Science.gov

Sample records for industry process challenges

  1. Potato processing scenario in India: Industrial constraints, future projections, challenges ahead and remedies - A review.

    PubMed

    Marwaha, R S; Pandey, S K; Kumar, Dinesh; Singh, S V; Kumar, Parveen

    2010-03-01

    Indian potato (Solanum tuberosum L.) processing industry has emerged fast due to economic liberalization coupled with growing urbanization, expanding market options and development of indegenous processing varieties. India's first potato processing varieties 'Kufri Chipsona-1' and 'Kufri Chipsona-2' were developed in 1998, followed by an improved processing variety 'Kufri Chipsona-3' in 2005 for the Indian plains and first chipping variety 'Kufri Himsona' for the hills. These varieties have >21% tuber dry matter content, contain low reducing sugars (<0.1% on fresh wt) and are most suitable for producing chips, French fries and dehydrated products. The availability of these varieties and standardization of storage techniques for processing potatoes at 10-12°C with sprout suppressant isopropyl N-(3-chlorophenyl) carbamate have revolutionized the processing scenario within a short span of 10 years. Currently about 4% of total potato produce is being processed in organized and unorganized sector. Potato processing industry mainly comprises 4 segments: potato chips, French fries, potato flakes/powder and other processed products. However, potato chips still continue to be the most popular processed product. The major challenge facing the industries lies in arranging round the year supply of processing varieties at reasonable price for their uninterrupted operation, besides several others which have been discussed at length and addressed with concrete solutions.

  2. In search of sustainability: process R&D in light of current pharmaceutical industry challenges.

    PubMed

    Federsel, Hans-Jürgen

    2006-11-01

    Is there a need for a paradigm shift in the pharmaceutical industry? Many researchers think so and take as examples the eroding corporate reputation, a regulatory environment that is harsher than ever, and the request for cheaper drugs from patient organizations and authorities. Process R&D, which interfaces medicinal chemistry and production, has taken on this challenge by increasing the delivery focus early on to ensure timely availability of desired compounds. The quest for lower costs of goods has forced the design of best synthetic routes that, given the molecular complexity, often lead to catalytic methodologies. Applying these methodologies will enable not only the cost element, but also the increasingly important aspects of environmental friendliness, and atom and stage efficiency, to be addressed.

  3. Energy-Intensive Processes Portfolio: Addressing Key Energy Challenges Across U.S. Industry

    SciTech Connect

    2011-03-07

    AMO is developing advanced technologies that cut energy use and carbon emissions in some of the most energy-intensive processes within U.S. manufacturing. The brochure describes the AMO R&D projects that address these challenges.

  4. New challenges and opportunities for industrial biotechnology.

    PubMed

    Chen, Guo-Qiang

    2012-08-20

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.

  5. Chemical process research and development in the 21st century: challenges, strategies, and solutions from a pharmaceutical industry perspective.

    PubMed

    Federsel, Hans-Jürgen

    2009-05-19

    In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a

  6. New challenges and opportunities for industrial biotechnology

    PubMed Central

    2012-01-01

    Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695

  7. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  8. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  9. EDITORIAL: Industrial Process Tomography

    NASA Astrophysics Data System (ADS)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  10. Challenges in industrial fermentation technology research.

    PubMed

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana; Hernandez, Daniela Quintanilla; Hagemann, Timo; Heins, Anna-Lena; Larsson, Hilde; Mears, Lisa; Mauricio-Iglesias, Miguel; Krühne, Ulrich; Gernaey, Krist V

    2014-06-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same maturity as traditional chemical processes, particularly when it comes to using engineering tools such as mathematical models and optimization techniques. This perspective starts with a brief overview of these engineering tools. However, the main focus is on a description of some of the most important engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because of their wide applications as cell factories and therefore their relevance in a White Biotechnology context. Computational fluid dynamics (CFD) is introduced as a promising tool that can be used to support the scaling up and scaling down of bioreactors, and for studying mixing and the potential occurrence of gradients in a tank.

  11. Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry.

    PubMed

    Kettlitz, Beate; Kemendi, Gabriella; Thorgrimsson, Nigel; Cattoor, Nele; Verzegnassi, Ludovica; Le Bail-Collet, Yves; Maphosa, Farai; Perrichet, Aurélie; Christall, Birgit; Stadler, Richard H

    2016-06-01

    Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from < 0.003 to 0.803 mg l(-1) with a mean of 0.145 mg l(-1). Chlorate, however, can also be used as a pesticide, but authorisation was withdrawn in the European Union (EU), resulting in a default maximum residue limit (MRL) for foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.

  12. The Eighth Industrial Fluids Properties Simulation Challenge

    PubMed Central

    Schultz, Nathan E.; Ahmad, Riaz; Brennan, John K.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Ross, Richard B.; Thommes, Matthias; Shen, Vincent K.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. In particular, the eighth challenge focused on the adsorption of perfluorohexane in the activated carbon BAM-109. Entrants were challenged to predict the adsorption in the carbon at 273 K and relative pressures of 0.1, 0.3, and 0.6. The predictions were judged by comparison to a benchmark set of experimentally determined values. Overall good agreement and consistency were found between the predictions of most entrants. PMID:27840542

  13. Fiber quality challenges facing the cotton industry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cotton industry is in the midst of an exciting time with increased domestic consumption, but also facing pressure from other crops and the global marketplace. In order to ensure the US cotton crop remains the fiber of choice for the world it is important to keep an eye on the challenges to fibe...

  14. Industrial Applications of Image Processing

    NASA Astrophysics Data System (ADS)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  15. Litigation in Argentina: challenging the tobacco industry

    PubMed Central

    Flores, M L; Barnoya, J; Mejia, R; Alderete, E; Pérez‐Stable, E J

    2006-01-01

    Objective To evaluate the processes and outcomes of tobacco litigation in Argentina and to analyse the strategies of the tobacco industry to oppose litigation using tobacco industry documents. Methods A systematic search of tobacco industry documents on the internet dating from 1978 to 2002. Law library searches using Argentinean official and unofficial reports systems were combined with computerised online searches. Results There have been at least 15 failed litigation cases in Argentina and the tobacco industry presented a concerted defence in every claim regardless of cost. We categorised 11 cases as product liability and nicotine addiction, two as health care reimbursement, and two as criminal law and secondhand smoke. Industry strategies included hiring legal consultants from prestigious international and Argentinean law firms and developing litigation prevention programmes. Industry monitored legal academic meetings, controlled the development of new product liability legislation, obtained favourable opinions from experts, and closely observed the development of litigation in Argentina. Conclusion The strategies used by the industry have been successful in preventing recovery for tobacco injuries through litigation. Argentinean health advocates and lawyers need to be aware of the roles and strategies of the tobacco industry in order to develop effective litigation in Argentina. PMID:16565455

  16. Industrial Health—Meeting the Challenge*

    PubMed Central

    Meiklejohn, A.

    1959-01-01

    are recognized as the growing points of the challenge to health by the Industrial Revolution. The means whereby the challenge was met are discussed. Towards the end of the nineteenth century scientists increasingly concentrated their studies on the elements. This culminated in the isolation of the atom. During the last 10 years atomic power has become a reality and the foundation of the second Industrial Revolution. While the potential hazards of ionizing radiations had long been known and proved at Hiroshima, the inherent dangers for the general population only became impressed on the public mind by a breakdown at the Windscale No. 1 plutonium pile on October 10, 1957. Radio-active iodine escaped, contaminating the atmosphere as far afield as western Europe. A committee under the chairmanship of Sir Alexander Fleck was appointed to investigate the cause of the accident and its consequences and to make recommendations. The report, which laid special emphasis on safety and health, was published early in 1958. So by analogy, Windscale, Fleck, and atomic power are identified as the growing points of the challenge of the Second Industrial Revolution. How this challenge is to be met by doctors is discussed. It is submitted that the urgent need is to formulate now a basic philosophy for future development of industrial medicine. Continuation of the old order will not suffice: ideas must again become revolutionary. The responsibility for leadership rests on the Industrial Health Advisory Committee established in 1955 under the chairmanship of the Minister of Labour and National Service. PMID:13618514

  17. Industrial application of semantic process mining

    NASA Astrophysics Data System (ADS)

    Espen Ingvaldsen, Jon; Atle Gulla, Jon

    2012-05-01

    Process mining relates to the extraction of non-trivial and useful information from information system event logs. It is a new research discipline that has evolved significantly since the early work on idealistic process logs. Over the last years, process mining prototypes have incorporated elements from semantics and data mining and targeted visualisation techniques that are more user-friendly to business experts and process owners. In this article, we present a framework for evaluating different aspects of enterprise process flows and address practical challenges of state-of-the-art industrial process mining. We also explore the inherent strengths of the technology for more efficient process optimisation.

  18. Industrial processes influenced by gravity

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon

    1988-01-01

    In considering new directions for low gravity research with particular regard to broadening the number and types of industrial involvements, it is noted that transport phenomena play a vital role in diverse processes in the chemical, pharmaceutical, food, and biotech industries. Relatively little attention has been given to the role of gravity in such processes. Accordingly, numerous industrial processes and phenomena are identified which involve gravity and/or surface tension forces. Phase separations and mixing are examples that will be significantly different in low gravity conditions. A basis is presented for expanding the scope of the low gravity research program and the potential benefits of such research is indicated.

  19. Drug discovery in pharmaceutical industry: productivity challenges and trends.

    PubMed

    Khanna, Ish

    2012-10-01

    Low productivity, rising R&D costs, dissipating proprietary products and dwindling pipelines are driving the pharmaceutical industry to unprecedented challenges and scrutiny. In this article I reflect on the current status of the pharmaceutical industry and reasons for continued low productivity. An emerging 'symbiotic model of innovation', that addresses underlying issues in drug failure and attempts to narrow gaps in current drug discovery processes, is discussed to boost productivity. The model emphasizes partnerships in innovation to deliver quality products in a cost-effective system. I also discuss diverse options to build a balanced research portfolio with higher potential for persistent delivery of drug molecules.

  20. Image processing: some challenging problems.

    PubMed Central

    Huang, T S; Aizawa, K

    1993-01-01

    Image processing can be broadly defined as the manipulation of signals which are inherently multidimensional. The most common such signals are photographs and video sequences. The goals of processing or manipulation can be (i) compression for storage or transmission; (ii) enhancement or restoration; (iii) analysis, recognition, and understanding; or (iv) visualization for human observers. The use of image processing techniques has become almost ubiquitous; they find applications in such diverse areas as astronomy, archaeology, medicine, video communication, and electronic games. Nonetheless, many important problems in image processing remain unsolved. It is the goal of this paper to discuss some of these challenging problems. In Section I, we mention a number of outstanding problems. Then, in the remainder of this paper, we concentrate on one of them: very-low-bit-rate video compression. This is chosen because it involves almost all aspects of image processing. PMID:8234312

  1. Image Processing: Some Challenging Problems

    NASA Astrophysics Data System (ADS)

    Huang, T. S.; Aizawa, K.

    1993-11-01

    Image processing can be broadly defined as the manipulation of signals which are inherently multidimensional. The most common such signals are photographs and video sequences. The goals of processing or manipulation can be (i) compression for storage or transmission; (ii) enhancement or restoration; (iii) analysis, recognition, and understanding; or (iv) visualization for human observers. The use of image processing techniques has become almost ubiquitous; they find applications in such diverse areas as astronomy, archaeology, medicine, video communication, and electronic games. Nonetheless, many important problems in image processing remain unsolved. It is the goal of this paper to discuss some of these challenging problems. In Section I, we mention a number of outstanding problems. Then, in the remainder of this paper, we concentrate on one of them: very-low-bit-rate video compression. This is chosen because it involves almost all aspects of image processing.

  2. China's meat industry revolution: challenges and opportunities for the future.

    PubMed

    Zhou, Guanghong; Zhang, Wangang; Xu, Xinglian

    2012-11-01

    From a very limited ration of meat only for urban citizens to the world's largest meat-producing country, from a handful of processing facilities in major cities to thousands of modern meat packing and processing plants throughout the country, the Chinese meat industry has gone through drastic revolutionary changes particularly in the last three decades. Before the national economic reform in the late 1970s, meat production in China was extremely limited; hence, meat was rationed, treated as a highly precious food, and was highly valued. However, new processing technology developments, as related to meat animal production, slaughtering, processing, and distribution have transformed the inefficient Chinese meat industry that prepared only a handful of traditional products into a vast enterprise today that is manufacturing a huge variety of fresh and further processed items enjoyed by the average Chinese household. Along with this evolution, there has been the emergence of mega-scale meat companies and rapid advances in meat science and technology that address many aspects of meat. This review will highlight some milestone changes of the Chinese meat industry and discuss challenges and opportunities ahead in the global market for China.

  3. Automated full matrix capture for industrial processes

    NASA Astrophysics Data System (ADS)

    Brown, Roy H.; Pierce, S. Gareth; Collison, Ian; Dutton, Ben; Dziewierz, Jerzy; Jackson, Joseph; Lardner, Timothy; MacLeod, Charles; Morozov, Maxim

    2015-03-01

    Full matrix capture (FMC) ultrasound can be used to generate a permanent re-focusable record of data describing the geometry of a part; a valuable asset for an inspection process. FMC is a desirable acquisition mode for automated scanning of complex geometries, as it allows compensation for surface shape in post processing and application of the total focusing method. However, automating the delivery of such FMC inspection remains a significant challenge for real industrial processes due to the high data overhead associated with the ultrasonic acquisition. The benefits of NDE delivery using six-axis industrial robots are well versed when considering complex inspection geometries, but such an approach brings additional challenges to scanning speed and positional accuracy when combined with FMC inspection. This study outlines steps taken to optimize the scanning speed and data management of a process to scan the diffusion bonded membrane of a titanium test plate. A system combining a KUKA robotic arm and a reconfigurable FMC phased array controller is presented. The speed and data implications of different scanning methods are compared, and the impacts on data visualization quality are discussed with reference to this study. For the 0.5 m2 sample considered, typical acquisitions of 18 TB/m2 were measured for a triple back wall FMC acquisition, illustrating the challenge of combining high data throughput with acceptable scanning speeds.

  4. Challenge to advanced materials processing with lasers in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, Isamu

    2003-02-01

    Japan is one of the most advanced countries in manufacturing technology, and lasers have been playing an important role for advancement of manufacturing technology in a variety of industrial fields. Contribution of laser materials processing to Japanese industry is significant for both macroprocessing and microprocessing. The present paper describes recent trend and topics of industrial applications in terms of the hardware and the software to show how Japanese industry challenges to advanced materials processing using lasers, and national products related to laser materials processing are also briefly introduced.

  5. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  6. Industrial process heat market assessment

    SciTech Connect

    Bresnick, S.

    1981-12-01

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  7. Nanotechnology in the Chemical Industry - Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Qiu Zhao, Qian; Boxman, Arthur; Chowdhry, Uma

    2003-12-01

    The traditional chemical industry has become a largely mature industry with many commodity products based on established technologies. Therefore, new product and market opportunities will more likely come from speciality chemicals, and from new functionalities obtained from new processing technologies as well as new microstructure control methodologies. It is a well-known fact that in addition to its molecular structure, the microstructure of a material is key to determining its properties. Controlling structures at the micro- and nano-levels is therefore essential to new discoveries. For this article, we define nanotechnology as the controlled manipulation of nanomaterials with at least one dimension less than 100nm. Nanotechnology is emerging as one of the principal areas of investigation that is integrating chemistry and materials science, and in some cases integrating these with biology to create new and yet undiscovered properties that can be exploited to gain new market opportunities. In this article market opportunities for nanotechnology will be presented from an industrial perspective covering electronic, biomedical, performance materials, and consumer products. Manufacturing technology challenges will be identified, including operations ranging from particle formation, coating, dispersion, to characterization, modeling, and simulation. Finally, a nanotechnology innovation roadmap is proposed wherein the interplay between the development of nanoscale building blocks, product design, process design, and value chain integration is identified. A suggestion is made for an R&D model combining market pull and technology push as a way to quickly exploit the advantages in nanotechnology and translate these into customer benefits.

  8. Alternative starting materials for industrial processes.

    PubMed Central

    Mitchell, J W

    1992-01-01

    In the manufacture of chemical feedstocks and subsequent processing into derivatives and materials, the U.S. chemical industry sets the current standard of excellence for technological competitiveness. This world-class leadership is attributed to the innovation and advancement of chemical engineering process technology. Whether this status is sustained over the next decade depends strongly on meeting increasingly demanding challenges stimulated by growing concerns about the safe production and use of chemicals without harmful impacts on the environment. To comply with stringent environmental regulations while remaining economically competitive, industry must exploit alternative benign starting materials and develop environmentally neutral industrial processes. Opportunities are described for development of environmentally compatible alternatives and substitutes for some of the most abundantly produced, potentially hazardous industrial chemicals now labeled as "high-priority toxic chemicals." For several other uniquely important commodity chemicals where no economically competitive, environmentally satisfactory, nontoxic alternative starting material exists, we advocate the development of new dynamic processes for the on-demand generation of toxic chemicals. In this general concept, which obviates mass storage and transportation of chemicals, toxic raw materials are produced in real time, where possible, from less-hazardous starting materials and then chemically transformed immediately into the final product. As a selected example for semiconductor technology, recent progress is reviewed for the on-demand production of arsine in turnkey electrochemical generators. Innovation of on-demand chemical generators and alternative processes provide rich areas for environmentally responsive chemical engineering processing research and development for next-generation technology. Images PMID:11607260

  9. Super-sensing through industrial process tomography

    PubMed Central

    2016-01-01

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185965

  10. Super-sensing through industrial process tomography.

    PubMed

    Soleimani, Manuchehr

    2016-06-28

    In this introduction article, we present a brief overview of industrial process tomography. This will start by linking between the concept of industrial process tomography and super-sensing. This will follow with a brief introduction to various process tomography systems and in particular electrical tomography methods. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  11. Public relations and the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Coates, T. Donna

    The world's uneasiness and mistrust regarding anything nuclear has heightened in recent years due to events such as Chernobyl and Three Mile Island. Opinion polls and attitude surveys document the public's growing concern about issues such as the depletion of the ozone layer, the resulting greenhouse effect and exposure of our planet to cosmic radiation. Ultimately, such research reveals an underlying fear regarding the unseen impacts of modern technology on the environment and on human health. These concerns have obvious implications for the radiation processing industry, whose technology is nuclear based and not easily understood by the public. We have already seen organized nuclear opponents mobilize public anxiety, fear and misunderstanding in order to oppose the installation of radiation processing facilities and applications such as food irradiation. These opponents will no doubt try to strengthen resistance to our technology in the future. Opponents will attempt to convince the public that the risks to public and personal health and safety outweigh the benefits of our technology. We in the industry must head off any tendency for the public to see us as the "enemy". Our challenge is to counter public uneasiness and misunderstanding by effectively communicating the human benefits of our technology. Clearly it is a challenge we cannot afford to ignore.

  12. [Justice challenges of pharmaceutical industry global research].

