Science.gov

Sample records for industry copper indium

  1. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  2. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    SciTech Connect

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  3. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  6. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN P-10...

  7. Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim Khalifa

    Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effect of alumina as diffusion barrier between indium and copper, (iii) thermal stability and wettability between indium and alumina, iv) the indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed. 5nm of alumina deposited by Atomic Layer Deposition on flat copper surface has been optimized to prevent diffusion process between indium and copper at 120°C. 15nm of alumina prevented the reaction at 230°C. Instability of indium thin film thermally deposited on sapphire substrate was observed. Also, decrease in the sintering density of indium-alumina composite with increasing temperature was observed. The dewetting contact angle between liquid indium and sapphire was ˜127°. The wetting experiments between indium and different oxides showed that indium wets tungsten oxide and quartz..

  8. Preparation Of Copper Indium Gallium Diselenide Films For Solar Cells

    DOEpatents

    Bhattacharya, Raghu N.; Contreras, Miguel A.; Keane, James; Tennant, Andrew L. , Tuttle, John R.; Ramanathan, Kannan; Noufi, Rommel

    1998-08-08

    High quality thin films of copper-indium-gallium-diselenide useful in the production of solar cells are prepared by electrodepositing at least one of the constituent metals onto a glass/Mo substrate, followed by physical vapor deposition of copper and selenium or indium and selenium to adjust the final stoichiometry of the thin film to approximately Cu(In,Ga)Se.sub.2. Using an AC voltage of 1-100 KHz in combination with a DC voltage for electrodeposition improves the morphology and growth rate of the deposited thin film. An electrodeposition solution comprising at least in part an organic solvent may be used in conjunction with an increased cathodic potential to increase the gallium content of the electrodeposited thin film.

  9. Synthesis of single source molecular precursors for copper indium diselenide and copper indium disulfide production via confined plume chemical deposition

    NASA Astrophysics Data System (ADS)

    Jackson, Jason D.

    A one-step process for preparing coatings of known photovoltaic materials on either inorganic or organic substrates is reported. IR laser (2.94 microm wavelength) and femtosecond visible laser (800 nm wavelength) irradiation of single-source molecular precursors layered between transparent supports under temporal and spatial confinement at a laser wavelength (2.94 microm or 800 nm) resonant with a precursor vibrational band gives one-step deposition of copper indium diselenide (CISe) or copper indium disulfide (CIS) without incurring noticeable collateral thermal damage to the substrate material. Reaction plume formation at the precursor/laser beam interface initiates confined plume, chemical deposition (CPCD) of nano CIS product. Continuous coatings are produced by rastering the laser beam over a sample specimen. CPCD processing of precursors 1-6 on confined substrates, ultra high molecular weight polyethylene (UHMWPE)/glass, and glass/sapphire gives CISe, CIS respectively.

  10. Liquid phase synthesis of copper indium diselenide nanoparticles

    SciTech Connect

    Jakhmola, Priyanka; Agarwal, Garima; Jha, Prafulla K.; Bhatnagar, S. P.

    2014-04-24

    Nanoparticles of Copper Indium diselenide (CuInSe{sub 2}), belongs to I-III-VI{sub 2} family has been synthesized via liquid phase route using ethylenediamine as a solvent. Characterization of as-grown particles is done by XRD, HRTEM, DLS, optical microscopy and UV-Vis spectroscopy. X-ray diffraction pattern confirmed that the CuInSe2 nanoparticles obtained reveals chalcopyrite structure. Particle size evaluated from dynamic light scattering of as grown particle possessing radius of 90 nm. The bandgap of 1.05eV is obtained from UV-Vis spectrum which will applicable to the solar cell devices.

  11. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup −5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 10{sup 6} cm{sup −1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  12. Photoconductivity in reactively evaporated copper indium selenide thin films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-01

    Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.

  13. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-02-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In2O3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  14. Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Polycrystalline Thin-Film Research: Copper Indium Gallium Diselenide that includes scope, core competencies and capabilities, and contact/web information.

  15. Growth of copper indium sulphide films by thermal evaporation of mixtures of copper sulphide and indium sulphide powders

    SciTech Connect

    Rao, Pritty; Kumar, Sanjiv Sahoo, N.K.

    2013-08-01

    Graphical abstract: - Highlights: • CuInS{sub 2} films are prepared by resistively heating mixtures of CuS and In{sub 2}S{sub 3}. • As deposited films consist of Cu{sub 7}S{sub 4}, InS and In{sub 2}S{sub 3}. • These species react during vacuum annealing to produce CuInS{sub 2} films. • The films bear stoichiometric or Cu-rich composition. • Their electrical and optical features are conducive for photovoltaic applications. - Abstract: The physical evaporation of a 1:1 mixture of copper sulphide (CuS) and indium sulphide (In{sub 2}S{sub 3}) powders by resistive heating followed by the vacuum annealing of the resulting films at 723 K produces copper indium sulphide (CuInS{sub 2}) films with about 95% phase purity. Composed of sub-micron sized grains, the films bear stoichiometric or Cu-rich composition and are endowed with p-type conductivity, a band gap of about 1.5 eV and an absorption coefficient of about 4 × 10{sup 4} cm{sup −1} in visible region. Mechanistically, the formation of CuInS{sub 2} films takes place as a result of solid state reaction among Cu{sub 7}S{sub 4}, InS and In{sub 2}S{sub 3} in the condensed phase. These intermediate species are produced from the decomposition of CuInS{sub 2} formed in the evaporating mixture due to the reaction between CuS and In{sub 2}S{sub 3}, and excess CuS. Process simplicity and the absence of a sulphurisation step make this approach attractive for synthesising CuInS{sub 2} absorber layers for photovoltaic applications.

  16. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials.

    PubMed

    Gustafsson, Anna M K; Björefors, Fredrik; Steenari, Britt-Marie; Ekberg, Christian

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be -0.5 V and -0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective.

  17. Investigation of an Electrochemical Method for Separation of Copper, Indium, and Gallium from Pretreated CIGS Solar Cell Waste Materials

    PubMed Central

    Gustafsson, Anna M. K.; Björefors, Fredrik; Steenari, Britt-Marie

    2015-01-01

    Recycling of the semiconductor material copper indium gallium diselenide (CIGS) is important to ensure a future supply of indium and gallium, which are relatively rare and therefore expensive elements. As a continuation of our previous work, where we recycled high purity selenium from CIGS waste materials, we now show that copper and indium can be recycled by electrodeposition from hydrochloric acid solutions of dissolved selenium-depleted material. Suitable potentials for the reduction of copper and indium were determined to be −0.5 V and −0.9 V (versus the Ag/AgCl reference electrode), respectively, using cyclic voltammetry. Electrodeposition of first copper and then indium from a solution containing the dissolved residue from the selenium separation and ammonium chloride in 1 M HCl gave a copper yield of 100.1 ± 0.5% and an indium yield of 98.1 ± 2.5%. The separated copper and indium fractions contained no significant contamination of the other elements. Gallium remained in solution together with a small amount of indium after the separation of copper and indium and has to be recovered by an alternative method since electrowinning from the chloride-rich acid solution was not effective. PMID:26347901

  18. Indium

    SciTech Connect

    Carlin, J.F.

    1985-01-01

    Indium occurs as a trace constituent of other metal deposits, principally zinc, but also lead, tin, tungsten, and iron. It is derived as a byproduct usually from residues generating in the refining of zinc, so its supply is therefore dependent upon demand for and, hence, the production of that metal. It is estimated that 90% of the U.S. requirements for indium are accounted for by imports of highly refined indium metal or indium-rich residues and other materials, mainly from France, Italy, Belgium, and the United Kingdom. Dependence on foreign sources is expected to continue. The principal producers of refined indium metal are the United States, Belgium, Japan, France, and Italy. The major uses of indium are in alloys and instruments, and the metal has applications in a variety of other fields. There are potential substitutes for indium in many of its applications. Domestic indium demand was estimated at 700,000 troy ounces in 1983. Based on a contingency analysis of the major end uses for indium, the range of possible domestic demands for primary indium in the year 2000 is forecast to be from 500,000 to 1,100,000 ounces. A probable demand of 900,000 ounces represents an annual growth rate of 1.5%. The range of demand forecasts for the rest of the world is between 1.0 million and 1.9 million ounces, with a probable demand of 1.7 million ounces, which represents an annual growth rate of 1.6%.

  19. The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films

    SciTech Connect

    Peranantham, P.; Jeyachandran, Y.L.; Viswanathan, C.; Praveena, N.N.; Chitra, P.C.; Mangalaraj, D. . E-mail: dmraj800@yahoo.com; Narayandass, Sa. K.

    2007-08-15

    Copper selenide and indium telluride thin films were prepared by a vacuum evaporation technique. The as-deposited films were annealed in a vacuum at different temperatures and the influence on composition, structure and optical properties of copper selenide and indium telluride films was investigated using energy dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and optical transmission measurements. From the compositional analysis, the as-deposited copper selenide and indium telluride films which were annealed at 473 and 523 K, respectively, were found to possess the nearly stoichiometric composition of CuSe and InTe phases. However, the films annealed at 673 K showed the composition of Cu{sub 2}Se and In{sub 4}Te{sub 3} phases. The structural parameters such as, particle size and strain were determined using X-ray diffractograms of the films. Optical transmittance measurements indicated the existence of direct and indirect transitions in copper selenide films and an indirect allowed transition in indium telluride films.

  20. Cadmium zinc sulfide/copper indium diselenide module design and cost assessment

    SciTech Connect

    Jackson, B.

    1985-09-01

    The report presents the results of a cadmium zinc sulfide/copper indium diselenide. The primary objective of the research was to clarify several of the technical issues facing the technology development. The design work focused on a large four-foot-square module suited for utility or large scale commercial applications. Cost estimates were developed from detailed descriptions of each manufacturing process step.

  1. Environmental and health aspects of copper-indium-diselenide thin-film photovoltaic modules

    SciTech Connect

    Steinberger, H.; Thumm, W.; Freitag, R.; Moskowitz, P.D.; Chapin, R.

    1994-12-31

    Copper-indium-diselenide (CIS) is a semiconductor compound that can be used to produce thin-film photovoltaic modules. There is on-going research being conducted by various federal agencies and private industries to demonstrate the commercial viability of this material. Because this is a new technology, and because scant information about the health and environmental hazards associated with the use of this material is available, studies have been initiated to characterize the environmental mobility and environmental toxicology of this compound. The objective of these studies is to identify the environmental and health hazards associated with the production, use, and disposal of CIS thin-film photovoltaic modules. The program includes both experimental and theoretical components. Theoretical studies are being undertaken to estimate material flows through the environment for a range of production options as well as use and disposal scenarios. The experimental programs characterize the physical, chemical e.g. leachability and biological parameters e.g. EC{sub 50} in daphnia and algae, and feeding studies in rats.

  2. Thermal resistance of indium coated sapphire-copper contacts below 0.1 K

    NASA Astrophysics Data System (ADS)

    Eisel, T.; Bremer, J.; Koettig, T.

    2014-11-01

    High thermal resistances exist at ultra-low temperatures for solid-solid interfaces. This is especially true for pressed metal-sapphire joints, where the heat is transferred by phonons only. For such pressed joints it is difficult to achieve good physical, i.e. thermal contacts due to surface irregularities in the microscopic or larger scale. Applying ductile indium as an intermediate layer reduces the thermal resistance of such contacts. This could be proven by measurements of several researchers. However, the majority of the measurements were performed at temperatures higher than 1 K. Consequently, it is difficult to predict the thermal resistance of pressed metal-sapphire joints at temperatures below 1 K. In this paper the thermal resistances across four different copper-sapphire-copper sandwiches are presented in a temperature range between 30 mK and 100 mK. The investigated sandwiches feature either rough or polished sapphire discs (Ø 20 mm × 1.5 mm) to investigate the phonon scattering at the boundaries. All sandwiches apply indium foils as intermediate layers on both sides of the sapphire. Additionally to the indium foils, thin indium films are vapour deposited onto both sides of one rough and one polished sapphire in order to improve the contact to the sapphire. Significantly different thermal resistances have been found amongst the investigated sandwiches. The lowest total thermal resistivity (roughly 26 cm2 K4/W at 30 mK helium temperature) is achieved across a sandwich consisting of a polished sapphire with indium vapour deposition. The thermal boundary resistance between indium and sapphire is estimated from the total thermal resistivity by assuming the scattering at only one boundary, which is the warm sapphire boundary where phonons impinge, and taking the scattering in the sapphire bulk into account. The so derived thermal boundary resistance agrees at low temperatures very well with the acoustic mismatch theory.

  3. Fabrication of high quality copper indium disulphide absorbers by bell-like wave modulated electrodeposition

    SciTech Connect

    Cheng, Ke; Wang, Xiaoyun; Liu, Jingjing; Huang, Yuqian; Xue, Ming; Kuang, Zhongcheng; Wan, Shaoming; Du, Zuliang

    2016-04-15

    Highlights: • Cu/In bilayer was fabricated by BMSMW deposition technique. • High quality CIS film was successfully fabricated. • A preferable ratio of Cu:In:S close to 1:1:2 was approached. • The SPV response as high as 6 mV was achieved. - Abstract: High-quality CuInS{sub 2} (CIS) thin films have been fabricated by sulfurization of electrodeposited copper–indium bilayer. A novel bell-like wave modulated square wave (BWMSW) electrodeposition technique is employed for the deposition of copper thin film. Three independent parameters (current or potential, frequency, duty cycle) are available for the BWMSW electrodeposition, which is different from the traditional electrodeposition technique with only one adjustable parameter (current or potential). The influences of deposition parameters such as frequency, duty cycle and the concentration of complexing agent are investigated. Benefited from the high quality copper film obtained by the BWMSW technique, the indium film is electrodeposited successfully on the copper layer to form a compact copper–indium alloy bilayer. After sulfurized at 600 °C for 60 min, the phase pure CIS film is obtained with better crystallinity. The structures, morphologies and optoelectronic properties of the CIS film are also characterized.

  4. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells

    DTIC Science & Technology

    2015-09-01

    system is rated at providing 300 W of continuous power that is generated from a set of solar panels rated at 1.6 kW and includes a set of batteries that...region=8 conmob # SOLAR LIGHT (AM 1.5) beam num=1 x.origin=0.5 y.origin=-2 angle =90 am1.5 wavel.start=0.285 wavel.end=1.655 wavel.num=137...OPTIMIZATION OF COPPER INDIUM GALLIUM SELENIDE THIN FILM SOLAR CELLS by Daniel B. Katzman September 2015 Thesis Advisor: Sherif Michael Second

  5. Specific features of intrinsic photoconductivity spectra of copper-compensated indium phosphide

    SciTech Connect

    Makarenko, Ph. V. Pribylov, N. N.; Rembeza, S. I.; Mel'nik, V. A.

    2008-05-15

    The intrinsic photoconductivity of copper-compensated indium phosphide has been studied. It is found that mechanical polishing of a sample surface gives rise to an additional photoconductivity peak in the region of the fundamental absorption edge. This peak disappears upon storage of the sample. The dependence of the shape of the photoconductivity spectrum on the storage time, electric-field strength, and position of the light spot with respect to the contacts was determined. The results are explained in terms of variation in the lifetime of nonequilibrium carriers across the sample thickness. An expression qualitatively describing the photoconductivity spectra is presented.

  6. Waste reduction options for manufacturers of copper indium diselenide photovoltaic cells

    SciTech Connect

    DePhillips, M.P.; Fthenakis, V.M.; Moskowitz, P.D.

    1994-03-01

    This paper identifies general waste reduction concepts and specific waste reduction options to be used in the production of copper indium diselenide (CIS) photovoltaic cells. A general discussion of manufacturing processes used for the production of photovoltaic cells is followed by a description of the US Environmental Protection Agency (EPA) guidelines for waste reduction (i.e., waste minimization through pollution prevention). A more specific discussion of manufacturing CIS cells is accompanied by detailed suggestions regarding waste minimization options for both inputs and outputs for ten stages of this process. Waste reduction from inputs focuses on source reduction and process changes, and reduction from outputs focuses on material reuse and recycling.

  7. In vitro corrosion behaviour and microhardness of high-copper amalgams with platinum and indium.

    PubMed

    Ilikli, B G; Aydin, A; Işimer, A; Alpaslan, G

    1999-02-01

    Samples prepared from Luxalloy, GS-80, Permite-C and Logic and polished after 24 h by traditional methods were stored in polypropylene tubes containing phosphate-buffered saline solutions (pH 3.5 and 6.5) and distilled water. The amounts of mercury, silver, tin, copper, zinc, platinum and indium in the test solutions were determined at the first, second, eighth, 52nd and 78th week by atomic absorption spectrometry. At the end of the eighth week the amalgam samples were removed from solutions and evaluated by Rockwell Super Scial Microhardness tester. Statistically significant low amounts of metal ions were measured for Permite-C containing indium and Logic containing platinum. The microhardness test results showed that there were statistically significant increases in the microhardness of Permite-C and Logic. As a result it was shown that the amalgam samples were affected from corrosion conditions to different degrees. Sample of the Logic group that was stored in distilled water, showed smoother surface properties than other amalgam samples containing high copper. However, it was observed that samples of Permite-C group had the smoothest surface properties.

  8. Water requirements of the copper industry

    USGS Publications Warehouse

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  9. Surface Functionalization with Copper Tetraaminophthalocyanine Enables Efficient Charge Transport in Indium Tin Oxide Nanocrystal Thin Films.

    PubMed

    Samadi Khoshkhoo, Mahdi; Maiti, Santanu; Schreiber, Frank; Chassé, Thomas; Scheele, Marcus

    2017-04-26

    Macroscopic superlattices of tin-doped indium oxide (ITO) nanocrystals (NCs) are prepared by self-assembly at the air/liquid interface followed by simultaneous ligand exchange with the organic semiconductor copper 4,4',4″,4‴-tetraaminophthalocyanine (Cu4APc). By using X-ray photoelectron spectroscopy (XPS), grazing-incidence small-angle X-ray scattering (GISAXS), and ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, we demonstrate that the semiconductor molecules largely replace the native surfactant from the ITO NC surface and act as cross-linkers between neighboring particles. Transport measurements reveal an increase in electrical conductance by 9 orders of magnitude, suggesting that Cu4APc provides efficient electronic coupling for neighboring ITO NCs. This material provides the opportunity to study charge and spin transport through phthalocyanine monolayers.

  10. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    SciTech Connect

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; Deline, Chris; Alam, Muhammad Ashraful

    2016-09-01

    In this paper, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict the long-term output yields of photovoltaic farms under different environmental conditions.

  11. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    SciTech Connect

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; Deline, Chris; Alam, Muhammad Ashraful

    2016-07-18

    In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict the long-term output yields of photovoltaic farms under different environmental conditions.

  12. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; ...

    2016-07-18

    In this study, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict themore » long-term output yields of photovoltaic farms under different environmental conditions.« less

  13. Subacute pulmonary toxicity of copper indium gallium diselenide following intratracheal instillations into the lungs of rats.

    PubMed

    Tanaka, Akiyo; Hirata, Miyuki; Shiratani, Masaharu; Koga, Kazunori; Kiyohara, Yutaka

    2012-01-01

    The aim of this study was to clarify the pulmonary toxicity of copper indium gallium diselenide (CIGS) solar cells on 62 8-wk-old rats. Male Wistar rats were given 0.5, 5 or 50 mg/kg of CIGS particles, intratracheally, 3 times for a week. Control rats were given vehicle, distilled water, only. These rats were euthanized 0, 1 or 3 wk after the final instillation serially, and toxicological effects were determined. None of the CIGS-treated groups exhibited suppression of body weight gain compared with the control group. The relative lung weight in the CIGS 5 mg/kg-treated and 50 mg/kg-treated groups were significantly increased compared with that in the control group throughout the observation period. Although serum copper (Cu) and selenium (Se) concentrations were not affected by instillations of CIGS particles, the indium (In) levels increased with the passage of time in the CIGS 5 mg/kg-treated and 50 mg/kg-treated groups. However, the serum gallium (Ga) levels decreased in the CIGS 50 mg/kg-treated group from 0 to 3 wk. The content of each metal in the lung increased depending on the dose instilled and was constant during observation periods. Histopathologically, foci of slight to severe pulmonary inflammatory response and exudation were present among all the CIGS-treated groups, and the severity of these lesions worsened with the passage of time. The present results clearly demonstrate that CIGS particles caused subacute pulmonary toxicity and that dissolution of CIGS particles in the lung was considerably slow when repeated intratracheal instillations were given to rats.

  14. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  15. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  16. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  17. Biological monitoring of exposures to aluminium, gallium, indium, arsenic, and antimony in optoelectronic industry workers.

    PubMed

    Liao, Y-H; Yu, H-S; Ho, C-K; Wu, M-T; Yang, C-Y; Chen, J-R; Chang, C-C

    2004-09-01

    The main objective of this study was to investigate aluminum, gallium, indium, arsenic, and antimony exposures on blood and urine levels in the optoelectronic workers. One hundred seventy subjects were enrolled in this cohort study. Whole blood and urine levels were determined by inductively coupled plasma-mass spectrometry. Blood indium and urine gallium and arsenic levels in the 103 workers were significantly higher than that in 67 controls during the follow-up period. In regression models, the significant risk factors of exposure were job title, preventive equipment, Quetelet's index, sex, and education level. The findings of this study suggest that gallium, indium, and arsenic exposure levels may affect their respective levels in blood and urine. The use of clean, preventive equipment is recommended when prioritizing the administration of safety and hygiene in optoelectronics industries.

  18. Transmission electron microscopy of the amorphization of copper indium diselenide by in situ ion irradiation

    SciTech Connect

    Hinks, J. A.; Edmondson, P. D.

    2012-03-01

    Copper indium diselenide (CIS), along with its derivatives Cu(In,Ga)(Se,S){sub 2}, is a prime candidate for use in the absorber layers of photovoltaic devices. Due to its ability to resist radiation damage, it is particularly well suited for use in extraterrestrial and other irradiating environments. However, the nature of its radiation hardness is not well understood. In this study, transmission electron microscopy (TEM) with in situ ion irradiation was used to monitor the dynamic microstructural effects of radiation damage on CIS. Samples were bombarded with 400 keV xenon ions to create large numbers of atomic displacements within the thickness of the TEM samples and thus explore the conditions under which, if any, CIS could be amorphized. By observing the impact of heavily damaging radiation in situ--rather than merely the end-state possible in ex situ experiments--at the magnifications allowed by TEM, it was possible to gain an understanding of the atomistic processes at work and the underlying mechanism that give rise to the radiation hardness of CIS. At 200 K and below, it was found that copper-poor samples could be amorphized and copper-rich samples could not. This difference in behavior is linked to the crystallographic phases that are present at different compositions. Amorphization was found to progress via a combination of one- and two-hit processes. The radiation hardness of CIS is discussed in terms of crystallographic structures/defects and the consequences these have for the ability of the material to recover from the effects of displacing radiation.

  19. Preparation of copper-indium-gallium-diselenide precursor films by electrodeposition for fabricating high efficiency solar cells

    DOEpatents

    Bhattacharya, Raghu N.; Hasoon, Falah S.; Wiesner, Holm; Keane, James; Noufi, Rommel; Ramanathan, Kannan

    1999-02-16

    A photovoltaic cell exhibiting an overall conversion efficiency of 13.6% is prepared from a copper-indium-gallium-diselenide precursor thin film. The film is fabricated by first simultaneously electrodepositing copper, indium, gallium, and selenium onto a glass/molybdenum substrate (12/14). The electrodeposition voltage is a high frequency AC voltage superimposed upon a DC voltage to improve the morphology and growth rate of the film. The electrodeposition is followed by physical vapor deposition to adjust the final stoichiometry of the thin film to approximately Cu(In.sub.1-n Ga.sub.x)Se.sub.2, with the ratio of Ga/(In+Ga) being approximately 0.39.

  20. Brazing open cell reticulated copper foam to stainless steel tubing with vacuum furnace brazed gold/indium alloy plating

    DOEpatents

    Howard, Stanley R.; Korinko, Paul S.

    2008-05-27

    A method of fabricating a heat exchanger includes brush electroplating plated layers for a brazing alloy onto a stainless steel tube in thin layers, over a nickel strike having a 1.3 .mu.m thickness. The resultant Au-18 In composition may be applied as a first layer of indium, 1.47 .mu.m thick, and a second layer of gold, 2.54 .mu.m thick. The order of plating helps control brazing erosion. Excessive amounts of brazing material are avoided by controlling the electroplating process. The reticulated copper foam rings are interference fit to the stainless steel tube, and in contact with the plated layers. The copper foam rings, the plated layers for brazing alloy, and the stainless steel tube are heated and cooled in a vacuum furnace at controlled rates, forming a bond of the copper foam rings to the stainless steel tube that improves heat transfer between the tube and the copper foam.

  1. Synthesis, Characterization, and Processing of Copper, Indium, and Gallium Dithiocarbamates for Energy Conversion Applications

    NASA Technical Reports Server (NTRS)

    Duraj, S. A.; Duffy, N. V.; Hepp, A. F.; Cowen, J. E.; Hoops, M. D.; Brothrs, S. M.; Baird, M. J.; Fanwick, P. E.; Harris, J. D.; Jin, M. H.-C.

    2009-01-01

    Ten dithiocarbamate complexes of indium(III) and gallium(III) have been prepared and characterized by elemental analysis, infrared spectra and melting point. Each complex was decomposed thermally and its decomposition products separated and identified with the combination of gas chromatography/mass spectrometry. Their potential utility as photovoltaic materials precursors was assessed. Bis(dibenzyldithiocarbamato)- and bis(diethyldithiocarbamato)copper(II), Cu(S2CN(CH2C6H5)2)2 and Cu(S2CN(C2H5)2)2 respectively, have also been examined for their suitability as precursors for copper sulfides for the fabrication of photovoltaic materials. Each complex was decomposed thermally and the products analyzed by GC/MS, TGA and FTIR. The dibenzyl derivative complex decomposed at a lower temperature (225-320 C) to yield CuS as the product. The diethyl derivative complex decomposed at a higher temperature (260-325 C) to yield Cu2S. No Cu containing fragments were noted in the mass spectra. Unusual recombination fragments were observed in the mass spectra of the diethyl derivative. Tris(bis(phenylmethyl)carbamodithioato-S,S'), commonly referred to as tris(N,N-dibenzyldithiocarbamato)indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1(bar) with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry, and Fourier transform infrared (FT-IR) spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce

  2. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals.

    PubMed

    Yarema, Olesya; Bozyigit, Deniz; Rousseau, Ian; Nowack, Lea; Yarema, Maksym; Heiss, Wolfgang; Wood, Vanessa

    2013-09-24

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9-10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50-60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting.

  3. Impact of atmospheric species on copper indium gallium selenide solar cell stability: an overview

    NASA Astrophysics Data System (ADS)

    Theelen, Mirjam

    2016-01-01

    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their ZnO:Al front contact were exposed to liquid water purged with gases from the atmosphere, like carbon dioxide (CO2), oxygen (O2), nitrogen (N2), and air. The samples were analyzed before, during, and after exposure in order to define their stability under these conditions. The complete CIGS solar cells as well as the ZnO:Al front contact degraded rapidly when exposed to H2O combined with CO2, while they were relatively stable in H2O purged with O2 or N2. This was caused by either degradation of the grain boundaries in the ZnO:Al film or by the dissolution of part of this film. Uncovered molybdenum films, on the other hand, oxidized rapidly in the presence of H2O and O2, while they were more stable in the presence of H2O with N2 and/or CO2.

  4. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    SciTech Connect

    Bercegol, Adrien Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch.; Liero, Matthias

    2016-04-21

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  5. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    NASA Astrophysics Data System (ADS)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  6. Flexible copper-indium-diselenide films and devices for space applications

    NASA Technical Reports Server (NTRS)

    Armstrong, J. H.; Pistole, C. O.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1991-01-01

    With the ever increasing demands on space power systems, it is imperative that low cost, lightweight, reliable photovoltaics be developed. One avenue of pursuit for future space power applications is the use of low cost, lightweight flexible PV cells and arrays. Most work in this area assumes the use of flexible amorphous silicon (a-Si), despite its inherent instability and low efficiencies. However, polycrystalline thin film PV such as copper-indium-diselenide (CIS) are inherently more stable and exhibit better performance than a-Si. Furthermore, preliminary data indicate that CIS also offers exciting properties with respect to space applications. However, CIS has only heretofore only produced on rigid substrates. The implications of flexible CIS upon present and future space power platforms was explored. Results indicate that space qualified CIS can dramatically reduce the cost of PV, and in most cases, can be substituted for silicon (Si) based on end-of-life (EOL) estimations. Furthermore, where cost is a prime consideration, CIS can become cost effective than gallium arsenide (GaAs) in some applications. Second, investigations into thin film deposition on flexible substrates were made, and data from these tests indicate that fabrication of flexible CIS devices is feasible. Finally, data is also presented on preliminary TCO/CdS/CuInSe2/Mo devices.

  7. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    NASA Astrophysics Data System (ADS)

    Bercegol, Adrien; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch.; Liero, Matthias

    2016-04-01

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  8. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals

    PubMed Central

    2013-01-01

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9–10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50–60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting. PMID:24748721

  9. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    SciTech Connect

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; Contreras, Miguel; Weng, Tsu -Chien; Mansfield, Lorelle; Hurst, Katherine E.; Dameron, Arrelaine; Ramanathan, Kannan; Prendergast, David; Christensen, Steven T.

    2016-11-10

    The surface and near surface structure of the copper-indium-gallium-selenide (CIGS) absorber layer is integral to producing of a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigate the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces a normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (~19%). Finally, the results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.

  10. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    DOE PAGES

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; ...

    2016-11-10

    The surface and near surface structure of the copper-indium-gallium-selenide (CIGS) absorber layer is integral to producing of a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigate themore » effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces a normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (~19%). Finally, the results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.« less

  11. Quantum dot-sensitized solar cells based on directly adsorbed zinc copper indium sulfide colloids.

    PubMed

    Guijarro, Néstor; Guillén, Elena; Lana-Villarreal, Teresa; Gómez, Roberto

    2014-05-21

    Heavy metal-based quantum dots (QDs) have been demonstrated to behave as efficient sensitizers in QD-sensitized solar cells (QDSSCs), as attested by the countless studies and encouraging efficiencies reported so far. However, their intrinsic toxicity has arisen as a major issue for the prospects of commercialization. Here, we examine the potential of environmentally friendly zinc copper indium sulfide (ZCIS) QDs for the fabrication of liquid-junction QDSSCs by means of photoelectrochemical measurements. A straightforward approach to directly adsorb ZCIS QDs on TiO2 from a colloidal dispersion is presented. Incident photon-to-current efficiency (IPCE) spectra of sensitized photoanodes show a marked dependence on adsorption time, with longer times leading to poorer performances. Cyclic voltammograms point to a blockage of the channels of the mesoporous TiO2 film by the agglomeration of QDs as the main reason for the decrease in efficiency. Photoanodes were also subjected to the ZnS treatment. Its effects on electron recombination with the electrolyte are analyzed through electrochemical impedance spectroscopy and photopotential measurements. The corresponding results bring out the role of the ZnS coating as a barrier layer in preventing electron leakage toward the electrolyte, as argued in other QD-sensitized systems. The beneficial effect of the ZnS coating is ultimately reflected in the power conversion efficiency of complete devices, reaching values of 2%. In a more general vein, through these findings, we aim to call the attention to the potentiality of this quaternary alloy, virtually unexplored as a light harvester for sensitized devices.

  12. Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications.

    PubMed

    Yu, Kui; Ng, Peter; Ouyang, Jianying; Zaman, Md Badruz; Abulrob, Abedelnasser; Baral, Toya Nath; Fatehi, Dorothy; Jakubek, Zygmunt J; Kingston, David; Wu, Xiaohua; Liu, Xiangyang; Hebert, Charlie; Leek, Donald M; Whitfield, Dennis M

    2013-04-24

    We report our newly developed low-temperature synthesis of colloidal photoluminescent (PL) CuInS2 nanocrystals (NCs) and their in vitro and in vivo imaging applications. With diphenylphosphine sulphide (SDPP) as a S precursor made from elemental S and diphenylphosphine, this is a noninjection based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. For a typical synthesis with copper iodide (CuI) as a Cu source and indium acetate (In(OAc)3) as an In source, the growth temperature was as low as 160 °C and the feed molar ratios were 1Cu-to-1In-to-4S. Amazingly, the resulting CuInS2 NCs in toluene exhibit quantum yield (QY) of ~23% with photoemission peaking at ~760 nm and full width at half maximum (FWHM) of ~140 nm. With a mean size of ~3.4 nm (measured from the vertices to the bases of the pyramids), they are pyramidal in shape with a crystal structure of tetragonal chalcopyrite. In situ (31)P NMR (monitored from 30 °C to 100 °C) and in situ absorption at 80 °C suggested that the Cu precursor should be less reactive toward SDPP than the In precursor. For our in vitro and in vivo imaging applications, CuInS2/ZnS core-shell QDs were synthesized; afterwards, dihydrolipoic acid (DHLA) or 11-mercaptoundecanoic acid (MUA) were used for ligand exchange and then bio-conjugation was performed. Two single-domain antibodies (sdAbs) were used. One was 2A3 for in vitro imaging of BxPC3 pancreatic cancer cells. The other was EG2 for in vivo imaging of a Glioblastoma U87MG brain tumour model. The bioimaging data illustrate that the CuInS2 NCs from our SDPP-based low-temperature noninjection approach are good quality.

  13. Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications

    SciTech Connect

    Keerthi, K.; Nair, B. G.; Philip, R. R.; Masuzawa, T.; Saito, I.; Okano, K.; Johns, N.

    2016-05-23

    Junction formation of n-copper indium oxide (CIO) (extrinsically undoped) with p-Si leading to conversion of photons in the UV-Vis range is being reported for the first time. I-V and temporal photoconductivity data confirm positively the carrier generation in CIO under irradiation while optical absorbance data furnish its band gap to be ~ 3.1 eV. Ultraviolet photoelectron spectroscopy is used to study the electronic band structure of CIO on Si and to construct a schematic diagram of the hetero-junction to explain the observed photovoltaic phenomena.

  14. Single-Step Production of Nanostructured Copper-Nickel (CuNi) and Copper-Nickel-Indium (CuNiIn) Alloy Particles

    NASA Astrophysics Data System (ADS)

    Apaydın, Ramazan Oğuzhan; Ebin, Burçak; Gürmen, Sebahattin

    2016-07-01

    Nanostructured copper-nickel (CuNi) and copper-nickel-indium (CuNiIn) alloy particles were produced from aqueous solutions of copper, nickel nitrates and indium sulfate by hydrogen reduction-assisted ultrasonic spray pyrolysis. The effects of reduction temperatures, at 973 K, 1073 K, and 1173 K (700 °C, 800 °C, and 900 °C), on the morphology and crystalline structure of the alloy particles were investigated under the conditions of 0.1 M total precursor concentration and 0.5 L/min H2 volumetric flow rate. X-ray diffraction studies were performed to investigate the crystalline structure. Particle size and morphology were investigated by scanning electron microscope and energy-dispersive spectroscopy was applied to determine the chemical composition of the particles. Spherical nanocrystalline binary CuNi alloy particles were prepared in the particle size range from 74 to 455 nm, while ternary CuNiIn alloy particles were obtained in the particle size range from 80 to 570 nm at different precursor solution concentrations and reduction temperatures. Theoretical and experimental chemical compositions of all the particles are nearly the same. Results reveal that the precursor solution and reduction temperature strongly influence the particle size of the produced alloy particles.

  15. I. Electroluminescence from Hydrogen Uranyl Phosphate. I. Indium-Substituted Bismuth Copper Oxide Superconductors

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gunnar Rudolph

    1990-01-01

    Chapter 1. A review of the general aspects of solid electrolytes is presented along with a summary of the electrical and optical properties of hydrogen uranyl phosphate (HUO_2PO_4 bullet4H_2O, HUP). A review of impedance spectroscopy, as it relates to the determination of ionic conductivities and dielectric constants of solid electrolytes is presented. The final section covers some aspects of gas plasma display devices. Chapter 2. Electroluminescence (EL) cells have been constructed with the ionically conducting solid HUP as the emissive medium. With ac excitation, both uranyl emission and molecular nitrogen plasma emission are observed, with the latter appearing to excite the former. Similar results were obtained with fully-substituted sodium (NaUP), magnesium (Mg_{0.5}UP), and pyridinium (pyHUP) derivatives of HUP. For all of these solids, the dependence of the EL intensity on sample thickness, ac frequency, and applied voltage has been determined. Impedance measurements permitted acquisition of dielectric constants and ionic conductivities for these solids, both of which decrease in the order HUP > NaUP > Mg_{0.5}UP > pyHUP. A model describing the dependence of EL intensity on cell parameters is presented. Chapter 3. The copper oxide superconductors can be structurally classified into five major families, represented by the compositions, (La,Sr)_2CuO _4, YBa_2Cu_3O_7, Pb_2Sr_2(Y,Ca)Cu_3O_8, (TIO)_{m}Ca_{n-1}Ba_2Cu _{n}O_{2n+2}, and Bi_2Sr_2(Ln_{1-x}Ce _{x})_2Cu_2O_{10+y }. All families are linked by a CuO _2 layer, which is crucial for superconductivity. The structural and chemical aspects of each family is covered with emphasis on the bismuth and thallium systems. The effects of substitution and oxygen annealing are also briefly considered. Chapter 4. The attempted substitution of indium into the rm Bi_2(Ca,Sr)_2CuO _6 and Bi_2(Ca,Sr) _3Cu_2O _8 systems is reported. Previously unreported side products, (Ca,Sr)In_2O _4 and Bi-Ca-Sr-O, viz., produced in the

  16. Selective recovery of pure copper nanopowder from indium-tin-oxide etching wastewater by various wet chemical reduction process: Understanding their chemistry and comparisons of sustainable valorization processes.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Hong, Hyun Seon; Cho, Sung-Soo

    2016-05-01

    Sustainable valorization processes for selective recovery of pure copper nanopowder from Indium-Tin-Oxide (ITO) etching wastewater by various wet chemical reduction processes, their chemistry has been investigated and compared. After the indium recovery by solvent extraction from ITO etching wastewater, the same is also an environmental challenge, needs to be treated before disposal. After the indium recovery, ITO etching wastewater contains 6.11kg/m(3) of copper and 1.35kg/m(3) of aluminum, pH of the solution is very low converging to 0 and contain a significant amount of chlorine in the media. In this study, pure copper nanopowder was recovered using various reducing reagents by wet chemical reduction and characterized. Different reducing agents like a metallic, an inorganic acid and an organic acid were used to understand reduction behavior of copper in the presence of aluminum in a strong chloride medium of the ITO etching wastewater. The effect of a polymer surfactant Polyvinylpyrrolidone (PVP), which was included to prevent aggregation, to provide dispersion stability and control the size of copper nanopowder was investigated and compared. The developed copper nanopowder recovery techniques are techno-economical feasible processes for commercial production of copper nanopowder in the range of 100-500nm size from the reported facilities through a one-pot synthesis. By all the process reported pure copper nanopowder can be recovered with>99% efficiency. After the copper recovery, copper concentration in the wastewater reduced to acceptable limit recommended by WHO for wastewater disposal. The process is not only beneficial for recycling of copper, but also helps to address environment challenged posed by ITO etching wastewater. From a complex wastewater, synthesis of pure copper nanopowder using various wet chemical reduction route and their comparison is the novelty of this recovery process.

  17. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO.

    PubMed

    Rasul, Shahid; Anjum, Dalaver H; Jedidi, Abdesslem; Minenkov, Yury; Cavallo, Luigi; Takanabe, Kazuhiro

    2015-02-09

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  19. One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells.

    PubMed

    Harati, Mohammad; Jia, Jia; Giffard, Kévin; Pellarin, Kyle; Hewson, Carly; Love, David A; Lau, Woon Ming; Ding, Zhifeng

    2010-12-14

    Herein we report the one-pot electrodeposition of copper indium gallium diselenide, CuIn(1-x)Ga(x)Se(2) (CIGS), thin films as the p-type semiconductor in an ionic liquid medium consisting of choline chloride/urea eutectic mixture known as Reline. The thin films were characterized by scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman microspectroscopy, and UV-visible spectroscopy. Based on the results of the characterizations, the electrochemical bath recipe was optimized to obtain stoichiometric CIGS films with x between 0.2 and 0.4. The chemical activity and photoreactivity of the optimized CIGS films were found to be uniform using scanning electrochemical microscopy and scanning photoelectrochemical microscopy. Low-cost stoichiometric CIGS thin films in one-pot were successfully fabricated.

  20. Electronic Transport Properties of Thin Film Inhomogeneous Composites: Silver/gold Copper Indium Diselenide and Silver Amorphous/polycrystalline Silicon

    NASA Astrophysics Data System (ADS)

    Ndlela, Zolili U.

    1990-08-01

    This work investigated a two component inhomogeneous thin film composite consisting of metal particles dispersed in a semiconductor matrix. The systems studied were silver (Ag) or gold (Au) dispersed in copper indium diselenide (CuInSe_2) and silver dispersed in amorphous silicon (alpha-Si) or polycrystalline-silicon. Their transport properties were measured from 20 to 400 K, and it was observed that the films were not adversely affected by the incorporation of metal particles into the semiconducting matrix. This study also provides a mechanism to explain the transport behavior which involves the concepts of localization, mobility edges, and hopping conduction. Evidence strongly indicates that conduction occurs in these composites by hopping and/or by tunneling between localized states or between metallic grains and that their behavior is characterized by a T^ {-1/4} or a T^{-1/2 } temperature dependence.

  1. Highly sensitive photodetectors based on hybrid 2D-0D SnS{sub 2}-copper indium sulfide quantum dots

    SciTech Connect

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing E-mail: hej@nanoctr.cn; He, Jun E-mail: hej@nanoctr.cn

    2016-01-04

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS{sub 2}-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS{sub 2} and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  2. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    SciTech Connect

    Chopra, Nitin; Shi, Wenwu; Lattner, Andrew

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  3. High efficiency copper indium gallium diselenide (CIGS) thin film solar cells

    NASA Astrophysics Data System (ADS)

    Rajanikant, Ray Jayminkumar

    The generation of electrical current from the solar radiation is known as the photovoltaic effect. Solar cell, also known as photovoltaic (PV) cell, is a device that works on the principle of photovoltaic effect, and is widely used for the generation of electricity. Thin film polycrystalline solar cells based on copper indium gallium diselenide (CIGS) are admirable candidates for clean energy production with competitive prices in the near future. CIGS based polycrystalline thin film solar cells with efficiencies of 20.3 % and excellent temperature stability have already been reported at the laboratory level. The present study discusses about the fabrication of CIGS solar cell. Before the fabrication part of CIGS solar cell, a numerical simulation is carried out using One-Dimensional Analysis of Microelectronic and Photonic Structures (AMPS-ID) for understanding the physics of a solar cell device, so that an optimal structure is analyzed. In the fabrication part of CIGS solar cell, Molybdenum (Mo) thin film, which acts as a 'low' resistance metallic back contact, is deposited by RF magnetron sputtering on organically cleaned soda lime glass substrate. The major advantages for using Mo are high temperature, (greater than 600 °C), stability and inertness to CIGS layer (i.e., no diffusion of CIGS into Mo). Mo thin film is deposited at room temperature (RT) by varying the RF power and the working pressure. The Mo thin films deposited with 100 W RF power and 1 mTorr working pressure show a reflectivity of above average 50 % and the low sheet resistance of about 1 O/□. The p-type CIGS layer is deposited on Mo. Before making thin films of CIGS, a powder of CIGS material is synthesized using melt-quenching method. Thin films of CIGS are prepared by a single-stage flash evaporation process on glass substrates, initially, for optimization of deposition parameters and than on Mo coated glass substrates for device fabrication. CIGS thin film is deposited at 250 °C at a

  4. Comparative acute toxicity of gallium(III), antimony(III), indium(III), cadmium(II), and copper(II) on freshwater swamp shrimp (Macrobrachium nipponense).

    PubMed

    Yang, Jen-Lee

    2014-04-01

    Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.

  5. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    NASA Astrophysics Data System (ADS)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  6. Structural, optical and electronic properties of indium sulfide compositions under influence of copper impurity produced by chemical method

    NASA Astrophysics Data System (ADS)

    Esmaili, Parisa; Kangarlou, Haleh; Savaloni, Hadi; Ghorannevis, Mahmood

    Aqueous solutions with 70 °C and pH = 2.5 constant values were prepared from convenient chemical compounds to produce In2S3: Cu crystals and thin films. Crystal compositions were grown in this solution under special conditions. Micrographs showed amorphous In2S3 orange powder and transparent vitreous pieces of CuInS2 crystals. Indium sulfide films were produced using the same solution in CBD method, on the glass substrates at different [Cu/In] molar ratio concentrations. Cu+ ions by different concentration doped from copper chloride source into In2S3 films. The produced films were post-annealed at 400 °C for about 1 h. Their crystallography, phase transitions, element analysis and nanostructures were investigated by X-ray diffraction, SEM, EDAX and AFM analyses. β-In2S3 phase was dominant and by doping copper impurity, XRD results suggested the formation of CuInS2 compositions. Morphology of the films, nano-structures, grain shapes and hardness was changed. Optical reflectance was measured in the UV-VIS wavelength range by a spectrophotometer. Other optical properties and optical band gaps were calculated using Kramers-Kronig relations on reflectivity curves. Electronic properties were calculated by full potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, generalized gradient approximation (GGA) was used for the exchange-correlation potential calculation. Band gap structures, density of states and imaginary parts of dielectric function were calculated for In2S3: Cu compositions.

  7. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  8. Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers.

    PubMed

    Kim, Jae-Yup; Yang, Jiwoong; Yu, Jung Ho; Baek, Woonhyuk; Lee, Chul-Ho; Son, Hae Jung; Hyeon, Taeghwan; Ko, Min Jae

    2015-11-24

    Copper-indium-selenide (CISe) quantum dots (QDs) are a promising alternative to the toxic cadmium- and lead-chalcogenide QDs generally used in photovoltaics due to their low toxicity, narrow band gap, and high absorption coefficient. Here, we demonstrate that the photovoltaic performance of CISe QD-sensitized solar cells (QDSCs) can be greatly enhanced simply by optimizing the thickness of ZnS overlayers on the QD-sensitized TiO2 electrodes. By roughly doubling the thickness of the overlayers compared to the conventional one, conversion efficiency is enhanced by about 40%. Impedance studies reveal that the thick ZnS overlayers do not affect the energetic characteristics of the photoanode, yet enhance the kinetic characteristics, leading to more efficient photovoltaic performance. In particular, both interfacial electron recombination with the electrolyte and nonradiative recombination associated with QDs are significantly reduced. As a result, our best cell yields a conversion efficiency of 8.10% under standard solar illumination, a record high for heavy metal-free QD solar cells to date.

  9. Electrical Bias as an Alternate Method for Reproducible Measurement of Copper Indium Gallium Diselenide (CIGS) Photovoltaic Modules: Preprint

    SciTech Connect

    Deline, C.; Stokes, A.; Silverman, T. J.; Rummel, S.; Jordan, D.; Kurtz, S.

    2012-08-01

    Light-to-dark metastable changes in thin-film photovoltaic (PV) modules can introduce uncertainty when measuring module performance on indoor flash testing equipment. This study describes a method to stabilize module performance through forward-bias current injection rather than light exposure. Measurements of five pairs of thin-film copper indium gallium diselenide (CIGS) PV modules indicate that forward-bias exposure maintained the PV modules at a stable condition (within 1%) while the unbiased modules degraded in performance by up to 12%. It was additionally found that modules exposed to forward bias exhibited stable performance within about 3% of their long-term outdoor exposed performance. This carrier-injection method provides a way to reduce uncertainty arising from fast transients in thin-film module performance between the time a module is removed from light exposure and when it is measured indoors, effectively simulating continuous light exposure by injecting minority carriers that behave much as photocarriers do. This investigation also provides insight into the initial light-induced transients of thin-film modules upon outdoor deployment.

  10. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    SciTech Connect

    Nian, Qiong; Cheng, Gary J.; Zhang, Martin Y.; Wang, Yuefeng; Das, Suprem R.; Bhat, Venkataprasad S.; Huang, Fuqiang

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducing scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.

  11. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.

    PubMed

    Singh, Manjeet; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2014-09-24

    In the solar cell field, development of simple, low-cost, and low-temperature fabrication processes has become an important trend for energy-saving and environmental issues. Copper indium gallium selenide (CIGS) solar cells have attracted much attention due to the high absorption coefficient, tunable band gap energy, and high efficiency. However, vacuum and high-temperature processing in fabrication of solar cells have limited the applications. There is a strong need to develop simple and scalable methods. In this work, a CIGS solar cell based on all printing steps and low-temperature annealing is developed. CIGS absorber thin film is deposited by using dodecylamine-stabilized CIGS nanoparticle ink followed by printing buffer layer. Silver nanowire (AgNW) ink and sol-gel-derived ZnO precursor solution are used to prepare a highly conductive window layer ZnO/[AgNW/ZnO] electrode with a printing method that achieves 16 Ω/sq sheet resistance and 94% transparency. A CIGS solar cell based on all printing processes exhibits efficiency of 1.6% with open circuit voltage of 0.48 V, short circuit current density of 9.7 mA/cm(2), and fill factor of 0.34 for 200 nm thick CIGS film, fabricated under ambient conditions and annealed at 250 °C.

  12. Industrial applications of high-power copper vapor lasers

    SciTech Connect

    Warner, B.E.; Boley, C.D.; Chang, J.J.; Dragon, E.P.; Havstad, M.A.; Martinez, M.; McLean, W. II

    1995-08-01

    A growing appreciation has developed in the last several years for the copper vapor laser because of its utility in ablating difficult materials at high rates. Laser ablation at high rates shows promise for numerous industrial applications such as thin film deposition, precision hole drilling, and machining of ceramics and other refractories.

