress report, January 1--March 31, 1996

    SciTech Connect

    Mishra, N.C.

    1996-05-01

    In order develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the authors plan to clone the genes encoding Neurospora protein that facilitates depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the products of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Results are presented for the cloning of genes for Neurospora CSA-protein.

  17. Estimation of Scale Deposition in the Water Walls of an Operating Indian Coal Fired Boiler: Predictive Modeling Approach Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Kumari, Amrita; Das, Suchandan Kumar; Srivastava, Prem Kumar

    2016-04-01

    Application of computational intelligence for predicting industrial processes has been in extensive use in various industrial sectors including power sector industry. An ANN model using multi-layer perceptron philosophy has been proposed in this paper to predict the deposition behaviors of oxide scale on waterwall tubes of a coal fired boiler. The input parameters comprises of boiler water chemistry and associated operating parameters, such as, pH, alkalinity, total dissolved solids, specific conductivity, iron and dissolved oxygen concentration of the feed water and local heat flux on boiler tube. An efficient gradient based network optimization algorithm has been employed to minimize neural predictions errors. Effects of heat flux, iron content, pH and the concentrations of total dissolved solids in feed water and other operating variables on the scale deposition behavior have been studied. It has been observed that heat flux, iron content and pH of the feed water have a relatively prime influence on the rate of oxide scale deposition in water walls of an Indian boiler. Reasonably good agreement between ANN model predictions and the measured values of oxide scale deposition rate has been observed which is corroborated by the regression fit between these values.

  18. Chlor-Alkali Industry: A Laboratory Scale Approach

    ERIC Educational Resources Information Center

    Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.

    2004-01-01

    A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.

  19. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1994--December 1994

    SciTech Connect

    1995-03-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was concentrated on conducting the 100 hour demonstration test. The test was successfully conducted from September 12th through the 16th. The test program consisted of one test run, with a duration of 100 hours at a nominal feed rate of 1000 lbs/hr. Throughout the test, the CMS was fired with coal and a coal by-product (i.e. coal-fired boiler flyash) as the primary fuels. Natural gas was used as an auxiliary fuel as necessary to provide process trim. The feedstock consisted of a coal-fired utility boiler flyash and dolomite and produced a stable, fully-reacted vitrified product. The fly ash, supplied by PENELEC, contained between 6 and 12% by weight of carbon because of the low NO{sub x} burners on the PENELEC boilers.

  20. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  1. Characterization of ash deposition and heat transfer behavior of coals during combustion in a pilot-scale facility and full-scale utility

    SciTech Connect

    Sushil Gupta; Rajender Gupta; Gary Bryant; Terry Wall; Shinji Watanabe; Takashi Kiga; Kimihito Narukawa

    2009-05-15

    Experimental measurements as well as theoretical models were used to investigate the impact of mineral matter of three coals on ash deposition and heat transfer for pulverized coal fired boilers. The ash deposition experiments were conducted in a pulverized fuel combustion pilot-scale facility and a full-scale unit. A mathematical model with input from computer-controlled scanning electron microscopy analysis of coal minerals was used to predict the effect of ash deposition on heat transfer. The predicted deposit thickness and heat flux from the model are shown to be consistent with the measurements in the test facility. The model differentiates the coals according to the deposits they form and their effect on heat transfer. The heat transfer predictions in the full-scale unit were found to be most suitable for the water wall under the furnace nose. The study demonstrates that the measurements in a full-scale unit can differ significantly from those in pilot-scale furnaces due to soot-blowing operations. 9 refs., 12 figs., 3 tabs.

  2. Selenium and arsenic speciation in fly ash from full-scale coal-burning utility plants.

    PubMed

    Huggins, Frank E; Senior, Constance L; Chu, Paul; Ladwig, Ken; Huffman, Gerald P

    2007-05-01

    X-ray absorption fine structure spectroscopy has been used to determine directly the oxidation states and speciation of selenium and arsenic in 10 fly ash samples collected from full-scale utility plants. Such information is needed to assess the health risk posed by these elements in fly ash and to understand their behavior during combustion and in fly ash disposal options, such as sequestration in tailings ponds. Selenium is found predominantly as Se(IV) in selenite (SeO3(2-)) species, whereas arsenic is found predominantly as As(V) in arsenate (AsO4(3-)) species. Two distinct types of selenite and arsenate spectra were observed depending upon whether the fly ash was derived from eastern U.S. bituminous (Fe-rich) coals or from western subbituminous or lignite (Ca-rich) coals. Similar spectral details were observed for both arsenic and selenium in the two different types of fly ash, suggesting that the postcombustion behavior and capture of both of these elements are likely controlled by the same dominant element or phase in each type of fly ash.

  3. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    SciTech Connect

    Gangwal, Santosh K.; McCabe, Kevin

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  4. Development of a retrofit coal combustor for industrial applications, (Phase 1-A)

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  5. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1994--September 1994

    SciTech Connect

    1994-12-01

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a {open_quotes}Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes} is a project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability.

  6. Speciation of vanadium in coal mining, industrial, and agricultural soil samples using different extractants and heating systems.

    PubMed

    Khan, Sumaira; Kazi, Tasneem Gul; Afridi, Hassan Imran; Kolachi, Nida Fatima; Ullah, Naeem; Dev, Kapil

    2013-01-01

    A fast microwave-assisted extraction procedure was developed for the speciation of vanadium (V) species in soil samples collected from the vicinity of the Lakhra coal power plant (situated near a coal mining area) and industrial and agricultural areas. Soil samples were treated with two extracting reagents, (NH4)2HPO4 (0.2-1 M) and Na2CO3 (0.1-0.5 M), and heated by conventional and microwave methods for different time intervals to extract V+5 species. The V+4 and total V were extracted from filtration residue and the same subsamples of soil by treating with the acid mixture of HNO3-HCl-HClO4-H2SO4 (1:1:1:1, v/v/v/v). No significant difference between V+5 contents obtained by conventional heating and microwave-assisted extraction was observed (P = 0.485). The extraction efficiency of 0.6 M (NH4)2HPO4 for V+5 was lower (4-7%) than that obtained by 0.2 M Na2CO3 solution. The levels of V+5 were higher in soil samples collected from the vicinity of the Lakhra coal power plant and industrial areas, compared to those obtained from agricultural soil.

  7. POC-scale testing of oil agglomeration techniques and equipment for fine coal processing

    SciTech Connect

    W. Pawlak; K. Szymocha

    1999-07-01

    The information presented in this manual is solely for the purpose of operating the POC-scale equipment for fine coal processing as described herein. This manual provides a general description of the process technology and guidelines for plant operating procedures. It is intended for use by the operators and maintenance personnel who will be responsible for the operations of the plant. No attempt should be made to operate the plant until the principles of the process and operating instructions contained in this manual are fully understood. Operating personnel should thoroughly familiarize themselves with all processing equipment prior to commencing plant operation. All equipment is skid mounted to provide a self-contained unit. The dimensions of the unit are comply with standard guidelines. A minimum distance of 2 feet is provided between equipment for walkway and maintenance.

  8. Operation of industrial-scale electron beam wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Han, Bumsoo; Kyu Kim, Jin; Kim, Yuri; Seung Choi, Jang; Young Jeong, Kwang

    2012-09-01

    Textile dyeing processes consume large amount of water, steam and discharge filthy and colored wastewater. A pilot scale e-beam plant with an electron accelerator of 1 MeV, 40 kW had constructed at Daegu Dyeing Industrial Complex (DDIC) in 1997 for treating 1,000 m3 per day. Continuous operation of this plant showed the preliminary e-beam treatment reduced bio-treatment time and resulted in more significant decreasing TOC, CODCr, and BOD5. Convinced of the economics and efficiency of the process, a commercial plant with 1 MeV, 400 kW electron accelerator has constructed in 2005. This plant improves the removal efficiency of wastewater with decreasing the retention time in bio-treatment at around 1 kGy. This plant is located on the area of existing wastewater treatment facility in DDIC and the treatment capacity is 10,000 m3 of wastewater per day. The total construction cost for this plant was USD 4 M and the operation cost has been obtained was not more than USD 1 M per year and about USD 0.3 per each m3 of wastewater.

  9. Old Dominion, industrial commonwealth: coal, politics, and economy in Antebellum America

    SciTech Connect

    Adams, S.P.

    2005-05-15

    The political economies of coal in Virginia and Pennsylvania from the late eighteenth century through the Civil War are compared, and the divergent paths these two states took in developing their ample coal reserves during a critical period of American industrialisation are examined. State economic policies played a major role. Virginia's failure to exploit the rich coal fields in the western part of the state can be traced to the legislature's over riding concern to protect and promote the interests of the agrarian, slaveholding elite of eastern Virginia. Pennsylvania's more fractious legislature enthusiastically embraced a policy of economic growth that resulted in the construction of an extensive transportation network, a statewide geological survey, and support for private investment in its coal fields.

  10. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  11. A new partnership to enhance international competitiveness for coal-related industries

    SciTech Connect

    Schobert, H.H.; Mitchell, G.D.; Finkelman, R.B.

    1999-07-01

    Conducting business in countries with significant indigenous coal supplies and expected economic growth (China, Indonesia, India, Russia, Ukraine, South Africa, Columbia, Brazil, and Venezuela) is extremely difficult, not only from a socio-economic/cultural standpoint, but because little reliable information is available on the properties and quality of raw materials. The question is how to compete and create opportunities in these countries when little or nothing is known about the properties of the indigenous raw materials. To address this concern the Penn State University and the U.S. Geological Survey (USGS) are partnering to develop an integrated database and sample bank of international coal and limestone samples of commercial value to power generation. The purpose of this partnership is to provide a reliable database linked to a convenient sample bank that would aid in resource evaluation and testing with regard to coal utilization including, but not limited to, combustion and combustion engineering, coke making, liquefaction, gasification, coalbed methane recovery, coal preparation, and mining. The Penn State-USGS-Private Sector partnership offers unique potential to provide this valuable service. The Penn State Energy Institute maintains a wide variety of analytical and testing equipment and expertise in coal-related engineering, chemistry and geology and has access to much more throughout the University system. For several decades the Institute has successfully maintained a large domestic coal sample bank. The USGS maintains a state-of-the-art analytical facility and a comprehensive domestic coal quality database. The USGS is actively working in about thirty countries to develop a reliable international coal quality database. Private sector will bring insights into the issues of competitiveness, certain knowledge of the marketplace and financial support.

  12. Clean coal technology: The new coal era

    SciTech Connect

    Not Available

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  13. Structure of CIMS in large-scale continuous manufacturing industry and its optimization strategy

    NASA Astrophysics Data System (ADS)

    Yao, Jianchu; Wang, Gaofeng; Wang, Boxing; Zhou, Ji; Yu, Jun

    1995-08-01

    This paper focuses on the large scale petroleum refinery manufacturing industry and has analyzed the characteristics and functional requirements of CIMS in continuous process industries. Then it compares the continuous manufacturing industry with the discrete manufacturing industry on CIMS conceptual model, and presents the functional model frame and key technologies of CIPS. The paper also proposes the optimization model and solution strategy for the CIMS in continuous industry.

  14. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  15. Outlook and Challenges for Chinese Coal

    SciTech Connect

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with

  16. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  17. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1994-01-30

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy awarded Vortec Corporation this Phase III contract (No. DE-AC22-91PC91161) for the development of {open_quotes}A Coal-Fired Combustion System for Industrial Process Heating Applications{close_quotes}. The effective contrast start date was September 3, 1991. The contract period of performance is 36 months. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. Final detailed installation designs for the integrated test system configuration are being completed. The equipment is being fabricated and deliveries have begun. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe recyclable glass product.

  18. Multi-scale radiographic applications in microelectronic industry

    NASA Astrophysics Data System (ADS)

    Gluch, J.; Löffler, M.; Meyendorf, N.; Oppermann, M.; Röllig, M.; Sättler, P.; Wolter, K. J.; Zschech, E.

    2016-02-01

    New concepts in assembly technology boost our daily life in an unknown way. High end semiconductor industry today deals with functional structures down to a few nanometers. ITRS roadmap predicts an ongoing decrease of the "DRAM half pitch" over the next decade. Packaging of course is not intended to realize pitches at the nanometer scale, but has to face the challenges of integrating such semiconductor devices with smallest pitch and high pin counts into systems. System integration (SiP, SoP, Hetero System Integration etc.) into the third dimension is the only way to reduce the gap between semiconductor level and packaging level interconnection. The described development is mainly driven by communication technology but also other branches like power electronics benefit from the vast progress in integration and assembly technology. The challenge of advanced packaging requires new nondestructive evaluation (NDE) techniques for technology development and production control. In power electronics production the condition monitoring receives a lot of interest to avoid electrical shortcuts, dead solder joints and interface cracking. It is also desired to detect and characterize very small defects like transportation phenomenon or Kirkendall voids. For this purpose imaging technologies with resolutions in the sub-micron range are required. Our presentation discusses the potentials and the limits of X-ray NDE techniques, illustrated by crack observation in solder joints, evaluation of micro vias in PCBs and interposers and the investigation of solder material composition and other aftermaths of electro migration in solder joints. Applied radiographic methods are X-ray through transmission, multi-energy techniques, laminography, CT and nano-CT.

  19. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China.

    PubMed

    Song, Xiaoyan; Yang, Shushen; Shao, Longyi; Fan, Jingsen; Liu, Yanfei

    2016-11-15

    The atmospheric pollution created by coal-dominated industrial cities in China cannot be neglected. This study focuses on the atmospheric PM10 in the typical industrial city of Pingdingshan City in North China. A total of 44 PM10 samples were collected from three different sites (power plant, mining area, and roadside) in Pingdingshan City during the winter of 2013, and were analyzed gravimetrically and chemically. The Pingdingshan PM10 samples were composed of mineral matter (average of 118.0±58.6μg/m(3), 20.6% of the total PM10 concentration), secondary crystalline particles (338.7±122.0μg/m(3), 59.2%), organic matter (77.3±48.5μg/m(3), 13.5%), and elemental carbon (38.0±28.3μg/m(3), 6.6%). Different sources had different proportions of these components in PM10. The power plant pollutant source was characterized by secondary crystalline particles (377.1μg/m(3)), elemental carbon (51.5μg/m(3)), and organic matter (90.6μg/m(3)) due to coal combustion. The mining area pollutant source was characterized by mineral matter (124.0μg/m(3)) due to weathering of waste dumps. The roadside pollutant source was characterized by mineral matter (130.0μg/m(3)) and organic matter (81.0μg/m(3)) due to road dust and vehicle exhaust, respectively. A positive matrix factorization (PMF) analysis was performed for PM10 source apportionment to identify major anthropogenic sources of PM10 in Pingdingshan. Six factors-crustal matter, coal combustion, vehicle exhaust and abrasion, local burning, weathering of waste dumps, and industrial metal smelting-were identified and their contributions to Pingdingshan PM10 were 19.0%, 31.6%, 7.4%, 6.3%, 9.8%, and 25.9%, respectively. Compared to other major cities in China, the source of PM10 in Pingdingshan was characterized by coal combustion, weathering of waste dumps, and industrial metal smelting. PMID:27450962

  20. Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig

    SciTech Connect

    Galica, M.A.

    1994-02-01

    This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

  1. Numerical investigation of full scale coal combustion model of tangentially fired boiler with the effect of mill ducting

    NASA Astrophysics Data System (ADS)

    Achim, Daniela; Naser, J.; Morsi, Y. S.; Pascoe, S.

    2009-11-01

    In this paper a full scale combustion model incorporating upstream mill ducting of a large tangentially fired boiler with flue gas recirculation was examined numerically. Lagrangian particle tracking was used to determine the coal particle paths and the Eddy Dissipation Model for the analysis of the gas phase combustion. Moreover volatiles and gaseous char products, given off by the coal particles were modelled by Arrhenius single phase reactions and a transport equation was solved for each material given off by the particles. Thermal, prompt, fuel and reburn NO x models with presumed probability density functions were used to model NO x production and the discrete transfer radiation model was used to model radiation heat transfer. Generally, the findings indicated reasonable agreement with observed qualitative and quantitative data of incident heat flux on the walls. The model developed here could be used for a range of applications in furnace design and optimisation of gas emissions of coal fired boiler plants.

  2. Environmental impact of coal industry and thermal power plants in India.

    PubMed

    Mishra, U C

    2004-01-01

    Coal is the only natural resource and fossil fuel available in abundance in India. Consequently, it is used widely as a thermal energy source and also as fuel for thermal power plants producing electricity. India has about 90,000 MW installed capacity for electricity generation, of which more than 70% is produced by coal-based thermal power plants. Hydro-electricity contributes about 25%, and the remaining is mostly from nuclear power plants (NPPs). The problems associated with the use of coal are low calorific value and very high ash content. The ash content is as high as 55-60%, with an average value of about 35-40%. Further, most of the coal is located in the eastern parts of the country and requires transportation over long distances, mostly by trains, which run on diesel. About 70% oil is imported and is a big drain on India's hard currency. In the foreseeable future, there is no other option likely to be available, as the nuclear power programme envisages installing 20,000 MWe by the year 2020, when it will still be around 5% of the installed capacity. Hence, attempts are being made to reduce the adverse environmental and ecological impact of coal-fired power plants. The installed electricity generating capacity has to increase very rapidly (at present around 8-10% per annum), as India has one of the lowest per capita electricity consumptions. Therefore, the problems for the future are formidable from ecological, radio-ecological and pollution viewpoints. A similar situation exists in many developing countries of the region, including the People's Republic of China, where coal is used extensively. The paper highlights some of these problems with the data generated in the author's laboratory and gives a brief description of the solutions being attempted. The extent of global warming in this century will be determined by how developing countries like India manage their energy generation plans. Some of the recommendations have been implemented for new plants

  3. Scale-free phenomenon in industries in China

    NASA Astrophysics Data System (ADS)

    Tang, Da-Hai; Chen, Bo-Kui; Gao, Ya-Chun; Wang, Bing-Hong

    2013-12-01

    In this paper, we investigate the data of industries in China and find that the frequency distributions of fixed assets and fixed-assets’ investment of industries obey power laws. We show that these power-law modes can be explained by the rules of the Simon Model, rather than the existing investment theories such as the classical investment theory or acceleration principle. Moreover, the mechanism of the investment distribution may be similar to the forest-fire model of self-organizing criticality. By introducing the complex system methods, this research changes the traditional opinion of the investment and gains some meaningful understanding in the dynamics of industries and the economic cycle.

  4. Firing microfine coal with a low NOx, RSFC burner in an industrial boiler designed for oil and gas

    SciTech Connect

    Thornhock, D.E.; Patel, R.; Borio, R.W.; Miller, B.G.; Scaroni, A.W.

    1996-12-31

    ABB Power Plant Laboratories (ABB-PPL) working under a US Department of Energy-Pittsburgh Energy Technology Center (DOE-PETC) contract has carried out tests with the Radially Stratified Flame Core (RSFC) burner which was licensed from the Massachusetts Institute of Technology who developed and patented the RSFC burner. Tests were carried out in a small industrial boiler, designed for oil and natural gas, located at the Energy and Fuels Research Center of Penn State University who was working as a subcontractor to ABB-PPL. The paper presents results from the long-term testing task in the DOE-PETC program with particular attention being paid to the challenges faced in maintaining high combustion efficiencies while achieving low NOx in a small industrial boiler designed for firing oil or natural gas. The paper will also address the issue of ash management when firing coal in a boiler designed for fuels having essentially no ash.

  5. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1992--June 1992

    SciTech Connect

    Not Available

    1992-09-03

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelling and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, approval of Vortec`s Environmental Assessment (EA) required under the National Environmental Policy Act (NEPA) was approved. The EA approval cycle took approximately 9 months. The preliminary test program which was being held in abeyance pending approval of the EA was initiated. Six preliminary test runs were successfully competed during the period. Engineering and design activities in support of the Phase III proof of concept are continuing, and modifications to the existing test system configuration to allow performance of the preliminary tests were completed.

  6. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, April 1993--June 1993

    SciTech Connect

    Not Available

    1993-07-30

    Vortec Corporation`s Phase III development contract DE-AC22-91PC91161 for a ``Coal-Fired Combustion System for Industrial Process Heating Applications`` is project funded under the DOE/PETC advanced combustion program. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the designs of the remaining major components of the integrated system were completed and the equipment was ordered. DOE has elected to modify the scope of the existing R&D program being conducted under this contract to include testing of a simulated TSCA incinerator ash. The modification will be in the form of an additional Task (Task 8 -- TSCA Ash Testing) to the original Statement of Work.

  7. Development and testing of commercial-scale, coal-fired combustion systems: Phase III. Final report

    SciTech Connect

    1996-03-01

    Based on studies that indicated a large potential for significantly increased coal-firing in the commercial sector, the U.S. Department of Energy`s Pittsburgh Energy Technology Center (PETC) sponsored a multi-phase development effort for advanced coal combustion systems. This Final Report presents the results of the last phase (Phase III) of a project for the development of an advanced coal-fired system for the commercial sector of the economy. The project performance goals for the system included dual-fuel capability (i.e., coal as primary fuel and natural gas as secondary fuel), combustion efficiency exceeding 99 percent, thermal efficiency greater than 80 percent, turndown of at least 3:1, dust-free and semi-automatic dry ash removal, fully automatic start-up with system purge and ignition verification, emissions performance exceeding New Source Performance Standards (NSPS) and approaching those produced by oil-fired, Commercial-sized units, and reliability, safety, operability, maintainability, and service life comparable to oil-fired units. The program also involved a site demonstration at a large facility owned by Striegel Supply Company, a portion of which was leased to MTCI. The site, mostly warehouse space, was completely unheated and the advanced coal-fired combustion system was designed and sized to heat this space. Three different coals were used in the project, one low and one high sulfur pulverized Pittsburgh No. 8 coal, and a micronized low volatile, bituminous coal. The sorbents used were Pfizer dolomitic limestone and an Anvil lime. More than 100 hours of screening test`s were performed to characterize the system. The parameters examined included coal firing rate, excess air level, ash recycle rate, coal type, dolomitic limestone feed rate, and steam injection rate. These tests indicated that some additional modifications for coal burning in the system were required.

  8. The potential of on-line optical flow measurement in the control and monitoring of pilot-scale oxy-coal flames

    NASA Astrophysics Data System (ADS)

    Toth, Pal; Zhan, Zhonghua; Fu, Zhisong; Palotas, Arpad B.; Eddings, Eric G.; Ring, Terry A.

    2014-05-01

    Digital image processing techniques offer a wide array of tools capable of extracting apparent displacement or velocity information from sequences of images of moving objects. Optical flow algorithms have been widely used in areas such as traffic monitoring and surveillance. The knowledge of instantaneous apparent flame velocities (however, they are defined) may prove to be valuable during the operation and control of industrial-scale burners. Optical diagnostics techniques, coupled with on-line image processing, have been applied in the optimization of coal-fired power plants; however, regardless of the available technology, the current methods do not apply optical flow measurement. Some optical flow algorithms have the potential of real-time applicability and are thus possible candidates for on-line apparent flame velocity extraction. In this paper, the potential of optical flow measurement in on-line flame monitoring and control is explored.

  9. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  10. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  11. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  12. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier

    SciTech Connect

    Lippert, T.E.; Bachovchin, D.M.; Smeltzer, E.E.; Meyer, J.H.; Vidt, E.J.

    1989-09-01

    The ceramic cross-flow filter (CXF) system is a promising method to be used in advanced coal based power systems for high temperature, high pressure (HTHP) particle removal. Using a subpilot scale pressurized fluid-bed combustor (PFBC) at Argonne National Laboratory and various PFBC simulators, prior projects have indicated that CXF systems can be used in oxidizing environments at PFBC conditions. To extend the use of CXF systems, this project completed an economic analysis comparing the cost of various oxygen and air blown gasification systems with the CXF system incorporated, initiated the scaleup of the CXF element from development to commercial size, predicted the characteristics of gasifier dust cake, evaluated cleaning pulse characteristics in a large multielement simulation, upgraded pulse cleaning mathematical model, and completed additional testing of the CXF elements under gasification (reducing) and PFBC conditions. Coors Ceramic Company and GTE Products Corporation were integrally involved in this program through the development and fabrication of the CXF elements. 39 figs., 23 tabs.

  13. O absorption measurements in an engineering-scale high-pressure coal gasifier

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Sur, Ritobrata; Jeffries, Jay B.; Hanson, Ronald K.; Clark, Tommy; Anthony, Justin; Machovec, Scott; Northington, John

    2014-10-01

    A real-time, in situ water vapor (H2O) sensor using a tunable diode laser near 1,352 nm was developed to continuously monitor water vapor in the synthesis gas of an engineering-scale high-pressure coal gasifier. Wavelength-scanned wavelength-modulation spectroscopy with second harmonic detection (WMS-2 f) was used to determine the absorption magnitude. The 1 f-normalized, WMS-2 f signal (WMS-2 f/1 f) was insensitive to non-absorption transmission losses including beam steering and light scattering by the particulate in the synthesis gas. A fitting strategy was used to simultaneously determine the water vapor mole fraction and the collisional-broadening width of the transition from the scanned 1 f-normalized WMS-2 f waveform at pressures up to 15 atm, which can be used for large absorbance values. This strategy is analogous to the fitting strategy for wavelength-scanned direct absorption measurements. In a test campaign at the US National Carbon Capture Center, the sensor demonstrated a water vapor detection limit of ~800 ppm (25 Hz bandwidth) at conditions with more than 99.99 % non-absorption transmission losses. Successful unattended monitoring was demonstrated over a 435 h period. Strong correlations between the sensor measurements and transient gasifier operation conditions were observed, demonstrating the capability of laser absorption to monitor the gasification process.

  14. Study of application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. The 70mm black and white infrared photography acquired in March 1973 at an approximate scale of 1:115,000 permits the identification of areas of mine subsidence not readily evident on other films. This is largely due to the high contrast rendition of water and land by this film and the excessive surface moisture conditions prevalent in the area at the time of photography. Subsided areas consist of shallow depressions which have impounded water. Patterns with a regularity indicative of the room and pillar configuration used in subsurface coal mining are evident.

  15. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof

    2016-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  16. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  17. Large scale solubilization of coal and bioconversion to utilizable energy. Seventh quarterly technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Mishra, N.C.

    1995-12-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  18. Large scale solubilization of coal and bioconversion to utilizable energy. Eighth quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Mishra, N.C.

    1996-02-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, we plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. We also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein.

  19. Surface runoff from full-scale coal combustion product pavements during accelerated loading

    SciTech Connect

    Cheng, C.M.; Taerakul, P.; Tu, W.; Zand, B.; Butalia, T.; Wolfe, W.; Walker, H.

    2008-08-15

    In this study, the release of metals and metalloids from full-scale portland cement concrete pavements containing coal combustion products (CCPs) was evaluated by laboratory leaching tests and accelerated loading of full-scale pavement sections under well-controlled conditions. An equivalent of 20 years of highway traffic loading was simulated at the OSU/OU Accelerated Pavement Load Facility (APLF). Three types of portland cement concrete driving surface layers were tested, including a control section (i.e., ordinary portland cement (PC) concrete) containing no fly ash and two sections in which fly ash was substituted for a fraction of the cement; i.e., 30% fly ash (FA30) and 50% fly ash (FA50). In general, the concentrations of minor and trace elements were higher in the toxicity characteristic leaching procedure (TCLP) leachates than in the leachates obtained from synthetic precipitation leaching procedure and ASTM leaching procedures. Importantly, none of the leachate concentrations exceeded the TCLP limits or primary drinking water standards. Surface runoff monitoring results showed the highest release rates of inorganic elements from the FA50 concrete pavement, whereas there were little differences in release rates between PC and FA30 concretes. The release of elements generally decreased with increasing pavement loading. Except for Cr, elements were released as particulates (>0.45 {mu} m) rather than dissolved constituents. The incorporation of fly ash in the PC cement concrete pavements examined in this study resulted in little or no deleterious environmental impact from the leaching of inorganic elements over the lifetime of the pavement system.

  20. Large scale solubilization of coal and bioconversion to utilizable energy. Third quarterly technical progress report, April 1, 1994--June 30, 1994

    SciTech Connect

    Mishra, N.C.

    1994-08-01

    In order to develop a system for a large scale coal solubilization and its bioconversion to utilizable fuel, the investigators plan to clone the genes encoding Neurospora protein that facilitate depolymerization of coal. They also plan to use desulfurizing bacteria to remove the sulfur in situ and use other microorganisms to convert biosolubilized coal into utilizable energy following an approach utilizing several microorganisms. In addition the product of coal solubilized by fungus will be characterized to determine their chemical nature and the mechanism of reaction catalyzed by fungal product during in vivo and in vitro solubilization by the fungus or purified fungal protein. Main objectives are: (1) cloning of Neurospora gene for coal depolymerization protein controlling solubilization in different host cells, utilizing Neurospora plasmid and other vector(s); (2) (a) development of a large scale electrophoretic separation of coal drived products obtained after microbial solubilization; (b) identification of the coal derived products obtained after biosolubilization by Neurospora cultures or obtained after Neurospora enzyme catalyzed reaction in in vitro by the wildtype and mutant enzymes; (3) bioconversion of coal drived products into utilizable fuel; and (4) characterization of Neurospora wildtype and mutant CSA protein(s) involved in solubilization of coal in order to assess the nature of the mechanism of solubilization and the role of Neurospora proteins in this process.

  1. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1996-10-01

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

  2. Rail haulage stays on track. [New rail system technology in the coal and mineral industry

    SciTech Connect

    Not Available

    1993-05-01

    This paper describes the use of rail haulage systems in coal and ore mining. The paper is made up of several smaller articles, all dealing with rail haulage systems. The first article describes a rapid haulage systems for goods and bulk handling in both surface and underground mining environments of Australia. The paper describes its capacity, electrical demands, and track systems. The second article describes automated underground rail systems in China's coal mines. The third article describes the modernization of more conventional rope rail haulage systems, describing designs of transfer and lifting stations, and other relevant components. Three additional short papers describe technology advances in rail systems in eastern Europe and underground rail systems in Western Australia and Queensland.