    PubMed

    Páez Moreno, Ricardo

    2010-01-01

    International research projects sponsored by the pharmaceutical industry are a recent modality of biomedical research, which is driven by interests that are not only scientific, but also commercial. This combination of interests is one of the natural consequences of globalization, which has brought unquestionable benefits for the world, but has also created a wider gap between the wealthy and the poor. Given that globalization has been led by the the world's leading economies, the level of injustice in the world has increased, often to the favor of the already wealthy. Globalization has a well-established dynamics, whose main characteristic is domain over the following: technological innovation, the organization of the production of goods and services, human needs, and consumption. International biomedical research fits well in this dynamics, and the result is often a poor distribution of benefits, added to a loss of scientific integrity for the sake of commercial interests. This phenomenon raises many ethical questions and it demands a reflection from different bioethical points of view, particularly an economic ethics and a global justice.

  13. Rapid medical advances challenge the tooling industry.

    PubMed

    Conley, B

    2008-01-01

    The requirement for greater performance in smaller spaces has increased demands for product and process innovation in tubing and other medical products. In turn, these developments have placed greater demands on the producers of the advanced tooling for these products. Tooling manufacturers must now continuously design equipment with much tighter tolerances for more sophisticated coextrusions and for newer generations of multilumen and multilayer tubing.

  14. Process Challenges in Compound Semiconductors.

    DTIC Science & Technology

    1988-08-01

    development; these are Japanese suppliers. Silicon technology teaches that, as devices and processes become more sophisticated, the requirements on substrates...following recommendations are presented: • Develop a fundamental understanding of the thermochemistry of impurity activation and lattice healing

  15. Attack on Australia: tobacco industry challenges to plain packaging.

    PubMed

    Jarman, Holly

    2013-08-01

    In 2011, the Australian Government passed landmark legislation requiring tobacco manufacturers to adopt 'plain packaging', a government-mandated design standardized across all brands of tobacco products. In response, plain packaging policy in Australia has faced multiple, simultaneous challenges from a global, well-resourced industry able to use all available fora to seek redress. Generalizing from the Australian experience, we analyze four types of challenges to plain packaging from the tobacco industry. We characterize three ways in which industry questions public health policies through international trade and investment law, on: (i) the intent or purpose of the policy; (ii) the economic consequences of it; and (iii) the regulatory authority behind it. We make recommendations and suggest that public health policymakers can know with some precision what attacks will be launched on tobacco control policies, and prepare their strategies and legislation accordingly.

  16. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  17. BUDGET PROCESS: Evolution and Challenges.

    DTIC Science & Technology

    2007-11-02

    1985—commonly known as Gramm-Rudman-Hollings or GRH —that the focus of the process changed from increasing Congressional control over the budget to...reducing the deficit. Both the original GRH and the 1987 amendments ( GRH H) sought to achieve a balanced budget by establishing annual deficit...targets to be enforced by "sequesters" if legislation failed to achieve them. Measured against its stated objective of a balanced budget, GRH failed

  18. Extraterrestrial materials processing and construction. [space industrialization

    NASA Technical Reports Server (NTRS)

    Criswell, D. R.; Waldron, R. D.; Mckenzie, J. D.

    1980-01-01

    Three different chemical processing schemes were identified for separating lunar soils into the major oxides and elements. Feedstock production for space industry; an HF acid leach process; electrorefining processes for lunar free metal and metal derived from chemical processing of lunar soils; production and use of silanes and spectrally selective materials; glass, ceramics, and electrochemistry workshops; and an econometric model of bootstrapping space industry are discussed.

  19. Novel Process Revolutionizes Welding Industry

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  20. Foundations for Excellence in the Chemical Process Industries. Voluntary Industry Standards for Chemical Process Industries Technical Workers.

    ERIC Educational Resources Information Center

    Hofstader, Robert; Chapman, Kenneth

    This document discusses the Voluntary Industry Standards for Chemical Process Industries Technical Workers Project and issues of relevance to the education and employment of chemical laboratory technicians (CLTs) and process technicians (PTs). Section 1 consists of the following background information: overview of the chemical process industries,…

  1. Management of major offshore projects - an industry challenge

    SciTech Connect

    Vicklund, C.A.; Craft, W.S.

    1981-04-01

    Faced with the urgency to create new energy supplies and the increasing complexity and size of offshore projects, industry's objective and challenge must be the timely development and efficient use of manpower, equipment, and other resources required to bring new production onstream. This study reviews project execution planning and organization and project management policies and practices. Competitive bidding, preference for fixed-price contracts, ethical conduct, and fairness doctrine are cited. Suggested steps during project execution are presented. 3 refs.

  2. Conducting a paediatric multi-centre RCT with an industry partner: challenges and lessons learned.

    PubMed

    Maskell, Jessica; Newcombe, Peter; Martin, Graham; Kimble, Roy

    2012-11-01

    There are many benefits of multi-centred research including large sample sizes, statistical power, timely recruitment and generalisability of results. However, there are numerous considerations when planning and implementing a multi-centred study. This article reviews the challenges and successes of planning and implementing a multi-centred prospective randomised control trial involving an industry partner. The research investigated the impact on psychosocial functioning of a cosmetic camouflage product for children and adolescents with burn scarring. Multi-centred studies commonly have many stakeholders. Within this study, six Australian and New Zealand paediatric burn units as well as an industry partner were involved. The inclusion of an industry partner added complexities as they brought different priorities and expectations to the research. Further, multifaceted ethical and institutional approval processes needed to be negotiated. The challenges, successes, lessons learned and recommendations from this study regarding Australian and New Zealand ethics and research governance approval processes, collaboration with industry partners and the management of differing expectations will be outlined. Recommendations for future multi-centred research with industry partners include provision of regular written reports for the industry partner; continual monitoring and prompt resolution of concerns; basic research practices education for industry partners; minimisation of industry partner contact with participants; clear roles and responsibilities of all stakeholders and utilisation of single ethical review if available.

  3. Expert systems in the process industries

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.

    1992-01-01

    This paper gives an overview of industrial applications of real-time knowledge based expert systems (KBES's) in the process industries. After a brief overview of the features of a KBES useful in process applications, the general roles of KBES's are covered. A particular focus is diagnostic applications, one of the major applications areas. Many applications are seen as an expansion of supervisory control. The lessons learned from numerous online applications are summarized.

  4. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, Andrew M.; Gross, Kenny C.; Kubic, William L.; Wigeland, Roald A.

    1996-01-01

    A system and method for surveillance of an industrial process. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions.

  5. Surveillance of industrial processes with correlated parameters

    DOEpatents

    White, A.M.; Gross, K.C.; Kubic, W.L.; Wigeland, R.A.

    1996-12-17

    A system and method for surveillance of an industrial process are disclosed. The system and method includes a plurality of sensors monitoring industrial process parameters, devices to convert the sensed data to computer compatible information and a computer which executes computer software directed to analyzing the sensor data to discern statistically reliable alarm conditions. The computer software is executed to remove serial correlation information and then calculate Mahalanobis distribution data to carry out a probability ratio test to determine alarm conditions. 10 figs.

  6. Adaptive Process Control in Rubber Industry.

    PubMed

    Brause, Rüdiger W; Pietruschka, Ulf

    1998-01-01

    This paper describes the problems and an adaptive solution for process control in rubber industry. We show that the human and economical benefits of an adaptive solution for the approximation of process parameters are very attractive. The modeling of the industrial problem is done by the means of artificial neural networks. For the example of the extrusion of a rubber profile in tire production our method shows good resuits even using only a few training samples.

  7. Industrial uses of radiation processing in Belgium

    NASA Astrophysics Data System (ADS)

    Lacroix, J. P.

    Since 1979, the Irradiation Department of IRE, in conjunction with universities and the industrial sector, has set up an extensive programme of research, development and promotion of the radiation process applied to cross-linking and polymerization of plastics, to waste treatment and to food preservation. Starting from scratch, it is thanks to our research in this last-mentioned field that we have been able to develop and to increase the application of the irradiation process within the food industry. At present, two irradiation facilities of a total design capacity of 2.5 10 6 Ci irradiate 24 hours per day mostly for the agro-industry.

  8. Opportunities and challenges for collaborative funding with industry

    NASA Astrophysics Data System (ADS)

    Thompson, J. F.

    2014-12-01

    The discovery and extraction of natural resources represents major challenges on both technical and socio-political fronts. Societal demand for commodities continues to increase as population, infrastructure, energy demands and standards of living increase. In parallel, society expects more efficient, cleaner and more sustainable practices. There are therefore multiple incentives for industry to invest in research and innovation to meet these fundamental goals. Natural resource companies fund research internally and externally but the focus, approach and level of funding varies considerably among sectors, companies and disciplines. The wide variety of philosophies creates difficulties for those who seek to work with industry. Most funding arrangement are built through extensive engagement, opportunities to leverage funds particularly in higher risk or less well defined areas (e.g., geoscience), and the attraction of meeting potential new high quality employees. Barriers to funding include unrealistic perceptions of confidentiality issues in industry, bureaucracy and unrealistic IP constraints in academia, and onerous overhead charges by universities that vastly exceed those charged by consulting and contract researchers. Academics and students can benefit immensely from productive research arrangements with industry, but understanding realistic expectations on both sides is critical. Although funding from industry may introduce constraints, some companies are willing to take a virtual hands-off approach in support of quality science. Selecting the appropriate researchers and methodology is important; it takes time for students to become effective and some problems are simply not suited to graduate research, or even academia. Some Governments play an enormous role in facilitating collaborative research with industry while others struggle to differentiate programs that encourage investment from those that unfairly subsidize industry. The traditional Government role

  9. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  10. Brilliant gamma beams for industrial applications: new opportunities, new challenges

    NASA Astrophysics Data System (ADS)

    Iancu, V.; Suliman, G.; Turturica, G. V.; Iovea, M.; Daito, I.; Ohgaki, H.; Matei, C.; Ur, C. A.; Balabanski, D. L.

    2016-10-01

    The Nuclear Physics oriented pillar of the pan-European Extreme Light Infrastructure (ELI-NP) will host an ultra-bright, energy tunable, and quasi-monochromatic gamma-ray beam system in the range of 0.2-19.5 MeV produced by laser-Compton backscattering technique. The applied research program envisioned at ELI-NP targets to use nuclear resonance fluorescence (NRF) and computed tomography to provide new opportunities for industry and society. High sensitivity NRF-based investigations can be successfully applied to safeguard applications and management of radioactive wastes as well as to uncharted fields like cultural heritage and medical imaging. Gamma-ray radioscopy and computed tomography performed at ELI-NP has the potential to achieve high resolution in industrial-sized objects provided the detection challenges introduced by the unique characteristics of the gamma beam are overcome. Here we discuss the foreseen industrial applications that will benefit from the high quality and unique characteristics of ELI-NP gamma beam and the challenges they present. We present the experimental setups proposed to be implemented for this goal, discuss their performance based on analytical calculations and numerical Monte-Carlo simulations, and comment about constrains imposed by the limitation of current scintillator detectors. Several gamma-beam monitoring devices based on scintillator detectors will also be discussed.

  11. The industrial processing of unidirectional fiber prepregs

    NASA Technical Reports Server (NTRS)

    Laird, B.

    1981-01-01

    Progress made in the industrial processing of preimpregnated composites with unidirectional fibers is discussed, with particular emphasis on applications within the aerospace industry. Selection of industrial materials is considered. Attention is given to the conditions justifying the use of composites and the properties required of industrial prepregs. The hardening cycle is examined for the cases of nonmodified and polymer modified resins, with attention given to the stabilization of flow, the necessary changes of state, viscosity control, and the elimination of porosity. The tooling necessary for the fabrication of a laminated plate is illustrated, and the influence of fabrication and prepreg properties on the mechanical characteristics of a laminate are indicated. Finally, the types of prepregs available and the processing procedures necessary for them are summarized.

  12. Interface design in the process industries

    NASA Technical Reports Server (NTRS)

    Beaverstock, M. C.; Stassen, H. G.; Williamson, R. A.

    1977-01-01

    Every operator runs his plant in accord with his own mental model of the process. In this sense, one characteristic of an ideal man-machine interface is that it be in harmony with that model. With this theme in mind, the paper first reviews the functions of the process operator and compares them with human operators involved in control situations previously studied outside the industrial environment (pilots, air traffic controllers, helmsmen, etc.). A brief history of the operator interface in the process industry and the traditional methodology employed in its design is then presented. Finally, a much more fundamental approach utilizing a model definition of the human operator's behavior is presented.

  13. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  14. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  15. Opportunities and challenges in application of ultrasound in food processing.

    PubMed

    Rastogi, Navin K

    2011-09-01

    The demand for convenience foods of the highest quality in terms of natural flavor and taste, and which are free from additives and preservatives, has spurred the need for the development of a number of non-thermal approaches to food processing, of which ultrasound technology has proven to be very valuable. Increasing number of recent publications have demonstrated the potential of this technology in food processing. A combination of ultrasound with pressure and/or heat is a promising alternative for the rapid inactivation of microorganisms and enzymes. Therefore, novel techniques like thermosonication, manosonication, and manothermosonication may be a more relevant energy-efficient processing alternative for the food industry in times to come. This review aims at identifying the opportunities and challenges associated with this technology. In addition to discussing the effects of ultrasound on foods, this review covers various areas that have been identified as having great potential for future development. It has been realized that ultrasound has much to offer to the food industry such as inactivation of microorganisms and enzymes, crystallization, drying, degassing, extraction, filtration, homogenization, meat tenderization, oxidation, sterilization, etc., including efficiency enhancement of various operations and online detection of contaminants in foods. Selected practical examples in the food industry have been presented and discussed. A brief account of the challenges in adopting this technology for industrial development has also been included.

  16. Proteomics for the food industry: opportunities and challenges.

    PubMed

    Pedreschi, Romina; Hertog, Maarten; Lilley, Kathryn S; Nicolaï, Bart

    2010-08-01

    In this review, we outline the state-of-the-art of proteomic techniques and their application within the plant-based food industry. The relevance of high throughput proteomic approaches is to increase insight and understanding of how food processing is affected by the physiology of the product and through this, to enable the optimization of the overall food production process. Food areas with large potential for application of proteomics technologies are discussed, including novel and controversial areas such as food irradiation, GMOs, non-thermal processing, obesity, and functional foods.

  17. Industrial gases offer new processing alternatives

    SciTech Connect

    Jackow, F.

    1996-07-01

    Creative use of industrial gases, such as oxygen, nitrogen, hydrogen and carbon dioxide, can provide new approaches to many chemical and industrial processes. One example is using pure oxygen to replace air for combustion, a technique that makes it possible to increase incineration efficiency and reduce the amount of nitrogen oxides produced, thus lowering a plant`s environmental impact. Recent downsizing trends, cost-reduction efforts and environmental regulations have modified the relationship between major chemical and industrial gas companies. Chemical producers are now often interested in outsourcing not only industrial gas supply but also technology and turnkey solutions. Among the benefits to the end users are enhanced safety, reduced environmental impact and improved profitability.

  18. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect

    2009-09-15

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  19. Solar industrial process heat for Georgia's food processing and textile industries: a market evaluation. Final report

    SciTech Connect

    Studstill, W.T.

    1980-10-08

    Georgia Tech's Engineering Experiment Station conducted a site-specific market evaluation study of solar industrial process heat for Georgia's food processing and textile industries. Twenty plants were surveyed and six case studies were conducted. The summary resualts of that study are presented with interpretation and conclusions by the Southern Solar Energy Center (SSEC).

  20. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  1. Digital Image Processing in Private Industry.

    ERIC Educational Resources Information Center

    Moore, Connie

    1986-01-01

    Examines various types of private industry optical disk installations in terms of business requirements for digital image systems in five areas: records management; transaction processing; engineering/manufacturing; information distribution; and office automation. Approaches for implementing image systems are addressed as well as key success…

  2. Solutions for Arsenic Control in Mining Processes and Extractive Industry

    NASA Astrophysics Data System (ADS)

    Neitola, Raisa; Korhonen, Tero; Backnäs, Soile; Turunen, Kaisa; Kaartinen, Tommi; Laine-Ylijoki, Jutta; Wahlström, Margareta; Venho, Antti; Ahoranta, Sarita; Nissilä, Marika; Puhakka, Jaakko

    2015-04-01

    In mining, quarrying and industrial minerals production arsenic is a common element, thus creating a challenge in mining processes. This project aimed to develop solutions to control and remove As-compounds in materials and effluents of beneficiation processes and other mining operations. Focus was on various technologies e.g. traditional mineral processing, bioprocessing, water treatment, as well as various materials such as gold ores and concentrates, industrial by-products, and mine waters. The results of suggest that by novel mineral processing and proper water treatment methods the amount of As-compounds in tailings and effluents can be reduced to levels that satisfy the regulations concerning mining waste management. According to the environmental research, mining activities tend to increase the proportion of potentially mobile and available elements in soil. The effect of mining activity on geogenic contamination needs to be considered in risk assessment.

  3. Challenges of the Open Source Component Marketplace in the Industry

    NASA Astrophysics Data System (ADS)

    Ayala, Claudia; Hauge, Øyvind; Conradi, Reidar; Franch, Xavier; Li, Jingyue; Velle, Ketil Sandanger

    The reuse of Open Source Software components available on the Internet is playing a major role in the development of Component Based Software Systems. Nevertheless, the special nature of the OSS marketplace has taken the “classical” concept of software reuse based on centralized repositories to a completely different arena based on massive reuse over Internet. In this paper we provide an overview of the actual state of the OSS marketplace, and report preliminary findings about how companies interact with this marketplace to reuse OSS components. Such data was gathered from interviews in software companies in Spain and Norway. Based on these results we identify some challenges aimed to improve the industrial reuse of OSS components.

  4. How to improve R&D productivity: the pharmaceutical industry's grand challenge.

    PubMed

    Paul, Steven M; Mytelka, Daniel S; Dunwiddie, Christopher T; Persinger, Charles C; Munos, Bernard H; Lindborg, Stacy R; Schacht, Aaron L

    2010-03-01

    The pharmaceutical industry is under growing pressure from a range of environmental issues, including major losses of revenue owing to patent expirations, increasingly cost-constrained healthcare systems and more demanding regulatory requirements. In our view, the key to tackling the challenges such issues pose to both the future viability of the pharmaceutical industry and advances in healthcare is to substantially increase the number and quality of innovative, cost-effective new medicines, without incurring unsustainable R&D costs. However, it is widely acknowledged that trends in industry R&D productivity have been moving in the opposite direction for a number of years. Here, we present a detailed analysis based on comprehensive, recent, industry-wide data to identify the relative contributions of each of the steps in the drug discovery and development process to overall R&D productivity. We then propose specific strategies that could have the most substantial impact in improving R&D productivity.

  5. Downstream processing in the biotechnology industry.

    PubMed

    Kalyanpur, Manohar

    2002-09-01

    The biotechnology industry today employs recombinant bacteria, mammalian cells, and transgenic animals for the production of high-value therapeutic proteins. This article reviews the techniques employed in this industry for the recovery of these products. The methods reviewed extend from the centrifugation and membrane filtration for the initial clarification of crude culture media to the final purification of the products by a variety of membrane-based and chromatographic methods. The subject of process validation including validation of the removal of bacterial and viral contaminants from the final products is also discussed with special reference to the latest regulatory guidelines.