  13. Growth and characterization of indium doped silicon single crystals at industrial scale

    NASA Astrophysics Data System (ADS)

    Haringer, Stephan; Giannattasio, Armando; Alt, Hans Christian; Scala, Roberto

    2016-03-01

    Indium is becoming one of the most important dopant species for silicon crystals used in photovoltaics. In this work we have investigated the behavior of indium in silicon crystals grown by the Czochralski pulling process. The experiments were performed by growing 200 mm crystals, which is a standard diameter for large volume production, thus the data reported here are of technological interest for the large scale production of indium doped p-type silicon. The indium segregation coefficient and the evaporation rate from the silicon melt have been calculated to be 5 × 10-4 ± 3% and 1.6 × 10-4 cm·s-1, respectively. In contrast to previous works the indium was introduced in liquid phase and the efficiency was compared with that deduced by other authors, using different methods. In addition, the percentage of electrically active indium at different dopant concentrations is calculated and compared with the carrier concentration at room temperature, measured by four-point bulk method.

  14. Sonochemical method for preparation of copper indium sulfide nanoparticles and their application for solar cell.

    PubMed

    Amiri, Omid; Salavati-Niasari, Masoud; Sabet, Mohammad; Ghanbari, Davood

    2014-02-01

    In this paper, CuInS2 (CIS) nanoparticles were synthesized successfully via a new copper precursor [bis(acetylacetonato)copper(II)], [Cu(acac)2]; at room temperature by ultrasonic method. The effect of sulfur source, solvent, and reaction time was investigated on product morphology and particle size. A series of analyses was performed to characterize the CuInS2 microsphere including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. CuInS2 nanoparticles were prepared and coated on FTO. Later, the coated FTO was sintered so that a compact and dense CuInS2 film was produced and measured for photovoltaic characteristics such as Voc, Jsc and FF.

  15. Influence of Indium Addition on Whisker Mitigation in Electroplated Tin Coatings on Copper Substrates

    NASA Astrophysics Data System (ADS)

    Meinshausen, L.; Bhassyvasantha, S.; Majumdar, B. S.; Dutta, I.

    2016-01-01

    Among many factors that influence whisker nucleation and growth in electroplated tin, it is now well established that small additions of Pb leads to whisker mitigation. To date, a good non-toxic elemental alternative to Pb that would mitigate whiskers remains elusive. In this work, a 50-100 nm In electroplated layer was incorporated into a 1- μm-thick electroplated Sn on a pure Cu substrate. In order to permit diffusion of In into Sn, heat treatments (HTs) between 125°C and 160°C were performed. The diffusion profile of In was altered by varying the dwell times of the HT and by utilizing two variants of In layer deposition, namely, (1) electroplating In at the top of the Sn plating, and (2) by sandwiching the In plating between two Sn layers, each approximately 500 nm thick. Appropriate control samples of pure Sn were utilized to permit valid data on the influence of In on whisker mitigation. Indium additions reduced whisker growth by at least two orders of magnitude following the 160°C treatment, independent of the location of the In layer. X-ray microanalysis of a focused ion beam cross section of the sandwich plating confirmed that In had indeed diffused into the Sn through the 160°C HT and was a likely reason for the mitigation of Sn whiskers.

  16. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

    PubMed Central

    Sportelli, Maria Chiara; Picca, Rosaria Anna; Ronco, Roberto; Bonerba, Elisabetta; Tantillo, Giuseppina; Pollini, Mauro; Sannino, Alessandro; Valentini, Antonio; Cataldi, Tommaso R.I.; Cioffi, Nicola

    2016-01-01

    Antimicrobial copper nanoparticles (CuNPs) were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). The release of copper ions in solution was studied by Electro-Thermal Atomic Absorption Spectroscopy (ETAAS). Finally, the antimicrobial activity of freshly prepared, as well as aged samples—stored for two months—was demonstrated towards different target microorganisms. PMID:28773665

  18. Indium oxide (In2O3) nanoparticles induce progressive lung injury distinct from lung injuries by copper oxide (CuO) and nickel oxide (NiO) nanoparticles.

    PubMed

    Jeong, Jiyoung; Kim, Jeongeun; Seok, Seung Hyeok; Cho, Wan-Seob

    2016-04-01

    Indium is an essential element in the manufacture of liquid crystal displays and other electronic devices, and several forms of indium compounds have been developed, including nanopowders, films, nanowires, and indium metal complexes. Although there are several reports on lung injury caused by indium-containing compounds, the toxicity of nanoscale indium oxide (In2O3) particles has not been reported. Here, we compared lung injury induced by a single exposure to In2O3 nanoparticles (NPs) to that caused by benchmark high-toxicity nickel oxide (NiO) and copper oxide (CuO) NPs. In2O3 NPs at doses of 7.5, 30, and 90 cm(2)/rat (50, 200, and 600 µg/rat) were administered to 6-week-old female Wistar rats via pharyngeal aspiration, and lung inflammation was evaluated 1, 3, 14, and 28 days after treatment. Neutrophilic inflammation was observed on day 1 and worsened until day 28, and severe pulmonary alveolar proteinosis (PAP) was observed on post-aspiration days 14 and 28. In contrast, pharyngeal aspiration of NiO NPs showed severe neutrophilic inflammation on day 1 and lymphocytic inflammation with PAP on day 28. Pharyngeal aspiration of CuO NPs showed severe neutrophilic inflammation on day 1, but symptoms were completely resolved after 14 days and no PAP was observed. The dose of In2O3 NPs that produced progressive neutrophilic inflammation and PAP was much less than the doses of other toxic particles that produced this effect, including crystalline silica and NiO NPs. These results suggest that occupational exposure to In2O3 NPs can cause severe lung injury.

  19. Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study

    NASA Astrophysics Data System (ADS)

    Diyatmika, Wahyu; Xue, Lingjun; Lin, Tai-Nan; Chang, Chia-wen; Chu, Jinn P.

    2016-08-01

    The feasibility of using Zr53.5Cu29.1Al6.5Ni10.9 thin-film metallic glass (TFMG) as a diffusion barrier for copper indium gallium selenide (CIGS) solar cells on stainless steel (SS) is investigated. The detrimental Fe diffusion from SS into CIGS is found to be effectively hindered by the introduction of a 70-nm-thick TFMG barrier; the cell performance is thus improved. Compared with the 2.73% of CIGS on bare SS, a higher efficiency of 5.25% is obtained for the cell with the Zr52Cu32Al9Ni7 TFMG barrier.

  20. Growth kinetics and processings of copper indium diselenide-based thin films

    NASA Astrophysics Data System (ADS)

    Kim, Suku

    CuInSe2 (CIS)-based compound semiconductors are increasingly important absorber layer materials for thin film solar cells. A better understanding of the growth kinetics of CuInSe2 thin films as a function of the process parameters would benefit the development of this technology. The reaction kinetics for formation of CuInSe2 from the bilayer structure InSe/CuSe was studied in-situ by high-temperature X-ray diffraction. The reaction pathway produces a diffusion barrier layer that can be schematically represented as InSe|CuSe → InSe|CuInSe 2|CuSe. Two different analyses based on the Avrami and the parabolic rate laws suggest that the reaction is one-dimensional diffusion controlled. The estimated apparent activation energy from each model is 66.0 and 65.2 kJ/mol, respectively. The result demonstrates that the time-resolved high temperature X-ray diffraction provides a powerful method for studying the reaction kinetics of CuInSe2 growth. The thermodynamic driving force for formation of copper selenide phase and the grain size distribution in CuInSe2 films was investigated. Large grains (˜a few mum) were observed in the CuInSe2 films annealed with a CuSe layer while films annealed without this layer exhibited very small grain size (<0.2 mum). This result suggests a secondary grain growth mechanism driven by the surface-energy anisotropy is responsible for the increased grain size. Epitaxial growth of CuInSe2 and CuGaSe2 on (001) GaAs substrates was attempted. The result shows that the crystalline structure and its quality strongly depends on the film stoichiometry, especially the [Cu]/[III] atomic ratio, with Cu-rich compositions showing higher crystalline quality. A two-dimensional model of heat transfer in the growth reactor was developed for a rotating platen/substrate in the molecular beam epitaxial reactor that was used for film growth. Time-varying view factors were included in the model to solve the problem dynamically and to account for the fact that the

  1. An econometric model of the world copper industry

    SciTech Connect

    Lewanika, M.W.

    1989-01-01

    This model of the world copper economy is fitted to 1960-1984 annual data. Here, unlike in previous models, an attempt is made to depart from the tendency to force the same functional form to represent individual country supply curves. The methodology utilized in constructing this model allows for individual countries to have supply curves that differ in functional form. The model consists of five categories - Western world consumption, Western world primary supply, Western world secondary supply, change in inventory, and net exports to the Centrally Planned Economies. Consumption, secondary supply, and change in inventory are each estimated by one equation aggregating the Western world. Primary supply is the sum of the supply equations for primary copper estimated for seven major producing countries and the Rest of the world. The seven countries are Chile, the United States, Canada, Zambia, Zaire, Peru, and Australia. The model is used to examine the copper industry in the coming decade under various scenarios. The copper market is found to be characterized by low short-run and slightly higher long-run price elasticities except in the case of the Rest of the World whose short-run elasticity is 1.52.

  2. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    PubMed

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  3. Efficiency enhancement of dye-sensitized solar cell utilizing copper indium sulphide/zinc sulphide quantum dot plasticized cellulose acetate polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Samsi, N. S.; Effendi, N. A. S.; Zakaria, R.; Ali, A. M. M.

    2017-04-01

    This paper describes the efficiency of solar cells that have been prepared by mixing quantum dots (QD) in gel polymer electrolytes (GPEs) based on plasticized cellulose acetate. Copper indium sulfide/zinc sulfide (CuInS/ZnS) QD was doped into GPEs and was characterized for application in a dye-sensitized solar cell (DSSC). The addition of QD into GPEs increases the conductivity up to 1.6  ×  10-1 S cm-1 at room temperature made them a promising electrolyte for DSSC. Atomic force microscopy analysis affirmed the uniform distribution of QD into the polymer matrix. The photovoltaic efficiency performance of DSSC using QD-doped GPE electrolyte was found to be increased up to 8.02%.

  4. Indium Sorption to Iron Oxides

    NASA Astrophysics Data System (ADS)

    White, S. J.; Sacco, S. A.; Hemond, H.; Hussain, F. A.; Runkel, R. L.; Walton-Day, K. E.; Kimball, B. A.; Shine, J. P.

    2014-12-01

    Indium is an increasingly important metal in semiconductors and electronics, and its use is growing rapidly as a semiconductive coating (as indium tin oxide) for liquid crystal displays (LCDs) and flat panel displays. It also has uses in important energy technologies such as light emitting diodes (LEDs) and photovoltaic cells. Despite its rapid increase in use, very little is known about the environmental behavior of indium, and concerns are being raised over the potential health effects of this emerging metal contaminant. One source of indium to the environment is acid mine drainage from the mining of lead, zinc, and copper sulfides. In our previous studies of a stream in Colorado influenced by acid mine drainage from lead and zinc mining activities, indium concentrations were found to be 10,000 times those found in uncontaminated rivers. However, the speciation and mobility of indium could not be reliably modeled because sorption constants to environmental sorbents have not been determined. In this study, we generate sorption constants for indium to ferrihydrite in the laboratory over a range of pHs, sorbent to sorbate ratios, and ionic strengths. Ferrihydrite is one of the most important sorbents in natural systems, and sorption to amorphous iron oxides such as ferrihydrite is thought to be one of the main removal mechanisms of metals from the dissolved phase in aqueous environments. Because of its relatively low solubility, we also find that indium hydroxide precipitation can dominate indium's partitioning at micromolar concentrations of indium. This precipitation may be important in describing indium's behavior in our study stream in Colorado, where modeling sorption to iron-oxides does not explain the complete removal of indium from the dissolved phase when the pH of the system is artificially raised to above 8. This study contributes much-needed data about indium's aqueous behavior, in order to better understand its fate, transport, and impacts in the

  5. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  6. Economic and toxicological aspects of copper industry in Katanga, DR Congo.

    PubMed

    Kalenga, John Ngoy

    2013-02-01

    The Katanga province is well known for its copper and cobalt reserves. During the early 2000s a boom of mining projects in Katanga brought again hope for better future to Congolese people. The paper aims to evaluate the impact of recent production recovery on economy and environment. We collected primary and secondary sources on copper industry for economic analysis. We use results of laboratory analysis conducted at the Congolese Office of Control by provincial division of environment for toxicological analysis. The comparison of heavy metal concentration to standards shows that mining industry is the main source of environmental pollution in Katanga. Copper industry generates income for economic growth of the region.

  7. MENTAL MORBIDITY IN INDUSTRIAL WORKERS OF KHETRI COPPER COMPLEX1

    PubMed Central

    Satija, D.C.; Patni, S.K.; Nathawat, S.S.

    1984-01-01

    SUMMARY There is dearth of researches pertaining to prevalence of mental morbidity in Industrial setups, particularly in our country. They are important as psychological ill health of workers may adversely effect the productivity in developing country like India. Khetri Copper Complex in Rajasthan was selected for present study. Aims were to determine the period prevalence of mental morbidity among workers and role of sociodemographic, psychological variables in such disorders. 330 workers were randomly selected from various departments. Each worker was given specially designed proforma and Goldberg's General Health Questionnaire. Workers scoring 12 or more were given “A standardised psychiatric interview schedule” suspected cases were examined by senior consultants to assign them diagnostic categories (I.C.D.-9). Period Prevalence in this study was 186.66/1000. As regards diagnostic categories, 75% were neurotic and 12.5% psychotics. Role of socio demographic, psychological and psychiatric variables in the development of these disorders has been discussed. Findings of this study are in expected direction and results obtained can be easily explained in terms of formulations given by other researchers in this field. Recommendation and plans for further research are discussed. PMID:21965974

  8. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Sun, Chun; Zhang, Yu; Wang, Yu; Liu, Wenyan; Kalytchuk, Sergii; Kershaw, Stephen V.; Zhang, Tieqiang; Zhang, Xiaoyu; Zhao, Jun; Yu, William W.; Rogach, Andrey L.

    2014-06-01

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10 mA to (0.351, 0.322) at 30 mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  9. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10 mA to (0.351, 0.322) at 30 mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  10. Gallium In-Depth Profile in Bromine- Etched Copper-Indium-Galium-(Di)selenide (CIGS) Thin Films Inspected Using Raman Spectroscopy.

    PubMed

    Parravicini, Jacopo; Acciarri, Maurizio; Lomuscio, Alberto; Murabito, Matteo; Le Donne, Alessia; Gasparotto, Andrea; Binetti, Simona

    2017-06-01

    In the thin film solar cells domain, copper indium galium (di)selenide (CIGS) is a material with well-established photovoltaic purpose. Here the presence of a suitable [Ga]/([Ga]+[In]) (GGI) in-depth profile has proved to play a key role in the performance of cells. The implementation of a routine method based on reliable but easily available experimental techniques is mandatory to obtain information on the GGI profile of any CIGS layer, in order to achieve high efficiency chalcogenide layers. In this vein, we here propose and systematically test a simple method for the GGI profile determination based on repeated bromine etching of CIGS thin films followed by Raman analysis of the A1 peak position. The reliability of the proposed approach is verified using a methodical comparison with energy-dispersive X-ray spectroscopy (EDS) analysis and secondary ion mass spectroscopy (SIMS) profiles, showing a good agreement with the GGI in-depth profiles determined using Raman analysis on bromine etched samples.

  11. Current Energy Requirements in the Copper Producing Industries

    NASA Astrophysics Data System (ADS)

    Pitt, Charles H.; Wadsworth, Milton E.

    1981-06-01

    An analysis of energy usage in the production of refined cathode copper was made from mining ore to cathode copper. In mining copper ore the greatest energy consumers are ore hauling and blasting. Another important factor is the "recovery efficiency" of the metallurgical processes used to extract the copper. The mining and mineral concentrating energies are directly proportional to the "recovery efficiency," with a typical mining operation requiring about 20 million Btu/ton of cathode copper produced. Mineral concentrating was also found to be a large energy consumer, requiring about 43 million Btu/ton of cathode copper. Some possibilities for energy savings in the mineral processing area include use of autogenous grinding and computer control for optimizing grinding operations, improved classifier efficiency, and optimizing the entire concentrator plant performance by interrelating all plant operations. In acid plants, optimization of input SO2 concentration can make the plant a net producer rather than a net user of energy. The conventional smelting process utilizes very little of the energy from the combustion of sulfides in the charge. Several of the newer copper pyrometallurgical processes which utilize more of the combustion energy of the sulfides as heat show a significant improvement over conventional smelting. Generally, increased use of oxygen decreases Level 1 energies but proportionately increases Level 2 energies. Hydrometallurgical processes are, in general, more energy intensive than smelting processes, mainly because of the inability to utilize the heat of reaction of the sulfides. Electrowinning used in most hydrometallurgy processes is also energy intensive, and research in these areas could produce significant energy savings. Combination pyrometallurgical processes are generally less energy intensive than entirely hydrometallurgical processes. Significant improvements may be made in energy use in hydrometallurgical processes by more effective

  12. An econometric model of the U.S. secondary copper industry: Recycling versus disposal

    USGS Publications Warehouse

    Slade, M.E.

    1980-01-01

    In this paper, a theoretical model of secondary recovery is developed that integrates microeconomic theories of production and cost with a dynamic model of scrap generation and accumulation. The model equations are estimated for the U.S. secondary copper industry and used to assess the impacts that various policies and future events have on copper recycling rates. The alternatives considered are: subsidies for secondary production, differing energy costs, and varying ore quality in primary production. ?? 1990.

  13. Cadmium-free copper indium gallium diselenide hybrid solar cells comprising a 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole buffer layer

    NASA Astrophysics Data System (ADS)

    Reinhard, Manuel; Simon, Christoph; Kuhn, Johannes; Bürkert, Linda; Cemernjak, Marco; Dimmler, Bernhard; Lemmer, Uli; Colsmann, Alexander

    2013-02-01

    Copper indium gallium diselenide (CIGS) solar cells are the most efficient thin film photovoltaic devices today. In this work, we investigate CIGS/organic hybrid solar cells comprising a semi-transparent metal top electrode and a wide band gap organic semiconductor as buffer layer. Depositing the organic semiconductor from solution, we fabricate Cd-free solar cells exhibiting about the same efficiency as their counterparts comprising CdS and significantly higher open-circuit voltages as compared to buffer-free devices. Although the organic molecules do not cover the CIGS surface homogeneously, their use enables prolonged charge carrier lifetimes according to impedance spectroscopy measurements.

  14. Indium: bringing liquid-crystal displays into focus

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Compared to more abundant industrial metals such as lead and zinc, information about the behavior and toxicity of indium in the environment is limited. However, many indium compounds have been proven to be toxic to animals.

  15. Chemical Bath Deposited Zinc Sulfide Buffer Layers for Copper Indium Gallium Sulfur-selenide Solar Cells and Device Analysis

    SciTech Connect

    Kundu, Sambhu N.; Olsen, Larry C.

    2005-01-03

    Cd free CIGSS thin film solar cell structures with a MgF2/TCO/CGD-ZnS/CIGSS/Mo/SLG structure have been fabricated using chemical bath deposited (CBD)-ZnS buffer layers and high quality CIGSS absorber layers supplied from Shell Solar Industries. The use of CBD-ZnS, which is a higher band gap materials than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm2) efficiency of 13.3%. This paper also presents a discussion of the issues relating to the use of the CBD-ZnS buffer materials for improving device performance.

  16. Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria.

    PubMed

    Yusuf, A A; Arowolo, T A; Bamgbose, O

    2003-03-01

    The levels of cadmium, copper and nickel in five different edible vegetables, Talinum triangulare, Celosia trigyna, Corchorus olitorus, Venomia amygydalina and Telfaria accidentalis, and the soils in which they were grown, from three industrial and three residential areas of Lagos City, Nigeria, were determined using atomic absorption spectrophotometry. The results obtained for these three heavy metals from the industrial areas were higher than those of the residential areas as a result of pollution. Industrial area results for vegetables ranged between 1.13 and 1.67 microg/g for cadmium; 25.08 and 56.84 microg/g for copper and 1.33 and 2.06 microg/g for nickel. There were statistically significant differences (P<0.05) between the levels of copper and nickel in all the vegetables studied from industrial and residential areas, while there was no statistically significant difference for cadmium. The results also show that Corchorus olitorus (bush okra) has the ability to accumulate more copper and nickel than the other vegetable studied but has the least ability to accumulate cadmium.

  17. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    PubMed

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  18. Pulmonary Functions, Oxidative Stress and DNA Damage in Workers of a Copper Processing Industry.

    PubMed

    Kumar, S; Khaliq, F; Singh, S; Ahmed, R; Kumar, R; Deshmukh, P S; Banerjee, B D

    2016-04-01

    Occupational exposure to excessive level of copper results in many adverse health effects. To measure pulmonary function, oxidative stress, and extent of DNA damage in workers of a copper processing industry. 30 men working in a copper processing industry and 30 men matched for age and socioeconomic status (comparison group) were included in this study. Pulmonary function test parameters were measured for all participants. Serum malondialdehyde (MDA), ferric reducing ability of plasma (FRAP), glutathione (GSH) content in RBCs and 8-OHdG were assayed by ELISA. Extent of DNA damage in leucocytes was assayed by comet assay. Pulmonary function parameters, FVC, FEV1, PEFR, and MVV measured in workers were significantly (p<0.05) lower than those observed in the comparison group. Compared to the comparison group, MDA was significantly (p=0.002) increased in studied workers; TAOC (p=0.017), and GSH (p=0.020) were significantly lower in workers than the comparison group. There was significant DNA damage in leucocytes in workers compared to the comparison group (difference in olive tail moment p<0.001). PEFR, FEF25-75%, and MEF50% were negatively correlated with MDA. The observed DNA damage would be due to increased oxidative stress resulting from excessive exposure to copper.

  19. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    SciTech Connect

    Beribeche, Abdellatif Boumerzoug, Zakaria; Ji, Vincent

    2013-12-16

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation.

  20. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    PubMed

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes.

  1. The Availability of Indium: The Present, Medium Term, and Long Term

    SciTech Connect

    Lokanc, Martin; Eggert, Roderick; Redlinger, Michael

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  2. Investigation of the Freeze-Lining Formed in an Industrial Copper Converting Calcium Ferrite Slag

    NASA Astrophysics Data System (ADS)

    Fallah-Mehrjardi, Ata; Jansson, Jani; Taskinen, Pekka; Hayes, Peter C.; Jak, Evgueni

    2014-06-01

    Pyrometallurgical coppermaking processes are operated under intensive reaction conditions; high process temperatures and vigorous bath agitation is used to increase the kinetics of reactions and to achieve high smelter throughput. Slag freeze-lining reactor wall protection is a widely used technology in coppermaking processes, such as flash smelting and converting reactors. Freeze-linings mitigate and resist the effects of thermal and chemical attack by aggressive slags. In this laboratory-based study, a water-cooled probe "cold finger" technique has been used to investigate freeze-lining formation with calcium ferrite slags in equilibrium with metallic copper; the slag composition reflects that used in the industrial copper flash converting furnace of Rio Tinto—Kennecott Utah Copper. The effects of probe immersion times on the thickness and microstructures in the freeze-lining deposits have been investigated. A range of complex oxide solutions and copper-containing phases have been found in the deposits. The phase assemblages formed from the industrial calcium ferrite slag in the steady-state deposit are very complex and information on the phase equilibria of the multi-component systems with addition of minor elements may not be available. Subsolidus and subliquidus phase equilibria in the Cu-Ca-Fe-O system at metallic copper saturation along with interpolated temperature across the deposit, microstructural changes and compositional trends in the phases in the deposit have been used to understand the formation and characteristics of the phases in the steady-state freeze-lining. Also, it has been shown that under steady-state conditions a dense sealing layer consisting primarily of the spinel primary phase is formed at the deposit/liquid interface; however, the interface temperature is below the liquidus temperature. The findings of the study have potentially important implications for the operation of the converting furnace and the design of freeze linings in

  3. Modeling Natural Convection in Copper Electrorefining: Describing Turbulence Behavior for Industrial-Sized Systems

    NASA Astrophysics Data System (ADS)

    Leahy, Martin J.; Phillip Schwarz, M.

    2011-08-01

    A computational fluid dynamics (CFD) model of copper electrorefining is discussed, where natural convection flow is driven by buoyancy forces caused by gradients in copper concentration at the electrodes. We provide experimental validation of the CFD model for several cases varying in size from a small laboratory scale to large industrial scale, including one that has not been compared with a CFD model. Previously, the large-scale systems have been thought to be turbulent by some workers and modeled accordingly with k-ɛ type turbulence models, but others have not considered turbulence effects in their modeling. We find that the turbulence model does not predict turbulence exists; however, we analyze carefully the fluctuation statistics predicted for a transient model, finding that most cases considered do exhibit a type of turbulence, an instability related to the interaction between velocity and copper concentration fields. We provide a comparison of the extent of turbulence for various electrode heights, and gap widths, and we emphasize industrial-sized electrorefining cells.

  4. Development of the copper and molybdenum industries and the Armenian economy

    USGS Publications Warehouse

    Bond, A.R.; Levine, R.M.

    1997-01-01

    Production of copper and molybdenum in Armenia is examined, with special emphasis on the location of major deposits, former and proposed future centers of processing, and contribution of metals exports to the country's foreign trade revenues. Particular emphasis is placed on the impacts on these industries of the disruption of economic ties resulting from the dissolution of the USSR and an economic crisis precipitated by a major earthquake, Armenia's tension with Azerbaijan over armed conflict in Nagorno-Karabakh and surrounding areas in Azerbaijan, an economic blockade imposed by Turkey and Azerbaijan, and a consequent severe energy crisis. The paper highlights developments in the mid-1990s in copper and molybdenum and in the recent expansion of trade relations with Iran.

  5. Surface Alteration of Activated Carbon for Detoxification of Copper (ii) from Industrial Effluents

    NASA Astrophysics Data System (ADS)

    Bhutto, Sadaf; Khan, M. Nasiruddin

    2013-04-01

    The low-cost modified activated carbons were prepared from Thar and Lakhra (Pakistan) coals by activation with sulfuric acid and further modified with citric, tartaric and acetic acids for the selective adsorption of Cu(II) from aqueous solution. The original carbon obtained from activated Thar and Lakhra coals at pH 3.0 displayed significant adsorption capacity for lead and insignificant capacity values (0.880 and 0.830 mgṡg-1) for copper. However, after modification with citric, tartaric and acetic acid the copper adsorption capacities enhanced in the range of 5.56-21.85 and 6.05-44.61 times, respectively. The Langmuir, Freundlich and Temkin adsorption isotherms were used to elucidate the observed sorption phenomena. The isotherm equilibrium data was well fitted by the Langmuir and sufficiently fitted to the Freundlich models. The calculated thermodynamic parameters such as change in Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) inferred that the investigated adsorption was spontaneous and endothermic in nature. Based on the results, it was concluded that the surface alteration with citric and tartaric acid, Thar and Lakhra activated carbons had significant potential for selective removal of copper(II) from industrial wastewater.

  6. Atmospheric Deposition of Indium in the Northeastern United States: Flux and Historical Trends.

    PubMed

    White, Sarah Jane O; Keach, Carrie; Hemond, Harold F

    2015-11-03

    The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century. Results indicate that long-range atmospheric transport is a significant pathway for the transport of indium, with peak concentrations of 69 ppb and peak fluxes of 1.9 ng/cm2/yr. Atmospheric deposition to the bog began increasing in the late 1800s/early 1900s, and peaked in the early 1970s. A comparison of deposition data with industrial production and emissions estimates suggests that both coal combustion and the smelting of lead, zinc, copper, and tin sulfides are sources of indium to the atmosphere in this region. Deposition appears to have decreased considerably since the 1970s, potentially a visible effect of particulate emissions controls instated in North America during that decade.

  7. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide.

    PubMed

    Barrera-Díaz, Carlos E; Frontana-Uribe, Bernardo A; Roa-Morales, Gabriela; Bilyeu, Bryan W

    2015-01-01

    The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.

  8. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  9. Synthesis, Characterization and Decomposition Studies of Tris(N,N-dibenzyldithiocarbamato) Indium(III): Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    NASA Technical Reports Server (NTRS)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.; Fanwick, Philip E.; Khan, Osman; Jin, Michael H.-C.; Hepp, Aloysius F.

    2005-01-01

    Tris(bis(phenylmethyl)carbamodithioato-S,S ), commonly referred to as tris(N,Ndibenzyldithiocarbamato) indium(III), In(S2CNBz2)3, was synthesized and characterized by single crystal X-ray crystallography. The compound crystallizes in the triclinic space group P1 bar with two molecules per unit cell. The material was further characterized using a novel analytical system employing the combined powers of thermogravimetric analysis, gas chromatography/mass spectrometry and Fourier-Transform infrared spectroscopy to investigate its potential use as a precursor for the chemical vapor deposition (CVD) of thin film materials for photovoltaic applications. Upon heating, the material thermally decomposes to release CS2 and benzyl moieties in to the gas phase, resulting in bulk In2S3. Preliminary spray CVD experiments indicate that In(S2CNBz2)3 decomposed on a Cu substrate reacts to produce stoichiometric CuInS2 films.

  10. Developmental toxicity of indium: embryotoxicity and teratogenicity in experimental animals.

    PubMed

    Nakajima, Mikio; Usami, Makoto; Nakazawa, Ken; Arishima, Kazuyoshi; Yamamoto, Masako

    2008-12-01

    Indium, a precious metal classified in group 13 (IIIB) in the periodic table, has been used increasingly in the semiconductor industry. Because indium is a rare metal, technology for indium recycling from transparent conducting films for liquid crystal displays is desired, and its safety evaluation is becoming increasingly necessary. The developmental toxicity of indium in experimental animals was summarized. The intravenous or oral administration of indium to pregnant animals causes growth inhibition and the death of embryos in hamsters, rats, and mice. The intravenous administration of indium to pregnant animals causes embryonic or fetal malformation, mainly involving digit and tail deformities, in hamsters and rats. The oral administration of indium also induces fetal malformation in rats and rabbits, but requires higher doses. No teratogenicity has been observed in mice. Caudal hypoplasia, probably due to excessive cell loss by increased apoptosis in the tailbud, in the early postimplantation stage was considered to account for indium-induced tail malformation as a possible pathogenetic mechanism. Findings from in vitro experiments indicated that the embryotoxicity of indium could have direct effects on the conceptuses. Toxicokinetic studies showed that the embryonic exposure concentration was more critical than the exposure time regarding the embryotoxicity of indium. It is considered from these findings that the risk of the developmental toxicity of indium in humans is low, unless an accidentally high level of exposure or unknown toxic interaction occurs because of possible human exposure routes and levels (i.e. oral, very low-level exposure).

  11. The occurrence of copper in deciduous teeth of girls and boys living in Upper Silesian Industry Region (Southern Poland).

    PubMed

    Fischer, Agnieszka; Kwapuliński, Jerzy; Wiechuła, Danuta; Fischer, Tomasz; Loska, Małgorzata

    2008-01-25

    This work presents the results of a research concerning the copper content in different types of deciduous teeth (incisor, canine, molar) of boys and girls living in the Upper Silesian Industry Region (Southern Poland). The average copper concentration in deciduous teeth was 9.92 microg/g and was significantly higher in the deciduous teeth of boys (12.24 microg/g) in comparison to the deciduous teeth of girls (8.60 microg/g). The concentration of copper was statistically variable depending on the type of tooth (incisor, canine, molar). The results of the correlation analysis and cluster analysis indicate mainly the participation of lead, iron, manganese and chromium ions in the formation of copper content in hard tissue of deciduous teeth.

  12. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Graphene wrapped Copper Phthalocyanine nanotube: Enhanced photocatalytic activity for industrial waste water treatment

    NASA Astrophysics Data System (ADS)

    Mukherjee, Moumita; Ghorai, Uttam Kumar; Samanta, Madhupriya; Santra, Angshuman; Das, Gour P.; Chattopadhyay, Kalyan K.

    2017-10-01

    To improve the photocatalytic performance of metal phthalocyanine based catalyst, Copper Phthalocyanine (CuPc) functionalized reduced graphene oxide (RGO) nanocomposite has been synthesized through a simple chemical approach. The obtained product was characterized by X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and High resolution transmission electron microscopy (HRTEM). The photocatalytic activity of the RGO/CuPc nanocomposite was performed by the degradation of Rhodamine B (RhB) under visible light irradiation. The photocatalytic studies revealed that the RGO/CuPc nanocomposite exhibits much stronger catalytic behavior than the pristine CuPc nanotube. A plausible mechanism for the photodegradation of Rhodamine B (RhB) was suggested. The RGO wrapped CuPc nanotube composite materials offer great potential as active photocatalysts for degradation of organic pollutions in industrial waste water.

  14. Applications of laser-generated surface acoustic waves for copper film process monitoring in integrated circuit industry (abstract)

    NASA Astrophysics Data System (ADS)

    Gostein, Michael; Maznev, A. A.; Krastev, Plamen; Mazurenko, Alex

    2003-01-01

    We describe applications of a compact commercial instrument for laser generation and detection of surface acoustic waves (SAWs) to problems in metal film process control for the integrated circuit (IC) industry. [M. Gostein, M. Banet, M. Joffe, A. A. Maznev, R. Sacco, J. A. Rogers, and K. A. Nelson, in Handbook of Silicon Semiconductor Metrology, edited by A. C. Diebold (Marcel Dekker, New York, 2001)] The IC industry is undergoing dramatic changes with the continued drive to reduce feature size and increase circuit speed. One of the most important of these changes is the industry-wide move to replace circuit interconnect processes based on aluminum metallization with copper-based processes. The unique process challenges of copper metallization, coupled with the increasing cost of IC manufacturing in general, have resulted in an increased need for metal film thickness measurement for process control. Laser-generated and detected surface acoustic waves provide an ideal method for nondestructively measuring film thickness on product wafers as they move through an IC factory. A patented version of the technique has been incorporated into a commercial high-throughput measurement station. The measurement station analyzes specialized test structures in the scribe lines in between IC chips on a product wafer. Here, we describe application of the technique to all stages of the copper metallization process, including measurement of seed-layer copper and its associated underlying barrier metals, measurement of electroplated copper deposited atop the seed layer, and measurement of remaining copper film thickness following a chemical-mechanical polishing step. We highlight special capabilities to measure test arrays of submicron metal lines that closely resemble actual circuit elements. In addition, we discuss characterization of the elastic properties of typical and emerging thin film materials used in the semiconductor industry, which is a necessary step in setting up the

  15. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  16. Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H₂O₂.

    PubMed

    Barrera-Díaz, Carlos; Frontana-Uribe, Bernado; Bilyeu, Bryan

    2014-06-01

    The effectiveness of organics removal of an integrated electrochemical process, namely, electrocoagulation with copper ions followed by the use of electrogenerated hydrogen peroxide was evaluated with an industrial wastewater. The copper (II) ions addition into the wastewater using electro-dissolution of copper electrodes, reduces the chemical oxygen demand (COD) by 56% after 30 min of treatment, under optimal conditions of pH 2,8 and 14.2 mA cm(-2) of current density. The integrated electrochemical process reduces the COD by 78%, BOD₅ by 81%, color by 97% and fecal coliforms by 99.9%. The wastewater quality was monitored using UV-Vis spectrometry and Z-potential in order to characterize raw and treated wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2016-11-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  18. Innovative Concept for the Recovery of Silver and Indium by a Combined Treatment of Jarosite and Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Wegscheider, S.; Steinlechner, S.; Leuchtenmüller, M.

    2017-02-01

    Industrial wastes such as slags, dust, or precipitation residues contain significant amounts of valuable metals like zinc, lead, and copper as well as precious metals like silver and indium. Nevertheless, a lot of these waste materials are not recycled, and therefore, many valuable metals end up being sent to landfills. Because of harmful components in the waste, it is often necessary to send it to specialized landfills for hazardous wastes, which leads to environmental problems as well as additional costs. Consequently, the recovery of the valuable metals from the residues represents a sensible task to decrease the negative impact on the environment and to reduce costs for maintaining a landfill. In addition, recycling helps to decrease the dependency from primary resources. The present study deals with the behavior of different metals in a pyro-metallurgical treatment for a mixture of jarosite and electric arc furnace dust with a special focus on indium and silver.

  19. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    SciTech Connect

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van; Xu, M.; Vroon, Z.; Belt, R. van de; Buskens, P. E-mail: buskens@dwi.rwth-aachen.de

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  20. Influence of copper to indium atomic ratio on the properties of Cu-In-Te based thin-film solar cells prepared by low-temperature co-evaporation

    SciTech Connect

    Mise, Takahiro; Nakada, Tokio

    2012-09-15

    The influence of copper to indium atomic ratio (Cu/In) on the properties of Cu-In-Te based thin films and solar cells was investigated. The films (Cu/In = 0.38-1.17) were grown on both bare and Mo-coated soda-lime glass substrates at 250 Degree-Sign C by single-step co-evaporation using a molecular beam epitaxy system. Highly (112)-oriented CuInTe{sub 2} films were obtained at Cu/In ratios of 0.84-0.99. However, stoichiometric and Cu-rich films showed a poor film structure with high surface roughness. The films consist of polyhedron-shaped grains, which are related to the coexistence of a Cu{sub 2-x}Te phase, and significant evidence for the coexistence of the Cu{sub 2-x}Te phase in the stoichiometric and Cu-rich films is presented. KCN treatment was performed for the films in order to remove the Cu{sub 2-x}Te phase. The stoichiometric CuInTe{sub 2} thin films exhibited a high mobility above 50 cm{sup 2}/V s at room temperature after the KCN treatment. A preliminary solar cell fabricated using a 1.4-{mu}m-thick Cu-poor CuInTe{sub 2} thin film (Cu/In = 0.84, E{sub g} = 0.988 eV) yielded a total-area efficiency of 2.10%. The photovoltaic performance of the cell was improved after long-term ambient aging in dark conditions.

  1. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NASA Astrophysics Data System (ADS)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  2. Removal of copper on composite sewage sludge/industrial sludge-based adsorbents: the role of surface chemistry.

    PubMed

    Seredych, Mykola; Bandosz, Teresa J

    2006-10-15

    Sewage sludge and industrial waste oil sludge were pyrolyzed in an inert atmosphere at 650 or 950 degrees C, either as single components or as 50:50 mixtures. Composite materials were used as adsorbents of copper ions from aqueous solution. The capacity for copper removal was comparable to that of commercial activated carbon. To relate the performance of materials to their properties, the surface features were characterized using adsorption of nitrogen, thermal analysis, XRF, potentiometric titration, and elemental analysis. The results indicated that a high copper removal capacity could be linked to basic surface pH and specific compounds present on the surface. The high removal ability of materials obtained at 650 degrees C is attributed to cation exchange reactions between calcium and magnesium in aluminosilicates, formed on their surface during heat treatment, and copper. On the other hand, the high degree of mineralization of the surface of the materials obtained at 950 degrees C promotes copper complexation and its surface precipitation as hydroxides or hydroxylcarbonate entities.

  3. Treatment of fertilizer industry wastewater by catalytic peroxidation process using copper-loaded SBA-15.

    PubMed

    Singh, Seema; Srivastava, Vimal Chandra; Mandal, Tapas Kumar

    2015-01-01

    The present study reports use of the catalytic peroxidation (CPO) method for treatment of actual fertilizer industry wastewater (FIW) by using copper-loaded Santa Barbara amorphous-15 (Cu/SBA-15) catalyst. FIW consists of toxic nitrogenous and phosphorus containing compounds that are not easily degraded by the conventional physicochemical and biological treatment methods. In the present study, Box-Behnken (BB) experimental design methodology was used for optimization of three independent parameters namely catalytic dose (m), initial pH (pHo), and H2O2 concentration. Maximum 83% COD removal was obtained at m = 4.5 g L(-1), pHo = 9.2 and H2O2 concentration = 2.0 mL L(-1). Wastewater and catalyst recovered at optimum treatment condition were characterized by various techniques. UV-visible and Fourier transform infrared (FTIR) techniques were used for understanding the treatment mechanism. Textural and thermogravimetric (TGA/DTA) analysis were used for determining the characteristic of catalyst before and after treatment. The stability and performance of the Cu/SBA-15 catalyst was also determined by using the reusability tests.

  4. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil.

    PubMed

    Ghavri, S V; Singh, Rana P

    2012-03-01

    The survival, biomass production and copper (Cu) remediation efficiency of Jatropha curcas L. was evaluated in Cu rich industrial wasteland soil (IWLS), collected from a local town, Sandila (Hardoi), Uttar Pradesh, India. The IWLS had high bulk density, water holding capacity (WHC), pH, electrical conductivity (EC), organic carbon and NPK. The Cu and Mn contents in IWLS were about 3 and 2 fold higher than that in the normal field soil (control). Stem cuttings of the J. curcas clones (BTP-A, BTP-N and BTP-K) were planted in IWLS as well as the same amended with cowdung or sand. The percent survival, net elongations and biomass accumulation of J. curcas were decreased slightly in IWLS, as compared to the control soil. The translocation of Cu from soil to the plants was higher in IWLS grown plants, which was more pronounced in IWLS amended with cowdung. J. curcas clones BTP-N, showed better survival and Cu removal efficiency from IWLS.

  5. Waste biomass adsorbents for copper removal from industrial wastewater--a review.

    PubMed

    Bilal, Muhammad; Shah, Jehanzeb Ali; Ashfaq, Tayyab; Gardazi, Syed Mubashar Hussain; Tahir, Adnan Ahmad; Pervez, Arshid; Haroon, Hajira; Mahmood, Qaisar

    2013-12-15

    Copper (Cu(2+)) containing wastewaters are extensively released from different industries and its excessive entry into food chains results in serious health impairments, carcinogenicity and mutagenesis in various living systems. An array of technologies is in use to remediate Cu(2+) from wastewaters. Adsorption is the most attractive option due to the availability of cost effective, sustainable and eco-friendly bioadsorbents. The current review is dedicated to presenting state of the art knowledge on various bioadsorbents and physico-chemical conditions used to remediate Cu(2+) from waste streams. The advantages and constraints of various adsorbents were also discussed. The literature revealed the maximum Cu adsorption capacities of various bioadsorbents in the order of algae>agricultural and forest>fungal>bacterial>activated carbon>yeast. However, based on the average Cu adsorption capacity, the arrangement can be: activated carbon>algal>bacterial>agriculture and forest-derived>fungal>yeast biomass. The data of Cu removal using these bioadsorbents were found best fit both Freundlich and Langmuir models. Agriculture and forest derived bioadsorbents have greater potential for Cu removal because of higher uptake, cheaper nature, bulk availability and mono to multilayer adsorption behavior. Higher costs at the biomass transformation stage and decreasing efficiency with desorption cycles are the major constraints to implement this technology.

  6. Investigating relationships between biomarkers of exposure and environmental copper and manganese levels in house dusts from a Portuguese industrial city.

    PubMed

    Reis, A P; Costa, S; Santos, I; Patinha, C; Noack, Y; Wragg, J; Cave, M; Sousa, A J

    2015-08-01

    This study reports on data obtained from a pilot survey focusing on house dust and toenail metal(loids) concentrations in residents living in the industrial city of Estarreja. The study design hereby described aims at investigating relationships between human toenails and both copper and manganese levels in settled house dusts. A total of 21 households and 30 individuals were recruited for the pilot study: 19 households corresponding to 27 residents living near the industrial complex, forming the exposed group, plus 2 households and 3 residents from residential areas with no anticipated environmental contaminants that were used for comparison. Factorial analysis was used for source identification purposes. Investigation on the potential influence of environmental factors over copper and manganese levels in the toenails was carried out via questionnaire data and multiple correspondence analysis. The results show that copper concentrations are more elevated in the indoor dusts, while manganese concentrations are more elevated in the outdoor dust samples. The geometrical relationships in the datasets suggest that the backyard soil is a probable source of manganese to the indoor dust. Copper and manganese contents in the toenail clippings are more elevated in children than in adults, but the difference between the two age groups is not statistically significant (p > 0.05). Investigation of environmental factors influencing the exposure-biomarker association indicates a probable relationship between manganese contents in indoor dust and manganese levels in toenail clippings, a result that is partially supported by the bioaccessibility estimates. However, for copper, no relationship was found between indoor dusts and the biomarkers of exposure.

  7. COPPER(1-Y)SILVER(Y)INDIUM - DISULFIDE(1-X)SELENIDE(2X) as a Prototype of the Pentenary Chalcopyrite Semiconductor Systems.

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn Harrison

    The group III-V mixed alloy quarternary semiconductors, such as Ga(,(1-y))In(,y)As(,(1-x))P(,x) have been extensively employed in lattice matching different semiconducting layers (at specific bandgaps) to form heterojunction electro-optical devices. However, these cover only a limited set of direct bandgap/lattice constant combinations. The analogous pentenary alloys, consisting of the ternary chalcopyrite groups I -III-VI(,2) and II-IV-V(,2), have the potential of similar applications as they cover an even wider band/lattice range. As a prototype of such alloys, samples of the pentenary Cu(,(1 -y))Ag(,y)InS(,2(1-x))Se(,2x) have been synthesized and studied. Samples were prepared by reacting stoichimetric powder mixtures at about 900 C. X-ray diffractometry tests suggest the compounds maintained complete powder solid solubility throughout the system in the chalcopyrite crystal structure. The intrinsic conductivity type of the alloys appear to follow a trend towards n-type for silver and sulfur rich compounds, while forming p-type for copper and selenium rich materials. The bandgap of these samples were measured using cathodoluminescence techniques, which generally have some ambiguity in their resulting estimates. To generate better values of the band parameters extensive computer modeling for the emission spectra from heavily doped direct bandgap materials was done. The effect of band tails and Gaussian impurity states on the luminescence spectra was studied for changes in doping densities, temperature and carrier injection levels. Formulae were derived from these models to obtain better estimates of the bandgap and impurity activation levels. Algorithms were developed to obtain the impurity spreading energy of a tailed or Gaussian band, and the quasi-Fermi energy levels for injected current in a material with a specific band structure. Cathodoluminescence measurements were made at 300 and 77 K on the samples. As predicted by the models, it was found easier to

  8. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction.

    PubMed

    Hunsom, M; Pruksathorn, K; Damronglerd, S; Vergnes, H; Duverneuil, P

    2005-02-01

    An electrochemical technique was tested in a laboratory scale to treat heavy metals (Cu2+, Cr6+ and Ni2+) from plating industrial effluent. The experiments were performed in a membrane reactor having a capacity of 1 l. Stainless-steel sheets with surface area of 0.011 m2 and titanium coated with ruthenium oxide were used as cathode and anode, respectively. The electrolyte was circulated at a constant flow rate (0.42 l/min) and the pH was kept constant at 1. Applied current densities were 10 and 90 A/m2. According to the experiment, it was found that a membrane reactor with plane electrode was capable for treating plating wastewater with low energy consumption (42.30 kWh/kg metal) and low operating cost (5.43 US dollars/m3). More than 99% of metal reduction was achieved and the final concentrations of copper, chromium and nickel in treated water were 0.10-0.13, 0.19-0.20 and 0.05-0.13 ppm, respectively. The brightener had no effect on copper reduction whereas hexavalent chromium had strong effect. The kinetic of copper reduction in the presence of hexavalent chromium was modeled as a two-step process with respect to copper concentration.

  9. [Indium lung disease].

    PubMed

    Nakano, Makiko; Omae, Kazuyuki

    2014-02-01

    "Indium lung" is a new occupational lung disease. The global demand for indium, the major material used in manufacturing flat-screen display panels, has skyrocketed since the 1990s (Japan comprises 85% of the worldwide demand). The first case was reported in Japan in 2003, followed by seven cases (interstitial pneumonia and emphysema) in Japan. Two pulmonary alveolar proteinosis (PAP) cases in the USA followed in 2011. Indium lung has been described as interstitial pneumonia, pneumothorax, emphysema, and PAP. In 2013, The Japan Ministry of Health, Labor and Welfare issued an "Ordinance on the Prevention of Hazards Due to Specified Chemical Substances" requiring employers to provide regular health checks for employees and measurements of work environment concentrations of respirable indium dust.

  10. Indium lung disease.

    PubMed

    Cummings, Kristin J; Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-Long; Harley, Russell A; Roggli, Victor L; Hebisawa, Akira; Tallaksen, Robert J; Trapnell, Bruce C; Day, Gregory A; Saito, Rena; Stanton, Marcia L; Suarthana, Eva; Kreiss, Kathleen

    2012-06-01

    Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies.

  11. Fluxless indium and silver-indium bonding processes for photonics and high-temperature electronics

    NASA Astrophysics Data System (ADS)

    So, William Wilson

    .5 kg. Indium has been a choice for bonding photonic devices such as laser diodes. A major concern is the change of solder composition during device operation caused by diffusion of copper atoms from the copper substrate. Copper atoms can easily diffuse into and react with the indium joint to form intermetallic compounds Cu2In, CuIn, Cu9In4, Cu11 In9. This reaction continues even after the bonding process is completed and the device is put in operation at some temperature. Consequently, the composition, the microstructure and physical properties of the joint change during the device life.To prevent the intermetallic formation, the solder joint must remain indium rich. A barrier metallization on the copper substrate is necessary to stop copper atoms from getting into the solder joint. Device packages usually need more than one soldering operation to complete. The indium-rich alloys have a 156°C melting temperature. During subsequent bonding operations, another process with a bonding temperature lower than 156°C is valuable. Desirable bonding temperature should be lower than 156°C but higher than the maximum temperature of the joint during device operation. In-Sn eutectic alloy with a melting temperature of 118°C is chosen. (Abstract shortened by UMI.)

  12. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    SciTech Connect

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T.; Symietz, C.; Bonse, J.; Andree, S.; Krüger, J.; Heidmann, B.; Schmid, M.; Lux-Steiner, M.