  3. Using MSD prevention for cultural change in mining: Queensland Government/Anglo Coal Industry partnership.

    PubMed

    Tilbury, Trudy; Sanderson, Liz

    2012-01-01

    Queensland Mining has a strong focus on safety performance, but risk management of health, including Musculoskeletal Disorders (MSDs) continues to have a lower priority. The reliance on individual screening of workers and lower level approaches such as manual handling training is part of the coal mining 'culture'. Initiatives such as the New South Wales and Queensland Mining joint project to develop good practice guidance for mining has allowed for a more consistent message on participatory ergonomics and prevention of MSD. An evidence based practice approach, including the introduction of participatory ergonomics and safe design principles, was proposed to Anglo American Coal operations in Queensland. The project consisted of a skills analysis of current health personnel, design of a facilitated participatory ergonomics training program, site visits to identify good practice and champions, and a graduated mentoring program for health personnel. Early results demonstrate a number of sites are benefiting from site taskforces with a focus on positive performance outcomes. PMID:22317407

  4. POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique

    SciTech Connect

    Karekh, B K; Tao, D; Groppo, J G

    1998-08-28

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 - March 31, 1998.

  5. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  6. Pilot-Scale Demonstration of ALTA for NOx Control in Pulverized Coal-Fired Boilers

    SciTech Connect

    Andrew Fry; Devin Davis; Marc Cremer; Bradley Adams

    2008-04-30

    This report describes computational fluid dynamics (CFD) modeling and pilot-scale testing conducted to demonstrate the ability of the Advanced Layered Technology Approach (ALTA) to reduce NO{sub x} emissions in a pulverized coal (PC) boiler. Testing specifically focused on characterizing NO{sub x} behavior with deep burner staging combined with Rich Reagent Injection (RRI). Tests were performed in a 4 MBtu/hr pilot-scale furnace at the University of Utah. Reaction Engineering International (REI) led the project team which included the University of Utah and Combustion Components Associates (CCA). Deep burner staging and RRI, combined with selective non-catalytic reduction (SNCR), make up the Advanced Layered Technology Approach (ALTA) for NO{sub x} reduction. The application of ALTA in a PC environment requires homogenization and rapid reaction of post-burner combustion gases and has not been successfully demonstrated in the past. Operation of the existing low-NO{sub x} burner and design and operation of an application specific ALTA burner was guided by CFD modeling conducted by REI. Parametric pilot-scale testing proved the chemistry of RRI in a PC environment with a NOx reduction of 79% at long residence times and high baseline NOx rate. At representative particle residence times, typical operation of the dual-register low-NO{sub x} burner provided an environment that was unsuitable for NO{sub x} reduction by RRI, showing no NOx reduction. With RRI, the ALTA burner was able to produce NO{sub x} emissions 20% lower than the low-NO{sub x} burner, 76 ppmv vs. 94 ppmv, at a burner stoichiometric ratio (BSR) of 0.7 and a normalized stoichiometric ratio (NSR) of 2.0. CFD modeling was used to investigate the application of RRI for NO{sub x} control on a 180 MW{sub e} wall-fired, PC boiler. A NO{sub x} reduction of 37% from baseline (normal operation) was predicted using ALTA burners with RRI to produce a NO{sub x} emission rate of 0.185 lb/MBtu at the horizontal nose of

  7. Assessment of the multi-scale leaching behaviour of compacted coal fly ash.

    PubMed

    Tiruta-Barna, L; Rakotoarisoa, Z; Méhu, J

    2006-10-11

    Peer experimental-modelling tools were developed and applied in the case of coal fly ashes with the aim to assess the leaching behaviour of ash compacted layers in a use scenario. Laboratory-scale (dissolution kinetics, ANC test, column percolation) and field pilot experimental studies (release monitoring during 18 month, hydrodynamic study, ANC on 44 month leached waste) were performed in order to identify and quantify the main transport phenomena and chemical processes. A quantitative geochemical model was developed taking into account equilibrium chemical reactions as well as kinetic processes for silicate phases like albite, K-feldspar and Ca-olivine. Phases like BaHAsO(4) and a solid solution Ba(x)Sr(1-x)(SO(4))(y)(CrO(4))(1-y) were proposed to explain the complex leaching behaviour of As, Cr, Ba, S; the soluble CaMoO(4) seems to control the Mo concentration. At neutral and acid pH, the model of surface complexation on ferric hydroxides was added for describing the behaviour of As, Cr, and Mo. At each scale the dynamic processes were identified and quantified by modelling. During the first contact with water an equilibration time of about 10 days was identified and then considered in all other laboratory experiments (ANC, column percolation). The hydrodynamic properties of compacted fly ashes were identified: a high water retention capacity (97% of the pores are still filled after draining under normal pressure), a flow regime close to plug type, a low fraction of stagnant zones (<0.03%). The scenario factors like carbonation and rainfall play an important role on the leaching behaviour at field scale. The carbonation diminishes the leachate pH from 11 to 8.5. The alternation of rain periods determines an apparent batch behaviour which slows down the outflow of the initial soluble fraction in pore water, if compared with the laboratory percolation column. The coupled geochemical-transport model was validated by comparison of the simulation results on ANC data

  8. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  9. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    SciTech Connect

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

  10. Pilot Scale Water Gas Shift - Membrane Device for Hydrogen from Coal

    SciTech Connect

    Barton, Tom

    2013-06-30

    The objectives of the project were to build pilot scale hydrogen separation systems for use in a gasification product stream. This device would demonstrate fabrication and manufacturing techniques for producing commercially ready facilities. The design was a 2 lb/day hydrogen device which included composite hydrogen separation membranes, a water gas shift monolith catalyst, and stainless steel structural components. Synkera Technologies was to prepare hydrogen separation membranes with metallic rims, and to adjust the alloy composition in their membranes to a palladium-gold composition which is sulfur resistant. Chart was to confirm their brazing technology for bonding the metallic rims of the composite membranes to their structural components and design and build the 2 lbs/day device incorporating membranes and catalysts. WRI prepared the catalysts and completed the testing of the membranes and devices on coal derived syngas. The reactor incorporated eighteen 2'' by 7'' composite palladium alloy membranes. These membranes were assembled with three stacks of three paired membranes. Initial vacuum testing and visual inspection indicated that some membranes were cracked, either in transportation or in testing. During replacement of the failed membranes, while pulling a vacuum on the back side of the membranes, folds were formed in the flexible composite membranes. In some instances these folds led to cracks, primarily at the interface between the alumina and the aluminum rim. The design of the 2 lb/day device was compromised by the lack of any membrane isolation. A leak in any membrane failed the entire device. A large number of tests were undertaken to bring the full 2 lb per day hydrogen capacity on line, but no single test lasted more than 48 hours. Subsequent tests to replace the mechanical seals with brazing have been promising, but the technology remains promising but not proven.

  11. Coal mining: A petex primer

    SciTech Connect

    Not Available

    1985-01-01

    This book is an introduction to the coal industry - from planning a mine to delivering coal to a power plant. The primer covers what coal is and how it is used, modern underground and surface mining practices, coal preparation and transport, and the relation between coal and the environment.

  12. Industrial-scale radio frequency treatments for insect control in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency (RF) treatments are considered as a potential postharvest technology for disinfesting legumes. After treatment protocols are validated to control postharvest insects without significant quality degradation, it is important to scale-up laboratory RF treatments to industrial applicatio...

  13. Indonesian coal mining

    SciTech Connect

    2008-11-15

    The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

  14. Annual Coal Report

    EIA Publications

    2016-01-01

    Provides information about U.S. coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public.

  15. Community Economic Identity: The Coal Industry and Ideology Construction in West Virginia

    ERIC Educational Resources Information Center

    Bell, Shannon Elizabeth; York, Richard

    2010-01-01

    Economic changes and the machinations of the treadmill of production have dramatically reduced the number of jobs provided by extractive industries, such as mining and timber, in the United States and other affluent nations in the post-World War II era. As the importance of these industries to national, regional, and local economies wanes,…

  16. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, October 1992--December 1992

    SciTech Connect

    Not Available

    1993-01-29

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashesand industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent relining the separator/reservoir and the cyclone melter. The relinings were completed, the cyclonemelter was reinstalled, and the test system was returned to operational status. The wet ESP was delivered and placed on its foundation. The focus during the upcoming months will be completing the integration ofthe wet ESP and conducting the first industrial proof-of-concept test. The other system modifications are well underway with the designs of the recuperator installation and the batch/coal feed system progressing smoothly. The program is still slightly behind the original schedule but it is anticipated that it will be back on schedule by the end of the year. The commercialization planning is continuing with the identification of seven potential near-term commercial demonstration opportunities.

  17. Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications

    SciTech Connect

    Hollis, Rebecca

    2013-03-31

    Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

  18. An Experiment Study of the Propagation of Radio Waves in a Scaled Model of Long-Wall Coal Mining Tunnels

    SciTech Connect

    Han, G.R.; Zhang, W.M.; Zhang, Y.P.

    2009-07-01

    A long-wall coal mining tunnel is the most important working area in a coal mine. It has long been realized that radio communications can improve both productivity and safety in this dangerous area. Hence, many attempts to use radio communications in such an environment have been made. Unfortunately, no radio system has satisfactorily provided communication services there, which, we believe, is partially due to poor understanding of the propagation characteristics of radio waves in the long-wall mining tunnel. To have deeper physical insight into the propagation problem, a scaled model of the long-wall mining tunnel was built, and the propagation characteristics of UHF radio waves were measured. The experiment and the measured results are presented and discussed.

  19. Automated control of industrial-scale excimer lasers

    NASA Astrophysics Data System (ADS)

    Boardman, Allan D.; Hodgson, Elizabeth M.; Richardson, M. B.; Spence, A. J.; Wilson, A. C.

    1994-08-01

    This paper describes the design, development, and construction of an automated control system for high average power excimer lasers working in an industrial environment. The control system is based on a distributed network of transputers, each dealing with its own area of responsibility. This modular approach was chosen to provide maximum flexibility, allowing the control system to be optimized for particular lasers or special requirements. The development of monitoring and actuating equipment suitable for the unusual demands of an excimer laser is also an essential part of the overall project. Some of the monitoring equipment used is standard, while some has been designed and built at Salford. In particular, a 100 MHz bandwidth optical fiber current sensor has been developed to measure the discharge current. Communications between the sensors and the transputer network are almost entirely optical, with special circuits designed at Salford to convert standard sensor outputs into optical signals. Several different systems are used, according to the response time required.

  20. Playing the Scales: Regional Transformations and the Differentiation of Rural Space in the Chilean Wine Industry

    ERIC Educational Resources Information Center

    Overton, John; Murray, Warwick E.

    2011-01-01

    Globalization and industrial restructuring transform rural places in complex and often contradictory ways. These involve both quantitative changes, increasing the size and scope of operation to achieve economies of scale, and qualitative shifts, sometimes leading to a shift up the quality/price scale, towards finer spatial resolution and…

  1. Combination of metamorphism and deformation affect the nano-scale pore structures and macromolecule characteristics of high-rank deformed coals

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, H.; Ju, Y.

    2013-12-01

    experiments indicates that adsorption/desorption capacity shows a 'U' type with nano-pores volume and specific surface area, coals with best adsorption capacity contained both vitrinite and inertinite with an approximate ratio of 4:1 or 1:4, the increase of aromatic and aliphatic content individually facilitated the adsorption of CBM. Generally speaking, the adsorption/desorption capacity of ductile deformed coals is higher than that of brittle ones, but metamorphism could dramatically affects the final results. To enhance CBM production and reduce carbon emission, the appropriate coal-bearing strata need to be chosen. Our research shows that metamorphism and deformation affect the nano-scale pore structures and macromolecule characteristics of different coals. Therefore brittle-ductile superposed zone with medium-high rank coals has high gas content and permeability which is promising to exploit and helpful to environmental protection.

  2. POC-scale testing of an advanced fine coal dewatering equipment/technique

    SciTech Connect

    1998-09-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

  3. Have government regulations improved workplace safety? A test of the asynchronous regulatory effects in China's coal industry, 1995-2006

    SciTech Connect

    Shi, X.P.

    2009-07-01

    Empirical studies on the effectiveness of workplace safety regulations are inconclusive. This study hypothesizes that the asynchronous effects of safety regulations occur because regulations need time to become effective. Safety regulations will work initially by reducing the most serious accidents, and later by improving overall safety performance. The hypothesis is tested by studying a provincial level aggregate panel dataset for China's coal industry using two different models with different sets of dependent variables: a fixed-effects model on mortality rate, which is defined as fatalities per 1,000 employees; and a negative binominal model on the annual number (frequency) of disastrous accidents. Safety regulations can reduce the frequency of disastrous accidents, but have not reduced mortality rate, which represents overall safety performance. Policy recommendations are made, including shifting production from small to large mines through industrial consolidation, improving the safety performance of large mines, addressing consequences of decentralization, and facilitating the implementation of regulations through carrying on institutional actions and supporting legislation.

  4. Bench-scale solid phase biotreatment: Benfield Industries Superfund site

    SciTech Connect

    Marlowe, M.W.; Harper, T.R.; Semenak, R.K.

    1995-12-31

    The Benfield Industries, Inc. Superfund site located in Hazelwood, North Carolina has been found to have approximately 15,000 cubic yards of polycyclic aromatic hydrocarbon (PAH) contaminated soil. Risk based clean up goals were specified at the site for eight target PAH compounds including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, indeno(1,2,3-cd)pyrene, naphthalene, and pentachlorophenol. Treatability studies were performed to evaluate solid phase bioremediation, which includes ex-situ and in-situ land treatment processes, for treatment of the site soil. All treatments were conducted using only indigenous microorganisms maintained under aerobic conditions. Two soil samples with different levels of PAH contamination were collected from the site for use in the treatability evaluations. The two soil samples were contaminated with total PAHs at concentrations of approximately 30 milligrams per kilogram (mg/kg) and 6,000 mg/kg, respectively. Three solid phase bioremediation studies were conducted over a one and one half year period using starting concentrations of total PAHs of approximately 30; 600; and 6,000 mg/kg. The objectives of the studies included determining (1) if clean up goals could be achieved, (2) the approximate biodegradation rate of PAHs in the site soils, and (3) the optimum environmental conditions for biodegradation of the PAHs. Some of the environmental parameters which were varied during the testing included moisture levels, soil conditioners, nutrients and pH. The results of the testing indicated that total and target PAHs can be reduced by up to 90 percent in less than 50 days, depending on environmental conditions maintained in the reactors. Clean up goals for all of the target compounds were achieved at some point during the study.

  5. Numerical simulation of ash vaporization during pulverized coal combustion in the laboratory-scale single-burner furnace

    SciTech Connect

    Jiancai Sui; Minghou Xu; Jihua Qiu; Yu Qiao; Yun Yu; Xiaowei Liu; Xiangpeng Gao

    2005-08-01

    CFD tools have been developed to effectively simulate complex, reacting, multiphase flows that exist in utility boilers. In this paper, a model of ash vaporization was established and integrated into a self-developed CFD code to predict ash vaporization in the coal combustion process. Experimental data from a single-particle combustion was used to validate the above model. The calibrated model was then applied to simulate the ash vaporization in a 92.9 kW laboratory-scale single-burner furnace. The effects of different combustion conditions, including air staging, on the ash vaporization were investigated. The results showed that the fraction of ash vaporization is mostly sensitive to coal particle temperature. Ash vaporization primarily occurred after a short interval along the coal particle trajectories when the particle temperatures increased to 1800 K. Air staging influenced the ash vaporization by changing the gas temperature distribution in the furnace. The simulation results showed that the more extreme the staging condition, the lower the overall peak temperature, and hence the lower the amount of ash vaporization. 26 refs., 9 figs.

  6. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.

    PubMed

    Lee, Chun W; Srivastava, Ravi K; Ghorishi, S Behrooz; Karwowski, Jarek; Hastings, Thomas W; Hirschi, Joseph C

    2006-05-01

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.

  7. POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly technical progress report No. 5, October--December, 1995

    SciTech Connect

    Groppo, J.G.; Parekh, B.K.

    1996-02-01

    Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74{mu}m) clean coal. Economical dewatering of an ultrafine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. The main objective of the proposed program is to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions-surfactant combination, for dewatering of ultra-fine clean coal on a proof-of-concept scale of 1 to 2 tph. The novel surface modification technique developed at the the University of Kentucky Center for Applied Energy Research will be evaluated using vacuum, centrifuge, and hyperbaric filtration equipment. Dewatering tests will be conducted using the fine clean coal froth produced by the column flotation units at the Powell Mountain Coal Company, Mayflower Preparation Plant in St. Charles, Virginia. The POC-scale studies will be conducted on two different types of clean coal, namely, high sulfur and low sulfur clean coal. Accomplishments for the past quarter are described.

  8. PROTOTYPE SCALE TESTING OF LIMB TECHNOLOGY FOR A PULVERIZED-COAL-FIRED BOILER

    EPA Science Inventory

    The report summarizes results of an evaluation of furnace sorbent injection (FSI) to control sulfur dioxide (SO2) emissions from coal-fired utility boilers. (NOTE: FSI of calcium-based sorbents has shown promise as a moderate SO2 removal technology.) The Electric Power Research I...

  9. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion.

    PubMed

    Konopa, Stephanie Lucero; Mulholland, James A; Realff, Matthew J; Lemieux, Paul M

    2008-08-01

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO2), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particle-board combustion, consistent with its higher nitrogen content. SO2 emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet.

  10. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    SciTech Connect

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  11. A coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, July 1993--September 1993

    SciTech Connect

    Not Available

    1993-10-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase 3 research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the past quarter, the major effort was completing some of the system modification installation designs, completing industry funded testing, developing a surrogate TSCA ash composition, and completing the TSCA ash Test Plan. The installation designs will be used for the equipment modifications planned for the end of CY 93. The industry funded testing consisted of vitrifying Spent Aluminum Potliner (SPL) which is a listed hazardous waste. This testing has verified that SPL can be vitrified into a safe, recyclable glass product. Some results from this testing are provided in Section 2.2.1. The surrogate TSCA ash composition was developed with input from various DOE laboratories and subcontractors. The surrogate ash consists of a mixture of MSW fly ash and bottom ash spiked with heavy metal contaminants. The levels of metal additives are sufficient to ascertain the partitioning of the contaminants between the glass and effluent flow streams. Details of the surrogate composition and the planned testing is provided in Section 4.2.2.

  12. Experimental evidence for convergent evolution of maternal care heuristics in industrialized and small-scale populations.

    PubMed

    Kushnick, Geoff; Hanowell, Ben; Kim, Jun-Hong; Langstieh, Banrida; Magnano, Vittorio; Oláh, Katalin

    2015-06-01

    Maternal care decision rules should evolve responsiveness to factors impinging on the fitness pay-offs of care. Because the caretaking environments common in industrialized and small-scale societies vary in predictable ways, we hypothesize that heuristics guiding maternal behaviour will also differ between these two types of populations. We used a factorial vignette experiment to elicit third-party judgements about likely caretaking decisions of a hypothetical mother and her child when various fitness-relevant factors (maternal age and access to resources, and offspring age, sex and quality) were varied systematically in seven populations-three industrialized and four small-scale. Despite considerable variation in responses, we found that three of five main effects, and the two severity effects, exhibited statistically significant industrialized/ small-scale population differences. All differences could be explained as adaptive solutions to industrialized versus small-scale caretaking environments. Further, we found gradients in the relationship between the population-specific estimates and national-level socio-economic indicators, further implicating important aspects of the variation in industrialized and small-scale caretaking environments in shaping heuristics. Although there is mounting evidence for a genetic component to human maternal behaviour, there is no current evidence for interpopulation variation in candidate genes. We nonetheless suggest that heuristics guiding maternal behaviour in diverse societies emerge via convergent evolution in response to similar selective pressures. PMID:26543577

  13. Experimental characterization of an industrial pulverized coal-fired furnace under deep staging conditions

    SciTech Connect

    Costa, M.; Azevedo, J.L.T.

    2007-07-01

    Measurements have been performed in a 300 MWe, front-wall-fired, pulverized-coal, utility boiler. This boiler was retrofitted with boosted over fire air injectors that allowed the operation of the furnace under deeper staging conditions. New data are reported for local mean gas species concentration of O{sub 2}, CO, CO{sub 2}, NOx, gas temperatures and char burnout measured at several ports in the boiler including those in the main combustion and staged air regions. Comparisons of the present data with our previous measurements in this boiler, prior to the retrofitting with the new over fire system, show lower O{sub 2} and higher CO concentrations for the new situation as a consequence of the lower stoichiometry in the main combustion zone associated with the present boiler operating condition. Consistently, the measured mean NOx concentrations in the main combustion zone are now lower than those obtained previously, yielding emissions below 500 mg/Nm{sup 3}at 6% O{sub 2}. Finally, the measured values of particle burnout at the furnace exit are acceptable being those measured in the main combustion zone comparable with those obtained with the conventional over fire system.

  14. POC-scale testing of an advanced fine coal dewatering equipment/technique: Quarterly technical progress report No. 9, October 1996--December 1996

    SciTech Connect

    Tao, D.; Groppo, J.G.; Parekh, B.K.

    1997-01-21

    The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter in the laboratory dewatering studies were conducted using copper and aluminum ions showed that for the low sulfur clean coal slurry addition of 0.1 Kg/t of copper ions was effective in lowering the filter cake moisture from 29 percent to 26.3 percent. Addition of 0.3 Kg/t of aluminum ions provided filter cake with 28 percent moisture. For the high sulfur clean coal slurry 0.5 Kg/t of copper and 0.1 Kg/t of aluminum ions reduced cake moisture from 30.5 percent to 28 percent respectively. Combined addition of anionic (10 g/t) and cationic (10 g/t) flocculants was effective in providing a filter cake with 29.8 percent moisture. Addition of flocculants was not effective in centrifuge dewatering. In pilot scale screen bowl centrifuge dewatering studies it was found that the clean coal slurry feed rate of 30 gpm was optimum to the centrifuge, which provided 65 percent solids capture. Addition of anionic or cationic flocculants was not effective in lowering of filter cake moisture, which remained close to 30 percent for both clean coal slurries.

  15. Allergen sanitation in the food industry: a systematic industrial scale approach to reduce hazelnut cross-contamination of cookies.

    PubMed

    Röder, Martin; Baltruweit, Iris; Gruyters, Helwig; Ibach, Anja; Mücke, Ingo; Matissek, Reinhard; Vieths, Stefan; Holzhauser, Thomas

    2010-09-01

    Recently, we investigated the impact of shared equipment on cross-contamination of cookies at a pilot plant scale. Based on those findings, this study investigated the extent and subsequent sanitation of hazelnut cross-contamination (HNCC) of cookies at the industrial scale. Similarly, a product change from cookies with hazelnut ingredient to cookies without hazelnut was performed on standard equipment. HNCC in the hazelnut-free follow-up product was quantified by enzyme-linked immunosorbent assay for each production device and the applied cleaning procedure. All experiments were repeated in duplicate. The highest HNCC was found in concordance with previous studies after mere mechanical scraping: more than 1,000 mg of hazelnut protein per kg was quantified in the follow-up product after processing by a cookie machine. Additional cleaning with hot water decreased the HNCC irrespective of the processing device to levels at or below 1 mg of hazelnut protein per kg. Furthermore, raw materials for cookie production were monitored over a period of 24 months for unwanted preloads of hazelnut and peanut: hazelnut was quantified in 16% of the investigated raw materials as being between 0.26 and 90 mg/kg. Further critical control points at the industrial scale, where cross-contamination might occur, were identified but did not display noteworthy sources of cross-contamination. In conclusion, the quantitative monitoring of the cleaning efficiency at the industrial scale confirmed the procedure of manual scraping plus wet cleaning as a qualified sanitation procedure to effectively reduce the hazelnut protein cross-contamination down to a level at which severe hazelnut-related allergic reactions are unlikely to occur.

  16. Clean and Secure Energy from Coal

    SciTech Connect

    Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

  17. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  18. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    SciTech Connect

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  19. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator

    SciTech Connect

    Ying Li; Achariya Suriyawong; Michael Daukoru; Ye Zhuang; Pratim Biswas

    2009-05-15

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 m at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 {mu}m, and 10 {mu}m. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles. 32 refs., 5 figs., 1 tab.

  20. Measurement and capture of fine and ultrafine particles from a pilot-scale pulverized coal combustor with an electrostatic precipitator.

    PubMed

    Li, Ying; Suriyawong, Achariya; Daukoru, Michael; Zhuang, Ye; Biswas, Pratim

    2009-05-01

    Experiments were carried out in a pilot-scale pulverized coal combustor at the Energy and Environmental Research Center (EERC) burning a Powder River Basin (PRB) subbituminous coal. A scanning mobility particle sizer (SMPS) and an electrical low-pressure impactor (ELPI) were used to measure the particle size distributions (PSDs) in the range of 17 nm to 10 microm at the inlet and outlet of the electrostatic precipitator (ESP). At the ESP inlet, a high number concentration of ultrafine particles was found, with the peak at approximately 75 nm. A trimodal PSD for mass concentration was observed with the modes at approximately 80-100 nm, 1-2 microm, and 10 microm. The penetration of ultrafine particles through the ESP increased dramatically as particle size decreased below 70 nm, attributable to insufficient or partial charging of the ultrafine particles. Injection of nanostructured fine-particle sorbents for capture of toxic metals in the flue gas caused high penetration of the ultrafine particles through the ESP. The conventional ESP was modified to enhance charging using soft X-ray irradiation. A slipstream of flue gas was introduced from the pilot-scale facility and passed through this modified ESP. Enhancement of particle capture was observed with the soft X-ray irradiation when moderate voltages were used in the ESP, indicating more efficient charging of fine particles.

  1. Coal production 1989

    SciTech Connect

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  2. Development of a coal quality expert. Technical progress report No. 6, [July 1--September 30, 1991

    SciTech Connect

    Not Available

    1991-11-20

    The project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: (1) Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; (2) Develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests.

  3. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  4. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1984-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  5. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1986-01-01

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner.

  6. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    SciTech Connect

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  7. A longitudinal study of economies of scale in the hospital industry.

    PubMed

    Yafchak, R

    2000-01-01

    The Cobb-Douglas production function was used to empirically estimate whether or not larger hospitals have lower long-run average costs per bed than smaller hospitals. The results indicate that economies of scale have evolved recently for non-teaching and teaching hospitals. It is believed that the primary market forces that may be creating economies of scale in the hospital industry are decreasing revenues due to lower reimbursement and lower occupancy rates. As reimbursement and occupancy continue to trend down in the future, hospitals may seek additional economies to survive in an increasingly competitive and shrinking industry.

  8. Clean coal technologies market potential

    SciTech Connect

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  9. An assessment of the long-term environmental impacts of reusing alkaline clay on coal refuse piles with a dynamic solute transport model at a watershed scale

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liang, X.; Davis, T. W.; Patterson, J.; Jaw, F. K.; Koranchie-Boah, P.

    2011-12-01

    Coal refuse piles play a significant role in producing acid mining drainage (AMD) that deteriorates water quality at a watershed scale. The waste produced from coal refuse piles results in a decrease of the pH value in soil water and river flow. Metal compounds, such as ferric and ferrous solutions, are also continuously released from the coal pile due to the extensive and complicated chemical reactions in the acidic environment. Alkaline clay, a byproduct of alumina refining process, has a high residual pH in the material. If the alkaline clay is used innovatively with the coal mine refuse, the problems associated with each (e.g., high and low pH values) are likely to be effectively resolved. In addition, the solubility of the sulfur and iron will be reduced significantly. This will effectively eliminate the AMD problem at the coal refuse pile and improve the water quality at the watershed scale. This study investigates the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment (e.g., in the soil column and in the river system) through systematic modeling simulations in a combination with field measurements. In particular, a dynamic solute transport model that accounts for processes of the pyrite oxidation, oxygen diffusion, absorption, desorption, and advection is developed and is coupled with the Distributed Hydrology Soil and Vegetation Model (DHSVM) to assess the environmental impacts at the watershed scale. The model-simulated sulfur and iron concentrations are compared with field observations and the long-term impacts of the combined mixture (i.e., alkaline clay + coal refuse) on the environment are investigated. This study paves the way for monitoring and assessing the impacts of the reuse of the alkaline clay and refuse mixture on the environment at a watershed scale.

  10. Scale-up of stirring as foam disruption (SAFD) to industrial scale.

    PubMed

    Hoeks, Frans W J M M; Boon, Lotte A; Studer, Fabian; Wolff, Menno O; van der Schot, Freija; Vrabél, Peter; van der Lans, Rob G J M; Bujalski, Waldemar; Manelius, Asa; Blomsten, Gustav; Hjorth, Sven; Prada, Giovanna; Luyben, Karel Ch A M; Nienow, Alvin W

    2003-02-01

    Foam disruption by agitation-the stirring as foam disruption (SAFD) technique-was scaled up to pilot and production scale using Rushton turbines and an up-pumping hydrofoil impeller, the Scaba 3SHP1. The dominating mechanism behind SAFD-foam entrainment-was also demonstrated at production scale. The mechanistic model for SAFD defines a fictitious liquid velocity generated by the (upper) impeller near the dispersion surface, which is correlated with complete foam disruption. This model proved to be scalable, thus enabling the model to be used for the design of SAFD applications. Axial upward pumping impellers appeared to be more effective with respect to SAFD than Rushton turbines, as demonstrated by retrofitting a 12,000 l bioreactor, i.e. the triple Rushton configuration was compared with a mixed impeller configuration from Scaba with a 20% lower ungassed power draw. The retrofitted impeller configuration allowed 10% more broth without risking excessive foaming. In this way a substantial increase in the volumetric productivity of the bioreactor was achieved. Design recommendations for the application of SAFD are given in this paper. Using these recommendations for the design of a 30,000 l scale bioreactor, almost foamless Escherichia coli fermentations were realised. PMID:12612787

  11. Nano-Scale Interpenetrating Phase Composites (IPC S) for Industrial and Vehicle Applications

    SciTech Connect

    Hemrick, James Gordon; Hu, Michael Z.