  6. Chemicals Industry New Process Chemistry Roadmap

    SciTech Connect

    none,

    2000-08-01

    The Materials Technology I workshop was held in November 1998 to address future research needs for materials technology that will support the chemical industry. Areas covered included disassembly, recovery, reuse and renewable technology; new materials; and materials measurement and characterization. The Materials Technology II workshop was held in September 1999 and covered additives, modeling and prediction and an additional segment on new materials. Materials Technology Institute (MTI) for the Chemical Process Industries, Inc. and Air Products & Chemicals lead the workshops. The Materials Technology Roadmap presents the results from both workshops.

  7. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  8. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  9. Human factors challenges for advanced process control

    SciTech Connect

    Stubler, W.F.; O`Hara, J..M.

    1996-08-01

    New human-system interface technologies provide opportunities for improving operator and plant performance. However, if these technologies are not properly implemented, they may introduce new challenges to performance and safety. This paper reports the results from a survey of human factors considerations that arise in the implementation of advanced human-system interface technologies in process control and other complex systems. General trends were identified for several areas based on a review of technical literature and a combination of interviews and site visits with process control organizations. Human factors considerations are discussed for two of these areas, automation and controls.

  10. FTIR monitoring of industrial scale CVD processes

    NASA Astrophysics Data System (ADS)

    Hopfe, V.; Mosebach, H.; Meyer, M.; Sheel, D.; Grählert, W.; Throl, O.; Dresler, B.

    1998-06-01

    The goal is to improve chemical vapour deposition (CVD) and infiltration (CVI) process control by a multipurpose, knowledge based feedback system. For monitoring the CVD/CVI process in-situ FTIR spectroscopic data has been identified as input information. In the presentation, three commonly used, and distinctly different, types of industrial CVD/CVI processes are taken as test cases: (i) a thermal high capacity CVI batch process for manufacturing carbon fibre reinforced SiC composites for high temperature applications, (ii) a continuously driven CVD thermal process for coating float glass for energy protection, and (iii) a laser stimulated CVD process for continuously coating bundles of thin ceramic fibers. The feasibility of the concept with FTIR in-situ monitoring as a core technology has been demonstrated. FTIR monitoring sensibly reflects process conditions.

  11. EDITORIAL: Sixth World Congress on Industrial Process Tomography (WCIPT6) Sixth World Congress on Industrial Process Tomography (WCIPT6)

    NASA Astrophysics Data System (ADS)

    Takei, Masahiro; Xu, Lijun

    2011-10-01

    We are pleased to publish this special feature on the Sixth World Congress on Industrial Process Tomography (WCIPT6) in Measurement Science and Technology. The international congress was successfully held in the campus of Beihang University, Beijing, China, from 6-9 September 2010. It was jointly organized by International Society for Industrial Process Tomography (ISIPT), North China Electric Power University (NCEPU) and Beihang University (BUAA). Process tomography is a tangible tool to visualize and determine the material distribution inside a process non-intrusively in real time. The internal features that can be monitored by process tomography are frequently encountered and required in the design of processes and industrial plants in the fields of chemical, oil, power and metallurgical engineering as well as many other activities such as food, material handling and combustion systems. One of the key characteristics of process tomography is to provide a direct impression and instant and clear understanding of a complex phenomenon. From the viewpoint of practical applications, industries all over the world are currently facing a number of daunting challenges including many wide-range and complex technical problems. The innovative technology of process tomography consistently contributes to providing better and better solutions to the problems as 'seeing is believing'. As a regular event, WCIPT is playing a more and more important role in addressing the challenges to overcome these problems. We are glad to see that this special feature provides a great opportunity for world-wide top-level researchers to discuss and make further developments in process tomography and its applications. The 20 articles included in this issue cover a wide range of relevant topics including sensors and sensing mechanisms, data acquisition systems and instrumentation, electrical, optical, acoustic and hybrid systems, image reconstruction and system evaluation, data and sensor fusion

  12. A radioactive metal processing industry perspective source.

    PubMed

    Johnson, A

    2006-11-01

    The current U.S. economic environment for the disposition of radioactive waste, including very-low-activity metals, is currently experiencing relatively low radioactive disposal costs and readily available disposal space. Despite the recent market increase in demand for recycled scrap metal commodities, there is still little change in the behavior of the nuclear industry (including radioactive waste processors and radioactive scrap metal recyclers) to pursue the recycling of potentially contaminated scrap metal. The relatively low cost of traditional radioactive waste disposal combined with the perceived risks associated with recycling of previously contaminated metals means that most U.S. radioactive facility managers and stakeholders will elect not to recycle. Current technology exists and precedence has been set for prescreening (by means of bulk radioactive assay techniques) scrap metal that is not contaminated and diverting it to industrial landfills for disposal. Other processes also allow some radiologically contaminated metals to be melted and recast into products with low, but acceptable, activity levels for restricted use in the nuclear industry. A new concept is being considered that would create a centralized licensed facility for the process and disposition of "very-low-activity" metals for "directed first use." The advantages to this type of approach would include a standardized method for licensing the clearance process.

  13. Radiomics: the process and the challenges.

    PubMed

    Kumar, Virendra; Gu, Yuhua; Basu, Satrajit; Berglund, Anders; Eschrich, Steven A; Schabath, Matthew B; Forster, Kenneth; Aerts, Hugo J W L; Dekker, Andre; Fenstermacher, David; Goldgof, Dmitry B; Hall, Lawrence O; Lambin, Philippe; Balagurunathan, Yoganand; Gatenby, Robert A; Gillies, Robert J

    2012-11-01

    "Radiomics" refers to the extraction and analysis of large amounts of advanced quantitative imaging features with high throughput from medical images obtained with computed tomography, positron emission tomography or magnetic resonance imaging. Importantly, these data are designed to be extracted from standard-of-care images, leading to a very large potential subject pool. Radiomics data are in a mineable form that can be used to build descriptive and predictive models relating image features to phenotypes or gene-protein signatures. The core hypothesis of radiomics is that these models, which can include biological or medical data, can provide valuable diagnostic, prognostic or predictive information. The radiomics enterprise can be divided into distinct processes, each with its own challenges that need to be overcome: (a) image acquisition and reconstruction, (b) image segmentation and rendering, (c) feature extraction and feature qualification and (d) databases and data sharing for eventual (e) ad hoc informatics analyses. Each of these individual processes poses unique challenges. For example, optimum protocols for image acquisition and reconstruction have to be identified and harmonized. Also, segmentations have to be robust and involve minimal operator input. Features have to be generated that robustly reflect the complexity of the individual volumes, but cannot be overly complex or redundant. Furthermore, informatics databases that allow incorporation of image features and image annotations, along with medical and genetic data, have to be generated. Finally, the statistical approaches to analyze these data have to be optimized, as radiomics is not a mature field of study. Each of these processes will be discussed in turn, as well as some of their unique challenges and proposed approaches to solve them. The focus of this article will be on images of non-small-cell lung cancer.

  14. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  15. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  16. Conceptual design of industrial process displays.

    PubMed

    Pedersen, C R; Lind, M

    1999-11-01

    Today, process displays used in industry are often designed on the basis of piping and instrumentation diagrams without any method of ensuring that the needs of the operators are fulfilled. Therefore, a method for a systematic approach to the design of process displays is needed. This paper discusses aspects of process display design taking into account both the designer's and the operator's points of view. Three aspects are emphasized: the operator tasks, the display content and the display form. The distinction between these three aspects is the basis for proposing an outline for a display design method that matches the industrial practice of modular plant design and satisfies the needs of reusability of display design solutions. The main considerations in display design in the industry are to specify the operator's activities in detail, to extract the information the operators need from the plant design specification and documentation, and finally to present this information. The form of the display is selected from existing standardized display elements such as trend curves, mimic diagrams, ecological interfaces, etc. Further knowledge is required to invent new display elements. That is, knowledge about basic visual means of presenting information and how humans perceive and interpret these means and combinations. This knowledge is required in the systematic selection of graphical items for a given display content. The industrial part of the method is first illustrated in the paper by a simple example from a plant with batch processes. Later the method is applied to develop a supervisory display for a condenser system in a nuclear power plant. The differences between the continuous plant domain of power production and the batch processes from the example are analysed and broad categories of display types are proposed. The problems involved in specification and invention of a supervisory display are analysed and conclusions from these problems are made. It is

  17. High-dose monoclonal antibodies via the subcutaneous route: challenges and technical solutions, an industry perspective.

    PubMed

    Narasimhan, Chakravarthy; Mach, Henryk; Shameem, Mohammed

    2012-07-01

    This review summarizes the various challenges in product development involved in subcutaneous administration of high-dose monoclonal antibodies and attempts to provide an industry perspective of some of the available technologies and potential avenues to overcome these challenges.

  18. Management of waste from stone processing industry.

    PubMed

    Prasanna, K; Joseph, Kurian

    2007-10-01

    Characteristics of waste generated in stone processing industries, impact of its current disposal practices and waste recycling potential were assessed by field studies. The physical and chemical characteristics of waste are comparable to construction materials like sand and cement. The environmental issues due to the disposal of waste including that on ambient air quality were identified at respective disposal sites. It was found that the waste can be used to replace about 60% of sand and 10% of cement in concrete. Similarly the waste can replace 40% of clay in clay bricks with affecting its compressive strength.

  19. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  20. Greenhouse gases and the metallurgical process industry

    SciTech Connect

    Lupis, C.H.P.

    1999-10-01

    The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

  1. Diffusion-Welded Microchannel Heat Exchanger for Industrial Processes

    SciTech Connect

    Piyush Sabharwall; Denis E. Clark; Michael V. Glazoff; Michael G. McKellar; Ronald E. Mizia

    2013-03-01

    The goal of next generation reactors is to increase energy ef?ciency in the production of electricity and provide high-temperature heat for industrial processes. The ef?cient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process. The need for ef?ciency, compactness, and safety challenge the boundaries of existing heat exchanger technology. Various studies have been performed in attempts to update the secondary heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more ef?cient industrial processes. Modern compact heat exchangers can provide high compactness, a measure of the ratio of surface area-to-volume of a heat exchange. The microchannel heat exchanger studied here is a plate-type, robust heat exchanger that combines compactness, low pressure drop, high effectiveness, and the ability to operate with a very large pressure differential between hot and cold sides. The plates are etched and thereafter joined by diffusion welding, resulting in extremely strong all-metal heat exchanger cores. After bonding, any number of core blocks can be welded together to provide the required ?ow capacity. This study explores the microchannel heat exchanger and draws conclusions about diffusion welding/bonding for joining heat exchanger plates, with both experimental and computational modeling, along with existing challenges and gaps. Also, presented is a thermal design method for determining overall design speci?cations for a microchannel printed circuit heat exchanger for both supercritical (24 MPa) and subcritical (17 MPa) Rankine power cycles.

  2. Challenges of electric power industry restructuring for fuel suppliers

    SciTech Connect

    1998-09-01

    The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

  3. Minor Planet Center: data processing challenges

    NASA Astrophysics Data System (ADS)

    Rudenko, Michael

    2016-01-01

    The Minor Planet Center receives up to several million astrometric observations of minor planets and comets each month. Given the volume of observations, the sheer number of known objects against which to possibly match, the shortness of the time interval over which each object was likely observed, and the uncertainties in the positions, and occasionally possible errors in times, reported, a number of data processing challenges present themselves. These include: Identifying observations of objects reported as new with already known objects; linking together sets of observations from different nights which may belong to the same object; determining if a set of observations has been assigned to the wrong object; determining if an object with a very short arc is possibly a Near-Earth object; prioritizing newly discovered objects in order of need of follow up; and, efficiently matching one or more observations with known objects.

  4. Using emulsion inversion in industrial processes.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana; Márquez, Laura; Peña, Alejandro; Pizzino, Aldo; Rodriguez, María P; Rondón-González, Marianna

    2004-05-20

    Emulsion inversion is a complex phenomenon, often perceived as an instability that is essentially uncontrollable, although many industrial processes make use of it. A research effort that started 2 decades ago has provided the two-dimensional and three-dimensional description, the categorization and the theoretical interpretation of the different kinds of emulsion inversion. A clear-cut phenomenological approach is currently available for understanding its characteristics, the factors that influence it and control it, the importance of fine-tuning the emulsification protocol, and the crucial occurrence of organized structures such as liquid crystals or multiple emulsions. The current know-how is used to analyze some industrial processes involving emulsion inversion, e.g. the attainment of a fine nutrient or cosmetic emulsion by temperature or formulation-induced transitional inversion, the preparation of a silicone oil emulsion by catastrophic phase inversion, the manufacture of a viscous polymer latex by combined inversion and the spontaneous but enigmatic inversion of emulsions used in metal working operations such as lathing or lamination.

  5. Antibiotic-resistant bacteria: a challenge for the food industry.

    PubMed

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  6. [Financial capital versus medical-industrial complex: challenges for the regulatory agencies].

    PubMed

    Iriart, Celia

    2008-01-01

    This article presents the structural processes that consolidated under the hegemony of the financial capital in the 90s; the dispute between the financial capital operating in the health sector and the medical-industrial complex; the strategies used by the medical-industrial complex for regaining positions; and the challenges all these processes pose for the regulatory agencies. The problems the regulatory agencies are facing lie in two central processes: 1) the hegemony the financial capital reached in the 90s in the health sector through reforms aimed at deregulating the sector in order to facilitate its entrance; and 2) the repositioning of the medical-industrial complex since the mid 90s by radicalizing medicalization. This article is based on several studies conducted by the author using qualitative methods and quantitative secondary data for understanding the historical-situational context. The theoretical approach was based on Marx, Gramsci, Benasayag, Badiou, Testa and Merhy. The analyses of the most recent reforms induced by the medical-industrial complex were the result of a bibliographic and document review.

  7. Neural networks in the process industries

    SciTech Connect

    Ben, L.R.; Heavner, L.

    1996-12-01

    Neural networks, or more precisely, artificial neural networks (ANNs), are rapidly gaining in popularity. They first began to appear on the process-control scene in the early 1990s, but have been a research focus for more than 30 years. Neural networks are really empirical models that approximate the way man thinks neurons in the human brain work. Neural-net technology is not trying to produce computerized clones, but to model nature in an effort to mimic some of the brain`s capabilities. Modeling, for the purposes of this article, means developing a mathematical description of physical phenomena. The physics and chemistry of industrial processes are usually quite complex and sometimes poorly understood. Our process understanding, and our imperfect ability to describe complexity in mathematical terms, limit fidelity of first-principle models. Computational requirements for executing these complex models are a further limitation. It is often not possible to execute first-principle model algorithms at the high rate required for online control. Nevertheless, rigorous first principle models are commonplace design tools. Process control is another matter. Important model inputs are often not available as process measurements, making real-time application difficult. In fact, engineers often use models to infer unavailable measurements. 5 figs.

  8. Nutrition policy process challenges in Iran

    PubMed Central

    Goshtaei, Massomeh; Ravaghi, Hamid; Sari, Ali Akbari; Abdollahi, Zahra

    2016-01-01

    Introduction Nutrition transition is occurring rapidly in the world, especially in developing countries. The nutrition transition occurred in Iran very fast due to urbanization and changes in the lifestyle of people, leading to overweight and obesity. However, nutritional deficiencies are still detected due to economic factors and low nutritional knowledge. Nutrition policies do not adequately respond to the nutrition challenges in Iran. This study was conducted to evaluate and analyze the nutrition policy process challenges in Iran. Methods A qualitative study using semi-structured interviews was conducted with 59 policy makers and nutrition experts of medical universities across Iran. Interviews were continued until data saturation was achieved. Data were supplemented with surveys and documentary analysis. Thematic analysis was guided by the propositions of the stages heuristic framework. Results The results were categorized into four main themes and eight sub-themes. The main themes were 1) nutrition problem definition, 2) policy formulation, 3) implementation of the policies, and 4) evaluation of the policies. However, the multi-faceted nature of the nutritional problem makes it difficult to deal with, so a multi-sectoral approach is needed. Conclusion Nutrition policies have been implemented in Iran with varying degrees of success and with different levels of cross-sectoral collaboration. The nutrition policies sometimes have not been able to respond to the nutritional problems. One of the important reasons is that nutrition is not a priority for policy makers. Many policies suffer from a lack of adequate and appropriate resource allocation. Cooperation mechanisms to resolve nutritional problems are sometimes ineffective and inefficient. PMID:27053992

  9. Industrial applications of process imaging and image processing

    NASA Astrophysics Data System (ADS)

    Scott, David M.; Sunshine, Gregg; Rosen, Lou; Jochen, Ed

    2001-02-01

    Process imaging is the art of visualizing events inside closed industrial processes. Image processing is the art of mathematically manipulating digitized images to extract quantitative information about such processes. Ongoing advances in camera and computer technology have made it feasible to apply these abilities to measurement needs in the chemical industry. To illustrate the point, this paper describes several applications developed at DuPont, where a variety of measurements are based on in-line, at-line, and off-line imaging. Application areas include compounding, melt extrusion, crystallization, granulation, media milling, and particle characterization. Polymer compounded with glass fiber is evaluated by a patented radioscopic (real-time X-ray imaging) technique to measure concentration and dispersion uniformity of the glass. Contamination detection in molten polymer (important for extruder operations) is provided by both proprietary and commercial on-line systems. Crystallization in production reactors is monitored using in-line probes and flow cells. Granulation is controlled by at-line measurements of granule size obtained from image processing. Tomographic imaging provides feedback for improved operation of media mills. Finally, particle characterization is provided by a robotic system that measures individual size and shape for thousands of particles without human supervision. Most of these measurements could not be accomplished with other (non-imaging) techniques.

  10. Challenges IT Instructors Face in the Self-Education Process

    ERIC Educational Resources Information Center

    Ruzic-Dimitrijevic, Ljiljana; Dimitrijevic, Maja

    2010-01-01

    Every few years, there is a breakthrough in information technology, introducing a new concept that becomes widely used. This paper deals with the challenges IT (information technology) instructors face due to these rapid developments in the IT industry. More specifically, we are interested in the challenges instructors of the introductory IT…

  11. Minor Planet Center Data Processing Challenges

    NASA Astrophysics Data System (ADS)

    Rudenko, Michael

    2015-08-01

    The Minor Planet Center (MPC) is the single worldwide location for receipt and distribution of positional measurements of minor planets, comets and outer irregular natural satellites of the major planets. The MPC is responsible for the identification, designation and orbit computation for all of these objects.Over 2 million observations are received each month via the internet, and are validated and processed in near real time. The observations come in batches whose formats are checked and whose observations are run through a number of other routine checks such as departure from great circle motion, prior publication, single observations, near duplicates, etc. Some or all of a batch of observations may be returned to its sender if they fail one or more of the checks. After the observations have been validated, they are processed to produce orbits of newly discovered objects or used to update the orbits of known objects.Given the volume of observations, the sheer number of known objects against which to possibly match, the shortness of the time interval over which each object was likely observed, and the uncertainties in the positions, and occasionally possible errors in times, reported, a number of data processing challenges face the MPC. These include the following: Identifying observations of objects reported as new with already known objects; linking together sets of observations from different nights (possibly at different apparitions) which may belong to the same object; determining if a set of observations has been assigned to the wrong object; determining if an object with a very short arc is possibly a Near-Earth object; determining and examining the range of possible variant orbits of newly discovered Near-Earth objects with very short observation arcs for cases which indicate an object is potentially on a collision course with Earth; linking observations to known artificial satellites and/or booster stages and other space "junk"; prioritizing newly

  12. Big Data Analytics Solutions: The Implementation Challenges in the Financial Services Industry

    ERIC Educational Resources Information Center

    Ojo, Michael O.