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  13. Subclinical interstitial lung damage in workers exposed to indium compounds

    PubMed Central

    2013-01-01

    Objectives The present study was designed to determine whether there is a relationship between indium compound exposure and interstitial lung damage in workers employed at indium tin oxide manufacturing and reclaiming factories in Korea. Methods In 2012, we conducted a study for the prevention of indium induced lung damage in Korea and identified 78 workers who had serum indium or Krebs von den Lungen-6 (KL-6) levels that were higher than the reference values set in Japan (3 μg/L and 500 U/mL, respectively). Thirty-four of the 78 workers underwent chest high-resolution computed tomography (HRCT), and their data were used for statistical analysis. Results Geometric means (geometric standard deviations) for serum indium, KL-6, and surfactant protein D (SP-D) were 10.9 (6.65) μg/L, 859.0 (1.85) U/mL, and 179.27 (1.81) ng/mL, respectively. HRCT showed intralobular interstitial thickening in 9 workers. A dose–response trend was statistically significant for blood KL-6 levels. All workers who had indium levels ≥50 μg/L had KL-6 levels that exceeded the reference values. However, dose–response trends for blood SP-D levels, KL-6 levels, SP-D levels, and interstitial changes on the HRCT scans were not significantly different. Conclusions Our findings suggest that interstitial lung changes could be present in workers with indium exposure. Further studies are required and health risk information regarding indium exposure should be communicated to workers and employers in industries where indium compounds are used to prevent indium induced lung damage in Korea. PMID:24472147

  14. Indium Lung Disease

    PubMed Central

    Nakano, Makiko; Omae, Kazuyuki; Takeuchi, Koichiro; Chonan, Tatsuya; Xiao, Yong-long; Harley, Russell A.; Roggli, Victor L.; Hebisawa, Akira; Tallaksen, Robert J.; Trapnell, Bruce C.; Day, Gregory A.; Saito, Rena; Stanton, Marcia L.; Suarthana, Eva; Kreiss, Kathleen

    2012-01-01

    Background: Reports of pulmonary fibrosis, emphysema, and, more recently, pulmonary alveolar proteinosis (PAP) in indium workers suggested that workplace exposure to indium compounds caused several different lung diseases. Methods: To better understand the pathogenesis and natural history of indium lung disease, a detailed, systematic, multidisciplinary analysis of clinical, histopathologic, radiologic, and epidemiologic data for all reported cases and workplaces was undertaken. Results: Ten men (median age, 35 years) who produced, used, or reclaimed indium compounds were diagnosed with interstitial lung disease 4-13 years after first exposure (n = 7) or PAP 1-2 years after first exposure (n = 3). Common pulmonary histopathologic features in these patients included intraalveolar exudate typical of alveolar proteinosis (n = 9), cholesterol clefts and granulomas (n = 10), and fibrosis (n = 9). Two patients with interstitial lung disease had pneumothoraces. Lung disease progressed following cessation of exposure in most patients and was fatal in two. Radiographic data revealed that two patients with PAP subsequently developed fibrosis and one also developed emphysematous changes. Epidemiologic investigations demonstrated the potential for exposure to respirable particles and an excess of lung abnormalities among coworkers. Conclusions: Occupational exposure to indium compounds was associated with PAP, cholesterol ester crystals and granulomas, pulmonary fibrosis, emphysema, and pneumothoraces. The available evidence suggests exposure to indium compounds causes a novel lung disease that may begin with PAP and progress to include fibrosis and emphysema, and, in some cases, premature death. Prospective studies are needed to better define the natural history and prognosis of this emerging lung disease and identify effective prevention strategies. PMID:22207675

  15. Treatment of copper industry waste and production of sintered glass-ceramic.

    PubMed

    Coruh, Semra; Ergun, Osman Nuri; Cheng, Ta-Wui

    2006-06-01

    Copper waste is iron-rich hazardous waste containing heavy metals such as Cu, Zn, Co, Pb. The results of leaching tests show that the concentration of these elements exceeds the Turkish and EPA regulatory limits. Consequently, this waste cannot be disposed of in its present form and therefore requires treatment to stabilize it or make it inert prior to disposal. Vitrification was selected as the technology for the treatment of the toxic waste under investigation. During the vitrification process significant amounts of the toxic organic and inorganic chemical compounds could be destroyed, and at the same time, the metal species are immobilized as they become an integral part of the glass matrix. The copper flotation waste samples used in this research were obtained from the Black Sea Copper Works of Samsun, Turkey. The samples were vitrified after being mixed with other inorganic waste and materials. The copper flotation waste and their glass-ceramic products were characterized by X-ray analysis (XRD), scanning electron microscopy and by the toxicity characteristic leaching procedure test. The products showed very good chemical durability. The glass-ceramics fabricated at 850 degrees C/2 h have a large application potential especially as construction and building materials.

  16. Phase analytical studies of industrial copper smelting slags. Part I: Silicate slags

    NASA Astrophysics Data System (ADS)

    Rüffler, R.; Dávalos, J.

    1998-12-01

    The pyrometallurgical extraction of copper from sulfide ore concentrates is determined by the behaviour of the associated iron during smelting. Hence, 57Fe Mössbauer spectroscopy is an attractive tool for studying the phases in silicate slags from German and Chilean smelting plants. Other methods used were ore microscopy, electron microprobe analysis, and X-ray powder diffraction.

  17. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry.

    PubMed

    Samecka-Cymerman, A; Kempers, A J

    2004-09-01

    Concentrations of the metals Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn, as well as the macronutrients N, P, K, Ca, Mg, and S were measured in water, sediments, and the aquatic macrophytes Potamogeton pectinatus and Myriophyllum spicatum, growing in surface water receiving sewages and solid wastes from a copper smelter and a copper ore processing factory located in the Legnica-Glogow copper district in Southwest Poland. The deposition of mineral wastes in this area belong to the largest repository in Europe. The plants were able to survive at heavily contaminated sites. The concentrations of Cd (up to 0.6-1.7 microg/L in water and up to 10.1-12.9 mg/kg in sediments), Cu (up to 29-48 microg/L in water and up to 4.6-5.6g/kg in sediments), Pb (up to 1.5-2.2 g/kg in sediments), and Zn (up to 167-200 microg/L in water and up to 1.4-1.8 g/kg in sediments) seriously exceeded background values. P. pectinatus was able to survive tissue concentrations (in mg/kg) of up to 920 Cu, 6240 Mn, 98 Co, and 59 Ni, while M. spicatum survived tissue concentrations up to 1040 Cu, 6660 Mn, and 57 Co for. Enrichment ratios of elements in plant tissue and in water were much higher than those between plant tissue and sediments.

  18. Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers.

    PubMed

    Cummings, Kristin J; Virji, M Abbas; Park, Ji Young; Stanton, Marcia L; Edwards, Nicole T; Trapnell, Bruce C; Carey, Brenna; Stefaniak, Aleksandr B; Kreiss, Kathleen

    2016-07-01

    Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Current respirable indium exposure ranged from 0.4 to 108 μg/m(3) and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m(3) . Plasma indium better correlated with cumulative (rs  = 0.77) than current exposure (rs  = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m(3) , reached by 46% of participants. Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. Am. J. Ind. Med. 59:522-531, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Respirable Indium Exposures, Plasma Indium, and Respiratory Health Among Indium-Tin Oxide (ITO) Workers

    PubMed Central

    Cummings, Kristin J.; Virji, M. Abbas; Park, Ji Young; Stanton, Marcia L.; Edwards, Nicole T.; Trapnell, Bruce C.; Carey, Brenna; Stefaniak, Aleksandr B.; Kreiss, Kathleen

    2016-01-01

    Background Workers manufacturing indium-tin oxide (ITO) are at risk of elevated indium concentration in blood and indium lung disease, but relationships between respirable indium exposures and biomarkers of exposure and disease are unknown. Methods For 87 (93%) current ITO workers, we determined correlations between respirable and plasma indium and evaluated associations between exposures and health outcomes. Results Current respirable indium exposure ranged from 0.4 to 108 μg/m3 and cumulative respirable indium exposure from 0.4 to 923 μg-yr/m3. Plasma indium better correlated with cumulative (rs = 0.77) than current exposure (rs = 0.54) overall and with tenure ≥1.9 years. Higher cumulative respirable indium exposures were associated with more dyspnea, lower spirometric parameters, and higher serum biomarkers of lung disease (KL-6 and SP-D), with significant effects starting at 22 μg-yr/m3, reached by 46% of participants. Conclusions Plasma indium concentration reflected cumulative respirable indium exposure, which was associated with clinical, functional, and serum biomarkers of lung disease. PMID:27219296

  20. The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district.

    PubMed

    Baranowska, I; Czernicki, K; Aleksandrowicz, R

    1995-01-10

    The concentration of lead, cadmium, zinc, copper and nickel in autopsy samples of bones from adults living in the Upper Silesian industrial district (Poland)--an ecological disaster region--was determined by atomic absorption spectrometry (flame and flameless GF AAS). Lead concentrations ranged from 20 micrograms/g to 200 micrograms/g bone wet weight, cadmium from 0.4 microgram/g to 1.5 micrograms/g bone wet weight. About one-fourth of the bones examined from Silesia, contained lead in the range from 100 micrograms/g to 200 micrograms/g. The were no significant differences in zinc, copper and nickel concentration between the control groups. The samples were mineralized in a microwave digestion system. To avoid anomalous results caused by the influence of the matrix Ca3 (PO4)2--the procedure of lead determination was carried out at a temperature of 2000 degrees C, the cadmium determination at a temperature of about 1200 degrees C.

  1. Sorption of indium (III) onto carbon nanotubes.

    PubMed

    Alguacil, F J; Lopez, F A; Rodriguez, O; Martinez-Ramirez, S; Garcia-Diaz, I

    2016-08-01

    Indium has numerous applications in different industrial sectors and is not an abundant element. Therefore appropriate technology to recover this element from various process wastes is needed. This research reports high adsorption capacity of multiwalled carbon nanotubes (MWCNT) for In(III). The effects of pH, kinetics, isotherms and adsorption mechanism of MWCNT on In(III) adsorption were investigated and discussed in detail. The pH increases improves the adsorption capacity for In(III). The Langmuir adsorption model is the best fit with the experimental data. For the kinetic study, the adsorption onto MWCNT could be fitted to pseudo second-order. The adsorption of indium(III) can be described to a mechanism which consists of a film diffusion controlled process. Metal desorption can be achieved with acidic solutions. Copyright © 2016. Published by Elsevier Inc.

  2. Indium acetate toxicity in male reproductive system in rats.

    PubMed

    Lee, Kuo-Hsin; Chen, Hsiu-Ling; Leung, Chung-Man; Chen, Hsin-Pao; Hsu, Ping-Chi

    2016-01-01

    Indium, a rare earth metal characterized by high plasticity, corrosion resistance, and a low melting point, is widely used in the electronics industry, but has been reported to be an environmental pollutant and a health hazard. We designed a study to investigate the effects of subacute exposure of indium compounds on male reproductive function. Twelve-week old male Sprague-Dawley rats were randomly divided into test and control groups, and received weekly intraperitoneal injections of indium acetate (1.5 mg/kg body weight) and normal saline, respectively, for 8 weeks. Serum indium levels, cauda epididymal sperm count, motility, morphology, chromatin DNA structure, mitochondrial membrane potential, oxidative stress, and testis DNA content were investigated. The indium acetate-treated group showed significant reproductive toxicity, as well as an increased percentage of sperm morphology abnormality, chromatin integrity damage, and superoxide anion generation. Furthermore, positive correlations among sperm morphology abnormalities, chromatin DNA damage, and superoxide anion generation were also noted. The results of this study demonstrated the toxic effect of subacute low-dose indium exposure during the period of sexual maturation on male reproductive function in adulthood, through an increase in oxidative stress and sperm chromatin DNA damage during spermiogenesis, in a rodent model. © 2014 Wiley Periodicals, Inc.

  3. Extreme pollution of soils by emissions of the copper-nickel industrial complex in the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kashulina, G. M.

    2017-07-01

    The distribution of the total Ni, Cu, Co, Cd, Pb, and Zn contents was studied in the soil profiles of six catenas in the zone subjected to emissions of the copper-nickel industrial complex, which is the largest source of SO2 and heavy metals in northern Europe. The results show that, at present, the concentrations of Ni and Cu in the upper organic soil horizons in the impact zone reach extreme levels of 9000 and 6000 mg/kg, respectively. Under conditions of the long-term intense multi-element industrial emissions, the modern levels of the accumulation of polluting substances in soils greatly depend on the indirect factors, such as the degree of the technogenic degradation of soils with the loss of a significant part of soil organic matter, the reaching of threshold saturation of the topsoil with polluting metals, and competitive relationships between chemical elements. The state of the ecosystems in the impact zone varied greatly and did not always agree with the contents of the main metals-pollutants in the soils. The moisture conditions determined by the landscape position affected significantly the resistance of the ecosystems to emissions.

  4. Emissions from the copper-nickel industry on the Kola Peninsula and at Noril'sk, Russia

    USGS Publications Warehouse

    Boyd, Ron; Barnes, S.-J.; De Caritat, P.; Chekushin, V.A.; Melezhik, V.A.; Reimann, C.; Zientek, M.L.

    2009-01-01

    Published estimates for base metal emissions from the copper-nickel industry on the Kola Peninsula are re-examined in the light of (a) chemical data on the composition of the ores; (b) official emission figures for 1994; and (c) modelled emissions based on dry and wet deposition estimates derived from data for snow and rain samples collected in 1994. The modelled emissions, official emission figures and chemical data are mutually compatible for Ni, Cu and Co and show that previously published figures underestimated the emissions of the major elements, Ni and Cu (though within the same order of magnitude) and overestimated the emissions of As, Pb, Sb and Zn by up to several orders of magnitude, in some cases exceeding the calculated total input to the plants. Published estimates have neglected information on the nature and chemistry of the ores processed in metallurgical industries in the Noril'sk area of Siberia and the Urals. Revised emission estimates for 1994, using knowledge of the chemistry of the ores, are proposed: taken with published information on total emissions up to 2000 these data give an indication of emission levels in more recent years. ?? 2008 Elsevier Ltd. All rights reserved.

  5. Mineral of the month: indium

    USGS Publications Warehouse

    George, Micheal W.

    2004-01-01

    Indium was discovered in Germany in 1863. Although it is a lustrous silver-white color, the finders named the new material for the “indigo” spectral lines the mineral created on the spectrograph. Indium ranks 61st in abundance in Earth’s crust and is about three times more abundant than silver or mercury.

  6. Association between GSTO2 polymorphism and the urinary arsenic profile in copper industry workers.

    PubMed

    Paiva, Leiliane; Hernández, Alba; Martínez, Valeria; Creus, Amadeu; Quinteros, Domingo; Marcos, Ricardo

    2010-07-01

    Two members of the recently identified Omega class glutathione S-transferase enzymes (GSTO1 and GSTO2) have been proposed to play a role in the response to arsenic exposure. Therefore, polymorphisms in these genes could be related with variations in the arsenic excretion profile and, consequently, with the individual response to chronic exposure. Exons and flanking regions of GSTO2 gene have been screened in two different ethnic groups (20 Europeans and 20 Chilean Indians), and the urinary arsenic patterns and the GSTO2 Asn142Asp polymorphism have been investigated in 207 copper mine workers occupationally exposed to arsenic. Three polymorphisms of GSTO2 already described were detected in Europeans and Chilean Indians, although with significant different allele frequencies. The genotyping for the Asn142Asp polymorphism revealed that almost no significant association exists between this change and the arsenic excretion profile. However, 142Asp change seems to be correlated with an increase in DMA excretion after age and total urinary arsenic adjustment (OR=3.61; P=0.05). Altogether, our findings indicate that ethnical differences should be taken into account for correlation studies between GST Omega polymorphisms and arsenic susceptibility, and that the 142Asp allozyme could modulate arsenic biotransformation and thereby arsenic toxicity.

  7. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such

  8. Multiphase separation of copper nanowires.

    PubMed

    Qian, Fang; Lan, Pui Ching; Olson, Tammy; Zhu, Cheng; Duoss, Eric B; Spadaccini, Christopher M; Han, T Yong-Jin

    2016-09-22

    This communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. This simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  9. Multiphase separation of copper nanowires

    DOE PAGES

    Qian, Fang; Lan, Pui Ching; Olson, Tammy; ...

    2016-01-01

    This communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. This simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  10. Multiphase separation of copper nanowires

    SciTech Connect

    Qian, Fang; Lan, Pui Ching; Olson, Tammy; Zhu, Cheng; Duoss, Eric B.; Spadaccini, Christopher M.; Han, T. Yong-Jin

    2016-09-01

    Here, this communication reports a new method to purify copper nanowires with nearly 100% yield from undesired copper nanoparticle side-products formed during batch processes of copper nanowire synthesis. Also, this simple separation method can yield large quantities of long, uniform, high-purity copper nanowires to meet the requirements of nanoelectronics applications as well as provide an avenue for purifying copper nanowires in the industrial scale synthesis of copper nanowires, a key step for commercialization and application of nanowires.

  11. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    PubMed

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  12. Surface failure analysis of a field-exposed copper-clad plate in a marine environment with industrial pollution

    NASA Astrophysics Data System (ADS)

    Yi, Pan; Dong, Chaofang; Xiao, Kui; Li, Xiaogang

    2017-03-01

    The corrosion behavior and electrochemical migration mechanism of a copper-clad plate (PCB-Cu) in a marine atmospheric environment with industrial pollution were studied in field exposure experiments. The results showed that corrosion was initiated from activity locations with low potential. With extended exposure time, the amount of corrosion products increased and gradually formed a double layer structure. The inner layer corrosion products were mainly Cu2O; the outer layer mainly included CuCO3·Cu(OH)2, Cu(OH)2·CuO·HCl, CuSO4·3Cu(OH)2 and CuSO3·3Cu(OH)2. When a 12 V bias voltage was applied, an anomalous electrochemical migration (ECM) phenomenon was observed: a Cu dendrite was produced near the anode and migrated toward the cathode. Finally, ECM led to the bridge connection of the two metallization stripes and caused a short circuit in the PCB-Cu.

  13. Copper removal from an effluent generated by a plastics chromium-plating industry using a rotating cylinder electrode (RCE) reactor.

    PubMed

    Rivera, F F; González, I; Nava, J L

    2008-08-01

    This work shows the application of a rotating cylinder electrode (RCE) in the removal of Cu(II) content from an effluent generated by a plastics chromium-plating industry, on the laboratory scale; in particular, it deals with rinse water from the electrolytic copper process. This process was designed to convert cupric ions in solution to metal powder. The generation of metal powders in the RCE was achieved at Reynolds numbers between 52925 and 83183 and limiting current densities (J(L)) in the range of 17 to 25 mA cm(-2). The removal of Cu(II) (initially 922 ppm) reached 43 ppm in 10 minutes of electrolysis for Re = 83183 and J = 25 mA cm(-2), with a space-time yield of 88 mg Cu(II) L(-1) min(-1), 95% current efficiency, and energy consumption of 5.3 KWh m(-3). The electrochemical treatment applied to waste rinse water at the RCE allows this treated water to be recycled back to the same rinsing process, avoiding additional consumption and discharge of this liquid.

  14. [Health effects of solar cell component material. Toxicity of indium compounds to laboratory animals determined by intratracheal instillations].

    PubMed

    Tanaka, Akiyo; Hirata, Miyuki

    2013-01-01

    Owing to the increasing interest being paid to the issue of the global environment, the production of solar cells has increased rapidly in recent years. Copper indium gallium diselenide (CIGS) is a new efficient thin film used in some types of solar cell. Indium is a constitutive element of CIGS thin-film solar cells. It was thought that indium compounds were not harmful until the beginning of the 1990s because there was little information regarding the adverse health effects on humans or animals arising from exposure to indium compounds. After the mid-1990s, data became available indicating that indium compounds can be toxic to animals. In animal studies, it has been clearly demonstrated that indium compounds cause pulmonary toxicity and that the dissolution of indium compounds in the lungs is considerably slow, as shown by repeated intratracheal instillations in experimental animals. Thus, it is necessary to pay much greater attention to human exposure to indium compounds, and precautions against possible exposure to indium compounds are paramount with regard to health management.

  15. The use of exopolysaccharide - producing cyanobacteria as biosorbents to remove copper from industrial waste - waters

    NASA Astrophysics Data System (ADS)

    Rossi, Federico; El Badaoui, Hajar; De Philippis, Roberto

    2014-05-01

    The accumulation of heavy metals in water bodies represent a widespread cause of pollution, and poses the need to develop novel technologies to remove metals at the source, abating the costs of the commonly used chemical and physio-chemical methods. The use of cyanobacteria as biosorbents has been acknowledged as a promising alternative, due to their charged polysaccharidic envelopes which have affinity for metal ions. Nonetheless, the reseach must move towards: i) assessing the effectiveness of the process towards complex wastewater solutions which contain chemical species that can interfere with the sorption process, also considering the characteristics of the used strains, and ii) developing novel devices that support biomass growth and use, in order to achieve a scaling up of the process. We compared the specific removal of three cyanobacteria, Cyanothece 16 Som 2, Cyanothece ET5 and Cyanospira capsulata, towards Cu2+ contained, with various other metals, in two industrial effluents (one at pH 1.26 and one at pH 10.26). The strains were selected due to their previously assayed affinity toward Cu2+ in pure solutions (De Philippis et al. 2011). Acid or basic pretreatments (respectively for the acid and the basic effluent) were performed in the tentative to increase the specific removal. Metal concentration in solution, before and after the contact with the biomasses, was determined by atomic absorption spectrometry. Specific removals resulted different to those obtained towards pure metal solutions, likely due to the presence of other competing ions. Cyanothece 16 Som 2 showed the highest Cu2+ specific removal towards both the effluents. The pretreatment was effective only in the case of the basic effluent. Results proved the capacity of Cyanothece 16 Som 2 to act as a selective Cu2+ sorbent even in the presence of complex solutions. A novel prototype device is being projected in order to support the growth and the immobilization of the cyanobacterial biomass for

  16. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage.

    PubMed

    White, Sarah Jane O; Hussain, Fatima A; Hemond, Harold F; Sacco, Sarah A; Shine, James P; Runkel, Robert L; Walton-Day, Katherine; Kimball, Briant A

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~3, indium concentrations are 6-29μg/L (10,000× those found in natural rivers), and are completely filterable through a 0.45μm filter. During a pH modification experiment, the pH of the system was raised to >8, and >99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The precipitation of indium at elevated pH in a stream influenced by acid mine drainage

    USGS Publications Warehouse

    White, Sarah Jane O.; Hussain, Fatima A.; Hemond, Harold F.; Sacco, Sarah A.; Shine, James P.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.

    2017-01-01

    Indium is an increasingly important metal in semiconductors and electronics and has uses in important energy technologies such as photovoltaic cells and light-emitting diodes (LEDs). One significant flux of indium to the environment is from lead, zinc, copper, and tin mining and smelting, but little is known about its aqueous behavior after it is mobilized. In this study, we use Mineral Creek, a headwater stream in southwestern Colorado severely affected by heavy metal contamination as a result of acid mine drainage, as a natural laboratory to study the aqueous behavior of indium. At the existing pH of ~ 3, indium concentrations are 6–29 μg/L (10,000 × those found in natural rivers), and are completely filterable through a 0.45 μm filter. During a pH modification experiment, the pH of the system was raised to > 8, and > 99% of the indium became associated with the suspended solid phase (i.e. does not pass through a 0.45 μm filter). To determine the mechanism of removal of indium from the filterable and likely primarily dissolved phase, we conducted laboratory experiments to determine an upper bound for a sorption constant to iron oxides, and used this, along with other published thermodynamic constants, to model the partitioning of indium in Mineral Creek. Modeling results suggest that the removal of indium from the filterable phase is consistent with precipitation of indium hydroxide from a dissolved phase. This work demonstrates that nonferrous mining processes can be a significant source of indium to the environment, and provides critical information about the aqueous behavior of indium.

  18. Indium oxide based fiber optic SPR sensor

    SciTech Connect

    Shukla, Sarika; Sharma, Navneet K.

    2016-05-06

    Surface plasmon resonance based fiber optic sensor using indium oxide layer is presented and theoretically studied. It has been found that with increase in thickness of indium oxide layer beyond 170 nm, the sensitivity of SPR sensor decreases. 170 nm thick indium oxide layer based SPR sensor holds maximum sensitivity.

  19. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  20. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  1. The Rise of III-V Semiconductors and Their Impact on Environmental Indium Concentrations

    NASA Astrophysics Data System (ADS)

    White, S. O.; Hemond, H.

    2008-12-01

    New semiconductor manufacturing processes are critical to emerging energy technologies. While these technologies will inevitably employ the use of novel materials, potentially in large quantities, little is known about the environmental behavior or toxicology of many of the materials that will be employed. This work investigates the potential environmental impact of novel metals on hydrologic systems, using indium as a case study. Indium production has been predicted to increase as much as 1000-fold in the next two decades, driven by its use in new high-efficiency photovoltaic cells, LEDs, and in indium tin oxide (ITO) electrical coatings for photovoltaics and displays (e.g. flat panel and liquid crystal displays). We propose the comparison of anthropogenic fluxes to natural fluxes of a metal as a useful early approach for flagging elements for priority study if it appears that projected anthropogenic fluxes may rival or exceed their natural fluxes. Analyses of sediment core data provide an historical record of metal concentrations in overlying waters, revealing information about natural, background concentrations and the importance of present-day anthropogenic and natural inputs to the system. Data from an industrial watershed in Massachusetts supports published data from a Swedish lake that suggests that indium concentrations have been increasing for the past 150 years, much before indium was used widely, and are now 1.5-10 times higher than background levels. These cores also show that while indium use has been increasing since the mid-1970s, concentrations in sediments have been decreasing. Initial calculations suggest that the mining/smelting of zinc ores are the largest contribution of indium to local watersheds, but that use by the semiconductor industry may drive a demand for indium that enhances its recovery from zinc ores (of which indium is a byproduct) and actually decreases local watershed releases.

  2. Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode

    NASA Astrophysics Data System (ADS)

    Steuber, F.; Staudigel, J.; Stössel, M.; Simmerer, J.; Winnacker, A.

    1999-06-01

    The impact of oxygen plasma treatment of indium tin oxide anodes on performance and durability of vapor-deposited organic electroluminescent devices is shown. Investigations focused on the long-term stability using driving conditions suitable for passive matrix driven displays. Reliability studies of solvent only cleaned samples indicate the presence of a predominating degradation process at the interface between indium tin oxide and the hole injection layer which results in a drastic rise of the operating voltage. This voltage increase could be reduced to 0.31 mV/h by oxygen plasma treatment. As hole injection layer copper phthalocyanine is compared with a star-shaped amine derivative.

  3. Indium-Mediated Stereoselective Allylation.

    PubMed

    Kumar, Dinesh; Vemula, Sandeep R; Balasubramanian, Narayanaganesh; Cook, Gregory R

    2016-10-04

    Stereoselective indium-mediated organic reactions have enjoyed tremendous growth in the last 25 years. This is in part due to the insensitivity of allylindium to moisture, affording facile and practical reaction conditions coupled with outstanding functional group tolerance and minimal side reactions. Despite the plethora of articles about allylindium, there is much yet to be discovered and exploited for efficient and sustainable synthesis. In this Account, we describe indium-mediated synthetic methods for the preparation of chiral amines with the aim to present a balance of practical method development, novel asymmetric chemistry, and mechanistic understanding that impact multiple chemical and materials science disciplines. In 2005, we demonstrated the indium-mediated allylation of chiral hydrazones with complete diastereoselectivity (>99:1) and quantitative yields. Further, we revealed the first example of enantioselective indium-mediated allylation of hydrazones using catalytic (R)-3,3'-bis(trifluoromethyl)-BINOL ligands to afford homoallylic amines with high enantioselectivity. The use of enantiopure perfluoroalkylsulfonate BINOLs greatly improved the indium-mediated allylation of N-acylhydrazones with exquisite enantiocontrol (99% yield, 99% ee). This laboratory has also investigated indium-mediated asymmetric intramolecular cyclization in the presence of amino acid additives to deliver biologically relevant chromanes with excellent diastereoselectivity (dr >99:1). The effect of amino acid additives (N-Boc-glycine) was further investigated during the indium-mediated allylation of isatins with allyl bromide to yield homoallylic alcohols in excellent yields in a short time with a wide range of functional group tolerance. Critical mechanistic insight was gained, and evidence suggests that the additive plays two roles: (1) to increase the rate of formation of allylindium from allyl bromide and In(0) and (2) to increase the nucleophilicity of the allylindium

  4. Indium lung--case reports and epidemiology.

    PubMed

    Omae, Kazuyuki; Nakano, Makiko; Tanaka, Akiyo; Hirata, Miyuki; Hamaguchi, Tsutahiro; Chonan, Tatsuya

    2011-06-01

    The present review is aimed to introduce an new occupational lung disease, Indium Lung. We searched case reports and epidemiological studies concerning indium-related lung diseases and reviewed. Up to March, 2010, 7 cases of interstitial pneumonia in Japanese indium-exposed workers, two cases of pulmonary alveolar proteinosis (PAP) in US indium-exposed workers, one case of PAP in a Chinese indium-exposed worker, and 4 cross-sectional surveys in Japan had been published. All cases and epidemiological studies in Japan indicate that exposure to hardly soluble indium compounds causes interstitial as well as emphysematous lung damages, which we call "Indium Lung". Based on the epidemiological studies, the Japan Society for Occupational Health proposed 3 μg/l of indium in serum as an occupational exposure limit based on biological monitoring to prevent significant increase of KL-6. Long-term follow-up of currently and formerly indium-exposed workers is essential not only to clarify the natural history of indium lung but also to trace the incidence of lung cancer. It is also necessary to elucidate the mechanism of indium lung and difference in clinical manifestations between Japanese and US cases.

  5. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    PubMed

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  6. Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    NASA Technical Reports Server (NTRS)

    Jones, Todd J.; Nikzad, Shouleh; Cunningham, Thomas J.; Blazejewski, Edward; Dickie, Matthew R.; Hoenk, Michael E.; Greer, Harold F.

    2011-01-01

    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place.

  7. Groundwater composition near the nickel—copper smelting industry on the Kola Peninsula, central Barents Region (NW Russia and NE Norway)

    NASA Astrophysics Data System (ADS)

    de Caritat, Patrice; Danilova, Svetlana; Jæger, Øystein; Reimann, Clemens; Storrø, Gaute

    1998-07-01

    The chemical composition of 185 groundwater samples collected from two catchments in the extreme NE Norway and NW Russia over the period April 1994 to November 1995 is reported in terms of Ag, Al, As, B, Ba, Be, Bi, Br, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, K, Li, Mg, Mn, Mo, Na, Ni, NO 3, P, Pb, PO 4,Rb, S, Sb, Se, Si, SO 4, Sr, Th, Ti, Tl, U, V and Zn concentrations (as determined by ICP-MS, ICP-AES and IC), pH and electrical conductance. One catchment (C2) is located in Russia 5 km downwind of the nickel—copper ore smelting industry in Monchegorsk, which is a major SO 2 and trace metal emission source, the other (C5) is located in Norway 30 km off-wind from the nickel-copper ore smelter in Nikel and 52 km off-wind from the nickel—copper ore roasting plant of Zapoljarniy, which are also significant emitters of inorganic atmospheric pollutants. Groundwater chemistry mostly reflects the mineralogical composition of the gabbro aquifer in C2 and the Quaternary deposits in C5, although groundwater in C2 also shows signs of incipient contamination from surface waters (heavy metals, sulphate, chloride). Groundwater in C2 appears to have been acidified by S-compounds emitted from Monchegorsk, but the groundwater's capacity to neutralise incoming acidity has not been exhausted. In C5, groundwater has not been acidified to any extent and has a high acid neutralising capacity. This study demonstrates that the geological substrate of a catchment is a fundamental control on how groundwater responds to atmospheric pollution, even if the latter is severe.

  8. Indium: Understanding its Behavior in Magmatic-Hydrothermal Systems Today to Meet Tomorrow's Demand

    NASA Astrophysics Data System (ADS)

    Piccoli, P. M.; Kayser, S.; Candela, P. A.

    2014-12-01

    Indium is integral to modern electronic devices, and is an essential component in indium-tin oxide (ITO), an electrically conductive, and optically transparent material that forms the basis for touch screens and high-end LCDs. World-wide production of indium has increased almost seven-fold from 1990 to 2012. Continued increases in production can be aided by better models for the formation of indium-bearing ores, yet little is known about the behavior of indium in magmatic-hydrothermal systems. As a first step toward solving this problem, we performed experiments to evaluate the partitioning of indium between pyrrhotite (po) and silicate melt (m). Experiments were performed at 800 °C, 100 MPa, and fO2 ≈ NNO in a po-saturated, vapor-brine-rhyolite melt system for durations of 5 to15 days. Three separate series of experiments were conducted in which each series differed by the aqueous solution added. The first series of experiments were prepared with pure water, the second series of experiments with a 1.01 M chloride solution and the third series with a 0.35 M CuCl2-bearing starting aqueous solution. These changes in starting material produced changes in the composition of the run product po and glass. The partition coefficient D(po/m) for the pure-water series experiments is on the order of ≈ 10. The addition of chloride-bearing aqueous solution leads to a decrease in the partition coefficient to ≈ 1.5. The copper-bearing experiments yield a D ≈ 3. The lower values for D in the chloride-bearing experiments may be explained by indium-chloride interactions in the melt phase. Although the D does vary depending upon the composition of the starting aqueous solution, an order of magnitude estimate for D, for general modeling purposes, can be made by assuming a value of 4. By using reasonable estimates of the mass fraction of po that crystallizes in crustal magmatic systems, the proportion of indium sequestered by po, during fractional crystallization, can be

  9. Rapid-extraction oxidation process to recover and reuse copper chromium and arsenic from industrial wood preservative sludge.

    PubMed

    Kazi, F K M; Cooper, P A

    2002-01-01

    Chromated copper arsenate (CCA) wood preservative can form insoluble sludges when the hexavalent chromium component is reduced by wood extractives, wood particles and preservative additives in the solution. This sludge accumulates in treating solution work tanks, sumps and in-line filters and must be disposed of as hazardous wastes by waste disposal companies at high costs. A number of commercial sludges were investigated and found to contain 18-94% copper, chromium and arsenic as oxides combined with sand, oil, wood particles, additives and wood extractives. We have developed a multi-stage recycling process whereby approximately 97% of the CCA components are recovered from the sludge. It involves extraction with sodium hypochlorite to remove and oxidize chromium (more than 90%) and extract most of the arsenic (approx. 80%) followed by extraction of the copper and remaining arsenic and chromium with phosphoric acid. The phosphoric acid extract contains some trivalent chromium, which is subsequently oxidized by sodium hypochlorite. The combined oxidized extract containing CrVI, CuII and AsV was compatible with CCA treating solutions and could be re-used commercially for treating wood without having a significant effect on the preservative fixation rate or the leach resistance of the treated wood. A cost analysis showed that the economic savings from recovery of CCA chemicals and reduced landfill costs exceeded the variable costs for materials and energy for the process by as much as Can $966 per tonne of sludge if sodium sulfite can be acquired in bulk quantities for the process.

  10. Utilizing an earthworm bioassay (Eisenia andrei) to assess a South African soil screening value with regards to effects from a copper manufacturing industry.

    PubMed

    Maboeta, Mark; Fouché, Tanya

    2014-09-01

    Metal contamination of soil due to industrialization has become an increasingly important problem in South Africa. This study aimed to investigate the potential impact of a copper (CuSO4·5H2O) production company on the soil environment. Bioassays using Eisenia andrei were performed to assess changes in biomass, reproduction and a biomarker, neutral red retention time, over a 28 day period. Earthworms exposed to soils from the Cu production site differed significantly (p < 0.05) from those exposed to soils 500 m and 5 km away in terms of the measured endpoints. These findings are consistent with the results from the chemical analysis which showed an elevated soil Cu content for both sites closest to the chemical production company compared to the reference site. The results confirm the importance and predictive value of using bioassays in conjunction with chemical analysis during soil quality assessments.

  11. Influence of alloying elements on friction and wear of copper

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1972-01-01

    The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.

  12. Macrophage Solubilization and Cytotoxicity of Indium-Containing Particles In Vitro

    PubMed Central

    Morgan, Daniel L.

    2013-01-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic. PMID:23872580

  13. Macrophage solubilization and cytotoxicity of indium-containing particles in vitro.

    PubMed

    Gwinn, William M; Qu, Wei; Shines, Cassandra J; Bousquet, Ronald W; Taylor, Genie J; Waalkes, Michael P; Morgan, Daniel L

    2013-10-01

    Indium-containing particles (ICPs) are used extensively in the microelectronics industry. Pulmonary toxicity is observed after inhalation exposure to ICPs; however, the mechanism(s) of pathogenesis is unclear. ICPs are insoluble at physiological pH and are initially engulfed by alveolar macrophages (and likely airway epithelial cells). We hypothesized that uptake of ICPs by macrophages followed by phagolysosomal acidification results in the solubilization of ICPs into cytotoxic indium ions. To address this, we characterized the in vitro cytotoxicity of indium phosphide (InP) or indium tin oxide (ITO) particles with macrophages (RAW cells) and lung-derived epithelial (LA-4) cells at 24h using metabolic (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) and membrane integrity (lactate dehydrogenase) assays. InP and ITO were readily phagocytosed by RAW and LA-4 cells; however, the particles were much more cytotoxic to RAW cells and cytotoxicity was dose dependent. Treatment of RAW cells with cytochalasin D (CytoD) blocked particle phagocytosis and reduced cytotoxicity. Treatment of RAW cells with bafilomycin A1, a specific inhibitor of phagolysosomal acidification, also reduced cytotoxicity but did not block particle uptake. Based on direct indium measurements, the concentration of ionic indium was increased in culture medium from RAW but not LA-4 cells following 24-h treatment with particles. Ionic indium derived from RAW cells was significantly reduced by treatment with CytoD. These data implicate macrophage uptake and solubilization of InP and ITO via phagolysosomal acidification as requisite for particle-induced cytotoxicity and the release of indium ions. This may apply to other ICPs and strongly supports the notion that ICPs require solubilization in order to be toxic.

  14. Formation of metal agglomerates during carbonisation of chromated copper arsenate (CCA) treated wood waste: Comparison between a lab scale and an industrial plant.

    PubMed

    Helsen, Lieve; Hacala, Amélie

    2006-10-11

    This paper compares the results obtained by scanning electron microscopy coupled to X-ray analysis (SEM-EDXA) of the solid product after carbonisation of treated wood waste in a lab scale and in an industrial installation. These setups (lab scale and industrial) are characterized by different operating conditions of the carbonisation process. Moreover, the wood waste input to the processes differs significantly. From this study, it is clear that some similarities but also some differences exist between the lab scale study and the study with the industrial Chartherm plant. In both reactors, a metal (and mineral) agglomeration process takes place, even in the case of untreated wood. The agglomerates initially present in the wood input may serve as a seed for the metal agglomeration process during "chartherisation". The industrial setup leads to a broader range of agglomerates' size (0.1-50 microm) and composition (all possible combinations of Cu, Cr, As and wood minerals). Some agglomerates contain the three metals but the major part is a combination of wood minerals and one or two of the three preservative metals, while all agglomerates analysed in the lab scale product contain the three metals. The separate influence of wood input characteristics and process conditions cannot be derived from these experiments, but the observations suggest that the higher the CCA retention in the wood input is, the easier is the metal agglomeration process during chartherisation of CCA treated wood waste. From the analyses performed in this study it seems that copper behaves differently in the sense that it agglomerates easily, but the resulting particles are small (<1 microm).

  15. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  16. Influence of Metallic Indium Concentration on the Properties of Indium Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Kalkan, N.

    2016-10-01

    Current-voltage characteristics of indium-embedded indium oxide thin films (600-850 Å), with Ag electrodes approximately 1000 Å thick, prepared by reactive evaporation of pure metallic indium in partial air pressure have been studied for substrate temperatures between 50 and 125°C. The optical properties of these films have also been investigated as a function of metallic indium concentration and substrate temperature. I-V characteristics of all the samples are non-ohmic, independent of metallic indium concentration. The conductivity of the films increases but the optical transmission decreases with increasing metallic indium concentration. Metallic indium concentration was found to be an important parameter affecting the film properties. Furthermore, two possible conduction mechanisms are proposed.

  17. Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction.

    PubMed

    Zimmermann, Yannick-Serge; Niewersch, Claudia; Lenz, Markus; Kül, Zöhre Zohra; Corvini, Philippe F-X; Schäffer, Andreas; Wintgens, Thomas

    2014-11-18

    Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called "urban mining" considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper-indium-gallium- selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid-liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m(-2) CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥ 0.6), it may be applied in hydrometallurgy typically using acidic conditions.

  18. Process for Patterning Indium for Bump Bonding

    NASA Technical Reports Server (NTRS)

    Denis, Kevin

    2012-01-01

    An innovation was created for the Cosmology Large Angular Scale Surveyor for integration of low-temperature detector chips with a silicon backshort and a silicon photonic choke through flipchip bonding. Indium bumps are typically patterned using liftoff processes, which require thick resist. In some applications, it is necessary to locate the bumps close to high-aspect-ratio structures such as wafer through-holes. In those cases, liftoff processes are challenging, and require complicated and time-consuming spray coating technology if the high-aspect-ratio structures are delineated prior to the indium bump process. Alternatively, processing the indium bumps first is limited by compatibility of the indium with subsequent processing. The present invention allows for locating bumps arbitrarily close to multiple-level high-aspect-ratio structures, and for indium bumps to be formed without liftoff resist. The process uses the poor step coverage of indium deposited on a silicon wafer that has been previously etched to delineate the location of the indium bumps. The silicon pattern can be processed through standard lithography prior to adding the high-aspect-ratio structures. Typically, high-aspectratio structures require a thick resist layer so this layer can easily cover the silicon topography. For multiple levels of topography, the silicon can be easily conformally coated through standard processes. A blanket layer of indium is then deposited onto the full wafer; bump bonding only occurs at the high points of the topography.

  19. Occupational Exposure to Indium of Indium Smelter Workers.

    PubMed

    Ding, Chun Guang; Wang, Huan Qiang; Song, Han Bo; Li, Zhi Hui; Li, Xiao Ping; Ye, Shao Se; Zhang, Fu Gang; Cui, Shi Wei; Yan, Hui Fang; Li, Tao

    2016-05-01

    Case reports of indium-related lung disease in workers have raised public concern to the human toxicity of indium (In) and its compounds. However, studies evaluating the exposure or health of workers in In smelting plants are rare. Therefore, in this study, we focused on four In smelting plants, with the main objective of characterizing In in smelter plants in China and discussing the potential exposure biomarkers of In exposure. We recruited 494 subjectsat four In smelting plants in China. Personal air samples, first morning urine and spot blood samples were collected. In concentrations in samples were analyzed using inductively coupled plasma mass spectrometry. In concentrations in air samples did not exceed the permissible concentration-time weighed average, but the smelter workers had a higher internal exposure to In. Positive correlations were observed between the air In and urine In concentrations, and between the air In and blood In concentrations. This study provides basic data for the following In exposure and health risk assessment. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  20. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO4 amended soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Cytotoxicity and characterization of particles collected from an indium-tin oxide production facility.

    PubMed

    Badding, Melissa A; Stefaniak, Aleksandr B; Fix, Natalie R; Cummings, Kristin J; Leonard, Stephen S

    2014-01-01

    Occupational exposure to indium compound particles has recently been associated with lung disease among workers in the indium-tin oxide (ITO) industry. Previous studies suggested that excessive alveolar surfactant and reactive oxygen species (ROS) may play a role in the development of pulmonary lesions following exposure to indium compounds. However, toxicity at the cellular level has not been comprehensively evaluated. Thus, the aim of this study was to assess which, if any, compounds encountered during ITO production are toxic to cultured cells and ultimately contribute to the pathogenesis of indium lung disease. The compounds used in this study were collected from eight different processing stages at an ITO production facility. Enhanced dark field imaging showed 5 of the compounds significantly associated with cells within 1 h, suggesting that cellular reactions to the compound particles may be occurring rapidly. To examine the potential cytotoxic effects of these associations, ROS generation, cell viability, and apoptosis were evaluated following exposures in RAW 264.7 mouse monocyte macrophage and BEAS-2B human bronchial epithelial cell lines. Both exhibited reduced viability with exposures, while apoptosis only occurred in RAW 264.7 cells. Our results suggested that excessive ROS production is likely not the predominant mechanism underlying indium-induced lung disease. However, the effects on cell viability reveal that several of the compounds are cytotoxic, and therefore, exposures need to be carefully monitored in the industrial setting.

  2. Immune stimulation following dermal exposure to unsintered indium tin oxide

    PubMed Central

    Brock, Kristie; Anderson, Stacey E.; Lukomska, Ewa; Long, Carrie; Anderson, Katie; Marshall, Nikki; Meade, B. Jean

    2015-01-01

    In recent years, several types of pulmonary pathology, including alveolar proteinosis, fibrosis, and emphysema, have been reported in workers in the indium industry. To date, there remains no clear understanding of the underlying mechanism(s). Pulmonary toxicity studies in rats and mice have demonstrated the development of mediastinal lymph node hyperplasia and granulomas of mediastinal lymph nodes and bronchus-associated lymphoid tissues following exposure to indium tin oxide. Given the association between exposure to other metals and the development of immune-mediated diseases, these studies were undertaken to begin to investigate the immuno-modulatory potential of unsintered indium tin oxide (uITO) in a mouse model. Using modifications of the local lymph node assay, BALB/c mice (five animals/group) were exposed topically via intact or breached skin or injected intradermally at the base of the ear pinnae with either vehicle or increasing concentrations 2.5–10% uITO (90:10 indium oxide/tin oxide, particle size <50 nm). Dose-responsive increases in lymphocyte proliferation were observed with a calculated EC3 of 4.7% for the intact skin study. Phenotypic analysis of draining lymph node cells following intradermal injection with 5% uITO yielded a profile consistent with a T-cell-mediated response. These studies demonstrate the potential for uITO to induce sensitization and using lymphocyte proliferation as a biomarker of exposure, and demonstrate the potential for uITO to penetrate both intact and breached skin. PMID:24164313

  3. Immune stimulation following dermal exposure to unsintered indium tin oxide.

    PubMed

    Brock, Kristie; Anderson, Stacey E; Lukomska, Ewa; Long, Carrie; Anderson, Katie; Marshall, Nikki; Meade, B Jean

    2014-01-01

    In recent years, several types of pulmonary pathology, including alveolar proteinosis, fibrosis, and emphysema, have been reported in workers in the indium industry. To date, there remains no clear understanding of the underlying mechanism(s). Pulmonary toxicity studies in rats and mice have demonstrated the development of mediastinal lymph node hyperplasia and granulomas of mediastinal lymph nodes and bronchus-associated lymphoid tissues following exposure to indium tin oxide. Given the association between exposure to other metals and the development of immune-mediated diseases, these studies were undertaken to begin to investigate the immuno-modulatory potential of unsintered indium tin oxide (uITO) in a mouse model. Using modifications of the local lymph node assay, BALB/c mice (five animals/group) were exposed topically via intact or breached skin or injected intradermally at the base of the ear pinnae with either vehicle or increasing concentrations 2.5-10% uITO (90:10 indium oxide/tin oxide, particle size <50 nm). Dose-responsive increases in lymphocyte proliferation were observed with a calculated EC3 of 4.7% for the intact skin study. Phenotypic analysis of draining lymph node cells following intradermal injection with 5% uITO yielded a profile consistent with a T-cell-mediated response. These studies demonstrate the potential for uITO to induce sensitization and using lymphocyte proliferation as a biomarker of exposure, and demonstrate the potential for uITO to penetrate both intact and breached skin.

  4. Optical characterization of copper indium gallium diselenide thin films

    NASA Astrophysics Data System (ADS)

    Hebert, Damon

    Cu(In,Ga)Se2 (CIGS) and its alloys are the leading choice for thin film photovoltaic absorber layers due to their high performance in devices, low degradation, high optical absorption coefficient and high tolerance to off-stoichiometry and intrinsic defects. Film conductivity and recombination losses are controlled by intrinsic point defect concentrations, especially in the near-surface space-charge region of the heterojunction. Despite the amount of research already performed on CIGS alloys, their optoelectronic properties, defect chemistry and recombination mechanisms are still poorly understood. The focus of this dissertation is to optically characterize a selection of CIGS absorber layers fabricated by various techniques in order to better understand the radiative emission and defect physics. This work aims to identify the defects responsible for recombination and their relation to grain boundaries and band edge fluctuations, which limit device performance. This study used photoluminescence (PL) spectroscopy, photoluminescence excitation (PLE) spectroscopy, and cathodoluminescence (CL) to study radiative emissions from a variety of Cu-poor CIGS thin films. Three general types of CIGS films were analyzed. Polycrystalline layers deposited on Mo-coated soda lime glass, polycrystalline layers deposited on metal foil, and epitaxial films grown on (100) and (111) GaAs were analyzed in this work. This work concludes that the donor-acceptor pair recombination model used in most interpretations of CIGS emission should be replaced with a model that accounts for high compensation and band edge fluctuations, which is shown to be undoubtedly the case in Cu-poor CIGS. Within this model, the most commonly observed emissions were explained as free-to-bound types, specifically iii band-to-impurity (BI) and tail-to-impurity (TI) types. Band tail width was measured by PLE. A correlation was established between band tail width and device efficiency. CIGS absorber layers that produced devices of higher performance showed narrower band tails. CL and PL showed an additional deep emission in Na-free films, not present in Na-containing films grown in parallel. It is concluded that most grain boundaries in CIGS act as collection areas for point defects and point defect clusters but also are more or less inactive with respect to recombination due to their built-in electrostatic hole barrier. Spectral and spatial emission characteristics were studied on plan-view CIGS surfaces that were covered with a ˜50 nm thick CdS film by chemical bath deposition (CBD). It is concluded that spectral changes that others have observed in the emission of CdS-treated films is a result of the CBD process itself and not the resulting film or the formation of the heterojunction. The effect of low temperature (˜180°C) air annealing on the emission characteristics of CdS/CIGS thin films was studied by cryogenic infrared and visible PL. Spectral shape was not significantly affected by annealing for either film, but PL intensity did show some dependence on anneal time for both films, which led to an estimate of an optimal time window of 3-10 hours for low temperature annealing.