    2010-06-01

    A one-year project was completed at Oak Ridge National Laboratory (ORNL) to explore the technical and economic feasibility of producing nano-scale Interpenetrating Phase Composite (IPC) components of a usable size for actual testing/implementation in a real applications such as high wear/corrosion resistant refractory shapes for industrial applications, lightweight vehicle braking system components, or lower cost/higher performance military body and vehicle armor. Nano-scale IPC s with improved mechanical, electrical, and thermal properties have previously been demonstrated at the lab scale, but have been limited in size. The work performed under this project was focused on investigating the ability to take the current traditional lab scale processes to a manufacturing scale through scaling of these processes or through the utilization of an alternative high-temperature process.

  12. Coal Extraction - Environmental Prediction

    USGS Publications Warehouse

    Cecil, C. Blaine; Tewalt, Susan J.

    2002-01-01

    Coal from the Appalachian region has supplied energy to the Nation for more than 200 years. Appalachian coal fueled America through a civil war and helped win two world wars. Appalachian coal has also provided fuel for keeping America warm in the winter and cool in the summer and has served as the basis for the steel, automobile, organic chemicals, chlorine, and aluminum industries. These benefits have not come without environmental costs, however. Coal extraction and utilization have had significant environmental impacts.

  13. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications

    SciTech Connect

    Levasseur, Armand

    2014-01-01

    This Topical Report outlines guidelines and key considerations for design and operation of pulverized coal-fired boilers for oxy-combustion. The scope addressed includes only the boiler island, not the entire oxy-fired CO{sub 2} capture plant. These guidelines are primarily developed for tangential-fired boilers and focus on designs capable of dual air and oxy-fired operation. The guidelines and considerations discussed are applicable to both new units and existing boiler retrofits. These guidelines are largely based on the findings from the extensive 15 MW{sub th} pilot testing and design efforts conducted under this project. A summary level description is provided for each major aspect of boiler design impacted by oxy-combustion, and key considerations are discussed for broader application to different utility and industrial designs. Guidelines address the boiler system arrangement, firing system, boiler thermal design, ducting, materials, control system, and other key systems.

  14. Landscape scale variability of atmospherically derived industrial metal enrichment in surfical environments

    NASA Astrophysics Data System (ADS)

    Stromsoe, N.; Marx, S. K.; McGowan, H. A.; Callow, J. N.; Zawadzki, A.

    2014-12-01

    Industrial metal pollutants are now ubiquitous in the global atmosphere and are a potential source of contamination to surficial environments, even in remote-from-source locations. Few studies, however, have examined the environmental fate of atmospheric industrial metals at a landscape scale. In this study patterns of atmospheric industrial metal accumulation were investigated within different surface environments of the Snowy Mountains, Australia. Atmospheric concentrations of industrial metals were compared with enrichment in peat mires, a tarn-lake, reservoirs and soils to elucidate patterns of dilution and concentration. Industrial metals (including lead, cadmium and antimony) were enriched in collected aerosols by 3.5-50 times pre-industrial concentrations. Surface enrichment was variable and depended on relative geomorphic activity (i.e. the rate of atmospheric deposition relative to surface derived sediment input), metal sensitivity and metal behaviour. Peat mires, the environments most dominated by atmospheric deposition, most closely reflected atmospheric enrichment patterns and tended to record the highest industrial metal enrichment. Even in this environment, however, metal enrichment was reduced by 5-7 times relative to atmospheric concentrations. Those metals most sensitive to enrichment (those with low natural abundance in local sediments (cadmium, silver, antimony and molybdenum)) were enriched within all sedimentary environments. In the most geomorphically active environments (the alpine tarn) no other industrial metals were enriched. In reservoirs located lower in the catchment, industrial metals displayed complex patterns related to metal behaviour. Particle reactive metals, such and lead, displayed relatively minor enrichment, suggesting that they are retained in catchment soils. In contrast, more mobile elements such as copper and cadmium were enriched relative to catchment soils, implying preferential down-catchment transport. The presence of

  15. Coal Activities for Secondary Students.

    ERIC Educational Resources Information Center

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and the…

  16. Software sensor design considering oscillating conditions as present in industrial scale fed-batch cultivations.

    PubMed

    Lyubenova, V; Junne, S; Ignatova, M; Neubauer, P

    2013-07-01

    Investigations of inhomogeneous dynamics in industrial-scale bioreactors can be realized in laboratory simulators. Such studies will be improved by on line observation of the growth of microorganisms and their product synthesis at oscillating substrate availability which represents the conditions in industrial-scale fed-batch cultivations. A method for the kinetic monitoring of such processes, supported by on line measurements accessible in industrial practice, is proposed. It consists of a software sensor (SS) system composed of a cascade structure. Process kinetics are simulated in models with a structure including time-varying yield coefficients. SSs for measured variable kinetics have classical structures. The SS design of unmeasured variables is realized after a linear transformation using a logarithmic function. For these software sensors, a tuning procedure is proposed, at which an arbitrary choice of one tuning parameter value that guarantees stability of the monitoring system allows the calculation of the optimal values of six parameters. The effectiveness of the proposed monitoring approach is demonstrated with experimental data from a glucose-limited fed-batch process of Bacillus subtilis in a laboratory two-compartment scale down reactor which tries to mimic the conditions present in industrial scale nutrient-limited fed-batch cultivations. PMID:23436309

  17. A two-scale system to identify environmental risk of chemical industry clusters.

    PubMed

    Huang, Lei; Wan, Wenbo; Li, Fengying; Li, Bing; Yang, Jie; Bi, Jun

    2011-02-15

    Recent reform policies in China have spurred rapid industrial development. This has led to a large increase in chemical accidents, which may have catastrophic impacts on the local population and environment. As industrial facilities become more complex, it becomes more difficult to control and mitigate the risks associated with chemical accidents. In this study, we propose a two-scale system for assessing the environmental risk level of chemical industry clusters. A series of risk early warning indices for both the plant-specific level and regional clusters level are used in this system. Firstly, at the enterprise scale, a risk early warning index is constructed using inputs such as the presence of hazardous materials, the operation of critical plant equipment and the efficiency of extant management techniques. Secondly, an index for quantifying risks on regional scales depends on environmental, economic, and social conditions as well as the specific enterprises' components. As an illustration, the system is applied to a case study involving a five-plant chemical industry cluster in Jiangsu province, China. A geographical information system-based methodology is used to obtain a composite index score for each mesh of the five plants. The results prove that the proposed two-scale early warning system can efficiently identify environmental risk and help guide emergency responses at both the enterprise and cluster level.

  18. Study of application of ERTS-A imagery to fracture-related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J.; Russell, O. R.; Martin, K. R. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Mined land reclamation analysis procedures developed within the Indiana portion of the Illinois Coal Basin were independently tested in Ohio utilizing 1:80,000 scale enlargements of ERTS-1 image 1029-15361-7 (dated August 21, 1972). An area in Belmont County was selected for analysis due to the extensive surface mining and the different degrees of reclamation occurring in this area. Contour mining in this area provided the opportunity to extend techniques developed for analysis of relatively flat mining areas in Indiana to areas of rolling topography in Ohio. The analysts had no previous experience in the area. Field investigations largely confirmed office analysis results although in a few areas estimates of vegetation percentages were found to be too high. In one area this error approximated 25%. These results suggest that systematic ERTS-1 analysis in combination with selective field sampling can provide reliable vegetation percentage estimates in excess of 25% accuracy with minimum equipment investment and training. The utility of ERTS-1 for practical and reasonably reliable update of mined lands information for groups with budget limitations is suggested. Many states can benefit from low cost updates using ERTS-1 imagery from public sources.

  19. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a

  20. Development of a coal/water-slurry-fueled diesel engine for industrial cogeneration: Task 6. 0 Determination of accurate heat release diagrams and mechanical efficiency

    SciTech Connect

    Nydick, S.E.

    1987-02-01

    Purpose of the program was to foster the long-range development of a coal/water slurry fuel-fired, slow-speed, two-stroke diesel engine for efficient and economical power generation in the 8 to 30 MW range for use in industrial cogeneration applications. This report contains the results of Task 6 of the program, a detailed analysis of heat release diagrams and determination of the mechanical efficiency for a single-cylinder, slow-speed diesel test engine when operated on coal/water slurry and diesel fuels. A digitized technique was utilized to determine the cylinder pressure history. The results of the program showed that the averages of previously reported thermal efficiency values for operation on coal/water slurry fuels were very accurate determinations. In addition, the slight differences in thermal efficiency between diesel and slurry operation are most likely related to changes in the mechanical efficiency resulting from degradation of the piston ring/cylinder liner interface rather than changes in combustion efficiency. Our previous prediction that, at 50% water content, the efficiency of a coal/water slurry engine is comparable to a diesel engine, has been confirmed experimentally and explained analytically.

  1. Development of a coal/water-slurry-fueled diesel engine for industrial cogeneration: Task 4. 0, Single-cylinder engine tests

    SciTech Connect

    Nydick, S.E.

    1986-04-01

    Purpose of the program is to foster the long-range development of a coal/water slurry fuel fired slow-speed, two-stroke diesel engine for efficient and economical power generation in the 8 to 30 MW range for use in industrial cogeneration applications. This report covers the results obtained in Task 4.0, Engine Test, in which four micronized and beneficiated coal/water slurries were utilized as a fuel in a single-cylinder version of the slow-speed, two-stroke diesel engine. Thermal performance, emissions and engine wear are reported on and evaluated in this report, based on the results of the testing program. The results of the program show that the slow-speed, two-stroke diesel engine can operate on coal/water slurry fuels at efficiencies approximately equal to those obtained with conventional liquid fuels and produces considerably lower amounts of exhaust emissions. The engine wear, particularly at the piston ring/cylinder liner interface is considerably greater than that which occurs with liquid fuels. However, it is concluded that by means of technological advances regarding cylinder liner and ring materials, design changes, and new concepts for the lubrication system, a reliable and economical coal/water slurry fired slow-speed engine can be developed.

  2. Development of pressurized coal partial combustor

    SciTech Connect

    Yoshida, K.; Ino, T.; Yamamoto, T.; Kimura, N.

    1995-12-31

    The integrated gasification combined cycle (IGCC), an environment-friendly power generation system of high thermal efficiency, is being developed via various approaches around the world. The oxygen-blown entrained flow gasification process is a relatively simple method of producing medium calorie coal gas suitable for application to gas turbines. Various systems for this process have been developed to a demonstration level in Europe and America. Japan has actively been developing the air-blown process. However, taking stable molten slag discharge into consideration, coal must be supplied at two stages to raise the combustor temperature in ash molten part. Only two reports have been presented regarding two-stage coal supply. One is the report on an experiment with the Hycol gasifier, in which air feed ratio is varied, with coal feed fixed. The other is report on a simulation study with various gasifier coal feed ratios, conducted at Central Research Institute of Electric Power Industry. It seems that the appropriate feed ratio has not yet been established. Through this activity, a unique furnace construction has been established, and these influences of stoichiometric air ratio, of oxygen enrichment, of char recycling and of coal types on performance have been clarified. The purpose of the present study is to apply this developed CPC techniques to a Pressurized CPC (PCPC), thereby improving the IGCC technology. For the present study, we conducted systematic experiments on the air-blown process with a two stage dry feed system, using a 7 t/d-coal bench scale PCPC test facility, operated at the pressure of 0.4 MPa, and clarified the influence of coal feed ratio on coal gasification performance. This report describes the above-mentioned bench scale test procedures and results, and also some informations about a plan of a 25 t/d-coal pilot test system.

  3. Evaluation of Multiple-Scale 3D Characterization for Coal Physical Structure with DCM Method and Synchrotron X-Ray CT

    PubMed Central

    Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures. PMID:25861674

  4. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    PubMed

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  5. Development of a retrofit coal combustor for industrial applications, (Phase 1-A). Technical progress report, July--September 1988

    SciTech Connect

    Not Available

    1988-10-01

    During this past quarter, two tandem-fired pulse combustors were designed to fire at a nominal rate of 3.5 to 5.5 MMBtu/hr under continuation of Phase I work on DOE project DE-AC22-87PC79654. In prior work, MTCI demonstrated the operation of a 1--2 MMBtu/h coal-fired tandem pulse combustor that is intended for small industrial applications. These component tests emphasized verification of key design issues such as combustor coupling, slag rejection, and staged air addition. The current work, which represents an extension of the Phase I effort, focuses on integrated testing of the tandem pulse combustor with a fire-tube boiler, and the addition of a slag quench vessel. A tandem-fired pulse combustion unit designed to fire at a nominal rate of 3.5-5 MMBtu/hr was designed and fabricated. The configuration includes two combustion chambers cast in a single monolith, tailpipes cast separately with annular air preheating capability, and a cyclonic decoupler. Design analysis and evaluations were performed to optimize the system with respect to minimizing heat losses, size, and cost. Heat losses from the combustor and decoupler walls are predicted to be approximately 3 percent. The final designs for the ancillary items (slag quench, tertiary air addition, scrubber and sampling system) were completed and fabrication and installation initiated. A Cleaver-Brooks 150 hp-4 pass boiler was delivered and installed and modifications for interfacing with the retrofit pulse combustor unit completed. A below-ground slag collection pit was excavated to permit direct in-line coupling of the combustor to the boiler and to reduce head-room requirements. The pit is 30 inches deep and lined with waterproof and fireproof siding.

  6. Advanced coal-fueled gas turbine systems

    SciTech Connect

    Wenglarz, R.A.

    1994-08-01

    Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

  7. Potential for improved radiation thermometry measurement uncertainty through implementing a primary scale in an industrial laboratory

    NASA Astrophysics Data System (ADS)

    Willmott, Jon R.; Lowe, David; Broughton, Mick; White, Ben S.; Machin, Graham

    2016-09-01

    A primary temperature scale requires realising a unit in terms of its definition. For high temperature radiation thermometry in terms of the International Temperature Scale of 1990 this means extrapolating from the signal measured at the freezing temperature of gold, silver or copper using Planck’s radiation law. The difficulty in doing this means that primary scales above 1000 °C require specialist equipment and careful characterisation in order to achieve the extrapolation with sufficient accuracy. As such, maintenance of the scale at high temperatures is usually only practicable for National Metrology Institutes, and calibration laboratories have to rely on a scale calibrated against transfer standards. At lower temperatures it is practicable for an industrial calibration laboratory to have its own primary temperature scale, which reduces the number of steps between the primary scale and end user. Proposed changes to the SI that will introduce internationally accepted high temperature reference standards might make it practicable to have a primary high temperature scale in a calibration laboratory. In this study such a scale was established by calibrating radiation thermometers directly to high temperature reference standards. The possible reduction in uncertainty to an end user as a result of the reduced calibration chain was evaluated.

  8. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  9. Development of a coal-fired combustion system for industrial processing heating applications: Appendix A. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product. Appendix A contains 89 figures containing the data from the demonstration tests undertaken under Phase 3.

  10. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Third quarterly technical progress report, April 1996--June 30, 1996

    SciTech Connect

    Yoon, R.-H.; Mesenyashin, A.; Yan, E.S.; Luttrell, G.H.; Adel, G.T.

    1996-10-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. At present, the project is at the stage of engineering design (Task 3). Work accomplished during this reporting period include the construction of a Faraday Cage for measurement of particle charges (Subtask 3.1), construction of a bench-scale triboelectrostatic separator (Subtask 3.2) and development of a theoretical model for predicting motion of charged particles in a non-uniform electrostatic field (Subtask 3.2). This model will be useful for designing the POC module.

  11. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    2000-01-01

    During the past quarter, several modifications were made to the TES unit and the materials handling system. The cylindrical electrodes were replaced by a set of screen electrodes to provide a more uniform electrostatic field. The problem with the recycle conveyor neutralizing the particle charge was also corrected by replacing it with a bucket elevator. In addition, problems with the turbocharger were corrected by increasing the number of charging stages from one to two. These modifications have significantly improved the separation performance and have permitted the POC-scale unit to achieve results in line with those obtained by the bench-scale separator. The testing phase of the project was continued at a rapid pace during this quarter. The test work showed that the modifications to the TES unit and the reduction in feed size from 28 mesh to 35 mesh resulted in significant overall improvement in yield and combustible recovery compared to the data reported in the last quarter. At that time, there was a significant discrepancy between the bench-scale and the pilot-scale results. The pilot-scale test work is now approaching the bench scale test results. However, further pilot-scale test work is required to further improve the results and duplicate the bench-scale test work.

  12. China's post-coal growth

    NASA Astrophysics Data System (ADS)

    Qi, Ye; Stern, Nicholas; Wu, Tong; Lu, Jiaqi; Green, Fergus

    2016-08-01

    Slowing GDP growth, a structural shift away from heavy industry, and more proactive policies on air pollution and clean energy have caused China's coal use to peak. It seems that economic growth has decoupled from growth in coal consumption.

  13. Scale development of safety management system evaluation for the airline industry.

    PubMed

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed. PMID:22405247

  14. Scale development of safety management system evaluation for the airline industry.

    PubMed

    Chen, Ching-Fu; Chen, Shu-Chuan

    2012-07-01

    The airline industry relies on the implementation of Safety Management System (SMS) to integrate safety policies and augment safety performance at both organizational and individual levels. Although there are various degrees of SMS implementation in practice, a comprehensive scale measuring the essential dimensions of SMS is still lacking. This paper thus aims to develop an SMS measurement scale from the perspective of aviation experts and airline managers to evaluate the performance of company's safety management system, by adopting Schwab's (1980) three-stage scale development procedure. The results reveal a five-factor structure consisting of 23 items. The five factors include documentation and commands, safety promotion and training, executive management commitment, emergency preparedness and response plan and safety management policy. The implications of this SMS evaluation scale for practitioners and future research are discussed.

  15. Coal Production 1992

    SciTech Connect

    Not Available

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  16. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Quarterly technical progress report No. 11, April 1, 1994--June 30, 1994

    SciTech Connect

    Patel, R.; Borio, R.; Scaroni, A.W.; Miller, B.G.; McGowan, J.G.

    1994-09-23

    The objective of this project is to retrofit the previously developed High Efficiency Advanced Coal Combustor (HEACC) to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the tenth quarter of the program. The four hundred hours ``Proof-of-Concept System Test`` under Task 3 was completed during this quarter. The primary objectives were to obtain steady state operation consistently on coal only and increase carbon conversion efficiency from {approximately}95% to the project goal of 98%. This was to be obtained without increasing NO{sub x} emission above the project goal level of 0.6 lbs/MBtu ({approximately}425 ppM). The testing was also designed to show that consistent, reliable operation could be achieved as another prerequisite to the demonstration. The data were gathered and analyzed for both economic and technical analysis prior to committing to the long term demonstration. The Economic Evaluation was completed and work started on commercialization plan. During this reporting period, activities included sample analysis, data reduction and interpretation from all the testing during March and April. Following preliminary conclusions are drawn based on results evaluated: coal handling/preparation system can be designed to meet technical requirements for retrofitting microfine coal combustion; boiler thermal performance met requirement; NO{sub x} Emission can meet target of 0.6 lb/MBtu; combustion efficiencies of 95% could be met on a daily average basis, somewhat below target of 98%; economic playback very sensitive to fuel differential cost, unit size, and annual operating hours; and continuous long term demonstration needed to quantify ash effect and how to best handle.

  17. Farewell, king coal!

    PubMed

    Seaton, Anthony

    2016-04-01

    Coal mining provided the power for the industrial development of the West, at great cost to the health of the workforce and, from industrial pollution, of the population. Medical appreciation of the diseases of miners was slow to develop and has been marked by controversy relating to the roles of coal and quartz and the causation of emphysema. Research by the MRC and the British coal industry resolved these issues as the industry itself declined. However, from the research has come an understanding of the influence of inhalation of different inhaled pollutants on human health that has been applied to predicting and preventing possible hazards of developing nanotechnologies.

  18. The development of an industrial-scale fed-batch fermentation simulation.

    PubMed

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility. PMID:25449107

  19. Development of interactive workplace improvement programs in collaboration with trade associations of small-scale industries.

    PubMed

    Ito, Akiyoshi; Sakai, Kazuhiro; Kogi, Kazutaka

    2006-01-01

    Serial participatory action programs for reducing occupational safety and health risks were undertaken to know the types of support suited for small-scale industries. Working groups were formed with workplace people and occupational safety and health experts. It was agreed to develop an action-oriented strategy focusing on improving both work environment and productivity by making low-cost improvements through group work. Many workplace improvements achieved by participating enterprises and the group work procedures taken were analyzed. As supporting tools for effectively implementing the workplace improvement action programs, we developed action checklists according to industry and workplace implementation guides. Collections of local good examples also served as part of these support tools. These experiences show that keys to the sustainable action in small-scale industries are: (1) mobilization of the industry-wise network by trade associations, (2) an output-oriented strategy based on interactive group work and (3) the effective use of support tools such as low-cost action checklists and group work methods.

  20. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH₄ recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH₄ and 38% CO₂ was recorded. PMID:26393620

  1. Energy saving membrane treatment of high organic load industrial effluents: from lab to pilot scale.

    PubMed

    Lopes, Mafalda Pessoa; Xin, Gang; Crespo, João G

    2013-12-15

    In this study, a nanofiltration unit was implemented at an industrial site, for the treatment of industrial wastewater generated during rubber tubing extrusion. The aim was to reduce the energy input required, while assuring a final effluent quality that meets the requirements of environmental legislation. In a first stage, two membrane process treatments, ultrafiltration and nanofiltration, were evaluated at laboratory scale in order to assess the rejection of pollutants and maximise permeate throughput. Permeate generated from nanofiltration using either an NF90 or an NF270 membrane were shown to meet the effluent discharge requirements (<2000 mg COD/l). The less restrictive membrane, NF270, was chosen for study in a pilot plant at the industrial site, due to its higher membrane permeability. The pilot nanofiltration unit was integrated into the treatment plant operation aiming at optimising the process in terms of the efficiency of pollutant removal with minimal energy input. A feasibility study was performed for this case-study and it was concluded that the energy expenditure of the new process represents only 62% of the current energy consumption of the treatment plant. The proposed solution in this work may be retrofitted to full scale wastewater treatment processes, and may be applicable to industries that employ similar manufacturing processes, and face similar difficulties. PMID:24161805

  2. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g−1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g−1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg−1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  3. The development of an industrial-scale fed-batch fermentation simulation.

    PubMed

    Goldrick, Stephen; Ştefan, Andrei; Lovett, David; Montague, Gary; Lennox, Barry

    2015-01-10

    This paper describes a simulation of an industrial-scale fed-batch fermentation that can be used as a benchmark in process systems analysis and control studies. The simulation was developed using a mechanistic model and validated using historical data collected from an industrial-scale penicillin fermentation process. Each batch was carried out in a 100,000 L bioreactor that used an industrial strain of Penicillium chrysogenum. The manipulated variables recorded during each batch were used as inputs to the simulator and the predicted outputs were then compared with the on-line and off-line measurements recorded in the real process. The simulator adapted a previously published structured model to describe the penicillin fermentation and extended it to include the main environmental effects of dissolved oxygen, viscosity, temperature, pH and dissolved carbon dioxide. In addition the effects of nitrogen and phenylacetic acid concentrations on the biomass and penicillin production rates were also included. The simulated model predictions of all the on-line and off-line process measurements, including the off-gas analysis, were in good agreement with the batch records. The simulator and industrial process data are available to download at www.industrialpenicillinsimulation.com and can be used to evaluate, study and improve on the current control strategy implemented on this facility.

  4. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    PubMed

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters.

  5. Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada.

    PubMed

    Wellen, Christopher C; Shatilla, Nadine J; Carey, Sean K

    2015-11-01

    Selenium (Se) concentrations in surface water downstream of surface mining operations have been reported at levels in excess of water quality guidelines for the protection of wildlife. Previous research in surface mining environments has focused on downstream water quality impacts, yet little is known about the fundamental controls on Se loading. This study investigated the relationship between mining practices, stream flows and Se concentrations using a SPAtially Referenced Regression On Watershed attributes (SPARROW) model. This work is part of a R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley, British Columbia, Canada, aimed at informing effective management responses. Results indicate that waste rock volume, a product of mining activity, accounted for roughly 80% of the Se load from the Elk Valley, while background sources accounted for roughly 13%. Wet years were characterized by more than twice the Se load of dry years. A number of variables regarding placement of waste rock within the catchments, length of buried streams, and the construction of rock drains did not significantly influence the Se load. The age of the waste rock, the proportion of waste rock surface reclaimed, and the ratio of waste rock pile side area to top area all varied inversely with the Se load from watersheds containing waste rock. These results suggest operational practices that are likely to reduce the release of Se to surface waters. PMID:26136156

  6. Laboratory-scale controlled-atmosphere chamber for use with premium coal samples

    NASA Astrophysics Data System (ADS)

    Filla, B. James; Callanan, Jane E.

    1985-04-01

    The recent availability of premium coal samples makes it desirable to have the capability for working with these materials, in one's own laboratory, in an atmosphere which can be controlled. A controlled-atmosphere chamber, large enough to allow for processing samples yet small enough to fit easily in an ordinary laboratory, has been designed and fabricated. The overall cost of this controlled-atmosphere chamber was competitive with commercially available systems. The major advantages of this specific system include: convenient size and reversible design for use in a limited work space; incorporation of a full vacuum antechamber that minimizes loss of the working chamber purified atmosphere; and a recirculating system with a bypass valve arrangement allowing separate or combined operation of oxygen and moisture removal systems. The design features were combined to create a unique apparatus capable of both the specific use for which it was intended and general controlled-atmosphere chamber applications. Compatible modular-design work chambers could have been purchased from commercial vendors; however, it still would have been necessary to custom fabricate both the antechamber and recirculation system to meet the requirements of the anticipated experimental work.

  7. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  8. Bioprocess development for kefiran production by Lactobacillus kefiranofaciens in semi industrial scale bioreactor.

    PubMed

    Dailin, Daniel Joe; Elsayed, Elsayed Ahmed; Othman, Nor Zalina; Malek, Roslinda; Phin, Hiew Siaw; Aziz, Ramlan; Wadaan, Mohamad; El Enshasy, Hesham Ali

    2016-07-01

    Lactobacillus kefiranofaciens is non-pathogenic gram positive bacteria isolated from kefir grains and able to produce extracellular exopolysaccharides named kefiran. This polysaccharide contains approximately equal amounts of glucose and galactose. Kefiran has wide applications in pharmaceutical industries. Therefore, an approach has been extensively studied to increase kefiran production for pharmaceutical application in industrial scale. The present work aims to maximize kefiran production through the optimization of medium composition and production in semi industrial scale bioreactor. The composition of the optimal medium for kefiran production contained sucrose, yeast extract and K2HPO4 at 20.0, 6.0, 0.25 g L(-1), respectively. The optimized medium significantly increased both cell growth and kefiran production by about 170.56% and 58.02%, respectively, in comparison with the unoptimized medium. Furthermore, the kinetics of cell growth and kefiran production in batch culture of L. kefiranofaciens was investigated under un-controlled pH conditions in 16-L scale bioreactor. The maximal cell mass in bioreactor culture reached 2.76 g L(-1) concomitant with kefiran production of 1.91 g L(-1).

  9. Powder River Basin Coal: The solution with problems: The switch to Powder River Basin Coal on industrial stoker fired boilers for environmental compliance

    SciTech Connect

    Melvin, M.C.

    1995-09-01

    Built in the mid 1980`s, the powerhouse at the General Motors Assembly Center in Detroit has four boilers installed. Three boilers rated at 210,000 Pounds per Hour (PPH) and one at 70,000 PPH. All four generate steam at 250 pounds per square inch saturated steam for use in process and building heat at two adjacent facilities. The boilers are field erected with spreader stokers and reverse air baghouses. The powerhouse generates 2.5 million Mlbs per year while burning 135,000 tons of Powder River Basin Coal. The coal handling system consists of ten belt conveyors in a totally enclosed system. Each transfer point is equipped with a wet dust suppression system. The bunker has a dust exhaust fan with an air washer system on the exhaust. The ash handling system is a steam ejector powered pneumatic conveying system. Both flyash and bottom ash are deposited in a common silo. The ash is loaded into trucks through a rotary drum unloader. The truck loading area is equipped with an exhaust hood with an air washer on the exhaust.

  10. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  11. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility

    SciTech Connect

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW's Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  12. Investigation of the relationship between particulate-bound mercury and properties of fly ash in a full-scale 100 MWe pulverized coal combustion boiler

    SciTech Connect

    Sen Li; Chin-Min Cheng; Bobby Chen; Yan Cao; Jacob Vervynckt; Amanda Adebambo; Wei-Ping Pan

    2007-12-15

    The properties of fly ash in coal-fired boilers influence the emission of mercury from power plants into the environment. In this study, seven different bituminous coals were burned in a full-scale 100 MWe pulverized coal combustion boiler and the derived fly ash samples were collected from a mechanical hopper (MH) and an electrostatic precipitator hopper (ESP). The mercury content, specific surface area (SSA), unburned carbon, and elemental composition of the fly ash samples were analyzed to evaluate the correlation between the concentration of particulate-bound mercury and the properties of coal and fly ash. For a given coal, it was found that the mercury content in the fly ash collected from the ESP was greater than in the fly ash samples collected from the MHP. This phenomenon may be due to a lower temperature of flue gas at the ESP (about 135{sup o}C) compared to the temperature at the air preheater (about 350{sup o}C). Also, a significantly lower SSA observed in MH ash might also contribute to the observation. A comparison of the fly ash samples generated from seven different coals using statistical methods indicates that the mercury adsorbed on ESP fly ashes has a highly positive correlation with the unburned carbon content, manganese content, and SSA of the fly ash. Sulfur content in coal showed a significant negative correlation with the Hg adsorption. Manganese in fly ash is believed to participate in oxidizing volatile elemental mercury (Hg{sup 0}) to ionic mercury (Hg{sup 2+}). The oxidized mercury in flue gas can form a complex with the fly ash and then get removed before the flue gas leaves the stack of the boiler.