    2016-01-01

    The challenges of Big Data (BD) and Big Data Analytics (BDA) have attracted disproportionately less attention than the overwhelmingly espoused benefits and game-changing promises. While many studies have examined BD challenges across multiple industry verticals, very few have focused on the challenges of implementing BDA solutions. Fewer of these…

  13. A 'Fine' chemical industry for life science products: green solutions to chemical challenges.

    PubMed

    Bruggink, A; Straathof, A J J; van der Wielen, L A M

    2003-01-01

    Modern biotechnology, in combination with chemistry and process technology, is crucial for the development of new clean and cost effective manufacturing concepts for fine-chemical, food specialty and pharmaceutical products. The impact of biocatalysis on the fine-chemicals industry is presented, where reduction of process development time, the number of reaction steps and the amount of waste generated per kg of end product are the main targets. Integration of biosynthesis and organic chemistry is seen as a key development. The advances in bioseparation technology need to keep pace with the rate of development of novel bio- or chemocatalytic process routes with revised demands on process technology. The need for novel integrated reactors is also presented. The necessary acceleration of process development and reduction of the time-to-market seem well possible, particularly by integrating high-speed experimental techniques and predictive modelling tools. This is crucial for the development of a more sustainable fine-chemicals industry. The evolution of novel 'green' production routes for semi-synthetic antibiotics (SSAs) that are replacing existing chemical processes serves as a recent and relevant case study of this ongoing integration of disciplines. We will also show some challenges in this specific field.

  14. Process economics of industrial monoclonal antibody manufacture.

    PubMed

    Farid, Suzanne S

    2007-03-15

    Pressures for cost-effective manufacture of antibodies are growing given their high doses and increasing market potential that have resulted in significant increases in total site capacities of up to 200,000 L. This paper focuses on the process economic issues associated with manufacturing antibodies and reviews the cost studies published in the literature; many of the issues highlighted are not only specific to antibodies but also apply to recombinant proteins. Data collated at UCL suggest current benchmark investment costs of $660-$1580/ft2 ($7130-$17,000/m2) and $1765-$4220/L for antibody manufacturing facilities with total site capacities in the range of 20,000-200,000 L; the limitations of the data are highlighted. The complications with deriving benchmark cost of goods per gram (COG/g) values are discussed, stressing the importance of stating the annual production rate and either titre or fermentation capacity with the cost so as to allow comparisons. The uses and limitations of the methods for cost analysis and the available software tools for process economics are presented. Specific examples found in the literature of process economic studies related to antibody manufacture for different expression systems are reviewed. The key economic drivers are identified; factors such as fermentation titre and overall yield are critical determinants of economic success. Future trends in antibody manufacture that are driven by economic pressures are discussed, such as the use of alternative expression systems (e.g. transgenics, E. coli and yeast), disposables, and improvements to downstream technology. The hidden costs and the challenges in each case are highlighted.

  15. Analysis of the physiotherapy industry: challenges for marketing.

    PubMed

    Sheppard, L

    1996-01-01

    The physiotherapy industry can be analysed using Porter's (1979) five forces. Physiotherapy uses medical, geographic and funding segmentation. The power of the buyers in these segments is considerable. Substitutes are posing a threat to physiotherapy with few barriers to entry to operate in the health care environment. The suppliers, particularly doctors, have significant power in referring clients. Competitive rivalry for these clients can exist between individual physiotherapists and multi-disciplinary clinics. The difference in orientation of private and public physiotherapy can also be a basis for rivalry. Repositioning to view the client as both the supplier and recipients enables the physiotherapy industry to gain competitive advantage and ensures long term growth.

  16. Industrial waste reduction: The process problem

    SciTech Connect

    Valentino, F.W.; Walmet, G.E.

    1986-09-01

    Industrial waste problems, especially those involving hazardous waste, seem to be pervasive. The national media report newly discovered waste problems and sites with alarming regularity. Examples that immediately come to mind are Love Canal, New York; Times Beach, Missouri; and Seveso, Italy. Public perceptions of the industrial waste problem, reflecting the media's focus, appear to be that: large corporations are solely responsible for creating waste dumps, and the only role of government is to prevent illegal dumping and to regulate, fine, and require corporations to rectify the problem; all efforts should be directed toward preventing illegal dumping and treatment of the existing waste dumps; all industrial wastes can be classified as hazardous in nature. This general impression is both inaccurate and incomplete. All industrial waste is not hazardous (although most of it is not benign). All waste producers are not large corporations: nearly all industries produce some wastes. And, while existing waste sites must be effectively treated, additional efforts are needed at other points in the industrial waste cycle. Most people would agree both that waste dumping must be carefully regulated because of its negative impacts on the environment and that the less waste the better, even with carefully regulated disposal. Since nearly all industry now produces some waste and no one expects industry to shut down to resolve the waste problem, other strategies need to be available to deal with the problem at the front end. This paper discusses alternative strategies.

  17. Behavioral Safety in the Food Services Industry: Challenges and Outcomes

    ERIC Educational Resources Information Center

    Lebbon, Angela; Sigurdsson, Sigurdur Oli; Austin, John

    2012-01-01

    During the course of a 6-year behavioral safety consult at a food and drink industry site, data were collected on the number of Occupational Safety Health Administration (OSHA) recordable incidents, number of lost and restricted days, and number of peer safety observations. Employees were trained to identify safe and unsafe behavior, conduct peer…

  18. Contemporary Challenges for Two-Year Postsecondary Industrial Education.

    ERIC Educational Resources Information Center

    Graba, Joseph P.

    1988-01-01

    The author discusses major forces for change and their impact on two-year postsecondary industrial education. He offers suggestions in several areas, including (1) broadened offerings, (2) older students, (3) marketing, (4) intake procedures, (5) instructional improvement, (6) declining and emerging occupations, and (7) employment placement. (CH)

  19. Overcoming the challenges in the pharma/biotech industry.

    PubMed

    Graul, A I; Prous, J R

    2007-01-01

    In the face of patent expirations at a time of declining innovation across the industry, companies are restructuring their research and development operations and are pursuing an aggressive strategy of acquisitions, licensing deals and research collaborations to boost their drug pipelines.

  20. Rock Mechanics Models and Measurements Challenges from Industry. Proceedings

    SciTech Connect

    Laubach, S.E.; Nelson, P.P.

    1994-01-01

    Increased mutual dependence of the economies of Canada, the United States and Mexico has now been recognized formally by agreements between the respective national governments. Noting the basic economic role of rock mechanics in the resource recovery and construction industries, it is appropriate that the First North American Rock Mechanics Symposium should confirm mutual interest in rock mechanics research and engineering practice in the neighboring countries. Different government and industrial emphases in the NAFTA countries lead to complementary strengths in their research and engineering programs. The First NARM Symposium is the first opportunity to explore thoroughly, within the scope of a single meeting, rock mechanics research in progress and engineering achievements in the three countries. Individual papers abstracted separately.

  1. Prospects and challenges for industrial production of seaweed bioactives.

    PubMed

    Hafting, Jeff T; Craigie, James S; Stengel, Dagmar B; Loureiro, Rafael R; Buschmann, Alejandro H; Yarish, Charles; Edwards, Maeve D; Critchley, Alan T

    2015-10-01

    Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products.

  2. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  3. Challenges for pharmaceutical industry: new partnerships for sustainable human health.

    PubMed

    Hunter, Jackie

    2011-05-13

    The healthcare burden is increasing in both the developed and the developing world and there is widespread acceptance that the historical pharmaceutical business model is not sustainable. In order to meet the healthcare challenge, companies and academia need to develop new business models to increase the probability of success and decrease the cost of failure. New partnerships have already emerged in the area of neglected diseases and other models for diseases of the developed world are emerging.

  4. Challenges and opportunities in plasma processing

    SciTech Connect

    Garscadden, A.; Bletzinger, P.; Ganguly, B.N. )

    1992-07-01

    Contemporary researchers have attempted to establish calibrated reference cells for RF-excited discharges at institutions where experimental and theoretical techniques in the area of plasma processing can be tested. Examples of contemporary research in the areas of negative ions, the presence of particulates in plasma processing, modulated discharge processing, microloading, digital plasma processing, and charge trapping are reviewed. The implications of research results on different discharge configurations under investigation are discussed. Measurement techniques in plasma processing and modelling approaches are described. The complexity of the multistep processes involved in plasma processing requires the use of multidimensional models to understand and optimize the conditions required for such processes as conformal deposition, selective etching, and three-dimensional circuits. 20 refs.

  5. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  6. INCORPORATING INDUSTRIAL ECOLOGY INTO HIERARCHICAL CHEMICAL PROCESS DESIGN

    EPA Science Inventory

    Incorporating Industrial Ecology into Hierarchical Chemical Process Design: Determining Targets for the Exchange of Waste

    The exchange of waste to be used as a recycled feed has long been encouraged by practitioners of industrial ecology. Industrial ecology is a field t...

  7. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  8. Identifying the Ethical Challenges Encountered by Information Technology Professionals Working within the Nevada Casino Industry

    ERIC Educational Resources Information Center

    Essig, Michael R.

    2014-01-01

    A thematic analysis qualitative study was used to identify the unethical challenges encountered by Information Technology (IT) professionals working within the Nevada casino industry. Fourteen current and former IT leaders working or who worked in the Nevada casino industry were interviewed. Using thematic analysis, nine themes regarding ethical…

  9. Academia-Industry-Government Linkages in Tanzania: Trends, Challenges and Prospects

    ERIC Educational Resources Information Center

    Mpehongwa, Gasper

    2013-01-01

    This paper analyzed trends, challenges and prospects of academia-industry-government linkages in Tanzania. Using case study design, and documentary review to gather the required data, the study sought to answer three research questions: (1) what are the trends of academia-industry-government linkages in Tanzania?, (2) what are the challenges…

  10. Possibilities and challenges for biosurfactants use in petroleum industry.

    PubMed

    Perfumo, Amedea; Rancich, Ivo; Banat, Ibrahim M

    2010-01-01

    Biosurfactants are a group of microbial molecules identified by their unique capabilities to interact with hydrocarbons. Emulsification and de-emulsification, dispersion, foaming, wetting and coating are some of the numerous surface activities that biosurfactants can achieve when applied within systems such as immiscible liquid/liquid (e.g., oil/water), solid/ liquid (e.g., rock/oil and rock/water) and gas/liquid. Therefore, the possibilities of exploiting these bioproducts in oil-related sciences are vast and made petroleum industry their largest possible market at present. The role of biosurfactants in enhancing oil recovery from reservoirs is certainly the best known; however they can be effectively applied in many other fields from transportation of crude oil in pipeline to the clean-up of oil storage tanks and even manufacturing of fine petrochemicals. When properly used, biosurfactants are comparable to traditional chemical analogues in terms of performances and offer advantages with regard to environment protection/conservation. This chapter aims at providing an up-to-date overview of biosurfactant roles, applications and possible future uses related to petroleum industry.

  11. Process simulation in the pharmaceutical industry: a review of some basic physical models.

    PubMed

    Kremer, D M; Hancock, B C

    2006-03-01

    This study reviews process modeling efforts which have been developed to elucidate the fundamental physical process underlying the manufacture and delivery of pharmaceutical dosage forms. Within the pharmaceutical industry, process models have been applied to a diverse array of physical processes at length and time scales that vary by orders of magnitude. As such, both large-scale continuum and particle-scale discrete approaches will be discussed in this study. Challenges associated with the practical application of process models within the pharmaceutical industry will be discussed, and opportunities for future research will be identified.

  12. The Democratic Process: Promises and Challenges.

    ERIC Educational Resources Information Center

    Bragaw, Donald, Ed.

    When the Berlin Wall (East Germany) came down, it symbolically foretold the end of the Soviet Union domination of Eastern Europe and Central Asia. This resource guide examines the process toward democratization occurring in those regions. The guide updates the available classroom material on the democratic process. It is divided into three…

  13. Mechanistic pathway modeling for industrial biotechnology: challenging but worthwhile.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan

    2011-10-01

    Mechanistic (also called kinetic) models quantitatively describe dynamic and steady states of biochemical pathways. They are based on network structure (stoichiometry), regulatory information (enzyme inhibitors and activators) and the corresponding reaction kinetics. Although this approach to understand and predict the behavior of biochemical networks has now been in use for almost half a century, its experimental foundation has dramatically changed in the data-rich age of systems biology. Large mechanistic models, ranging up to the genome scale, are now being built and lots of data are available to validate and test them. From the broad scope of possible modeling applications, this survey focuses on the recent developments and central problems of metabolic network modeling in the field of bioprocess development for industrial biotechnology.

  14. Effects of wireless packet loss in industrial process control systems.

    PubMed

    Liu, Yongkang; Candell, Richard; Moayeri, Nader

    2017-02-09

    Timely and reliable sensing and actuation control are essential in networked control. This depends on not only the precision/quality of the sensors and actuators used but also on how well the communications links between the field instruments and the controller have been designed. Wireless networking offers simple deployment, reconfigurability, scalability, and reduced operational expenditure, and is easier to upgrade than wired solutions. However, the adoption of wireless networking has been slow in industrial process control due to the stochastic and less than 100% reliable nature of wireless communications and lack of a model to evaluate the effects of such communications imperfections on the overall control performance. In this paper, we study how control performance is affected by wireless link quality, which in turn is adversely affected by severe propagation loss in harsh industrial environments, co-channel interference, and unintended interference from other devices. We select the Tennessee Eastman Challenge Model (TE) for our study. A decentralized process control system, first proposed by N. Ricker, is adopted that employs 41 sensors and 12 actuators to manage the production process in the TE plant. We consider the scenario where wireless links are used to periodically transmit essential sensor measurement data, such as pressure, temperature and chemical composition to the controller as well as control commands to manipulate the actuators according to predetermined setpoints. We consider two models for packet loss in the wireless links, namely, an independent and identically distributed (IID) packet loss model and the two-state Gilbert-Elliot (GE) channel model. While the former is a random loss model, the latter can model bursty losses. With each channel model, the performance of the simulated decentralized controller using wireless links is compared with the one using wired links providing instant and 100% reliable communications. The sensitivity of the

  15. Science Lessons from Industrial Processes--Sunderland.

    ERIC Educational Resources Information Center

    Nellist, J.

    1980-01-01

    Presents aims of an inservice course designed to encourage science teachers to incorporate material of relevance to the local industrial scene into their existing curricula. Projects required by participants in the course are listed with their brief descriptions and possible applications in the classroom. (CS)

  16. Rubber Plastics Processing Industry Training Board

    ERIC Educational Resources Information Center

    Industrial Training International, 1974

    1974-01-01

    The training adviser's role is changing from trainer to problem analyst. Some of the problems being dealt with include: (1) the school to industry transition, (2) new training methods for the 16 to 18 year old entry worker, (3) foreign language training, (4) safety programs, and (5) tire-fitter training. (MW)

  17. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  18. System for monitoring an industrial or biological process

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Vilim, R.B.; White, A.M.

    1998-06-30

    A method and apparatus are disclosed for monitoring and responding to conditions of an industrial process. Industrial process signals, such as repetitive manufacturing, testing and operational machine signals, are generated by a system. Sensor signals characteristic of the process are generated over a time length and compared to reference signals over the time length. The industrial signals are adjusted over the time length relative to the reference signals, the phase shift of the industrial signals is optimized to the reference signals and the resulting signals output for analysis by systems such as SPRT. 49 figs.

  19. Use of solar energy to produce process heat for industry

    NASA Astrophysics Data System (ADS)

    Brown, K.

    1980-04-01

    The role of solar energy in supplying heat and hot water to residential and commerical buildings is familiar. On the other hand, the role that solar energy may play in displacing imported energy supplies in the industrial and utility sectors often goes unrecognized. The versatility of solar technology lends itself well to applications in industry; particulary to the supplemental supply for process heat. The status of solar thermal technology for industrial process heat applications, including a description of current costs and operating histories is surveyed. The most important objectives to be met in improving system performance, reducing cost, and identifying markets for solar industrial process heat are outlined.

  20. [Evaluation of microbial contamination of linens in industrial laundry processes].

    PubMed

    Sanna, Adriana; Coroneo, Valentina; Dessì, Sandro; Brandas, Valeria

    2013-01-01

    Laundering linens and protecting them from microbiological recontamination are critical issues for the hotel and food industries and especially for hospitals. This study was performed to evaluate a sample of industrial laundries in Sardinia (Italy), to assess their compliance with national hygienic and sanitary regulations, along the complete laundering process. Study results indicate that industrial laundering processes are effective and that better awareness of staff who handle laundered textiles is required to reduce the risk of recontamination.

  1. Current Computational Challenges for CMC Processes, Properties, and Structures

    NASA Technical Reports Server (NTRS)

    DiCarlo, James

    2008-01-01

    In comparison to current state-of-the-art metallic alloys, ceramic matrix composites (CMC) offer a variety of performance advantages, such as higher temperature capability (greater than the approx.2100 F capability for best metallic alloys), lower density (approx.30-50% metal density), and lower thermal expansion. In comparison to other competing high-temperature materials, CMC are also capable of providing significantly better static and dynamic toughness than un-reinforced monolithic ceramics and significantly better environmental resistance than carbon-fiber reinforced composites. Because of these advantages, NASA, the Air Force, and other U.S. government agencies and industries are currently seeking to implement these advanced materials into hot-section components of gas turbine engines for both propulsion and power generation. For applications such as these, CMC are expected to result in many important performance benefits, such as reduced component cooling air requirements, simpler component design, reduced weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Although much progress has been made recently in the development of CMC constituent materials and fabrication processes, major challenges still remain for implementation of these advanced composite materials into viable engine components. The objective of this presentation is to briefly review some of those challenges that are generally related to the need to develop physics-based computational approaches to allow CMC fabricators and designers to model (1) CMC processes for fiber architecture formation and matrix infiltration, (2) CMC properties of high technical interest such as multidirectional creep, thermal conductivity, matrix cracking stress, damage accumulation, and degradation effects in aggressive environments, and (3) CMC component life times when all of these effects are interacting in a complex stress and service

  2. External research and energy efficiency in the process industries

    SciTech Connect

    Kaarsberg, T.M.; Foust, T.D.