  5. Ionization levels of doped copper indium sulfide chalcopyrites.

    PubMed

    Tablero, C

    2012-02-09

    The electronic structure of modified chalcopyrite CuInS(2) has been analyzed from first principles within the density functional theory. The host chalcopyrite has been modified by introducing atomic impurities M at substitutional sites in the lattice host with M = C, Si, Ge, Sn, Ti, V, Cr, Fe, Co, Ni, Rh, and Ir. Both substitutions M for In and M for Cu have been analyzed. The gap and ionization energies are obtained as a function of the M-S displacements. It is interesting for both spintronic and optoelectronic applications because it can provide significant information with respect to the pressure effect and the nonradiative recombination.

  6. Properties of Copper in Gallium Arsenide and Indium Phosphide

    NASA Astrophysics Data System (ADS)

    Leon, Rosa

    This dissertation describes a comprehensive investigation of the properties of Cu as an impurity in the III-V semiconductors InP and GaAs. This study involves structural, ion-beam/channeling, magnetic, and electrical measurements that were made after a systematic set of Cu diffusions in both semiconductors. It was found that in both materials, most of the Cu precipitates even after rapid quenching, forming Cu -In and Cu-Ga precipitates in InP and GaAs respectively. Atomic resolution microscopy was used to determine the structure of these precipitates in InP, while conventional Selected Area Diffraction analysis gave this information in GaAs. The high diffusivity of Cu suggesting an interstitial diffusion mechanism in both these materials and its precipitating behavior are similar than in Si:Cu. It is shown that in InP, the introduction of Cu makes this semiconductor semi-insulating after relatively low diffusion temperatures, that both originally n- and p-type InP become semi-insulating upon Cu diffusion, and that there is a negligible concentration of deep-level defects introduced by Cu. Further observations include an abnormal reduction in both electron and hole mobilities resulting from the introduction of Cu, and the occurrence of isolated pockets of conductive InP in otherwise semi -insulating material. The concurrence of these experimental observations can best be explained using the buried Schottky -barrier model instead of the commonly observed compensation by deep levels. The concentration of Cu-In precipitates was found to be comparable with what preliminary calculations show would achieve intrinsic behavior by the effect of the metallic inclusions. In GaAs, the substitutional portion of Cu, presumably Cu_{rm Ga}, dominates the electrical properties in this material, introducing two acceptor levels, one at 0.15eV and the other at 0.49eV above the valence band. In GaAs, the ratio of electrically active Cu/total Cu depends on cooling speed. When quenched, a greater portion of the Cu is electrically active than when the samples are slowly cooled.

  7. Thin Films of Copper Indium Selenide for Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Knowles, Ashley Alan

    Available from UMI in association with The British Library. A brief review of solar cell technologies is presented, highlighting the development and potential of the thin film polycrystalline devices, in particular those based on the ternary chalcopyrite CuInSe_2. Current knowledge of the properties of CuInSe_2 and thin film deposition techniques for the compound is summarised. This review illustrates that arguably the biggest problem to be overcome in the commercialisation and large scale deployment of CuInSe_2 solar cells is the demonstration of a reproducible, uniform, large area deposition method for the thin films. The work presented here addresses this problem. Two methods have been studied. In first is the laser irradiation of an elemental stacked layer to form the compound. Results from various thin film analysis techniques show that it is possible to irradiate a stack of elemental layers of the form In/Se/Cu... and form the ternary CuInSe_2. The effects of processing parameters and film composition on the final film properties is delineated. Results from those films not transformed into CuInSe_2 by laser processing, but subsequently annealed in a selenium ambient, suggested that a simple thermal anneal would suffice. This led to the second technique being examined. The second technique involves the thermal annealing of a stacked elemental layer structure to form the compound --it is called here the SEL technique. This is the first published work to demonstrate that this novel method for formation of thin film CuInSe_2 is viable for solar cell production. Results presented in this thesis show that the compound with the preferential chalcopyrite structure can be formed in around two minutes or less with an anneal at a temperature of more than 300 ^circC. Film properties are dependent on annealing conditions and film composition. Composition can be easily controlled by variation of the as deposited elemental thicknesses. Final results demonstrate the promise of the technique with the fabrication of several 1% efficient solar cells. Conclusions drawn from this work indicate that the SEL technique is highly promising for the commercialisation of CuInSe_2 devices, overcoming several shortcomings of other methods.

  8. DNA adsorption by indium tin oxide nanoparticles.

    PubMed

    Liu, Biwu; Liu, Juewen

    2015-01-01

    The high conductivity and optical transparency of indium tin oxide (ITO) has made it a popular material in the electronic industry. Recently, its application in biosensors is also explored. To understand its biointerface chemistry, we herein investigate its interaction with fluorescently labeled single-stranded oligonucleotides using ITO nanoparticles (NPs). The fluorescence of DNA is efficiently quenched after adsorption, and the interaction between DNA and ITO NPs is strongly dependent on the surface charge of ITO. At low pH, the ITO surface is positively charged to afford a high DNA adsorption capacity. Adsorption is also influenced by the sequence and length of DNA. For its components, In2O3 adsorbs DNA more strongly while SnO2 repels DNA at neutral pH. The DNA adsorption property of ITO is an averaging result from both components. DNA adsorption is confirmed to be mainly by the phosphate backbone via displacement experiments using free phosphate or DNA bases. Last, DNA-induced DNA desorption by forming duplex DNA is demonstrated on ITO, while the same reaction is more difficult to achieve on other metal oxides including CeO2, TiO2, and Fe3O4 because these particles adsorb DNA more tightly.

  9. Indium Antimonide Nanowires: Synthesis and Properties.

    PubMed

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-E-Alam, Muhammad; Wang, Zhiming M

    2016-12-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  10. Indium Antimonide Nanowires: Synthesis and Properties

    NASA Astrophysics Data System (ADS)

    Shafa, Muhammad; Akbar, Sadaf; Gao, Lei; Fakhar-e-Alam, Muhammad; Wang, Zhiming M.

    2016-03-01

    This article summarizes some of the critical features of pure indium antimonide nanowires (InSb NWs) growth and their potential applications in the industry. In the first section, historical studies on the growth of InSb NWs have been presented, while in the second part, a comprehensive overview of the various synthesis techniques is demonstrated briefly. The major emphasis of current review is vapor phase deposition of NWs by manifold techniques. In addition, author review various protocols and methodologies employed to generate NWs from diverse material systems via self-organized fabrication procedures comprising chemical vapor deposition, annealing in reactive atmosphere, evaporation of InSb, molecular/ chemical beam epitaxy, solution-based techniques, and top-down fabrication method. The benefits and ill effects of the gold and self-catalyzed materials for the growth of NWs are explained at length. Afterward, in the next part, four thermodynamic characteristics of NW growth criterion concerning the expansion of NWs, growth velocity, Gibbs-Thomson effect, and growth model were expounded and discussed concisely. Recent progress in device fabrications is explained in the third part, in which the electrical and optical properties of InSb NWs were reviewed by considering the effects of conductivity which are diameter dependent and the applications of NWs in the fabrications of field-effect transistors, quantum devices, thermoelectrics, and detectors.

  11. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  12. Recovery of indium ions by nanoscale zero-valent iron

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Su, Yiming; Wen, Zhipan; Zhang, Yalei; Zhou, Xuefei; Dai, Chaomeng

    2017-03-01

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH)2 with In(OH)3. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca2+ and HPO4 2- have more negative influence on In(III) recovery compared with Na+, NO3 -, HCO3 -, and SO4 2-. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  13. Histological and ultrastructural study of the intracellular behavior of indium in the testicular tissues.

    PubMed

    Samira, Maghraoui; Ahlem, Ayadi; Aouatef, Ben Ammar; Habib, Jaafoura Mohamed; Leila, Tekaya

    2011-06-01

    Indium, a IIIA group element of the periodic chart, has many medical uses for diagnostic and clinical investigations in humans. This element is also used in industry and in nuclear fields where released streams can contaminate environment. Consequently, indium can reach humans mainly by natural ways. In this work, we attempted to study the incidence of this element on the food intake and body and testicle weights of rat, as well as the histological and the ultrastructural consequences of its presence in testicles using conventional transmission electron microscopy. Our study showed that this element induced a significant decrease in the food intake and body and testicles weights and caused necrosis and vacuolization in germinal cells. The ultrastructural observations showed the presence of electron-dense deposits characteristic of indium in the lysosomes of Leydig and Sertoli cells as well as sufferance in mitochondria of indium-treated rats. Despite the role of lysosome in the protection of living cells, by sequestration and concentration of indium in testicle cells under insoluble form, it is probable that this element has noxious effects on food intake and body and testicles weight and induces necrosis on seminal tissues of treated rats. Copyright © 2010 Wiley-Liss, Inc.

  14. Mineral resource of the month: indium

    USGS Publications Warehouse

    Tolcin, Amy C.

    2011-01-01

    Geologically, the occurrence of indium minerals is rare. The element most often occurs as a sulfide inclusion or substitutes in other base-metal minerals, including cassiterite, chalcopyrite, sphalerite and stannite. Indium’s abundance in the crust is estimated to be 0.05 parts per million, which makes it more abundant than silver, but it is so widely disseminated that it does not occur in high enough concentrations to form mineable deposits. Therefore, indium is most often recovered from byproduct residues produced during the refining of lead and zinc. But only about one-quarter of the indium mined worldwide is refined into metal, as many indium-bearing concentrates are sent to refineries that do not have the capability of recovering the metal.

  15. Strategic Industry Attack.

    DTIC Science & Technology

    1980-01-15

    addition to copper , there are two major groups of industrial products obtained during the extraction of copper from ores. The first is a group of important...times. Full indust!", destruction will also produce problems associated with obtaining copper ar,,i wire for use in generating, transmitting, and...ores. Almost all Soviet copper is now obtained from sulfide ores, the main oxide deposits having been exhausted by the end of the 19th Century. Initially

  16. Quantification of indium in steel using PIXE

    NASA Astrophysics Data System (ADS)

    Oliver, A.; Miranda, J.; Rickards, J.; Cheang, J. C.

    1989-04-01

    The quantitative analysis of steel for endodontics tools was carried out using low-energy protons (≤ 700 keV). A computer program for a thick-target analysis which includes enhancement due to secondary fluorescence was used. In this experiment the L-lines of indium are enhanced due to the proximity of other elements' K-lines to the indium absorption edge. The results show that the ionization cross section expression employed to evaluate this magnitude is important.

  17. Pressure-induced decomposition of indium hydroxide.

    PubMed

    Gurlo, Aleksander; Dzivenko, Dmytro; Andrade, Miria; Riedel, Ralf; Lauterbach, Stefan; Kleebe, Hans-Joachim

    2010-09-15

    A static pressure-induced decomposition of indium hydroxide into metallic indium that takes place at ambient temperature is reported. The lattice parameter of c-In(OH)(3) decreased upon compression from 7.977(2) to approximately 7.45 A at 34 GPa, corresponding to a decrease in specific volume of approximately 18%. Fitting the second-order Birch-Murnaghan equation of state to the obtained compression data gave a bulk modulus of 99 +/- 3 GPa for c-In(OH)(3). The c-In(OH)(3) crystals with a size of approximately 100 nm are comminuted upon compression, as indicated by the grain-size reduction reflected in broadening of the diffraction reflections and the appearance of smaller (approximately 5 nm) incoherently oriented domains in TEM. The rapid decompression of compressed c-In(OH)(3) leads to partial decomposition of indium hydroxide into metallic indium, mainly as a result of localized stress gradients caused by relaxation of the highly disordered indium sublattice in indium hydroxide. This partial decomposition of indium hydroxide into metallic indium is irreversible, as confirmed by angle-dispersive X-ray diffraction, transmission electron microscopy imaging, Raman scattering, and FTIR spectroscopy. Recovered c-In(OH)(3) samples become completely black and nontransparent and show typical features of metals, i.e., a falling absorption in the 100-250 cm(-1) region accompanied by a featureless spectrum in the 250-2500 cm(-1) region in the Raman spectrum and Drude-like absorption of free electrons in the region of 4000-8000 cm(-1) in the FTIR spectrum. These features were not observed in the initial c-In(OH)(3), which is a typical white wide-band-gap semiconductor.

  18. Indium Single-Ion Frequency Standard

    NASA Technical Reports Server (NTRS)

    Nagourney, Warren

    2001-01-01

    A single laser-cooled indium ion is a promising candidate for an ultimate resolution optical time or frequency standard. It can be shown that single ions from group IIIA of the periodic table (indium, thallium, etc.) can have extremely small systematic errors. In addition to being free from Doppler, transit-time and collisional shifts, these ions are also quite insensitive to perturbations from ambient magnetic and electric fields (mainly due to the use of a J=0-0 transition for spectroscopy). Of all group IIIA ions, indium seems to be the most practical, since it is heavy enough to have a tolerable intercombination cooling transition rate and (unlike thallium) has transitions which are easily accessible with frequency multiplied continuous-wave lasers. A single indium ion standard has a potential inaccuracy of one part in 10(exp 18) for integration times of 10(exp 6) seconds. We have made substantial progress during the grant period in constructing a frequency standard based upon a single indium ion. At the beginning of the grant period, single indium ions were being successfully trapped, but the lasers and optical systems were inadequate to achieve the desired goal. We have considerably improved the stability of the dye laser used to cool the ions and locked it to a molecular resonance line, making it possible to observe stable cooling-line fluorescence from a single indium ion for reasonable periods of time, as required by the demands of precision spectroscopy. We have substantially improved the single-ion fluorescence signal with significant benefits for the detection efficiency of forbidden transitions using the 'shelving' technique. Finally, we have constructed a compact, efficient UV 'clock' laser and observed 'clock' transitions in single indium ions using this laser system. We will elaborate on these accomplishments.

  19. Laser microstructured metal thin films as promising alternative for indium based transparent electrodes.

    PubMed

    Eckhardt, Sebastian; Siebold, Mathias; Lasagni, Andrés Fabián

    2016-03-21

    In the search for alternative materials to replace indium-tin-oxide in transparent electrodes we have structured copper and aluminum thin films (between 5 an 40 nm) for tailoring their optical properties. Micrometer scaled holes were produced using the direct laser interference patterning (DLIP) technique. We compared the optical and electrical parameters of nanosecond and picosecond processed thin films. It was found that the optical transmittance of the structured layers was relatively increased between 25 to 125% while the electrical resistance was marginally influenced. In addition, the laser treatment enhanced the diffuse to total transmission ratio (HAZE) by values ranging from 30 to 82% (relative) as a potential advantage of μm structuring. The results also show that both of the studied metals succeed to match the target which is set by typical applications of indium thin oxide (ITO) films. Furthermore, numerical simulations are performed in order to understand the ablation process of thin film material for ps and ns pulses.

  20. Thermal conductance of pressed metallic contacts augmented with Indium foil or Apiezon-N (tm) grease at liquid helium temperatures

    NASA Technical Reports Server (NTRS)

    Salerno, Louis J.; Kittel, Peter; Spivak, Alan L.

    1993-01-01

    The thermal conductance of pressed contacts which have been augmented with Indium foil or Apiezon-N (tm) grease was measured over the temperature range of 1.6 to 6.0 K, with applied forces from 22 N to 670 N. The sample pairs were fabricated from OFHC copper, 6061-T6 aluminum, free-machining brass, and 304 stainless steel. Although the thermal conductance was found to increase with increasing applied contact force, the force dependence was less than in earlier work. The addition of Indium foil or Apiezon-NT grease between the contact surfaces resulted in an improvement over uncoated surfaces ranging from a factor of approximately 3 for stainless steel to an order of magnitude for copper contacts.

  1. Copper hypersensitivity.

    PubMed

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  2. Micromachining with copper lasers

    NASA Astrophysics Data System (ADS)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  3. Copper transport.

    PubMed

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  4. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  5. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  6. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  7. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  8. 40 CFR 421.190 - Applicability: Description of the secondary indium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary indium subcategory. 421.190 Section 421.190 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Indium Subcategory § 421.190 Applicability: Description of the secondary indium... indium at secondary indium facilities processing spent electrolyte solutions and scrap indium metal raw...

  9. Production of ultrahigh purity copper using waste copper nitrate solution.

    PubMed

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery.

  10. Thermal Stability of Chelated Indium Activable Tracers

    SciTech Connect

    Chrysikopoulos, Costas; Kruger, Paul

    1986-01-21

    The thermal stability of indium tracer chelated with organic ligands ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) was measured for reservoir temperatures of 150, 200, and 240 C. Measurements of the soluble indium concentration was made as a function of time by neutron activation analysis. From the data, approximate thermal decomposition rates were estimated. At 150 C, both chelated tracers were stable over the experimental period of 20 days. At 200 C, the InEDTA concentration remained constant for 16 days, after which the thermal decomposition occurred at a measured rate constant of k = 0.09 d{sup -1}. The thermal decomposition of InNTA at 200 C showed a first order reaction with a measured rate constant of k = 0.16 d{sup -1}. At 240 C, both indium chelated tracers showed rapid decomposition with rate constants greater than 1.8 d{sup -1}. The data indicate that for geothermal reservoir with temperatures up to about 200 C, indium chelated tracers can be used effectively for transit times of at least 20 days. These experiments were run without reservoir rock media, and do not account for concomitant loss of indium tracer by adsorption processes.

  11. Indium adhesion provides quantitative measure of surface cleanliness

    NASA Technical Reports Server (NTRS)

    Krieger, G. L.; Wilson, G. J.

    1968-01-01

    Indium tipped probe measures hydrophobic and hydrophilic contaminants on rough and smooth surfaces. The force needed to pull the indium tip, which adheres to a clean surface, away from the surface provides a quantitative measure of cleanliness.

  12. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  13. Thermodynamic Temperature Measurement to the Indium Point Based on Radiance Comparison

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Yamada, Y.

    2017-04-01

    A multi-national project (the EMRP InK project) was completed recently, which successfully determined the thermodynamic temperatures of several of the high-temperature fixed points above the copper point. The National Metrology Institute of Japan contributed to this project with its newly established absolute spectral radiance calibration capability. In the current study, we have extended the range of thermodynamic temperature measurement to below the copper point and measured the thermodynamic temperatures of the indium point (T_{90} = 429.748 5 K), tin point (505.078 K), zinc point (692.677 K), aluminum point (933.473 K) and the silver point (1 234.93 K) by radiance comparison against the copper point, with a set of radiation thermometers having center wavelengths ranging from 0.65 μm to 1.6 μm. The copper-point temperature was measured by the absolute radiation thermometer which was calibrated by radiance method traceable to the electrical substitution cryogenic radiometer. The radiance of the fixed-point blackbodies was measured by standard radiation thermometers whose spectral responsivity and nonlinearity are precisely evaluated, and then the thermodynamic temperatures were determined from radiance ratios to the copper point. The values of T-T_{90} for the silver-, aluminum-, zinc-, tin- and indium-point cells were determined as -4 mK (U = 104 mK, k=2), -99 mK (88 mK), -76 mK (76 mK), -68 mK (163 mK) and -42 mK (279 mK), respectively.

  14. Assessment of workplace air concentrations of indium dust in an indium-recycling plant.

    PubMed

    Miyauchi, Hiroyuki; Minozoe, Aoi; Tanaka, Shigeru; Tanaka, Akiyo; Hirata, Miyuki; Nakaza, Masahiro; Arito, Heihachiro; Eitaki, Yoko; Nakano, Makiko; Omae, Kazuyuki

    2012-01-01

    Suspended indium dust in an indium-recycling plant was quantified, in order to improve the work environment and to reduce workers' exposure to the dust. Assessment of indium dust in the workplace air by multipoint area sampling and personal breathing zone sampling was conducted twice in 2004 and 2008. In 2004, all recycling processes except for purity analysis were classified into control class III according to the 2004 Notification. Two out of 5 workers were exposed to total dust with indium concentrations exceeding the ACGIH's TLV-TWA of 0.1 mg In/m(3). In 2008, the indium-contaminated workplace air was improved by local exhaust ventilation systems installed in some processes, resulting in control class I. According to the 2010 Technical Guideline, however, all the processes were classified into stage II or III, indicating that the first assessment value or Measurement B-based concentrations exceeded the acceptable exposure concentration limit of 0.0003 mg In/m(3) of respirabe dust. Exposure of almost all the workers to indium dust was below the TLV-TWA. The first field survey showed that almost all workplaces were classified into control class III, and that some workers were exposed to dust with indium concentrations exceeding the TLV-TWA. It was found in the second survey that workplace air contamination was improved by the local exhaust ventilation system, but was not reduced sufficiently to a level that meets the new Guideline.

  15. Arizona Copper

    NASA Image and Video Library

    2017-09-27

    Arizona produces 60% of the total copper mined in the US; in 2007, 750,000 tons of copper came out of the state. One of the major mining districts is located about 30 km south of Tucson. Starting around 1950, open-pit mining replaced underground operations, and the ASARCO-Mission complex, Twin Buttes, and Sierrita mines became large open pit operations. Accompanying copper mineralization, silver, molybdenum, zinc, lead and gold are extracted. In addition to the pits themselves, enormous leach ponds and tailings piles surround the pits. The image was acquired May 31, 2012, covers an area of 22 by 28 km, and is located at 31.9 degrees north, 111 degrees west. With its 14 spectral bands from the visible to the thermal infrared wavelength region and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched Dec. 18, 1999, on Terra. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate, Washington, D.C. More information about ASTER is available at asterweb.jpl.nasa.gov/ Credit: NASA

  16. Indium-111 leukocyte scanning and fracture healing

    SciTech Connect

    Mead, L.P.; Scott, A.C.; Bondurant, F.J.; Browner, B.D. )

    1990-01-01

    This study was undertaken to determine the specificity of indium-111 leukocyte scans for osteomyelitis when fractures are present. Midshaft tibial osteotomies were performed in 14 New Zealand white rabbits, seven of which were infected postoperatively with Staphylococcus aureus per Norden's protocol. All 14 rabbits were scanned following injection with 75 microCi of indium 111 at 72 h after osteotomy and at weekly intervals for 4 weeks. Before the rabbits were killed, the fracture sites were cultured to document the presence or absence of infection. The results of all infected osteotomy sites were positive, whereas no positive scans were found in the noninfected osteotomies. We concluded from this study that uncomplicated fracture healing does not result in a positive indium-111 leukocyte scan.

  17. Advantages and challenges of increased antimicrobial copper use and copper mining.

    PubMed

    Elguindi, Jutta; Hao, Xiuli; Lin, Yanbing; Alwathnani, Hend A; Wei, Gehong; Rensing, Christopher

    2011-07-01

    Copper is a highly utilized metal for electrical, automotive, household objects, and more recently as an effective antimicrobial surface. Copper-containing solutions applied to fruits and vegetables can prevent bacterial and fungal infections. Bacteria, such as Salmonellae and Cronobacter sakazakii, often found in food contamination, are rapidly killed on contact with copper alloys. The antimicrobial effectiveness of copper alloys in the healthcare environment against bacteria causing hospital-acquired infections such as methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli O157:H7, and Clostridium difficile has been described recently. The use of copper and copper-containing materials will continue to expand and may lead to an increase in copper mining and production. However, the copper mining and manufacturing industry and the consumer do not necessarily enjoy a favorable relationship. Open pit mining, copper mine tailings, leaching products, and deposits of toxic metals in the environment often raises concerns and sometimes public outrage. In addition, consumers may fear that copper alloys utilized as antimicrobial surfaces in food production will lead to copper toxicity in humans. Therefore, there is a need to mitigate some of the negative effects of increased copper use and copper mining. More thermo-tolerant, copper ion-resistant microorganisms could improve copper leaching and lessen copper groundwater contamination. Copper ion-resistant bacteria associated with plants might be useful in biostabilization and phytoremediation of copper-contaminated environments. In this review, recent progress in microbiological and biotechnological aspects of microorganisms in contact with copper will be presented and discussed, exploring their role in the improvement for the industries involved as well as providing better environmental outcomes.

  18. [Investigation of indium exposure in workers in indium smelting plant].

    PubMed

    Ding, C G; Yan, H F; Wang, H Q; Li, T

    2016-04-20

    To investigate the internal and external exposure levels of indium (In)in workers in an In smelting plant, and to analyze its distribution characteristics. A survey was performed in 63 employed workers with more than one year of experience working in an In smelting plant in 2014. The personal air samples for 31 workers were collected, and the whole blood, serum, and urine samples of all the 63 workers were collected to do the occupational health examination at the same time. In levels in all samples were determined by inductively coupled plasma mass spectrometry. The smelter workers had a higher In exposure level in the air than the office workers (2.26 μg/m(3) vs 0.82 μg/m(3), P>0.05). There was a significant difference in In exposure level in the air between the workers doing different types of jobs (P<0.05). The In exposure levels in the air in the metathesis workers and electrolysis workers were 26.10 μg/m(3) and 20.99 μg/m(3), respectively, which were significantly higher than those in other workers (P<0.05). The smelter workers had significantly higher geometric means of In levels in the whole blood, serum, and urine than the office workers (0.44 μg/L vs 0.09 μg/L, P<0.05; 0.35 μg/L vs 0.09 μg/L, P<0.05; 0.26 μg/L vs 0.12 μg/L, P<0.05). There were significant differences in In levels in the whole blood, serum, and urine between the workers doing different types of jobs (P<0.05). The metathesis workers (13.0 μg/L, 4.02 μg/L, and 2.93 μg/L)and electrolysis workers (5.71 μg/L, 5.14 μg/L, and 4.26 μg/L)had higher In levels in the whole blood, serum, and urine than other workers. The In level in the whole blood was positively correlated with the In levels in the urine and serum (rs=0.601, P<0.05; rs=0.823, P<0.05). The In levels in the whole blood and urine were positively correlated with the In level in the air(rs=0.483, P<0.05; rs=0.428, P<0.05). In the In smelting plant, the In concentrations in the air are lower than the standard value, but the

  19. A biokinetic and dosimetric model for ionic indium in humans

    NASA Astrophysics Data System (ADS)

    Andersson, Martin; Mattsson, Sören; Johansson, Lennart; Leide-Svegborn, Sigrid

    2017-08-01

    This paper reviews biokinetic data for ionic indium, and proposes a biokinetic model for systemic indium in adult humans. The development of parameter values focuses on human data and indium in the form of ionic indium(III), as indium chloride and indium arsenide. The model presented for systemic indium is defined by five different pools: plasma, bone marrow, liver, kidneys and other soft tissues. The model is based on two subsystems: one corresponding to indium bound to transferrin and one where indium is transported back to the plasma, binds to red blood cell transferrin and is then excreted through the kidneys to the urinary bladder. Absorbed doses to several organs and the effective dose are calculated for 111In- and 113mIn-ions. The proposed biokinetic model is compared with previously published biokinetic indium models published by the ICRP. The absorbed doses are calculated using the ICRP/ICRU adult reference phantoms and the effective dose is estimated according to ICRP Publication 103. The effective doses for 111In and 113mIn are 0.25 mSv MBq-1 and 0.013 mSv MBq-1 respectively. The updated biokinetic and dosimetric models presented in this paper take into account human data and new animal data, which represent more detailed and presumably more accurate dosimetric data than that underlying previous models for indium.

  20. Optoelectric biosensor using indium-tin-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Choi, Chang Kyoung; Kihm, Kenneth D.; English, Anthony E.

    2007-06-01

    The use of an optically thin indium-tin-oxide (ITO) electrode is presented for an optoelectric biosensor simultaneously recording optical images and microimpedance to examine time-dependent cellular growth. The transmittance of a 100nm thick ITO electrode layer is approximately the same as the transmittance of a clean glass substrate, whereas the industry-standard Au(47.5nm)/Ti(2.5nm) electrode layer drops the transmittance to less than 10% of that of the glass substrate. The simultaneous optoelectric measurements permit determining the correlation of the cell-covered area increase with the microimpedance increase, and the example results obtained for live porcine pulmonary artery endothelial cells delineate the quantitative and comprehensive nature of cellular attachment and spreading to the substrate, which has not been clearly perceived before.

  1. Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos.

    PubMed

    Usami, Makoto; Nakajima, Mikio; Mitsunaga, Katsuyoshi; Miyajima, Atsuko; Sunouchi, Momoko; Doi, Osamu

    2009-12-01

    Indium embryotoxicity was investigated by proteomic analysis with two-dimensional electrophoresis of rat embryos cultured from day 10.5 of gestation for 24h in the presence of 50 microM indium trichloride. In the embryo proper, indium increased quantity of several protein spots including those identified as serum albumin, phosphorylated cofilin 1, phosphorylated destrin and tyrosyl-tRNA synthetase. The increased serum albumin, derived from the culture medium composed of rat serum, may decrease the toxicity of indium. The increase of phosphorylated cofilin 1 might be involved in dysmorphogenicity of indium through perturbation of actin functions. In the yolk sac membrane, indium induced quantitative and qualitative changes in the protein spots. Proteins from appeared spots included stress proteins, and those from decreased or disappeared spots included serum proteins, glycolytic pathway enzymes and cytoskeletal proteins, indicating yolk sac dysfunction. Thus, several candidate proteins that might be involved in indium embryotoxicity were identified.

  2. Relationship between indium exposure and oxidative damage in workers in indium tin oxide production plants.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yun; Chen, Gun-Ing; Lee, Lien-Hsiung; Chen, Hsiu-Ling

    2012-05-01

    The study aimed to assess the relationship between indium exposure and surfactant protein and any oxidative damage in indium tin oxide (ITO)-exposed workers. The study was conducted in two typical ITO-manufacturing plants in Taiwan. One hundred and seventy manufacturing workers and 132 administrators were recruited. The geometric mean serum indium (S-In) level in the workers of the manufacturing department was 1.26 μg/l, which was significantly higher than those in the administrative department (0.72 μg/l). The S-In levels of 49 workers were higher than 3 μg/l (49/302, 16.2%), exceeding an occupational exposure limit suggested by the Japan Society for Occupational Health. Significant positive relationships were found between S-In and surfactant protein A (SP-A), and surfactant protein D (SP-D) levels. SP-A and SP-D levels were elevated significantly in the workers with moderately high indium exposure. The present study indicates a significant elevating trend of SP-A and SP-D levels in ITO-manufacturing workers, which are sensitive markers of interstitial lung disease. Though the indium exposure is not directly linked to all indicators of oxidative DNA damage, the ITO-manufacturing workplace is suggested to be related to oxidative DNA damage for the workers in the current study. Therefore, in addition to the indium exposure, there might be other occupational hazards in the ITO workplace to cause oxidative damage.

  3. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  4. Sinterless Formation Of Contacts On Indium Phosphide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1995-01-01

    Improved technique makes it possible to form low-resistivity {nearly equal to 10(Sup-6) ohm cm(Sup2)} electrical contacts on indium phosphide semiconductor devices without damaging devices. Layer of AgP2 40 Angstrom thick deposited on InP before depositing metal contact. AgP2 interlayer sharply reduces contact resistance, without need for sintering.

  5. Heat transfer at a sapphire - indium interface in the 30 mK - 300 mK temperature range

    NASA Astrophysics Data System (ADS)

    Liberadzka, J.; Koettig, T.; Bremer, J.; van der Post, C. C. W.; ter Brake, H. J. M.

    2017-02-01

    Within the framework of the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) project a direct measurement of the Earth’s gravitational acceleration on antihydrogen will be carried out. In order to obtain satisfactory precision of the measurement, the thermal movement of the particles should be reduced. Therefore a Penning trap, which is used to trap antiprotons and create antihydrogen, will be placed on a mixing chamber of an especially designed dilution refrigerator. The trap consists of 10 electrodes, which need to be electrically insulated, but thermally anchored. To ensure that the trap remains at a temperature below 100 mK, the heat transfer at the metallic-dielectric boundary is investigated. A copper - indium - sapphire - indium - copper sandwich setup was mounted on the CERN Cryolab dilution refrigerator. Keeping the mixing chamber at a constant low temperature in the range of 30 mK to 300 mK, steady-state measurements with indium in normal conducting and superconducting states have been performed. Obtained results along with a precise description of our setup are presented.

  6. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  7. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  8. Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Schramm, H.-P.; Symietz, C.; Bonse, J.; Andree, S.; Heidmann, B.; Schmid, M.; Krüger, J.; Boeck, T.

    2017-10-01

    Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells.

  9. Development of an Indium bump bond process for silicon pixel detectors at PSI

    NASA Astrophysics Data System (ADS)

    Broennimann, Ch.; Glaus, F.; Gobrecht, J.; Heising, S.; Horisberger, M.; Horisberger, R.; Kästli, H. C.; Lehmann, J.; Rohe, T.; Streuli, S.

    2006-09-01

    The hybrid pixel detectors used in the high-energy physics experiments currently under construction use a vertical connection technique, the so-called bump bonding. As the pitch below 100 μm, required in these applications, cannot be fulfilled with standard industrial processes (e.g. the IBM C4 process), an in-house bump bond process using reflowed indium bumps was developed at PSI as part of the R&D for the CMS-pixel detector. The bump deposition on the sensor is performed in two subsequent lift-off steps. As the first photolithographic step a thin under bump metalization (UBM) is sputtered onto bump pads. It is wettable by indium and defines the diameter of the bump. The indium is evaporated via a second photolithographic step with larger openings and is reflowed afterwards. The height of the balls is defined by the volume of the indium. On the readout chip only one photolithographic step is carried out to deposit the UBM and a thin indium layer for better adhesion. After mating both parts a second reflow is performed for self-alignment and obtaining high mechanical strength. For the placement of the chips a manual and an automatic machine were constructed. The former is very flexible in handling different chip and module geometries but has a limited throughput while the latter features a much higher grade of automatization and is therefore much more suited for producing hundreds of modules with a well-defined geometry. The reliability of this process was proven by the successful construction of the PILATUS detector. The construction of PILATUS 6M (60 modules) and the CMS pixel barrel (roughly 800 modules) has started in early 2006.

  10. Historical and Present Deposition of Rare Earth Elements and Indium from the Atmosphere to a Bog in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    White, S. J.; Laitz, M. R.; Valentine, C.; Hemond, H.

    2016-12-01

    The industrial production of the rare earth elements (REE) and indium is increasing dramatically due to new uses in rapidly growing electronics, clean energy, and defense applications. Little is known, however, about the natural or industrial cycling of these elements or their environmental behavior, despite the fact that industrial emissions to the environment appear to already exceed natural sources. The history of metal deposition from the atmosphere is often reflected in the vertical profiles of the metals in ombrotrophic bogs, which by definition do not receive surface or subsurface runoff. Previous analysis of a peat core obtained using a novel freeze corer at Thoreau's Bog in Concord, MA shows that the rate of indium deposition to the bog increased beginning in the early 1900s, peaked in the early 1970s, and then decreased dramatically to pre-1900 values by the present time. This profile is counter to the pattern of indium's industrial use, but coincides well with the estimated history of particulate emissions from smelting and from coal combustion in North America. Analysis of the rare earth elements in the same peat core has shown similar profiles to indium, suggesting a similar source of the rare earth elements to the atmosphere in the northeastern US. This study suggests that humans have had a significant impact on the environmental cycling of indium and the rare earth elements, at least in part because of releases from metal smelting and coal burning.

  11. Copper Metallochaperones

    PubMed Central

    Robinson, Nigel J.; Winge, Dennis R.

    2014-01-01

    The current state of knowledge on how copper metallochaperones support the maturation of cuproproteins is reviewed. Copper is needed within mitochondria to supply the CuA and intramembrane CuB sites of cytochrome oxidase, within the trans-Golgi network to supply secreted cuproproteins and within the cytosol to supply superoxide dismutase 1 (Sod1). Subpopulations of copper-zinc superoxide dismutase also localize to mitochondria, the secretory system, the nucleus and, in plants, the chloroplast, which also requires copper for plastocyanin. Prokaryotic cuproproteins are found in the cell membrane and in the periplasm of gram-negative bacteria. Cu(I) and Cu(II) form tight complexes with organic molecules and drive redox chemistry, which unrestrained would be destructive. Copper metallochaperones assist copper in reaching vital destinations without inflicting damage or becoming trapped in adventitious binding sites. Copper ions are specifically released from copper metallochaperones upon contact with their cognate cuproproteins and metal transfer is thought to proceed by ligand substitution. PMID:20205585

  12. Electrodeposition of copper selenide films from acidic bath and their properties

    NASA Astrophysics Data System (ADS)

    Mane, Rajaram S.; Shaikh, Arif V.; Joo, Oh-Shim; Han, Sung-Hwan; Pathan, Habib M.

    2012-06-01

    Copper selenide thin films are successfully deposited using electrodeposition method by combining copper sulfate and sodiumseleno sulfate precursors at room temperature in acidic bath. The chemical composition was a key factor in preparing high-quality uniform and smooth thin films of the copper selenide. We present indium-tin-oxide as a substrate for depositing copper selenide films which usually exists as copper (I) selenide or copper (II) selenide. Obtained brownish films of copper selenide are examined for their structural, morphological, compositional and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques, respectively for the structural, morphological and optical analysis.

  13. Two- and 13-week inhalation toxicities of indium-tin oxide and indium oxide in rats.

    PubMed

    Nagano, Kasuke; Gotoh, Kaoru; Kasai, Tatsuya; Aiso, Shigetoshi; Nishizawa, Tomoshi; Ohnishi, Makoto; Ikawa, Naoki; Eitaki, Yoko; Yamada, Kenichi; Arito, Heihachiro; Fukushima, Shoji

    2011-01-01

    Two- and 13-week inhalation toxicities of indium-tin oxide (ITO) and indium oxide (IO) were characterized for risk assessments of workers exposed to ITO. F344 rats of both sexes were exposed by inhalation to ITO or IO aerosol for 6 h/day, 5 day/wk for 2 wk at 0, 0.1, 1, 10 or 100 mg/m(3) or 13 wk at 0, 0.1 or 1 mg/m(3). An aerosol generator and inhalation exposure system was constructed. Blood and lung contents of indium were elevated in a dose-related manner in the ITO- and IO-exposed rats. ITO and IO particles were deposited in the lung, mediastinal lymph node and nasal-associated lymphoid tissue. Exposures to ITO and IO induced alveolar proteinosis, infiltrations of alveolar macrophages and inflammatory cells and alveolar epithelial hyperplasia in addition to increased lung weight. ITO affected the lung more severely than IO did. Fibrosis of alveolar wall developed and some of these lesions worsened at the end of the 26-week post-exposure period. Persistent pulmonary lesions including alveolar proteinosis and macrophage infiltration occurred after 2- and 13-week inhalation exposures of rats to ITO and IO. Fibrosis of alveolar wall developed later. These lesions occurred after ITO exposure at the same concentration as the current occupational exposure limit in the USA and at blood indium levels below the biological exposure index in Japan for indium.

  14. Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio).

    PubMed

    Brun, Nadja Rebecca; Christen, Verena; Furrer, Gerhard; Fent, Karl

    2014-10-07

    Indium and indium tin oxide (ITO) are extensively used in electronic technologies. They may be introduced into the environment during production, use, and leaching from electronic devices at the end of their life. At present, surprisingly little is known about potential ecotoxicological implications of indium contamination. Here, molecular effects of indium nitrate (In(NO3)3) and ITO nanoparticles were investigated in vitro in zebrafish liver cells (ZFL) cells and in zebrafish embryos and novel insights into their molecular effects are provided. In(NO3)3 led to induction of endoplasmic reticulum (ER) stress response, induction of reactive oxygen species (ROS) and induction of transcripts of pro-apoptotic genes and TNF-α in vitro at a concentration of 247 μg/L. In(NO3)3 induced the ER stress key gene BiP at mRNA and protein level, as well as atf6, which ultimately led to induction of the important pro-apoptotic marker gene chop. The activity of In(NO3)3 on ER stress induction was much stronger than that of ITO, which is explained by differences in soluble free indium ion concentrations. The effect was also stronger in ZFL cells than in zebrafish embryos. Our study provides first evidence of ER stress and oxidative stress induction by In(NO3)3 and ITO indicating a critical toxicological profile that needs further investigation.

  15. Oxidation state, aggregation, and heterolytic dissociation of allyl indium reagents.

    PubMed

    Koszinowski, Konrad

    2010-05-05

    Solutions of allyl indium reagents formed in the reactions of indium with allyl bromide and allyl iodide, respectively, in N,N-dimethylformamide, tetrahydrofuran, and water were analyzed by a combination of electrospray-ionization mass spectrometry, temperature-dependent (1)H NMR spectroscopy, and electrical conductivity measurements. Additional mass spectrometric experiments probed charge-tagged derivatives of the allyl indium reagents. The results obtained indicate the presence of allyl indium(+3) species, which undergo heterolytic dissociation to yield ions such as InR(2)(solv)(+) and InRX(3)(-) with R = allyl and X = Br and I. The extent of dissociation is greatest for N,N-dimethylformamide, whereas aggregation effects are more pronounced for the less polar tetrahydrofuran. The heterolytic dissociation of the allyl indium reagents supposedly enhances their reactivity by simultaneously providing highly Lewis acidic allyl indium cations and nucleophilic allyl indate anions.

  16. The n-type conduction of indium-doped Cu{sub 2}O thin films fabricated by direct current magnetron co-sputtering

    SciTech Connect

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing; Roy, V. A. L.

    2015-08-24

    Indium-doped Cu{sub 2}O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O{sub 2}. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu{sub 2}O, with no other phases detected. Indium atoms exist as In{sup 3+} in Cu{sub 2}O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2–713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu{sub 2}O and, therefore, lead to n-type conduction.

  17. The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Xing-Min; Su, Xiao-Qiang; Ye, Fan; Wang, Huan; Tian, Xiao-Qing; Zhang, Dong-Ping; Fan, Ping; Luo, Jing-Ting; Zheng, Zhuang-Hao; Liang, Guang-Xing; Roy, V. A. L.

    2015-08-01

    Indium-doped Cu2O thin films were fabricated on K9 glass substrates by direct current magnetron co-sputtering in an atmosphere of Ar and O2. Metallic copper and indium disks were used as the targets. X-ray diffraction showed that the diffraction peaks could only be indexed to simple cubic Cu2O, with no other phases detected. Indium atoms exist as In3+ in Cu2O. Ultraviolet-visible spectroscopy showed that the transmittance of the samples was relatively high and that indium doping increased the optical band gaps. The Hall effect measurement showed that the samples were n-type semiconductors at room temperature. The Seebeck effect test showed that the films were n-type semiconductors near or over room temperature (<400 K), changing to p-type at relatively high temperatures. The conduction by the samples in the temperature range of the n-type was due to thermal band conduction and the donor energy level was estimated to be 620.2-713.8 meV below the conduction band. The theoretical calculation showed that indium doping can raise the Fermi energy level of Cu2O and, therefore, lead to n-type conduction.

  18. GEMAS: Concentrations and origin of indium in agricultural soil of Europe

    NASA Astrophysics Data System (ADS)

    Ladenberger, Anna; Sadeghi, Martiya; Demetriades, Alecos; Reimann, Clemens; Birke, Manfred; Andersson, Madelen; Jonsson, Erik

    2014-05-01

    Indium is classified as a critical metal, urgently needed in the electronics industry, especially for the production of solar panels and LCD screens. It is a volatile chalcophile rare element and its primary sources are different types of sulphide ore deposits. Although sphalerite is the main host mineral for indium, chalcopyrite-rich ores usually contain the highest contents of this element. Apart from common sulphides, higher indium concentrations can occur in cassiterite, wolframite and magnetite, in addition to few known indium minerals such as roquesite. Indium is a very rare element and its determination needs a technique with very low detection limits. Data for In are hardly ever provided in geochemical data sets due to its function as an internal standard when using the ICP-MS for analysis. Within the GEMAS project, over 4000 samples of agricultural (Ap) and grazing land (Gr) soil have been collected, and indium concentrations have been measured by ICP-MS in an aqua regia extraction. The median value of aqua regia extractable In in European soil is 0.0176 mg/kg in the Ap and 0.0177 mg/kg in the Gr samples. The most striking pattern on an In distribution map of Europe in an aqua regia extraction is the large difference between northern (low - median 0.012 mg/kg In in the Ap samples) and southern Europe (high - median 0.021 mg/kg In in the Ap samples). The boundary between predominantly high and low concentrations follows exactly the southernmost limit of the last glaciation. In southern Scandinavia, clay-rich soil is indicated by In anomalies, as is the Oslo Rift and the old silver mine at Kongsberg (Norway). Generally, distinct In anomalies mark many of the famous old mining areas of the continent, typically those featuring relatively young hydrothermal deposits (northern Portugal, Iberian Pyrite Belt, Cornwall in the UK, Harz in Germany and Erzgebirge at the German/Czech border), and granitic intrusions (probably related to associated Sn and skarn

  19. Indium Alloy as Cadmium Brush Plating Replacement

    DTIC Science & Technology

    2010-06-17

    Aged In- Sn Aged Cd In- Sn before Aging Cd before Aging Sn -Zn (12V) before Aging 18 Temperature Cycling Table 6. Temperature Cycling Conditions for Each...selection Key Requirements Candidate Cd Plating Replacement Processing Al Zn Ni Sn Zn-Ni Sn -Ni Sn -Zn Sn -In Meet Environmental Health and Safety (EHS...Corrosion Protection P P F P ? ? P P Whisker Growth (FOR INFO) ? F P F P P ? ? Al = Aluminum; In = Indium; Ni = Nickel; Sn =

  20. Prevention of indium intoxication by ferric dextran

    PubMed Central

    Gabbiani, G.; Selye, H.; Tuchweber, Beatriz

    1962-01-01

    Experiments on the rat indicate that intravenous administration of indium chloride produces severe hepatic necroses with fatal icterus within a few days. These actions can be prevented by the prophylactic administration of ferric dextran. This protective effect of the iron compound must be largely specific since it could not be duplicated by pretreatment with any of a large series of other agents. The possible mechanism of the protective effect is briefly discussed. ImagesFig. 1 PMID:13945982

  1. Indium 111 toxicity in the human lymphocyte

    SciTech Connect

    Silberstein, E.B.; Watson, S.; Mayfield, G.; Kereiakes, J.G.; Bullock, W.

    1985-05-01

    Indium-labeled lymphocytes were examined for response to a variety of mitogens, ability to synthesize immunoglobulins, mitotic index, and presence of chromosome aberrations at a range of exposures from 0.2 to 500 muCi/10(8) cells. Results of all four tests were found to be abnormal when the lymphocytes were labeled with /sup 111/In activities well within those employed for diagnostic testing.

  2. The toxicology of indium tin oxide.

    PubMed

    Bomhard, Ernst M

    2016-07-01

    Indium tin oxide (ITO) is a technologically important semiconductor. An increasing number of cases of severe lung effects (characterized by pulmonary alveolar proteinosis and/or interstitial fibrosis) in ITO-exposed workers warrants a review of the toxicological hazards. Short- and long-term inhalation studies in rats and mice revealed persistent alveolar proteinosis, inflammation and fibrosis in the lungs down to concentrations as low as 0.01mg/m(3). In rats, the incidences of bronchiolo-alveolar adenomas and carcinomas were significantly increased at all concentrations. In mice, ITO was not carcinogenic. A few bronchiolo-alveolar adenomas occurring after repeated intratracheal instillation of ITO to hamsters have to be interpreted as treatment-related. In vitro and in vivo studies on the formation of reactive oxygen species suggest epigenetic effects as cause of the lung tumor development. Repeated intratracheal instillation of ITO to hamsters slightly affected the male sexual organs, which might be interpreted as a secondary effect of the lung damage. Epidemiological and medical surveillance studies, serum/blood indium levels in workers as well as data on the exposure to airborne indium concentrations indicate a need for measures to reduce exposure at ITO workplaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Thermoelectric Properties of Indium-Filled Skutterudites

    SciTech Connect

    He, Tao; Chen, Jiazhong; Rosenfeld, H. David; Subramanian, M.A.

    2008-09-18

    Structural, electrical, and thermal transport properties of CoSb{sub 3} partially filled with indium are reported. Polycrystalline samples of In{sub x}Co{sub 4}Sb{sub 12} (0 {le} x {le} 0.3) were prepared by solid-state reaction under a gas mixture of 5% H{sub 2} and 95% Ar. The solubility limit of the indium filling voids in CoSb{sub 3} was found to be close to 0.22. Synchrotron X-ray diffraction refinement of the x = 0.2 sample showed that the indium is located in the classic rattler site and has a substantially larger thermal factor than those of Co and Sb. The electrical resistivity, Seebeck coefficients, and thermal conductivity of the In{sub x}Co{sub 4}Sb{sub 12} samples were measured in the temperature range of 300-600 K. All samples showed metal-like behavior, and the large negative Seebeck coefficients indicated n-type conduction. The thermal conductivity decreased with increasing temperature for all samples. A thermoelectric figure-of-merit (ZT) {ge} 1 (n-type) has been achieved when x {ge} 0.2 in In{sub x}Co{sub 4}Sb{sub 12} at 575 K.

  4. Method to Improve Indium Bump Bonding via Indium Oxide Removal Using a Multi-Step Plasma Process

    NASA Technical Reports Server (NTRS)

    Greer, H. Frank (Inventor); Jones, Todd J. (Inventor); Vasquez, Richard P. (Inventor); Hoenk, Michael E. (Inventor); Dickie, Matthew R. (Inventor); Nikzad, Shouleh (Inventor)

    2012-01-01

    A process for removing indium oxide from indium bumps in a flip-chip structure to reduce contact resistance, by a multi-step plasma treatment. A first plasma treatment of the indium bumps with an argon, methane and hydrogen plasma reduces indium oxide, and a second plasma treatment with an argon and hydrogen plasma removes residual organics. The multi-step plasma process for removing indium oxide from the indium bumps is more effective in reducing the oxide, and yet does not require the use of halogens, does not change the bump morphology, does not attack the bond pad material or under-bump metallization layers, and creates no new mechanisms for open circuits.