  13. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.

  14. Utilization of artificial recharged effluent as makeup water for industrial cooling system: corrosion and scaling.

    PubMed

    Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi

    2016-01-01

    The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed. PMID:27191579

  15. Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling

    SciTech Connect

    Lindberg, M.

    2002-02-26

    Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

  16. Coal: An energy bridge to the future

    SciTech Connect

    Bauer, Susan J.

    2006-09-29

    For years, coal drove the transportation business in this country and it may be poised for a comeback when it comes to moving people and things. A hundred years ago, steam engines burned tons of coal as they pulled trains across the country. Now researchers are looking at converting that coal to liquid fuel that would fill up our gas tanks and move our cars and trucks. The technology already exists to transform coal into a liquid fuel. In fact, Pacific Northwest National Laboratory scientists and engineers have researched forms of coal and hydrocarbon gasification on and off for more than 30 years. But oil has never sustained a high enough price to kick start a coal-to-liquid fuel industry. That may be changing now. In addition to high crude oil prices, experts agree worldwide petroleum resources won’t last forever, and hydrocarbon resources like coal may be the only resource available, at a large enough scale, to off-set oil consumption, in the near term.

  17. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2004 through September 30, 2005

    SciTech Connect

    Miller, Bruce G

    2006-03-01

    Since 1998, The Pennsylvania State University (PSU) has been successfully operating the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by PSU, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with PSU responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes PSU and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. A second contract was executed with DOE NETL starting in October 2003 to continue the activities of CPCPC. An annual funding meeting was held in October 2003 and the council selected ten projects for funding. Base funding for the projects is provided by NETL with matching funds from industry. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten projects have been completed and the final reports for these 2004 projects are attached. An annual funding meeting was held in November 2004 and the council selected

  18. An Industrial-Based Consortium to Develop Premium Carbon Products from Coal, Annual Progress Report, October 1, 2005 through September 30, 2006

    SciTech Connect

    Miller, Bruce G

    2006-09-29

    Since 1998, The Pennsylvania State University has been successfully managing the Consortium for Premium Carbon Products from Coal (CPCPC), which is a vehicle for industry-driven research on the promotion, development, and transfer of innovative technology on premium carbon produces from coal to the U.S. industry. The CPCPC is an initiative being led by Penn State, its co-charter member West Virginia University (WVU), and the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL), who also provides the base funding for the program, with Penn State responsible for consortium management. CPCPC began in 1998 under DOE Cooperative Agreement No. DE-FC26-98FT40350. This agreement ended November 2004 but the CPCPC activity has continued under the present cooperative agreement, No. DE-FC26-03NT41874, which started October 1, 2003. The objective of the second agreement is to continue the successful operation of the CPCPC. The CPCPC has enjoyed tremendous success with its organizational structure, that includes Penn State and WVU as charter members, numerous industrial affiliate members, and strategic university affiliate members together with NETL, forming a vibrant and creative team for innovative research in the area of transforming coal to carbon products. The key aspect of CPCPC is its industry-led council that selects proposals submitted by CPCPC members to ensure CPCPC target areas have strong industrial support. Base funding for the selected projects is provided by NETL with matching funds from industry. At the annual funding meeting held in October 2003, ten projects were selected for funding. Subcontracts were let from Penn State to the subcontractors on March 1, 2004. Nine of the ten 2004 projects were completed during the previous annual reporting period and their final reports were submitted with the previous annual report (i.e., 10/01/04-09/30/05). The final report for the remaining project, which was submitted during this reporting

  19. Analysis of the financial impacts to the industrial energy user of using coal or municipal solid waste in a new process-steam-generating plant

    SciTech Connect

    Not Available

    1983-10-01

    An analysis is presented of the financial impacts to the industrial energy user of using either coal or MSW in a new process-steam-generating plant. The results of the analysis indicate that the use of coal or solid waste, rather than oil, in a new energy production plant represents an attractive investment. The financial analysis is based on replacing an existing oil-fired plant with a new plant financed via 100-percent debt. The analysis was structured to cover a range of steam demands, different plant ownership and operating structures, and the tax benefits available to these types of plants. Information is also provided on the types of technologies that would be appropriate given the assumed steam demands. In addition, information is provided on available tax benefits in light of recent tax law changes. Nine options for new coal and MSW plants were analyzed, reflecting a matching of technology and energy output to various process steam demands, as well as different ownership and operating structures.

  20. Reuse of pretreated coal gasification condensate in a pilot scale cooling tower

    SciTech Connect

    Johnson, M.D.; Schweitzer, G.W.

    1987-01-01

    The recycle of wastewaters to cooling water systems is practiced in many industrial sectors. The Great Plains Gasification Plant (GPGP) located near Beulah, North Dakota, for example, was designed to reuse treated gas liquor as the primary source of makeup water. In other industrial plants, the concentration of contaminants in the makeup water is very low or the wastewater comprises only a small fraction of the total makeup to the cooling system. The Great Plains system is unique in that the stripped gas liquor (SGL) used as makeup contains relatively high concentrations of dissolved organics, ammonia and acid gases. In addition, the SGL constitutes over 90% of the total makeup to the system. The use of pretreated gas liquor in open, circulating cooling systems is an untried approach to wastewater recycle. The plant not only eliminates a large discharge problem but gains a valuable makeup source for the cooling towers. Because of the large heat duties for the cooling system in these types of plants and their location of regions of water shortages, this approach can be very beneficial. However, there are several environmental and operational concerns that have yet to be resolved. These include atmospheric emissions, fouling of heat transfer surfaces and cooling tower equipment, and excessive corrosion of system components.

  1. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993

    SciTech Connect

    LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1993-06-01

    This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

  2. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale. PMID:27254797

  3. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  4. Coal and coal-bearing strata: recent advances

    SciTech Connect

    Scott, A.C.

    1987-01-01

    This volume contains keynote papers presented at the International Symposium on Coal and Coal-bearing Strata held at the University of London, April 1986. The authors reviewed progress in their fields over the past 15 years. Nine keynote lectures plus seven other invited contributions by experts in geology, geochemistry, sedimentology and biology are included in the volume. Coal, a major fossil fuel, is of broad interest to geologists and technological professionals alike. Topics in this volume include the formation of peat, coalification, coal geochemistry, palaeobotanical and palynological studies, sedimentology, coal exploration, oil-prone coals, and numerous coal basins. This volume is of interest not only to workers in the coal, oil, and gas industries, but also to survey geologists, lecturers, and students alike who are concerned with recent advances in the study of coal and coal-bearing strata.

  5. Development and testing of a high efficiency advanced coal combustor phase III industrial boiler retrofit. Technical progress report No. 17, 18 and 19, September 30, 1991--December 31, 1996

    SciTech Connect

    Borio, R.W.; Patel, R.L.; Thornock, D.E.

    1996-07-29

    The objective of this project is to retrofit a burner, capable of firing microfine coal, to a standard gas/oil designed industrial boiler to assess the technical and economic viability of displacing premium fuels with microfine coal. This report documents the technical aspects of this project during the last three quarters [seventeenth (October `95 through December `95), eighteenth (January `96 through March `96), and nineteenth (April `96 through June `96)] of the program.

  6. State coal profiles, January 1994

    SciTech Connect

    Not Available

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  7. Premium carbon products from coal

    SciTech Connect

    Rusinko, F. Jr.; Morrison, J.L.

    2000-07-01

    The face of the US coal industry and its markets are changing. Environmental concerns over global warming and plant emissions are two factors that will continue to gain national attention and consequently will challenge the use of coal in the US within its traditional markets. The decline of coke production in the US has lead to high quality metallurgical-grade coal being used to generate electricity. One could argue this is a waste of a limited valuable resource. The debate over global warming and the generation of greenhouse gases, particularly CO{sub 2}, will undoubtedly negatively impact the use of coal in newly constructed power plants. What is the future of the US coal industry and the industries that benefit from coal? This paper will review the use of coal and coal-derived materials in new, non-fuel markets. It will review a new industrial consortium that has recently been formed to stimulate the use of coal in value-added carbon markets. One of the questions the reader should ask when reading this paper is: Is coal more valuable for its carbon content or its BTU content? Carbon materials such as carbon fibers, carbon-carbon composites, specialty and mechanical graphite, activated carbon, carbon black, and carbon foams may provide new markets for the coal industry. These markets are expanding and some of these markets are in their infancy. These new material applications offer an exciting, but little recognized, opportunity for the expanded use of coal.

  8. Treatment of aqueous streams containing strong oxidants using bituminous coal

    SciTech Connect

    Doyle, F.M.; Bodine, D.L.

    1995-12-31

    Certain oxidizing contaminants, notably Cr(VI) and Mn(VII), are attenuated by reduction and sorption on organic matter in soils. Coals have some chemical similarity with this organic matter, and might be used on an industrial scale to treat effluents. We have studied the ability of acidic KMnO{sub 4} to oxidize Upper Freeport, bituminous coal with concurrent sorption of the resulting Mn(IV) and Mn(II). The oxidizing ability of Cr(VI) was briefly investigated. The ability of the oxidized coal to sorb Cu{sup 2+} and Cd{sup 2+} was then studied, and compared with coal oxidized by hydrogen peroxide. The effect of oxidation treatment, metal ion concentration, and solution pH on metal uptake kinetics and coal loading was investigated. Potential applications for treating effluents containing oxidizing ions are discussed.

  9. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  10. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    SciTech Connect

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-29

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH{sub 4}/g COD and produce biogas containing of CH{sub 4}: 81.23% and CO{sub 2}: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  11. Anaerobic sequencing batch reactor in pilot scale for treatment of tofu industry wastewater

    NASA Astrophysics Data System (ADS)

    Rahayu, Suparni Setyowati; Purwanto, Budiyono

    2015-12-01

    The small industry of tofu production process releases the waste water without being processed first, and the wastewater is directly discharged into water. In this study, Anaerobic Sequencing Batch Reactor in Pilot Scale for Treatment of Tofu Industry was developed through an anaerobic process to produce biogas as one kind of environmentally friendly renewable energy which can be developed into the countryside. The purpose of this study was to examine the fundamental characteristics of organic matter elimination of industrial wastewater with small tofu effective method and utilize anaerobic active sludge with Anaerobic Sequencing Bath Reactor (ASBR) to get rural biogas as an energy source. The first factor is the amount of the active sludge concentration which functions as the decomposers of organic matter and controlling selectivity allowance to degrade organic matter. The second factor is that HRT is the average period required substrate to react with the bacteria in the Anaerobic Sequencing Bath Reactor (ASBR).The results of processing the waste of tofu production industry using ASBR reactor with active sludge additions as starter generates cumulative volume of 5814.4 mL at HRT 5 days so that in this study it is obtained the conversion 0.16 L of CH4/g COD and produce biogas containing of CH4: 81.23% and CO2: 16.12%. The wastewater treatment of tofu production using ASBR reactor is able to produce renewable energy that has economic value as well as environmentally friendly by nature.

  12. Coal Cleaning by Gas Agglomeration

    SciTech Connect

    Meiyu Shen; Royce Abbott; T. D. Wheelock

    1998-03-01

    The gas agglomeration method of coal cleaning was demonstrated with laboratory scale mixing equipment which made it possible to generate microscopic gas bubbles in aqueous suspensions of coal particles. A small amount of i-octane was introduced to enhance the hydrophobicity of the coal. Between 1.0 and 2.5 v/w% i-octane was sufficient based on coal weight. Coal agglomerates or aggregates were produced which were bound together by small gas bubbles.

  13. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 and PM10 at a coal-based industrial city: Implication for PAH control at industrial agglomeration regions, China

    NASA Astrophysics Data System (ADS)

    Wu, Di; Wang, Zongshuang; Chen, Jianhua; Kong, Shaofei; Fu, Xiao; Deng, Hongbing; Shao, Guofan; Wu, Gang

    2014-11-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 are identified and quantified at five sites of E'erduosi in 2005 by GC-MS. Total PAH concentrations in PM2.5 and PM10 are in the ranges of 0.58-145.01 ng m- 3 and 5.80-180.32 ng m- 3 for the five sites, decreasing as coal-chemical base site (ZGE) > heavy industrial site (QPJ) > residential site with heavy traffic (DS) > suburban site surrounded by grassland (HJQ) > background site (QGN) for both PM2.5 and PM10. PAH concentrations in the coal-chemical base site are 250 and 31.1 times of those in the background site. Flu, Pyr, Chr, BbF, BeP, IND and BghiP are abundant for the coal-chemical base site, totally accounting for 75% of the PAH concentrations. 4, 5 and 6 rings PAHs are dominant, accounting for 88.9-94.2% and 90.5-94.1% of PAHs in PM2.5 and PM10, respectively. Combustion-derived PAH concentrations cover 42%-84% and 75%-82% of PAHs in PM2.5 and PM10, indicating large amounts of combustion sources existed for them in E'erduosi. PAH compositions between PM2.5 and PM10 are quite different from each other for sites with few human activities (HJQ and QGN) by coefficient of divergence analysis. Results obtained from principal component analysis and diagnostic ratios indicate that coal combustion, vehicle emission, wood combustion and industrial processes are the main sources for PAHs in E'erduosi. According to BaP equivalent concentration, the potential health risk of PAHs in PM2.5 at the two industrial sites ZGE and QPJ are 537 and 460 times of those for the background site. And they are 4.3 and 3.7 times of those for the residential site. The potential PAH pollution in particles at other industrial agglomeration regions that occurred in China in recent years should be paid attention by the local government.

  14. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    SciTech Connect

    R.-H. Yoon; G.H. Luttrell; A.D. Walters

    1999-10-01

    During the past quarter, the installation, testing and shakedown phases of commissioning the TES unit were completed (Tasks 4, 5.1 and 5.2). A representative from Carpco Inc. was on site to provide training in the operation of the test unit and assist with the initial test runs. Problems have been encountered with the recycle conveyor generating dust that neutralizes the particle charge. Testing has continued by batch feeding the unit while the recycle conveying problem is being solved. Good separations have been achieved while operating in this mode. Comparison tests have also been carried out using a bench-scale triboelectrostatic separator in parallel with the POC Carpco unit.

  15. Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Topical report 5, Process analysis

    SciTech Connect

    1995-11-01

    The economics of converting coal to ethanol by a biological process is quite attractive. When processing 1500 tons of coal per day, the plant generates 85 million gallons of ethanol per year. The return on investment for the process is 110 percent and the payout is 0.9 years.

  16. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  17. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  18. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1993--March 1993

    SciTech Connect

    Not Available

    1993-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent performing the initial industrial proof-of-concept test and installing and integrating the Wet Electrostatic Precipitator (WESP). The other system modifications are well underway with the designs of the modifications to the batch/coal feed system being completed. A Purchase Order has been issued to a material conveying equipment vendor for the purchase of the batch/coal feeding equipment. The delivery and installation of the material conveying equipment is expected to occur in July and early August. The commercialization planning is continuing with the completion of a draft Business Plan. This plan is currently undergoing internal review, and will be submitted to Dawnbreaker, a DOE contracted small business consulting firm, for review.

  19. Development and testing of a high efficiency advanced coal combustor: Phase 3 industrial boiler retrofit. Final report

    SciTech Connect

    Patel, R.L.; Thornock, D.E.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1998-03-01

    Economics and/or political intervention may one day dictate the conversion from oil or natural gas to coal in boilers that were originally designed to burn oil or gas. In recognition of this future possibility the US Department of Energy, Federal Energy Technical Center (DOE-FETC) supported a program led by ABB Power Plant Laboratories with support from the Energy and Fuels Research Center of Penn State University with the goal of demonstrating the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of the overall goal the following specific objectives were targeted: develop a coal handling/preparation system that can meet the technical and operational requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; maintain boiler thermal performance in accordance with specifications when burning oil or natural gas; maintain NOx emissions at or below 0.6 lb NO{sub 2} per million Btu; achieve combustion efficiencies of 98% or higher; and determine economic payback periods as a function of key variables.

  20. 78 FR 54879 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... operated without the capability to use coal or another alternate fuel as a primary energy source. Pursuant... proposing to use natural gas or petroleum as its primary energy source shall certify to the Secretary of... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  1. 77 FR 74473 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... coal or another alternate fuel as a primary energy source. Pursuant to FUA in order to meet the... petroleum as its primary energy source shall certify to the Secretary of Energy (Secretary) prior to... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  2. 78 FR 26337 - Notice of Filing of Self-Certification of Coal Capability Under the Powerplant and Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... coal or another alternate fuel as a primary energy source. Pursuant to FUA in order to meet the... petroleum as its primary energy source shall certify to the Secretary of Energy (Secretary) prior to... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY...

  3. Full scale measurements to validate mathematical models and to monitor the combustion behavior of bituminous and brown coal-fired boilers

    SciTech Connect

    Maier, J.; Kluger, F.; Heinzel, T.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    In recent years, the Institute for Process Engineering and Power Plant Technology (IVD) carried out measurement campaigns on three full-scale-bituminous- and brown-coal-fired boilers between 80 and 500 MW{sub el}. One boiler was designed as a boxer firing system, configured with swirl burner, and the other two were tangentially fired with jet burner. Aim of the measurement campaigns was to evaluate the suitability of bituminous- and brown-coal-fired boilers (500 and 320 MW {sub el}) for alternative coals and their blends. To monitor changes in the combustion and emission behavior, suction probes to measure flue gas concentrations and temperatures along the furnace were inserted. Shifts in heat transfer between the radiative and convective part of the boiler were correlated with the kind of coal, the injected water mass flow in the superheater steam and the flue gas temperature. Also changes with the unburned carbon and of the NO{sub x}, SO{sub 2} and CO emission behavior were measured and correlated with coal types and their variable share. The second objective of the measurement campaigns in the bituminous-coal-fired boilers (500 MW{sub el} and 80 MW{sub el}) was the acquisition of combustion data to validate the mathematical combustion model AIOLOS, which has been successfully developed by the IVD during the last ten years. For this purpose flue-gas-concentration and temperature measurements have been carried out at IVD in the near burner zone and in front of the superheaters. Furthermore, the suitability of 3-color pyrometry, thermocouples and acoustic temperature measurement systems will be compared and discussed in this paper.

  4. Industrial scale microwave processing of tomato juice using a novel continuous microwave system.

    PubMed

    Stratakos, Alexandros Ch; Delgado-Pando, Gonzalo; Linton, Mark; Patterson, Margaret F; Koidis, Anastasios

    2016-01-01

    This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS[Symbol: see text](+) values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.

  5. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  6. Coal char fragmentation during pulverized coal combustion

    SciTech Connect

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  7. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning. Second quarterly technical progress report, January 1, 1996--March 31, 1996

    SciTech Connect

    Yoon, R.-H.; Luttrell, G.H.; Adel, G.T.

    1996-08-01

    The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation (TES) process which is capable of removing mineral matter from coal without using water. A distinct advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is a common problem associated with conventional fine coal cleaning processes. It is the objective of this project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200--250 kg/hr and obtain scale- up information. Prior to the POC testing, bench-scale test work will be conducted with the objective of increasing the separation efficiency and throughput, for which changes in the basic designs for the charger and the separator may be necessary. The bench- and POC- scale test work will be carried out to evaluate various operating parameters and establish a reliable scale-up procedure. The scale-up data will be used to analyze the economic merits of the TES process. All required documents associated with project planning were completed and submitted to DOE for approval during the second quarter of this project. Approval of the project work plan is still pending at this time subject to additional review by DOE of requested modifications to the statement of work. Accomplishments during this reporting period include the set-up of an apparatus for assessing tribocharger performance, continued construction of the bench-scale (1 kg/hr) triboelectrostatic separator and initial development of a fundamental model for predicting the motion of charged particles in a non-uniform electrostatic field.

  8. Do we have to consider temperature-dependent material properties in large-scale environmental impact assessments of underground coal gasification?

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas

    2015-04-01

    Underground coal gasification (UCG) can increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce environmental impacts such as ground subsidence associated with groundwater pollution due to generation of hydraulic connectivities between the UCG reactor and adjacent aquifers. These changes overburden conductivity may introduce potential migration pathways for UCG contaminants such as organic (phenols, benzene, PAHs and heterocyclics) and inorganic (ammonia, sulphates, cyanides, and heavy metals) pollutants. Mitigation of potential environmental UCG impacts can be achieved by improving the understanding of coupled thermo-hydro-mechanical processes in the rocks surrounding the UCG reactor. In the present study, a coupled thermo-mechanical model has been developed to carry out a parameter sensitivity analysis and assess permeability changes derived from volumetric strain increments in the UCG reactor overburden. Our simulation results demonstrate that thermo-mechanical rock behavior is mainly influenced by the thermal expansion coefficient, tensile strength and elastic modulus of the surrounding rock. A comparison of temperature-dependent and temperature-independent simulation results indicates high variations in the distribution of total displacements in the UCG reactor vicinity related to thermal stress, but only negligible differences in permeability changes. Hence, temperature-dependent thermo-mechanical parameters have to be considered in the assessment of near-field UCG impacts, while far-field models can achieve a higher computational efficiency by using temperature-independent thermo-mechanical parameters. Considering the findings of the present study in the large-scale assessment of

  9. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    SciTech Connect

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  10. Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment.

    PubMed

    Huang, Guolong; Yao, Jiachao; Pan, Weilong; Wang, Jiade

    2016-09-01

    Effluents after biochemical treatment contain pollutants that are mostly non-degradable. Based upon previous pilot-scale test results, an industrial-scale electro-oxidation device was built to decompose these refractory materials in the effluent from a park wastewater treatment plant. The electro-oxidation device comprised a ditch-shaped plunger flow electrolysis cell, with mesh-plate Ti/PbO2 electrodes as the anode and the same size mesh-plate Ti as the cathode. Wastewater flowed vertically through electrodes; the effective volume of the cell was 2.8 m(3), and the surface-to-volume ratio was 17.14 m(2) m(-3). The optimal current density was 100 A m(-2), and a suitable flow velocity was 14.0 m h(-1). The removal efficiencies for chemical oxygen demand and color in the effluent were over 60.0 and 84.0 %, respectively. In addition, the electro-oxidation system offered a good disinfection capability. The specific energy consumption for this industrial-scale device was 43.5 kWh kg COD(-1), with a current efficiency of 32.8 %, which was superior to the pilot-scale one. To meet the requirements for emission or reuse, the operation cost was $0.44 per ton of effluent at an average price for electricity of $0.11 kWh(-1). PMID:27278066

  11. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.

    PubMed

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston

    2015-05-15

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  12. Status of health and environmental research relative to coal gasification 1976 to the present

    SciTech Connect

    Wilzbach, K.E.; Reilly, C.A. Jr.

    1982-10-01

    Health and environmental research relative to coal gasification conducted by Argonne National Laboratory, the Inhalation Toxicology Research Institute, and Oak Ridge National Laboratory under DOE sponsorship is summarized. The studies have focused on the chemical and toxicological characterization of materials from a range of process streams in five bench-scale, pilot-plant and industrial gasifiers. They also address ecological effects, industrial hygiene, environmental control technology performance, and risk assessment. Following an overview of coal gasification technology and related environmental concerns, integrated summaries of the studies and results in each area are presented and conclusions are drawn. Needed health and environmental research relative to coal gasification is identified.

  13. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    SciTech Connect

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  14. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  15. 78 FR 19495 - Draft Guidance for Industry on Scale-Up and Post-Approval Changes: Manufacturing Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Scale-Up and Post-Approval... post-approval changes (SUPAC) draft guidance for industry entitled ``SUPAC: Manufacturing...

  16. Education, Training and Employment in Small-Scale Enterprises: Three Industries in Sao Paulo, Brazil. IIEP Research Report No. 63.

    ERIC Educational Resources Information Center

    Leite, Elenice M.; Caillods, Francoise

    Despite the prophecies forecasting their probable disappearance or annihilation, small-scale enterprises have persisted in the Brazilian industrial structure since 1950. To account for the survival of small firms in Brazil, specifically in the state of Sao Paulo, a study examined 100 small firms in three industrial sectors: clothing, mechanical…

  17. Development and testing of commercial-scale, coal-fired combustion systems, Phase 3. Technical progress report, April 1991--June 1991

    SciTech Connect

    Not Available

    1991-12-31

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  18. Development and testing of commercial-scale, coal-fired combustion systems: Phase 3. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    The US Department of Energy`s Pittsburgh Energy Technology Center (PETC) is actively pursuing the development and testing of coal-fired combustion systems for residential, commercial, and industrial market sectors. In response, MTCI initiated the development of a new combustor technology based on the principle of pulse combustion under the sponsorship of PETC (Contract No. AC22-83PC60419). The initial pulse combustor development program was conducted in three phases (MTCI, Development of a Pulsed Coal Combustor Fired with CWM, Phase III Final Report, DOE Contract No. AC22-83PC60419, November 1986). Phase I included a review of the prior art in the area of pulse combustion and the development of pulse combustor design concepts. It led to the conclusion that pulse combustors offer technical and base-of-operation advantages over conventional burners and also indicated favorable economics for replacement of oil- and gas-fired equipment.

  19. Safety analysis of the CSTR-1 bench-scale coal liquefaction unit

    SciTech Connect

    Hulburt, D.A.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the CSTR-1 bench scale unit located in Building 167 at the Pittsburgh Energy Technology Center. It was apparent that considerable effort was expended in the design and construction of the unit, and in the development of operating procedures, with regard to safety. Exhaust ventilation, H/sub 2/ and H/sub 2/S monitoring, overpressure protection, overtemperature protection, and interlock systems have been provided. Present settings on the pressure and temperature safety systems are too high, however, to insure prevention of vessel deformation or damage in all cases. While the occurrence of catastrophic rupture of a system pressure vessel (e.g., reactor, high pressure separators) is unlikely, the potential consequences to personnel are severe. Feasibility of providing shielding for these components should be considered. A more probable mode of vessel failure in the event of overpressure or overtemperature and failure of the safety system is yielding of the closure bolts followed by high pressure flow across the mating surfaces. As a minimum, shielding should be designed to restrict travel of resultant spray. The requirements for personal protective equipment are presently stated in rather broad and general terms in the operating procedures. Safe practices and procedures would be more assured if specific requirements were stated and included for each operational step. Recommendations were developed for all hazards triggered by the guidelines.

  20. The impact of industrial-scale cartridge filtration on the native microbial communities from groundwater.

    PubMed

    Wang, Yingying; Hammes, Frederik; Egli, Thomas

    2008-10-01

    Groundwater is a major source for bottled water, which is increasingly consumed all over the world. Some categories of bottled water can be subjected to treatments such as disinfection prior to bottling. In the current study, we present the quantitative impact of industrial-scale micro-filtration (0.22 microm pore size) on native microbial communities of groundwater and evaluate subsequent microbial growth after bottling. Two separate groundwater aquifers were tested. Flow-cytometric total cell concentration (TCC) and total adenosine tri-phosphate (ATP) analysis were used to quantify microbial abundance. The TCC of the native microbial community in both aquifers was in the range of 10(3)-10(4) cells/ml. Up to 10% of the native microbial community was able to pass through the cartridge filtration units installed at both aquifers. In addition, all samples (either with or without 0.22 microm filtration) showed significant growth after bottling and storage, reaching average final concentrations of 1-3 x 10(5) cells/ml. However, less growth was observed in carbon-free glassware than in standard polyethylene terephthalate (PET) bottles. Furthermore, our results showed that filtration and bottling can alter the microbial community patterns as observed with flow cytometry. The current study established that industrial-scale micro-filtration cannot serve as an absolute barrier for the native microbial community and provided significant insight to the impact of filtration and bottling on microbial concentrations in bottled water.

  1. Exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant: a detailed survey

    NASA Astrophysics Data System (ADS)

    Nasiri, Farshid; Aghbashlo, Mortaza; Rafiee, Shahin

    2016-05-01

    In this study, a detailed exergy analysis of an industrial-scale ultrafiltrated (UF) cheese production plant was conducted based on actual operational data in order to provide more comprehensive insights into the performance of the whole plant and its main subcomponents. The plant included four main subsystems, i.e., steam generator (I), above-zero refrigeration system (II), Bactocatch-assisted pasteurization line (III), and UF cheese production line (IV). In addition, this analysis was aimed at quantifying the exergy destroyed in processing a known quantity of the UF cheese using the mass allocation method. The specific exergy destruction of the UF cheese production was determined at 2330.42 kJ/kg. The contributions of the subsystems I, II, III, and IV to the specific exergy destruction of the UF cheese production were computed as 1337.67, 386.18, 283.05, and 323.51 kJ/kg, respectively. Additionally, it was observed through the analysis that the steam generation system had the largest contribution to the thermodynamic inefficiency of the UF cheese production, accounting for 57.40 % of the specific exergy destruction. Generally, the outcomes of this survey further manifested the benefits of applying exergy analysis for design, analysis, and optimization of industrial-scale dairy processing plants to achieve the most cost-effective and environmentally-benign production strategies.