    1997-07-01

    The process industries in the US are under enormous pressure. These industries, even more than US industry on average, face skyrocketing environmental costs, a rapidly changing electricity market, potential climate change policies, aging infrastructure and strong international competition. To be profitable they must reduce their costs and environmental impacts while increasing their product quality, turnaround time, productivity and output. Most of these industries have already cut costs and labor as much as possible. Therefore, to survive, these industries must innovate. History shows that industries that are the most innovative are the most successful. These industries are vital to the US economy. For example, the metals, pulp and paper, chemicals and the petroleum refining industries account for more than $800 billion in products shipped and employ more than three million workers. Although the US has shifted dramatically toward services with 77% of workers and 74% of GDP now in the service sector, what many have missed is that the process industries are important customers for many of these new services. ServOnly the last two years of NSF industrial R and D data provide any breakout of non-manufacturing R and D. This paper discusses the past, current and possible future role of eternal research and development (R and D)--much of which is now in the service sector--in fostering innovation and thus energy efficiency in these industries. The authors suggest that these industries are more innovative than previously thought because of external research.

  3. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  4. Grand Challenge Portfolio: Driving Innovation in Industrial Energy Efficiency

    SciTech Connect

    2011-01-04

    Under the Recovery Act, AMO provided cost-shared funding for early-stage, low-cost, "concept definition studies" of 47 promising innovations for next-generation manufacturing, energy-intensive processes, advanced materials, and greenhouse gas emissions reduction. The brochure provides information on each of these projects.

  5. Process models: analytical tools for managing industrial energy systems

    SciTech Connect

    Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T

    1980-01-01

    How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.

  6. Hybrid modeling for quality by design and PAT-benefits and challenges of applications in biopharmaceutical industry.

    PubMed

    von Stosch, Moritz; Davy, Steven; Francois, Kjell; Galvanauskas, Vytautas; Hamelink, Jan-Martijn; Luebbert, Andreas; Mayer, Martin; Oliveira, Rui; O'Kennedy, Ronan; Rice, Paul; Glassey, Jarka

    2014-06-01

    This report highlights the drivers, challenges, and enablers of the hybrid modeling applications in biopharmaceutical industry. It is a summary of an expert panel discussion of European academics and industrialists with relevant scientific and engineering backgrounds. Hybrid modeling is viewed in its broader sense, namely as the integration of different knowledge sources in form of parametric and nonparametric models into a hybrid semi-parametric model, for instance the integration of fundamental and data-driven models. A brief description of the current state-of-the-art and industrial uptake of the methodology is provided. The report concludes with a number of recommendations to facilitate further developments and a wider industrial application of this modeling approach. These recommendations are limited to further exploiting the benefits of this methodology within process analytical technology (PAT) applications in biopharmaceutical industry.

  7. Software Engineering Challenges for Parallel Processing Systems

    DTIC Science & Technology

    2008-05-02

    count + 2 = 4 write count = 4 This type of error caused by Therac - 25 radiation therapy machine resulted in 5 deaths Data Race Deadlock PROCESS 1 Send...OpenMP Jacobi using OpenMP 1 5 25 125 625 1 2 4 8 16 Execution Time Sequential OpenMP 1 2 4 8 16 32 64 128 256 1 2 4 8 16 Execution Time Sequential

  8. Workshop proceedings: challenges and opportunities in evaluating protein allergenicity across biotechnology industries.

    PubMed

    Stagg, Nicola J; Ghantous, Hanan N; Ladics, Gregory S; House, Robert V; Gendel, Steven M; Hastings, Kenneth L

    2013-01-01

    A workshop entitled "Challenges and Opportunities in Evaluating Protein Allergenicity across Biotechnology Industries" was held at the 51st Annual Meeting of the Society of Toxicology (SOT) in San Francisco, California. The workshop was sponsored by the Biotechnology Specialty Section of SOT and was designed to present the science-based approaches used in biotechnology industries to evaluate and regulate protein allergenicity. A panel of experts from industry and government highlighted the allergenicity testing requirements and research in the agricultural, pharmaceutical/biopharma, and vaccine biotechnology industries and addressed challenges and opportunities for advancing the science of protein allergenicity. The main learning from the workshop was that immunoglobulin E-mediated allergenicity of biotechnology-derived products is difficult to assess without human data. The approaches currently being used to evaluate potential for allergenicity across biotechnology industries are very different and range from bioinformatics, in vitro serology, in vivo animal testing, in vitro and in vivo functional assays, and "biosimilar" assessments (ie, biotherapeutic equivalents to innovator products). The challenge remains with regard to the different or lack of regulatory requirements for allergenicity testing across industries, but the novel approaches being used with bioinformatics and biosimilars may lead to opportunities in the future to collaborate across biotechnology industries.

  9. Membrane separation processes in the petrochemical industry

    SciTech Connect

    Li, N.N.; Funk, E.W.; Chang, Y.A.; Kulkarni, S.S.; Swamikannu, A.X.; White, L.S.

    1987-09-30

    This report provides an overview of a project with Allied-Signal which focused on developing new membrane technology with potential for energy conservation in the petrochemical industry. Three applications were investigated: (1) bulk removal of polar (sour) gases from natural gas using spiral-wound, cellulose acetate membranes; (2) recovery of solvent from solvent/heavy oil mixtures using polysulfone ultrafiltration membranes; and (3) separation of polar gases (e.g., H{sub 2}S and NH{sub 3} from H{sub 2}) using mixed-matrix, facilitated-transport membranes. This report summarizes laboratory research results performed in an earlier phase of this project and provides results from pilot-scale, field test studies and economic assessments.

  10. Evolution of the radiation processing industry

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2013-04-01

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  11. Evolution of the radiation processing industry

    SciTech Connect

    Cleland, Marshall R.

    2013-04-19

    Early investigations of the effects of treating materials with ionizing radiations began in 1894 with the irradiation of gases at atmospheric pressure using cathode rays from a Crookes gas-discharge tube, in 1895 with the discovery of X-rays emitted from a Crookes tube, and in 1896 with the discovery of radioactivity in uranium. In 1897, small electrically charged particles were detected and identified in the gas discharges inside Crookes tubes. These particles were then named electrons. During the next three decades, it was found that these novel forms of energy could produce ions to initiate chemical reactions in some gases and liquids. By 1921, it had also been shown that insects, parasites and bacteria could be killed by treatment with ionizing radiation. In 1925, a high-vacuum tube with a thermionic cathode and a thin metallic anode was developed to produce electron beams in air by using accelerating potentials up to 250 kilovolts. That unique apparatus was the precursor of the many types of electron accelerators that have been developed since then for a variety of industrial applications. In 1929, the vulcanization of natural rubber without using any chemical additives was achieved by irradiation with electrons from a 250 kilovolt accelerator. In 1939, several liquid monomers were polymerized by treatment with gamma rays from radioactive nuclides. These early results were not exploited before the end of World War II because intense sources of ionizing radiation were not available then. Shortly after that war, there was increased interest in developing the peaceful uses of atomic energy, which included the chemical and biological effects of radiation exposures. Many uses that have been developed since then are described briefly in this paper. These industrial applications are now producing billions of US dollars in revenue every year.

  12. Challenges

    ERIC Educational Resources Information Center

    Moore, Thomas R.

    1975-01-01

    Domestic and international challenges facing the National Society for the Prevention of Blindness are discussed; and U.S. and Russian programs in testing and correcting children's vision, developing eye safety programs in agriculture and industry, and disseminating information concerning the detection and treatment of cataracts are compared. (SB)

  13. INDUSTRY-WIDE, MULTI-INDUSTRY AND ECONOMY-WIDE PROCESS ANALYSIS,

    DTIC Science & Technology

    Process analysis , as the term is used here, refers to the formal analysis of industrial productive processes. It consists of (a) the construction of...wide process analysis model is compared with other economy-wide models. It also discusses what can and cannot be hoped for from an economy-wide process analysis .

  14. [Occupational deafness in workers of gas-processing industry].

    PubMed

    Raĭtselis, I V

    2009-01-01

    A total of 1121 workers serving processing unit operators, including operators (n = 673), drivers (n = 201), and fitters (n = 247), were examined at a gas-processing plant (GPP). A complex of negative industrial factors in the gas-processing industry workers was ascertained to be formed due to their exposure to high noise along with class 3.2 hard work. The total rate of the working conditions at the GPP in terms of the intensity of negative industrial factors corresponds to Class 3.3-3.4, which determines the increased likelihood of occupational deafness in the workers.

  15. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach

    ERIC Educational Resources Information Center

    Philbin, Simon P.

    2010-01-01

    A management framework has been successfully utilized at Imperial College London in the United Kingdom to improve the process for developing and managing university-industry research collaborations. The framework has been part of a systematic approach to increase the level of research contracts from industrial sources, to strengthen the…

  16. Development of industrial ion implantation and ion assisted coating processes: A perspective

    NASA Astrophysics Data System (ADS)

    Legg, Keith O.; Solnick-Legg, Hillary

    1989-04-01

    Ion beam processes have gone through a series of developmental stages, from being the mainstay of the semiconductor industry for production of integrated circuits, to new commercial processes for biomedical, aerospace and other industries. Although research is still continuing on surface modification using ion beam methods, ion implantation and ion assisted coatings for treatment of metals, ceramics, polymers and composites must now be considered viable industrial processes of benefit in a wide variety of applications. However, ion implantation methods face various barriers to acceptability, in terms not only of other surface treatment processes, but for implantation itself. This paper will discuss some of the challenges faced by a small company whose primary business is development and marketing of ion implantation and ion-assisted coating processes.

  17. Energy Conservation Guide for Industrial Processes.

    DTIC Science & Technology

    1981-01-01

    concentration in the surrounding area, so that ventilation may be minimized by careful trial and measurement. Interlocking of cover and exhaust fan is...to interlock tank exhaust with tank covers, to ventilate only when the cover is open. The use of hollow plastic spheres or other plastic configurations...ACTIVITY LOCATION: FL BAY " 5. AUTOMATIC CONTROLS Temperature . .. . . . . Process Timers . . . . . Electric Demand Interlocks

  18. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges.

    PubMed

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-02-06

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well.

  19. Industrial Internet of Things-Based Collaborative Sensing Intelligence: Framework and Research Challenges

    PubMed Central

    Chen, Yuanfang; Lee, Gyu Myoung; Shu, Lei; Crespi, Noel

    2016-01-01

    The development of an efficient and cost-effective solution to solve a complex problem (e.g., dynamic detection of toxic gases) is an important research issue in the industrial applications of the Internet of Things (IoT). An industrial intelligent ecosystem enables the collection of massive data from the various devices (e.g., sensor-embedded wireless devices) dynamically collaborating with humans. Effectively collaborative analytics based on the collected massive data from humans and devices is quite essential to improve the efficiency of industrial production/service. In this study, we propose a collaborative sensing intelligence (CSI) framework, combining collaborative intelligence and industrial sensing intelligence. The proposed CSI facilitates the cooperativity of analytics with integrating massive spatio-temporal data from different sources and time points. To deploy the CSI for achieving intelligent and efficient industrial production/service, the key challenges and open issues are discussed, as well. PMID:26861345

  20. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    EPA Pesticide Factsheets

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  1. Secure VM for Monitoring Industrial Process Controllers

    SciTech Connect

    Dasgupta, Dipankar; Ali, Mohammad Hassan; Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T; Carvalho, Marco

    2011-01-01

    In this paper, we examine the biological immune system as an autonomic system for self-protection, which has evolved over millions of years probably through extensive redesigning, testing, tuning and optimization process. The powerful information processing capabilities of the immune system, such as feature extraction, pattern recognition, learning, memory, and its distributive nature provide rich metaphors for its artificial counterpart. Our study focuses on building an autonomic defense system, using some immunological metaphors for information gathering, analyzing, decision making and launching threat and attack responses. In order to detection Stuxnet like malware, we propose to include a secure VM (or dedicated host) to the SCADA Network to monitor behavior and all software updates. This on-going research effort is not to mimic the nature but to explore and learn valuable lessons useful for self-adaptive cyber defense systems.

  2. Software process improvement for the medical industry.

    PubMed

    McCaffery, Fergal; Donnelly, Peter; McFall, Donald; Wilkie, Frederick George

    2005-01-01

    This chapter describes a software process improvement framework, structured to ensure regulatory compliance for the software developed in medical devices. Software is becoming an increasingly important aspect of medical devices and medical device regulation. Medical devices can only be marketed if compliance and approval from the appropriate regulatory bodies of the Food and Drug Administration (US requirement), and the European Commission under its Medical Device Directives (CE marking requirement) is achieved.

  3. Radiographic image processing for industrial applications

    NASA Astrophysics Data System (ADS)

    Dowling, Martin J.; Kinsella, Timothy E.; Bartels, Keith A.; Light, Glenn M.

    1998-03-01

    One advantage of working with digital images is the opportunity for enhancement. While it is important to preserve the original image, variations can be generated that yield greater understanding of object properties. It is often possible to effectively increase dynamic range, improve contrast in regions of interest, emphasize subtle features, reduce background noise, and provide more robust detection of faults. This paper describes and illustrates some of these processes using real world examples.

  4. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  5. FEL for the polymer processing industries

    NASA Astrophysics Data System (ADS)

    Kelley, Michael J.

    1997-05-01

    Polymers are everywhere in modern life because of their unique combination of end-use functionalities, ease of processing, recycling potential and modest cost. The physical and economic scope of the infrastructure committed to present polymers makes the introduction of entirely new chemistry unlikely. Rather, the breadth of commercial offerings more likely to shrink in the face of the widening mandate for recycling, especially of packaging. Improved performance and new functionality must therefore come by routes such as surface modification. However they must come with little environmental impact and at painfully low cost. Processing with strongly absorbed light offers unique advantages. The journal and patent literatures disclose a number of examples of benefits that can be achieved, principally by use of excimer lasers or special UV lamps. Examples of commercialization are few, however, because of the unit cost and maximum scale of existing light sources. A FEL, however, offers unique advantages: tunability to the optimum wavelength, potential for scale up to high average power, and a path to attractively low unit cost of light. A business analysis of prospective applications defines the technical and economic requirements a FEL for polymer surface processing must meet. These are compared to FEL technology as it now stands and as it is envisioned.

  6. Dust exposures in the wood processing industry.

    PubMed

    Alwis, U; Mandryk, J; Hocking, A D; Lee, J; Mayhew, T; Baker, W

    1999-01-01

    Workers at four different woodworking processes--two logging sites, four sawmills, one major woodchipping operation, and five joineries situated in the state of New South Wales in Australia--were studied for personal inhalable dust exposures (N = 182). The geometric mean exposure at logging sites was 0.6 mg/m3 (N = 7), sawmills 1.6 mg/m3 (N = 93), woodchipping 1.9 mg/m3 (N = 9), and joineries 3.7 mg/m3 (N = 66). Overall, 62% of the exposures exceeded the current standards. Among joineries, 95% of the hardwood exposures and 35% of the softwood exposures were above the relevant standards. A majority of workers (approximately 90%) did not wear appropriate respirators approved for wood dust, while the ones who did wear them, used them on average less than 50% of the time. The significant determinants of personal wood dust exposures (n = 163) were found to be local exhaust ventilation, job title, use of handheld tools, cleaning method used, use of compressed air, and green or dry wood processed. Type of wood processed (softwood or hardwood) was not found to be statistically significant.

  7. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  8. Challenges Towards Employability: Higher Education's Engagement to Industrial Needs in Japan

    ERIC Educational Resources Information Center

    Ito, Hiroshi

    2014-01-01

    This paper examines the challenges and strategies of twenty-three Japanese universities working towards the improvement of employability skills. These universities have been selected for the national project "Improving Higher Education for Meeting Industrial Needs" funded by Japan's Ministry of Education, Culture, Sports, Science and…

  9. Meeting the Challenge: Between Depopulation and New Industrialization. Innovations in VET in Eastern Germany

    ERIC Educational Resources Information Center

    Barabasch, Antje

    2012-01-01

    Despite the heavy investments in the economic development of East German industry, the region still faces immanent structural challenges that affect the provision of vocational education and training (VET), in particular apprenticeships, and the availability of a well skilled workforce. In this article the situation of the economy as well as new…

  10. Energy and Process Optimization and Benchmarking of Army Industrial Processes

    DTIC Science & Technology

    2006-09-01

    Induction Furnaces Static frequency converters (current or voltage) supply a variable fre- quency to the furnace induction coil, which varies to...match the type of ma- terial being melted and the amount of material in the furnace . Static power converters are used in induction melting systems to...of 3,000V) to be applied to an induction furnace . In recent years, the foundry and steel- making industries began to acquire induction melting systems

  11. Interference Analysis Process in Military Aircraft Industry

    NASA Astrophysics Data System (ADS)

    Rothenhaeusler, M.; Poisel, W.

    2012-05-01

    As flying platforms do have limited space for integration and increasing demands for antennas, interference and EMC analysis becomes ever more relevant for optimised antenna concepts. Of course aerodynamic and operational aspects are still important and can not be neglected, but interference can also be a performance killer if it is not analysed in a proper way. This paper describes an interference analysis process which is based on the electrical data of all transmitters and receivers, in- and out-of-band numerical simulation of the decoupling values of all involved antennas and includes EMC relevant data of conducted and radiated emissions, based on EMC standards like MIL-STD-461. Additionally hardware based interference cancellation is also taken into account as the last opportunity for the antenna engineer to reach the required decoupling for undisturbed communication.

  12. Industrial processing of condiments and seasonings and its implications for micronutrient fortification.

    PubMed

    de Mejia, Elvira González; Aguilera-Gutiérrez, Yolanda; Martin-Cabrejas, Maria Angeles; Mejia, Luis A

    2015-11-01

    Opportunities exist for micronutrient fortification of condiments and seasonings to combat vitamin or mineral deficiencies. This paper reviews the available technologies for industrial processing of condiments and seasonings and their fortification with micronutrients. The industrial processes to manufacture commonly consumed condiments and seasonings, such as soy sauce, bouillon cubes, fish sauce, spices, and other relevant products, are described. The impact of processing on fortification is evaluated, considering both the type of vehicle and the fortificant used. The analyzed technologies represent effective strategies for mineral fortification, particularly with iodine and iron. However, fortification with vitamins has been more challenging, owing to sensory changes of the finished product and a poor stability of the fortificant when using certain vehicles. Therefore, more studies are needed in this area in collaboration with governments, the food industry, and vitamin suppliers. Despite the technical difficulties encountered, the current processing technologies for the production of condiments and seasonings can be adapted and refined to allow their successful fortification with micronutrients.

  13. Preliminary overview of innovative industrial-materials processes

    SciTech Connect

    Hane, G.J.; Hauser, S.G.; Blahnik, D.E.; Eakin, D.E.; Gurwell, W.E.; Williams, T.A.; Abarcar, R.; Szekely, J.; Ashton, W.B.

    1983-09-01

    In evaluating the potential for industrial energy conservation, 45 candidate processes were identified. The chemical and the iron and steel industries presented the most well-developed candidates, whereas those processes identified in the pulp and paper and textiles industries were the most speculative. Examples of the candidate processes identified include direct steelmaking and ore-to-powder systems, which potentially require 30 to 40% less energy, respectively, than conventional steelmaking systems; membrane separations and freeze crystallization, which offer up to 90% reductions in energy use when compared with distillation; the cold processing of cement, which offers a 50% reduction in energy requirements; and the dry forming of paper, which offers a 25% reduction in the energy needed for papermaking. A review of all the industries revealed that the revolutionary alternatives often use similar concepts in avoiding current process inefficiencies. These concepts include using chemical, physical, or biological processes to replace thermally intensive processes; using specific forms of energy to minimize wasteful thermal diffusion; using chemical, biological, or ultrasonic processes to replace physical reduction; combining multiple processing steps into a single reactor; using a dry processing to eliminate energy needed for evaporation; and using sterilization or biotechnology to reduce the need for refrigeration.