  5. The influence of random indium alloy fluctuations in indium gallium nitride quantum wells on the device behavior

    SciTech Connect

    Yang, Tsung-Jui; Wu, Yuh-Renn; Shivaraman, Ravi; Speck, James S.

    2014-09-21

    In this paper, we describe the influence of the intrinsic indium fluctuation in the InGaN quantum wells on the carrier transport, efficiency droop, and emission spectrum in GaN-based light emitting diodes (LEDs). Both real and randomly generated indium fluctuations were used in 3D simulations and compared to quantum wells with a uniform indium distribution. We found that without further hypothesis the simulations of electrical and optical properties in LEDs such as carrier transport, radiative and Auger recombination, and efficiency droop are greatly improved by considering natural nanoscale indium fluctuations.

  6. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria.

    PubMed

    Andreazza, Robson; Okeke, Benedict C; Lambais, Márcio Rodrigues; Bortolon, Leandro; de Melo, George Wellington Bastos; Camargo, Flávio Anastácio de Oliveira

    2010-11-01

    Copper contaminated areas pose environmental health risk to living organisms. Remediation processes are thus required for both crop production and industrial activities. This study employed bioaugmentation with copper resistant bacteria to improve phytoremediation of vineyard soils and copper mining waste contaminated with high copper concentrations. Oatmeal plant (Avena sativa L.) was used for copper phytoextraction. Three copper resistant bacterial isolates from oatmeal rhizosphere (Pseudomonas putida A1; Stenotrophomonas maltophilia A2 and Acinetobacter calcoaceticus A6) were used for the stimulation of copper phytoextraction. Two long-term copper contaminated vineyard soils (Mollisol and Inceptisol) and copper mining waste from Southern Brazil were evaluated. Oatmeal plants substantially extracted copper from vineyard soils and copper mining waste. As much as 1549 mg of Cu kg⁻¹ dry mass was extracted from plants grown in Inceptisol soil. The vineyard Mollisol copper uptake (55 mg Cu kg⁻¹ of dry mass) in the shoots was significantly improved upon inoculation of oatmeal plants with isolate A2 (128 mg of Cu kg⁻¹ of shoot dry mass). Overall oatmeal plant biomass displayed higher potential of copper phytoextraction with inoculation of rhizosphere bacteria in vineyard soil to the extent that 404 and 327 g ha⁻¹ of copper removal were respectively observed in vineyard Mollisol bioaugmented with isolate A2 (S. maltophilia) and isolate A6 (A. calcoaceticus). Results suggest potential application of bacterial stimulation of phytoaccumulation of copper for biological removal of copper from contaminated areas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. J/{psi} production in indium-indium collisions at SPS energies

    SciTech Connect

    Pillot, P.; Ducroux, L.; Guichard, A.; Tieulent, R.; Arnaldi, R.; Colla, A.; Cortese, P.; Ferretti, A.; Oppedisano, C.; Scomparin, E.; Averbeck, R.; Drees, A.; Banicz, K.; Keil, M.; Castor, J.; Devaux, A.; Force, P.; Manso, F.; Chaurand, B.; Cicalo, C.

    2006-01-12

    The NA60 experiment collected data on dimuon production in indium-indium collisions at 158 GeV/c per incident nucleon, in year 2003, to contribute to the clarification of several questions raised by previous experiments studying high-energy heavy-ion physics at the CERN SPS in search of the quark gluon plasma. Among these previous results stands the observation, by NA50, that the production yield of J/{psi} mesons is suppressed in central Pb-Pb collisions beyond the normal nuclear absorption defined by proton-nucleus data. By comparing the centrality dependence of the suppression pattern between different colliding systems, S-U, Pb-Pb and In-In, we should be able to identify the corresponding scaling variable, and the physics mechanism driving the suppression. In this paper, we will present the ratio of J/{psi} and Drell-Yan production cross-sections in indium-indium collisions, in three centrality bins, and how these values compare to previous measurements. We will also present a study of the transverse momentum distributions of the J/{psi} mesons, in seven centrality bins.

  8. Role of indium-111 chloride imaging in osteoid osteoma

    SciTech Connect

    Kumar, R.; Swischuk, L.E.; Schreiber, M.H.

    1986-10-01

    Indium-111 chloride imaging plays an important role in differentiating intracortical osteoid osteoma from chronic cortical abscess. The study also may be useful in the detection of intramedullary osteoid osteoma. Four patients who greatly benefited from indium-111 chloride imaging are presented.

  9. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    in production from the mid-1960s until the early 1990s. Their efficiency was close to 15%. The next step consisted of single junction gallium ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited INDIUM GALLIUM ...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas 6

  10. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  11. Phonon dispersion of indium along [111

    SciTech Connect

    Bakulin, A. S.; Overhauser, A. W.; Kaiser, H.; Werner, S. A.; Fernandez-Baca, J. A.; Smith, H. G.

    2001-02-01

    The phonon spectrum of indium along [111], measured by inelastic neutron scattering, is reported. The two shear modes at the zone-boundary point (1/2, 1/2, 1/2) are split slightly (on account of a 7.5% tetragonal distortion). They have very low frequencies, {approx}0.7 and 1.0 THz, compared to the longitudinal mode, {approx}3.4 THz. These measurements verify the theoretical dispersion predicted by the dynamic pseudopotential theory of phonons for free-electron-like metals.

  12. Rapid solidification of indium: Modeling subcooling

    SciTech Connect

    Le Bot, C. Delaunay, D.

    2008-05-15

    This paper deals with the study of crystallization kinetics. A pure metal - indium - is subjected to different cooling rates by analyzing phenomena with a differential scanning calorimeter. Thanks to the thermal flux obtained by this device and to the temperature determined with a thermocouple inside the metal sample, and according to the modified Avrami theory, the aim was to determine a temperature dependent function K which links thermodynamic properties to a macroscopic model of crystallization kinetics. Experiments highlight the recalescence phenomenon and show that this function has a shape similar to that of the nucleation rate.

  13. Fabrication, structure and mechanical properties of indium nanopillars

    SciTech Connect

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  14. Surface modifications on InAs decrease indium and arsenic leaching under physiological conditions

    NASA Astrophysics Data System (ADS)

    Jewett, Scott A.; Yoder, Jeffrey A.; Ivanisevic, Albena

    2012-11-01

    Devices containing III-V semiconductors such as InAs are increasingly being used in the electronic industry for a variety of optoelectronic applications. Furthermore, the attractive chemical, material, electronic properties make such materials appealing for use in devices designed for biological applications, such as biosensors. However, in biological applications the leaching of toxic materials from these devices could cause harm to cells or tissue. Additionally, after disposal, toxic inorganic materials can leach from devices and buildup in the environment, causing long-term ecological harm. Therefore, the toxicity of these materials along with their stability in physiological conditions are important factors to consider. Surface modifications are one common method of stabilizing semiconductor materials in order to chemically and electronically passivate them. Such surface modifications could also prevent the leaching of toxic materials by preventing the regrowth of the unstable surface oxide layer and by creating an effective barrier between the semiconductor surface and the surrounding environment. In this study, various surface modifications on InAs are developed with the goal of decreasing the leaching of indium and arsenic. The leaching of indium and arsenic from modified substrates was assessed in physiological conditions using inductively coupled plasma mass spectrometry (ICP-MS). Substrates modified with 11-mercapto-1-undecanol (MU) and graft polymerized with poly(ethylene) glycol (PEG) were most effective at preventing indium and arsenic leaching. These surfaces were characterized using contact angle analysis, ellipsometry, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Substrates modified with collagen and synthetic polyelectrolytes were least effective, due to the destructive nature of acidic environments on InAs. The toxicity of modified and unmodified InAs, along with raw indium, arsenic, and PEG components was assessed

  15. Monitoring deterioration of vegetation cover in the vicinity of smelting industry, using statistical methods and TM and ETM(+) imageries, Sarcheshmeh copper complex, Central Iran.

    PubMed

    Rastmanesh, F; Moore, F; Kharrati-Kopaei, M; Behrouz, M

    2010-04-01

    Simple statistical methods on Normalized Difference Vegetation Index (NDVI) and bands 3 and 4 data of relatively coarse resolution Thematic Mapper (TM) and Enhanced Thematic Mapper plus (ETM(+)) imageries were used to investigate the impacts of air pollution on the deterioration of the vegetation cover in the Sarcheshmeh copper complex of central Iran. Descriptive statistics and k-means cluster analysis indicated that vegetation deterioration had already started in the prevailing wind directions. The results show that combination of simple statistical methods and satellite imageries can be used as effective monitoring tools to indicate vegetation stress even in regions of sparse vegetation. Despite various possible perturbing factors upon NDVI, this index remains to be a valuable quantitative vegetation monitoring tool.

  16. Copper: a metal for the ages

    USGS Publications Warehouse

    Doebrich, Jeff

    2009-01-01

    Copper was one of the first metals ever extracted and used by humans, and it has made vital contributions to sustaining and improving society since the dawn of civilization. Copper was first used in coins and ornaments starting about 8000 B.C., and at about 5500 B.C., copper tools helped civilization emerge from the Stone Age. The discovery that copper alloyed with tin produces bronze marked the beginning of the Bronze Age at about 3000 B.C. Copper is easily stretched, molded, and shaped; is resistant to corrosion; and conducts heat and electricity efficiently. As a result, copper was important to early humans and continues to be a material of choice for a variety of domestic, industrial, and high-technology applications today.

  17. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  18. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    DOEpatents

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  19. Indium antimonide large-format detector arrays

    NASA Astrophysics Data System (ADS)

    Davis, Mike; Greiner, Mark

    2011-06-01

    Large format infrared imaging sensors are required to achieve simultaneously high resolution and wide field of view image data. Infrared sensors are generally required to be cooled from room temperature to cryogenic temperatures in less than 10 min thousands of times during their lifetime. The challenge is to remove mechanical stress, which is due to different materials with different coefficients of expansion, over a very wide temperature range and at the same time, provide a high sensitivity and high resolution image data. These challenges are met by developing a hybrid where the indium antimonide detector elements (pixels) are unconnected islands that essentially float on a silicon substrate and form a near perfect match to the silicon read-out circuit. Since the pixels are unconnected and isolated from each other, the array is reticulated. This paper shows that the front side illuminated and reticulated element indium antimonide focal plane developed at L-3 Cincinnati Electronics are robust, approach background limited sensitivity limit, and provide the resolution expected of the reticulated pixel array.

  20. Patterning of Indium Tin Oxide Films

    NASA Technical Reports Server (NTRS)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  1. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    NASA Astrophysics Data System (ADS)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that

  2. Role of parietal and principal gastric mucosa cells in the phenomenon of concentration of aluminum and indium.

    PubMed

    Maghraoui, Samira; Ayadi, Ahlem; Audinot, Jean-Nicolas; Ben Ammar, Aouatef; Jaafoura, Mohamed-Habib; El Hili, Ali; Migeon, Henri-Noël; Tekaya, Leila

    2012-02-01

    The subcellular behavior of aluminum and indium, used in medical and industrial fields, was studied in the gastric mucosa and the liver after their intragastric administration to rats, using, two of the most sensitive methods of observation and microanalysis, the transmission electron microscopy, and the secondary ion mass spectrometry. The ultrastructural study showed the presence of electron dense deposits, in the lysosomes of parietal and principal gastric mucosa cells but no loaded lysosomes were observed in the different studied hepatic territories. The microanalytical study allowed the identification of the chemical species present in those deposits as aluminum or indium isotopes and the cartography of their distribution. No modification was observed in control rats tissues. In comparison to previous studies describing the mechanism of aluminum concentration in the gastric mucosa and showing that this element was concentrated in the lysosomes of fundic and antral human gastric mucosa, our study provided additional informations about the types of cells involved in the phenomenon of concentration of aluminum and indium, which are the parietal and the principal cells of the gastric mucosa. Our study demonstrated that these cells have the ability to concentrate selectively aluminum and indium in their lysosomes, as a defensive reaction against intoxication by foreign elements. Copyright © 2011 Wiley Periodicals, Inc.

  3. Bioacid hydroconversion over Co, Ni, Cu Mono- and indium-doped bimetallic catalysts.

    PubMed

    Onyestyák, György; Harnos, Szabolcs; Kalló, Dénes

    2015-01-01

    Caprylic acid (CA) as model reactant was selectively reduced in a flow-through reactor in hydrogen stream at 21 bar total pressure and 240-360 °C over alumina loaded with the adjacent Co, Ni, Cu host and In guest metals. The main target of this research is the recognition of efficient cobalt catalysts for carboxylic group hydroconversion compared to more familiar nickel and copper composites. The catalysts were activated in H(2) flow at 21 bar and 450 °C. By variation of main metal or modification with indium, mono- or bimetallic catalysts can be obtained with low hydrodecarbonylation activity and high alcohol selectivity. These composites have higher hydrodeoxygenation (HDO) activity and alcohol selectivity than the conventional commercial catalysts applied for fatty alcohol production. Great variety of catalytic behavior indicates complexity of the surface reactions determined by several interacting factors.

  4. Indium-Tin-Oxide coated optical fibers for temperature-viscosity sensing applications in synthetic lubricant oils

    NASA Astrophysics Data System (ADS)

    Sanchez, P.; Mendizabal, D.; R. Zamarreño, C.; Arregui, F. J.; Matias, I. R.

    2015-09-01

    In this work, is presented the fabrication and characterization of optical fiber refractometer based on lossy mode resonances (LMR). Indium-Tin-Oxide (ITO) thin films deposited on optical fibers are used as the LMR supporting coatings. These resonances shift to the red as a function of the external refractive index. The refractometer has been used to characterize temperature variations related to the viscosity of synthetic industrial gear lubricant.

  5. Deep-UV plasmonics of indium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kumamoto, Yasuaki; Saito, Yuika; Taguchi, Atsushi; Honda, Mitsuhiro; Kawata, Satoshi

    2016-09-01

    Deep-UV (DUV) plasmonics can expand the possibilities of DUV-based techniques (i.e. UV lithography, UV spectroscopy, UV imaging, UV disinfection). Here we present that indium is useful for research of DUV plasmonics. According to dielectric function, indium and aluminum are low-loss, DUV plasmonic metals, of which the imaginary parts are far smaller than those of other metals (i.e. rhodium, platinum) in the DUV range. Additionally, the real parts in the whole DUV range are close to but smaller than -2, allowing efficient generation of surface plasmon polaritons on an indium or aluminum nanosphere. In comparison to aluminum, indium provides a distinctive feature for fabricating DUV-resonant substrates. It is highly apt to form a grainy deposition film on a standard, optically transparent substrate (i.e. fused silica). The surface plasmon resonance wavelength becomes promptly tailored by simply varying the deposition thickness of the films, resulting in different grain sizes. Thus, we fabricated indium-coated substrates having different plasmon resonance wavelengths by varying the deposition thicknesses from 10 to 50 nm. DUV resonance Raman scattering of adenine molecules was best enhanced using the 25 nm deposition thickness substrates by the factor of 2. Furthermore, the FDTD calculation simulated the electromagnetic field enhancement over a grainy, indium-coated fused silica substrate. Both results indicate how indium plays an indispensable role in study of DUV plasmonics.

  6. Factors Affecting the Toxicity of the Element Indium

    PubMed Central

    Castronovo, F. P.; Wagner, H. N.

    1971-01-01

    Hydrated indium oxide is 40 times more toxic than ionic indium, when expressed as lethality per quantity of metal injected. Ionic indium is nephrotoxic, causing damage in the proximal portion of the proximal convoluted tubule. In this respect, it resembles the element mercury. At extremely high doses, ionic indium causes focal necrosis in the liver. Hydrated indium oxide causes damage to those organs which contain phagocytic cells which clear the insoluble particles from the blood after i.v. injection. Actual focal necrosis was found in the liver, spleen and bone marrow. Damage was also found in the thymus and lymph nodes. At extremely high doses, damage was observed in the proximal convoluted tubules of the kidney. Hydrated indium oxide caused extensive haemorrhage and marked thrombocytopenia. Fibrin thrombi were observed in the liver. The increase in toxicity of indium resulting from phagocytosis of insoluble oxides by the reticuloendothelial system may represent a general mechanism by which the toxicity of certain heavy metals is increased. ImagesFigs. 7-9Figs. 3-6Fig. 2 PMID:5125268

  7. Synthesis of indium nanoparticles: digestive ripening under mild conditions.

    PubMed

    Cingarapu, Sreeram; Yang, Zhiqiang; Sorensen, Christopher M; Klabunde, Kenneth J

    2011-06-06

    Here we report the synthesis of monodispersed indium nanoparticles by evaporation/condensation of indium shot using the solvated metal atom dispersion (SMAD) technique, followed by digestive ripening in low boiling point (BP 38 °C) methylene chloride and in a high boiling point (BP 110 °C) toluene solvent. The as-prepared SMAD indium nanoparticles are polydispersed with particle size ranging from 25 to 50 nm, but upon digestive ripening (heating of colloidal material at the boiling point of solvent in presence of excess surface active ligands) in methylene chloride, a remarkable reduction of particle size was achieved. In higher boiling solvent (toluene), where the indium nanoparticles at reflux temperature are probably melted, it does not allow the best result, and less monodispersity is achieved. We employed different surface active ligands (amine, phosphine, and mixed ligands) to passivate these indium nanoparticles. The temporal evolution of the surface plasmon of indium nanoparticles was monitored by in situ UV-vis spectroscopy, and particles were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The merits of this synthesis procedure are the use of bulk indium as starting material, tuning the particle size in low boiling point solvent, particle size adjustment with the choice of ligand, and a possible scale up. © 2011 American Chemical Society

  8. Copper cyanide

    Integrated Risk Information System (IRIS)

    Copper cyanide ; CASRN 544 - 92 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  9. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  10. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  11. Increased blood and urine copper after residential exposure to copper naphthenate

    SciTech Connect

    Bluhm, R.E.; Welch, L.; Branch, R.A. )

    1992-01-01

    Despite widespread industrial use of copper naphthenate, there are no reports of the relationship of copper naphthenate and copper absorption in humans or animals. We report a family of three individuals who lived in a home where copper naphthenate was sprayed on the inner foundation. Subsequently, these individuals developed non-specific complaints. In two of these individuals, serum copper levels were elevated when first measured months after copper naphthenate was sprayed in the home. A gradual decline over several years in urine and serum copper levels was observed in the individual who maintained follow-up. It is not known if symptoms reflected exposure to naphthenate, the solvent vehicle, volatilized copper, or the stress of exposure to a malodorous compound perceived as toxic. Exposure to copper naphthenate may be another cause of an elevated serum and urine copper level but the interpretation of these levels as normal' or toxic' requires additional study for clarification. This report suggests the need for further study of the absorption and relative toxicity of copper naphthenate.

  12. On the origin of photoluminescence in indium oxide octahedron structures

    SciTech Connect

    Kumar, Mukesh; Singh, V. N.; Mehta, B. R.; Singh, J. P.; Singh, F.; Lakshmi, K. V.

    2008-04-28

    A sixfold decrease in photoluminescence signal intensity at 590 nm with increase in deposition time from 3 to 12 h has been observed in single crystalline indium oxide octahedron structures grown by vapor-phase evaporation method. Electron paramagnetic resonance and energy dispersive x-ray analysis confirm that the concentration of oxygen vacancies increases with deposition time. These results are contrary to the previous reports where oxygen vacancies were shown to be responsible for photoluminescence in indium oxide structures. Our results indicate that indium interstitials and their associated complex defects other than oxygen vacancies are responsible for the photoluminescence in In{sub 2}O{sub 3} microstructures.

  13. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  14. Reflectance of metallic indium for solar energy applications

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.; Hasegawa, T.

    1984-01-01

    An investigation has been conducted in order to compile quantitative data on the reflective properties of metallic indium. The fabricated samples were of sufficiently high quality that differences from similar second-surface silvered mirrors were not apparent to the human eye. Three second-surface mirror samples were prepared by means of vacuum deposition techniques, yielding indium thicknesses of approximately 1000 A. Both hemispherical and specular measurements were made. It is concluded that metallic indium possesses a sufficiently high specular reflectance to be potentially useful in many solar energy applications.

  15. Kinetic investigation of indium-palladium alloy electrodeposition

    SciTech Connect

    Vinogradov, S.N.; Perelygin, Yu.P.; Efimov, E.A.

    1988-01-01

    The kinetics of alloy deposition of ammonium-citrate electrolyte used to produce alloys with indium content were studied. The electrolytes were composed of palladium, indium, ammonium sulfate, monosodium citrate, ammonium chloride, and saccharin at pH 9.5. Stationary and rotating disk electrodes and a potentiostat were used for the investigation. Spectrophotometry determined the mixed formation of citrate-ammonia palladium complexes. It was found that the considerable depolarization of indium ion discharge into the alloy occurred when saccharin was present in the electrolyte, and its direct electroreduction occurs from hydroxide compounds.

  16. Determination of indium in rocks by substoichiometric radioisotope dilution analysis

    USGS Publications Warehouse

    Greenland, L. Paul; Campbell, E.Y.

    1973-01-01

    Rocks containing 10-140 ng of indium per g are decomposed with hydrofluoric and nitric acids in the presence of 114In. Indium is separated from other constituents by sequential extractions of the bromide, cupferronate, and acetylacetonate, and is then reacted with a substoichiometric amont of EDTA. Excess of indium is removed by acetylacetone extraction and the specific activity of the complexed fraction is determined by counting 114In. Analyses of the U.S.G.S. standard rocks are reported. These show good agreement with previous neutron activation analyses. Repetitive rock analyses indicated an analytical precision of ??4-7%. ?? 1973.

  17. Estimating Dermal Transfer of Copper Particles from the ...

    EPA Pesticide Factsheets

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was

  18. Estimating Dermal Transfer of Copper Particles from the ...

    EPA Pesticide Factsheets

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper based formulations. Micronized copper (nano to micron sized particles) has become the preferred treatment formulation. There is a lack of information on the release of copper, the fate of the particles during dermal contact, and the copper exposure level to children from hand-to-mouth transfer. For the current study, three treated lumber products, two micronized copper and one ionic copper, were purchased from commercial retailers. The boards were left to weather outdoors for approximately 1 year. Over the year time period, hand wipe samples were collected periodically to determine copper transfer from the wood surfaces. The two micronized formulations and the ionic formulation released similar levels of total copper. The amount of copper released was high initially, but decreased to a constant level (~1.5 mg m-2) after the first month of outdoor exposure. Copper particles were identified on the sampling cloths during the first two months of the experiment, after which the levels of copper were insufficient to collect interpretable data. After 1 month, the particles exhibited minimal changes in shape and size. At the end of 2-months, significant deterioration of the particles was

  19. Some adverse effects of soil amendment with organic Materials-The case of soils polluted by copper industry phytostabilized with red fescue.

    PubMed

    Cuske, Mateusz; Karczewska, Anna; Gałka, Bernard; Dradrach, Agnieszka

    2016-08-02

    The study was aimed to examine the effects of soil amendment with organic waste materials on the growth of red fescue and the uptake of Cu and Zn by this grass, in view of its potential usage for phytostabilization of Cu-polluted soils. Five soils, containing 301-5180 mg/kg Cu, were collected from the surroundings of copper smelter Legnica, and amended with lignite (LG) and limed sewage sludge (SS). Plant growth and the concentrations of Cu and Zn in the shoots and roots of grass were measured in a pot experiment and related to the results of Pytotoxkit and Microtox® tests performed on soil solution. The effects of soil amendment with LG and SS differed greatly, and depended on soil properties. In some cases, the application of alkaline SS resulted in dramatic increase of Cu phytotoxicity and its enhanced uptake by plants, while application of LG to slightly acidic soil caused increased accumulation of Zn in plants, particularly in their roots. The study confirmed good suitability of red fescue for phytostabilization of Cu-contaminated soils except for those extremely polluted. Organic amendments to be used for metal immobilization should be thoroughly examined prior to application.

  20. Tissue distribution of indium after repeated intratracheal instillations of indium-tin oxide into the lungs of hamsters.

    PubMed

    Tanaka, Akiyo; Hirata, Miyuki; Matsumura, Nagisa; Kiyohara, Yutaka

    2015-01-01

    The aim of this study was to analyze the tissue distribution of indium after intratracheally instilling indium-tin oxide (ITO) into the lungs of hamsters. Male Syrian hamsters received an intratracheal dose of 3 mg/kg or 6 mg/kg of ITO particles containing 2.2 mg/kg or 4.5 mg/kg of indium, twice weekly for 8 weeks. In parallel, control hamsters received only an intratracheal dose of distilled water. A subset of hamsters was euthanized periodically throughout the study from 8 up to 78 weeks after the final instillation. The distribution of indium in the lungs, liver, kidneys and spleen, as well as pathological changes in the liver, kidneys, and spleen, was determined. The contents of indium in the lungs in the two ITO groups gradually decreased over the 78-week observation period, with elimination half-lives of approximately 142 weeks for the 3 mg/kg ITO group and 124 weeks for the 6 mg/kg ITO. The indium concentrations in the liver, kidneys, and spleen gradually increased throughout the observation period. Although foci of the lesions were observed histopathologically in the extrapulmonary organs among the two ITO groups, the control group showed similar lesions. The results clearly demonstrate that the clearance of indium from the body is extremely slow after intratracheal instillation in hamsters.

  1. Occupational exposure to indium: what does biomonitoring tell us?

    PubMed

    Hoet, Perrine; De Graef, Emmy; Swennen, Bert; Seminck, Théo; Yakoub, Yousof; Deumer, Gladys; Haufroid, Vincent; Lison, Dominique

    2012-08-13

    The industrial uses of indium, a rare metal with no known physiological role in humans, have increased dramatically over the past 15 years. The results of animal toxicity studies showing pulmonary and systemic effects as well as some reports in workers have created a growing concern about the possible occurrence of toxic effects in exposed workers. Validated biomarkers to assess exposure to indium are not available. This work aimed at investigating the kinetics of indium in urine (In-U) and plasma (In-Pl) in workers manufacturing In ingots and mainly exposed to hardly water-soluble In compounds. All nine workers from the In department of a large metallurgical concern participated in the study as well as 5 retired workers and 20 controls. Personal breathing zone air was collected throughout the work shift on Monday and Friday. Blood and urine samples were collected, before and after the shift, on the same day as the air sampling and on preshift the next Monday after a non-working week-end. Moreover, rats were given either InCl(3) by intraperitoneal injection or In(2)O(3) by pharyngeal aspiration, In was followed in plasma during 120 days and measured in tissues 120 days after exposure. Higher In-Pl and In-U concentrations were found in both current (range 0.32-12.61 μg/L plasma; 0.22-3.50 μg/g creat) and former (0.03-4.38 μg/L plasma; 0.02-0.69 μg/g creat) workers compared with controls (<0.03 μg/L plasma; <0.02 μg/g creat). Both biological parameters were highly correlated but no correlation was found between In-air (10-1030 μg/m(3)) and In-Pl or In-U. Normalizing In-U by the urinary creatinine concentration reduced the inter- (from 90% to 70%) and intra-individual variability (from 54% to 35%). In-Pl remained remarkably stable along the working week (inter- and intra-individual variability: 89% and 10%, respectively). Neither In-U nor In-Pl significantly increased during the day or the week. A week-end without occupational exposure was not sufficient to

  2. High quality factor indium oxide mechanical microresonators

    SciTech Connect

    Bartolomé, Javier Cremades, Ana; Piqueras, Javier

    2015-11-09

    The mechanical resonance behavior of as-grown In{sub 2}O{sub 3} microrods has been studied in this work by in-situ scanning electron microscopy (SEM) electrically induced mechanical oscillations. Indium oxide microrods grown by a vapor–solid method are naturally clamped to an aluminum oxide ceramic substrate, showing a high quality factor due to reduced energy losses during mechanical vibrations. Quality factors of more than 10{sup 5} and minimum detectable forces of the order of 10{sup −16} N/Hz{sup 1/2} demonstrate their potential as mechanical microresonators for real applications. Measurements at low-vacuum using the SEM environmental operation mode were performed to study the effect of extrinsic damping on the resonators behavior. The damping coefficient has been determined as a function of pressure.

  3. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    PubMed Central

    Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan

    2016-01-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859

  4. Nanoscale guiding and shaping of indium droplets

    NASA Astrophysics Data System (ADS)

    DÄ browski, Maciej; Dai, Yanan; Hocevar, Moïra; Frolov, Sergey; Petek, Hrvoje

    2016-12-01

    We present time-resolved microscopy of motion and shape transformation of liquid indium (In) sessile droplets on InAs(001) surface. For temperatures up to 800 K, the droplets spontaneously move across the crystal undergoing stick-slip motion that is strongly affected by atomic steps and coalescence events. Above a critical temperature of around 800 K, the droplets stop moving and further increase in temperature causes them to change shape progressively from spherical to rectangular. The process of shape transformation is coherent, reversible and associated with temperature dependent wetting of the surface as well as crystalline anisotropy dependent arsenic solvation and evaporation rates. The etched rectangular substrate depressions formed under the droplets, giving them a rectangular shape, reveal unusual rheology with deeper regions at the corners. Our high spatial resolution measurements link the macroscopic behavior of the metallic droplets with the microscopic topography features and can be used for the metallic liquid droplet nano-manipulation.

  5. Negative Magnetoresistance in Amorphous Indium Oxide Wires

    NASA Astrophysics Data System (ADS)

    Mitra, Sreemanta; Tewari, Girish C.; Mahalu, Diana; Shahar, Dan

    2016-11-01

    We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions.

  6. Doping Profiles for Indium Antimonide Magnetoresistors

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-03-01

    Indium antimonide is of interest for magnetoresistors in position sensors. These sensors are fabricated as thin film elements in order to increase the device impedance. The InSb is doped n-type to stabilize the electron density against temperature changes. This involves tradeoffs, since ionized donors scatter electrons, reducing their mobility and hence reducing the device sensitivity to a magnetic field. Optimizing the sensitivity involved three steps. The InSb is undoped for the first 10 to 20 percent of the film thickness, forming a buffer from the lattice mismatched substrate. The doping in the middle layer of the film has a doping gradient. Finally, a thin contact layer is more heavily doped to reduce contact resistance.

  7. Accumulation and hyperaccumulation of copper in plants

    NASA Astrophysics Data System (ADS)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  8. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater.

    PubMed

    Maruthamuthu, Murali Kannan; Nadarajan, Saravanan Prabhu; Ganesh, Irisappan; Ravikumar, Sambandam; Yun, Hyungdon; Yoo, Ik-Keun; Hong, Soon Ho

    2015-11-01

    For the construction of an efficient copper waste treatment system, a cell surface display strategy was employed. The copper adsorption ability of recombinant bacterial strains displaying three different copper binding peptides were evaluated in LB Luria-Bertani medium (LB), artificial wastewater, and copper phthalocyanine containing textile dye industry wastewater samples. Structural characteristics of the three peptides were also analyzed by similarity-based structure modeling. The best binding peptide was chosen for the construction of a dimeric peptide display and the adsorption ability of the monomeric and dimeric peptide displayed strains were compared. The dimeric peptide displayed strain showed superior copper adsorption in all three tested conditions (LB, artificial wastewater, and textile dye industry wastewater). When the strains were exposed to copper phthalocyanine dye polluted wastewater, the dimeric peptide display [543.27 µmol/g DCW dry cell weight (DCW)] showed higher adsorption of copper when compared with the monomeric strains (243.53 µmol/g DCW).

  9. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  10. Lattice dynamics of fct indium and hcp magnesium

    SciTech Connect

    Chen, X.M.; Xuan, Y.; Overhauser, A.W. )

    1991-01-15

    Phonon spectra of fct indium and hcp magnesium are calculated using the dynamic pseudopotential theory developed by Wang and Overhauser. Good agreement with experimental data is achieved with two adjustable pseudopotential parameters.

  11. Indium Ohmic Contacts to n-ZnSe,

    DTIC Science & Technology

    ELECTRIC CONTACTS, ANNEALING, AUGER ELECTRON SPECTROSCOPY , BACKSCATTERING, CHLORINE, DIFFRACTION, ELECTRON SPECTROSCOPY , FUNCTIONS, INDIUM... PHOTOELECTRONS , PURITY, RESISTANCE, TEMPERATURE, TEST AND EVALUATION, X RAY DIFFRACTION, MOLECULAR BEAMS, EPITAXIAL GROWTH, ZINC SELENIDES, DOPING.

  12. Method of manufacturing tin-doped indium oxide nanofibers

    DOEpatents

    Ozcan, Soydan; Naskar, Amit K

    2017-06-06

    A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O.sub.2 to form indium tin oxide and to remove the binder polymer to form an indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.

  13. Copper peroxide

    NASA Technical Reports Server (NTRS)

    Moser, L.

    1988-01-01

    A number of oxidizing agents, including chlorine, bromine, ozone and other peroxides, were allowed to act on copper solutions with the intention of forming copper peroxide. The only successful agent appears to be hydrogen peroxide. It must be used in a neutral 50 to 30 percent solution at a temperature near zero. Other methods described in the literature apparently do not work. The excess of hydrogen must be quickly sucked out of the brown precipitate, which it is best to wash with alcohol and ether. The product, crystalline under a microscope, can be analyzed only approximately. It approaches the formula CuO2H2O. In alkaline solution it appears to act catalytically in causing the decomposition of other peroxides, so that Na2O2 cannot be used to prepare it. On the addition of acids the H2O2 is regenerated. The dry substance decomposes much more slowly than the moist but is not very stable.

  14. Status of indium phosphide solar cell development at Spire

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.; Vernon, S. M.

    1987-01-01

    On-going development of indium phosphide solar cells for space applications is presented. The development is being carried out with a view towards both high conversion efficiency and simplicity of manufacture. The cell designs comprise the ion-implanted cell, the indium tin oxide top contact cell, and the epitaxial cell grown by metal organic chemical vapor deposition. Modelling data on the limit to the efficiency are presented and comparison is made to measured performance data.

  15. Determination of indium in standard rocks by neutron activation analysis.

    PubMed

    Johansen, O; Steinnes, E

    1966-08-01

    A rapid neutron activation method for the determination of indium in rocks, based on 54 min (116m)In, is described. The method has been applied to a series of geochemical standards including granite G-1 and diabase W-1. The precision is better than +/- 5% for samples containing more than 5 x 10(-10)g indium. Good agreement with previously published values for G-1 and W-1 has been obtained.

  16. Indium and Zinc Alloys as Cadmium Brush Plating Replacements

    DTIC Science & Technology

    2011-05-10

    Aged In- Sn Aged Cd In- Sn before Aging Cd before Aging Sn -Zn (12V) before Aging ...to assess state-of-the-art technology – Selected and tested initial coating candidates (2009-2010) • Indium-tin (In- Sn ), tin-zinc ( Sn -Zn), and zinc...nickel (Zn-Ni) • In and Sn foils – Selected and currently testing follow-on candidates (2010 – present) • Indium-zinc (In-Zn) and different

  17. Recovery of indium from LCD screens of discarded cell phones.

    PubMed

    Silveira, A V M; Fuchs, M S; Pinheiro, D K; Tanabe, E H; Bertuol, D A

    2015-11-01

    Advances in technological development have resulted in high consumption of electrical and electronic equipment (EEE), amongst which are cell phones, which have LCD (liquid crystal display) screens as one of their main components. These multilayer screens are composed of different materials, some with high added value, as in the case of the indium present in the form of indium tin oxide (ITO, or tin-doped indium oxide). Indium is a precious metal with relatively limited natural reserves (Dodbida et al., 2012), so it can be profitable to recover it from discarded LCD screens. The objective of this study was to develop a complete process for recovering indium from LCD screens. Firstly, the screens were manually removed from cell phones. In the next step, a pretreatment was developed for removal of the polarizing film from the glass of the LCD panels, because the adherence of this film to the glass complicated the comminution process. The choice of mill was based on tests using different equipment (knife mill, hammer mill, and ball mill) to disintegrate the LCD screens, either before or after removal of the polarizing film. In the leaching process, it was possible to extract 96.4 wt.% of the indium under the following conditions: 1.0M H2SO4, 1:50 solid/liquid ratio, 90°C, 1h, and stirring at 500 rpm. The results showed that the best experimental conditions enabled extraction of 613 mg of indium/kg of LCD powder. Finally, precipitation of the indium with NH4OH was tested at different pH values, and 99.8 wt.% precipitation was achieved at pH 7.4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An advanced case of indium lung disease with progressive emphysema

    PubMed Central

    Nakano, Makiko; Tanaka, Akiyo; Hirata, Miyuki; Kumazoe, Hiroyuki; Wakamatsu, Kentaro; Kamada, Dan; Omae, Kazuyuki

    2016-01-01

    Objectives: To report the occurrence of an advanced case of indium lung disease with severely progressive emphysema in an indium-exposed worker. Case report: A healthy 42-year-old male smoker was employed to primarily grind indium-tin oxide (ITO) target plates, exposing him to indium for 9 years (1998-2008). In 2004, an epidemiological study was conducted on indium-exposed workers at the factory in which he worked. The subject's serum indium concentration (In-S) was 99.7 μg/l, while his serum Krebs von den Lungen-6 level was 2,350 U/ml. Pulmonary function tests showed forced vital capacity (FVC) of 4.17 l (91.5% of the JRS predicted value), forced expiratory volume in 1 s (FEV1) of 3.19 l (80.8% of predicted), and an FEV1-to-FVC ratio of 76.5%. A high-resolution chest computed tomography (HRCT) scan showed mild interlobular septal thickening and mild emphysematous changes. In 2008, he was transferred from the ITO grinding workplace to an inspection work section, where indium concentrations in total dusts had a range of 0.001-0.002 mg/m3. In 2009, the subject's In-S had increased to 132.1 μg/l, and pulmonary function tests revealed obstructive changes. In addition, HRCT scan showed clear evidence of progressive lung destruction with accompanying severe centrilobular emphysema and interlobular septal thickening in both lung fields. The subject's condition gradually worsened, and in 2015, he was registered with the Japan Organ Transplant Network for lung transplantation (LTx). Conclusions: Heavy indium exposure is a risk factor for emphysema, which can lead to a severity level that requires LTx as the final therapeutic option. PMID:27488043

  19. Dinuclear indium and thallium diyls: biscarbenoids or metal cluster?

    PubMed

    Desat, Marcella E; Gärtner, Stefanie; Kretschmer, Robert

    2017-01-26

    Using bis(β-diketiminate) ligands we were able to synthesize unprecedented indium and thallium biscarbenoids. For indium, a novel four-membered metallacycle is derived from intra- and intermolecular In-In interactions in the solid state, while for thallium only an intramolecular Tl2-pseudo-dimer is obtained. Computational studies revealed that the solid-state structures benefit significantly from dispersion stabilization.

  20. Copper Recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  1. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  2. Serial evaluations at an indium-tin oxide production facility.

    PubMed

    Cummings, Kristin J; Suarthana, Eva; Edwards, Nicole; Liang, Xiaoming; Stanton, Marcia L; Day, Gregory A; Saito, Rena; Kreiss, Kathleen

    2013-03-01

    We evaluated the effectiveness of workplace changes to prevent indium lung disease, using 2002-2010 surveillance data collected by an indium-tin oxide production facility. We assessed pulmonary function using lower limits of normal. Blood indium concentration and personal air sampling data were used to estimate exposure. Abnormalities were uncommon at hire. After hire, prevalence of spirometric restriction was 31% (n = 14/45), about fourfold higher than expected. Excessive decline in FEV1 was elevated at 29% (n = 12/41). Half (n = 21/42) had blood indium ≥5 µg/l. More recent hires had fewer abnormalities. There was a suggestion that abnormalities were more common among workers with blood indium ≥5 µg/l, but otherwise an exposure-response relationship was not evident. Peak dust concentrations were obscured by time averaging. Evolving lung function abnormalities consistent with subclinical indium lung disease appeared common and merit systematic investigation. Traditional measures of exposure and response were not illustrative, suggesting fresh approaches will be needed. Workplace changes seemed to have had a positive though incomplete impact; novel preventive interventions are warranted. Copyright © 2012 Wiley Periodicals, Inc.

  3. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    PubMed Central

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increased with age of the heap. Acidithiobacillus thiooxidans kept constant throughout the leaching cycle, and Firmicutes group showed a low and a patchy distribution in the heap. The Acidiphilium‐like bacteria reached their highest abundance corresponding to the amount of autotrophs. The active microorganisms in the leaching system were determined using two RNA‐based sensitive techniques. In most cases, the 16S rRNA copy numbers of At. ferrooxidans, L. ferriphilum, At. thiooxidans and F. acidiphilum, was concomitant with the DNA copy numbers, whereas Acidiphilium‐like bacteria and some Firmicutes members did not show a clear correlation between 16S rRNA accumulation and DNA copy numbers. However, the prokaryotic acidophile microarray (PAM) analysis showed active members of Alphaproteobacteria in all samples and of Sulfobacillus genus in older ones. Also, new active groups such as Actinobacteria and Acidobacterium genus were detected by PAM. The results suggest that changes during the leaching cycle in chemical and physical conditions, such as pH and Fe3+/Fe2+ ion rate, are primary factors shaping the microbial dynamic in the heap. PMID:21255296

  4. Passivation coating on electrospun copper nanofibers for stable transparent electrodes.

    PubMed

    Hsu, Po-Chun; Wu, Hui; Carney, Thomas J; McDowell, Matthew T; Yang, Yuan; Garnett, Erik C; Li, Michael; Hu, Liangbing; Cui, Yi

    2012-06-26

    Copper nanofiber networks, which possess the advantages of low cost, moderate flexibility, small sheet resistance, and high transmittance, are one of the most promising candidates to replace indium tin oxide films as the premier transparent electrode. However, the chemical activity of copper nanofibers causes a substantial increase in the sheet resistance after thermal oxidation or chemical corrosion of the nanofibers. In this work, we utilize atomic layer deposition to coat a passivation layer of aluminum-doped zinc oxide (AZO) and aluminum oxide onto electrospun copper nanofibers and remarkably enhance their durability. Our AZO-copper nanofibers show resistance increase of remarkably only 10% after thermal oxidation at 160 °C in dry air and 80 °C in humid air with 80% relative humidity, whereas bare copper nanofibers quickly become insulating. In addition, the coating and baking of the acidic PEDOT:PSS layer on our fibers increases the sheet resistance of bare copper nanofibers by 6 orders of magnitude, while the AZO-Cu nanofibers show an 18% increase.

  5. DX centers in indium aluminum arsenide heterostructures

    NASA Astrophysics Data System (ADS)

    Sari, Huseyin

    DX centers are point defects observed in many n-type doped III-V compound semi conductors. They have unique properties, which include large differences between their optical and thermal ionization energies, and a temperature dependence of the capture cross-sections. As a result of these properties DX centers exhibit a reduction in free carrier concentration and a large persistent photoconductivity (PPC) effect. DX centers also lead to a shift in the threshold voltage of modulation doped field effect transistors (MODFET) structures, at low temperatures. Most of the studies on this defect have been carried out on the Ga xAl1-xAs material system. However, to date there is significantly less work on DX centers in InxAl1-xAs compounds. This is partly due to difficulties associated with the growth of defect free materials other than lattice matched In0.52Al 0.48As on InP and partly because the energy level of the DX center is in resonance with the conduction band in In0.52Al0.48As. The purpose of this dissertation is to extend the DX center investigation to InAlAs compounds, primarily in the indirect portion of the InAlAs bandgap. In this work the indium composition dependence of the DX centers in In xAl1-xAs/InyGa1-yAs-based heterostructure is studied experimentally. Different InxAl 1-xAs epitaxial layers with x = 0.10, x = 0.15, x = 0.20, and x = 0.34 in a MODFET-like heterostructure were grown by Molecular Beam Epitaxy (MBE) on (001) GaAs substrates. In order to compensate the lattice mismatch between epitaxial layers and their substrates, step-graded buffer layers with indium composition increments of x = 0.10, every 2000 A, were used. For the samples grown with different indium contents Hall measurements as a function of both temperature and different cooling biases were performed in order to determine their carrier concentrations. A self consistent Poisson-Schrodinger numerical software is used to model the heterostructures. With the help of this numerical model

  6. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  7. Estimating Dermal Transfer of Copper Particles from the Surfaces of Pressure-Treated Lumber and Implications for Exposure

    EPA Science Inventory

    Lumber pressure-treated with micronized copper was examined for the release of copper and copper micro/nanoparticles using a surface wipe method to simulate dermal transfer. In 2003, the wood industry began replacing CCA treated lumber products for residential use with copper ba...

  8. Nanosecond pulsed laser blackening of copper

    NASA Astrophysics Data System (ADS)

    Tang, Guang; Hourd, Andrew C.; Abdolvand, Amin

    2012-12-01

    Nanosecond (12 ns) pulsed laser processing of copper at 532 nm resulted in the formation of homogenously distributed, highly organized microstructures. This led to the fabrication of large area black copper substrates with absorbance of over 97% in the spectral range from 250 nm to 750 nm, and a broadband absorbance of over 80% between 750 nm and 2500 nm. Optical and chemical analyses of the fabricated black metal are presented and discussed. The employed laser is an industrially adaptable source and the presented technique for fabrication of black copper could find applications in broadband thermal radiation sources, solar energy absorbers, irradiative heat transfer devices, and thermophotovoltaics.

  9. Non-communicable disease risk factor patterns among mining industry workers in Papua, Indonesia: longitudinal findings from the Cardiovascular Outcomes in a Papuan Population and Estimation of Risk (COPPER) Study.

    PubMed

    Rodriguez-Fernandez, Rodrigo; Rahajeng, Ekowati; Viliani, Francesca; Kushadiwijaya, Haripurnomo; Amiya, Rachel M; Bangs, Michael J

    2015-10-01

    Non-communicable diseases (NCDs) constitute an increasing slice of the global burden of disease, with the South-East Asia region projected to see the highest increase in NCD-related deaths over the next decade. Mining industry employees may be exposed to various factors potentially elevating their NCD risk. This study aimed to assess the distribution and 5-year longitudinal trends of key metabolic NCD risk factors in a cohort of copper-gold mining company workers in Papua, Indonesia. Metabolic indicators of NCD risk were assessed among employees (15 580 at baseline, 6496 prospectively) of a large copper-gold mining operation in Papua, Indonesia, using routinely collected 5-year medical surveillance data. The study cohort comprised individuals aged 18-68 years employed for ≥1 year during 2008-2013. Assessed risk factors were based on repeat measures of cholesterol, blood glucose, blood pressure and body weight, using WHO criteria. Metabolic risk indicator rates were markedly high and increased significantly from baseline through 5-year follow-up (p<0.001). Adjusting for gender and age, longer duration of employment (≥10 years) predicted raised cholesterol (adjusted OR (AOR)=1.13, p=0.003), raised blood pressure (AOR=1.16, p=0.009) and overweight/obesity (AOR=1.14, p=0.001) at baseline; and persistent raised cholesterol (AOR=1.26, p=0.003), and both incident (AOR=1.33, p=0.014) and persistent raised blood glucose (AOR=1.62, p=0.044) at 3-year follow-up. Individuals employed for longer periods in a mining operations setting in Papua, Indonesia, may face elevated NCD risk through various routes. Workplace health promotion interventions and policies targeting modifiable lifestyle patterns and environmental exposures present an important opportunity to reduce such susceptibilities and mitigate associated health risks. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.

    PubMed

    Ozdes, Duygu; Gundogdu, Ali; Kemer, Baris; Duran, Celal; Senturk, Hasan Basri; Soylak, Mustafa

    2009-07-30

    The objective of this study was to assess the adsorption potential of a waste mud (WM) for the removal of lead (Pb(II)) ions from aqueous solutions. The WM was activated with NaOH in order to increase its adsorption capacity. Adsorption studies were conducted in a batch system as a function of solution pH, contact time, initial Pb(II) concentration, activated-waste mud (a-WM) concentration, temperature, etc. Optimum pH was specified as 4.0. The adsorption kinetic studies indicated that the overall adsorption process was best described by pseudo-second-order kinetics. The equilibrium adsorption capacity of a-WM was obtained by using Langmuir and Freundlich isotherm models and both models fitted well. Adsorption capacity for Pb(II) was found to be 24.4 mg g(-1) for 10 g L(-1) of a-WM concentration. Thermodynamic parameters including the Gibbs free energy (Delta G degrees), enthalpy (Delta H degrees), and entropy (DeltaS degrees) indicated that the adsorption of Pb(II) ions on the a-WM was feasible, spontaneous and endothermic, at temperature range of 0-40 degrees C. Desorption studies were carried out successfully with diluted HCl solutions. The results indicate that a-WM can be used as an effective and no-cost adsorbent for the treatment of industrial wastewaters contaminated with Pb(II) ions.

  11. Subnanometer Thin β-Indium Sulfide Nanosheets.

    PubMed

    Acharya, Shinjita; Sarkar, Suresh; Pradhan, Narayan

    2012-12-20

    Nanosheets are a peculiar kind of nanomaterials that are grown two-dimensionally over a micrometer in length and a few nanometers in thickness. Wide varieties of inorganic semiconductor nanosheets are already reported, but controlling the crystal growth and tuning their thickness within few atomic layers have not been yet explored. We investigate here the parameters that determine the thickness and the formation mechanism of subnanometer thin (two atomic layers) cubic indium sulfide (In2S3) nanosheets. Using appropriate reaction condition, the growth kinetics is monitored by controlling the decomposition rate of the single source precursor of In2S3 as a function of nucleation temperature. The variation in the thickness of the nanosheets along the polar [111] direction has been correlated with the rate of evolved H2S gas, which in turn depends on the rate of the precursor decomposition. In addition, it has been observed that the thickness of the In2S3 nanosheets is related to the nucleation temperature.