  2. Industrial development versus environmental conservation at local scale: a case study from southeastern Spain.

    PubMed

    Maestre Gil, F T

    2001-08-01

    Local scale has an important role in environmental management. In Spain, rapid industrialization has occurred in the last three decades, leading to substantial changes in socioeconomic relations and resulting in significant environmental degradation. This paper describes the environmental status of the township of Sax (Alicante, in southeast Spain), which has passed from agriculture to industrial manufacturing in 50 years. The human population has grown exponentially during the second half of the 20th century, with a 91% increase from 1955 to 1995, coinciding with strong growth in manufacturing (factories increased fivefold in the period 1955-1976) and important changes in the working population and land use. Illegal rubbish dumps, water pollution, forest fires, erosion, and degradation of wildlife habitats are the main outcomes of these dramatic socioeconomic and demographic changes. The administration has focused on the control of water pollution and waste management, while nongovernmental organizations have concentrated on the prevention of forest fires and the development of environmental education programs. These measures are insufficient to manage current environmental degradation, and an environmental management plan for the study area is discussed. Increasing effort in waste management and industrial wastewater control, changes in land-use policy, and the creation of an advisory committee to increase public participation in decision-making have been identified as environmental target objectives for the coming years.

  3. Application of ERTS-1 imagery to fracture related mine safety hazards in the coal mining industry. [Indiana

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.; Leshendok, T. V.

    1974-01-01

    The author has identified the following significant results. New fracture detail of Indiana has been observed and mapped from ERTS-1 imagery. Studies so far indicate a close relationship between the directions of fracture traces mapped from the imagery, fractures measured on bedrock outcrops, and fractures measured in the underground mines. First hand observations and discussions with underground mine operators indicate good correlation of mine hazard maps prepared from ERTS-1/aircraft imagery and actual roof falls. The inventory of refuse piles/slurry ponds of the coal field of Indiana has identified over 225 such sites from past mining operations. These data will serve the State Legislature in making tax decisions on coal mining which take on increased importance because of the energy crisis.

  4. Coal: the new black

    SciTech Connect

    Tullo, A.H.; Tremblay, J.-F.

    2008-03-15

    Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

  5. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    EPA Science Inventory

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  6. Coal supply for California

    NASA Technical Reports Server (NTRS)

    Yancik, J. J.

    1978-01-01

    The potential sources and qualities of coals available for major utility and industrial consumers in California are examined and analyzed with respect to those factors that would affect the reliability of supplies. Other considerations, such as the requirements and assurances needed by the coal producers to enter into long-term contracts and dedicate large reserves of coal to these contracts are also discussed. Present and potential future mining contraints on coal mine operators are identified and analyzed with respect to their effect on availability of supply.

  7. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to

  8. Large-scale applications of cloning technologies for agriculture: an industry perspective.

    PubMed

    Lewis, I M; Peura, T T; Trounson, A O

    1998-01-01

    The present costs and efficiencies of producing cloned embryos, pregnancies and offspring using the simplified nuclear transfer techniques developed in the authors' laboratories are compared with those required for the large-scale application of such cloning technologies in cattle. The current costs in the laboratory of producing large numbers of genetically identical cloned embryos for transfer is around $15.00 per blastocyst, which is within the cost estimated to be commercially viable for cloned female dairy embryos for transfer. However, the pregnancy and calving rates from the transfer of such embryos are still well below that required for large-scale commercial application for which ongoing pregnancy rates of at least 50% per recipient will be required. The current pregnancy rate (30-40 days post-transfer) following the transfer of an average of three cloned embryos per recipient is 37%, and the calving rate 17%, representing high losses between pregnancy diagnosis and term. In the beef industry and in some dairy situations the final product (cloned bulls for natural mating) will have a much higher inherent value and different parameters will therefore apply. Recent developments in the technologies that are likely to increase the probabilities of large-scale application are discussed, including recycling nuclear transfer embryos, somatic cell cloning, new cryopreservation techniques and automated oocyte harvesting.

  9. Directory of coal production ownership, 1979

    SciTech Connect

    Thompson, B.

    1981-10-01

    Ownership patterns in the coal industry are highly complex. Many producers are diversified into other lines of activity. The pattern and extent of this diversification has varied through time. In the past, steel and nonferrous metals companies had major coal industry involvement. This is still true today. However, other types of enterprises have entered the industry de novo or through merger. Those of greatest significance in recent times have involved petroleum and particularly public utility companies. This report attempts to identify, as accurately as possible, production ownership patterns in the coal industry. The audience for this Directory is anyone who is interested in accurately tracing the ownership of coal companies to parent companies, or who is concerned about the structure of ownership in the US coal industry. This audience includes coal industry specialists, coal industry policy analysts, economists, financial analysts, and members of the investment community.

  10. Emission assessment from full-scale co-combustion tests of binder- enhanced dRDF pellets and high sulfur coal at Argonne National Laboratory

    SciTech Connect

    Ohlsson, O.O.; Livengood, C.D. ); Daugherty, K.E. )

    1990-06-04

    Argonne National Laboratory (ANL) and University of North Texas (UNT) research teams collected over 800 emissions and ash samples during the combustion of over 650 tons of binder enhanced densified refuse-drived fuel (b-dRDF) pellets with high sulfur coal in a spreader-stoker boiler at ANL. This full-scale test burn was conducted to validate predictions from laboratory and pilot scale test results that indicated substantial reductions of SO{sub 2}, NO{sub x} and CO{sub 2} in the flue gas, and the reduction of heavy metals and organics in the ash residue, when combusting the b-dRDF pellets with coal. Effects of varying fuel composition on performance of the boiler's spray-dryer/fabric filter emissions control system was also evaluated. This paper describes the b-dRDF pellet/coal cofiring tests, the emission and ash samples that were taken, the analyses that were conducted on these samples, and the final test results. 5 refs., 1 fig., 1 tab.

  11. Coal: Less than lackluster

    SciTech Connect

    Doerell, P.

    1994-03-01

    Not many in the world coal industry will remember 1993 as a good year. The reasons for the poor state of affairs were first the weak economic climate, and second, the energy glut. For the first time after expanding steadily since the 70s, seaborne trade in hard coal fell by about 4% to 350M mt. Steam coal accounted for a good half of this volume. While demand continued to rise in the newly industrialized countries of the Pacific area, imports into Europe of both coking coal and steam coal fell sharply. The United States, CIS, and Canada had to accept substantial losses of export volume. Australia, as well as South Africa, Colombia, and Indonesia consolidated their market positions and Poland, too, recorded high volumes available for export. The positive news came from Australia, where in mid-December the New South Wales coal industry reported an increase in the net profit after tax from $A83M (about $55M) to $A98M (about $126M) in 1992/1993. This success was however ascribed less to an improvement in the fundamental mining indicators than to the fall in the Australian dollar and the lowering of corporate tax. The reduction in capital investment by 26% down to $A330M (after the previous year when it had also been cut by 25%) is seen by the chairman of the NSW Coal Assoc. as not auguring well for the industry's ability to meet the forecast growth in demand to the year 2000.

  12. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up

    PubMed Central

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I.; Allwood, J. William; Rattray, Nicholas J. W.; Correa, Elon; Alrabiah, Haitham

    2015-01-01

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  13. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    PubMed Central

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-01-01

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements. PMID:24854060

  14. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    NASA Astrophysics Data System (ADS)

    Marinagi, Catherine; Trivellas, Panagiotis; Reklitis, Panagiotis; Skourlas, Christos

    2015-02-01

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers' reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  15. Identification of iron oxide impurities in earliest industrial-scale processed platinum

    SciTech Connect

    Weerd, Jaap van der; Rehren, Thilo . E-mail: th.rehren@ucl.ac.uk; Firth, Steven; Clark, Robin J.H. . E-mail: r.j.h.clark@ucl.ac.uk

    2004-09-15

    A detailed investigation of iron oxide inclusions in a 19th century Russian platinum coin is presented. Such coins represent the products of the first industrial-scale purification of platinum metal. The processed metal is far from pure, however, and two types of iron oxide inclusions are identified by electron microprobe and Raman microscopy. The results show that the inclusions mainly consist of magnetite and haematite. The Raman band of magnetite at 668 cm{sup -1} was found to shift to about 680 cm{sup -1} with an increase in the average oxidation state of the iron. It is concluded that the iron oxides are formed during the heating of the platinum metal powder in the manufacturing process.

  16. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite.

  17. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. PMID:25497055

  18. Drivers and barriers to e-invoicing adoption in Greek large scale manufacturing industries

    SciTech Connect

    Marinagi, Catherine E-mail: ptrivel@yahoo.com Trivellas, Panagiotis E-mail: ptrivel@yahoo.com Reklitis, Panagiotis E-mail: ptrivel@yahoo.com; Skourlas, Christos

    2015-02-09

    This paper attempts to investigate the drivers and barriers that large-scale Greek manufacturing industries experience in adopting electronic invoices (e-invoices), based on three case studies with organizations having international presence in many countries. The study focuses on the drivers that may affect the increase of the adoption and use of e-invoicing, including the customers demand for e-invoices, and sufficient know-how and adoption of e-invoicing in organizations. In addition, the study reveals important barriers that prevent the expansion of e-invoicing, such as suppliers’ reluctance to implement e-invoicing, and IT infrastructures incompatibilities. Other issues examined by this study include the observed benefits from e-invoicing implementation, and the financial priorities of the organizations assumed to be supported by e-invoicing.

  19. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    PubMed

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  20. GIS Representation of Coal-Bearing Areas in Africa

    USGS Publications Warehouse

    Merrill, Matthew D.; Tewalt, Susan J.

    2008-01-01

    The African continent contains approximately 5 percent of the world's proven recoverable reserves of coal (World Energy Council, 2007). Energy consumption in Africa is projected to grow at an annual rate of 2.3 percent from 2004 through 2030, while average consumption in first-world nations is expected to rise at 1.4 percent annually (Energy Information Administration, 2007). Coal reserves will undoubtedly continue to be part of Africa's energy portfolio as it grows in the future. A review of academic and industrial literature indicates that 27 nations in Africa contain coal-bearing rock. South Africa accounts for 96 percent of Africa's total proven recoverable coal reserves, ranking it sixth in the world. This report is a digital compilation of information on Africa's coal-bearing geology found in the literature and is intended to be used in small scale spatial investigations in a Geographic Information System (GIS) and as a visual aid for the discussion of Africa's coal resources. Many maps of African coal resources often include points for mine locations or regional scale polygons with generalized borders depicting basin edges. Point locations are detailed but provide no information regarding extent, and generalized polygons do not have sufficient detail. In this dataset, the polygons are representative of the actual coal-bearing lithology both in location and regional extent. Existing U.S. Geological Survey (USGS) digital geology datasets provide the majority of the base geologic polygons. Polygons for the coal-bearing localities were clipped from the base geology that represented the age and extent of the coal deposit as indicated in the literature. Where the 1:5,000,000-scale geology base layer's ages conflicted with those in the publications, polygons were generated directly from the regional African coal maps (1:500,000 scale, approximately) in the published material. In these cases, coal-bearing polygons were clipped to the literature's indicated coal

  1. The Clean Coal Technology Program: Lessons learned

    SciTech Connect

    Not Available

    1994-07-01

    The Clean Coal Technology (CCT) Program is a unique partnership between the federal government and industry that has as its primary goal the successful introduction of new clean coal utilization technologies into the energy marketplace. Clean coal technologies being demonstrated under the CCT Program are establishing a technology base that will enable the nation to meet more stringent energy and environmental goals. Most of the, demonstrations are being conducted at commercial scale, in actual user environments, and under circumstances typical of commercial operations. These features allow the potential of the technologies to be evaluated in their intended commercial applications. Each application addresses one of the following four market sectors: advanced electric power generation; environmental control devices; coal processing for clean fuels; and industrial applications. The purpose of this report is fourfold: Explain the CCT program as a model for successful joint government industry partnership for selecting and demonstrating technologies that have promise for adaptation to the energy marketplace; set forth the process by which the process has been implemented and the changes that have been made to improve that process; outline efforts employed to inform potential users and other interested parties about the technologies being developed; and examine some of the questions which must be considered in determining if the CCT Program model can be applied to other programs.

  2. Weldability of Ni-Cr-W superalloy manufactured on industrial scale

    NASA Astrophysics Data System (ADS)

    Tsuji, Hirokazu; Nakajima, Hajime; Saito, Teiichiro; Takatsu, Tamao

    1993-09-01

    Research and development have been carried out on the new Ni-Cr-W superalloy as a structural material for process heating high-temperature gas-cooled reactors with coolant outlet temperatures of around 1000 C, and the optimum chemical composition has already been proposed. With a view to putting the newly developed Ni-Cr-W superalloy to a practical use, the proposed alloy was manufactured on an industrial scale, i.e., two tons. As a part of evaluation tests of the industrial scale material, weldability was examined in two kinds of heat treatment conditions, i.e., solution treatment and re-solution treatment conditions. The results of the present study can be summarized as follows: (1) Weldability of the solution treated material is fair, and no great trouble is expected in practical welding. (2) Weldability of the re-solution treated material is slightly inferior to that of the solution treated one, and the guide bend tests for the butt welded joint show unsatisfactory results. Judging from the fact that the alloy whose chemical composition was almost equivalent to that of the material in the present study showed unsatisfactory weldability in the previous study, the weldability of Ni-Cr-W superalloys is not so good. The results of this study suggest that it is important to clarify the acceptable conditions concerning the levels of minor alloying elements and the heat treatment for the alloys in order to make the weldability of the alloys stable and that there is much prospect of a success of securing the reliability of the structures with weldments applying the technique of minor alloying element adjustment and optimizing the heat treatment condition. Futur plans are that basic data on the weldability of Ni-Cr-W superalloys will be accumulated furthermore, and research and development will be carried out with a view to securing the reliability of the structures with weldments.

  3. Development of pilot scale nanofiltration system for yeast industry wastewater treatment

    PubMed Central

    2014-01-01

    The treatment of the yeast industry wastewater was investigated by nanofiltration (NF) membrane process on a pilot scale. Two wastewaters were used as feed: (i) dilute wastewater with COD 2000 mg/L and (ii) concentrate wastewater with COD 8000 mg/L. The permeate flux, COD retention, color and electrical conductivity (EC) removal were evaluated in relation to trans-membrane pressure and long-term filtration. A linear growth in permeate flux was found with increasing in trans-membrane pressure for wastewaters. In addition, the COD retention, color and EC removal increased with trans-membrane pressure enhancement. The results obtained from the long-term nanofiltration of dilute wastewater indicated that the permeate flux decreased from 2300 L/day to 1250 L/day and COD retention increased from 86% to 92%. The quality of the permeate in term of COD is lower than the discharge standard in river (200 mg/L). Thus, this process is useful for treatment of wastewaters produced by yeast industry. PMID:24593865

  4. Full-scale Daramend{trademark} bioremediation of industrial soils containing chlorinated phenols and PAHs

    SciTech Connect

    Seech, A.G.; Bucens, P.G.; Bergeron, D.

    1994-12-31

    Daramend{trademark} bioremediation was developed under the sponsorship of, and is owned by, the Government of Canada. Grace Dearborn Inc. has acquired the license for worldwide application of this technology; which has been successfully used at full-scale to remediate soils containing chlorophenols, polynuclear aromatic hydrocarbons (PAHS) and petroleum hydrocarbons. Over the course of four years (1991--1994), soil was treated under a variety of conditions. During ex-situ treatment, the mean total chlorophenol concentration in excavated soil was reduced from 702 mg/kg to less than the criterion established by the Canadian Council of Ministers of the Environment (CCME) for industrial soil (5 mg/kg). In the same soil the total PAH concentration was reduced from 1.442 me/kg to 35 mg/kg. and the concentrations of all PAH isomers were reduced to less than the CCME criteria for industrial soil (i.e. 10 mg/kg for carcinogenic isomers). Standard toxicological tests, including earthworm mortality and seed germination, were performed on soil taken from the treated area and the control area after completion of the bioremediation. The tests indicated that Daramend treatment had reduced or eliminated the soil`s toxicity.

  5. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production

    NASA Astrophysics Data System (ADS)

    Zaretski, Aliaksandr V.; Lipomi, Darren J.

    2015-05-01

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries--such as transparent electrodes and flexible packaging--that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  6. Processes for non-destructive transfer of graphene: widening the bottleneck for industrial scale production.

    PubMed

    Zaretski, Aliaksandr V; Lipomi, Darren J

    2015-06-14

    The exceptional charge-transport, mechanical, and barrier properties of graphene are well known. High-quality films of single-layer graphene produced over large areas, however, are extremely expensive. The high cost of graphene precludes its use in industries-such as transparent electrodes and flexible packaging-that might take full advantage of its properties. This minireview presents several strategies for the transfer of graphene from the substrates used for growth to substrates used for the final application. Each strategy shares the characteristic of being non-destructive: that is, the growth substrate remains reusable for further synthesis of new graphene. These processes have the potential to lower significantly the costs of manufacturing graphene, to increase production yields, and to minimize environmental impact. This article is divided into sections on (i) the synthesis of high-quality single-layer graphene and (ii) its non-destructive transfer to a host substrate. Section (ii) is further divided according to the substrate from which graphene is transferred: single-crystalline wafers or flexible copper foils. We also comment, wherever possible, on defects produced as a result of the transfer, and potential strategies to mitigate these defects. We conclude that several methods for the green synthesis and transfer of graphene have several of the right characteristics to be useful in industrial scale production.

  7. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  8. Toxicology of coal liquefaction products: an overview.

    PubMed

    Chu, L; Villeneuve, D C; Rousseaux, C G

    1994-01-01

    Repeated exposure to coal liquefaction products produces a broad range of systemic effects. Among these, growth suppression, anaemia, leucocytosis and other haematological disorders are most prominent. Bone marrow, liver and kidney are the target organs affected by treatment. The effects are more severe with heavy distillates and male rats are more sensitive than females. Other changes included increased serum transaminases, alkaline phosphatase and cholesterol. Depending on the route of administration, the skin or lung may also be affected. Inhalation exposure produces the most severe changes, and oral exposure the least. Distillates containing N-PAHs and sulphur-containing PAHs are also more biologically active. Teratological effects were only observed if animals were exposed to the heavy distillate. Similarly, heavy distillates have mutagenic or carcinogenic properties. Teratological effects, as well as mutagenicity and carcinogenicity, of the coal liquefaction distillates seem to be linked to their PAH content, especially the N-PAHs. From the data presented in this review, it should become evident that the potential effects of coal liquefaction products on human health could be severe, especially with long-term exposure. Limited information exists on the occupational effects to coal liquefaction materials because most of the work to date has been with pilot plants. Careful and good judgement is required in order to extrapolate data from pilot plants to commercial-scale production. Experience in health effects of workers in the petroleum industry and coke-oven operations can serve as a guide for the implementation of industrial hygiene programmes for coal liquefaction operations. These programmes include engineering controls, health education, personal monitoring and hygienic practices, medical surveillance and long-term epidemiology studies, and they should be implemented to make coal liquefaction a healthy and environmentally sustainable industry.

  9. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  10. Iron and zinc fortification of corn tortilla made either at the household or at industrial scale.

    PubMed

    Tovar, Luis Raul; Larios-Saldaña, Alfredo

    2005-03-01

    Fe and Zn deficiencies among the Mexican population are widespread, and one-third of children and women of childbearing age are anemic. Since diets that are Fe-deficient are most probably also Zn-deficient, a proprietary process was developed to fortify corn tortilla with these trace elements at the first stage of treatment with lime. Phytic acid (PA), Ca, Fe, and Zn content were determined, as well as the molar ratios of phytate/Fe, phytate/Zn, and Ca x phytate to Zn in traditional and fortified tortillas; the Student's t-test was used to detect differences between the treatments (p < 0.001). Contents of Fe and Zn in the fortified tortilla relative to the traditional tortilla were 1.9 and 3.4 times greater than the latter, whereas PA contents showed the opposite result, i.e. traditional tortillas had 1.65 times more PA than the fortified tortilla. Consequently the calculated molar ratios were statistically more favorable for fortified than for traditional tortillas (p < 0.001). The process developed allows making iron- and zinc-fortified tortillas by lime-treating or nixtamalizing corn either at the household, at small-scale tortilla shops, or at industrial scale by using lime fortified with both trace elements. The cost of this fortification is negligible.

  11. Modeling and full-scale tests of vortex plasma-fuel systems for igniting high-ash power plant coal

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Ustimenko, A. B.; Karpenko, Yu. E.; Chernetskiy, M. Yu.; Dekterev, A. A.; Filimonov, S. A.

    2015-06-01

    The processes of supplying pulverized-coal fuel into a boiler equipped with plasma-fuel systems and its combustion in the furnace of this boiler are investigated. The results obtained from 3D modeling of conventional coal combustion processes and its firing with plasma-assisted activation of combustion in the furnace space are presented. The plasma-fuel system with air mixture supplied through a scroll is numerically investigated. The dependence of the swirled air mixture flow trajectory in the vortex plasma-fuel system on the scroll rotation angle is revealed, and the optimal rotation angle at which stable plasma-assisted ignition of pulverized coal flame is achieved is determined.

  12. Mercury speciation and emissions from coal combustion in Guiyang, southwest China

    SciTech Connect

    Tang, S.L.; Feng, X.B.; Qiu, H.R.; Yin, G.X.; Yang, Z.C.

    2007-10-15

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg{sup P}, 813 kg is Hg{sup 2+} and 817 kg is Hg{sup 0}. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  13. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

    PubMed

    Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan

    2007-10-01

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  14. The Full Scale Seal Experiment - A Seal Industrial Prototype for Cigeo - 13106

    SciTech Connect

    Lebon, P.; Bosgiraud, J.M.; Foin, R.; Armand, G.

    2013-07-01

    The Full Scale Seal (FSS) Experiment is one of various experiments implemented by Andra, within the frame of the Cigeo (the French Deep Geological Repository) Project development, to demonstrate the technical construction feasibility and performance of seals to be constructed, at time of Repository components (shafts, ramps, drifts, disposal vaults) progressive closure. FSS is built inside a drift model fabricated on surface for the purpose. Prior to the scale 1:1 seal construction test, various design tasks are scheduled. They include the engineering work on the drift model to make it fit with the experimental needs, on the various work sequences anticipated for the swelling clay core emplacement and the concrete containment plugs construction, on the specialized handling tools (and installation equipment) manufactured and delivered for the purpose, and of course on the various swelling clay materials and low pH (below 11) concrete formulations developed for the application. The engineering of the 'seal-as-built' commissioning means (tools and methodology) must also be dealt with. The FSS construction experiment is a technological demonstrator, thus it is not focused on the phenomenological survey (and by consequence, on the performance and behaviour forecast). As such, no hydration (forced or natural) is planned. However, the FSS implementation (in particular via the construction and commissioning activities carried out) is a key milestone in view of comforting phenomenological extrapolation in time and scale. The FSS experiment also allows for qualifying the commissioning methods of a real sealing system in the Repository, as built, at time of industrial operations. (authors)

  15. Create a Consortium and Develop Premium Carbon Products from Coal

    SciTech Connect

    Frank Rusinko; John Andresen; Jennifer E. Hill; Harold H. Schobert; Bruce G. Miller

    2006-01-01

    The objective of these projects was to investigate alternative technologies for non-fuel uses of coal. Special emphasis was placed on developing premium carbon products from coal-derived feedstocks. A total of 14 projects, which are the 2003 Research Projects, are reported herein. These projects were categorized into three overall objectives. They are: (1) To explore new applications for the use of anthracite in order to improve its marketability; (2) To effectively minimize environmental damage caused by mercury emissions, CO{sub 2} emissions, and coal impounds; and (3) To continue to increase our understanding of coal properties and establish coal usage in non-fuel industries. Research was completed in laboratories throughout the United States. Most research was performed on a bench-scale level with the intent of scaling up if preliminary tests proved successful. These projects resulted in many potential applications for coal-derived feedstocks. These include: (1) Use of anthracite as a sorbent to capture CO{sub 2} emissions; (2) Use of anthracite-based carbon as a catalyst; (3) Use of processed anthracite in carbon electrodes and carbon black; (4) Use of raw coal refuse for producing activated carbon; (5) Reusable PACs to recycle captured mercury; (6) Use of combustion and gasification chars to capture mercury from coal-fired power plants; (7) Development of a synthetic coal tar enamel; (8) Use of alternative binder pitches in aluminum anodes; (9) Use of Solvent Extracted Carbon Ore (SECO) to fuel a carbon fuel cell; (10) Production of a low cost coal-derived turbostratic carbon powder for structural applications; (11) Production of high-value carbon fibers and foams via the co-processing of a low-cost coal extract pitch with well-dispersed carbon nanotubes; (12) Use of carbon from fly ash as metallurgical carbon; (13) Production of bulk carbon fiber for concrete reinforcement; and (14) Characterizing coal solvent extraction processes. Although some of the

  16. Clean coal

    SciTech Connect

    Liang-Shih Fan; Fanxing Li

    2006-07-15

    The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

  17. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  18. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  19. Environmentally conscious coal combustion

    SciTech Connect

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  20. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    SciTech Connect

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V.

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  1. Bench-scale testing of DOE/PETC`s GranuFlow Process for fine coal dewatering and handling. 1: Results using a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Killmeyer, R.P.; Lowman, R.H.; Elstrodt, R.

    1995-12-31

    Most advanced fine-coal cleaning processes involve the use of water. Utility companies are concerned not only with the lower Btu content of the resulting wet, cleaned coal, but more importantly with its handleability problems. Solutions to these problems would enhance the utilization of fine-coal cleaning processes in the utility industry. This paper describes testing of the GranuFlow Process, developed and patented by the Pittsburgh Energy Technology Center (PETC) of the US Department of Energy, using a high-gravity solid bowl centrifuge for dewatering and reconstitution of fine-cleaned-coal slurry at 300 lb per hour in PETC`s Coal Preparation Process Research Facility. Fine-cleaned-coal slurry was treated with a bitumen emulsion before dewatering in a high-gravity solid-bowl centrifuge. The treated products appeared to be dry and in a free-flowing granular form, while the untreated products were wet, lumpy, sticky, and difficult to handle. Specifically, test results indicated that the moisture content, handleability, and dust reduction of the dewatered coal product improved as the addition of emulsion increased from 2% to 8%. The improvement in handleability was most visible for the 200 mesh (75 micron) x 0 coal, when compared with 150 mesh (106 micron) x 0, 65 mesh (212 micron) x 0 or 28 mesh (600 micron) x 0 coals. Test results also showed that the moisture content was dramatically reduced (26--37% reduction) for the four different sizes of coals at 6 or 8% emulsion addition. Because of the moisture reduction and the granular form of the product, the freezing problem was also alleviated.

  2. Development of a Coal Quality Expert. Technical progress report No. 6, [July 1--September 30, 1991

    SciTech Connect

    Not Available

    1991-11-20

    This is the sixth Technical Progress Report, describing work performed under DOE Contract No. DE-FC22-90PC89663, ``Development of a Coal Quality Expert.`` The contract is a Cooperative Agreement between the US Department of Energy, CQ Inc., and Combustion Engineering, Inc. This report covers the period from July 1 through September 30, 1991. Four companies and seven host utilities have teamed with CQ Inc. and C-E to perform the work on this project. The work falls under DOE`s Clean Coal Technology Program category of ``Advanced Coal Cleaning.`` The 45-month project will provide the utility industry with a PC expert system to confidently and inexpensively evaluate the potential for coal cleaning, blending, and switching options to reduce emissions while producing lowest cost electricity. Specifically, this project will: Enhance the existing Coal Quality Information System (CQIS) database and Coal Quality Impact Model (CQIM) to allow confident assessment of the effects of cleaning on specific boiler cost and performance; and develop and validate a methodology, Coal Quality Expert (CQE) which allows accurate and detailed predictions of coal quality impacts on total power plant capital cost, operating cost, and performance based upon inputs from inexpensive bench-scale tests. The project consists of the following seven tasks: Project management; coal cleanability characterization; pilot-scale combustion testing; utility boiler field testing; CQIM completion and development of CQE specification; develop CQE and CQE workstation testing and Validation.

  3. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Songgeng Li; Shuang Deng; Andy Wu; Wei-ping Pan

    2008-07-15

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6 figs., 5 tabs.

  4. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  5. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    EPA Science Inventory

    Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental ...

  6. [An investigation of the formation of] polycyclic aromatic hydrocarbon (PAH) emissions when firing pulverized coal in a bench-scale drop tube reactor

    SciTech Connect

    Pisupati, S.V.; Wasco, R.S.; Scaroni, A.W.