  14. Challenging Ties between State and Tobacco Industry: Advocacy Lessons from India

    PubMed Central

    Bhojani, Upendra; Venkataraman, Vidya; Manganawar, Bheemaray

    2013-01-01

    Background: Globally, tobacco use is a major public health concern given its huge morbidity and mortality burden that is inequitably high in low- and middle-income countries. The World Health Organization has suggested banning the advertisement, promotion and sponsorship of tobacco. However, governments in some countries, including India, are either directly engaged in tobacco industry operations or have a mandate to promote tobacco industry development. This paper analyses a short-term advocacy campaign that challenged the state-tobacco industry ties to draw lessons for effective public health advocacy. Method: This paper uses a case study method to analyze advocacy efforts in India to thwart the state-tobacco industry partnership: the Indian government’s sponsorship and support to a global tobacco industry event. The paper explores multiple strategies employed in the five-month advocacy campaign (May to October 2010) to challenge this state-industry tie. In doing so, we describe the challenges faced and the lessons learnt for effective advocacy. Results: Government withdrew participation and financial sponsorship from the tobacco industry event. Use of multiple strategies including engaging all concerned government agencies from the beginning, strategic use of media, presence and mobilization of civil society, and use of legal tools to gain information and judicial action, were complementary in bringing desired outcomes. Conclusion: Use of multiple and complementary advocacy strategies could lead to positive outcomes in a short-time campaign. The Framework Convention on Tobacco Control could form an important advocacy tool, especially in countries that have ratified it, to advocate for improvements in national tobacco control regulations. PMID:24688958

  15. Applications of sonochemistry in Russian food processing industry.

    PubMed

    Krasulya, Olga; Shestakov, Sergey; Bogush, Vladimir; Potoroko, Irina; Cherepanov, Pavel; Krasulya, Boris

    2014-11-01

    In food industry, conventional methodologies such as grinding, mixing, and heat treatment are used for food processing and preservation. These processes have been well studied for many centuries and used in the conversion of raw food materials to consumable food products. This report is dedicated to the application of a cost-efficient method of energy transfer caused by acoustic cavitation effects in food processing, overall, having significant impacts on the development of relatively new area of food processing such as food sonochemistry.

  16. Hybrid membrane operations in water desalination and industrial process rationalisation.

    PubMed

    Drioli, E; Di Profio, G; Curcio, E

    2005-01-01

    Membrane science and technology are recognized today as powerful tools in resolving some important global problems, and developing newer industrial processes, needed from the imperative of sustainable industrial growth. In seawater desalination, for resolving the dramatic increase of freshwater demand in many regions of the world, membrane unitary operations or the combination of some of them in integrated systems are already a real means for producing water from the sea, at lower costs and minimum environmental impact, with a very interesting prospective in particular for poor economy countries. However, membranes are used or are becoming used in some important industrial fields, for developing more efficient productive cycles, with reduced waste of raw-material, reducing the polluting charge by controlling byproduct generation, and reducing overall costs. In the present paper, other than for seawater desalination applications, some industrial applications where membrane technology has led already to match the goal of process intensification are discussed.

  17. Society of the plastic industry process emission initiatives

    NASA Technical Reports Server (NTRS)

    Mcdermott, Joseph

    1994-01-01

    At first view, plastics process emissions research may not seem to have much bearing on outgassing considerations relative to advanced composite materials; however, several parallel issues and cross currents are of mutual interest. The following topics are discussed: relevance of plastics industry research to aerospace composites; impact of clean air act amendment requirements; scope of the Society of the Plastics Industry, Inc. activities in thermoplastic process emissions and reinforced plastics/composites process emissions; and utility of SPI research for advanced polymer composites audiences.

  18. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  19. Optimizing the availability of a buffered industrial process

    DOEpatents

    Martz, Jr., Harry F.; Hamada, Michael S.; Koehler, Arthur J.; Berg, Eric C.

    2004-08-24

    A computer-implemented process determines optimum configuration parameters for a buffered industrial process. A population size is initialized by randomly selecting a first set of design and operation values associated with subsystems and buffers of the buffered industrial process to form a set of operating parameters for each member of the population. An availability discrete event simulation (ADES) is performed on each member of the population to determine the product-based availability of each member. A new population is formed having members with a second set of design and operation values related to the first set of design and operation values through a genetic algorithm and the product-based availability determined by the ADES. Subsequent population members are then determined by iterating the genetic algorithm with product-based availability determined by ADES to form improved design and operation values from which the configuration parameters are selected for the buffered industrial process.

  20. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  1. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  2. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  3. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  4. Challenges and Strategies in Thermal Processing of Amorphous Solid Dispersions: A Review.

    PubMed

    LaFountaine, Justin S; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing of amorphous solid dispersions continues to gain interest in the pharmaceutical industry, as evident by several recently approved commercial products. Still, a number of pharmaceutical polymer carriers exhibit thermal or viscoelastic limitations in thermal processing, especially at smaller scales. Additionally, active pharmaceutical ingredients with high melting points and/or that are thermally labile present their own specific challenges. This review will outline a number of formulation and process-driven strategies to enable thermal processing of challenging compositions. These include the use of traditional plasticizers and surfactants, temporary plasticizers utilizing sub- or supercritical carbon dioxide, designer polymers tailored for hot-melt extrusion processing, and KinetiSol® Dispersing technology. Recent case studies of each strategy will be described along with potential benefits and limitations.

  5. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  6. Multimodal inspection in power engineering and building industries: new challenges and solutions

    NASA Astrophysics Data System (ADS)

    Kujawińska, Małgorzata; Malesa, Marcin; Malowany, Krzysztof

    2013-09-01

    Recently the demand and number of applications of full-field, optical measurement methods based on noncoherent light sources increased significantly. They include traditional image processing, thermovision, digital image correlation (DIC) and structured light methods. However, there are still numerous challenges connected with implementation of these methods to in-situ, long-term monitoring in industrial, civil engineering and cultural heritage applications, multimodal measurements of a variety of object features or simply adopting instruments to work in hard environmental conditions. In this paper we focus on 3D DIC method and present its enhancements concerning software modifications (new visualization methods and a method for automatic merging of data distributed in time) and hardware improvements. The modified 3D DIC system combined with infrared camera system is applied in many interesting cases: measurements of boiler drum during annealing and of pipelines in heat power stations and monitoring of different building steel struts at construction site and validation of numerical models of large building structures constructed of graded metal plate arches.

  7. Creating and using industry-based problem-based learning challenges in photonics: lessons learned

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith; Dischino, Michele; Hanes, Fenna; Massa, Nicholas

    2009-06-01

    Problem-based learning (PBL) is an educational approach whereby students learn course content by actively and collaboratively solving real-world problems presented in a context similar to that in which the learning is to be applied. Project PHOTON PBL, in collaboration with photonics industry and research university partners, created eight interdisciplinary multi-media Challenges to be used in high school and community college math, science and technology courses. Each Challenge was recorded on location and features the scientists, engineers and technicians who originally solved the problem engaged in authentic problem solving. In this paper we describe the evolution of the development of the Challenges and we provide instructions on creating a Challenge and using it in the classroom to enhance student learning.

  8. Final Report - ADVANCED LASER-BASED SENSORS FOR INDUSTRIAL PROCESS CONTROL

    SciTech Connect

    Gupta, Manish; Baer, Douglas

    2013-09-30

    The objective of this work is to capture the potential of real-time monitoring and overcome the challenges of harsh industrial environments, Los Gatos Research (LGR) is fabricating, deploying, and commercializing advanced laser-based gas sensors for process control monitoring in industrial furnaces (e.g. electric arc furnaces). These sensors can achieve improvements in process control, leading to enhanced productivity, improved product quality, and reduced energy consumption and emissions. The first sensor will utilize both mid-infrared and near-infrared lasers to make rapid in-situ measurements of industrial gases and associated temperatures in the furnace off-gas. The second sensor will make extractive measurements of process gases. During the course of this DOE project, Los Gatos Research (LGR) fabricated, tested, and deployed both in-situ tunable diode laser absorption spectrometry (TDLAS) analyzers and extractive Off-Axis Integrated Cavity Output Spectroscopy (Off-Axis ICOS) analyzers.

  9. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  10. The international aerospace industry - New challenges and opportunities for translation suppliers

    NASA Technical Reports Server (NTRS)

    Rowe, T.

    1986-01-01

    Attention is given to the recent trend toward internationalization in the aerospace industry and its effects on commercial and governmental translation programs. The aerospace industry, once dominated by organizations from a small number of countries, is now widely international in scope. In effect, there has been in increase in the demand for translations from German, Japanese, Chinese, French and Spanish source material while that for translation from Russian source material has remained constant. The impact of the Challenger disaster on aerospace translation programs is discussed as well as the impact of international participation in Space Station research.

  11. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  12. Expert system for testing industrial processes and determining sensor status

    DOEpatents

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  13. Process mining for clinical workflows: challenges and current limitations.

    PubMed

    Lang, Martin; Bürkle, Thomas; Laumann, Susanne; Prokosch, Hans-Ulrich

    2008-01-01

    Process mining is an emerging technology in the context of Business Process Management with the goal to derive process models from observed system behavior. The global goals are: to detect previously unknown process structures, to implement consistent process controlling which may involve computation of realistic cycle times and frequency of occurrence of process pathways, or to quantify the conformance to guidelines. We did a detailed hands-on evaluation and analysis of established process-mining approaches and assessed their abilities to cope with the challenges of clinical environments. None of the examined 7 approaches fulfilled all requirements, but 2 could be circle out, which are to some degree suitable for clinical process mining.

  14. Corporate Universities in China: Processes, Issues and Challenges

    ERIC Educational Resources Information Center

    Qiao, June Xuejun

    2009-01-01

    Purpose: This study is intended to investigate the current status of corporate universities in China. It aims to explore the processes and practices of corporate universities in China, and discover the issues and challenges involved in building and running a corporate university in China. Design/methodology/approach: The heads of 11 well-known…

  15. Industrial process heat case studies. [PROSYS/ECONMAT code

    SciTech Connect

    Hooker, D.W.; May, E.K.; West, R.E.

    1980-05-01

    Commercially available solar collectors have the potential to provide a large fraction of the energy consumed for industrial process heat (IPH). Detailed case studies of individual industrial plants are required in order to make an accurate assessment of the technical and economic feasibility of applications. This report documents the results of seven such case studies. The objectives of the case study program are to determine the near-term feasibility of solar IPH in selected industries, identify energy conservation measures, identify conditions of IPH systems that affect solar applications, test SERI's IPH analysis software (PROSYS/ECONOMAT), disseminate information to the industrial community, and provide inputs to the SERI research program. The detailed results from the case studies are presented. Although few near-term, economical solar applications were found, the conditions that would enhance the opportunities for solar IPH applications are identified.

  16. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Allendorf; D. K. Ottesen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1998-11-02

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom of line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  17. Optical sensors for process control and emissions monitoring in industry

    SciTech Connect

    S. W. Alendorf; D. K. Ottensen; D. W. Hahn; T. J. Kulp; U. B. Goers

    1999-01-01

    Sandia National Laboratories has a number of ongoing projects developing optical sensors for industrial environments. Laser-based sensors can be attractive for relatively harsh environments where extractive sampling is difficult, inaccurate, or impractical. Tools developed primarily for laboratory research can often be adapted for the real world and applied to problems far from their original uses. Spectroscopic techniques, appropriately selected, have the potential to impact the bottom line of a number of industries and industrial processes. In this paper the authors discuss three such applications: a laser-based instrument for process control in steelmaking, a laser-induced breakdown method for hazardous metal detection in process streams, and a laser-based imaging sensor for evaluating surface cleanliness. Each has the potential to provide critical, process-related information in a real-time, continuous manner. These sensor techniques encompass process control applications and emissions monitoring for pollution prevention. They also span the range from a field-tested pre-commercial prototype to laboratory instrumentation. Finally, these sensors employ a wide range of sophistication in both the laser source and associated analytical spectroscopy. In the ultimate applications, however, many attributes of the sensors are in common, such as the need for robust operation and hardening for harsh industrial environments.

  18. Cogeneration technology alternatives study. Volume 2: Industrial process characteristics

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information and data for 26 industrial processes are presented. The following information is given for each process: (1) a description of the process including the annual energy consumption and product production and plant capacity; (2) the energy requirements of the process for each unit of production and the detailed data concerning electrical energy requirements and also hot water, steam, and direct fired thermal requirements; (3) anticipated trends affecting energy requirements with new process or production technologies; and (4) representative plant data including capacity and projected requirements through the year 2000.

  19. Industrial hazardous waste management in Turkey: current state of the field and primary challenges.

    PubMed

    Salihoglu, Güray

    2010-05-15

    A holistic evaluation of a country's hazardous waste management (HWM) practices is useful in identifying the necessary actions to focus on. Based on an analysis of industrial hazardous waste (HW) generation in Turkey, this paper attempts to critically evaluate and report current Turkish HWM practices and discuss the primary challenges to be addressed. The generation of industrial HW for Turkey reported in 2004 was 1.195 million tons, which accounted for 7% of the total industrial solid waste (ISW) generated by the manufacturing industry, and for nearly 4.9% of the total solid waste generated in the country. The HW generated by the top five manufacturing product categories--basic metals, chemicals and chemical products, food and beverages, coke and refined petroleum, motor vehicles and trailers--accounted for 89.0% of total industrial HW. 21% of the HW generated in 2004 was recycled or reused, and 6% was sold or donated, whereas 73% was sent to ultimate disposal. 67% of the HW sent to ultimate disposal was disposed of at municipal landfills. The total capacity of the existing regional HW facilities is 212,500 tons/year, which accounts for about 24% of the HW to be disposed. Turkey has identified the HW problem in the country and enacted legislation, designated a lead agency, and promulgated rules and regulations. Several new initiatives are planned for improving HW management nationally; however, some HWM problems will be persistent due to previous and existing industrial development plans. These development policies led to the concentration of industry in regions marked by precious agricultural fields and high population density. This occurred because the government previously exhibited a default prioritization towards industrial development, leading to insufficient implementation of regulations on HW generators. Some of the problems may also be rooted in other countries that allow illegal trans boundary HW movements despite international regulations.

  20. Process Control Systems in the Chemical Industry: Safety vs. Security

    SciTech Connect

    Jeffrey Hahn; Thomas Anderson

    2005-04-01

    Traditionally, the primary focus of the chemical industry has been safety and productivity. However, recent threats to our nation’s critical infrastructure have prompted a tightening of security measures across many different industry sectors. Reducing vulnerabilities of control systems against physical and cyber attack is necessary to ensure the safety, security and effective functioning of these systems. The U.S. Department of Homeland Security has developed a strategy to secure these vulnerabilities. Crucial to this strategy is the Control Systems Security and Test Center (CSSTC) established to test and analyze control systems equipment. In addition, the CSSTC promotes a proactive, collaborative approach to increase industry's awareness of standards, products and processes that can enhance the security of control systems. This paper outlines measures that can be taken to enhance the cybersecurity of process control systems in the chemical sector.

  1. Post-processing procedure for industrial quantum key distribution systems

    NASA Astrophysics Data System (ADS)

    Kiktenko, Evgeny; Trushechkin, Anton; Kurochkin, Yury; Fedorov, Aleksey

    2016-08-01

    We present algorithmic solutions aimed on post-processing procedure for industrial quantum key distribution systems with hardware sifting. The main steps of the procedure are error correction, parameter estimation, and privacy amplification. Authentication of classical public communication channel is also considered.

  2. Advantages of Laser Polarimetry Applied to Tequila Industrial Process Control

    NASA Astrophysics Data System (ADS)

    Fajer, V.; Rodriguez, C.; Flores, R.; Naranjo, S.; Cossio, G.; Lopez, J.

    2002-03-01

    The development of a polarimetric method for crude and cooked agave juice quality control not only by direct polarimetric measurement also by means of laser polarimeter LASERPOL 101M used as a liquid chromatographic detector is presented. The viability and advantage of this method for raw material quality control and during Tequila industrial process is shown.

  3. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  4. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  5. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  6. 27 CFR 19.37 - Application for industrial processes waiver.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... industrial processes waiver. (a) Application for waiver. If the producer of a nonpotable chemical mixture... of the producer; (2) Chemical composition and source of the nonpotable mixture; (3) Approximate percentages of chemicals and spirits in the mixture; (4) Method of operation proposed; (5) Bonded...

  7. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  8. Instantaneous Soundness Checking of Industrial Business Process Models

    NASA Astrophysics Data System (ADS)

    Fahland, Dirk; Favre, Cédric; Jobstmann, Barbara; Koehler, Jana; Lohmann, Niels; Völzer, Hagen; Wolf, Karsten

    We report on a case study on control-flow analysis of business process models. We checked 735 industrial business process models from financial services, telecommunications and other domains. We investigated these models for soundness (absence of deadlock and lack of synchronization) using three different approaches: the business process verification tool Woflan, the Petri net model checker LoLA, and a recently developed technique based on SESE decomposition. We evaluate the various techniques used by these approaches in terms of their ability of accelerating the check. Our results show that industrial business process models can be checked in a few milliseconds, which enables tight integration of modeling with control-flow analysis. We also briefly compare the diagnostic information delivered by the different approaches.

  9. Industry and government perspectives on First Nations' participation in the British Columbia environmental assessment process

    SciTech Connect

    Booth, Annie L. Skelton, Norm W.

    2011-04-15

    Research was conducted with West Moberly First Nations, Halfway First Nation and the Treaty 8 Tribal Association (located in northeastern British Columbia, Canada) on effective engagement in environmental assessment processes. As part of this research, we examined the perspectives of a subset of resource industry proponents and their consultants, as well as staff from the British Columbia Environmental Assessment Office on their experiences with the requirement to consult with Canada's indigenous peoples. Research into the perspectives of industry proponents and consultants is almost non-existent, yet industry and governments are key participants within environmental assessments. This research found that industry proponents were disenfranchised by the British Columbia environmental assessment process and its mechanisms for consulting with First Nations, and that they sought changes to that process. Their concerns and their implications are documented and some recommendations are offered for addressing those concerns. Understanding industry and government views on First Nations engagement could suggest not only potential improvements in EA processes that facilitate all parties but provide common grounds for mutually engaging to resolve challenges.

  10. Market development directory for solar industrial process heat systems

    SciTech Connect

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  11. Assessment of critical-fluid extractions in the process industries

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The potential for critical-fluid extraction as a separation process for improving the productive use of energy in the process industries is assessed. Critical-fluid extraction involves the use of fluids, normally gaseous at ambient conditions, as extraction solvents at temperatures and pressures around the critical point. Equilibrium and kinetic properties in this regime are very favorable for solvent applications, and generally allow major reductions in the energy requirements for separating and purifying chemical component of a mixture.