  12. Copper allergy from dental copper amalgam?

    PubMed

    Gerhardsson, Lars; Björkner, Bert; Karlsteen, Magnus; Schütz, Andrejs

    2002-05-06

    A 65-year-old female was investigated due to a gradually increasing greenish colour change of her plastic dental splint, which she used to prevent teeth grinding when sleeping. Furthermore, she had noted a greenish/bluish colour change on the back of her black gloves, which she used to wipe her tears away while walking outdoors. The investigation revealed that the patient had a contact allergy to copper, which is very rare. She had, however, had no occupational exposure to copper. The contact allergy may be caused by long-term exposure of the oral mucosa to copper from copper-rich amalgam fillings, which were frequently used in childhood dentistry up to the 1960s in Sweden. The deposition of a copper-containing coating on the dental splint may be caused by a raised copper intake from drinking water, increasing the copper excretion in saliva, in combination with release of copper due to electrochemical corrosion of dental amalgam. The greenish colour change of the surface of the splint is probably caused by deposition of a mixture of copper compounds, e.g. copper carbonates. Analysis by the X-ray diffraction technique indicates that the dominant component is copper oxide (Cu2O and CuO). The corresponding greenish/bluish discoloration observed on the back of the patient's gloves may be caused by increased copper excretion in tears.

  13. Additive monitoring and interactions during copper electroprocessing

    NASA Astrophysics Data System (ADS)

    Collins, Dale Wade

    The electrochemical deposition of copper has been a major focus of research for decades. Renewed interest in copper electroplating is not limited to the copper producers but is also a major concern of semiconductor manufacturers. The focus on copper electrochemistry by the semiconductor manufacturers has increased since IBM's announcement in 1997 that copper will be used for metallization in high speed/power semiconductors [1--3]. The desire to use copper instead of aluminum is simply a reflection on copper's superior conductivity (lower RC time constants) and resistance to electromigration (generally proportional to the melting point). This dissertation is the compilation of the research into analytical techniques for monitoring surface-active additives in common sulfuric acid/copper sulfate plating baths. Chronopotentiometric, DC and AC voltammetry were the major analytical techniques used in this research. Several interactions between the additives will also be presented along with their apparent decline in activity. The decline in activity is well known in the industry and is also detected by these methods as presented in chapters 4 and 5. Finally, a systemic approach for monitoring the additive Galactosal, which is commonly used in electrowinning, will be outlined. The monitoring system proposed herein would have to be adjusted for each electrowinning facility because each has a unique chemistry and cell configuration.

  14. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence.

  15. Personal indium exposure concentration in respirable dusts and serum indium level.

    PubMed

    Iwasawa, Satoko; Nakano, Makiko; Miyauchi, Hiroyuki; Tanaka, Shigeru; Kawasumi, Yaeko; Higashikubo, Ichiro; Tanaka, Akiyo; Hirata, Miyuki; Omae, Kazuyuki

    2017-02-07

    The aim of this study was to assess the relationship between indium exposure concentration in the respirable dust fraction (In-E) and indium in serum (In-S) in workers. A total of 39 workers were studied. The study subjects were categorized into 3 groups, namely, smelting workers (n=7), ITO workers (n=6) in an ITO grinding plant, and other workers (n=26). In-E and In-S ranged from 0.004-24.0 μg/m(3) and 0.1-8.50 μg/L, respectively. The simple regression equation was log(In-S)=0.322×log(In-E)-0.443. The simple correlation coefficients for the smelting workers, ITO workers and other workers were 0.489, 0.812 and 0.163, respectively. The differences in the relationships among the three groups suggest that In-S may vary with the chemical form to which the workers were exposed. In-E and In-S seem to be positively correlated. The correlation coefficient was higher for both smelting and ITO workers than for other workers.

  16. Personal indium exposure concentration in respirable dusts and serum indium level

    PubMed Central

    IWASAWA, Satoko; NAKANO, Makiko; MIYAUCHI, Hiroyuki; TANAKA, Shigeru; KAWASUMI, Yaeko; HIGASHIKUBO, Ichiro; TANAKA, Akiyo; HIRATA, Miyuki; OMAE, Kazuyuki

    2016-01-01

    The aim of this study was to assess the relationship between indium exposure concentration in the respirable dust fraction (In-E) and indium in serum (In-S) in workers. Methods: A total of 39 workers were studied. The study subjects were categorized into 3 groups, namely, smelting workers (n=7), ITO workers (n=6) in an ITO grinding plant, and other workers (n=26). In-E and In-S ranged from 0.004–24.0 μg/m3 and 0.1–8.50 μg/L, respectively. The simple regression equation was log(In-S)=0.322×log(In-E)−0.443. The simple correlation coefficients for the smelting workers, ITO workers and other workers were 0.489, 0.812 and 0.163, respectively. The differences in the relationships among the three groups suggest that In-S may vary with the chemical form to which the workers were exposed. In-E and In-S seem to be positively correlated. The correlation coefficient was higher for both smelting and ITO workers than for other workers. PMID:27644848

  17. Chronic pulmonary toxicity study of indium-tin oxide and indium oxide following intratracheal instillations into the lungs of hamsters.

    PubMed

    Tanaka, Akiyo; Hirata, Miyuki; Homma, Toshiaki; Kiyohara, Yutaka

    2010-01-01

    The aim of this study was to clarify the chronic toxicological effects of indium-tin oxide (ITO) and indium oxide (In(2)O(3)) on laboratory animals. Male Syrian golden hamsters were intratracheally administered 3 mg/kg or 6 mg/kg of ITO particles, or 2.7 mg/kg or 5.4 mg/kg of In(2)O(3) particles, containing 2.2 mg/kg or 4.5 mg/kg of indium, twice a week, for 8 wk. Control hamsters were given vehicle of distilled water only. The hamsters were euthanized serially up to 78 wk after the final instillation and the toxicological effects were determined. Body weight gain was significantly suppressed in the ITO 6 mg/kg-treated hamsters compared with the control group, but not in the ITO 3 mg/kg-treated or In(2)O(3)-treated hamsters. Relative lung weights among all the indium-treated groups were significantly increased compared to that in the control group throughout the observation period. The serum indium concentration among all the indium-treated groups gradually increased up to the end of the observation period. Histopathologically, foci of slight to severe pulmonary inflammatory response with diffuse alveolar or bronchiolar cell hyperplasia, expansion of the alveolar spaces and interstitial fibrotic proliferation were present in all the indium-treated hamsters and the severity of these lesions worsened with the passage of time. Lung benign adenomas were only manifest in 3 out of 15 of the ITO 6 mg/kg-treated hamsters. The present results clearly demonstrate that ITO and In(2)O(3) particles caused chronic pulmonary toxicity when repeated intratracheal instillations were given to hamsters.

  18. COPPER CORROSION RESEARCH UPDATE

    EPA Science Inventory

    Copper release and corrosion related issues continue to be important to many water systems. The objective of this presentation is to discuss the current state of copper research at the USEPA. Specifically, the role of aging on copper release, use of phosphates for copper corrosio...

  19. Indium-granulocyte scanning in the painful prosthetic joint

    SciTech Connect

    Pring, D.J.; Henderson, R.G.; Keshavarzian, A.; Rivett, A.G.; Krausz, T.; Coombs, R.R.; Lavender, J.P.

    1986-07-01

    The value of indium-111-labeled granulocyte scanning to determine the presence of infection was assessed in 50 prosthetic joints (41 of which were painful) in 40 patients. Granulocytes were obtained from the patients' blood and labeled in plasma with indium 111 tropolonate. Abnormal accumulation of indium 111 in the region of the prosthesis was noted. Proven infection occurred in 11 prostheses, and all of the infections were detected by indium-111-labeled granulocyte scanning. Nineteen were not infected (including nine asymptomatic controls) and only two produced false-positive scans. This represents a specificity of 89.5%, sensitivity of 100%, and overall accuracy of 93.2%. These results compare favorably with plain radiography. There was no radiologic evidence of infection in three of the infected prostheses, and 10 of the noninfected prostheses had some radiologic features that suggested sepsis. We conclude that indium-granulocyte scanning can reliably detect or exclude infection in painful prosthetic joints and should prove useful in clinical management.

  20. Growth and characterization of indium arsenide thin films

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Green, L.; Morelli, D. T.; Heremans, J.; Fuller, B. K.; Thrush, C. M.

    1991-12-01

    The growth and characterization of indium arsenide films grown on indium phosphide substrates by the metal organic chemical vapor deposition (MOCVD) process is reported. Either ethyl dimethyl indium or trimethyl indium were found to be suitable in combination with arsine as source compounds. The highest electron mobilities were observed in films nucleated at reduced growth temperature. Scanning electron microscopy studies show that film nucleation at low temperature prevents thermal etch pits from forming on the InP surface before growth proceeds at an elevated temperature. Electron mobilities as high as 21,000 cm2V-1 sec-1 at 300 K were thus obtained for a film only 3.4 μm thick. This mobility is significantly higher than was previously observed in InAs films grown by MOCVD. From the depth dependence of transport properties, we find that in our films electrons are accumulated near the air interface of the film, presumably by positive ions in the native oxide. The mobility is limited by electrons scattering predominantly from ionized impurities at low temperature and from lattice vibrations and dislocations at high temperature. However, scattering from dislocations is greatly reduced in the surface accumulation layer due to screening by a high density of electrons. These dislocations arise from lattice mismatch and interface disorder at the film-substrate interface, preventing these films from obtaining mobility values of bulk indium arsenide.

  1. Canadian soil quality guidelines for copper: Environmental and human health

    SciTech Connect

    1997-12-31

    This report begins with background information on the physical and chemical properties of copper, the production and use of copper in Canada, its levels in the Canadian environment, and existing guidelines and criteria regarding copper concentrations in various media. It then reviews the environmental fate and behaviour of copper, notably in the soil; the behavior and effects of copper in biota, including soil microbial processes, terrestrial plants and invertebrates, livestock and wildlife, and bioaccumulation; and the pharmacokinetics and toxicology of copper in mammals and humans, concluding with an overall toxicological evaluation and human exposure estimates. This information is used to derive environmental and human health soil quality guidelines for copper to protect environmental and human health receptors, for agricultural, residential/parkland, commercial, and industrial land uses.

  2. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  3. Electrochemical nucleation and growth of copper

    NASA Astrophysics Data System (ADS)

    Radisic, Aleksandar

    2005-12-01

    The primary goal of this dissertation is to provide more insight into nucleation and growth processes during electrochemical deposition of copper on various metallic and semiconductor substrates. Electrodeposition is the current method used in forming copper interconnects in integrated circuits, primarily due to the ability of this technique to fill high aspect ratio features with complex geometries at high deposition rates, leading to high throughput and lower manufacturing costs. Important processing steps prior to electroplating involve the deposition of a thin diffusion barrier layer, to prevent copper diffusion into silicon, and deposition of a copper seed layer by means of physical vapor deposition (PVD). The copper seed layer provides good electrical contact and improved adhesion to the diffusion barrier layer. As the feature sizes in integrated circuits continue to decrease, industry is forced to explore the possibility of electrochemical deposition of high quality copper films without the use of a copper seed layer. It is not a priori clear that copper films deposited on diffusion barriers will follow the same growth mode as copper films deposited on copper seed layers, and whether it will be possible to achieve the "superfilling" effects without the copper seed layer. The growth of copper films on diffusion barrier materials occurs through Volmer-Weber (3D island) mode of growth. As a result, high nucleus densities are essential in depositing continuous thin films. For complex structures with small length scales, such as trenches and vias in integrated circuits, a detailed understanding of nucleation and growth, and the influence of parameters such as potential and solution chemistry on the deposition mechanism is critical in designing processes for obtaining the void-free features. The goal of our research is to improve the understanding of the electrochemical nucleation and growth processes necessary for successful electrodeposition of copper onto

  4. Body of Knowledge (BOK) for Copper Wire Bonds

    NASA Technical Reports Server (NTRS)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  5. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  6. Copper and copper proteins in Parkinson's disease.

    PubMed

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  7. Low temperature solder process to join a copper tube to a silicon wafer

    NASA Astrophysics Data System (ADS)

    Versteeg, Christo; Scarpim de Souza, Marcio

    2014-06-01

    With the application for wafer level packages, which could be Complementary Metal-Oxide-Semiconductor (CMOS) based, and which requires a reduced atmosphere, a copper tube connection to a vacuum pump and the package is proposed. The method evaluated uses laser assisted brazing of a solder, to join the copper tube to a silicon wafer. The method was applied to a silicon wafer coated with a metallic interface to bond to the solder. The hermeticity of the joint was tested with a helium leak rate tester and the bonding energy thermal extent was verified with a thin layer of indium that melted wherever the substrate temperature rose above its melting temperature.

  8. Materials flow of indium in the United States in 2008 and 2009

    USGS Publications Warehouse

    Goonan, Thomas G.

    2012-01-01

    Indium is a material that has many applications. It is used by anyone who watches television or views a computer screen. It is found in solar energy arrays and in soldering applications that are required to be lead free. In 2009, about 550 metric tons (t) of indium metal was produced from primary sources world-wide; it was estimated that the United States consumed about 110 t of indium metal (20 percent of world primary production). However, when imports of consumer products that contain indium are considered, the United States consumed about 200 t of indium (36 percent of world primary production). When one considers the recovery from the low-efficiency sputtering process that coats indium-tin oxide onto glass and other surfaces, the recycling rate (within the manufacturing process that uses indium-tin oxide in flat panel displays approaches 36 percent. However, indium recovery from old scrap generated from end-of-life consumer products is not sufficiently economic to add significantly to secondary production. Between 1988 and 2010, indium prices averaged $381 per kilogram (in constant 2000 dollars). However, prices have been quite volatile (deviating from the average of $381 per kilogram by ±$199 per kilogram, a 52 percent difference from the average), reflecting short-term disequilibrium of supply and demand but also responsiveness of supply to demand. The dynamics of zinc smelting govern the primary supply of indium because indium is a byproduct of zinc smelting. Secondary indium supply, which accounts for about one-half of total indium supply, is governed by indium prices and technological advances in recovery. Indium demand is expected to grow because the number and volume of cutting edge technology applications that depend on indium are expected to grow.

  9. TEM EDS analysis of epitaxially-grown self-assembled indium islands

    NASA Astrophysics Data System (ADS)

    Sears, Jasmine; Gibson, Ricky; Gehl, Michael; Zandbergen, Sander; Keiffer, Patrick; Nader, Nima; Hendrickson, Joshua; Arnoult, Alexandre; Khitrova, Galina

    2017-05-01

    Epitaxially-grown self-assembled indium nanostructures, or islands, show promise as nanoantennas. The elemental composition and internal structure of indium islands grown on gallium arsenide are explored using Transmission Electron Microscopy (TEM) Energy Dispersive Spectroscopy (EDS). Several sizes of islands are examined, with larger islands exhibiting high (>94%) average indium purity and smaller islands containing inhomogeneous gallium and arsenic contamination. These results enable more accurate predictions of indium nanoantenna behavior as a function of growth parameters.

  10. Impact of preferential indium nucleation on electrical conductivity of vapor-liquid-solid grown indium-tin oxide nanowires.

    PubMed

    Meng, Gang; Yanagida, Takeshi; Nagashima, Kazuki; Yoshida, Hideto; Kanai, Masaki; Klamchuen, Annop; Zhuge, Fuwei; He, Yong; Rahong, Sakon; Fang, Xiaodong; Takeda, Seiji; Kawai, Tomoji

    2013-05-08

    Highly conductive and transparent indium-tin oxide (ITO) single-crystalline nanowires, formed by the vapor-liquid-solid (VLS) method, hold great promise for various nanoscale device applications. However, increasing an electrical conductivity of VLS grown ITO nanowires is still a challenging issue due to the intrinsic difficulty in controlling complex material transports of the VLS process. Here, we demonstrate a crucial role of preferential indium nucleation on the electrical conductivity of VLS grown ITO nanowires using gold catalysts. In spite of the fact that the vapor pressure of tin is lower than that of indium, we found that the indium concentration within the nanowires was always higher than the nominal composition. The VLS growth of ITO through gold catalysts significantly differs from ITO film formations due to the emergence of preferential indium nucleation only at a liquid-solid interface. Furthermore, we demonstrate that the averaged resistivity of ITO nanowires can be decreased down to 2.1 × 10(-4) Ω cm, which is the lowest compared with values previously reported, via intentionally increasing the tin concentration within the nanowires.

  11. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride

    PubMed Central

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; Olvera, María De La Luz

    2014-01-01

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10−3 Ω·cm and high optical transmittance, in the visible range, of 50%–70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered. PMID:28788118

  12. Indium Doped Zinc Oxide Thin Films Deposited by Ultrasonic Chemical Spray Technique, Starting from Zinc Acetylacetonate and Indium Chloride.

    PubMed

    Biswal, Rajesh; Maldonado, Arturo; Vega-Pérez, Jaime; Acosta, Dwight Roberto; De La Luz Olvera, María

    2014-07-04

    The physical characteristics of ultrasonically sprayed indium-doped zinc oxide (ZnO:In) thin films, with electrical resistivity as low as 3.42 × 10(-3) Ω·cm and high optical transmittance, in the visible range, of 50%-70% is presented. Zinc acetylacetonate and indium chloride were used as the organometallic zinc precursor and the doping source, respectively, achieving ZnO:In thin films with growth rate in the order of 100 nm/min. The effects of both indium concentration and the substrate temperature on the structural, morphological, optical, and electrical characteristics were measured. All the films were polycrystalline, fitting well with hexagonal wurtzite type ZnO. A switching in preferential growth, from (002) to (101) planes for indium doped samples were observed. The surface morphology of the films showed a change from hexagonal slices to triangle shaped grains as the indium concentration increases. Potential applications as transparent conductive electrodes based on the resulting low electrical resistance and high optical transparency of the studied samples are considered.

  13. Mobility of indium on the ZnO(0001) surface

    NASA Astrophysics Data System (ADS)

    Heinhold, R.; Reeves, R. J.; Williams, G. T.; Evans, D. A.; Allen, M. W.

    2015-02-01

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ˜520 °C, with indium migrating from the ( 000 1 ¯ ) underside of the wafer, around the non-polar ( 1 1 ¯ 00 ) and ( 11 2 ¯ 0 ) sidewalls, to form a uniform self-organized (˜20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In2O3 precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  14. Synthesis and conductivity of indium-doped tin pyrophosphates

    SciTech Connect

    Garzon, Fernando H; Mukundan, Rangachary; Brosha, Eric L

    2008-01-01

    We have synthesized indium-doped tin pyrophosphates as high-temperature anhydrous proton conductors. The ratio of tin to indium was varied using two different synthetic methods. The first is a high-temperature reaction in which a paste containing the reactants in excess phosphoric acid was heated for various amounts of time at various temperatures. The second method is a solution precipitation procedure followed by calcination, which offers several advantages over traditional synthetic techniques. These advantages inc 1 ude better stoichiometric control, lower temperature requirements, and chemically uniform products. Several phosphate sources were investigated, including phosphoric acid, pyrophosphoric acid, and potassium pyrophosphate. The resulting indium-doped tin pyrophosphates had good proton conductivity over a wide temperature range with no humidification.

  15. Indium antimonide doped with manganese grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Partin, D. L.; Heremans, J.; Thrush, C. M.

    1997-05-01

    Indium antimonide is of interest for infrared detecting and emitting devices and for magnetic field sensors. In this study, indium antimonide doped with manganese and grown by molecular beam epitaxy was investigated. Secondary ion mass spectroscopy (SIMS) was used to show that the incorporation of managenese is near unity over a wide range of manganese concentrations. Manganese is observed to be an acceptor with a dopant efficiency which follows a power law in which the hole density is proportional to the manganese concentration raised to the power α. The power α depends on the growth temperature; at 300°C, α = 0.86 and at 360°C, α = 0.78. Lightly manganese doped samples have transport dominated by electrons at low temperatures due to hole freeze out, followed by holes at intermediate temperatures and finally by intrinsic electrons at high temperatures. Additional SIMS studies showed that manganese diffuses relatively slowly in indium antimonide.

  16. Temperature dependence of the internal friction of polycrystalline indium

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, K. V.; Golyandin, S. N.; Kustov, S. B.

    2010-12-01

    The temperature dependences of the internal friction and the elastic modulus of polycrystalline indium have been investigated in the temperature range 7-320 K at oscillatory loading frequencies of approximately 100 kHz. The effect of temperature on the amplitude dependence and the effect of high-amplitude loading at 7 K on the temperature and amplitude dependences of the internal friction of indium have been analyzed. It has been demonstrated that the thermocycling leads to microplastic deformation of indium due to the anisotropy of thermal expansion and the appearance of a "recrystallization" maximum in the spectrum of the amplitude-dependent internal friction. The conclusion has been drawn that the bulk diffusion of vacancies and impurities begins at temperatures of approximately 90 K and that, at lower temperatures, the diffusion occurs in the vicinity of dislocations. It has been revealed that the high-temperature internal friction background becomes noticeable after the dissolution of Cottrell atmospheres.

  17. Mobility of indium on the ZnO(0001) surface

    SciTech Connect

    Heinhold, R.; Reeves, R. J.; Allen, M. W.; Williams, G. T.; Evans, D. A.

    2015-02-02

    The mobility of indium on the Zn-polar (0001) surface of single crystal ZnO wafers was investigated using real-time x-ray photoelectron spectroscopy. A sudden transition in the wettability of the ZnO(0001) surface was observed at ∼520 °C, with indium migrating from the (0001{sup ¯}) underside of the wafer, around the non-polar (11{sup ¯}00) and (112{sup ¯}0) sidewalls, to form a uniform self-organized (∼20 Å) adlayer. The In adlayer was oxidized, in agreement with the first principles calculations of Northrup and Neugebauer that In{sub 2}O{sub 3} precipitation can only be avoided under a combination of In-rich and Zn-rich conditions. These findings suggest that unintentional In adlayers may form during the epitaxial growth of ZnO on indium-bonded substrates.

  18. Occult Purulent Pericarditis Detected by Indium-111 Leukocyte Imaging*

    PubMed Central

    Greenberg, Mark L.; Niebulski, Harvey I. J; Uretsky, Barry F.; Salerni, Rosemarie; Klein, Herbert A.; Forstate, William J.; Starzl, Thomas E.

    2011-01-01

    Leukocyte imaging with indium-111 is-a relatively new technique which, to this point in time, has been discussed almost exclusively in the radiologic literature. Although this procedure has been used mainly to detect intra-abdominal infection, the thorax is routinely imaged along with the abdomen, and therefore detection of cardiac disease may be feasible. This case report is of a young woman after liver transplantation who developed occult purulent pericarditis initially detected by a leukocyte scan with indium-111. This case demonstrates that striking pericardial uptake on a whole-body indium-111 leukocyte scan can occur with purulent pericarditis, and it reemphasizes how insidiously purulent pericarditis may present in an immunosuppressed patient. PMID:6370622

  19. Indium oxide inverse opal films synthesized by structure replication method

    NASA Astrophysics Data System (ADS)

    Amrehn, Sabrina; Berghoff, Daniel; Nikitin, Andreas; Reichelt, Matthias; Wu, Xia; Meier, Torsten; Wagner, Thorsten

    2016-04-01

    We present the synthesis of indium oxide (In2O3) inverse opal films with photonic stop bands in the visible range by a structure replication method. Artificial opal films made of poly(methyl methacrylate) (PMMA) spheres are utilized as template. The opal films are deposited via sedimentation facilitated by ultrasonication, and then impregnated by indium nitrate solution, which is thermally converted to In2O3 after drying. The quality of the resulting inverse opal film depends on many parameters; in this study the water content of the indium nitrate/PMMA composite after drying is investigated. Comparison of the reflectance spectra recorded by vis-spectroscopy with simulated data shows a good agreement between the peak position and calculated stop band positions for the inverse opals. This synthesis is less complex and highly efficient compared to most other techniques and is suitable for use in many applications.

  20. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    ELECTROLUMINESCENCE STUDIES ON LONG WAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS John C...11-46 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS...58 1 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE I

  1. Effects of Copper Nanomaterials on Marine Benthic Communities

    EPA Science Inventory

    Copper nanomaterials (CuNMs) are used as an anti-bacterial and anti-fouling agent in numerous commercial and industrial products, including water purifiers, fungicides, wood and touch surfaces. The widespread popularity of copper nanomaterials in consumer products increases the r...

  2. Effects of Copper Nanomaterials on Marine Benthic Communities

    EPA Science Inventory

    Copper nanomaterials (CuNMs) are used as an anti-bacterial and anti-fouling agent in numerous commercial and industrial products, including water purifiers, fungicides, wood and touch surfaces. The widespread popularity of copper nanomaterials in consumer products increases the r...

  3. Diffusion parameters of indium for silicon process modeling

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Rich, T. L.; Stevie, F. A.; Rafferty, C. S.

    1996-11-01

    The diffusion parameters of indium in silicon are investigated. Systematic diffusion experiments in dry oxidizing ambients at temperatures ranging from 800 to 1050 °C are conducted using silicon wafers implanted with indium. Secondary-ion-mass spectrometry (SIMS) is used to analyze the dopant distribution before and after heat treatment. The oxidation-enhanced diffusion parameter [R. B. Fair, in Semiconductor Materials and Process Technology Handbook, edited by G. E. McGuire (Noyes, Park Ridge, NJ, 1988); A. M. R. Lin, D. A. Antoniadis, and R. W. Dutton, J. Electrochem. Soc. Solid-State Sci. Technol. 128, 1131 (1981); D. A. Antoniadis and I. Moskowitz, J. Appl. Phys. 53, 9214 (1982)] and the segregation coefficient at the Si/SiO2 interface [R. B. Fair and J. C. C. Tsai, J. Electrochem. Soc. Solid-State Sci. Technol. 125, 2050 (1978)] (ratio of indium concentration in silicon to that in silicon dioxide) are extracted as a function of temperature using SIMS depth profiles and the silicon process simulator PROPHET [M. Pinto, D. M. Boulin, C. S. Rafferty, R. K. Smith, W. M. Coughran, I. C. Kizilyalli, and M. J. Thoma, in IEDM Technical Digest, 1992, p. 923]. It is observed that the segregation coefficient of indium at the Si/SiO2 interface is mIn≪1, similar to boron; however, unlike boron, the segregation coefficient of indium at the Si/SiO2 interface decreases with increasing temperature. Extraction results are summarized in analytical forms suitable for incorporation into other silicon process simulators. Finally, the validity of the extracted parameters is verified by comparing the simulated and measured SIMS profiles for an indium implanted buried-channel p-channel metal-oxide-semiconductor field-effect-transistor [I. C. Kizilyalli, F. A. Stevie, and J. D. Bude, IEEE Electron Device Lett. (1996)] process that involves a gate oxidation and various other thermal processes.

  4. Uptake of indium-111-labeled leukocytes by brain metastasis

    SciTech Connect

    Balachandran, S.; Husain, M.M.; Adametz, J.R.; Pallin, J.S.; Angtuaco, T.L.; Boyd, C.M.

    1987-04-01

    Uptake of indium-labeled leukocytes was seen in two cases of histologically proven brain metastasis. In one, this led to misdiagnosis of the lesion as an abscess. On histological evaluation, a large number of white blood cells or macrophages was seen at the neoplastic sites. Reasons for leukocyte accumulation around metastatic brain neoplasms are discussed. In contrast to the current reports that indium-labeled leukocyte scans can differentiate intracranial infection from tumor, these cases demonstrate their lack of specificity in the detection of brain abscess.

  5. Equation of state of liquid Indium under high pressure

    SciTech Connect

    Li, Huaming E-mail: mo.li@gatech.edu; Li, Mo E-mail: mo.li@gatech.edu; Sun, Yongli

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids, these detailed predictions are yet to be confirmed by further experiment.

  6. Method for labelling leucocytes with indium In-111 oxine

    SciTech Connect

    Kaminsky, D.

    1992-03-03

    This patent describes an improved method for radio-labelling leucocytes with Indium In-111 oxine. It comprises separating the leucocytes from whole blood for obtaining separated leucocytes mixed with residual red blood cells; and then labelling the separated leucocytes with Indium In-111 oxine; wherein the improvement comprises the following further step: depleting residual red blood cells from the separated leucocytes by resuspending the leucocytes in an isotonic saline solution, then rocking the resuspended leucocytes for causing the leucocytes to preferentially settle out, and then removing residual red blood cells which remain suspended within the supernatant isotonic saline solution.

  7. Study of electrical resistivity of lithium-indium thin films

    NASA Astrophysics Data System (ADS)

    Chandra, Gyanesh; Katyal, O. P.

    1984-12-01

    Experimental results are presented on the electrical resistivity of lithium-indium films. The resistivity has been studied as a function of temperature (150-300 K), thickness of the films (570-3300 Å) and concentration of Li (11.0-58.7 at. %). The resistivity is observed to be minimum for samples having a Li concentration of 25 and 50 at. %. In general, resistivity varies linearly with temperature but resistivity versus temperature plot shows two distinct regions which have different slopes, i.e., dρ/dT. The role of lithium in indium-lithium films is discussed.

  8. Pulmonary Alveolar Proteinosis in Workers at an Indium Processing Facility

    PubMed Central

    Cummings, Kristin J.; Donat, Walter E.; Ettensohn, David B.; Roggli, Victor L.; Ingram, Peter; Kreiss, Kathleen

    2010-01-01

    Two cases of pulmonary alveolar proteinosis, including one death, occurred in workers at a facility producing indium-tin oxide (ITO), a compound used in recent years to make flat panel displays. Both workers were exposed to airborne ITO dust and had indium in lung tissue specimens. One worker was tested for autoantibodies to granulocytemacrophage–colonystimulating factor (GM-CSF) and found to have an elevated level. These cases suggest that inhalational exposure to ITO causes pulmonary alveolar proteinosis, which may occur via an autoimmune mechanism. PMID:20019344

  9. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    SciTech Connect

    Yoshimura, Masatoshi Nakai, Eiji; Fukui, Takashi; Tomioka, Katsuhiro

    2013-12-09

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm{sup 2}, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range.

  10. Deep Subgap Feature in Amorphous Indium Gallium Zinc Oxide. Evidence Against Reduced Indium

    SciTech Connect

    Sallis, Shawn; Quackenbush, Nicholas F.; Williams, Deborah S.; Senger, Mikell; Woicik, Joseph C.; White, Bruce E.; Piper, Louis F.

    2015-01-14

    Amorphous indium gallium zinc oxide (a-IGZO) is the archetypal transparent amorphous oxide semiconductor. In spite of the gains made with a-IGZO over amorphous silicon in the last decade, the presence of deep subgap states in a-IGZO active layers facilitate instabilities in thin film transistor properties under negative bias illumination stress. Several candidates could contribute to the formation of states within the band gap. We present evidence against In+ lone pair active electrons as the origin of the deep subgap features. No In+ species are observed, only In0 nano-crystallites under certain oxygen deficient growth conditions. Our results further support under coordinated oxygen as the source of the deep subgap states.

  11. Oxygen solubility in liquid indium and oxygen diffusivity in liquid indium and tin

    NASA Astrophysics Data System (ADS)

    Otsuka, Shinya; Kozuka, Zensaku; Chang, Y. Austin

    1984-06-01

    The solubility of oxygen in liquid indium, Co, at 973 and 1073 K in equilibrium with its oxide was determined by an isopiestic equilibration technique in order to resolve discrepancies reported in the literature. The present results, Co = 0.0092 at. pet at 973 K and 0.0377 at. pet at 1073 K, agree with those obtained by Otsuka, Sano, and Kozuka using a modified coulometric titration method. Oxygen diffusivity in liquid indium from 873 to 1073 K and in liquid tin from 973 to 1273 K was measured utilizing a combined potentiostatic and emf method using the following double electrochemical cells: Fe,FeO/ZrO2(+CaO)/O in Me(I)/ZrO2(+CaO)/O in Me(II). The present results are DO(In) = 6.6 ({-1.6/+2.0}) x 10-3 exp[(-3-600 ± 5600)/RT]873 K ≤ T ≤ 1073 K and DO(Sn), = 8.7({-5.7/+13.5}) x 10-4 exp[(-18800 ± 6700)/RT]973 K ≤ T ≤ 1273 K. The present results are of the same order of magnitude with the self-diffusivity of the liquid metals, and are about two orders of magnitude greater than the oxygen diffusivity reported by Stevenson and co-workers. The ratio of oxygen diffusivity to self-diffusivity of the solvent was found to be correlated to the enthalpy of formation per mole of oxygen of the respective oxide at 298 K.

  12. Platelet labelling with indium-hydroxypyridinone and indium-hydroxypyranone complexes.

    PubMed

    Abeysinghe, R D; Ellis, B L; Porter, J B

    1994-10-01

    In order to identify new compounds which label platelets without affecting their function, three classes of metal chelating agents have been compared with oxine for their efficiency of indium-113m platelet labelling and for their short- and long-term effects on platelet function. The 3-hydroxypyridinones (both 2-ones and 4-ones) and 3-hydroxypyranones are bidentate chelators of trivalent metal ions that are neutrally charged in the metal-complexed form and hence gain access to cells readily. The hydroxypyranone ethylmaltol has been compared with the 3-hydroxypyridin-4-one CP94 and to its structurally related lipophilic analogue CP25 as well as with the 3-hydroxypyridin-2-one, CP02. The platelet labelling efficiencies with these ligands were between 75% and 95% of that obtained with oxine, following a 12-min incubation in saline. The optimal concentration for the hydroxypyridin-2-ones and hydroxypyridin-4-ones was approximately 10 microM compared with 100 microM for the hydroxypyranone ethylmaltol and 60 microM for oxine. Oxine and tropolone were found to produce significant inhibition of platelet aggregation to collagen in short-term experiments (10 min) or in longer term (18 and 42 h) ex vivo platelet cultures respectively. By contrast, ethylmaltol had no such inhibitory effects at either time interval. The relatively hydrophilic hydroxypyridin-4-one CP94 showed no inhibitory effects on collagen-induced aggregation in short-term studies, unlike the more lipid-soluble derivative CP25. These results suggest that ethylmaltol and related pyranones may have advantages over oxine and tropolone as indium platelet labelling agents where it is important not to damage platelets by the labelling process itself.

  13. Ceruloplasmin as a marker of occupational copper exposure.

    PubMed

    Saha, Asim; Karnik, Anil; Sathawara, Natubhai; Kulkarni, Pradip; Singh, Vedprakash

    2008-05-01

    Estimation of serum copper to indicate copper status in the human system in the context of moderate chronic occupational copper exposure requires a sophisticated and expensive method. Hence, a search for a suitable marker has been made and few studies have found potential in serum ceruloplasmin. In this context, the present study was initiated to explore whether ceruloplasmin could serve as a predictor of occupational copper exposure. An interviewer-administered questionnaire survey (personal, occupational and health-related information) was undertaken involving 185 employees of a copper handling industry. Serum alkaline phosphatase, serum glutamic pyruvic transaminase (SGPT), serum ceruloplasmin and serum copper were estimated in all the subjects. Multivariate analysis was undertaken using a linear regression model to understand the contribution of serum copper on serum ceruloplasmin values adjusting for the role of other confounders. Serum copper and serum ceruloplasmin values were found to have a statistically significant positive correlation (R=0.169, adjusted R(2)=0.024) after adjustment for other predictors like age, nature of job (department), job duration, smoking, serum alkaline phosphatase and SGPT. This study concludes that the serum ceruloplasmin level can act as a reliable indicator of copper status in the human body following copper exposure in cases of chronic moderate occupational exposure to copper.

  14. High levels of indium exposure relate to progressive emphysematous changes: a 9-year longitudinal surveillance of indium workers.

    PubMed

    Amata, Atsuko; Chonan, Tatsuya; Omae, Kazuyuki; Nodera, Hiroshi; Terada, Jiro; Tatsumi, Koichiro

    2015-11-01

    During the last decade it has been clarified that the inhalation of indium compounds can evoke alveolar proteinosis, cholesterol granuloma, pulmonary fibrosis and emphysema. In this study, we aimed to elucidate the characteristics and time course of pulmonary disorders among indium workers using comprehensive pulmonary examinations at an indium-processing factory. Data for 84 male workers who underwent the examinations for nine consecutive years from 2002 to 2010 were analysed regarding their symptoms, serum indium concentration (sIn), serum markers of interstitial pneumonia, pulmonary function test parameters and high-resolution CT (HRCT) findings of the lungs. In association with improvements in the work environment and work practice, the sIn levels decreased with significant reductions in the KL-6 and surfactant protein D (SP-D) levels. Regarding the HRCT findings, the interstitial lesions regressed partially, whereas emphysematous lesions increased progressively in the workers with high sIn values. FEV1/FVC decreased with the years and the rate of decrease was significantly greater in those with high sIn. The biological half-life of sIn was estimated to be 8.09 years. The present findings suggest that the sIn, SP-D, KL-6 levels and radiological interstitial changes can be reduced in indium workers by alleviating exposure to indium, whereas emphysematous lesions can progress among those with a history of heavy exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Evaluation of critical materials for five advanced design photovoltaic cells with an assessment of indium and gallium

    SciTech Connect

    Watts, R.L.; Gurwell, W.E.; Jamieson, W.M.; Long, L.W.; Pawlewicz, W.T.; Smith, S.A.; Teeter, R.R.

    1980-05-01

    The objective of this study is to identify potential material supply constraints due to the large-scale deployment of five advanced photovoltaic (PV) cell designs, and to suggest strategies to reduce the impacts of these production capacity limitations and potential future material shortages. This report presents the results of the screening of the five following advanced PV cell designs: polycrystalline silicon, amorphous silicon, cadmium sulfide/copper sulfide frontwall, polycrystalline gallium arsenide MIS, and advanced concentrator-500X. Each of these five cells is screened individually assuming that they first come online in 1991, and that 25 GWe of peak capacity is online by the year 2000. A second computer screening assumes that each cell first comes online in 1991 and that each cell has 5 GWe of peak capacity by the year 2000, so that the total online cpacity for the five cells is 25 GWe. Based on a review of the preliminary basline screening results, suggestions were made for varying such parameters as the layer thickness, cell production processes, etc. The resulting PV cell characterizations were then screened again by the CMAP computer code. Earlier DOE sponsored work on the assessment of critical materials in PV cells conclusively identtified indium and gallium as warranting further investigation as to their availability. Therefore, this report includes a discussion of the future availability of gallium and indium. (WHK)

  16. Non-Stoichiometric Amorphous Indium Selenide Thin Films as a Buffer Layer for CIGS Solar Cells with Various Temperatures in Rapid Thermal Annealing.

    PubMed

    Yoo, Myoung Han; Kim, Nam-Hoon

    2016-05-01

    The conventional structure of most of copper indium gallium diselenide (Culn(1-x)Ga(x)Se2, CIGS) solar cells includes a CdS thin film as a buffer layer. Cd-free buffer layers have attracted great interest for use in photovoltaic applications to avoid the use of hazardous and toxic materials. The RF magnetron sputtering method was used with an InSe2 compound target to prepare the indium selenide precursor. Rapid thermal annealing (RTA) was conducted in ambient N2 gas to control the concentration of volatile Se from the precursor with a change in temperature. The nature of the RTA-treated indium selenide thin films remained amorphous under annealing temperatures of ≤ 700 degrees C. The Se concentration of the RTA-treated specimens demonstrated an opposite trend to the annealing temperature. The optical transmittance and band gap energies were 75.33% and 2.451-3.085 eV, respectively, and thus were suitable for the buffer layer. As the annealing temperature increased, the resistivity decreased by an order-of-magnitude from 10(4) to 10(1) Ω-cm. At lower Se concentrations, the conductivity abruptly changed from p-type to n-type without crystallite formation in the amorphous phase, with the carrier concentration in the order of 10(17) cm(-3).

  17. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    NASA Astrophysics Data System (ADS)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  18. Electrochemical synthesis of indium(0) nanoparticles in haloindate(III) ionic liquids.

    PubMed

    Estager, Julien; Nockemann, Peter; Seddon, Kenneth R; Srinivasan, Geetha; Swadźba-Kwaśny, Małgorzata

    2012-01-09

    A synthetic route to indium(0) nanoparticles via an electrochemical reduction of haloindate(III) ionic liquids to indium(I), and its subsequent disproportionation to indium(0) and indium(III) in the bulk electrolyte, is described. In this sustainable method, the ionic liquid acts simultaneously as metal source, templating agent, and stabilising agent, with the electron as the only reducing agent. The nature of the ionic liquid cation is demonstrated to strongly affect the morphology and size distribution of the indium(0) nanoparticles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Highly Stable Transparent Electrodes Made from Copper Nanotrough Coated with AZO/Al2O3.

    PubMed

    Li, Peng; Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Liu, Yichun

    2016-04-01

    Due to their high flexibility, high conductivity and high transparency in a wide spectrum range, metal nanowires and meshes are considered to be two of the most promising candidates to replace the traditional transparent conducting films, such as tin doped indium oxide. In this paper, transparent conducting films made from copper nanotroughs are prepared by the electrospinning of polymer fibers and subsequent thermal evaporation of copper. The advantages of the technique include low junction resistance, low cost and low preparation temperature. Although the copper nanotrough transparent conducting films exhibited a low sheet resistance (19.2 Ω/sq), with a high transmittance (88% at 550 nm), the instability of copper in harsh environments seriously hinders its applications. In order to improve the stability of the metal transparent conducting films, copper nanotroughs were coated with 39 nm thick aluminum-doped zinc oxide and 1 nm thick aluminum oxide films by atomic layer deposition. The optical and electrical measurements show that coating copper nanotrough with oxides barely reduces the transparency of the films. It is worth noting that conductive oxide coating can effectively protect copper nanotroughs from thermal oxidation or acidic corrosion, whilst maintaining the same flexibility as copper nanotroughs on its own.

  20. Reduction of copper sulphate with elemental iron for preparation of copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Nazim, Muhammad

    range. Nowadays, nano sized particles has potential applications in different engineering and industrial fields. In this research work, emphasis was given to produce copper nano-particles. The reaction of copper sulphate solution with iron wire was studied in the presence of different organic solvents to verify the size and purity of the produced copper particles. 1-butanol proved to be a competent solvent in producing nearly nano sized copper particles with particles size as small as 165 nanometers in the form of clusters and purity as high as 93.67 weight% of copper. In order to determine the copper particles with the smallest size (nano range) and copper purity to a considerable level, characterization was done with the produced copper particles. For this purpose, the effect of sonication, addition of surfactant and chelation by adding EDTA were studied. It can be concluded that nano size copper particles with size less than 100 nm with copper purity of 100% were produced by reaction of 5% copper sulphate solution in the presence of 2 ml surfactant with iron wire and sonication. These copper nano particles have potential applications as catalysts for different industrial organic reactions. Finally, optimization studies of the process parameters effect on the reaction yield of copper sulphate with both types of iron substrates (wire and powder) were carried out using MATLAB 7.0 software. In this study, the relationship between three process variables namely the initial concentration of copper, temperature and pH of solution with reaction yield of copper cementation reaction was investigated for both the cases. Cubic mixture models were developed by using three levels full factorial design to find out the main effects and interactions of these process variables on the reaction yields of copper. The validity of the cubic mixture regressed models have been verified with high regression coefficients and through normal probability curves for residuals. Finally, response

  1. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    NASA Astrophysics Data System (ADS)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  2. Reclaim System Design of Indium Tin Oxide Thin-Film Removal from Color Filters of Displays

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2008-09-01

    A newly design precision reclaim system using electrochemical machining as an etching process for indium tin oxide (ITO) thin-film removal from the color filter surface of a displays is presented. Through the ultra precise etching of the nanostructure, the semiconductor industry can effectively recycle defective products, thereby reducing production costs. A large gyration diameter of a cathode combined with a small gap width between the cathode and a workpiece takes less time for the same amount of ITO removed. An adequate feed rate of color filters combined with a sufficient electric power produces fast machining. Pulsed direct current and higher rotational speed of the cathode can improve the effects of dregs discharge and are advantageous to be combined with a high feed rate of workpieces. Electrochemical machining only requires a short time to easily and cleanly remove ITO films.

  3. Indium segregation measured in InGaN quantum well layer

    PubMed Central

    Deng, Zhen; Jiang, Yang; Wang, Wenxin; Cheng, Liwen; Li, Wei; Lu, Wei; Jia, Haiqiang; Liu, Wuming; Zhou, Junming; Chen, Hong

    2014-01-01

    The indium segregation in InGaN well layer is confirmed by a nondestructive combined method of experiment and numerical simulation, which is beyond the traditional method. The pre-deposited indium atoms before InGaN well layer growth are first carried out to prevent indium atoms exchange between the subsurface layer and the surface layer, which results from the indium segregation. The uniform spatial distribution of indium content is achieved in each InGaN well layer, as long as indium pre-deposition is sufficient. According to the consistency of the experiment and numerical simulation, the indium content increases from 16% along the growth direction and saturates at 19% in the upper interface, which cannot be determined precisely by the traditional method. PMID:25339386

  4. Platinum-, rhenium-, indium-containing catalysts for conversion of hydrocarbons

    SciTech Connect

    Antos, G.J.; Wang, L.

    1986-12-16

    A process is described for the catalytic reforming of naphtha-boiling range charge stock at reforming conditions with a catalytic composite comprising: (a) a refractory inorganic oxide; (b) a first uniform dispersion of a platinum component and a rhenium component; (c) a second dispersion of an indium component thereover; (d) a halogen component; and (e) a sulfur component.

  5. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  6. A New Technique for Wirebonding Using Indium Spheres

    DTIC Science & Technology

    2010-07-01

    Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A new technique has been developed for wirebonding mercury ...the MCT material under gold wirebonding pads due to force and ultrasonic power needed in wirebonding. 15. SUBJECT TERMS Wirebonding indium, Mercury ... mercury cadmium telluride (MCT) devices has been developed. Gold ball wirebonding to MCT devices is challenging. The act of applying force and

  7. Indium-111 labeled anti-melanoma monoclonal antibodies

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Ferrone, S.

    1984-04-30

    A monoclonal antibody to a high molecular weight melanoma-associated antigen was chelated and radiolabeled with indium-111. This material shows high affinity for melanoma and thus can be used in the detection, localization and imaging of melanoma. 1 figure.

  8. Visible light electroluminescent diodes of indium-gallium phosphide

    NASA Technical Reports Server (NTRS)

    Clough, R.; Richman, D.; Tietjen, J.

    1970-01-01

    Vapor deposition and acceptor impurity diffusion techniques are used to prepare indium-gallium phosphide junctions. Certain problems in preparation are overcome by altering gas flow conditions and by increasing the concentration of phosphine in the gas. A general formula is given for the alloy's composition.

  9. [The clinical features of indium-related lung diseases].

    PubMed

    Guo, Kongrong; Liu, Jia; Zhang, Jingbo; Sun, Daoyuan

    2015-08-01

    To discuss the clinical features of Indium-related lung diseases. We searched database of Chinese and Pubmed, Embase, Web of Science to collect research data of indium-related lung diseases from Jan. 1998 to Aprl. 2014. Case reports, exposure histories and lab results were analysed and summarized. 1998 to Mar 2010, ten cases of indium-related lung diseases were published. Seven cases of interstitial pneumonia were reported in Japan, two cases of pulmonary alveolar proteinosis (PAP) were reported in the USA and one case of PAP reported in China. Chest computer tomography (CT) showed diffuse or local ground glass appearance (GGA) in 8 cases, 3 of which also showed centrilobular nodules; Pulmonary function test were normal only in one out of 8 cases. Cholesterol clefts were found in 4 cases of interstitial pneumonia. 3 cases died among 6 cases who were followed-up. Occupational exposure to indium compounds are contributory to different pulmonary diseases, which are composed of interstitial pneumonia and pulmonary alveolar proteinosis. The relationships between In-C, In-S and these pulmonary diseases are unclear.

  10. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  11. Sub-micronewton thrust measurements of indium field emission thrusters

    NASA Technical Reports Server (NTRS)

    Ziemer, J. K.

    2003-01-01

    The performance of three indium field emission thrusters (In-FETs) developed by the Austrian Research Center Seibersdorf (ARCS) have been measured up to 200 muN, 2 mA, and 20 W using a submicronewton resolution thrust stand.

  12. Detection of accessory spleens with indium 111-labeled autologous platelets

    SciTech Connect

    Davis, H.H., II; Varki, A.; Heaton, W.A.; Siegel, B.A.

    1980-01-01

    In two patients with recurrent immune thrombocytopenia, accessory splenic tissue was demonstrated by radionuclide imaging following administration of indium 111-labeled autologous platelets. In one of these patients, no accessory splenic tissue was seen on images obtained with technetium 99m sulfur colloid. This new technique provides a simple means for demonstrating accessory spleens and simultaneously evaluating the life-span of autologous platelets.

  13. Hydrothermal fluoride and chloride complexation of indium: an EXAFS study

    NASA Astrophysics Data System (ADS)

    Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas

    2017-04-01

    Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the hydrothermal transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are hydrothermal sphalerite ores and to a lesser extent hydrothermal greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for hydrothermal In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique hydrothermal autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming systems. In Cl-rich systems (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich systems, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with

  14. Localized plasmon excitation in metal nanoclusters as a tool to study thickness-dependent optical properties of copper phthalocyanine ultrathin films

    NASA Astrophysics Data System (ADS)

    Stenzel, O.; Stendal, A.; Röder, M.; Wilbrandt, S.; Drews, D.; Werninghaus, T.; von Borczyskowski, C.; Zahn, D. R. T.

    1998-03-01

    Thin film sandwich samples have been prepared of copper phthalocyanine ultrathin solid films with incorporated metal (silver, indium) nanoclusters, surrounded by an amorphous silicon environment. The samples were investigated by transmission electron microscopy in both lateral and cross-sectional geometries. In view of the optical properties, we observed a gradual blue wavelength shift of the localized metal cluster plasmon excitation for about 300 nm accompanying an equivalent copper phthalocyanine thickness increase from `zero' to a threshold thickness of about 4 nm. We attribute this behaviour to the formation of bulk-like optical properties of the copper phthalocyanine film, which is completed at the observed equivalent threshold thickness.

  15. Cross-current leaching of indium from end-of-life LCD panels.

    PubMed

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-01

    Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Review of the impact of copper released into marine and estuarine environments

    SciTech Connect

    Harrison, F.L.