    1998-12-31

    The Clean Air Act Amendments (CAAA) of 1990 contain provisions which will set standards for the allowable emissions of 188 analytes designated as hazardous air pollutants (HAPs). This list of HAPs was used to establish an initial list of source categories for which EPA would be required to establish technology-based emission standards, which would result in regulated sources sharply reducing routine emissions of toxic air pollutants. Polycyclic organic matter (POM) has also been referred to as polynuclear or polycyclic aromatic compounds (PACs). Nine major categories of POM have been defined by EPA. The study of organic compounds from coal combustion is complex and the results obtained so far are inconclusive with respect to emission factors. The most common organic compounds in the flue gas of coal-fired power plants are polycyclic aromatic hydrocarbons (PAHs). Furthermore, EPA has specified 16 PAH compounds as priority pollutants. These are naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, benzo[ghi]perylene, and dibenz[ah]anthracene. Penn State`s Combustion Laboratory is equipped to collect and analyze the HAPs in the flue gas from fossil fuels combustion. The overall objective of this study was to examine the effect of unit temperature on PAH emissions. A Modified Method 5 sampling train was used to isokinetically collect samples at desired locations in flue gas streams. The collected sample can be separated into solid, condensed liquid and gaseous phases. The PAHs of interest are extracted from the collected sample, concentrated, then separated and quantified by gas chromatography/mass spectrometry (GC/MS). This study was conducted using a bench-scale drop-tube reactor (DTR). The fuel selected for this study was a Middle Kittanning seam coal pulverized to 80% passing US Standard 200 mesh (commonly

  7. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems

    SciTech Connect

    Chin-Min Cheng; Pauline Hack; Paul Chu; Yung-Nan Chang; Ting-Yu Lin; Chih-Sheng Ko; Po-Han Chiang; Cheng-Chun He; Yuan-Min Lai; Wei-Ping Pan

    2009-09-15

    A full-scale field study was carried out at a 795 MWe coal-fired power plant equipped with selective catalytic reduction (SCR), an electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD) systems to investigate the distribution of selected trace elements (i.e., mercury, arsenic, selenium, boron, and chloride) from coal, FGD reagent slurry, makeup water to flue gas, solid byproduct, and wastewater streams. Flue gases were collected from the SCR outlet, ESP inlet, FGD inlet, and stack. Concurrent with flue gas sampling, coal, bottom ash, economizer ash, and samples from the FGD process were also collected for elemental analysis. By combining plant operation parameters, the overall material balances of selected elements were established. The removal efficiencies of As, Se, Hg, and B by the ESP unit were 88, 56, 17, and 8%, respectively. Only about 2.5% of Cl was condensed and removed from flue gas by fly ash. The FGD process removed over 90% of Cl, 77% of B, 76% of Hg, 30% of Se, and 5% of As. About 90% and 99% of the FGD-removed Hg and Se were associated with gypsum. For B and Cl, over 99% were discharged from the coal combustion process with the wastewater. Mineral trona (trisodium hydrogendicarbonate dehydrate, Na{sub 3}H(CO{sub 3}){sub 2}.2H{sub 2}O) was injected before the ESP unit to control the emission of sulfur trioxide (SO{sub 3}). By comparing the trace elements compositions in the fly ash samples collected from the locations before and after the trona injection, the injection of trona did not show an observable effect on the partitioning behaviors of selenium and arsenic, but it significantly increased the adsorption of mercury onto fly ash. The stack emissions of mercury, boron, selenium, and chloride were for the most part in the gas phase. 47 refs., 3 figs., 11 tabs.

  8. Commercialization of Coal-to-Liquids Technology

    SciTech Connect

    2007-08-15

    The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

  9. Early Implementation of Large Scale Carbon Dioxide Removal Projects through the Cement Industry

    NASA Astrophysics Data System (ADS)

    Zeman, F. S.

    2014-12-01

    The development of large-scale carbon dioxide reduction projects requires high purity CO2and a reactive cation source. A project seeking to provide both of these requirements will likely face cost barriers with current carbon prices. The cement industry is a suitable early implementation site for such projects by virtue of the properties of its exhaust gases and those of waste concrete. Cement plants are the second largest source of industrial CO2 emissions, globally. It is also the second largest commodity after water, has no ready substitute and is literally the foundation of society. Finally, half of the CO2 emissions originate from process reactions rather than fossil fuel combustion resulting in higher flue gas CO2concentrations. These properties, with the co-benefits of oxygen combustion, create a favorable environment for spatially suitable projects. Oxygen combustion involves substituting produced oxygen for air in a combustion reaction. The absence of gaseous N2 necessitates the recirculation of exhaust gases to maintain kiln temperatures, which increase the CO2 concentrations from 28% to 80% or more. Gas exit temperatures are also elevated (>300oC) and can reach higher temperatures if the multi stage pre-heater towers, that recover heat, are re-designed in light of FGR. A ready source of cations can be found in waste concrete, a by-product of construction and demolition activities. These wastes can be processed to remove cations and then reacted with atmospheric CO2 to produce carbonate minerals. While not carbon negative, they represent a demonstration opportunity for binding atmospheric CO2while producing a saleable product (precipitated calcium carbonate). This paper will present experimental results on PCC production from waste concrete along with modeling results for oxygen combustion at cement facilities. The results will be presented with a view to mineral sequestration process design and implementation.

  10. Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds.

    PubMed

    Gil-Izquierdo, Angel; Gil, Maria I; Ferreres, Federico

    2002-08-28

    Phenolic compounds, vitamin C (L-ascorbic acid and L-dehydroascorbic acid), and antioxidant capacity were evaluated in orange juices manufactured by different techniques. Five processes at industrial scale (squeezing, mild pasteurization, standard pasteurization, concentration, and freezing) used in commercial orange juice manufacturing were studied. In addition, domestic squeezing (a hand processing technique) was compared with commercial squeezing (an industrial FMC single-strength extraction) to evaluate their influences on health components of orange juice. Whole orange juice was divided into soluble and cloud fractions after centrifugation. Total and individual phenolics were analyzed in both fractions by HPLC. Commercial squeezing extracted 22% more phenolics than hand squeezing. The freezing process caused a dramatic decrease in phenolics, whereas the concentration process caused a mild precipitation of these compounds to the juice cloud. In pulp, pasteurization led to degradation of several phenolic compounds, that is, caffeic acid derivatives, vicenin 2 (apigenin 6,8-di-C-glucoside), and narirutin (5,7,4'-trihydroxyflavanone-7-rutinoside) with losses of 34.5, 30.7, and 28%, respectively. Regarding vitamin C, orange juice produced by commercial squeezing contained 25% more of this compound than domestic squeezing. Mild and standard pasteurization slightly increased the total vitamin C content as the contribution from the orange solids parts, whereas concentration and freezing did not show significant changes. The content of L-ascorbic acid provided 77-96% of the total antioxidant capacity of orange juice. Mild pasteurization, standard pasteurization, concentration, and freezing did not affect the total antioxidant capacity of juice, but they did, however, in pulp, where it was reduced by 47%.

  11. A large scale investigation into changes in coal quality caused by dolerite dykes in Secunda, South Africa-implications for the use of proximate analysis on a working mine

    NASA Astrophysics Data System (ADS)

    Bussio, John P.; Roberts, James R.

    2016-05-01

    The coalfields of South Africa contain numerous dolerite intrusions, which affected the quality of the surrounding coal through thermal processes, commonly believed to be controlled by the size of the magmatic body. Data gathered from a working coalfield in Secunda, South Africa, suggest that the relationship between intrusive sills and coal is complex and factors other than intrusion width must be considered in relation to the contact metamorphic effect. The study area contains multiple dolerite intrusions of Karoo age, of which three intrusions occur as sills intruded close to the main coal seam of the. A large database (>8000 boreholes) of coal quality data was used to investigate the presence or absence of a change in coal quality relative to dolerite proximity. Reduction in coal quality was defined using three proximate analysis values, namely the ash, volatile content and dry ash free volatile (DAFV) as defined in the coal industry. The resultant investigation showed no correlation between the position and thickness of the dolerites, and changes in coal quality as measured by proximate analysis. In the absence of a linear relationship between coal quality and dolerite proximity, two processes are proposed to explain the absence of the contact metamorphic effects expected from previous studies. Firstly dolerite emplacement dynamics may influence the size of the metamorphic aureole produced by an intrusion, invalidating intrusion size as a measure of thermal output. Secondly, hydrothermal fluids mobilised by the dolerite intrusions, either from the country rock or the intrusion itself may percolate through the coal and act as the metamorphic agent responsible for changing coal quality, by dissolving the volatile and semi-volatile components of the coal and transporting them to other locations. These two processes are sufficient to explain the lack of a clear "metamorphic effect" related to the dolerite intrusions. However, the perceived lack of a clear

  12. A Comparison of Texture Development in an Experimental and Industrial Tertiary Oxide Scale in a Hot Strip Mill

    NASA Astrophysics Data System (ADS)

    Yu, Xianglong; Jiang, Zhengyi; Zhao, Jingwei; Wei, Dongbin; Zhou, Ji; Zhou, Cunlong; Huang, Qingxue

    2015-12-01

    Electron backscatter diffraction (EBSD) has been used to investigate the microstructure and texture-based features of an industrial tertiary oxide scale formed on a micro-alloyed low-carbon steel from a hot strip mill. EBSD-derived maps demonstrate that the oxide scale consists primarily of magnetite (Fe3O4) with a small amount of hematite ( α-Fe2O3) which scatters near the surface, at the oxide/steel interface and at the cracking edges. The results extracted from these maps reveal that there is a significant difference between the industrial and the laboratory oxide scales in their grain boundaries, phase boundaries, and texture evolutions. There are high proportions of special coincidence site lattice boundaries Σ3 and Σ13b in the magnetite of the industrial oxide scale, rather than the lower orders of Σ5, Σ7, and Σ17b, which develop in the experimental oxide scale. Within the phase boundaries, the orientation relationships between the magnetite and the hematite correspond to the matching planes and directions {111}Fe3O4||{0001} α-Fe2O3 and {110}Fe3O4||{110} α-Fe2O3. Magnetite in both of these oxide scales develops a relatively weak {001} fiber texture component including a strong {001}<100> cube and a slightly strong {100}<210> texture components. Unlike the {001}<110> rotated cube component in the experimental oxide scale, the magnetite in the industrial tertiary oxide scale develops a strong {112}<110> and a relatively strong {113}<110> and {111}<110> texture components. These findings have the potential to provide a convincing step forward for oxidation research.

  13. Review of a Proposed Quarterly Coal Publication

    SciTech Connect

    Not Available

    1981-01-01

    This Review of a Proposed Quartery Coal Publication contains findings and recommendations regarding the content of a new summary Energy Information Administration (EIA) coal and coke publication entitled The Quarterly Coal Review (QCR). It is divided into five sections: results of interviews with selected EIA data users; identification of major functions of the coal and coke industries; analysis of coal and coke data collection activities; evaluation of issues conerning data presentation including recommendations for the content of the proposed QCR; and comparison of the proposed QCR with other EIA publications. Major findings and recommendations are as follows: (1) User interviews indicate a definite need for a compehensive publication that would support analyses and examine economic, supply and demand trends in the coal industry; (2) the organization of the publication should reflect the natural order of activities of the coal and coke industries. Based on an analysis of the industries, these functions are: production, stocks, imports, exports, distribution, and consumption; (3) current EIA coal and coke surveys collect sufficient data to provide a summary of the coal and coke industries on a quarterly basis; (4) coal and coke data should be presented separately. Coke data could be presented as an appendix; (5) three geographic aggregations are recommended in the QCR. These are: US total, coal producing districts, and state; (6) coal consumption data should be consolidated into four major consumer categories: electric utilities, coke plants, other industrial, and residential commercial; (7) several EIA publications could be eliminated by the proposed QCR.

  14. Interconnected, microporous hollow fibers for tissue engineering: commercially relevant, industry standard scale-up manufacturing.

    PubMed

    Tuin, Stephen A; Pourdeyhimi, Behnam; Loboa, Elizabeth G

    2014-09-01

    Significant progress has been achieved in the field of tissue engineering to create functional tissue using biomimetic three-dimensional scaffolds that support cell growth, proliferation, and extracellular matrix production. However, many of these constructs are severely limited by poor nutrient diffusion throughout the tissue-engineered construct, resulting in cell death and tissue necrosis at the core. Nutrient transport can be improved by creation and use of scaffolds with hollow and microporous fibers, significantly improving permeability and nutrient diffusion. The purpose of this review is to highlight current technological advances in the fabrication of hollow fibers with interconnected pores throughout the fiber walls, with specific emphasis on developing hollow porous nonwoven fabrics for use as tissue engineering constructs via industry standard processing technologies: Spunbond processing and polymer melt extrusion. We outline current methodologies to create hollow and microporous scaffolds with the aim of translating that knowledge to the production of such fibers into nonwoven tissue engineering scaffolds via spunbond technology, a commercially relevant and viable melt extrusion manufacturing approach that allows for facile scale-up.

  15. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  16. Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.

    PubMed

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.

  17. An industry-scale mass marking technique for tracing farmed fish escapees.

    PubMed

    Warren-Myers, Fletcher; Dempster, Tim; Fjelldal, Per Gunnar; Hansen, Tom; Swearer, Stephen E

    2015-01-01

    Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, (134)Ba, (135)Ba, (136)Ba, (137)Ba, (86)Sr, (87)Sr and (26)Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 - 0.02 $US per mark) and Sr (0.46 - 0.82 $US per mark) isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world's largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes.

  18. Characteristics of a multicomponent Nb-Ti-Al alloy via industrial-scale practice

    SciTech Connect

    Sikka, V.K.; Loria, E.A.

    1997-05-01

    Within the spectrum of advanced intermetallic materials, an alloy containing 44Nb-35Ti-6Al-5Cr-8V-1W-0.5Mo-0.3Hf (at. %) was investigated in the industrial-scale produced condition. The alloy was tensile tested in air from room temperature to 1,000 C and in vacuum at 750 and 850 C. Results of this study have shown that the alloy can be commercially produced and has adequate ductility for its secondary processing even at an oxygen level of 1,160 wppm. The alloy has room temperature ductility of 16% and superplastic elongation of 244% at 1,000 C. This alloy shows low intermediate temperature (600--850 C) ductility when tested in air. The vacuum testing revealed that the low ductility is associated within oxygen embrittlement phenomenon. It is expected that such an embrittlement can be taken care of by an oxidation resistant coating. The alloy also possesses superior strength to similar alloys in this class. Results of this investigation suggest a strong potential for consideration of this alloy to exceed the useful temperature range of nickel-base superalloys.

  19. An Industry-Scale Mass Marking Technique for Tracing Farmed Fish Escapees

    PubMed Central

    Warren-Myers, Fletcher; Dempster, Tim; Fjelldal, Per Gunnar; Hansen, Tom; Swearer, Stephen E.

    2015-01-01

    Farmed fish escape and enter the environment with subsequent effects on wild populations. Reducing escapes requires the ability to trace individuals back to the point of escape, so that escape causes can be identified and technical standards improved. Here, we tested if stable isotope otolith fingerprint marks delivered during routine vaccination could be an accurate, feasible and cost effective marking method, suitable for industrial-scale application. We tested seven stable isotopes, 134Ba, 135Ba, 136Ba, 137Ba, 86Sr, 87Sr and 26Mg, on farmed Atlantic salmon reared in freshwater, in experimental conditions designed to reflect commercial practice. Marking was 100% successful with individual Ba isotopes at concentrations as low as 0.001 µg. g-1 fish and for Sr isotopes at 1 µg. g-1 fish. Our results suggest that 63 unique fingerprint marks can be made at low cost using Ba (0.0002 – 0.02 $US per mark) and Sr (0.46 – 0.82 $US per mark) isotopes. Stable isotope fingerprinting during vaccination is feasible for commercial application if applied at a company level within the world’s largest salmon producing nations. Introducing a mass marking scheme would enable tracing of escapees back to point of origin, which could drive greater compliance, better farm design and improved management practices to reduce escapes. PMID:25738955

  20. Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent

    PubMed Central

    Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong

    2015-01-01

    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798

  1. Real-time monitoring of emissions from monoethanolamine-based industrial scale carbon capture facilities.

    PubMed

    Zhu, Liang; Schade, Gunnar Wolfgang; Nielsen, Claus Jørgen

    2013-12-17

    We demonstrate the capabilities and properties of using Proton Transfer Reaction time-of-flight mass spectrometry (PTR-ToF-MS) to real-time monitor gaseous emissions from industrial scale amine-based carbon capture processes. The benchmark monoethanolamine (MEA) was used as an example of amines needing to be monitored from carbon capture facilities, and to describe how the measurements may be influenced by potentially interfering species in CO2 absorber stack discharges. On the basis of known or expected emission compositions, we investigated the PTR-ToF-MS MEA response as a function of sample flow humidity, ammonia, and CO2 abundances, and show that all can exhibit interferences, thus making accurate amine measurements difficult. This warrants a proper sample pretreatment, and we show an example using a dilution with bottled zero air of 1:20 to 1:10 to monitor stack gas concentrations at the CO2 Technology Center Mongstad (TCM), Norway. Observed emissions included many expected chemical species, dominantly ammonia and acetaldehyde, but also two new species previously not reported but emitted in significant quantities. With respect to concerns regarding amine emissions, we show that accurate amine quantifications in the presence of water vapor, ammonia, and CO2 become feasible after proper sample dilution, thus making PTR-ToF-MS a viable technique to monitor future carbon capture facility emissions, without conventional laborious sample pretreatment.

  2. A full-scale biological treatment system application in the treated wastewater of pharmaceutical industrial park.

    PubMed

    Lei, Ge; Ren, Hongqiang; Ding, Lili; Wang, Feifei; Zhang, Xingsong

    2010-08-01

    A full-scale combined biological system is used for the treatment of treated wastewater discharged from a pharmaceutical industrial park. This treated water is rich in NH(4)(+)-N (average in 86.4 mg/L), low in COD/NH(4)(+)-N (average in 3.4) and low in BOD(5)/COD ratio (average in 0.24) with pH varying from 7.16 to 7.78. The final effluent of the combined treatment process was stably below 100mg/L COD and 20mg/L NH(4)(+)-N, separately, with organic loading rate of 4954 kg COD/d and 92.5 kg NH(4)(+)-N/d. It is found that the BOD(5)/COD ratio could be raised from 0.24 to 0.35, and the production of total VFAs account for 9.57% of the total COD via the treatment of hydrolysis/acidification. MBBR and oxidation ditch represent 35.4% and 60.7% of NH(4)(+)-N removal, 30.2% and 61.5% of COD removal, separately, of the total treatment process. PCR-DGGE is used for microbial community analysis of MBBR and oxidation ditch. PMID:20335031

  3. Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production

    PubMed Central

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle

    2014-01-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  4. Pilot-scale testing membrane bioreactor for wastewater reclamation in industrial laundry.

    PubMed

    Andersen, M; Kristensen, G H; Brynjolf, M; Grüttner, H

    2002-01-01

    A pilot-scale study of membrane bioreactor treatment for reclamation of wastewater from Berendsen Textile Service industrial laundry in Søborg, Denmark was carried out over a 4 month period. A satisfactory COD degradation was performed resulting in a low COD in the permeate (< 50 mg/l). To obtain satisfactory treatment, addition of nitrogen was necessary. The biodegradability of the permeate was very low (BOD5 < 2 mg/l). A hydraulic retention time of 1 d turned out to be sufficient at a sludge concentration of 10 g MLSS/l. Through addition of a cationic polymer, a satisfactory dewaterability of the sludge was reached. Membrane tests showed that operating at a trans-membrane pressure of 3 bar and a cross-flow velocity of 4 m/s, a flux of 120 l/m2h can be expected without using chemicals for membrane cleaning. The quality of the permeate was very good when comparing to the reuse quality demands of water to the wash processes. Reuse of the permeate in all rinsing steps requires additional treatment through reverse osmosis.

  5. Large-scale selection and breeding to generate industrial yeasts with superior aroma production.

    PubMed

    Steensels, Jan; Meersman, Esther; Snoek, Tim; Saels, Veerle; Verstrepen, Kevin J

    2014-11-01

    The concentrations and relative ratios of various aroma compounds produced by fermenting yeast cells are essential for the sensory quality of many fermented foods, including beer, bread, wine, and sake. Since the production of these aroma-active compounds varies highly among different yeast strains, careful selection of variants with optimal aromatic profiles is of crucial importance for a high-quality end product. This study evaluates the production of different aroma-active compounds in 301 different Saccharomyces cerevisiae, Saccharomyces paradoxus, and Saccharomyces pastorianus yeast strains. Our results show that the production of key aroma compounds like isoamyl acetate and ethyl acetate varies by an order of magnitude between natural yeasts, with the concentrations of some compounds showing significant positive correlation, whereas others vary independently. Targeted hybridization of some of the best aroma-producing strains yielded 46 intraspecific hybrids, of which some show a distinct heterosis (hybrid vigor) effect and produce up to 45% more isoamyl acetate than the best parental strains while retaining their overall fermentation performance. Together, our results demonstrate the potential of large-scale outbreeding to obtain superior industrial yeasts that are directly applicable for commercial use. PMID:25192996

  6. Monitoring of cotton dust and health risk assessment in small-scale weaving industry.

    PubMed

    Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar

    2012-08-01

    The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).

  7. Economics of recombinant antibody production processes at various scales: Industry-standard compared to continuous precipitation.

    PubMed

    Hammerschmidt, Nikolaus; Tscheliessnig, Anne; Sommer, Ralf; Helk, Bernhard; Jungbauer, Alois

    2014-06-01

    Standard industry processes for recombinant antibody production employ protein A affinity chromatography in combination with other chromatography steps and ultra-/diafiltration. This study compares a generic antibody production process with a recently developed purification process based on a series of selective precipitation steps. The new process makes two of the usual three chromatographic steps obsolete and can be performed in a continuous fashion. Cost of Goods (CoGs) analyses were done for: (i) a generic chromatography-based antibody standard purification; (ii) the continuous precipitation-based purification process coupled to a continuous perfusion production system; and (iii) a hybrid process, coupling the continuous purification process to an upstream batch process. The results of this economic analysis show that the precipitation-based process offers cost reductions at all stages of the life cycle of a therapeutic antibody, (i.e. clinical phase I, II and III, as well as full commercial production). The savings in clinical phase production are largely attributed to the fact that expensive chromatographic resins are omitted. These economic analyses will help to determine the strategies that are best suited for small-scale production in parallel fashion, which is of importance for antibody production in non-privileged countries and for personalized medicine.

  8. Gaseous Oxidized Mercury Flux from Substrates Associated with Industrial Scale Gold Mining in Nevada, USA

    NASA Astrophysics Data System (ADS)

    Miller, M. B.

    2015-12-01

    Gaseous elemental and oxidized mercury (Hg) fluxes were measured in a laboratory setting from substrate materials derived from industrial-scale open pit gold mining operations in Nevada, USA. Mercury is present in these substrates at a range of concentrations (10 - 40000 ng g-1), predominantly of local geogenic origin in association with the mineralized gold ores, but altered and redistributed to a varying degree by subsequent ore extraction and processing operations, including deposition of Hg recently emitted to the atmosphere from large point sources on the mines. Waste rock, heap leach, and tailings material usually comprise the most extensive and Hg emission relevant substrate surfaces. All three of these material types were collected from active Nevada mine sites in 2010 for previous research, and have since been stored undisturbed at the University of Nevada, Reno. Gaseous elemental Hg (GEM) flux was previously measured from these materials under a variety of conditions, and was re-measured in this study, using Teflon® flux chambers and Tekran® 2537A automated ambient air analyzers. GEM flux from dry undisturbed materials was comparable between the two measurement periods. Gaseous oxidized Hg (GOM) flux from these materials was quantified using an active filter sampling method that consisted of polysulfone cation-exchange membranes deployed in conjunction with the GEM flux apparatus. Initial measurements conducted within greenhouse laboratory space indicate that in dry conditions GOM is deposited to relatively low Hg cap and leach materials, but may be emitted from the much higher Hg concentration tailings material.

  9. Application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The most important result to date is the demonstration of the special value of repetitive ERTS-1 multiband coverage for detecting previously unknown fracture lineaments despite the presence of a deep glacial overburden. The Illinois Basin is largely covered with glacial drift and few rock outcrops are present. A contribution to the geological understanding of Illinois and Indiana has been made. Analysis of ERTS-1 imagery has provided useful information to the State of Indiana concerning the surface mined lands. The contrast between healthy vegetation and bare ground as imaged by Band 7 is sharp and substantial detail can be obtained concerning the extent of disturbed lands, associated water bodies, large haul roads, and extent of mined lands revegetation. Preliminary results of analysis suggest a reasonable correlation between image-detected fractures and mine roof fall accidents for a few areas investigated. ERTS-1 applications to surface mining operations appear probable, but further investigations are required. The likelihood of applying ERTS-1 derived fracture data to improve coal mine safety in the entire Illinois Basin is suggested from studies conducted in Indiana.

  10. Advantages of city-scale emission inventory for urban air quality research and policy: the case of Nanjing, a typical industrial city in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Qiu, L.; Xu, R.; Xie, F.; Zhang, Q.; Yu, Y.; Nielsen, C. P.; Qin, H.; Wang, H.; Wu, X.; Li, W.; Zhang, J.

    2015-07-01

    With most eastern Chinese cities facing major air quality challenges, there is a strong need for city-scale emission inventories for use in both chemical transport modeling and the development of pollution control policies. In this paper, a high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical large city in the Yangtze River Delta, is developed incorporating the best available information on local sources. Emission factors and activity data at the unit or facility level are collected and compiled using a thorough onsite survey of major sources. Over 900 individual plants, which account for 97 % of the city's total coal consumption, are identified as point sources, and all of the emission-related parameters including combustion technology, fuel quality, and removal efficiency of air pollution control devices (APCD) are analyzed. New data-collection approaches including continuous emission monitoring systems and real-time monitoring of traffic flows are employed to improve spatiotemporal distribution of emissions. Despite fast growth of energy consumption between 2010 and 2012, relatively small inter-annual changes in emissions are found for most air pollutants during this period, attributed mainly to benefits of growing APCD deployment and the comparatively strong and improving regulatory oversight of the large point sources that dominate the levels and spatial distributions of Nanjing emissions overall. The improvement of this city-level emission inventory is indicated by comparisons with observations and other inventories at larger spatial scale. Relatively good spatial correlations are found for SO2, NOx, and CO between the city-scale emission estimates and concentrations at 9 state-opertated monitoring sites (R = 0.58, 0.46, and 0.61, respectively). The emission ratios of specific pollutants including BC to CO, OC to EC, and CO2 to CO compare well to top-down constraints from ground observations. The inter-annual variability and

  11. Industrial Scale Isolation, Structural and Spectroscopic Characterization of Epiisopiloturine from Pilocarpus microphyllus Stapf Leaves: A Promising Alkaloid against Schistosomiasis

    PubMed Central

    Véras, Leiz M. C.; Cunha, Vanessa R. R.; Lima, Filipe C. D. A.; Guimarães, Maria A.; Vieira, Marianne M.; Campelo, Yuri D. M.; Sakai, Vanessa Y.; Lima, David F.; Carvalho Jr, Paulo S.; Ellena, Javier A.; Silva, Paulo R. P.; Vasconcelos, Luciene C.; Godejohann, Markus; Petrilli, Helena M.; Constantino, Vera R. L.; Mascarenhas, Yvonne P.; de Souza de Almeida Leite, José Roberto

    2013-01-01

    This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)-Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b

  12. Development and testing of a commercial-scale coal-fired combustion system: Phase 3, Quarterly progress report No. 9, October 1, 1992--December 31, 1992

    SciTech Connect

    Litka, A.F.; Breault, R.W.

    1993-05-01

    In the commercial sector, oil and natural gas are the predominant fuels used to meet space-heating needs of schools, office buildings, apartment complexes, etc. These buildings generally require firing rates of 1 to 10 million Btu/hr. Objective of this program is to demonstrate the technical and economic viability of a coal-fired combustion system for this sector. The commercial-scale coal-water slurry (CWS)-fired space heating system is a scale-up of a CWS-fired residential warm-air heating system developed by Tecogen Inc. This system included a patented nonslagging combustor known as IRIS (Inertial Reactor with Internal Separation). The combustor concept employs centrifugal forces combined with a staged combustion process to achieve high carbon conversion efficiencies and low N oxides generation. Along with the necessary fuel storage and delivery, heat recovery, and control equipment, the system includes pollution control devices to meet targeted values of SO{sub 2} and particulate emissions. In general, the system is designed to match the reliability, safety, turndown, and ignition performance of gas or oil-fired systems. During the 8th quarter of this program, a demonstration plan was developed for installation and operation of the space heating system at an actual installation. Also, equipment upgrades were implemented and laboratory testing performed to evaluate the performance of the system with these changes.

  13. Development of an Ultra-fine Coal Dewatering Technology and an Integrated Flotation-Dewatering System for Coal Preparation Plants

    SciTech Connect

    Wu Zhang; David Yang; Amar Amarnath; Iftikhar Huq; Scott O'Brien; Jim Williams

    2006-12-22

    The project proposal was approved for only the phase I period. The goal for this Phase I project was to develop an industrial model that can perform continuous and efficient dewatering of fine coal slurries of the previous flotation process to fine coal cake of {approx}15% water content from 50-70%. The feasibility of this model should be demonstrated experimentally using a lab scale setup. The Phase I project was originally for one year, from May 2005 to May 2006. With DOE approval, the project was extended to Dec. 2006 without additional cost from DOE to accomplish the work. Water has been used in mining for a number of purposes such as a carrier, washing liquid, dust-catching media, fire-retardation media, temperature-control media, and solvent. When coal is cleaned in wet-processing circuits, waste streams containing water, fine coal, and noncombustible particles (ash-forming minerals) are produced. In many coal preparation plants, the fine waste stream is fed into a series of selection processes where fine coal particles are recovered from the mixture to form diluted coal fine slurries. A dewatering process is then needed to reduce the water content to about 15%-20% so that the product is marketable. However, in the dewatering process currently used in coal preparation plants, coal fines smaller than 45 micrometers are lost, and in many other plants, coal fines up to 100 micrometers are also wasted. These not-recovered coal fines are mixed with water and mineral particles of the similar particle size range and discharged to impoundment. The wasted water from coal preparation plants containing unrecoverable coal fine and mineral particles are called tailings. With time the amount of wastewater accumulates occupying vast land space while it appears as threat to the environment. This project developed a special extruder and demonstrated its application in solid-liquid separation of coal slurry, tailings containing coal fines mostly less than 50 micron. The

  14. Coal-fueled diesels for modular power generation

    SciTech Connect

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  15. Health Implications of Increased Coal Use in the Western States

    PubMed Central

    Guidotti, Tee L.