  12. Combustion Technology for Incinerating Wastes from Air Force Industrial Processes.

    DTIC Science & Technology

    1984-02-01

    Conservation and Recovery Act and are properly disposed at cost to the Air Force. Onsite incineration with heat recovery is being considered as a...the heat released during thermal processing could reduce the costs of waste incineration. 0 * Normally, relatively small amounts of individual wastes...wastes. Task 3: Combustion Analysis. Determine and quantify the essential combustion parameters of industrial process wastes with respect to heat

  13. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  14. Process analytical technology in the pharmaceutical industry: a toolkit for continuous improvement.

    PubMed

    Scott, Bradley; Wilcock, Anne

    2006-01-01

    Process analytical technology (PAT) refers to a series of tools used to ensure that quality is built into products while at the same time improving the understanding of processes, increasing efficiency, and decreasing costs. It has not been widely adopted by the pharmaceutical industry. As the setting for this paper, the current pharmaceutical manufacturing paradigm and PAT guidance to date are discussed prior to the review of PAT principles and tools, benefits, and challenges. The PAT toolkit contains process analyzers, multivariate analysis tools, process control tools, and continuous improvement/knowledge management/information technology systems. The integration and implementation of these tools is complex, and has resulted in uncertainty with respect to both regulation and validation. The paucity of staff knowledgeable in this area may complicate adoption. Studies to quantitate the benefits resulting from the adoption of PAT within the pharmaceutical industry would be a valuable addition to the qualitative studies that are currently available.

  15. Imulation of polymer forming processes - addressing industrial needs

    SciTech Connect

    Thibault, F.; DiRaddo, R.

    2011-05-04

    The objective of this paper is to present the development of simulation and design optimization capabilities, for polymer forming processes, in the context of addressing industrial needs. Accomplishments generated from close to twenty years of research in this field, at the National Research Council (NRC), are presented. Polymer forming processes such as extrusion blow moulding, stretch blow moulding and thermoforming have been the focus of the work, yet the research is extendable to similar polymer forming operations such as micro-blow moulding, sheet blow moulding and composites stamping. The research considers material models, process sequence integration and design optimization, derivative processes and 3D finite elements with multi-body contact.

  16. Industrial-Scale Processes For Stabilizing Radioactively Contaminated Mercury Wastes

    SciTech Connect

    Broderick, T. E.; Grondin, R.

    2003-02-24

    This paper describes two industrial-scaled processes now being used to treat two problematic mercury waste categories: elemental mercury contaminated with radionuclides and radioactive solid wastes containing greater than 260-ppm mercury. The stabilization processes were developed by ADA Technologies, Inc., an environmental control and process development company in Littleton, Colorado. Perma-Fix Environmental Services has licensed the liquid elemental mercury stabilization process to treat radioactive mercury from Los Alamos National Laboratory and other DOE sites. ADA and Perma-Fix also cooperated to apply the >260-ppm mercury treatment technology to a storm sewer sediment waste collected from the Y-12 complex in Oak Ridge, TN.

  17. Electromagnetic Processing of Materials:. from the Concepts to Industrial Applications

    NASA Astrophysics Data System (ADS)

    Delannoy, Y.

    2005-07-01

    Electromagnetic fields are used for material processing in various industrial devices, such as induction furnaces, electromagnetic brakes and stirrers in metallurgy, inductive plasma torches to elaborate silica for optical fibres or electromagnetic flow control systems in crystal growth. New developments are needed whenever the coupling of physical phenomena is the key point of the process. Three examples are presented among the research activities of the EPM laboratory in Electromagnetic Processing of Materials: Electromagnetic continuous casting of steel slabs, plasma purification of silicon, electromagnetic stirring of solidifying alloys. Some scientific open questions important for such processes are presented.

  18. Industrial and agricultural process heat information user study

    SciTech Connect

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-03-01

    The results of a series of telephone interviews with groups of users of information on solar industrial and agricultural process heat (IAPH) are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. In the current study only high-priority groups were examined. Results from 10 IAPH groups of respondents are analyzed in this report: IPH Researchers; APH Researchers; Representatives of Manufacturers of Concentrating and Nonconcentrating Collectors; Plant, Industrial, and Agricultural Engineers; Educators; Representatives of State Agricultural Offices; and County Extension Agents.

  19. Operation and design of selected industrial process heat field tests

    SciTech Connect

    Kearney, D. W.

    1981-02-01

    The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

  20. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing.

  1. Ergonomics and simulation tools for service & industrial process improvement

    NASA Astrophysics Data System (ADS)

    Sánchez, A.; García, M.

    2012-04-01

    Human interaction within designed processes is a really important factor in how efficiently any process will operate. How a human will function in relation to a process is not easy to predict. All the ergonomic considerations traditionally have been evaluated outside of the 3D product design. Nowadays technologies of 3D process design and simulation tools give us this opportunity from the earliest stages of the design process. Also they can be used to improve current process in order to increase human comfort, productivity and safety. This work shows a methodology using 3D design and simulation tools to improve industrial and service process. This methodology has as an objective the detection, evaluation, control of work-related musculoskeletal disorders (WMSDs).

  2. Solar industrial process heat: A study of applications and attitudes

    NASA Astrophysics Data System (ADS)

    Wilson, V.

    1981-04-01

    Data were gathered through site visits to 100 industrial plants. The site specific data suggests several possible near term market opportunities for solar thermal energy systems. Plants using electricity as their primary fuel for industrial process heat were identified, on the basis of their high fuel prices, as attractive early entry markets for solar energy. Additional opportunities were reflected in plants that had accomplished much of their conservation plans, or bad sizeable percentages of their operating budgets committed to energy expenses. A suitability analysis identified eleven industrial plants as highly suitable for solar thermal applications, they included producers of fluid milk, pottery, canned and bottled soft drinks, fabricated structural metal, refined petroleum, aluminum cans, chrome and nickel plating and stamped frame metal and metal finishings.

  3. Processing Challenges in Shrinking HPEC Systems into Small UAVs

    DTIC Science & Technology

    2007-11-02

    HPEC 2004 Title: Processing Challenges in Shrinking HPEC Systems into Small UAVs First & Dr. Stephen Pearce Presenting Mercury Computer Systems, Inc...Author: Mercury Computer Systems, Inc. 199 Riverneck Road, Chelmsford, MA 01824 978-967-1727 FAX 978-256-0852; rjaenicke@mc.com Citizenship: USA Format...ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Mercury

  4. A discussion paper on challenges and limitations to water reuse and hygiene in the food industry.

    PubMed

    Casani, Sandra; Rouhany, Mahbod; Knøchel, Susanne

    2005-03-01

    Drinking water is becoming a scarce resource in many areas and both use of water and wastewater outlet are of major ecological and economical importance in many countries. Consumption and discharge may be considerably minimized by means of water reuse. The food industry has a large consumption of water, but until now very limited reuse has taken place due to legislations constraints and hygienic concerns. Legal space for use of water of qualities other than drinking water has been opened with the current legislation. This will, however, in many cases require careful analyses of individual cases based on a thorough understanding of the hazards involved in order to avoid compromising the safety of the food product and thereby the health of consumers. Implementation of water reuse practices in the food industry presents a great challenge for both companies and public health authorities regarding knowledge, technical expertise and documentation. Regulatory, technological, monitoring, verification and ethical aspects associated with microbiologically safe reuse of water in the food industry are discussed and some examples of the challenges ahead and possible approaches are given.

  5. Industry Response to the Challenge of Sustainability: The Case of the Canadian Nonferrous Mining Sector

    PubMed

    Sánchez

    1998-07-01

    / The paper investigates how the Canadian nonferrous sector is tackling the challenge of sustainable development. Although there is no consensus as to what sustainable development means in practice for management in the sector, at least three dimensions must be taken into account: (1) metals are recyclable, the availability of this resource is not a concern for the foreseeable future; (2) the need to minimize environmental impacts of metals exploration, extraction, transformation, consumption, and recycling; and (3) production activities should not be socially or culturally disruptive. The nonferrous mining industry faces several environmental problems. Some of the most significant are acid mine drainage, sulfur emissions, recycling, and metals toxicity. The industry has developed a number of responses to address these specific concerns as well as other more general challenges. Six strategies are described and analyzed: (1) research and development, (2) an effort of consensus building among stakeholders known as the Whitehorse Mining Initiative, (3) international networking, (4) active involvement in the development of environmental management standards, (5) management reorganization and (6) voluntary agreements. The importance of external factors in the shaping of corporate environmental management practices is discussed, in particular the role of government. Progress has been achieved in three areas: (1) managerial practices and organization, (2) reducing the impacts of ongoing operations and (3) minimizing future liabilities, but two significant fields of conflict remain, namely mining in wilderness areas and projects on aboriginal lands.KEY WORDS: Canada; Environmental management; Minerals industry; Nonferrous metals; Sustainable development; Whitehorse Mining Initiative

  6. Early test results on a FTIR industrial process monitoring system

    SciTech Connect

    Spellicy, R.L.; Hall, S.E.

    1997-12-31

    Low cost ruggedized FTIR systems are appearing on the production floor in many industries. These are being used to both monitor product quality and control the process itself. Radian International has worked with several of clients to configure, install and operate such process systems. In this paper the authors describe preliminary test results for a prototype FTIR process monitor developed for continuous monitoring of chemical reactors. They outline the equipment/procedures used to implement the systems and the performance characteristics that resulted. Examples of data on a test reactor are also presented.

  7. Atmospheric emission of polychlorinated biphenyls from multiple industrial thermal processes.

    PubMed

    Liu, Guorui; Zheng, Minghui; Cai, Mingwei; Nie, Zhiqiang; Zhang, Bing; Liu, Wenbin; Du, Bing; Dong, Shujun; Hu, Jicheng; Xiao, Ke

    2013-03-01

    In this study, field measurements were conducted to estimate and characterize the atmospheric emission levels and profiles of polychlorinated biphenyls (PCBs) from multiple industrial thermal processes. The emission levels and profiles of PCBs from five types of thermal processes at twenty-three plants were studied and compared with eight processes reported in our previous studies. Correlation analysis was preformed to identify a marker congener for emission of ΣPCB. A significant correlation was observed between congener CB-118 and ΣPCB (R(2)=0.65 and p<0.01), which suggests that CB-118 is a good marker congener for emission of ΣPCB. The profiles of PCBs emitted from the thirteen thermal processes were compared, and this information could be used for studying source-receptor relationships and identifying the specific sources of PCBs. To prioritize the sources for control, the concentrations of PCBs from thirteen industrial thermal sources were compared. The PCB concentrations from secondary zinc smelting and thermal wire reclamation were about one to three order magnitude higher than those of other sources, which suggests that these two sources be given priority in PCB source control. Finally, the atmospheric emission factors of PCBs from the thirteen industrial sources were summarized, and these data will be useful for developing an integrated emission inventory of PCBs.

  8. Towards A Unified HFE Process For The Nuclear Industry

    SciTech Connect

    Jacques Hugo

    2012-07-01

    As nuclear power utilities embark on projects to upgrade and modernize power plants, they are likely to discover that traditional engineering methods do not typically make provision for the integration of human considerations. In addition, human factors professionals will find that traditional human performance methods such as function allocation, task analysis, human reliability analysis and human-machine interface design do not scale well to the complexity of a large-scale nuclear power upgrade project. Up-to-date human factors engineering processes, methods, techniques and tools are required to perform these kinds of analyses. This need is recognized widely in industry and an important part of the Department of Energy’s Light Water Reactor Sustainability Program deals with identifying potential impacts of emerging technologies on human performance and the technical bases needed to address them. However, so far no formal initiative has been launched to deal with the lack of integrated processes. Although human factors integration frameworks do exist in industries such as aviation or defense, no formal integrated human factors process exists in the nuclear industry. As a first step towards creating such a process, a “unified human factors engineering process” is proposed as a framework within which engineering organizations, human factors practitioners and regulatory bodies can ensure that human factors requirements are embedded in engineering activities throughout the upgrade project life cycle.

  9. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J.K.

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R&D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  10. Summary of the government/industry workshop on new materials and processing technologies for industrial applications

    SciTech Connect

    Young, J K

    1992-07-01

    This report presents a summary of the 1-day workshop conducted at Ann Arbor, Michigan, on April 16, 1992, between the National Center for Manufacturing Sciences (NCMS) and the US Department of Energy Advanced Industrial Materials Program (DOE AIM). The workshop objectives were to: (1) encourage collaboration between DOE, the DOE national laboratories, and NCMS material manufacturers and (2) assist the DOE AIM program in targeting research and development (R D) more effectively. During the workshop, participants from industry and DOE laboratories were divided into three working groups. Representatives from the DOE national laboratories currently conducting major research programs for AIM were asked to be working group leaders. The groups developed recommendations for NCMS and AIM managers using a six-step process. As a result of the workshop, the groups identified problems of key concern to NCMS member companies and promising materials and processes to meet industry needs. Overall, the workshop found that the research agenda of DOE AIM should include working with suppliers to develop manufacturing technology. The agenda should not be solely driven by energy considerations, but rather it should be driven by industry needs. The role of DOE should be to ensure that energy-efficient technology is available to meet these needs.

  11. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    PubMed

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  12. Lasers for industrial production processing: tailored tools with increasing flexibility

    NASA Astrophysics Data System (ADS)

    Rath, Wolfram

    2012-03-01

    High-power fiber lasers are the newest generation of diode-pumped solid-state lasers. Due to their all-fiber design they are compact, efficient and robust. Rofin's Fiber lasers are available with highest beam qualities but the use of different process fiber core sizes enables the user additionally to adapt the beam quality, focus size and Rayleigh length to his requirements for best processing results. Multi-mode fibers from 50μm to 600μm with corresponding beam qualities of 2.5 mm.mrad to 25 mm.mrad are typically used. The integrated beam switching modules can make the laser power available to 4 different manufacturing systems or can share the power to two processing heads for parallel processing. Also CO2 Slab lasers combine high power with either "single-mode" beam quality or higher order modes. The wellestablished technique is in use for a large number of industrial applications, processing either metals or non-metallic materials. For many of these applications CO2 lasers remain the best choice of possible laser sources either driven by the specific requirements of the application or because of the cost structure of the application. The actual technical properties of these lasers will be presented including an overview over the wavelength driven differences of application results, examples of current industrial practice as cutting, welding, surface processing including the flexible use of scanners and classical optics processing heads.

  13. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  14. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  15. Feasibility evaluation for solar industrial process heat applications

    SciTech Connect

    Stadjuhar, S. A.

    1980-01-01

    An analytical method for assessing the feasibility of Solar Industrial Process Heat applications has been developed and implemented in a flexible, fast-calculating computer code - PROSYS/ECONMAT. The performance model PROSYS predicts long-term annual energy output for several collector types, including flat-plate, nontracking concentrator, one-axis tracking concentrator, and two-axis tracking concentrator. Solar equipment cost estimates, annual energy capacity cost, and optional net present worth analysis are provided by ECONMAT. User input consists of detailed industrial process information and optional economic parameters. Internal program data includes meteorological information for 248 US sites, characteristics of more than 20 commercially available collectors representing several generic collector types, and defaults for economic parameters. Because a fullscale conventional back-up fuel system is assumed, storage is not essential and is not included in the model.

  16. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  17. System for monitoring an industrial process and determining sensor status

    DOEpatents

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  18. Evaluation of guava during different phases of the industrial processing.

    PubMed

    Leite, Kátia Maria Da Silva Cerqueira; Assis, Sandra Aparecida De; Tadiotti, Antônio Carlos; Oliveira, Olga Maria Mascarenhas Faria

    2009-01-01

    In this work we studied the contents of pectin and protein, pectinmethylesterase (PME) activity, and PME stability in various stages of industrial processing, due to the implication of these values on the quality of the final product. The results of the PME stability at different values of pH showed residual PME activity at alkaline pH (7.0, 8.0, 8.5 and 9.5) and high stability at pH 4.0. These results show that pH treatment is not an efficient method to inactivate the PME enzyme. The presence of residual PME activity in all steps of industrial processing was also verified, showing that PME can change the quality of the pulp during storage.

  19. COEX - process: cross-breeding between innovation and industrial experience

    SciTech Connect

    Drain, F.; Emin, J.L.; Vinoche, R.; Baron, P.

    2008-07-01

    Recycling used nuclear fuel at an industrial scale has been a reality for over 40 years. Since it was founded in 1976, AREVA has designed and built two used fuel treatment plants in La Hague, France. These plants, named UP2-800 and UP3, use the PUREX process. UP3 began operations at the end of the 80's and UP2-800 in the mid 90's. The plutonium extracted in UP2-800 and UP3 is then processed in MELOX plant which started operation in 1995, to be recycled under the form of MOX fuel in LWR. This technology has been selected by JNFL for its reprocessing and recycling plants. Rokkasho-Mura reprocessing plant incorporates also some Japanese technologies and is being commissioned soon. Over 23,000 tons of LWR used fuels have been treated in La Hague plants and over 1200 tons of MOX fuels have been produced by MELOX plant. Innovations have been constantly incorporated to these plants to improve process efficiency and to reduce the activity and volume of waste. During these years, AREVA has acquired an invaluable experience in industrializing processes and technologies developed in the laboratory. In the frame of its continuous improvement policy, AREVA has developed jointly with CEA (French Atomic Energy Agency) a new process, COEX{sup TM} process, offering significant improvement in term of proliferation resistance, process performance and investment and operating cost. The present paper recalls the process principles applied in French and Japanese recycling plants. Then it describes the main steps of COEX{sup TM} process, the status of its development and the improvements compared to PUREX process. The possible evolution of COEX{sup TM} process to cope with needs of future nuclear fuel cycles using fast reactors and possible recycling of minor actinides is presented. (authors)

  20. Alternative economic evaluation measures for solar industrial process heat

    SciTech Connect

    Not Available

    1980-07-30

    The measures most commonly used to assist decision-makers in evaluating the economic merits of solar energy projects are described and compared. An example is given to illustrate the economic evaluation measures and the results are applied to a solar industrial process heat project. Four widely used economic measures are: net present value, benefit-cost ratio, internal rate of return, and payback period. (MHR)

  1. Exploiting budding yeast natural variation for industrial processes.

    PubMed

    Cubillos, Francisco A

    2016-11-01

    For the last two decades, the natural variation of the yeast Saccharomyces cerevisiae has been massively exploited with the aim of understanding ecological and evolutionary processes. As a result, many new genetic variants have been uncovered, providing a large catalogue of alleles underlying complex traits. These alleles represent a rich genetic resource with the potential to provide new strains that can cope with the growing demands of industrial fermentation processes. When surveyed in detail, several of these variants have proven useful in wine and beer industries by improving nitrogen utilisation, fermentation kinetics, ethanol production, sulphite resistance and aroma production. Here, I illustrate how allele-specific expression and polymorphisms within the coding region of GDB1 underlie fermentation kinetic differences in synthetic wine must. Nevertheless, the genetic basis of how GDB1 variants and other natural alleles interact in foreign genetic backgrounds remains unclear. Further studies in large sets of strains, recombinant hybrids and multiple parental pairs will broaden our knowledge of the molecular and genetic basis of trait adaptation for utilisation in applied and industrial processes.