    1982-09-01

    Information on the concentrations of copper in abiotic and biotic compartments of marine and estuarine ecosystems and the effects on biota of increased amounts of copper in the water and sediments were reviewed. Data compiled and discussed include the quantities and physicochemical forms of copper in the water column, the concentrations of copper in the bedload sediments and interstitial waters, and the concentrations of copper in primary producers, annelid worms, molluscs, crustacea, minor invertebrates, and fishes. In addition, the acute and sublethal effects of copper on the same groups of biota were presented as well as data on copper concentration factors. This information can be used to evaluate for different types of ecosystems the ranges of concentrations that occur in nature, to identify ecosystems that are or may be impacted by copper released from industrial and urban sources, and to assess the effects on biota of the use of copper alloys in nuclear power station cooling systems.

  17. Use of and occupational exposure to indium in the United States.

    PubMed

    Hines, Cynthia J; Roberts, Jennifer L; Andrews, Ronnee N; Jackson, Matthew V; Deddens, James A

    2013-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009-2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m(3) for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  18. Use of and Occupational Exposure to Indium in the United States

    PubMed Central

    Hines, Cynthia J.; Roberts, Jennifer L.; Andrews, Ronnee N.; Jackson, Matthew V.; Deddens, James A.

    2015-01-01

    Indium use has increased greatly in the past decade in parallel with the growth of flat-panel displays, touchscreens, optoelectronic devices, and photovoltaic cells. Much of this growth has been in the use of indium tin oxide (ITO). This increased use has resulted in more frequent and intense exposure of workers to indium. Starting with case reports and followed by epidemiological studies, exposure to ITO has been linked to serious and sometimes fatal lung disease in workers. Much of this research was conducted in facilities that process sintered ITO, including manufacture, grinding, and indium reclamation from waste material. Little has been known about indium exposure to workers in downstream applications. In 2009–2011, the National Institute for Occupational Safety and Health (NIOSH) contacted 89 potential indium-using companies; 65 (73%) responded, and 43 of the 65 responders used an indium material. Our objective was to identify current workplace applications of indium materials, tasks with potential indium exposure, and exposure controls being used. Air sampling for indium was either conducted by NIOSH or companies provided their data for a total of 63 air samples (41 personal, 22 area) across 10 companies. Indium exposure exceeded the NIOSH recommended exposure limit (REL) of 0.1 mg/m3 for certain methods of resurfacing ITO sputter targets, cleaning sputter chamber interiors, and in manufacturing some inorganic indium compounds. Indium air concentrations were low in sputter target bonding with indium solder, backside thinning and polishing of fabricated indium phosphide-based semiconductor devices, metal alloy production, and in making indium-based solder pastes. Exposure controls such as containment, local exhaust ventilation (LEV), and tool-mounted LEV can be effective at reducing exposure. In conclusion, occupational hygienists should be aware that the manufacture and use of indium materials can result in indium air concentrations that exceed the NIOSH

  19. Copper:caeruloplasmin ratio

    PubMed Central

    Twomey, Patrick J; Viljoen, Adie; House, Ivan M; Reynolds, Timothy M; Wierzbicki, Anthony S

    2007-01-01

    Investigation of copper status can be a diagnostic challenge. The non‐caeruloplasmin‐bound copper (NCC) has deficiencies; accordingly, the copper:caeruloplasmin ratio has been suggested as an alternative index of copper status. A reference interval for this index was derived. In addition to making the interpretation of copper easier, the copper:caeruloplasmin ratio should also enable adjustment for relatively high caeruloplasmin concentrations without recourse to producing gender‐ and age‐derived intervals. The copper:caeruloplasmin ratio has weaknesses similar to those identified for NCC in that immunological methods used for caeruloplasmin can cross react with apocaeruloplasmin and there is no standardised method for caeruloplasmin. Caeruloplasmin assays also have uncertainty from precision, bias and specificity and, accordingly, method‐related differences may have a large effect on the copper:caeruloplasmin ratio in a manner similar to the NCC. PMID:17405985

  20. Aquatic Life Criteria - Copper

    EPA Pesticide Factsheets

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  1. Plasmonic and Superconducting Self-Assembled MBE Grown Indium Islands

    NASA Astrophysics Data System (ADS)

    Gibson, Ricky Dean, Jr.

    Molecular beam epitaxy (MBE) grown metal has been a renewed area of interest recently in order to achieve high quality metal films or nanostructures for plasmonics. Recently MBE grown silver films have been shown to possess optical constants closer to that of intrinsic silver leading to lower losses and thus allowing for higher quality plasmonics. MBE has also been used to grow silver nanocrystals and indium droplets, or islands, for plasmonics. These self-assembled nanostructures can be grown in close proximity to quantum confined structures such as InAs/GaAs quantum dots or InGaAs/GaAs quantum wells in a single process, without post-processing and fabrication, allowing for increased plasmonic enhancement due to the improved interface between the semiconductor and plasmonic structures. In this dissertation, widely tunable plasmonic resonances of indium islands will be discussed and plasmonic enhancement results will be presented and compared to those of nanoantennas constructed from standard fabrication processes. The coupling between near-surface quantum confined structures, both fabricated and self-assembled, will be compared to the coupling in typical dielectric cavities, such as photonic crystal nanobeams. Beyond the plasmonic possibilities of indium islands, indium becomes superconducting at 3.4 K. With the proximity effect allowing for electrons in materials in contact with a superconductor to occupy a superconducting like state, allowing for the possibility for a hybrid superconductor/semiconductor optical source. The observation of superconductivity in indium islands will be presented and considerations for a superconductor/semiconductor source will be discussed.

  2. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  3. A Simulator for Copper Ore Leaching

    SciTech Connect

    Travis, B.

    1999-05-14

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Copper is a strategic metal and the nation needs a secure supply both for industrial use and military needs. However, demand is growing worldwide and is outstripping the ability of the mining industry to keep up. Improved recovery methods are critically needed to maintain the balance of supply and demand. The goal of any process design should be to increase the amount of copper recovered, control movement of acid and other environmentally harmful chemicals, and reduce energy requirements. To achieve these ends, several improvements in current technology are required, the most important of which is a better understanding of, and the ability to quantify, how fluids move through heterogeneous materials in a complex chemical environment. The goal of this project is create a new modeling capability that couples hydrology with copper leaching chemistry . once the model has been verified and validated, we can apply the model to specific problems associated with heap leaching (flow channeling due to non-uniformities in heap structure, precipitation/dissolution reactions, and bacterial action), to understand the causes of inefficiencies, and to design better recovery systems. We also intend to work with representatives of the copper mining industry to write a coordinated plan for further model development and application that will provide economic benefits to the industry and the nation.

  4. Pulmonary toxicity in mice by 2- and 13-week inhalation exposures to indium-tin oxide and indium oxide aerosols.

    PubMed

    Nagano, Kasuke; Nishizawa, Tomoshi; Eitaki, Yoko; Ohnishi, Makoto; Noguchi, Tadashi; Arito, Heihachiro; Fukushima, Shoji

    2011-01-01

    Inhalation toxicities of indium-tin oxide (ITO) and indium oxide (IO) in mice were characterized in comparison with those previously reported in rats. B6C3F(1) mice of both sexes were exposed by inhalation to ITO or IO aerosol for 6 h/day, 5 day/wk for 2 wk at 0, 0.1, 1, 10 or 100 mg/m(3) or 13 wk at 0, 0.1or 1 mg/m(3). ITO and IO particles were deposited in the lung, mediastinal lymph node (MLN) and nasal-associated lymphoid tissue. Alveolar proteinosis, infiltrations of alveolar macrophages and inflammatory cells and increased lung weight were induced by 2- and 13-week exposures to ITO and IO, while alveolar epithelial hyperplasia occurred only in the 2-week exposures. Thickened pleural wall, hyperplastic MLN, extramedullary hematopoiesis in the spleen and increased levels of erythrocyte parameters were induced by 13-week exposure to ITO. The ITO- and IO-induced pulmonary lesions were milder in mice than those previously reported in rats, and the fibrotic lesions were different between these two species. Indium levels in the lung and pooled blood were analyzed in the mice exposed to ITO and IO for 13 wk. In the 13-week inhalation exposure of mice to ITO, alveolar proteinosis and significantly increased lung weight were induced at the same exposure concentration as the current threshold limit value for indium and its compounds.

  5. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  6. Demystifying Controlling Copper Corrosion

    EPA Science Inventory

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  7. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  8. [Copper IUDs (author's transl)].

    PubMed

    Thiery, M

    1983-10-01

    Following initial development of the Grafenberg ring in the 1920's, IUDs fell into disuse until the late 1950s, when plastic devices inserted using new technology began to gain worldwide acceptance. Further research indicated that copper had a significant antifertility effect which increased with increasing surface area, and several copper IUDs were developed and adapted, including the Copper T 200, the Copper T 220C, and the Copper T 380 A, probably the most effective yet. The Gravigard and Multiload are 2 other copper devices developed according to somewhat different principles. Copper devices are widely used not so much because of their great effectiveness as because of their suitability for nulliparous patients and their ease of insertion, which minimizes risk of uterine perforation. Records of 2584 women using Copper IUDs for 7190 women-years and 956 women using devices without copper for 6059 women-years suggest that the copper devices were associated with greater effectiveness and fewer removals for complications. Research suggests that the advantages of copper IUDs become more significant with increased duration of use. Contraindications to copper devices include allergy to copper and hepatolenticular degeneration. No carcinogenic or teratogenic effect of copper devices has been found, but further studies are needed to rule out other undesirable effects. Significant modifications of copper devices in recent years have been developed to increase their effectiveness, prolong their duration of usefulness, facilitate insertion and permit insertion during abortion or delivery. The upper limit of the surface area of copper associated with increased effectiveness appears to be between 200-300 sq mm, and at some point increases in copper exposure may provoke expulsion of the IUD. The duration of fertility inhibition of copper IUDs is usually estimated at 2-3 years, but recent research indicates that it may be 6-8 years, and some devices may retain copper surface

  9. Immobilization of copper flotation waste using red mud and clinoptilolite.

    PubMed

    Coruh, Semra

    2008-10-01

    The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.

  10. Chemical Industry: A New Interdisciplinary Course for Secondary Schools.

    ERIC Educational Resources Information Center

    Nae, Nehemia; And Others

    1980-01-01

    Describes an advanced high school course which incorporates an industrial approach into the chemistry curriculum. Presents three case studies as examples taken from the local chemistry industry--the production of copper, bromine, and plastics. (CS)

  11. Chemical Industry: A New Interdisciplinary Course for Secondary Schools.

    ERIC Educational Resources Information Center

    Nae, Nehemia; And Others

    1980-01-01

    Describes an advanced high school course which incorporates an industrial approach into the chemistry curriculum. Presents three case studies as examples taken from the local chemistry industry--the production of copper, bromine, and plastics. (CS)

  12. Thermochemistry and phase diagram studies in the copper(indium,gallium)selenium system

    NASA Astrophysics Data System (ADS)

    Ider, Muhsin

    Polycrystalline Cu(In,Ga)Se2 and related semiconductors show great potential as alternative materials in production of high efficiency solar cells. This dissertation reports the experimental determination of Gibbs energy changes and phase diagram calculations for selected sections of the Cu-Ga-In-Se system. The Gibbs energy changes were measured with solid-state electrochemical cells and this data along with selected literature data were assessed and model parameters suggested. The homogeneity range of beta-Cu2-xSe was measured by coulometric titration and the thermodynamic properties for defect species estimated. The composition difference between the Se-rich and the Cu-rich boundaries was measured at 900K. A defect model was developed based on vacancy formation on the Cu sublattice. The gas phase equilibrium data for Cu-Se system and the results of a recent assessment of selenium unary system were used to predict defect concentrations. A thermodynamic description of the Cu2Se-In2Se 3 was obtained by optimization of the available phase equilibrium and thermodynamic information along with the direct results of EMF experiments. The Gibbs energy of formation of alpha-CuInSe2 was directly measured by a solid oxide galvanic cell experiment. The transformation enthalpy and Gibbs energy data for CuIn3Se5 and CuIn5Se 8 were estimated. The Redlich-Kister model with a 3-coefficient expression was employed to define the Gibbs energy of the liquid phase. The intermediate beta-CuIn 3Se5 and gamma-CuIn5Se8 phases were modeled with a 2-coefficient expansion of the Redlich-Kister model. The alpha and delta modifications of CuInSe2 phases were modeled with a specific sublattice model. A reasonable agreement between the model calculated values and the thermodynamic phase equilibrium data was achieved. The thermochemistry and phase diagram of GaSe system was critically studied. The activity of Ga was measured along the liquidus between 800--1000K. Selected invariant phase transition temperatures were measured and transition enthalpies were calculated from the EMF measurements. A self-consistent thermodynamic data was obtained. The associated and sublattice models were used to represent the Gibbs energy of the liquid and alpha-Ga2Se3 phases, respectively. The Gibbs energy of formation of CuGaSe2 was measured by an EMT experiment. The phase diagram of Cu-Ga system was calculated and the liquid phase Ga activity measurements was measured for 2 Ga rich compositions.

  13. Design and Optimization of Copper Indium Gallium Selenide Solar Cells for Lightweight Battlefield Application

    DTIC Science & Technology

    2014-06-01

    Mise, “CIGS thin film solar cells on polymide foils,” in Photovoltaic Specialists Conf., Honolulu, HI, 2010, pp. 330- 334. xx THIS PAGE...open circuit voltage of CIGS2 and CIGS thin film solar cells,” in Conf. Record of the IEEE 4 th World Conf., Photovoltaic Energy Conversion...Waikoloa, HI, 2006, pp. 557–559. [4] T. Nakada, T. Kuraishi, T. Inoue, and T. Mise, “CIGS thin film solar cells on polymide foils,” in Photovoltaic

  14. Structure, electric and dielectric studies of indium-substituted magnesium copper manganese ferrites

    NASA Astrophysics Data System (ADS)

    Kaiser, M.

    2011-02-01

    The structure, electric and dielectric properties of In-substituted Mg-Cu-Mn ferrites having the general formula of Mg 0.9Cu 0.1Mn 0.1In xFe 1.9- xO 4 with 0.0≤ x≤0.4 have been studied. X-ray diffraction (XRD) patterns of the samples indicated the formation of single-phase cubic spinel structure up to 0.2 and mixed phase (cubic and tetragonal phase) for samples x≥0.3. The relation of conductivity with temperature revealed a semiconductor to semimetal behavior as In +3 concentration increases. Variation in the universal exponent s with temperature indicates the presence of two hopping conduction mechanisms: the correlated barrier hopping (CHB) at low In +3 content x≤0.1 and small-polaron (SP) hopping at In +3 content x≥0.2. The variation in dielectric permittivity ( ε‧, ε″) with temperature at different frequencies shows a normal behavior for the studied compounds, while the variation in dielectric loss tangent with frequency at different temperatures shows abnormal behavior with more than relaxation peak. The conduction mechanism used in the present study has been discussed in the light of electron exchange between Fe 3+ and Fe 2+ ions and hole hopping between Mn 2+ and Mn 3+ ions at the octahedral B-sites.

  15. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    SciTech Connect

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  16. Anticipated performance of copper(indium,gallium)diselenide solar cells in the thin-film limit

    NASA Astrophysics Data System (ADS)

    Kanevce, Ana

    Thin-film solar cells are an excellent candidate for clean energy production, but the knowledge of device physics is still incomplete, especially in the low thickness limit. The goal of this work is to enhance the understanding of Cu(In,Ga)Se2 solar cells with submicron absorbers, which would lead to significantly lower production cost. The material usage and the deposition time can be significantly decreased, if the thickness could be reduced without significant efficiency loss. The main focus of this work is on GIGS cells with thin absorbers; (1) influence of parameter variation on device performance; (2) sensitivity to nonuniformities in key parameters, (3) potential of illumination from both sides of the cell, and (4) role of the buffer layer. As the cells become thinner, the distance between the back contact and the electric-field region narrows, or completely disappears. One of the main differences between thick and thin cells is the significance of back-contact recombination in thinner cells. A choice of the back-contact material or increased Ga towards the back are needed to avoid losses. In thin cells, there is a concern of increased sensitivity to nonuniformities. Fluctuations in defect density, band gap, thickness or doping affect the voltage. The low voltage area then influences the nonuniform cell performance. Thinner cells are more sensitive to thickness nonuniformities and therefore deposition methods that produce smooth absorbers are desirable for thin devices. In ultra-thin cells illumination from the back side can yield a significant output performance. If certain optimization steps are taken, the back side performance can approach that of the front side. In the case of a back-illuminated cell, the carrier generation occurs in the bulk, making it critical to lower back-contact recombination, as well as to provide good collection. Illumination with only low energy photons in cells with the commonly used CdS buffer layer causes distortion in the current-voltage curves. The difference in distortion for thin and thick devices is studied, as well as some CdS alternatives, such as CdZnS, that has a potential for efficiencies higher than 20%.

  17. Copper indium gallium (di)selenide: Electronic activities of grain boundaries and solar cell fabrication studies

    NASA Astrophysics Data System (ADS)

    Erkan, Mehmet Eray

    This dissertation is composed of three studies related to chalcopyrite solar cells. The first study is on electronic activities of grain boundaries (GBs) in CuInSe2 (CIS). Despite being polycrystalline, chalcopyrite thin film solar cells have reached record power conversion efficiencies. This is against the classical understanding on the effect of GBs in semiconductor materials. Because GBs are expected to be recombination centers and barriers against the carrier flow, reducing the device efficiency. Therefore, a complete understanding on the electronic behavior of chalcopyrite GBs is missing. Moreover, the high efficiency chalcopyrite solar cells are grown with Na impurities which positively affect the performance of the solar cell, so-called sodium effect. Research on chalcopyrite GBs has been coupled with the effect of Na impurities, because Na has been found segregated at the GBs. The study presented in this dissertation was performed on GBs in a Na-free CIS. It is important to study the GBs in a Na-free chalcopyrite to avoid any uncontrolled effects of Na segregation at the GBs, for instance a possible Na-related secondary phase formation which would affect the conclusions drawn on the natural behavior of chalcopyrite GBs. In addition, it is known that Sigma3 GBs in chalcopyrite solar cells are abundant; therefore, it is meaningful to investigate the differences between Sigma3 and non-Sigma3 GBs. For this purpose, Sigma3, close to Sigma3 and Sigma9 GBs in a Bridgman-grown multicrystalline Na-free CIS wafer were identified by electron backscatter diffraction and their electronic properties were investigated by Kelvin probe force microscope and cathodoluminescence in scanning electron microscope. It is shown that the Sigma3 GB is neutral and it does not behave as a recombination center, whereas once the geometry of a GB deviates from the Sigma3 geometry, such as close to Sigma3 and Sigma9 GBs, the GB becomes charged and behaves as a recombination center. This result was concluded to be due to the increase in the amount of defects at the GB that introduce midgap states as the Sigma value increases. Our results indicate that the surprising high performance seen in the polycrystalline chalcopyrite solar cells is possibly due to the abundance of electrically inactive Sigma3 GBs in this material. To investigate the effect of Na on CIS GBs, projected work includes the characterization of Sigma3 and non-Sigma3 GBs in CIS wafers grown with increasing Na concentration. Consequently, it will be possible to answer the following questions on the impact of sodium-effect on GBs: Is there a certain Na concentration for Na to affect the GB electrical properties and how does it affect both Sigma3 and non-Sigma3 GBs? In the second study, the use of selenoamide instead of direct use of H2Se for atmospheric pressure selenization reaction is proposed and its feasibility is shown by fabricating CIS solar cells with up to 1.6% power conversion efficiency. In addition, observed In and Ga segregation towards the bottom of the CIS and CIGS thin films, respectively, are investigated through phase transformations occurring during the selenization and systematically designed annealing processes. The third study is on the effect of flow type on the growth kinetics of CdS thin films deposited by chemical bath deposition. CdS thin films are deposited on glass substrates under turbulent and laminar flow conditions only by changing the substrate's alignment with respect to the bottom of the beaker in unstirred bath. It is shown that the flow condition of the bath does not change the optical and structural properties of CdS; however, deposition under laminar flow is explained to be diffusion-limited, whereas it is feed-limited under turbulent flow.

  18. Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells

    SciTech Connect

    Brown, B.J.

    1989-01-01

    This dissertation concentrates on Chemical Spray Pyrolysis (CSP) of CuInSe{sub 2} and CdS thin films and solar cells. The primary goal is to gain an understanding of the chemistry and physics of CSP, and apply this knowledge to the fabrication of CuInSe{sub 2}/CdS solar cells. It provide an extensive review of the literature on the properties of CuInSe{sub 2} an CdS produced by CSP and other techniques. The films are characterized by x-ray diffractometry, scanning electron microscopy, electron microprobe, van der Pauw-Hall measurements, and optical absorption spectroscopy, and the devices are characterized electrically in the dark and under illumination. A model for the chemical mechanisms involved in CSP of CdS an CuInSe{sub 2} thin films is developed which is used to point out similarities between the two systems and explain the correlation between spray solution pH and second phases in CuInSe{sub 2} thin films. Structural investigations show that the CuInSe{sub 2} films can be produced in either the ordered or disordered crystal structure, while different substrates radically change the morphology of the films. By taking into account the effect of second phases, the electrical and optical properties of the sprayed films agree with published results for CuInSe{sub 2} produced by other techniques. The properties of the sprayed CdS films in this work are shown to agree with those sprayed by others. The device properties of cells fabricated in both the backwall and reverse backwall configuration are compared with each other and related to the materials properties of the semiconductor layers. The highest efficiency cell employing sprayed CuInSe{sub 2} is reported; however, the efficiency of the cells still need improvement before becoming practical. The dissertation concludes with recommendations for increasing the efficiency of completely sprayed CuInSe{sub 2}/CdS solar cells.

  19. Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Das Mahapatra, S.; Majumdar, B. S.; Dutta, I.; Bhassyvasantha, S.

    2017-07-01

    Whisker growth from Sn coatings is a reliability concern in electronic packages, until recently mitigated by Pb addition. Recently, it was demonstrated that doping with In dramatically reduces whisker growth in 1 μm thick Sn. Here, we present the results of In-doping on whisker growth from 3 μm and 6 μm thick Sn-films and explore the reasons behind this mitigation, and compare the results with a baseline sample of pure Sn and a control sample of tri-layer Sn-In-Sn, all subjected to identical thermal treatments. It is shown that In addition completely stops whisker growth from electroplated Sn. The impact of In addition on the film microstructure and the role of the surface oxide coating are investigated. Previous work had shown that while In addition reduces grain boundary diffusivity, it does not fully account for the observed dramatic reduction of whisker growth. In this work, it is shown by Auger electron spectroscopy and x-ray photoelectron spectroscopy that In is incorporated in the surface-oxide. Since whisker-growth is contingent on the presence of a tenacious surface-oxide, this suggests that the alteration of the oxide properties may be responsible for the observed reduction in whisker growth. Finite element modeling is utilized to demonstrate that a reduction of the elastic modulus of the surface oxide would reduce the driving force of Sn whisker growth, thus proffering a rationale for the effect of In incorporation.

  20. Method of synthesizing and growing copper-indium-diselenide (CuInSe.sub.2) crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    A process for preparing CuInSe.sub.2 crystals includes melting a sufficient quantity of B.sub.2 O.sub.3 along with stoichiometric quantities of Cu, In, and Se in a crucible in a high pressure atmosphere of inert gas to encapsulate the CuInSe.sub.2 melt and confine the Se to the crucible. Additional Se in the range of 1.8 to 2.2 percent over the stoichiometric quantity is preferred to make up for small amounts of Se lost in the process. The crystal is grown by inserting a seed crystal through the B.sub.2 O.sub.3 encapsulate into contact with the CuInSe.sub.2 melt and withdrawing the seed upwardly to grow the crystal thereon from the melt.

  1. Method of synthesizing and growing copper-indium-diselenide (CuInSe/sub 2/) crystals

    DOEpatents

    Ciszek, T.F.

    1984-11-29

    A process for preparing CuInSe/sub 2/ crystals includes melting a sufficient quantity of B/sub 2/O/sub 2/ along with stochiometric quantities of Cu, In, and Se in a crucible in a high-pressure atmosphere of inert gas to encapsulate the CuInSe/sub 2/ melt and confine the Se to the crucible. Additional Se in the range of 1.8 to 2.2% over the stochiometric quantity is preferred to make up for small amounts of Se lost in the process. The melt can then be cooled slowly to form the crystal as direct solidification, or the crystal can be grown by inserting a seed crystal through the B/sub 2/O/sub 3/ encapsulate into contact with the CuInSe/sub 2/ melt and withdrawing the seed upwardly to grow the crystal thereon from the melt.

  2. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  3. Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals.

    PubMed

    Han, Wei; Yi, Luoxin; Zhao, Nan; Tang, Aiwei; Gao, Mingyuan; Tang, Zhiyong

    2008-10-01

    Heterostructured Cu2S-In2S3 nanocrystals with various shapes and compositions were synthesized by a high-temperature precursor-injection method using the semiconductor nanocrystal Cu1.94S as a catalyst. The intrinsic cationic deficiencies formed at high temperature by Cu ions made the Cu1.94S nanocrystal a good candidate for catalyzing the nucleation and subsequent growth of In 2S3 nanocrystals, eventually leading to the formation of heterostructured Cu2S-In2S3 nanocrystals. Gelification of the reaction systems, which were composed of different types of nanocrystal precursors and solvent, was found to be a very effective measure for controlling the growth kinetics of the heterostructured particles. Consequently, matchsticklike Cu2S3-In2S3 heterostructured nanorods, teardroplike quasi-core/shell Cu2S@In2S3 nanocrystals, and pencil-like In2S3 nanorods were successfully obtained by manipulating the gelification of the reaction system; this formed a solid experimental basis for further discussion of the growth mechanisms for differently shaped and structured nanocrystals. By reaction with 1,10-phenanthroline, a reagent that strongly and selectively binds to Cu(+), a compositional transformation from binary matchsticklike Cu2S-In2S3 nanorods to pure In2S3 nanorods was successfully achieved.

  4. Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications.

    PubMed

    Mousavi, S H; Müller, T S; de Oliveira, P W

    2012-09-15

    In this work, Cu(In,Ga)Se(2) (CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.

  6. {112} Polar surfaces of copper(indium,gallium)selenide: Properties and effects on crystal growth

    NASA Astrophysics Data System (ADS)

    Liao, Dongxiang

    Cu(In,Ga)Se2 (GIGS) are promising materials for thin film photovoltaic applications. This work studies the epitaxial growth of CIGS single crystal films on GaAs substrates of various orientations and characterizes the properties of the thin films. A surprising finding is the strong tendency of film surfaces to facet to {112} planes. The work attempted to establish the connections between the film morphology, the surface energies, the surface chemical compositions, and the reconstruction of polar surfaces. Using angle-resolved photoelectron emission spectroscopy, I found that there is a severe Cu depletion at the first 1-2 layer of the free surface of CuInSe2 and the surface is semiconducting. The results strongly support the model of a reconstructed non-stoichiometric polar surface and exclude the previously believed existence of a bulk second phase on the CIS surface. Unique features of the film morphology suggest that the properties and structure of the polar surfaces have great effects on the growth of the crystals, and probably on the incorporation of the large amount of point defects. Measured chemical composition profiles indicate that the Cu depletion observed on free CIGS surface remains at the CIGS/CdS heterojunction interface and Cd is incorporated into the surface of CIGS. It is proposed that this non-stoichiometric composition leads to charge imbalance at the interface and causes the type-inversion of the CIGS surface, which are favorable for the device performance.

  7. Physical and optoelectronic properties of copper silver indium diselenide thin films

    NASA Astrophysics Data System (ADS)

    Aquino Gonzalez, Angel Roberto

    Increasing global energy consumption together with environmental concerns has led to much interest in alternative, cleaner sources of energy such as solar photovoltaic. Researchers in the solar cell community have been looking for ways to reduce costs while maintaining or increasing already high efficiencies. A fundamental understanding of the materials under consideration is essential to rapid development of new technologies. The I-III-VI2 thin film alloys offer promising systems for achieving high efficiency solar cells at lower costs. In fact, by tailoring the chemistry of the compounds it is possible to change the bandgap of the material in order to collect sunlight more efficiently. A promising alloy for tunable bandgap solar cells is the (Cu,Ag)(In,Ga)Se 2 system. The focus of my dissertation is to perform a comprehensive characterization of the structural and optoelectronic properties of Cu xAg1-xInSe2 alloy thin films in order to gain a better understanding of the material. Detailed physical characterization was carried out in order to reveal differences in the structural properties of the alloy as a function of the Cu/(Cu+Ag) ratio. The identification and behavior of defect levels in the alloy was studied as a function of composition. From this, a band diagram schematic of the defect levels in the films is proposed, which could serve as a blueprint for improvements of the films properties through defect engineering. The effects of alloying Ag with CuInSe2 on the physical properties were shown. The addition of Ag appears to improve the structural quality of the films. This was seen by a reduction in the full-width-at-half-maximum of the luminescence peaks, a reduction in the number of optical transitions, and the appearance of free-to-bound transitions for Ag-dominant films. An increase in the minority carrier lifetime of films with the addition of Ag also supports this conclusion. Furthermore, AgInSe2 films showed less spatial and spectral variations than Cu-containing films in cathodoluminescence measurements, indicating less heterogeneity in the material. The results presented in this dissertation suggest that the CuxAg1-xInSe 2 alloy is a suitable candidate for narrow bandgap solar cells. In spite of the observed beneficial effects of Ag, various challenges have been identified through this work. These include the existence of an ordered defect compound near the films surface for compositions of x ≤ 0.2, the predilection of obtaining n-type films for AgInSe2, and the presence of a continuum of defects into the bandgap of Ag-dominant films.

  8. Photoactive nanocrystals by low-temperature welding of copper sulfide nanoparticles and indium sulfide nanosheets.

    PubMed

    Lim, Hui Min; Tan, Jia Yi; Batabyal, Sudip K; Magdassi, Shlomo; Mhaisalkar, Subodh G; Wong, Lydia H

    2014-12-01

    We successfully utilize the concept of coalescence and room-temperature sintering to prepare morphologically different nanoparticles. n-Type chalcogenide (CuIn5 S8 ) nanocrystals are synthesized at room temperature by simple mixing of oppositely charged precursor nanoparticles. The coalescence of polycation-coated CuS nanoparticles and negatively charged In2 S3 nanoplates is driven by close contact of the particles due to electrostatic interactions. Analysis by X-ray diffraction, transmission electron microscopy (TEM) imaging, and Raman spectroscopy confirms the formation of single-phase CuIn5 S8 without traceable secondary phase. In a photovoltaic device, the use of the coalesced particles yields a power conversion efficiency of 1.8%.

  9. Room temperature synthesis of copper indium diselenide in non-aqueous solution using an organoindium reagent

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Bailey, Sheila G.; Duraj, Stan A.

    1992-01-01

    A novel two-phase synthesis of CuInSe2 at 25 C from Cu2Se and Cp3In in 4-methylpyridine has been discovered. Characterization of the material produced shows it to be platelet-shaped crystallites with an average particle size of 10 microns, less than 2 percent C and H, with a small amount of unidentified crystalline impurity. The results demonstrate that it is possible to produce from solution a material that is ordinarily synthesized in bulk or films at much higher temperatures or using extraneous reagents and/or electrons. The use of a solid-state reagent as a starting material which is converted to another solid-state compound by an organometallic reagent has tremendous potential to produce precursors for a wide range of solid-state materials of interest to the electronics, defense, and aerospace communities.

  10. Study of electrical properties of polycrystalline materials based on indium and copper selenides under high pressure

    NASA Astrophysics Data System (ADS)

    Melnikova, N. V.; Kurochka, K. V.; Zaikova, V. E.; Tebenkov, A. V.; Babushkin, A. N.

    2015-11-01

    This paper discusses the influence of high pressures (up to 50 GPa) on the electrical properties of the polycrystalline materials (InSe)x(CuAsSe2)1-x, x = 0.05 and 0.5. It was found that, for each compound, features in the pressure dependence of all the physical parameters of interest occur in the same pressure intervals, which can be due to structural transitions and a change in the electron structure.

  11. Eliminating Whisker Growth by Indium Addition in Electroplated Sn on Copper Substrate

    NASA Astrophysics Data System (ADS)

    Das Mahapatra, S.; Majumdar, B. S.; Dutta, I.; Bhassyvasantha, S.

    2016-12-01

    Whisker growth from Sn coatings is a reliability concern in electronic packages, until recently mitigated by Pb addition. Recently, it was demonstrated that doping with In dramatically reduces whisker growth in 1 μm thick Sn. Here, we present the results of In-doping on whisker growth from 3 μm and 6 μm thick Sn-films and explore the reasons behind this mitigation, and compare the results with a baseline sample of pure Sn and a control sample of tri-layer Sn-In-Sn, all subjected to identical thermal treatments. It is shown that In addition completely stops whisker growth from electroplated Sn. The impact of In addition on the film microstructure and the role of the surface oxide coating are investigated. Previous work had shown that while In addition reduces grain boundary diffusivity, it does not fully account for the observed dramatic reduction of whisker growth. In this work, it is shown by Auger electron spectroscopy and x-ray photoelectron spectroscopy that In is incorporated in the surface-oxide. Since whisker-growth is contingent on the presence of a tenacious surface-oxide, this suggests that the alteration of the oxide properties may be responsible for the observed reduction in whisker growth. Finite element modeling is utilized to demonstrate that a reduction of the elastic modulus of the surface oxide would reduce the driving force of Sn whisker growth, thus proffering a rationale for the effect of In incorporation.

  12. Sulfur incorporation into copper indium diselenide single crystals through annealing in hydrogen sulfide

    SciTech Connect

    Titus, Jochen; Birkmire, Robert W.; Hack, Christina; Mueller, Georg; McKeown, Patrick

    2006-02-15

    CuInSe{sub 2} crystals were sulfurized in a H{sub 2}S-Ar gas mixture at 575 deg. C. The focus was on the resulting mass transport, in particular, on the interdiffusion of Se and S. Experiments were done for various sulfurization times, and the resulting S distribution was measured by Auger electron spectroscopy sputter depth profiling and analyzed with the Boltzmann-Matano method. A one-dimensional diffusion process had shaped the S distribution in these crystals. The respective diffusion coefficient was on the order of 10{sup -16} cm{sup 2}/s, and it varied only slightly with the S content in CuIn(Se,S){sub 2}.

  13. Fabrication of nanostructured copper indium diselenide (CIS) thin films by electrohydrodynamic atomization technique.

    PubMed

    Duraisamy, Navaneethan; Muhammad, Nauman Malik; Jo, Jeongdai; Choi, Kyung-Hyun

    2013-12-01

    In this article, we report a non-vacuum electrohydrodynamic atomization (EHDA) technique for deposition of CulnSe2 (CIS) thin films. The CIS ink has been prepared with three different concentrations (7.5 wt.%, 12.5 wt.% and 15 wt.%) by using suitable solvent mixture (ethanol:terpineol as 1:1 molar ratio) with surfactant to achieve a stable dispersions. The important physical parameters for achieving homogeneous with non-agglomerated CIS layers through EHDA technique are investigated in detail. The X-ray diffraction pattern confirms the crystalline structure of CIS layers oriented in the chalcopyrite phase. The film uniformity has been investigated by field emission scanning electron microscopy. Different thickness of CIS layers has been achieved by varying the concentration of CIS particles in the precursor ink solution. The optical properties of CIS layers show the two optical band gaps in UV-visible and near infra-red (NIR) region with band gap of about 2.67-2.49 eV and 1.34-1.29 eV respectively. The energy band gap of CIS thin films have been decreased with the increase of film thickness. The X-ray photoelectron spectra confirmed presence of binding energy corresponding to CulnSe2. The electrical study observed the sheet resistivity 76-33 Omega cm with respect to film thickness.

  14. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots.

    PubMed

    Park, Jae Chul; Nam, Yoon Sung

    2015-12-15

    Quantum dots (QDs) can be used for a wide range of practical applications including solar energy conversion, light-emitting display, bio-imaging, and sensing. However, toxic heavy metal elements of Pb- and Cd-based QDs cause potential environmental problems and limit their wide applicability. To overcome this limitation, CuInS2 (CIS) QDs, which have a bulk bandgap energy of 1.5eV and relatively high absorptivity, can be a good alternative. However the photoluminescence quantum yield (PLQY) of CIS QDs is too low for practical applications. Here we investigate the effects of experimental factors in the solution synthesis of CIS/ZnS QDs on intrinsic defects and surface defects from photoluminescence (PL) analysis. A heating-up method is used with dodecanethiol as a sulfur source, a ligand, and a medium. The Cu-to-In feeding ratio is changed to control the PL spectrum in the range of visible to near infrared (NIR) frequencies. The PLQY is increased above 40% in all of the ranges through ZnS shell passivation and additional process optimization (e.g., controlled cooling rate and additional feeding of In(3+) ion precursor). This work demonstrates the role of intrinsic defects in PL and the importance of suppressing the formation of the surface defects to increase the PLQY. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Liquid-Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

    NASA Technical Reports Server (NTRS)

    Cowen, J.; Lucas, L.; Ernst, F.; Pirouz, P.; Hepp, A.; Bailey, S.

    2005-01-01

    The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Figure 1 shows a well-known example: The robotic vehicle "Rover," constructed for NASA s "Mars Pathfinder" mission. The solar cells for such applications not only need to have high conversion efficiency, but must possess a high specific power, thus a high power output per unit mass. Since future missions will demand for large aggregates of solar cells and space flights are expensive, the solar cells must furthermore be available at low costs (per unit power output) and - very important in outer space - have a long lifetime and a high resistance against structural damage introduced by irradiation with high-energy electrons and protons.

  16. Liquid Phase Deposition of Single-Phase Alpha-Copper-Indium-Diselenide

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Bailey, S.; Cowen, Jonathan; Lucas, L.; Ernst, Frank; Pirouz, P.

    2004-01-01

    The success of exploratory missions in outer space often depends on a highly efficient renewable energy supply, as provided by solar cells. Since future missions will demand large aggregates of solar cells, and space flight is expensive, the solar cells must furthermore be available at low costs and have a long lifetime and high resistance against structural damage introduced by irradiation with high energy electrons and protons. The photovoltaic materials that are presently available only partly fulfill all these requirements. Therefore, we propose to explore a new method for fabricating thin-films for cost-efficient solar cells with very high specific power,high irradiation resistance and long lifetime based on the alpha-phase of the Cu-In-Se system "alpha-CIS."

  17. Cross-current leaching of indium from end-of-life LCD panels

    SciTech Connect

    Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca

    2015-08-15

    Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium

  18. Palladium-indium catalyzed reduction of N-nitrosodimethylamine: indium as a promoter metal.

    PubMed

    Davie, Matthew G; Shih, Kaimin; Pacheco, Federico A; Leckie, James O; Reinhard, Martin

    2008-04-15

    An emerging technology for the removal of N-nitrosodimethylamine (NDMA) from drinking and groundwater is reductive destruction using noble metal catalysts and hydrogen gas as a reducing agent. Bimetallic palladium-indium (Pd-In) supported on alumina combines the ability of Into activate NDMA with the hydrogen activating properties of Pd. This study examined the effect of In addition to a commercial 5% Pd by weight on gamma-Al2O3 catalyst on the efficacy of NDMA reduction. The pseudo-first-order rate constant increased proportionately to In loading from 0.057 h(-1) for 0% In to a maximum of 0.25 h(-1) for 1% In and then decreased with additional in loading. Data suggest that hydrogen activation occurred only on Pd surfaces and In activated NDMA 20 times more effectively than Pd on a mass basis. The rate-limiting factor was NDMA activation for In loadings below 1%. The decrease at higher loadings is interpreted as In blocking pore spaces and limiting access to Pd sites, suggesting monatomic hydrogen limitation. The only products detected were dimethylamine and ammonium with carbon and nitrogen balances in excess of 92%, consistent with a mechanism involving reductive N-N bond cleavage. Results from this study serve as a basis for optimizing bimetallic catalysts for treating NDMA contaminated waters.

  19. Contact heat conductance at a diamond-OFHC copper interface with GaIn eutectic as a heat transfer medium

    SciTech Connect

    Assoufid, L.; Khounsary, A.

    1996-09-01

    The results of an experimental study of the contact heat conductance across a single diamond crystal interface with OFHC copper (Cu) are reported. Gallium-indium (GaIn) eutectic was used as an interstitial material. Contact conductance data are important in the design and the prediction of the performance of x-ray optics under high-heat-load conditions. Two sets of experiments were carried out. In one, the copper surface in contact with diamond was polished and then electroless plated with 1 {mu}m of nickel, while in the other, the copper contact surface was left as machined. The measured average interface heat conductances are 44.7{plus_minus}8 W/cm{sup 2}-K for nonplated copper and 23.0{plus_minus}8 W/cm{sup 2}-K for nickel-plated copper. For reference, the thermal contact conductances at a copper-copper interface (without diamond) were also measured, and the results are reported. A typical diamond monochromator, 0.2 mm thick, will absorb about 44 W under a standard undulator beam at the Advanced Photon Source. The measured conductance for nickel-plated copper suggests that the temperature drop across the interface of diamond and nickel-plated copper, with a 20 mm {sup 2}contact area, will be about 10{degree}C. Therefore temperature rises are rather modest, and the accuracy of the measured contact conductances presented here are sufficient for design purposes. {copyright} {ital 1996 American Institute of Physics.}

  20. Synthesis and photophysical characterization of stable indium bacteriochlorins.

    PubMed

    Krayer, Michael; Yang, Eunkyung; Kim, Han-Je; Kee, Hooi Ling; Deans, Richard M; Sluder, Camille E; Diers, James R; Kirmaier, Christine; Bocian, David F; Holten, Dewey; Lindsey, Jonathan S

    2011-05-16

    Bacteriochlorins have wide potential in photochemistry because of their strong absorption of near-infrared light, yet metallobacteriochlorins traditionally have been accessed with difficulty. Established acid-catalysis conditions [BF(3)·OEt(2) in CH(3)CN or TMSOTf/2,6-di-tert-butylpyridine in CH(2)Cl(2)] for the self-condensation of dihydrodipyrrin-acetals (bearing a geminal dimethyl group in the pyrroline ring) afford stable free base bacteriochlorins. Here, InBr(3) in CH(3)CN at room temperature was found to give directly the corresponding indium bacteriochlorin. Application of the new acid catalysis conditions has afforded four indium bacteriochlorins bearing aryl, alkyl/ester, or no substituents at the β-pyrrolic positions. The indium bacteriochlorins exhibit (i) a long-wavelength absorption band in the 741-782 nm range, which is shifted bathochromically by 22-32 nm versus the analogous free base species, (ii) fluorescence quantum yields (0.011-0.026) and average singlet lifetime (270 ps) diminished by an order of magnitude versus that (0.13-0.25; 4.0 ns) for the free base analogues, and (iii) higher average yield (0.9 versus 0.5) yet shorter average lifetime (30 vs 105 μs) of the lowest triplet excited state compared to the free base compounds. The differences in the excited-state properties of the indium chelates versus free base bacteriochlorins derive primarily from a 30-fold greater rate constant for S(1) → T(1) intersystem crossing, which stems from the heavy-atom effect on spin-orbit coupling. The trends in optical properties of the indium bacteriochlorins versus free base analogues, and the effects of 5-OMe versus 5-H substituents, correlate well with frontier molecular-orbital energies and energy gaps derived from density functional theory calculations. Collectively the synthesis, photophysical properties, and electronic characteristics of the indium bacteriochlorins and free base analogues reported herein should aid in the further design of such

  1. Antimicrobial applications of copper.

    PubMed

    Vincent, Marin; Hartemann, Philippe; Engels-Deutsch, Marc

    2016-10-01

    Copper has long been known to have antimicrobial activity and is used in drinking water treatment and transportation. It has been recognized by the American Environmental Protection Agency as the first metallic antimicrobial agent in 2008. With ongoing waterborne hospital-acquired infections and antibiotic resistance, research on copper as an antimicrobial agent is again very attractive. Many studies have shown that the use of copper surface and copper particles could significantly reduce the environmental bioburden. This review highlights in its first part all the conditions described in the literature to enhance copper antimicrobial activity. Secondly, the different antimicrobial applications of copper in water treatment, hospital care units and public applications are presented. Finally, the future research needs on copper as an antimicrobial agent are discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation

    PubMed Central

    Liu, Ling-ling; Jia, Bo; Zhao, Fang; Huang, Wei-dong; Zhan, Ji-cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China’s stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress. PMID:26030864

  3. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation.

    PubMed

    Sun, Xiang-Yu; Zhao, Yu; Liu, Ling-Ling; Jia, Bo; Zhao, Fang; Huang, Wei-Dong; Zhan, Ji-Cheng

    2015-01-01

    At high levels, copper in grape mash can inhibit yeast activity and cause stuck fermentations. Wine yeast has limited tolerance of copper and can reduce copper levels in wine during fermentation. This study aimed to understand copper tolerance of wine yeast and establish the mechanism by which yeast decreases copper in the must during fermentation. Three strains of Saccharomyces cerevisiae (lab selected strain BH8 and industrial strains AWRI R2 and Freddo) and a simple model fermentation system containing 0 to 1.50 mM Cu2+ were used. ICP-AES determined Cu ion concentration in the must decreasing differently by strains and initial copper levels during fermentation. Fermentation performance was heavily inhibited under copper stress, paralleled a decrease in viable cell numbers. Strain BH8 showed higher copper-tolerance than strain AWRI R2 and higher adsorption than Freddo. Yeast cell surface depression and intracellular structure deformation after copper treatment were observed by scanning electron microscopy and transmission electron microscopy; electronic differential system detected higher surface Cu and no intracellular Cu on 1.50 mM copper treated yeast cells. It is most probably that surface adsorption dominated the biosorption process of Cu2+ for strain BH8, with saturation being accomplished in 24 h. This study demonstrated that Saccharomyces cerevisiae strain BH8 has good tolerance and adsorption of Cu, and reduces Cu2+ concentrations during fermentation in simple model system mainly through surface adsorption. The results indicate that the strain selected from China's stress-tolerant wine grape is copper tolerant and can reduce copper in must when fermenting in a copper rich simple model system, and provided information for studies on mechanisms of heavy metal stress.

  4. Characteristics and antimicrobial activity of copper-based materials

    NASA Astrophysics Data System (ADS)

    Li, Bowen

    In this study, copper vermiculite was synthesized, and the characteristics, antimicrobial effects, and chemical stability of copper vermiculite were investigated. Two types of copper vermiculite materials, micron-sized copper vermiculite (MCV) and exfoliated copper vermiculite (MECV), are selected for this research. Since most of the functional fillers used in industry products, such as plastics, paints, rubbers, papers, and textiles prefer micron-scaled particles, micron-sized copper vermiculite was prepared by jet-milling vermiculite. Meanwhile, since the exfoliated vermiculite has very unique properties, such as high porosity, specific surface area, high aspect ratio of laminates, and low density, and has been extensively utilized as a functional additives, exfoliated copper vermiculite also was synthesized and investigated. The antibacterial efficiency of copper vermiculite was qualitatively evaluated by the diffusion methods (both liquid diffusion and solid diffusion) against the most common pathogenic species: Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Klebsiella pneumoniae (K. pneumoniae). The result showed that the release velocity of copper from copper vermiculite is very slow. However, copper vermiculite clearly has excellent antibacterial efficiency to S. aureus, K. pneumoniae and E. coli. The strongest antibacterial ability of copper vermiculite is its action on S. aureus. The antibacterial efficiency of copper vermiculite was also quantitatively evaluated by determining the reduction rate (death rate) of E. coli versus various levels of copper vermiculite. 10 ppm of copper vermiculite in solution is sufficient to reduce the cell population of E. coli, while the untreated vermiculite had no antibacterial activity. The slow release of copper revealed that the antimicrobial effect of copper vermiculite was due to the strong interactions between copper ions and bacteria cells. Exfoliated copper vermiculite has even stronger

  5. United States copper metal and scrap use and trade patterns, 1995‒2014

    USGS Publications Warehouse

    Goonan, Thomas G.

    2016-06-17

    This report considers changes to the copper and copper scrap industries of the United States. For the study period, 1995 through 2014, U.S. refined copper production from all sources (primary and secondary materials) decreased from 2.28 million metric tons (Mt) of copper to 1.05 Mt (a 54 percent decrease). During the same period, U.S. copper scrap net exports increased from 0.203 Mt to 0.737 Mt (a 263 percent increase and a compound annual growth rate of about 7.0 percent per year). Copper and copper scrap prices (in constant 2014 dollars) rose such that 2014 prices were about 48 percent greater than 1995 prices. From 1995 through 2014, Chinese imports of copper scrap from the United States grew from 0.061 Mt to 0.569 Mt (an increase of about 830 percent and a compound annual growth rate of about 12.5 percent per year). In 2011, Chinese imports of U.S. copper scrap peaked at 0.745 Mt of contained copper. In 1995, Chinese imports of U.S. copper scrap accounted for 17 percent of U.S. copper scrap exports. By 2014, Chinese imports accounted for 69 percent of U.S. copper scrap exports (by weight), and Chinese imports of U.S. copper scrap were valued at $1.45 billion.

  6. Acute copper toxicity following copper glycinate injection.

    PubMed

    Oon, S; Yap, C-H; Ihle, B U

    2006-11-01

    We present a patient who developed multi-organ failure due to severe copper toxicity following attempted suicide by s.c. injection of copper glycinate. Acute copper toxicity is rare in the developed world, although it occurs more frequently in developing world countries, where it is a common mode of suicide. Acute toxicity usually results from oral ingestion and there are several local and systemic effects. Specific management can be difficult as there is little evidence regarding the efficacy of chelating agents in acute toxicity.

  7. Comparing plasma, serum and whole blood indium concentrations from workers at an indium-tin oxide (ITO) production facility.