    1979-01-01

    The National Energy Plan proposed by President Carter provides for the rapid development of coal resources in the United States, particularly in the West. The potential consequences for health of this development were considered by the Advisory Committee on Health and Environmental Effects of Increased Coal Utilization, reporting to the Department of Energy. Their report recommended rigid adherence to pertinent existing regulations, improved environmental monitoring, expanded research in selected relevant topics and development of procedures for selecting the sites of new coal-fired power plants. Although the report was a major exercise in technology assessment, it is fundamentally a cautious document that proposes no new solutions or approaches. A review of occupational and community health problems associated with coal mining and coal utilization suggests that lessons from past experiences, especially in Appalachia, cannot be applied to the West uncritically. The two regions are fundamentally different in scale, topography and social development. In the West, future problems related to coal are likely to derive from unknown risks associated with coal processing technologies, land reclamation and water quality at the sites of power generation, and extensive social and demographic changes at centers of industrial activity that may have secondary effects on health. Additional considerations should supplement the recommendations of the Advisory Committee report. PMID:483803

  16. Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

    SciTech Connect

    Cho, Young; Fridman, Alexander

    2012-06-30

    The overall objective of the present work was to develop a new scale-prevention technology by continuously precipitating and removing dissolved mineral ions (such as calcium and magnesium) in cooling water while the COC could be doubled from the present standard value of 3.5. The hypothesis of the present study was that if we could successfully precipitate and remove the excess calcium ions in cooling water, we could prevent condenser-tube fouling and at the same time double the COC. The approach in the study was to utilize pulse spark discharges directly in water to precipitate dissolved mineral ions in recirculating cooling water into relatively large suspended particles, which could be removed by a self-cleaning filter. The present study began with a basic scientific research to better understand the mechanism of pulse spark discharges in water and conducted a series of validation experiments using hard water in a laboratory cooling tower. Task 1 of the present work was to demonstrate if the spark discharge could precipitate the mineral ions in water. Task 2 was to demonstrate if the selfcleaning filter could continuously remove these precipitated calcium particles such that the blowdown could be eliminated or significantly reduced. Task 3 was to demonstrate if the scale could be prevented or minimized at condenser tubes with a COC of 8 or (almost) zero blowdown. In Task 1, we successfully completed the validation study that confirmed the precipitation of dissolved calcium ions in cooling water with the supporting data of calcium hardness over time as measured by a calcium ion probe. In Task 2, we confirmed through experimental tests that the self-cleaning filter could continuously remove precipitated calcium particles in a simulated laboratory cooling tower such that the blowdown could be eliminated or significantly reduced. In addition, chemical water analysis data were obtained which were used to confirm the COC calculation. In Task 3, we conducted a series

  17. LIBS Analysis for Coal

    NASA Astrophysics Data System (ADS)

    E. Romero, Carlos; De Saro, Robert

    Coal is a non-uniform material with large inherent variability in composition, and other important properties, such as calorific value and ash fusion temperature. This quality variability is very important when coal is used as fuel in steam generators, since it affects boiler operation and control, maintenance and availability, and the extent and treatment of environmental pollution associated with coal combustion. On-line/in situ monitoring of coal before is fed into a boiler is a necessity. A very few analytical techniques like X-ray fluorescence and prompt gamma neutron activation analysis are available commercially with enough speed and sophistication of data collection for continuous coal monitoring. However, there is still a need for a better on-line/in situ technique that has higher selectivity, sensitivity, accuracy and precision, and that is safer and has a lower installation and operating costs than the other options. Laser induced breakdown spectroscopy (LIBS) is ideal for coal monitoring in boiler applications as it need no sample preparation, it is accurate and precise it is fast, and it can detect all of the elements of concern to the coal-fired boiler industry. LIBS data can also be adapted with advanced data processing techniques to provide real-time information required by boiler operators nowadays. This chapter summarizes development of LIBS for on-line/in situ coal applications in utility boilers.

  18. Study of application of ERTS-A imagery to fracture related mine safety hazards in the coal mining industry

    NASA Technical Reports Server (NTRS)

    Wier, C. E.; Wobber, F. J. (Principal Investigator); Russell, O. R.; Amato, R. V.

    1973-01-01

    The author has identified the following significant results. The utility of ERTS-1/high altitude aircraft imagery to detect underground mine hazards is strongly suggested. A 1:250,000 scale mined lands map of the Vincennes Quadrangle, Indiana has been prepared. This map is a prototype for a national mined lands inventory and will be distributed to State and Federal offices.

  19. Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.; Wolford, M. F.

    2016-03-01

    Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO2 concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO2 is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO2 and energy cost for breaking a CO2 molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting of 82% N2, 6% O2, and 12% CO2, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO2 molecules, beam energy density deposition on the order of 20 J/cm3 is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO2 and 10% CH4 at beam energy density deposition of 4.2 J/cm3, accumulated over 43 shots in a 20 min interval, reduced the CO2 concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO2, 11.5% CH4, and balance of Ar, reduced the CO2 concentration to below 11% with energy deposition 0.71 J/cm3, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO2 reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO2 with pulsed electron beams are also explored, yielding new possible avenues of research.

  20. Non-contact multi-frequency magnetic induction spectroscopy system for industrial-scale bio-impedance measurement

    NASA Astrophysics Data System (ADS)

    O'Toole, M. D.; Marsh, L. A.; Davidson, J. L.; Tan, Y. M.; Armitage, D. W.; Peyton, A. J.

    2015-03-01

    Biological tissues have a complex impedance, or bio-impedance, profile which changes with respect to frequency. This is caused by dispersion mechanisms which govern how the electromagnetic field interacts with the tissue at the cellular and molecular level. Measuring the bio-impedance spectra of a biological sample can potentially provide insight into the sample’s properties and its cellular structure. This has obvious applications in the medical, pharmaceutical and food-based industrial domains. However, measuring the bio-impedance spectra non-destructively and in a way which is practical at an industrial scale presents substantial challenges. The low conductivity of the sample requires a highly sensitive instrument, while the demands of industrial-scale operation require a fast high-throughput sensor of rugged design. In this paper, we describe a multi-frequency magnetic induction spectroscopy (MIS) system suitable for industrial-scale, non-contact, spectroscopic bio-impedance measurement over a bandwidth of 156 kHz-2.5 MHz. The system sensitivity and performance are investigated using calibration and known reference samples. It is shown to yield rapid and consistently sensitive results with good long-term stability. The system is then used to obtain conductivity spectra of a number of biological test samples, including yeast suspensions of varying concentration and a range of agricultural produce, such as apples, pears, nectarines, kiwis, potatoes, oranges and tomatoes.

  1. Coal Research

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.

  2. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor

    SciTech Connect

    Yan Cao; Hongcang Zhou; Junjie Fan; Houyin Zhao; Tuo Zhou; Pauline Hack; Chia-Chun Chan; Jian-Chang Liou; Wei-ping Pan

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150{sup o}C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650{sup o}C in the upper part of the fluidized bed combustor seemed to be responsible for the reduction of gaseous chlorine and, consequently, limited mercury emissions reduction during cofiring. 36 refs., 3 figs. 1 tab.

  3. Coals of the Brazil Formation (Pennsylvanian) in Indiana: Observations of correlation inconsistencies and their implications

    USGS Publications Warehouse

    Mastalerz, Maria; Ames, P.R.; Padgett, P.L.

    2003-01-01

    The coals of the upper part of the Mansfield, Brazil, and the lower part of the Staunton Formations (Atokan and Desmoinesian, Pennsylvanian) in Indiana (Illinois Basin) are characteristically thin and discontinuous. As a result, problems with correlation and identification of the seams have persisted for both researchers and industry. These discrepancies affect coal exploration, mine planning, and subsequently coal-fired utilities. This study presents exploration and operational examples demonstrating some of the correlation problems associated with the coals of the Brazil Formation, and the Upper Block and Lower Block, in particular, and the surrounding upper part of the Mansfield Formation and lower part of the Staunton Formations. Based on exploration boreholes, mine scale observations, and coal quality and petrographic data, this study suggests that (1) the coal mapped as the Upper Block Coal Member of Clay County may, in fact, be the same seam as the Lower Block Coal Member of Daviess County; and (2) the Lower Block coal of Clay County is not present south of the Switz City area of central Greene County, IN. ?? 2003 Elsevier Science B.V. All rights reserved.

  4. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    NASA Astrophysics Data System (ADS)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  5. Coal-to-liquids: Potential impact on U.S. coal reserves

    USGS Publications Warehouse

    Milici, R.C.

    2009-01-01

    The production of liquid fuels from coal will very likely become an important part of the hydrocarbon energy mix of the future, provided that technical and environmental obstacles are overcome economically. The coal industry should be able to handle a coal-to-liquids (CTL) industry of modest size, using 60-70 million short tons or 54-64 million metric tonnes of coal per annum, without premature depletion of the country's coal reserves. However, attempts to use CTL technology to replace all petroleum imports would deplete the nation's coal reserves by the end of the century. ?? 2009 U.S. Government.

  6. Clean Coal Technology Demonstration Program. Program update 1994

    SciTech Connect

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  7. The ENCOAL Mild Coal Gasification Project, A DOE Assessment

    SciTech Connect

    National Energy Technology Laboratory

    2002-03-15

    This report is a post-project assessment of the ENCOAL{reg_sign} Mild Coal Gasification Project, which was selected under Round III of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) Demonstration Program. The CCT Demonstration Program is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of commercial-scale facilities. The ENCOAL{reg_sign} Corporation, a wholly-owned subsidiary of Bluegrass Coal Development Company (formerly SMC Mining Company), which is a subsidiary of Ziegler Coal Holding Company, submitted an application to the DOE in August 1989, soliciting joint funding of the project in the third round of the CCT Program. The project was selected by DOE in December 1989, and the Cooperative Agreement (CA) was approved in September 1990. Construction, commissioning, and start-up of the ENCOAL{reg_sign} mild coal gasification facility was completed in June 1992. In October 1994, ENCOAL{reg_sign} was granted a two-year extension of the CA with the DOE, that carried through to September 17, 1996. ENCOAL{reg_sign} was then granted a six-month, no-cost extension through March 17, 1997. Overall, DOE provided 50 percent of the total project cost of $90,664,000. ENCOAL{reg_sign} operated the 1,000-ton-per-day mild gasification demonstration plant at Triton Coal Company's Buckskin Mine near Gillette, Wyoming, for over four years. The process, using Liquids From Coal (LFC{trademark}) technology originally developed by SMC Mining Company and SGI International, utilizes low-sulfur Powder River Basin (PRB) coal to produce two new fuels, Process-Derived Fuel (PDF{trademark}) and Coal-Derived Liquids (CDL{trademark}). The products, as alternative fuel sources, are capable of significantly lowering current sulfur emissions at industrial and utility boiler sites throughout the nation thus reducing pollutants causing acid rain. In support of this overall objective

  8. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  9. Mercury emissions during cofiring of sub-bituminous coal and biomass (chicken waste, wood, coffee residue, and tobacco stalk) in a laboratory-scale fluidized bed combustor.

    PubMed

    Cao, Yan; Zhou, Hongcang; Fan, Junjie; Zhao, Houyin; Zhou, Tuo; Hack, Pauline; Chan, Chia-Chun; Liou, Jian-Chang; Pan, Wei-Ping

    2008-12-15

    Four types of biomass (chicken waste, wood pellets, coffee residue, and tobacco stalks) were cofired at 30 wt % with a U.S. sub-bituminous coal (Powder River Basin Coal) in a laboratory-scale fluidized bed combustor. A cyclone, followed by a quartz filter, was used for fly ash removal during tests. The temperatures of the cyclone and filter were controlled at 250 and 150 degrees C, respectively. Mercury speciation and emissions during cofiring were investigated using a semicontinuous mercury monitor, which was certified using ASTM standard Ontario Hydra Method. Test results indicated mercury emissions were strongly correlative to the gaseous chlorine concentrations, but not necessarily correlative to the chlorine contents in cofiring fuels. Mercury emissions could be reduced by 35% during firing of sub-bituminous coal using only a quartz filter. Cofiring high-chlorine fuel, such as chicken waste (Cl = 22340 wppm), could largely reduce mercury emissions by over 80%. When low-chlorine biomass, such as wood pellets (Cl = 132 wppm) and coffee residue (Cl = 134 wppm), is cofired, mercury emissions could only be reduced by about 50%. Cofiring tobacco stalks with higher chlorine content (Cl = 4237 wppm) did not significantly reduce mercury emissions. This was also true when limestone was added while cofiring coal and chicken waste because the gaseous chlorine was reduced in the freeboard of the fluidized bed combustor, where the temperature was generally below 650 degrees C without addition of the secondary air. Gaseous speciated mercury in flue gas after a quartz filter indicated the occurrence of about 50% of total gaseous mercury to be the elemental mercury for cofiring chicken waste, but occurrence of above 90% of the elemental mercury for all other cases. Both the higher content of alkali metal oxides or alkali earth metal oxides in tested biomass and the occurrence of temperatures lower than 650 degrees C in the upper part of the fluidized bed combustor seemed to be

  10. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and

  11. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Gralton, G.W.; Lachowicz, Y.V.; Laflesh, R.C.; Levasseur, A.A.; Liljedahl, G.N.

    1989-02-01

    This five-year research project was established to provide sufficient data on coal-water fuel (CWF) chemical, physical, and combustion properties to assess the potential for commercial firing in furnaces designed for gas or oil firing. Extensive laboratory testing was performed at bench-scale, pilot-scale (4 {times} 10{sup 6}Btu/hr) and commercial-scale (25 {times} 10{sup 6} to 50 {times} 10{sup 6}Btu/hr) on a cross-section of CWFs. Fuel performance characteristics were assessed with respect to coal properties, level of coal beneficiation, and slurry formulation. The performance of four generic burner designs was also assessed. Boiler performance design models were applied to analyze the impacts associated with conversion of seven different generic unit designs to CWF firing. Equipment modifications, operating limitations, and retrofit costs were determined for each design when utilizing several CWFs. Unit performance analyses showed significantly better load capacity for utility and industrial boilers as the CWF feed coal ash content is reduced to 5% or 2.6%. In general, utility units had more attractive capacity limits and retrofit costs than the industrial boilers and process heaters studied. Economic analyses indicated that conversion to CWF firing generally becomes feasible when differential fuel costs are above $1.00/10{sup 6}Btu. 60 figs., 24 tabs.

  12. Comparing Antonovsky's sense of coherence scale across three UK post-industrial cities

    PubMed Central

    Walsh, David; McCartney, Gerry; McCullough, Sarah; Buchanan, Duncan; Jones, Russell

    2014-01-01

    Objectives High levels of ‘excess’ mortality (ie, that seemingly not explained by deprivation) have been shown for Scotland compared to England and Wales and, especially, for its largest city, Glasgow, compared to the similarly deprived English cities of Liverpool and Manchester. It has been suggested that this excess may be related to differences in ‘Sense of Coherence’ (SoC) between the populations. The aim of this study was to ascertain whether levels of SoC differed between these cities and whether, therefore, this could be a plausible explanation for the ‘excess’. Setting Three post-industrial UK cities: Glasgow, Liverpool and Manchester. Participants A representative sample of more than 3700 adults (over 1200 in each city). Primary and secondary outcome measures SoC was measured using Antonovsky's 13-item scale (SOC-13). Multivariate linear regression was used to compare SoC between the cities while controlling for characteristics (age, gender, SES etc) of the samples. Additional modelling explored whether differences in SoC moderated city differences in levels of self-assessed health (SAH). Results SoC was higher, not lower, among the Glasgow sample. Fully adjusted mean SoC scores for residents of Liverpool and Manchester were, respectively, 5.1 (−5.1 (95% CI −6.0 to −4.1)) and 8.1 (−8.1 (−9.1 to −7.2)) lower than those in Glasgow. The additional modelling confirmed the relationship between SoC and SAH: a 1 unit increase in SoC predicted approximately 3% lower likelihood of reporting bad/very bad health (OR=0.97 (95% CI 0.96 to 0.98)): given the slightly worse SAH in Glasgow, this resulted in slightly lower odds of reporting bad/very bad health for the Liverpool and Manchester samples compared to Glasgow. Conclusions The reasons for the high levels of ‘excess’ mortality seen in Scotland and particularly Glasgow remain unclear. However, on the basis of these analyses, it appears unlikely that a low SoC provides any explanation

  13. Connect the Spheres with the Coal Cycle

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2010-01-01

    Coal fueled the Industrial Revolution and, as a result, changed the course of human history. However, the geologic history of coal is much, much longer than that which is recorded by humans. In your classroom, the coal cycle can be used to trace the formation of this important economic resource from its plant origins, through its lithification, or…

  14. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient.

  15. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-08-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  16. National Coal Quality Inventory (NACQI)

    SciTech Connect

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  17. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result

  18. Role of cultivation media in the development of yeast strains for large scale industrial use

    PubMed Central

    Hahn-Hägerdal, Bärbel; Karhumaa, Kaisa; Larsson, Christer U; Gorwa-Grauslund, Marie; Görgens, Johann; van Zyl, Willem H

    2005-01-01

    The composition of cultivation media in relation to strain development for industrial application is reviewed. Heterologous protein production and pentose utilization by Saccharomyces cerevisiae are used to illustrate the influence of media composition at different stages of strain construction and strain development. The effects of complex, defined and industrial media are compared. Auxotrophic strains and strain stability are discussed. Media for heterologous protein production and for bulk bio-commodity production are summarized. PMID:16283927

  19. Quarterly coal report

    SciTech Connect

    Young, P.

    1996-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  20. Charting the course of western coal

    SciTech Connect

    Not Available

    1982-01-01

    This conference examined the future of Powder River Basin coal, the future of other western coal, the status of coal slurry pipelines, western railroad capacity, the rate structure of unit-trains, the potential or growth in the coal industry, the outlook for development of coal on reservations, the policies of the Navajo Tribe for coal development on their lands, the federal leasing program and proposed changes, the reorganization of the Office of Surface Mining, issues of concern related to surface mining regulation, and the status and future trend in severance taxes. Separate abstracts were prepared for the thirteen paers presented at this conference. (CKK)

  1. Liquefaction of calcium-containing subbituminous coals and coals of lower rank

    DOEpatents

    Brunson, Roy J.

    1979-01-01

    An improved process for the treatment of a calcium-containing subbituminous coal and coals of lower rank to form insoluble, thermally stable calcium salts which remain within the solids portions of the residue on liquefaction of the coal, thereby suppressing the formation of scale, made up largely of calcium carbonate which normally forms within the coal liquefaction reactor (i.e., coal liquefaction zone), e.g., on reactor surfaces, lines, auxiliary equipment and the like. An oxide of sulfur, in liquid phase, is contacted with a coal feed sufficient to impregnate the pores of the coal. The impregnated coal, in particulate form, can thereafter be liquefied in a coal liquefaction reactor (reaction zone) at coal liquefaction conditions without significant formation of scale.

  2. Fieldston coal transportation manual, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This book reports on coal production and movements contains up-to-day statistics and analysis of the coal transportation industry. It contains railroad rates and tonnages hauled, along with the contracting point. Rail systems and mine origin maps for traffic analysis are also included. The book also covers coal transfer points on inland waterways, transfer capabilities, coal hauling barge lines in 1988, 1989, and 1990, spot barge rates and key contacts. Details of US and Canadian ports, Great Lakes docks and foreign ocean docks are listed. Port loading statistics, ocean shipping rates, port authorities and listings are given along with regional maps of rail lines and schematic drawings of loading facilities.

  3. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGESBeta

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  4. Preventable H5N1 avian influenza epidemics in the British poultry industry network exhibit characteristic scales.

    PubMed

    Jonkers, A R T; Sharkey, K J; Christley, R M

    2010-04-01

    Epidemics are frequently simulated on redundantly wired contact networks, which have many more links between sites than are minimally required to connect all. Consequently, the modelled pathogen can travel numerous alternative routes, complicating effective containment strategies. These networks have moreover been found to exhibit 'scale-free' properties and percolation, suggesting resilience to damage. However, realistic H5N1 avian influenza transmission probabilities and containment strategies, here modelled on the British poultry industry network, show that infection dynamics can additionally express characteristic scales. These system-preferred scales constitute small areas within an observed power law distribution that exhibit a lesser slope than the power law itself, indicating a slightly increased relative likelihood. These characteristic scales are here produced by a network-pervading intranet of so-called hotspot sites that propagate large epidemics below the percolation threshold. This intranet is, however, extremely vulnerable; targeted inoculation of a mere 3-6% (depending on incorporated biosecurity measures) of the British poultry industry network prevents large and moderate H5N1 outbreaks completely, offering an order of magnitude improvement over previously advocated strategies affecting the most highly connected 'hub' sites. In other words, hotspots and hubs are separate functional entities that do not necessarily coincide, and hotspots can make more effective inoculation targets. Given the ubiquity and relevance of networks (epidemics, Internet, power grids, protein interaction), recognition of this spreading regime elsewhere would suggest a similar disproportionate sensitivity to such surgical interventions. PMID:19828507

  5. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    SciTech Connect

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was a multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica

  6. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    SciTech Connect

    Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

  7. Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi, India.

    PubMed

    Rawat, Manju; Moturi, Mechah Charles Zuriels; Subramanian, Vaidyanathan

    2003-12-01

    Delhi has the highest cluster of small-scale industries (SSI) in India. There are generally less stringent rules for the treatment of waste in SSI due to less waste generation within each individual industry. This results in SSI disposing of their wastewater untreated into drains and subsequently into the river Yamuna, which is a major source of potable water in Delhi, thus posing a potential health and environmental risk to the people living in Delhi and downstream. To study the quantity, quality and distribution of heavy metals in liquid waste from industrial areas, wastewater, suspended materials and bed sediments were collected from industrial areas and from the river Yamuna in Delhi. This study has also focused on the efficiency of production processes in small-scale industries in India. Heavy metals such as Fe, Mn, Cu, Zn, Ni, Cr, Cd, Co and Pb were detected using a GBC 902 atomic absorption spectrometer. The concentration of heavy metals observed was as follows: Fe 2-212, Mn 0.3-39, Cu 0.2-20, Zn 0.2-5, Ni 0.6-6, Cr 0.2-53, Cd 0.08-0.2, Co 0.013-0.55, Pb 0.3-0.7 mg L(-1) in wastewater; Fe 5842-78 000, Mn 585-10 889, Cu 206-7201, Zn 406-9000, Ni 22-3621, Cr 178-10 533, Co 17-114, Cd 13-141, Pb 67-50 171 mg kg(-1) in suspended material; and Fe 3000-84000, Mn 479-1230, Cu 378-8127, Zn 647-4010, Ni 164-1582, Cr 139-3281, Co 20-54, Cd 37-65, Pb 228-293 mg kg(-1) in bed residues. This indicates that SSI could be one of the point sources of metals pollution in the river system. PMID:14710931

  8. Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi, India.

    PubMed

    Rawat, Manju; Moturi, Mechah Charles Zuriels; Subramanian, Vaidyanathan

    2003-12-01

    Delhi has the highest cluster of small-scale industries (SSI) in India. There are generally less stringent rules for the treatment of waste in SSI due to less waste generation within each individual industry. This results in SSI disposing of their wastewater untreated into drains and subsequently into the river Yamuna, which is a major source of potable water in Delhi, thus posing a potential health and environmental risk to the people living in Delhi and downstream. To study the quantity, quality and distribution of heavy metals in liquid waste from industrial areas, wastewater, suspended materials and bed sediments were collected from industrial areas and from the river Yamuna in Delhi. This study has also focused on the efficiency of production processes in small-scale industries in India. Heavy metals such as Fe, Mn, Cu, Zn, Ni, Cr, Cd, Co and Pb were detected using a GBC 902 atomic absorption spectrometer. The concentration of heavy metals observed was as follows: Fe 2-212, Mn 0.3-39, Cu 0.2-20, Zn 0.2-5, Ni 0.6-6, Cr 0.2-53, Cd 0.08-0.2, Co 0.013-0.55, Pb 0.3-0.7 mg L(-1) in wastewater; Fe 5842-78 000, Mn 585-10 889, Cu 206-7201, Zn 406-9000, Ni 22-3621, Cr 178-10 533, Co 17-114, Cd 13-141, Pb 67-50 171 mg kg(-1) in suspended material; and Fe 3000-84000, Mn 479-1230, Cu 378-8127, Zn 647-4010, Ni 164-1582, Cr 139-3281, Co 20-54, Cd 37-65, Pb 228-293 mg kg(-1) in bed residues. This indicates that SSI could be one of the point sources of metals pollution in the river system.

  9. DETERMINATION OF THE FORMS OF NITROGEN RELEASED IN COAL TAR DURING RAPID DEVOLATILIZATION

    SciTech Connect

    1998-10-30

    The primary objective of this work is to determine the forms of nitrogen in coal that lead to nitrogen release during devolatilization. Experiments are to be performed in two existing laminar flow reactors available at Brigham Young University, which are both capable of temperatures (up to 2000 K), particle heating rates (10 4 to 10 5 K/s), and residence times (up to 500 ms) relevant to conditions commonly encountered in industrial pulverized coal combustors. The forms of nitrogen in coal, char, and tar samples are analyzed using state-of-the-art techniques, including nuclear magnetic resonance (NMR), X-Ray photoelectron spectroscopy (XPS), and high resolution nitrogen-specific chromatography. These sophisticated analysis techniques are being performed in collaboration with other researchers at BYU, the University of Utah, and industrial organizations. Coals have been obtained as a function of rank, including eight coals from the University of Utah that are to be used in pilot scale tests in support of the DOE Coal-2000 HiPPS (High Performance Power Systems) and LEBS (Low-Emission Boiler Systems) programs. Results from the proposed research are (a) nitrogen release parameters during devolatilization for specific coals pertinent to the HiPPS and LEBS projects, (b) better fundamental understanding of the chemistry of nitrogen release, and (c) a nitrogen release submodel based on fundamental chemistry that may be more widely applicable than existing empirical relationships.

  10. Coal pump

    DOEpatents

    Bonin, John H.; Meyer, John W.; Daniel, Jr., Arnold D.

    1983-01-01

    A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

  11. Coal desulfurization

    NASA Technical Reports Server (NTRS)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  12. Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant.

    PubMed

    Malato, Sixto; Blanco, Julián; Maldonado, Manuel I; Oller, Isabel; Gernjak, Wolfgang; Pérez-Estrada, Leonidas

    2007-07-31

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1). Based on pilot plant results, an industrial plant with 100m(2) of CPC collectors for a 250L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500Lh(-1) at an average solar ultraviolet radiation of 22.9Wm(-2), under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant.

  13. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    PubMed

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  14. A landscape-scale approach to examining the fate of atmospherically derived industrial metals in the surficial environment.

    PubMed

    Stromsoe, Nicola; Marx, Samuel K; McGowan, Hamish A; Callow, Nikolaus; Heijnis, Henk; Zawadzki, Atun

    2015-02-01

    Industrial metals are now ubiquitous within the atmosphere and their deposition represents a potential source of contamination to surficial environments. Few studies, however, have examined the environmental fate of atmospheric industrial metals within different surface environments. In this study, patterns of accumulation of atmospherically transported industrial metals were investigated within the surface environments of the Snowy Mountains, Australia. Metals, including Pb, Sb, Cr and Mo, were enriched in aerosols collected in the Snowy Mountains by 3.5-50 times pre-industrial concentrations. In sedimentary environments (soils, lakes and reservoirs) metals showed varying degrees of enrichment. Differences were attributed to the relative degree of atmospheric input, metal sensitivity to enrichment, catchment area and metal behaviour following deposition. In settings where atmospheric deposition dominated (ombrotrophic peat mires in the upper parts of catchments), metal enrichment patterns most closely resembled those in collected aerosols. However, even in these environments significant dilution (by 5-7 times) occurred. The most sensitive industrial metals (those with the lowest natural concentration; Cd, Ag, Sb and Mo) were enriched throughout the studied environments. However, in alpine tarn-lakes no other metals were enriched, due to the dilution of pollutant-metals by catchment derived sediment. In reservoirs, which were located lower within catchments, industrial metals exhibited more complex patterns. Particle reactive metals (e.g. Pb) displayed little enrichment, implying that they were retained up catchment, whereas more soluble metals (e.g., Cu and Zn) showed evidence of concentration. These same metals (Cu and Zn) were depleted in soils, implying that they are preferentially transported through catchments. Enrichment of other metals (e.g. Cd) varied between reservoirs as a function of contributing catchment area. Overall this study showed that the fate

  15. Comparison and validation of OHM and SCEM measurements for a full-scale coal-fired power plant

    SciTech Connect

    He, B.; Cao, Y.; Romero, C.E.; Bilirgen, H.; Sarunac, N.; Agarwal, H.; Pan, W.P.

    2007-07-01

    Mercury emission measurements were performed at a 250 MW coal-fired power plant using the Ontario Hydro method (OHM) and semi-continuous emission monitors (SCEM). Flue gas sampling was performed at the inlet of the air preheater and at the outlet of the electrostatic precipitator. The results indicated that there is some agreement between the OHM and SCEM measurements on the total mercury species. However, the SCEM results were not always in good agreement with the OHM measurements on the elemental mercury species. These discrepancies in elemental mercury concentrations are probably the result of the differences in the location of the SCEM and OHM probes, the temperature difference between the SCEM sampling probe and the flue gas, and the nonuniformities in mercury concentration over the flue gas duct cross section. The other factor that contributed to the deviation between the SCEM and OHM measurement results is the sampling method the SCEM measurements were performed at a single point while the OHM probe was traversed over multiple points over the duct cross section and the results were averaged. The effect of the SCEM sampling probe temperature was investigated by designing a sampling probe that could be heated to the sampled flue gas temperatures. This resulted in improvements in the accuracy of the elemental mercury measurements by the SCEM system.