    PubMed

    Harvey, R Reid; Virji, M Abbas; Edwards, Nicole T; Cummings, Kristin J

    2016-12-01

    Occupational exposure to indium compounds including indium-tin oxide (ITO) can result in potentially fatal indium lung disease. We compared plasma, serum and whole blood indium concentrations (InP, InS and InB) from workers at a single ITO production facility to assess the comparability of these matrices used for biological monitoring of indium exposure. InP, InS and InB were measured using inductively coupled mass spectrometry from consenting workers at an ITO production facility with specimen collection occurring during June-July 2014. Matched pairs from workers were assessed to determine the matrix relationships using the Pearson correlation, paired t-tests, per cent difference, linear regression and κ statistics. Indium matrices were collected from 80 workers. Mean (SD) InP, InS and InB were 3.48 (3.84), 3.90 (4.15) and 4.66 (5.32) mcg/L, respectively. The InS-InP difference was 14%; InS was higher in all but two workers. InP and InS were highly correlated (r=>0.99). The InB-InS difference was 19%; InB was higher in 85% of workers. The InB-InP difference was 34%; InB was higher in 66% of workers. InB was highly correlated with both InP and InS (r=0.97 and 0.96, respectively). κ Statistics were 0.84, 0.83 and 0.82 for InP, InS and InB, respectively, for individuals with each matrix ≥1 mcg/L (p<0.01). While all matrices were highly correlated, we encourage the use of InP and InS to reliably compare studies across different populations using different matrices. The higher per cent difference and increased variability of InB may limit its utility in comparisons with InP and InS in different populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. Mineral resource of the month: copper

    USGS Publications Warehouse

    ,

    2011-01-01

    The article provides information on copper and its various uses. It was the first metal used by humans and is considered as one of the materials that played an important role in the development of civilization. It is a major industrial metal because of its low cost, availability, electrical conductivity, high ductility and thermal conductivity. Copper has long been used in the circuitry of electronics and the distribution of electricity and is now being used in silicon-based computer chips, solar and wind power generation, and coinage.

  9. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.

    2010-05-03

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  10. Enhanced superconducting pairing interaction in indium-doped tin telluride

    SciTech Connect

    Erickson, A.S.; Chu, J.-H.; Toney, M.F.; Geballe, T.H.; Fisher, I.R.; /SLAC, SSRL /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-02-15

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  11. Determination of series resistance of indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving

    1991-01-01

    The series resistance of a solar cell is an important parameter, which must be minimized to achieve high cell efficiencies. The cell series resistance is affected by the starting material, its design, and processing. The theoretical approach proposed by Jia, et. al., is used to calculate the series resistance of indium phosphide solar cells. It is observed that the theoretical approach does not predict the series resistance correctly in all cases. The analysis was modified to include the use of effective junction ideality factor. The calculated results were compared with the available experimental results on indium phosphide solar cells processed by different techniques. It is found that the use of process dependent junction ideality factor leads to better estimation of series resistance. An accurate comprehensive series resistance model is warranted to give proper feedback for modifying the cell processing from the design state.

  12. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  13. Oxygen-free atomic layer deposition of indium sulfide

    SciTech Connect

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  14. Solution-Processed Copper/Reduced-Graphene-Oxide Core/Shell Nanowire Transparent Conductors.

    PubMed

    Dou, Letian; Cui, Fan; Yu, Yi; Khanarian, Garo; Eaton, Samuel W; Yang, Qin; Resasco, Joaquin; Schildknecht, Christian; Schierle-Arndt, Kerstin; Yang, Peidong

    2016-02-23

    Copper nanowire (Cu NW) based transparent conductors are promising candidates to replace ITO (indium-tin-oxide) owing to the high electrical conductivity and low-cost of copper. However, the relatively low performance and poor stability of Cu NWs under ambient conditions limit the practical application of these devices. Here, we report a solution-based approach to wrap graphene oxide (GO) nanosheets on the surface of ultrathin copper nanowires. By mild thermal annealing, GO can be reduced and high quality Cu r-GO core-shell NWs can be obtained. High performance transparent conducting films were fabricated with these ultrathin core-shell nanowires and excellent optical and electric performance was achieved. The core-shell NW structure enables the production of highly stable conducting films (over 200 days stored in air), which have comparable performance to ITO and silver NW thin films (sheet resistance ∼28 Ω/sq, haze ∼2% at transmittance of ∼90%).

  15. Highly selective indium mediated allylation of unprotected pentosylamines.

    PubMed

    Behr, Jean-Bernard; Hottin, Audrey; Ndoye, Alpha

    2012-03-16

    A straightforward functionalization of D-pentoses is reported, which affords homoallylaminopolyols in two steps and uses ion exchange chromatography as the only purification operation. The key indium-mediated allylation is effected on unprotected glycosylamines and occurs with good to excellent syn stereoselection. Validation of the synthetic utility of the method was exemplified by a 3-step synthesis of an optically active 1,2,3,6-tetrahydropyridine from D-xylose.

  16. Stopping characteristics of boron and indium ions in silicon

    SciTech Connect

    Veselov, D. S. Voronov, Yu. A.

    2016-12-15

    The mean range and its standard deviation are calculated for boron ions implanted into silicon with energies below 10 keV. Similar characteristics are calculated for indium ions with energies below 200 keV. The obtained results are presented in tabular and graphical forms. These results may help in the assessment of conditions of production of integrated circuits with nanometer-sized elements.

  17. Indium-111 leukocyte scintigraphy in Wegener's granulomatosis involving the spleen

    SciTech Connect

    Morayati, S.J.; Fink-Bennett, D.

    1986-12-01

    Indium-111-labeled leukocyte scintigraphy was performed on a 44-yr-old man to exclude an occult abscess. Four- and twenty-four-hour images of the abdomen revealed splenic photopenia except for a rim of activity medially. A subsequent computed tomography (CT) study demonstrated necrosis or hemorrhage of the spleen except for a medial rim. Exploratory laparotomy demonstrated necrotizing vasculitis with granuloma formation consistent with Wegener's granulomatosis and a rim of viable splenic tissue corresponding to the radionuclide and CT studies.

  18. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  19. Indium Helps Strengthen Al/Cu/Li Alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B.; Starke, Edgar A., Jr.

    1992-01-01

    Experiments on Al/Cu/Li alloys focus specifically on strengthening effects of minor additions of In and Cd. Indium-bearing alloy combines low density with ability to achieve high strength through heat treatment alone. Tensile tests on peak-aged specimens indicated that alloy achieved yield strength approximately 15 percent higher than baseline alloy. Alloy highly suitable for processing to produce parts of nearly net shape, with particular applications in aircraft and aerospace vehicles.

  20. Copper in developmental stuttering.

    PubMed

    Alm, Per A

    2005-01-01

    It has previously been reported that men with developmental stuttering showed reduced concentration of copper in the blood, and a negative correlation between the copper level and the severity of stuttering. Disorders of copper metabolism may result in dysfunction of the basal ganglia system and dystonia, a motor disorder sharing some traits of stuttering. It has been shown that copper ions affect the dopamine and the GABA systems. With this background we investigated the plasma level of copper, the copper binding protein ceruloplasmin, and the estimated level of free copper in stuttering adults. Sixteen men with developmental stuttering were compared with 16 men without speech problems. The samples were assayed in one batch in a pseudorandom and counterbalanced order. No significant differences were found between stuttering men and the control group in any of the biological variables, and no negative correlation between copper and the general severity of stuttering was shown. On the contrary, an explorative analysis resulted in a positive correlation between high plasma copper and superfluous muscular activity during stuttering (r=0.51, p=0.04). This result indicates that there is no relation between developmental stuttering and low plasma copper in the main population of stuttering adults.

  1. Indium Oxide Thin Films by Atomic Layer Deposition Using Trimethyl Indium and Ozone

    SciTech Connect

    Mane, Anil U.; Allen, Amy J.; Kanjolia, Ravi K; Elam, Jeffrey W.

    2016-05-12

    We investigated the atomic layer deposition (ALD) of indium oxide (In2O3) thin films using alternating exposures of trimethylindium (TMIn) and a variety of oxygen sources: ozone (O-3), O-2, deionized H2O, and hydrogen peroxide (H2O2). We used in situ quartz crystal microbalance measurements to evaluate the effectiveness of the different oxygen sources and found that only O-3 yielded viable and sustained 111203 growth with TMIn. These measurements also provided details about the In2O3 growth mechanism and enabled us to verify that both the TMIn and O-3 surface reactions were self-limiting. In2O3 thin films were prepared and characterized using X-ray diffraction, ultraviolet visible spectrophotometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, and scanning electron microscopy. The electrical transport properties of these layers were studied by Hall probe measurements. We found that, at deposition temperatures within the range of 100-200 degrees C, the In2O3 growth per cycle was nearly constant at 0.46 angstrom/cycle and the films were dense and pure. The film thickness was highly uniform (<0.3% variation) along the 45 cm length of our tubular ALD reactor. At higher growth temperatures the In2O3 growth per cycle increased due to thermal decomposition of the TMIn. The ALD In2O3 films showed resistivities as low as 3.2 x 10(-3) Omega cm, and carrier concentrations as large as 7.0 x 10(19) cm(-3). This TMIn/O-3 process for In2O3 ALD should be suitable for eventual scale-up in photovoltaics.

  2. Polycrystalline indium phosphide on silicon by indium assisted growth in hydride vapor phase epitaxy

    SciTech Connect

    Metaferia, Wondwosen; Sun, Yan-Ting Lourdudoss, Sebastian; Pietralunga, Silvia M.; Zani, Maurizio; Tagliaferri, Alberto

    2014-07-21

    Polycrystalline InP was grown on Si(001) and Si(111) substrates by using indium (In) metal as a starting material in hydride vapor phase epitaxy (HVPE) reactor. In metal was deposited on silicon substrates by thermal evaporation technique. The deposited In resulted in islands of different size and was found to be polycrystalline in nature. Different growth experiments of growing InP were performed, and the growth mechanism was investigated. Atomic force microscopy and scanning electron microscopy for morphological investigation, Scanning Auger microscopy for surface and compositional analyses, powder X-ray diffraction for crystallinity, and micro photoluminescence for optical quality assessment were conducted. It is shown that the growth starts first by phosphidisation of the In islands to InP followed by subsequent selective deposition of InP in HVPE regardless of the Si substrate orientation. Polycrystalline InP of large grain size is achieved and the growth rate as high as 21 μm/h is obtained on both substrates. Sulfur doping of the polycrystalline InP was investigated by growing alternating layers of sulfur doped and unintentionally doped InP for equal interval of time. These layers could be delineated by stain etching showing that enough amount of sulfur can be incorporated. Grains of large lateral dimension up to 3 μm polycrystalline InP on Si with good morphological and optical quality is obtained. The process is generic and it can also be applied for the growth of other polycrystalline III–V semiconductor layers on low cost and flexible substrates for solar cell applications.

  3. Ultraviolet-reduced reduction and crystallization of indium oxide films

    NASA Astrophysics Data System (ADS)

    Imai, Hiroaki; Tominaga, Atsushi; Hirashima, Hiroshi; Toki, Motoyuki; Asakuma, Naoko

    1999-01-01

    Structural changes stimulated by ultraviolet (UV) irradiations of sol-gel-derived indium oxide thin films were investigated. Illumination of incoherent UV photons (4.9 eV) from a low-pressure mercury lamp resulted in formation of crystalline indium metal. Irradiation of coherent UV beams from an ArF excimer laser (6.4 eV) and from the fourth harmonics of a Nd:YAG laser (4.7 eV) was found to be effective in the crystallization of indium oxide, accompanied by a decrease in the sheet resistance. The lowest resistance without a reduction of transmission in the visible region was achieved with a 6.4 eV laser beam at a fluence over 10-20 mJ cm-2 shot-1. The results of x-ray photoelectron spectroscopy revealed that charge transfer from O2- to In3+ was induced by the incoherent and the coherent UV photons. The partial reduction with the incoherent illumination and the crystallization with the laser irradiation are tentatively assumed to be due to electronic excitations in the amorphous network.

  4. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  5. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide.

    PubMed

    Tanaka, Akiyo

    2004-08-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials.

  6. Complete combustion of methane over indium tin oxides catalysts.

    PubMed

    Li, Junhua; Fu, Huijing; Fu, Lixin; Hao, Jiming

    2006-10-15

    Indium tin oxide (ITO) catalysts with different In/Sn ratios have been prepared by the co-precipitation method. The catalysts were evaluated for methane combustion at different temperatures (673-873 K) with a space velocity of 30 000 h(-1). The results showed that methane could be completely oxidized at 873 K with ITO catalysts. Doping an appropriate amount of tin into In2O3 could greatly improve its activity, while the performances of Indium-doped tin oxides were worse than that of SnO2. A significant improvement of the activity was obtained on the catalyst In8Sn2, which contains 80 wt. % of indium oxide and 20 wt. % of tin oxide. Crystal defection and the amount of oxygen vacancy caused by doping were the main factors that would affect catalytic activity of ITO catalysts. The catalytic activity is strongly inhibited by the presence of a large amount of water vapor at the entire temperature range, while only the activity at low temperature (under 823 K) decreased in the presence of sulfur dioxide. By doping Sn into In2O3, its tolerance to SO2 could be enhanced due to the higher resistance of SnO2.

  7. Effect of preparation conditions on physic-chemical properties of tin-doped nanocrystalline indium oxide

    NASA Astrophysics Data System (ADS)

    Malinovskaya, T. D.; Sachkov, V. I.; Zhek, V. V.; Nefedov, R. A.

    2016-01-01

    In this paper the results of investigation of phase formation and change of concentration of free electrons (Ne) in indium tin oxide system during heat treatment of coprecipitated hydroxides of indium and tin from nitric and hydrochloric solutions and also, for comparison melts of salts nitrates by an alkaline reactant (NH4OH) are considered.The performed investigation allowed to set the optimal condition of preparation of polycrystalline tin-doped indium oxide with maximal electron concentration.

  8. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    PubMed

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  9. Vermiculite decorated with copper nanoparticles: Novel antibacterial hybrid material

    NASA Astrophysics Data System (ADS)

    Drelich, Jaroslaw; Li, Bowen; Bowen, Patrick; Hwang, Jiann-Yang; Mills, Owen; Hoffman, Daniel

    2011-09-01

    Vermiculite decorated with copper nanoparticles is a new antibacterial material that was prepared in this study through ion-exchange process and hydrogen reduction. The replacement of magnesium ions in interlayer structure was carried out using concentrated copper sulfate solutions at elevated temperature. Copper ions were reduced to elemental copper at 400-600 °C using hydrogen as the reducing agent. During the reduction process copper diffused primarily to vermiculite surface regions and formed copper nanoparticles with a broad range of sizes, from ˜1 to 400 nm. Strong adhesion of copper nanoparticles to the vermiculite carrier makes this hybrid very stable and durable. The new vermiculite-metallic copper hybrid material shows strong antibacterial activity against Staphylococcus aureus at 37 °C. Vermiculite is an inexpensive mineral that is very stable under a wide range of industrial and environmental conditions, and extensively used as filler in fireproof materials, plastics, paints and lightweight concrete, so the addition of copper as an antibacterial agent opens new avenues for the application of vermiculite in consumer products and other areas.

  10. Method for enhancing the solubility of boron and indium in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2002-01-01

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  11. Thermodynamics of Indium Dissolution Behavior in FeO-Bearing Metallurgical Slags

    NASA Astrophysics Data System (ADS)

    Han, Yun Soon; Park, Joo Hyun

    2015-02-01

    Indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was measured at 1573 K (1300 °C) to confirm the thermodynamic dissolution behavior of indium at atm. The indium solubility in FeO-bearing slags increased with increasing oxygen partial pressure and decreased with increasing basicity which is in proportion to the activity of FeO. The dissolution of indium in FeO-bearing slags was confirmed to progress according to the following reaction: The enthalpy change for the dissolution of indium in FeO-bearing slag was about -181 kJ/mol, indicating that indium dissolution is exothermic. The indium solubility in the FeO-SiO2-Al2O3-5CaO-MgOsat slag system was minimized as a function of alumina content at a given FeO/SiO2 ratio, which can be explained by the amphoteric behavior of Al2O3 in the slag system. To improve indium recovery by lowering indium loss to the slag phase during the pyro-recycling of In-containing materials using FeO-bearing metallurgical slags, a lower oxygen potential and lower silica content are highly favorable.

  12. THE INDIUM-GALLIUM RADIATION LOOP OF THE IRT NUCLEAR REACTOR,

    DTIC Science & Technology

    NUCLEAR REACTORS, *ISOTOPES), (*INDIUM, *GALLIUM), GAMMA RAYS, NEUTRONS, INTERMETALLIC COMPOUNDS, ALUMINUM, SHIELDING, GENERATORS, EUTECTICS, ARGON, OXALIC ACID , ELECTROMAGNETIC PUMPS, HALF LIFE, HEAT TRANSFER

  13. Transparent conducting electrodes based on thin, ultra-long copper nanowires and graphene nano-composites

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaozhao; Mankowski, Trent S.; Balakrishnan, Kaushik; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2014-10-01

    High aspect-ratio ultra-long (> 70 μm) and thin (< 50 nm) copper nanowires (Cu-NW) were synthesized in large quantities using a solution-based approach. The nanowires, along with reduced graphene-oxide sheets, were coated onto glass as well as plastic substrates, thus producing transparent conducting electrodes. Our fabricated transparent electrodes achieved high optical transmittance and low sheet resistance, comparable to those of existing Indium Tin Oxide (ITO) electrodes. Furthermore, our electrodes show no notable loss of performance under high temperature and high humidity conditions. Adaptations of such nano-materials into smooth and ultrathin films lead to potential alternatives for the conventional tin-doped indium oxide, with applications in a wide range of solar cells, flexible displays, and other opto-electronic devices.

  14. Copper-Silicon Bronzes

    DTIC Science & Technology

    1933-05-11

    copper alloys which have good static properties are disa:cinting in their endurance properties. The silicide allo~rs that are given high tensile strength...notched endurance tests and on cast alloys of this type, are lacking. uowever, preliminary reports state that a copper beryllium alloy of about 2 1/2...properties re- main almost the same. Grain size increases with sil- icon. III A study of hardening copper by heat treating its alloys with silicides

  15. Hair copper in intrauterine copper device users.

    PubMed

    Thiery, M; Heyndrickx, A; Uyttersprot, C

    1984-03-01

    The antifertility effect of copper-bearing IUDs is based on continuous release of copper, which is a result of the reaction between the metal and the uterine secretions. Released cupric ions collect in the endometrium and in the uterine fluid but significant accumulation has not been found in the bloodstream or elsewhere. Following Laker's suggestion that hair be used for monitoring essential trace elements, e.g., copper, we checked the copper content of the hair of women wearing copper-bearing IUDs. Samples of untreated pubic hair removed by clipping before diagnostic curettage were obtained from 10 young (24-34 years old), white caucasian females who until then had been wearing an MLCu250 IUD for more than 1 year. Pubes from 10 comparable (sex, age, race) subjects who had never used a Cu-containing device served as controls. The unwashed material was submitted to the toxicology laboratory, where the copper content was assessed by flameless atomic absorption, a technique whose lower limit of measurement lies at a concentration of 0.05 mcg Cu/ml fluid (50 ppb). Hair samples were washed to remove extraneous traces of metal according to the prescriptions of the International Atomic Energy Agency, weighed, and mineralized, after which a small volume (10 mcl) of the diluted fluid was fed into the graphite furnace. Each sample (75-150 mg) was analyzed 4 times, both before and after washing. Since the cleaning procedure reduces the weight of the sample (mainly by the removal of fat, dust, etc.) this explains why the percentage copper content of washed hair is higher than that of unwashed hair belonging to the same subject. The results indicate that there was no significant difference (Mann-Whitney U test) between the mean copper levels of both unwashed and washed pubes from women who were using or had never used an MLCu250 IUD. We therefore conclude that the use of this copper-containing device is not associated with significant accumulation of copper in (pubic) hair.

  16. High adherence copper plating process

    DOEpatents

    Nignardot, Henry

    1993-01-01

    A process for applying copper to a substrate of aluminum or steel by electrodeposition and for preparing an aluminum or steel substrate for electrodeposition of copper. Practice of the invention provides good adhesion of the copper layer to the substrate.

  17. The Status and Outlook for the Photovoltaics Industry

    NASA Astrophysics Data System (ADS)

    Carlson, David

    2006-03-01

    The first silicon solar cell was made at Bell Labs in 1954, and over the following decades, shipments of photovoltaic (PV) modules increased at a rate of about 18% annually. In the last several years, the annual growth rate has increased to ˜ 35% due largely to government-supported programs in Japan and Germany. Silicon technology has dominated the PV industry since its inception, and in 2005 about 65% of all solar cells were made from polycrystalline (or multicrystalline) silicon, 24% from monocrystalline silicon and ˜ 4% from ribbon silicon. While conversion efficiencies as high as 24.7% have been obtained in the laboratory for silicon solar cells, the best efficiencies for commercial PV modules are in the range of 17 18% (the efficiency limit for a silicon solar cell is ˜ 29%). A number of companies are commercializing solar cells based on other materials such as amorphous silicon, microcrystalline silicon, cadmium telluride, copper-indium-gallium-diselenide (CIGS), gallium arsenide (and related compounds) and dye- sensitized titanium oxide. Thin film CIGS solar cells have been fabricated with conversion efficiencies as high as 19.5% while efficiencies as high as 39% have been demonstrated for a GaInP/Ga(In)As/Ge triple-junction cell operating at a concentration of 236 suns. Thin film solar cells are being used in consumer products and in some building-integrated applications, while PV concentrator systems are being tested in grid-connected arrays located in high solar insolation areas. Nonetheless, crystalline silicon PV technology is likely to dominate the terrestrial market for at least the next decade with module efficiencies > 20% and module prices of < 1/Wp expected by 2020, which in turn should allow significant penetration of the utility grid market. However, crystalline silicon solar cells may be challenged in the next decade or two by new low-cost, high performance devices based on organic materials and nanotechnology.

  18. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    PubMed

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  19. Copper-containing zeolite catalysts

    DOEpatents

    Price, G.L.; Kanazirev, V.

    1996-12-10

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, is formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl{sub 2}, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  20. Copper-containing zeolite catalysts

    SciTech Connect

    Price, Geoffrey L.; Kanazirev, Vladislav

    1996-01-01

    A catalyst useful in the conversion of nitrogen oxides or in the synthesis of nitriles or imines from amines, formed by preparing an intimate mechanical mixture of a copper (II)-containing species, such as CuO or CuCl.sub.2, or elemental copper, with a zeolite having a pore mouth comprising 10 oxygen atoms, such as ZSM-5, converting the elemental copper or copper (II) to copper (I), and driving the copper (I) into the zeolite.

  1. Copper Delivery by Metallochaperone Proteins

    SciTech Connect

    Rosenzweig, A.C.

    2010-03-08

    Copper is an essential element in all living organisms, serving as a cofactor for many important proteins and enzymes. Metallochaperone proteins deliver copper ions to specific physiological partners by direct protein-protein interactions. The Atx1-like chaperones transfer copper to intracellular copper transporters, and the CCS chaperones shuttle copper to copper,zinc superoxide dismutase. Crystallographic studies of these two copper chaperone families have provided insights into metal binding and target recognition by metallochaperones and have led to detailed molecular models for the copper transfer mechanism.

  2. Improved Electroformed Structural Copper and Copper Alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Hudson, W.; Babcock, B.; Edwards, R.

    1998-01-01

    Electroforming offers a superior means for fabricating internally cooled heat exchangers and structures subjected to thermal environments. Copper is deposited from many such applications because of the good thermal conductivity. It suffers from mediocre yield strength as a structural material and loses mechanical strength at intermediate temperatures. Mechanical properties similar to those of electroformed nickel are desired. Phase 1 examined innovative means to improve deposited copper structural performance. Yield strengths as high as 483 MPa (70 ksi) were obtained with useful ductility while retaining a high level of purity essential to good thermal conductivity. Phase 2 represents a program to explore new additive combinations in copper electrolytes to produce a more fine, equiaxed grain which can be thermally stabilized by other techniques such as alloying in modest degrees and dispersion strengthening. Evaluation of new technology - such as the codeposition of fullerness (diamond-like) particles were made to enhance thermal conductivity in low alloys. A test fire quality tube-bundle engine was fabricated using these copper property improvement concepts to show the superiority of the new coppers and fabrications methods over competitive technologies such as brazing and plasma deposition.

  3. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.

    PubMed

    Dutra, A J B; Rocha, G P; Pombo, F R

    2008-04-01

    Copper-cyanide bleed streams arise from contaminated baths from industrial electroplating processes due to the buildup of impurities during continuous operation. These streams present an elevated concentration of carbonate, cyanide and copper, constituting a heavy hazard, which has to be treated for cyanide destruction and heavy metals removal, according to the local environmental laws. In the Brazilian Mint, bleed streams are treated with sodium hypochlorite, to destroy cyanide and precipitate copper hydroxide, a solid hazardous waste that has to be disposed properly in a landfill or treated for metal recovery. In this paper, a laboratory-scale electrolytic cell was developed to remove the copper from the bleed stream of the electroplating unit of the Brazilian Mint, permitting its reutilization in the plant and decreasing the amount of sludge to waste. Under favorable conditions copper recoveries around 99.9% were achieved, with an energy consumption of about 11 kWh/kg, after a 5-h electrolysis of a bath containing copper and total cyanide concentrations of 26 and 27 g/L, respectively. Additionally, a substantial reduction of the cyanide concentration was also achieved, decreasing the pollution load and final treatment costs.

  4. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    NASA Astrophysics Data System (ADS)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  5. COPPER RESEARCH UPDATE

    EPA Science Inventory

    This presentation provides an update and overview of new research results and remaining research needs with respect to copper corrosion control issues. The topics to be covered include: occurrence of elevated copper release in systems that meet the Action Level; impact of water c...

  6. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage

    PubMed Central

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-01-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: ‘indium release ITO’ or ‘tin release ITO’. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. PMID:26378248

  7. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  8. Enantioselective and Regioselective Indium(III)-Catalyzed Addition of Pyrroles to Isatins

    PubMed Central

    Gutierrez, Elisa G.; Wong, Casey J.; Sahin, Aziza H.

    2011-01-01

    The indium(III)-catalyzed enantioselective and regioselective addition of pyrroles to isatins is described. The effects of metal and solvent on the reactivity and selectivity are compared and discussed, demonstrating that the indium(III)-indapybox complex provides the most effective catalyst. A case of divergent reactivity between pyrroles and indoles is presented. PMID:21992567

  9. Materials recovery from waste liquid crystal displays: A focus on indium.

    PubMed

    Fontana, Danilo; Forte, Federica; De Carolis, Roberta; Grosso, Mario

    2015-11-01

    In the present work the recovery of indium and of the polarizing film from waste liquid crystal displays was experimentally investigated in the laboratory. First of all, the polarizing film was removed by employing a number of different techniques, including thermal and chemical treatments. Leaching of indium was then performed with HCl 6N, which allowed solubilisation of approximately 90% In (i.e. 260 mg In per kg of glass) at room temperature, without shredding. Indium recovery from the aqueous phase was then investigated through solvent extraction with polyethylene glycol (PEG)-based aqueous biphasic systems. Indium extraction tests through the PEG-ammonium sulphate-water system were conducted as a function of PEG concentration, salt concentration and molecular weight of PEG, using 1,10 phenanthroline as a ligand. The experimental results demonstrated that indium partitioning between the bottom (salt-rich) and the top (PEG-rich) phase is quite independent on the composition of the system, since 80-95% indium is extracted in the bottom phase and 5-20% in the top phase; it was also found that when PEG concentration is increased, the ratio between the bottom and the upper phase volumes decreases, resulting in an increase of indium concentration in the bottom phase (at [PEG]=25% w/w, indium concentration in the bottom phase is ∼30% higher than the initial concentration before the extraction). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Intracellular accumulation of indium ions released from nanoparticles induces oxidative stress, proinflammatory response and DNA damage.

    PubMed

    Tabei, Yosuke; Sonoda, Akinari; Nakajima, Yoshihiro; Biju, Vasudevanpillai; Makita, Yoji; Yoshida, Yasukazu; Horie, Masanori

    2016-02-01

    Due to the widespread use of indium tin oxide (ITO), it is important to investigate its effect on human health. In this study, we evaluated the cellular effects of ITO nanoparticles (NPs), indium chloride (InCl3) and tin chloride (SnCl3) using human lung epithelial A549 cells. Transmission electron microscopy and inductively coupled plasma mass spectrometry were employed to study cellular ITO NP uptake. Interestingly, greater uptake of ITO NPs was observed, as compared with soluble salts. ITO NP species released could be divided into two types: 'indium release ITO' or 'tin release ITO'. We incubated A549 cells with indium release ITO, tin release ITO, InCl3 or SnCl2 and investigated oxidative stress, proinflammatory response, cytotoxicity and DNA damage. We found that intracellular reactive oxygen species were increased in cells incubated with indium release ITO, but not tin release ITO, InCl3 or SnCl2. Messenger RNA and protein levels of the inflammatory marker, interleukin-8, also increased following exposure to indium release ITO. Furthermore, the alkaline comet assay revealed that intracellular accumulation of indium ions induced DNA damage. Our results demonstrate that the accumulation of ionic indium, but not ionic tin, from ITO NPs in the intracellular matrix has extensive cellular effects. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  11. Indium phosphide space solar cell research: Where we are and where we are going

    NASA Technical Reports Server (NTRS)

    Jain, R. K.; Flood, D. J.; Weinberg, Irving

    1995-01-01

    Indium phosphide is considered to be a strong contender for many photovoltaic space applications because of its radiation resistance and its potential for high efficiency. An overview of recent progress is presented, and possible future research directions for indium phosphide space solar cells are discussed. The topics considered include radiation damage studies and space flight experiments.

  12. Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    Salts of (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are described. The (polyfluoroaryl)fluoroanions have the formula [ER'R"R'"F].sup..crclbar. wherein E is aluminum, gallium, or indium, wherein F is fluorine, and wherein R', R", and R'" is each a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic group.

  13. The effect of NaCl on room-temperature-processed indium oxide nanoparticle thin films for printed electronics

    NASA Astrophysics Data System (ADS)

    Häming, M.; Baby, T. T.; Garlapati, S. K.; Krause, B.; Hahn, H.; Dasgupta, S.; Weinhardt, L.; Heske, C.

    2017-02-01

    One of the major challenges in flexible electronics industry is the fabrication of high-mobility field-effect transistors (FETs) at ambient conditions and on inexpensive polymer substrates compatible with roll-to-roll printing technology. In this context, a novel and general route towards room-temperature fabrication of printed FETs with remarkably high field-effect mobility (μFET) above 12 cm2/Vs has recently been developed. A detailed understanding of the chemical structure of the involved nanoparticle (NP) thin films, prepared by chemical flocculation, is essential for further optimization of the charge transport properties of such devices. In this study, we thus analyze indium oxide NP thin films with and without NaCl additive using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). It is demonstrated that the introduction of a sodium chloride additive to the ink leads to a strongly altered film morphology and a modification of the NP shell. The results suggest that, as a consequence of the additive, the charge-transport barriers between individual indium oxide NPs are lowered, facilitating long-range charge percolation paths despite the presence of a significant concentration of carbonaceous residues.

  14. Green Luminescent Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Suresh, Y.; Annapurna, S.; Bhikshamaiah, G.; Singh, A. K.

    2016-09-01

    Copper nanoparticles are synthesized by a green chemical reduction method using Gum Kondagogu extract as stabilizer. The as-prepared powder samples are characterized by Transmission Electron Microscopy (TEM), Small Angle X-Ray Scattering (SAXS), UV-Visible Spectroscopy, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques. The as-prepared copper nanoparticles are found to be FCC crystalline and nearly monodispersed with particles size 19 nm. Photoluminescence (PL) measurement showed strong green visible emission and PL intensity was found enhanced with the presence of natural extract on copper nanoparticle surface. The increase in the PL intensity was mainly due to copper nanoparticles. Photoluminescence spectra of copper nanoparticles show an emission peak at 430 nm when illuminated at 325 nm.

  15. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    PubMed

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  16. Low-oxidation state indium-catalyzed C-C bond formation.

    PubMed

    Schneider, Uwe; Kobayashi, Shu

    2012-08-21

    The development of innovative metal catalysis for selective bond formation is an important task in organic chemistry. The group 13 metal indium is appealing for catalysis because indium-based reagents are minimally toxic, selective, and tolerant toward various functional groups. Among elements in this group, the most stable oxidation state is typically +3, but in molecules with larger group 13 atoms, the chemistry of the +1 oxidation state is also important. The use of indium(III) compounds in organic synthesis has been well-established as Lewis acid catalysts including asymmetric versions thereof. In contrast, only sporadic examples of the use of indium(I) as a stoichiometric reagent have been reported: to the best of our knowledge, our investigations represent the first synthetic method that uses a catalytic amount of indium(I). Depending on the nature of the ligand or the counteranion to which it is coordinated, indium(I) can act as both a Lewis acid and a Lewis base because it has both vacant p orbitals and a lone pair of electrons. This potential ambiphilicity may offer unique reactivity and unusual selectivity in synthesis and may have significant implications for catalysis, particularly for dual catalytic processes. We envisioned that indium(I) could be employed as a metallic Lewis base catalyst to activate Lewis acidic boron-based pronucleophiles for selective bond formation with suitable electrophiles. Alternatively, indium(I) could serve as an ambiphilic catalyst that activates both reagents at a single center. In this Account, we describe the development of low-oxidation state indium catalysts for carbon-carbon bond formation between boron-based pronucleophiles and various electrophiles. We discovered that indium(I) iodide was an excellent catalyst for α-selective allylations of C(sp(2)) electrophiles such as ketones and hydrazones. Using a combination of this low-oxidation state indium compound and a chiral semicorrin ligand, we developed catalytic

  17. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  18. Bioaccessibility and Solubility of Copper in Copper-Treated Lumber

    EPA Science Inventory

    Micronized copper (MC)-treated lumber is a recent replacement for Chromated Copper Arsenate (CCA) and Ammonium Copper (AC)-treated lumbers; though little is known about the potential risk of copper (Cu) exposure from incidental ingestion of MC-treated wood. The bioaccessibility o...

  19. Killing of bacteria by copper surfaces involves dissolved copper.

    PubMed

    Molteni, Cristina; Abicht, Helge K; Solioz, Marc

    2010-06-01

    Bacteria are rapidly killed on copper surfaces. However, the mechanism of this process remains unclear. Using Enterococcus hirae, the effect of inactivation of copper homeostatic genes and of medium compositions on survival and copper dissolution was tested. The results support a role for dissolved copper ions in killing.

  20. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  1. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  2. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  3. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  4. Indium phosphide solar cells for laser power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1992-01-01

    Lasers can be used to transmit power to photovoltaic cells. Solar cell efficiencies are enhanced significantly under monochromatic light, and therefore a laser beam of proper wavelength could be a very effective source of illumination for a solar array operating at very high efficiencies. This work reviews the modeling studies made on indium phosphide solar cells for such an application. These cells are known to be very radiation resistant and have a potential for high efficiency. Effects of cell series resistance, laser intensity, and temperature on cell performance have been discussed.

  5. Study of indium tin oxide films exposed to atomic axygen

    NASA Technical Reports Server (NTRS)

    Snyder, Paul G.; De, Bhola N.; Woollam, John A.; Coutts, T. J.; Li, X.

    1989-01-01

    A qualitative simulation of the effects of atomic oxygen has been conducted on indium tin oxide (ITO) films prepared by dc sputtering onto room-temperature substrates, by exposing them to an RF-excited oxygen plasma and characterizing the resulting changes in optical, electrical, and structural properties as functions of exposure time with ellipsometry, spectrophotometry, resistivity, and X-ray measurements. While the films thus exposed exhibit reduced resistivity and optical transmission; both of these effects, as well as partial crystallization of the films, may be due to sample heating by the plasma. Film resistivity is found to stabilize after a period of exposure.

  6. The investigation of electrolytic surface roughening for PCB copper foil

    NASA Astrophysics Data System (ADS)

    Lee, Shuo-Jen; Liu, Chao-Kai

    2013-10-01

    This study is the application of the principle of electrochemical. The anodic dissolution has no concentration polarization. Hence, electrolyte life is substantially increased. The waste copper is high in ion concentration with a recovery value. As compared with the current PCB chemical pre-treatment method, it may have advantages of cost-saving, improvement of overall efficiency, reduction of production costs and reduction of the amount of waste generated. In the development of the copper foil for electrochemical roughening process, the use of electrolysis reaction affects the copper surface dissolution to form a unique bump coarsening. It will increase in the surface area of the copper foil to improve dry film solder mask and the adhesion between the copper surfaces. Four electrolytes, two neutral salts and two acids, were selected to explore the best of the electrolytic roughening parameters of temperature, time and voltage. The surface roughness and the surface morphology of the copper foil were measured before and after the electrolytic surface roughening. Finally, after repeated experiments, electrolytes A and B copper generates obvious inter-granular corrosion, resulting in a rough surface similar to the chemical pre-treatment. On the other hands, the surface morphology resulted from electrolytes C and D appears more like pitting. Both electrolytic could generate surface roughness of Ra 0.3 um roughened copper surface higher than industrial standard.

  7. Anti-reflective conducting indium oxide layer on nanostructured substrate as a function of aspect ratio

    NASA Astrophysics Data System (ADS)

    Park, Hyun-Woo; Ji, Seungmuk; Lim, Hyuneui; Choi, Dong-won; Park, Jin-Seong; Chung, Kwun-Bum

    2016-09-01

    Antireflective conducting indium oxide layers were deposited using atomic layer deposition on a transparent nanostructured substrate grown using colloidal lithography. In order to explain the changes in the electrical resistivity and the optical transmittance of conducting indium oxide layers depending on various aspect ratios of the nanostructured substrates, we investigated the surface area and refractive index of the indium oxide layers in the film depth direction as a function of aspect ratio. The conformal indium oxide layer on a transparent nanostructured substrate with optimized geometry exhibited transmittance of 88% and resistivity of 7.32 × 10-4 Ω cm. The enhancement of electrical resistivity is strongly correlated with the surface area of the indium oxide layer depending on the aspect ratio of the nanostructured substrates. In addition, the improvement in transparency was explained by the gradual changes of the refractive index in the film depth direction according to the aspect ratio of the nanostructures.

  8. Indium incorporation into InGaN: The role of the adlayer

    NASA Astrophysics Data System (ADS)

    Rossow, U.; Horenburg, P.; Ketzer, F.; Bremers, H.; Hangleiter, A.

    2017-04-01

    We study the incorporation processes of indium into group-III nitride layers under pulsed and continuous growth conditions by in-situ reflection measurements. We want to clarify which processes limit the incorporation of indium and lead to a degrading layer structure. The data are discussed in the context of the adlayer model proposed by theory [1], which is a liquid-like layer of group-III atoms on the surface. The adlayer is built-up by the incoming flux but the high vapor pressure of indium leads to a high desorption rate and therefore it is apparent in the data only for low growth temperatures. The data suggests that segregated indium on the surface and the environment also contribute to the indium incorporation process likely also via the adlayer.

  9. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets.

    PubMed

    Potts, Heidi; Morgan, Nicholas P; Tütüncüoglu, Gözde; Friedl, Martin; Morral, Anna Fontcuberta I

    2017-02-03

    The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly debated in the last few years. Here, we report on the use of indium droplets to tune the growth direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb) stems. Their position is modified to promote growth in the 〈11-2〉 or equivalent directions. We also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb nanowires. Our results demonstrate that indium droplets can initiate growth of InAs nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.

  10. Limitations of indium leukocyte imaging for the diagnosis of spine infections

    SciTech Connect

    Whalen, J.L.; Brown, M.L.; McLeod, R.; Fitzgerald, R.H. Jr. )

    1991-02-01

    The usefulness of indium-111 white blood cell (WBC) scintigraphy in the detection of spine sepsis was studied in 22 patients who had open or percutaneous biopsies for microbiologic diagnosis. The indium images in 18 patients with vertebral infection were falsely negative in 15 (83%) and truly positive in 3 (17%). All four patients with negative cultures and histology had true-negative scans. The indium-111 WBC imaging results yielded a sensitivity of 17%, a specificity of 100%, and an accuracy rate of 31%. Prior antibiotic therapy was correlated with a high incidence of false-negative scans and photon-deficient indium-111 WBC uptake. The usefulness of indium-111 WBC scintigraphy for the diagnosis of vertebral infection may be limited to those patients who have not been treated with antibiotics previously.

  11. Tuning growth direction of catalyst-free InAs(Sb) nanowires with indium droplets

    NASA Astrophysics Data System (ADS)

    Potts, Heidi; Morgan, Nicholas P.; Tütüncüoglu, Gözde; Friedl, Martin; Morral, Anna Fontcuberta i.

    2017-02-01

    The need for indium droplets to initiate self-catalyzed growth of InAs nanowires has been highly debated in the last few years. Here, we report on the use of indium droplets to tune the growth direction of self-catalyzed InAs nanowires. The indium droplets are formed in situ on InAs(Sb) stems. Their position is modified to promote growth in the <11-2> or equivalent directions. We also show that indium droplets can be used for the fabrication of InSb insertions in InAsSb nanowires. Our results demonstrate that indium droplets can initiate growth of InAs nanostructures as well as provide added flexibility to nanowire growth, enabling the formation of kinks and heterostructures, and offer a new approach in the growth of defect-free crystals.

  12. Effect of doping of tin on optoelectronic properties of indium oxide: DFT study

    SciTech Connect

    Tripathi, Madhvendra Nath

    2015-06-24

    Indium tin oxide is widely used transparent conductor. Experimentally observed that 6% tin doping in indium oxide is suitable for optoelectronic applications and more doping beyond this limit degrades the optoelectronic property. The stoichiometry (In{sub 32-x}Sn{sub x}O{sub 48+x/2}; x=0-6) is taken to understand the change in lattice parameter, electronic structure, and optical property of ITO. It is observed that lattice parameter increases and becomes constant after 6% tin doping that is in good agreement of the experimental observation. The electronic structure calculation shows that the high tin doping in indium oxide adversely affects the dispersive nature of the bottom of conduction band of pure indium oxide and decreases the carrier mobility. Optical calculations show that transmittance goes down upto 60% for the tin concentration more than 6%. The present paper shows that how more than 6% tin doping in indium oxide adversely affects the optoelectronic property of ITO.

  13. Embedding of copper sulfate and copper oxide on multipurpose paper

    NASA Astrophysics Data System (ADS)

    Almanza, D. L. V.; de Luna, J. L. A.; Herrera, M. U.

    2017-05-01

    Copper sulfate salts were embedded on multipurpose paper using simple soaking technique while copper oxide particles were embedded using in-situ technique. In simple soaking technique, the papers were simply soaked in copper sulfate solution in order for the copper salts to be incorporated in the paper. In the in-situ technique, the copper sulfate-embedded papers were soaked in sodium hydroxide solution for reactions to occur that will lead to the formation of copper oxide. Copper sulfate-embedded papers have blue green color while copper oxide-embedded papers have brown color. The copper sulfate-embedded paper shows excellent antimicrobial property against Staphylococcus aureus. Meanwhile, the copper oxide-embedded paper shows small zone of inhibition against Escherichia coli and Staphylococcus aureus.

  14. A study on the reliability of indium solder die bonding of high power semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Liu, Xingsheng; Davis, Ronald W.; Hughes, Lawrence C.; Rasmussen, Michael H.; Bhat, Rajaram; Zah, Chung-En; Stradling, Jim

    2006-07-01

    High power semiconductor lasers have found increased applications. Indium solder is one of the most widely used solders in high power laser die bonding. Indium solder has some advantages in laser die bonding. It also has some concerns, however, especially in terms of reliability. In this paper, the reliability of indium solder die bonding of high power broad area semiconductor lasers was studied. It was found that indium solder bonded lasers have much shorter lifetime than AuSn solder bonded devices. Catastrophic degradation was observed in indium solder bonded lasers. Nondestructive optical and acoustic microscopy was conducted during the lifetime testing to monitor the failure process and destructive failure analysis was performed after the lasers failed. It was found that the sudden failure was caused by electromigration of indium solder at the high testing current of up to 7A. It was shown that voids were created and gradually enlarged by indium solder electromigration, which caused local heating near the facets of the laser. The local heating induced catastrophic optical mirror damage (COMD) of the lasers. It was discussed that current crowding, localized high temperature, and large temperature gradient contributed to the fast indium solder electromigration. It was observed that some bright pattern structures appeared on the front facet of the indium solder bonded lasers after the devices failed and the bright patterns grew and spread upon further testing. Failure analysis showed that the bright pattern structure apparent on the front facet was due to crystallization of the TiOx material of the front facet coating as a result of overheating during lifetime testing. It was concluded that indium solder is not suitable for high power laser applications due to electromigration at high current densities and high temperatures.

  15. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  16. Early Changes in Clinical, Functional, and Laboratory Biomarkers in Workers at Risk of Indium Lung Disease

    PubMed Central

    Virji, M. Abbas; Trapnell, Bruce C.; Carey, Brenna; Healey, Terrance; Kreiss, Kathleen

    2014-01-01

    Rationale: Occupational exposure to indium compounds, including indium–tin oxide, can result in potentially fatal indium lung disease. However, the early effects of exposure on the lungs are not well understood. Objectives: To determine the relationship between short-term occupational exposures to indium compounds and the development of early lung abnormalities. Methods: Among indium–tin oxide production and reclamation facility workers, we measured plasma indium, respiratory symptoms, pulmonary function, chest computed tomography, and serum biomarkers of lung disease. Relationships between plasma indium concentration and health outcome variables were evaluated using restricted cubic spline and linear regression models. Measurements and Main Results: Eighty-seven (93%) of 94 indium–tin oxide facility workers (median tenure, 2 yr; median plasma indium, 1.0 μg/l) participated in the study. Spirometric abnormalities were not increased compared with the general population, and few subjects had radiographic evidence of alveolar proteinosis (n = 0), fibrosis (n = 2), or emphysema (n = 4). However, in internal comparisons, participants with plasma indium concentrations ≥ 1.0 μg/l had more dyspnea, lower mean FEV1 and FVC, and higher median serum Krebs von den Lungen-6 and surfactant protein-D levels. Spline regression demonstrated nonlinear exposure response, with significant differences occurring at plasma indium concentrations as low as 1.0 μg/l compared with the reference. Associations between health outcomes and the natural log of plasma indium concentration were evident in linear regression models. Associations were not explained by age, smoking status, facility tenure, or prior occupational exposures. Conclusions: In indium–tin oxide facility workers with short-term, low-level exposure, plasma indium concentrations lower than previously reported were associated with lung symptoms, decreased spirometric parameters, and increased serum

  17. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  18. Effects of a powered air-purifying respirator intervention on indium exposure reduction and indium related biomarkers among ITO sputter target manufacturing workers.

    PubMed

    Liu, Hung-Hsin; Chen, Chang-Yuh; Lan, Cheng-Hang; Chang, Cheng-Ping; Peng, Chiung-Yu

    2016-01-01

    This study aimed to evaluate the efficacy of powered air-purifying respirators (PAPRs) worn by the workers, and to investigate the effect of this application on exposure and preclinical effects in terms of workplace measuring and biomarker monitoring in ITO sputter target manufacturing plants and workers, respectively. Fifty-four workers were recruited and investigated from 2010-2012, during which PAPRs were provided to on-site workers in September 2011. Each worker completed questionnaires and provided blood and urine samples for analysis of biomarkers of indium exposure and preclinical effects. Area and personal indium air samples were randomly collected from selected worksites and from participants. The penetration percentage of the respirator (concentration inside respirator divided by concentration outside respirator) was 6.6%. Some biomarkers, such as S-In, SOD, GPx, GST, MDA, and TMOM, reflected the decrease in exposure and showed lower levels, after implementation of PAPRs. This study is the first to investigate the efficacy of PAPRs for reducing indium exposure. The measurement results clearly showed that the implementation of PAPRs reduces levels of indium-related biomarkers. These findings have practical applications for minimizing occupational exposure to indium and for managing the health of workers exposed to indium.

  19. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria

    PubMed Central

    Staehlin, Benjamin M.; Gibbons, John G.; Rokas, Antonis; O’Halloran, Thomas V.; Slot, Jason C.

    2016-01-01

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including the cus (copper sensing copper efflux system), and pco (plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative of Enterobacter cloacae as the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the original pco module was replaced by a divergent pco homolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens. PMID:26893455

  20. Evolution of a Heavy Metal Homeostasis/Resistance Island Reflects Increasing Copper Stress in Enterobacteria.

    PubMed

    Staehlin, Benjamin M; Gibbons, John G; Rokas, Antonis; O'Halloran, Thomas V; Slot, Jason C

    2016-02-17

    Copper homeostasis in bacteria is challenged by periodic elevation of copper levels in the environment, arising from both natural sources and human inputs. Several mechanisms have evolved to efflux copper from bacterial cells, including thecus(copper sensing copper efflux system), andpco(plasmid-borne copper resistance system) systems. The genes belonging to these two systems can be physically clustered in a Copper Homeostasis and Silver Resistance Island (CHASRI) on both plasmids and chromosomes in Enterobacteria. Increasing use of copper in agricultural and industrial applications raises questions about the role of human activity in the evolution of novel copper resistance mechanisms. Here we present evidence that CHASRI emerged and diversified in response to copper deposition across aerobic and anaerobic environments. An analysis of diversification rates and a molecular clock model suggest that CHASRI experienced repeated episodes of elevated diversification that could correspond to peaks in human copper production. Phylogenetic analyses suggest that CHASRI originated in a relative ofEnterobacter cloacaeas the ultimate product of sequential assembly of several pre-existing two-gene modules. Once assembled, CHASRI dispersed via horizontal gene transfer within Enterobacteriaceae and also to certain members of Shewanellaceae, where the originalpcomodule was replaced by a divergentpcohomolog. Analyses of copper stress mitigation suggest that CHASRI confers increased resistance aerobically, anaerobically, and during shifts between aerobic and anaerobic environments, which could explain its persistence in facultative anaerobes and emergent enteric pathogens.