  16. The Zambian Wildlife Ranching Industry: Scale, Associated Benefits, and Limitations Affecting Its Development

    PubMed Central

    Lindsey, Peter A.; Barnes, Jonathan; Nyirenda, Vincent; Pumfrett, Belinda; Tambling, Craig J.; Taylor, W. Andrew; Rolfes, Michael t’Sas

    2013-01-01

    The number and area of wildlife ranches in Zambia increased from 30 and 1,420 km2 in 1997 to 177 and ∼6,000 km2 by 2012. Wild ungulate populations on wildlife ranches increased from 21,000 individuals in 1997 to ∼91,000 in 2012, while those in state protected areas declined steeply. Wildlife ranching and crocodile farming have a turnover of ∼USD15.7 million per annum, compared to USD16 million from the public game management areas which encompass an area 29 times larger. The wildlife ranching industry employs 1,200 people (excluding jobs created in support industries), with a further ∼1,000 individuals employed through crocodile farming. Wildlife ranches generate significant quantities of meat (295,000 kg/annum), of which 30,000 kg of meat accrues to local communities and 36,000 kg to staff. Projected economic returns from wildlife ranching ventures are high, with an estimated 20-year economic rate of return of 28%, indicating a strong case for government support for the sector. There is enormous scope for wildlife ranching in Zambia due to the availability of land, high diversity of wildlife and low potential for commercial livestock production. However, the Zambian wildlife ranching industry is small and following completion of field work for this study, there was evidence of a significant proportion of ranchers dropping out. The industry is performing poorly, due to inter alia: rampant commercial bushmeat poaching; failure of government to allocate outright ownership of wildlife to landowners; bureaucratic hurdles; perceived historical lack of support from the Zambia Wildlife Authority and government; a lack of a clear policy on wildlife ranching; and a ban on hunting on unfenced lands including game ranches. For the wildlife ranching industry to develop, these limitations need to be addressed decisively. These findings are likely to apply to other savanna countries with large areas of marginal land potentially suited to wildlife ranching. PMID:24367493

  17. Clean coal technology demonstration program: Program update 1996-97

    SciTech Connect

    1997-10-01

    The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

  18. Development and Validation of a Safety Climate Scale for Manufacturing Industry

    PubMed Central

    Ghahramani, Abolfazl; Khalkhali, Hamid R.

    2015-01-01

    Background This paper describes the development of a scale for measuring safety climate. Methods This study was conducted in six manufacturing companies in Iran. The scale developed through conducting a literature review about the safety climate and constructing a question pool. The number of items was reduced to 71 after performing a screening process. Results The result of content validity analysis showed that 59 items had excellent item content validity index (≥ 0.78) and content validity ratio (> 0.38). The exploratory factor analysis resulted in eight safety climate dimensions. The reliability value for the final 45-item scale was 0.96. The result of confirmatory factor analysis showed that the safety climate model is satisfactory. Conclusion This study produced a valid and reliable scale for measuring safety climate in manufacturing companies. PMID:26106508

  19. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  20. Compilation of coal-bed folios to characterize coal-thickness and coal-quality distribution in eastern Kentucky coalfield

    SciTech Connect

    Sergeant, R.E.; Davidson, O.B.; Cobb, J.C.

    1988-08-01

    Coal-bed folios are currently being prepared for major coal beds in the Eastern Kentucky coalfield. These comprehensive folios contain information on geologic setting, coal setting, coal quality, coal resources, and environments of deposition for each of the selected coal beds. Additionally, each folio contains a series of maps (at a scale of 1:500,000) and geologic cross sections. Individual structure, isopach, coal-quality (sulfur, ash, and Btu), and overburden maps are prepared in conjunction with longitudinal and transverse geologic cross sections. The folios are compiled using field-measurement and chemical-analysis data maintained by the Kentucky Geological Survey in its Kentucky Coal Resources Information System (KCRIS). KCRIS is a computer-based, fully integrated data storage and retrieval system that contains coal-thickness measurements, coal-quality analyses, core descriptions, petrographic analyses, and lithologic descriptions. Maps and cross sections for the coal-bed folios are computer generated using coal-thickness and coal-quality information from the KCRIS data set. Grid matrices are prepared for the appropriate coal-thickness measurements or coal-quality parameters. These grids are then modeled or contoured on the Survey's computer system using MINEX software, and the resulting plot files are then plotted on a multi-pen or ink-jet plotter.

  1. A catalytic multistage fixed-bed tower bioreactor in an industrial-scale pilot plant for alcohol production

    SciTech Connect

    Bakoyianis, V.; Koutinas, A.A.

    1996-01-20

    This article describes the development of an industrial-scale, multistage fixed-bed tower (MFBT) bioreactor using the promoter mineral kissiris for industrial alcohol producing using free cells. Specifically, the authors examined the parameters needed to maintain operational stability from batch to batch for long periods. Pilot plant operations used one- and two-stage fixed-bed, 7,000-L bioreactors. Likewise a 100,000-L, multistage fixed-bed tower system containing layered kissiris confirmed the laboratory results. Compared with a continuous stirred tank fermentor (CSTF) with recycle, a 30% reduction of energy demand and 10%--20% of the production costs are obtained. The latter are attributed to the increased ethanol concentration and alcohol productivity.

  2. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    SciTech Connect

    Not Available

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  3. Coal hydrogenation

    SciTech Connect

    Sinor, J.E.

    1981-01-06

    Disclosure is made of a method and apparatus for reacting carbonaceous material such as pulverized coal with heated hydrogen to form hydrocarbon gases and liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. The heated hydrogen and entrained coal are injected through a rocket engine type injector device. The coal particles are reacted with hydrogen in a reaction chamber downstream of the injector. The products of reaction are rapidly quenched as they exit the reaction chamber and are subsequently collected.

  4. Denitrification of high strength nitrate waste from a nuclear industry using acclimatized biomass in a pilot scale reactor.

    PubMed

    Dhamole, Pradip B; Nair, Rashmi R; D'Souza, Stanislaus F; Pandit, Aniruddha B; Lele, S S

    2015-01-01

    This work investigates the performance of acclimatized biomass for denitrification of high strength nitrate waste (10,000 mg/L NO3) from a nuclear industry in a continuous laboratory scale (32 L) and pilot scale reactor (330 L) operated over a period of 4 and 5 months, respectively. Effect of substrate fluctuations (mainly C/NO3-N) on denitrification was studied in a laboratory scale reactor. Incomplete denitrification (95-96 %) was observed at low C/NO3-N (≤2), whereas at high C/NO3-N (≥2.25) led to ammonia formation. Ammonia production increased from 1 to 9 % with an increase in C/NO3-N from 2.25 to 6. Complete denitrification and no ammonia formation were observed at an optimum C/NO3-N of 2.0. Microbiological studies showed decrease in denitrifiers and increase in nitrite-oxidizing bacteria and ammonia-oxidizing bacteria at high C/NO3-N (≥2.25). Pilot scale studies were carried out with optimum C/NO3-N, and sustainability of the process was checked on the pilot scale for 5 months.

  5. Towards large scale aligned carbon nanotube composites: an industrial safe-by-design and sustainable approach

    NASA Astrophysics Data System (ADS)

    Boulanger, P.; Belkadi, L.; Descarpentries, J.; Porterat, D.; Hibert, E.; Brouzes, A.; Mille, M.; Patel, S.; Pinault, M.; Reynaud, C.; Mayne-L'Hermite, M.; Decamps, J. M.

    2013-04-01

    We present the main results demonstrating the feasibility of high surface (> A4 format size) semi-industrial fabrication of composites embedding VACNT in organic matrices. The process of growing VACNT exhibits several advantages regarding safety issues: integrating de facto a safe collecting procedure on the substrate, avoiding additional preparation steps and simplifying handling and protection by impregnation into a matrix. The following steps of the overall process: VACNT carpet functionalization, alignment control and impregnation, can be processed on-line in a closed and safe continuous process and lead to dramatically reduced direct nanotube exposure for workers and users. This project opens the route to a continuous, roll-to-roll, safer, cost-effective and green industrial process to manufacture composites with controlled and aligned greener "black" carbon nanotubes.

  6. Remote sensing and object-based techniques for mapping fine-scale industrial disturbances

    NASA Astrophysics Data System (ADS)

    Powers, Ryan P.; Hermosilla, Txomin; Coops, Nicholas C.; Chen, Gang

    2015-02-01

    Remote sensing provides an important data source for the detection and monitoring of disturbances; however, using this data to recognize fine-spatial resolution industrial disturbances dispersed across extensive areas presents unique challenges (e.g., accurate delineation and identification) and deserves further investigation. In this study, we present and assess a geographic object-based image analysis (GEOBIA) approach with high-spatial resolution imagery (SPOT 5) to map industrial disturbances using the oil sands region of Alberta's northeastern boreal forest as a case study. Key components of this study were (i) the development of additional spectral, texture, and geometrical descriptors for characterizing image-objects (groups of alike pixels) and their contextual properties, and (ii) the introduction of decision trees with boosting to perform the object-based land cover classification. Results indicate that the approach achieved an overall accuracy of 88%, and that all descriptor groups provided relevant information for the classification. Despite challenges remaining (e.g., distinguishing between spectrally similar classes, or placing discrete boundaries), the approach was able to effectively delineate and classify fine-spatial resolution industrial disturbances.

  7. Enhanced Combustion Low NOx Pulverized Coal Burner

    SciTech Connect

    Ray Chamberland; Aku Raino; David Towle

    2006-09-30

    firing system technologies do not provide a means to meet current or anticipated regulations absent the use of an SCR. The DOE/ALSTOM program performed large pilot scale combustion testing in ALSTOM's Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut. During this work, the near-field combustion environment was optimized to maximize NOx reduction while minimizing the impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down under globally reducing conditions. Initially, ALSTOM utilized computational fluid dynamic modeling to evaluate a series of burner and/or near field stoichiometry controls in order to screen promising design concepts in advance of the large pilot scale testing. The third and final test, to be executed, will utilize several variants of the best nozzle tip configuration and compare performance with 3 different coals. The fuels to be tested will cover a wide range of coals commonly fired at US utilities. The completion of this work will provide sufficient data to allow ALSTOM to design, construct, and demonstrate a commercial version of an enhanced combustion low NOx pulverized coal burner. A preliminary cost/performance analysis of the developed enhanced combustion low NOx burner applied to ALSTOM's state-of-the-art TFS 2000 firing system was performed to show that the burner enhancements is a cost effective means to reduce NOx.

  8. JV TASK 45-MERCURY CONTROL TECHNOLOGIES FOR ELECTRIC UTILITIES BURNING LIGNITE COAL, PHASE I BENCH-AND PILOT-SCALE TESTING

    SciTech Connect

    John H. Pavlish; Michael J. Holmes; Steven A. Benson; Charlene R. Crocker; Edwin S. Olson; Kevin C. Galbreath; Ye Zhuang; Brandon M. Pavlish

    2003-10-01

    The Energy & Environmental Research Center has completed the first phase of a 3-year, two-phase consortium project to develop and demonstrate mercury control technologies for utilities that burn lignite coal. The overall project goal is to maintain the viability of lignite-based energy production by providing utilities with low-cost options for meeting future mercury regulations. Phase I objectives are to develop a better understanding of mercury interactions with flue gas constituents, test a range of sorbent-based technologies targeted at removing elemental mercury (Hg{sup o}) from flue gases, and demonstrate the effectiveness of the most promising technologies at the pilot scale. The Phase II objectives are to demonstrate and quantify sorbent technology effectiveness, performance, and cost at a sponsor-owned and operated power plant. Phase I results are presented in this report along with a brief overview of the Phase II plans. Bench-scale testing provided information on mercury interactions with flue gas constituents and relative performances of the various sorbents. Activated carbons were prepared from relatively high-sodium lignites by carbonization at 400 C (752 F), followed by steam activation at 750 C (1382 F) and 800 C (1472 F). Luscar char was also steam-activated at these conditions. These lignite-based activated carbons, along with commercially available DARCO FGD and an oxidized calcium silicate, were tested in a thin-film, fixed-bed, bench-scale reactor using a simulated lignitic flue gas consisting of 10 {micro}g/Nm{sup 3} Hg{sup 0}, 6% O{sub 2}, 12% CO{sub 2}, 15% H{sub 2}O, 580 ppm SO{sub 2}, 120 ppm NO, 6 ppm NO{sub 2}, and 1 ppm HCl in N{sub 2}. All of the lignite-based activated (750 C, 1382 F) carbons required a 30-45-minute conditioning period in the simulated lignite flue gas before they exhibited good mercury sorption capacities. The unactivated Luscar char and oxidized calcium silicate were ineffective in capturing mercury. Lignite

  9. A solid phase honey-like channel method for synthesizing urea-ammonium chloride cocrystals on industrial scale

    NASA Astrophysics Data System (ADS)

    Xue, Bingchun; Mao, Meiling; Liu, Yanhong; Guo, Jinyu; Li, Jing; Liu, Erbao

    2016-05-01

    Unanticipated a new and simple urea-ammonium chloride cocrystal synthesis method on industrial scale was found during attempts to produce a kind of granulated compound fertilizer. The aggregation of fertilizer powder can make the interaction among particles from loose to close, which generate mechanical pressure and in turn act as the driving force to benefit cocrystal growth. Additionally, the honeycomb-like channels constructed by other coexisting compound make the water evaporates more moderate, which can help the formation of supersaturated solution at suitable rate, further promote the growth of cocrystal. This approach possibly opens a new route toward the developing methodologies for cocrystal synthesis.

  10. American coal imports 2015

    SciTech Connect

    Frank Kolojeski

    2007-09-15

    As 2007 ends, the US coal industry passes two major milestones - the ending of the Synfuel tax break, affecting over 100M st annually, and the imposition of tighter and much more expensive safety measures, particularly in deep mines. Both of these issues, arriving at a time of wretched steam coal price levels, promise to result in a major shake up in the Central Appalachian mining sector. The report utilizes a microeconomic regional approach to determine whether either of these two schools of thought have any validity. Transport, infrastructure, competing fuels and regional issues are examined in detail and this forecasts estimates coal demand and imports on a region by region basis for the years 2010 and 2015. Some of the major highlights of the forecast are: Import growth will be driven by steam coal demand in the eastern and southern US; Transport will continue to be the key driver - we believe that inland rail rates will deter imports from being railed far inland and that the great majority of imports will be delivered directly by vessel, barge or truck to end users; Colombian coal will be the overwhelmingly dominant supply source and possesses a costs structure to enable it to compete with US-produced coal in any market conditions; Most of the growth will come from existing power plants - increasing capacity utilization at existing import facilities and other plants making investments to add imports to the supply portfolio - the growth is not dependent upon a lot of new coal fired capacity being built. Contents of the report are: Key US market dynamics; International supply dynamics; Structure of the US coal import market; and Geographic analysis.

  11. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    SciTech Connect

    Nelson, Thomas; Kataria, Atish; Soukri, Mustapha; Farmer, Justin; Mobley, Paul; Tanthana, Jak; Wang, Dongxiang; Wang, Xiaoxing; Song, Chunshan

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  12. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires

  13. Industrial-scale radio frequency treatments for insect control in lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radio frequency (RF) treatments are considered to be a potential postharvest technology for disinfesting legumes of internal seed pests such as the cowpea weevil. After treatment protocols are shown to control postharvest insects without significant quality degradation, it is important to scale-up l...

  14. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  15. An evaluation of micronized coal reburning for nitrogen oxide emissions reduction in pulverized coal-fired electric utility boilers

    NASA Astrophysics Data System (ADS)

    de Angelo, Joseph Gerard

    Recent increases in the prices of imported fuels and increases in the cost of natural gas have underscored the need to consider other sources of energy for electric production in the United States. Our most abundant fuel source is coal, however the use of coal brings with it a set of environmental problems. This dissertation presents an investigation into the use of micronized coal reburning. This technology may provide a cost-effective solution to the requirements to reduce NOx emissions from pulverized coal-fired electric generating stations. This research effort evaluated the use of micronized coal as a reburning fuel to lower nitrogen oxide emissions from coal-fired boilers. The research effort included: (1) an investigation of all available literature on the subject, (2) planning and supervision of a number of baseline and parametric tests on a full-scale coal fired utility boiler. The testing was carried out on the former NYSEG generating unit, Milliken 1. Milliken Unit 1 is a 150 MW coal-fired electric utility boiler located in Lansing, NY on the eastern shore of Cayuga Lake, (3) development of a model to predict NOx emissions from a coal-fired boiler, and (4) completion of a conceptual design for a micronized coal reburning system. The original plan of the research effort was to include a full-scale micronized coal reburn installation and subsequent modeling and testing. However, in 1998 the deregulation of the electric utility industry in New York caused the focus of the dissertation to be narrowed. The test site, Milliken Station was sold to another entity, and the installation of the micronized coal reburn system was cancelled. The following conclusions were drawn from the research: (1) Testing showed that nitrogen oxide production was significantly influenced by changes in controllable boiler operating parameters. (2) The predictive model for baseline nitrogen oxide production was fairly accurate in estimating NOx emissions. The model had an average

  16. No specimen left behind: industrial scale digitization of natural history collections.

    PubMed

    Blagoderov, Vladimir; Kitching, Ian J; Livermore, Laurence; Simonsen, Thomas J; Smith, Vincent S

    2012-01-01

    Traditional approaches for digitizing natural history collections, which include both imaging and metadata capture, are both labour- and time-intensive. Mass-digitization can only be completed if the resource-intensive steps, such as specimen selection and databasing of associated information, are minimized. Digitization of larger collections should employ an "industrial" approach, using the principles of automation and crowd sourcing, with minimal initial metadata collection including a mandatory persistent identifier. A new workflow for the mass-digitization of natural history museum collections based on these principles, and using SatScan® tray scanning system, is described.

  17. Pelletization of fine coals. Final report

    SciTech Connect

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  18. High-Resolution Simulations of Coal Injection in A Gasifier

    SciTech Connect

    Li, Tingwen; Gel, Aytekin; Syamlal, M; Guenther, Chris; Pannala, Sreekanth

    2010-01-01

    This study demonstrates an approach to effectively combine high- and low-resolution simulations for design studies of industrial coal gasifier. The flow-field data from a 10 million cell full-scale simulation of a commercial-scale gasifier were used to construct a reduced configuration to economically study the coal injection in detail. High-resolution numerical simulations of the coal injection were performed using the open-source code MFIX running on a high performance computing system. Effects of grid resolution and numerical discretization scheme on the predicted behavior of coal injection and gasification kinetics were analyzed. Pronounced differences were predicted in the devolatilization and steam gasification rates because of different discretization schemes, implying that a high-order numerical scheme is required to predict well the unsteady gasification process on an adequately resolved grid. Computational costs for simulations of varying resolutions are presented to illustrate the trade-off between the accuracy of solution and the time-to-solution, an important consideration when engineering simulations are used for the design of commercial-scale units.

  19. Respiratory disease in Utah coal miners

    SciTech Connect

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  20. Respiratory disease in Utah coal miners

    SciTech Connect

    Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

    1981-04-01

    Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

  1. The development of coal-based technologies for Department of Defense facilities. Semi-annual report, March 28, 1996--September 27, 1996

    SciTech Connect

    Miller, B.G.; Pisupati, S.V.; Scarone, A.W.

    1996-12-13

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. Phase I was completed on November 1, 1995. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included continuing bench-scale tests to identify an NO{sub x} reduction catalyst which is appropriate for industrial boiler applications. In addition, installation of a ceramic filtering device on the demonstration boiler started. Also, a sodium bicarbonate duct injection system was procured for installation on the demonstration boiler. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations,surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  2. The challenge of coal preparation

    SciTech Connect

    Fonseca, A.G.

    1995-10-01

    About 45--50% of the coal mined in the US passes through coal preparation plants; east of the Mississippi River this number increases to about 75-80%. Although the cost for coal preparation is worthwhile to some, the coal industry faces the challenges of continuing downward pressure on the price of coal and the impact of new environmental regulations. Coal preparation, as commercially practiced today, is an effective process achieving 75--80% ash reduction, 15--80% trace element reduction, and 85-90% Btu recovery; it is less effective for pyrite reduction (35--70%), and on-line operating time (40--60%), and suffers from obsolete control systems. Methods will be discussed for reducing costs of coal preparation and improving the performance of coal preparation plants. comments are included on equipment selection, especially for {minus}28 mesh coal, and prep plant operation and control practices. Btu recovery, ash and pyrite reduction, fines processing including dewatering and slurry fuel use options are emphasized. Trace element removal and expert control systems for maximization of prep plant operation also will be highlighted.

  3. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    USGS Publications Warehouse

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  4. The directory of US coal and technology export resources

    SciTech Connect

    Not Available

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  5. A platform for lab and industrial scale replication of phase optics and microfluidics

    NASA Astrophysics Data System (ADS)

    Lindvold, Lars R.; Yde, Leif; Stensborg, Jan F.

    2016-03-01

    A platform for lab-scale replication of phase optics and microfluidics is presented in this paper. The platform is based on the use of a rotational micro-moulding technique using light-curable polymers as the media for holding the phase optics or microfluidics. As the moulding technique essentially can be repeated in sequential steps, the method can be used for more complex combinations of micro- and nanostructures than a simple moulding process would permit. Furthermore, the use of light-curable polymers makes it possible to use materials with a refractive index ranging from 1.4 to 1.6 allowing for precise control of the phase shift in the replicated optical components. The use of light-curable polymers also paves the way for subsequent modification of the surface chemistry e.g. the replicated microfluidic structure. Such a modality is high desirable in the making of e.g. lab-on-a-chip system. The paper will address on how to use the technology on lab-scale but also how it can be scaled to high-volume production if needed.

  6. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  7. Impacts of Coal Seam Gas (Coal Bed Methane) and Coal Mining on Water Resources in Australia

    NASA Astrophysics Data System (ADS)

    Post, D. A.

    2013-12-01

    Mining of coal bed methane deposits (termed ';coal seam gas' in Australia) is a rapidly growing source of natural gas in Australia. Indeed, expansion of the industry is occurring so quickly that in some cases, legislation is struggling to keep up with this expansion. Perhaps because of this, community concern about the impacts of coal seam gas development is very strong. Responding to these concerns, the Australian Government has recently established an Independent Expert Scientific Committee (IESC) to provide advice to the Commonwealth and state regulators on potential water-related impacts of coal seam gas and large coal mining developments. In order to provide the underlying science to the IESC, a program of ';bioregional assessments' has been implemented. One aim of these bioregional assessments is to improve our understanding of the connectivity between the impacts of coal seam gas extraction and groundwater aquifers, as well as their connection to surface water. A bioregional assessment can be defined as a scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion, with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. These bioregional assessments are now being carried out across large portions of eastern Australia which are underlain by coal reserves. This presentation will provide an overview of the issues related to the impacts of coal seam gas and coal mining on water resources in Australia. The methodology of undertaking bioregional assessments will be described, and the application of this methodology to six priority bioregions in eastern Australia will be detailed. Preliminary results of the program of research to date will be assessed in light of the requirements of the IESC to provide independent advice to the Commonwealth and State governments. Finally, parallels between the expansion of the industry in Australia with that

  8. Control of predators in industrial scale microalgae cultures with Pulsed Electric Fields.

    PubMed

    Rego, D; Redondo, L M; Geraldes, V; Costa, L; Navalho, J; Pereira, M T

    2015-06-01

    This work describes the utilization of Pulsed Electric Fields to control the protozoan contamination of a microalgae culture, in an industrial 2.7 m(3) microalgae photobioreactor. The contaminated culture was treated with Pulsed Electric Fields, PEF, for 6h with an average of 900 V/cm, 65 μs pulses of 50 Hz. Working with recirculation, all the culture was uniformly exposed to the PEF throughout the assay. The development of the microalgae and protozoan populations was followed and the results showed that PEF is effective on the selective elimination of protozoa from microalgae cultures, inflicting on the protozoa growth halt, death or cell rupture, without affecting microalgae productivity. Specifically, the results show a reduction of the active protozoan population of 87% after 6h treatment and 100% after few days of normal cultivation regime. At the same time, microalgae growth rate remained unaffected.

  9. Tidal energy: Promising projects La Rance, a successful industrial-scale experiment

    SciTech Connect

    Pierre, J. . Service de la Production Hydraulique)

    1993-09-01

    In some few special areas of the world, the range of the variation of the sea level due to the tide can be impressive. For centuries man has been harnessing this energy with the operation of tidal mills. At present, the design of tidal power does not arise new scientific issues. Nevertheless, additional research and development should be carried out in three fields: interface of the tidal power station output with National Grids and above all a sound assessment of its economic interest; design and implementation of the works according to the site; and environmental effects. On November 26, 1966, La Rance tidal power station was inaugurated after 25 years of design in various fields, and 25 years afterwards it is still the only industrial prototype of a great size tidal power station and it brings us a lot of interesting data. Currently several important schemes are under study throughout the world.

  10. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes.

    PubMed

    Kumar, Arun; Starly, Binil

    2015-01-01

    Cellular biomanufacturing technologies are a critical link to the successful application of cell and scaffold based regenerative therapies, organs-on-chip devices, disease models and any products with living cells contained in them. How do we achieve production level quantities of the key ingredient-'the living cells' for all biofabrication processes, including bioprinting and biopatterning? We review key cell expansion based bioreactor operating principles and how 3D culture will play an important role in achieving production quantities of billions to even trillions of anchorage dependent cells. Furthermore, we highlight some of the challenges in the field of cellular biomanufacturing that must be addressed to achieve desired cellular yields while adhering to the key pillars of good manufacturing practices-safety, purity, stability, potency and identity. Biofabrication technologies are uniquely positioned to provide improved 3D culture surfaces for the industrialized production of living cells. PMID:26539629

  11. Filamentous fungi are large-scale producers of pigments and colorants for the food industry.

    PubMed

    Dufossé, Laurent; Fouillaud, Mireille; Caro, Yanis; Mapari, Sameer A S; Sutthiwong, Nuthathai

    2014-04-01

    With globalization in the research trends, healthier life styles, and the growing market for the natural food colorants in the economically fast-growing countries all over the world, filamentous fungi are being investigated as readily available sources of chemically diverse colorants. With two selected examples, polyketide-Monascus-like pigments from the new fungal production strains, and the promising and yet unexplored hydroxy-anthraquinoid colorants, the present review highlights exciting recent findings, which may pave the way for alternative and/or additional biotechnological processes for the industrial production of natural food colorants of improved functionality. As an additional aspect, marine fungi are discussed as potential sources of novel pigments of numerous color hues and atypical chemical structures.

  12. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    EPA Science Inventory

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  13. Quarterly coal report, October--December 1996

    SciTech Connect

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  14. Performance evaluation of a ceramic cross-flow filter on a bench- scale coal gasifier. Second quarterly project report, January 1, 1985--March 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion. (VC)

  15. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fifth quarterly report, October 1, 1985--December 31, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently sporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. the proposed program is composed of three major technical task. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  16. Performance evaluation of a ceramic cross-flow filter on a bench-scale coal gasifier. Fourth quarterly report, July 1, 1985--September 30, 1985

    SciTech Connect

    Ciliberti, D.F.; Lippert, T.E.

    1985-12-31

    The Department of Energy is currently supporting a program that will aid in the development of cross flow filtration technology as applied to combined cycle power generation with coal gasification. The stated overall goal is to gain information on both the operational and economic feasibility of the implementation of cross flow filtration in various gasifier options. Westinghouse has prepared a comprehensive program that will lead directly to these program goals in an efficient manner. The proposed program is composed of three major technical tasks. Task 1 is directed at the design and actual test of a cross flow filter at a DOE bench scale gasifier. Task 2 is composed of several smaller theoretical and experimental efforts that are intended to firm up areas where engineering and design principles are lacking or considered inadequate. The third task is intended to integrate the results of the first two tasks in a conceptual design and cost analysis such that proper economic perspective for the filter concept can be gained. A brief summary of the approach taken in the technical tasks is presented in the following discussion.

  17. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    SciTech Connect

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S.

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  18. Drivers for the renaissance of coal.

    PubMed

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-07-21

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries. PMID:26150491

  19. Drivers for the renaissance of coal.

    PubMed

    Steckel, Jan Christoph; Edenhofer, Ottmar; Jakob, Michael

    2015-07-21

    Coal was central to the industrial revolution, but in the 20th century it increasingly was superseded by oil and gas. However, in recent years coal again has become the predominant source of global carbon emissions. We show that this trend of rapidly increasing coal-based emissions is not restricted to a few individual countries such as China. Rather, we are witnessing a global renaissance of coal majorly driven by poor, fast-growing countries that increasingly rely on coal to satisfy their growing energy demand. The low price of coal relative to gas and oil has played an important role in accelerating coal consumption since the end of the 1990s. In this article, we show that in the increasingly integrated global coal market the availability of a domestic coal resource does not have a statistically significant impact on the use of coal and related emissions. These findings have important implications for climate change mitigation: If future economic growth of poor countries is fueled mainly by coal, ambitious mitigation targets very likely will become infeasible. Building new coal power plant capacities will lead to lock-in effects for the next few decades. If that lock-in is to be avoided, international climate policy must find ways to offer viable alternatives to coal for developing countries.

  20. Transportation: A vital element in coal's future

    SciTech Connect

    Smith, J.P.

    1982-10-01

    This paper explains how economical coal transportation, particulary from vast western reserves, is becoming an increasingly difficult but compelling challenge for both the country and the coal industry. In controlling transportation costs, coal producers must rely on a delicate balance between product demand, competition among carriers, federal regulation, and a symbiotic relationship with coal transporters. Studies by the National Coal Association show that 85% of the coal carried by railroads has no practical alternative means of movement. Captive coal shipments, those in which a mine and a customer are serviced by a single, dedicated carrier, are common in the West. An FERC study revealed that captive coal shipments (which account for 14% of all coal shipped to US utilities) are usually more expensive than noncaptive shipments. Other factors affecting coal's price per ton include tonnage, distance, type of transport equipment used, carrier, and geographic considerations. Need for competing modes is shown by the fact that while railroad coal tonnage remained essentially unchanged from 1980 to 1981, railroad revenues for coal shipping increased 18%. Evaluates coal slurry transportation.