  2. Implementation of Haccp in the Mexican Poultry Processing Industry

    NASA Astrophysics Data System (ADS)

    Maldonado-Siman, Ema; Martínez-Hernández, Pedro Arturo; Ruíz-Flores, Agustín; García-Muñiz, José G.; Cadena-Meneses, José A.

    Hazard Analysis and Critical Control Point (HACCP) is a safety and quality management tool used as major issue in international and domestic trade in food industry. However, detailed information on costs and benefits of HACCP implementation is needed to provide appropriate advice to food processing plants. This paper reports on the perceptions of costs and benefits by the Mexican poultry processing plants and sale destinations. The results suggest that the major costs of implementing and operating HACCP within poultry processing plants are record keeping and external technical advice. The main benefit indicated by the majority of processing plants is a reduction in microbial counts. Over 39% of poultry production is sent to nation-wide chains of supermarkets, and less than 13% is sent to international markets. It was concluded that the adoption of HACCP by the Mexican poultry processing sector is based on the concern to increase and keep the domestic market, rather than to compete in the international market.

  3. Bridging the Gap: The Challenges of Employing Entrepreneurial Processes within University Settings

    ERIC Educational Resources Information Center

    Wardale, Dorothy; Lord, Linley

    2016-01-01

    In Australia and elsewhere, universities face increasing pressure to improve research output and quality, particularly through partnerships with industry. This raises interesting challenges for academic staff with considerable industry experience who are "new" to academe. Some of these challenges were faced by the authors who have been…

  4. Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing

    SciTech Connect

    Young, J.K.; Fowler, R.A.

    1994-05-01

    This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

  5. User Research Challenges in Harsh Environments: A Case Study in Rock Crushing Industry

    NASA Astrophysics Data System (ADS)

    Palviainen, Janno; Leskinen, Hannele

    Rock crushing is an atypical part of process automation industry. Process automation deals with physical processes that are continuous in time and space and in which the product flows through the operations [3]. The typical areas of the industry are electricity generation and distribution, chemical manufacturing fabrication of cloth, metal wire, paper etc. Normally these large scale. systems are run by automation which is controlled in dedicated control rooms by well trained operators. At the quarries, there are often neither control rooms nor trained operators. In fact, the operators sometimes have no formal or informal training for their task except the help from their coworkers while they are working. In some market areas, the operators cannot even read. The operators are also not necessarily dedicated to operate the process and control the automation system, but to do other tasks and react to alarms and problems when they occur. Also, while most of process automation control is done indoors, this industry operates outdoors and may also have the automation system VI under normal weather conditions, leaving little chance for the operators to use paper and pen or paper manuals.

  6. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    SciTech Connect

    Not Available

    1991-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  7. Picosecond and femtosecond lasers for industrial material processing

    NASA Astrophysics Data System (ADS)

    Mayerhofer, R.; Serbin, J.; Deeg, F. W.

    2016-03-01

    Cold laser materials processing using ultra short pulsed lasers has become one of the most promising new technologies for high-precision cutting, ablation, drilling and marking of almost all types of material, without causing unwanted thermal damage to the part. These characteristics have opened up new application areas and materials for laser processing, allowing previously impossible features to be created and also reducing the amount of post-processing required to an absolute minimum, saving time and cost. However, short pulse widths are only one part of thee story for industrial manufacturing processes which focus on total costs and maximum productivity and production yield. Like every other production tool, ultra-short pulse lasers have too provide high quality results with maximum reliability. Robustness and global on-site support are vital factors, as well ass easy system integration.

  8. Predictive maintenance of critical equipment in industrial processes

    NASA Astrophysics Data System (ADS)

    Hashemian, Hashem M.

    This dissertation is an account of present and past research and development (R&D) efforts conducted by the author to develop and implement new technology for predictive maintenance and equipment condition monitoring in industrial processes. In particular, this dissertation presents the design of an integrated condition-monitoring system that incorporates the results of three current R&D projects with a combined funding of $2.8 million awarded to the author by the U.S. Department of Energy (DOE). This system will improve the state of the art in equipment condition monitoring and has applications in numerous industries including chemical and petrochemical plants, aviation and aerospace, electric power production and distribution, and a variety of manufacturing processes. The work that is presented in this dissertation is unique in that it introduces a new class of condition-monitoring methods that depend predominantly on the normal output of existing process sensors. It also describes current R&D efforts to develop data acquisition systems and data analysis algorithms and software packages that use the output of these sensors to determine the condition and health of industrial processes and their equipment. For example, the output of a pressure sensor in an operating plant can be used not only to indicate the pressure, but also to verify the calibration and response time of the sensor itself and identify anomalies in the process such as blockages, voids, and leaks that can interfere with accurate measurement of process parameters or disturb the plant's operation, safety, or reliability. Today, process data are typically collected at a rate of one sample per second (1 Hz) or slower. If this sampling rate is increased to 100 samples per second or higher, much more information can be extracted from the normal output of a process sensor and then used for condition monitoring, equipment performance measurements, and predictive maintenance. A fast analog-to-digital (A

  9. Aerogel-Based Insulation for High-Temperature Industrial Processes

    SciTech Connect

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  10. GRP vessels and pipework for the chemical and process industries

    SciTech Connect

    Not Available

    1984-01-01

    Plastic can be reinforced by an appreciable number of materials, the most commonly used is glass-fibre. Glass reinforced plastic (GRP) has been used in the chemical and process industries for 25 years. In the course of its use and development, much data has been gathered on the material, its chemistry, mechanical properties, methods of fabrication and moulding, its behaviour in service and the methods and mathematics of the analysis of plant constructed from it. The importance of the material in industry was reflected by the large response to a symposium organised by UMIST, the Institution of Chemical Engineers and the Institution of Mechanical Engineers. Topics considered include GRP piping - a multi-sponsored research project; inspection authority views; failure of attachments to GRP cylinders due to local loads; aspects of GRP service failure in the chemical and process industries; stress corrosion of GRP in relation to design stress and service performance; design of GRP pipe bends in relation to internal pressure tests to destruction; and acoustic emission monitoring: a complementary inspection method for fibre-reinforced plastic components.

  11. Challenges and models in supporting logistics system design for dedicated-biomass-based bioenergy industry.

    PubMed

    Zhu, Xiaoyan; Li, Xueping; Yao, Qingzhu; Chen, Yuerong

    2011-01-01

    This paper analyzed the uniqueness and challenges in designing the logistics system for dedicated biomass-to-bioenergy industry, which differs from the other industries, due to the unique features of dedicated biomass (e.g., switchgrass) including its low bulk density, restrictions on harvesting season and frequency, content variation with time and circumambient conditions, weather effects, scattered distribution over a wide geographical area, and so on. To design it, this paper proposed a mixed integer linear programming model. It covered from planting and harvesting switchgrass to delivering to a biorefinery and included the residue handling, concentrating on integrating strategic decisions on the supply chain design and tactical decisions on the annual operation schedules. The present numerical examples verified the model and demonstrated its use in practice. This paper showed that the operations of the logistics system were significantly different for harvesting and non-harvesting seasons, and that under the well-designed biomass logistics system, the mass production with a steady and sufficient supply of biomass can increase the unit profit of bioenergy. The analytical model and practical methodology proposed in this paper will help realize the commercial production in biomass-to-bioenergy industry.

  12. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    PubMed

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents.

  13. Competent statistical programmer: Need of business process outsourcing industry.

    PubMed

    Khan, Imran

    2014-07-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes.

  14. Vermicomposting of milk processing industry sludge spiked with plant wastes.

    PubMed

    Suthar, Surindra; Mutiyar, Pravin K; Singh, Sushma

    2012-07-01

    This work illustrates the vermistabilization of wastewater sludge from a milk processing industry (MPIS) unit spiked with cow dung (CD), sugarcane trash (ST) and wheat straw (WS) employing earthworms Eisenia fetida. A total of nine experimental vermibeds were established and changes in chemical parameters of waste material have been observed for 90 days. Vermistabilization caused significant reduction in pH, organic carbon and C:N ratio and substantial increase in total N, available P and exchangeable K. The waste mixture containing MPIS (60%)+CD (10%)+ST (30%) and MPIS (60%)+CD (10%)+WS (30%) had better waste mineralization rate among waste mixtures studied. The earthworm showed better biomass and cocoon numbers in all vermibeds during vermicomposting operation. Results, thus suggest the suitability of E. fetida for conversion of noxious industrial waste into value-added product for land restoration programme.

  15. Competent statistical programmer: Need of business process outsourcing industry

    PubMed Central

    Khan, Imran

    2014-01-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes. PMID:24987578

  16. Theory and Practice Meets in Industrial Process Design -Educational Perspective-

    NASA Astrophysics Data System (ADS)

    Aramo-Immonen, Heli; Toikka, Tarja

    Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.

  17. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  18. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Astrophysics Data System (ADS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-04-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  19. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  20. Strategic Coupling of Advanced Induction Heating with Magnetic Field Processing Technologies Provides Innovative Solutions for Elevated Industries Demands

    SciTech Connect

    Ludtka, Mackiewicz-Ludtka; Pfaffmann, George; Ludtka, Gerard Michael

    2013-01-01

    Industry s relentless pursuit of product performance improvements is now challenging the capability of available/existing Thermal processing technologies, i.e., Heat Treating. In fact, the EPA-mandated requirement for light-weighting vehicles underscores the urgent US need for achieving higher product strength improvements.

  1. New challenges in signal processing in astrophysics: the SKA case

    NASA Astrophysics Data System (ADS)

    Faulkner, Andrew; Zarb-Adami, Kristian; Geralt Bij de Vaate, Jan

    2015-07-01

    Signal processing and communications are driving the latest generation of radio telescopes with major developments taking place for use on the Square Kilometre Array, SKA, the next generation low frequency radio telescope. The data rates and processing performance that can be achieved with currently available components means that concepts from the earlier days of radio astronomy, phased arrays, can be used at higher frequencies, larger bandwidths and higher numbers of beams. Indeed it has been argued that the use of dishes as a mechanical beamformer only gained strong acceptance to mitigate the processing load from phased array technology. The balance is changing and benefits in both performance and cost can be realised. In this paper we will mostly consider the signal processing implementation and control for very large phased arrays consisting of hundreds of thousands of antennas or even millions of antennas. They can use current technology for the initial deployments. These systems are very large extending to hundreds of racks with thousands of signal processing modules that link through high-speed, but commercially available data networking devices. There are major challenges to accurately calibrate the arrays, mitigate power consumption and make the system maintainable.

  2. Challenges and solutions for clinical development of new antibacterial agents: results of a survey among pharmaceutical industry professionals.

    PubMed

    Bettiol, Esther; Wetherington, Jeffrey D; Schmitt, Nicola; Harbarth, Stephan

    2015-07-01

    As the number of antibacterial medicines in the pipeline remains low, we anonymously surveyed pharmaceutical industry professionals on challenges and solutions for clinical development of these agents. Challenges were reported primarily as financial and regulatory. For multidrug-resistant organisms, there are needs for rapid diagnostic tests, new regulatory guidance, and adaptation of endpoints/trial designs. Regulators and public/private initiatives are addressing these challenges to help ensure that proposed solutions have the support of all involved stakeholders.

  3. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  4. Industrial process system assessment: bridging process engineering and life cycle assessment through multiscale modeling.

    EPA Science Inventory

    The Industrial Process System Assessment (IPSA) methodology is a multiple step allocation approach for connecting information from the production line level up to the facility level and vice versa using a multiscale model of process systems. The allocation procedure assigns inpu...

  5. Industrial applications of high power diode lasers in materials processing

    NASA Astrophysics Data System (ADS)

    Bachmann, Friedrich

    2003-03-01

    Diode lasers are widely used in communication, computer and consumer electronics technology. These applications are based on systems, which provide power in the milliwatt range. However, in the mean time high power diode lasers have reached the kilowatt power range. This became possible by special cooling and mounting as well as beam combination and beam forming technologies. Such units are nowadays used as a direct source for materials processing. High power diode lasers have entered the industrial manufacturing area [Proceedings of the Advanced Laser Technologies Conference 2001, Proc. SPIE, Constanta, Romania, 11-14 September 2001].

  6. Cogeneration handbook for the food processing industry. [Contains glossary

    SciTech Connect

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  7. Industrial membrane processes in the treatment of process waters and liquors.

    PubMed

    Mänttäri, M; Kallioinen, M; Pihlajamäki, A; Nyström, M

    2010-01-01

    A review on pulp and paper industrial membrane processes using a variety of modules and processes is presented. Membranes are mostly used today to purify process waters and to recover coating colours. Ultrafiltration using tubular membrane modules or cross-rotational (CR) filtration has been widely applied for the purification of process waters. The reuse of UF membrane permeate has decreased the fresh water consumption to lower than 6 m³/t of paper in some paper machines. Some industrial membrane processes also recover valuable products from different streams (e.g lignosulphonates). Membranes are also combined with biological degradation processes in some paper mills. Nanofiltration has been used to purify the effluents discharged from the activated sludge process. At least two reverse osmosis plants purify river water to be used as raw water in the mill. Furthermore, advantages of different membrane modules and the current ways to treat membrane concentrate are discussed.

  8. Progress and challenges in control of chemical processes.

    PubMed

    Lee, Jay H; Lee, Jong Min

    2014-01-01

    This review covers key developments and trends in chemical process control during the past two decades. Control methodologies and related supporting technologies are covered, and recent trends in applications are also examined. After the widespread adoption of model-based techniques by industry, control interest has begun to move beyond the traditional realm of readily measured variables to include chemical compositions and particle features. However, the shift is being slowed by the shortage of accurate, reliable, and inexpensive sensing devices. Although the past two decades saw no new major theoretical or methodological advances, several important incremental improvements and extensions have been made to help the ripening of the technologies developed in the preceding two decades. Control is regaining its importance owing to society's renewed focus on energy and the maturation of various emerging technologies, but a community-wide consensus on what general problems should be solved is lacking.

  9. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  10. The challenges of solar hydrogen in chemical industry: how to provide, and how to apply?

    PubMed

    Setoyama, Tohru; Takewaki, Takahiko; Domen, Kazunari; Tatsumi, Takashi

    2017-03-09

    Curbing anthropogenic CO2 emissions is one of the most important issues in the 21st century in order to mitigate climate change. Although the installation of solar cells for energy supply is in progress and these are becoming popular as an efficient use of sunlight, they are mostly used by energy-related industrial sectors. In the common chemical industry, various fossil resources are used to emit a huge amount of CO2. We believe that the chemical industry can make an effort to curb CO2 emissions by changing its resources to more environmentally benign ones. Solar hydrogen (hydrogen obtained by catalytic water splitting under sunlight) is an ideal sustainable resource and can be utilized as a chemical resource via combination with CO2. The 10 year program named "Artificial Photo Synthetic Chemical Process (ARPChem)" has been in progress under the support of the New Energy and Industrial Technology Development Organization (NEDO) in Japan since 2012. We introduce the strategy of ARPChem and the progress of the investigations including water splitting, hydrogen/oxygen separation, and olefin synthesis from solar hydrogen and CO2. We also argue that a realistic strategy to actualize "ARPChem" technologies in the society would be their combination with better fossil resources such as lower alkanes from a Life Cycle Assessment (LCA) point of view.

  11. Super-sensing technology: industrial applications and future challenges of electrical tomography.

    PubMed

    Wei, Kent Hsin-Yu; Qiu, Chang-Hua; Primrose, Ken

    2016-06-28

    Electrical tomography is a relatively new imaging technique that can image the distribution of the passive electrical properties of an object. Since electrical tomography technology was proposed in the 1980s, the technique has evolved rapidly because of its low cost, easy scale-up and non-invasive features. The technique itself can be sensitive to all passive electrical properties, such as conductivity, permittivity and permeability. Hence, it has a huge potential to be applied in many applications. Owing to its ill-posed nature and low image resolution, electrical tomography attracts more attention in industrial fields than biomedical fields. In the past decades, there have been many research developments and industrial implementations of electrical tomography; nevertheless, the awareness of this technology in industrial sectors is still one of the biggest limitations for technology implementation. In this paper, the authors have summarized several representative applications that use electrical tomography. Some of the current tomography research activities will also be discussed. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  12. A case in support of implementing innovative bio-processes in the metal mining industry.

    PubMed

    Sánchez-Andrea, Irene; Stams, Alfons J M; Weijma, Jan; Gonzalez Contreras, Paula; Dijkman, Henk; Rozendal, Rene A; Johnson, D Barrie

    2016-06-01

    The metal mining industry faces many large challenges in future years, among which is the increasing need to process low-grade ores as accessible higher grade ores become depleted. This is against a backdrop of increasing global demands for base and precious metals, and rare earth elements. Typically about 99% of solid material hauled to, and ground at, the land surface currently ends up as waste (rock dumps and mineral tailings). Exposure of these to air and water frequently leads to the formation of acidic, metal-contaminated run-off waters, referred to as acid mine drainage, which constitutes a severe threat to the environment. Formation of acid drainage is a natural phenomenon involving various species of lithotrophic (literally 'rock-eating') bacteria and archaea, which oxidize reduced forms of iron and/or sulfur. However, other microorganisms that reduce inorganic sulfur compounds can essentially reverse this process. These microorganisms can be applied on industrial scale to precipitate metals from industrial mineral leachates and acid mine drainage streams, resulting in a net improvement in metal recovery, while minimizing the amounts of leachable metals to the tailings storage dams. Here, we advocate that more extensive exploitation of microorganisms in metal mining operations could be an important way to green up the industry, reducing environmental risks and improving the efficiency and the economy of metal recovery.

  13. Challenges in Liquid-Phase Exfoliation, Processing, and Assembly of Pristine Graphene.

    PubMed

    Parviz, Dorsa; Irin, Fahmida; Shah, Smit A; Das, Sriya; Sweeney, Charles B; Green, Micah J

    2016-10-01

    Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various "graphene" products, as well as metrics that determine the potential for industrial scale-up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large-scale production.

  14. Techno-Economic Simulation Approach in Preparation of Employing Renewable Energies for Process Industry

    SciTech Connect

    Ryu, Jun Hyung; Lee, Soo bin; Hodge, Bri-Mathias; Lee, In-Beum

    2016-11-21

    The energy system of process industry are faced with a new unprecedented challenge. Renewable energies should be incorporated but single of them cannot meet its energy demand of high degree and a large quantity. This paper investigates a simulation framework to compute the capacity of multiple energy sources including solar, wind power, diesel and batteries. The framework involves actual renewable energy supply and demand profile generation and supply demand matching. Eight configurations of different supply options are evaluated to illustrate the applicability of the proposed framework with some remarks.

  15. The role of PV in demand-site management: Policy and industry challenges

    NASA Astrophysics Data System (ADS)

    Byrne, John; Hadjilambrinos, Constantine; Wang, Young-Doo

    1992-12-01

    Most electric utility planners consider photovoltaics to be a frontier technology which is not yet mature enough to contribute to the U.S. electric generation market. Over the past decade, utilities and their regulators have begun to emphasize demand-side management (DMS) to meet an increasing proportion of their service needs. For PV to be a valued technology in the electricity sector, DSM applications need to be identified that can provide a significant market for this technology. DSM programs of 20 of the most active utilities in the DSM market are analyzed in this research to determine the size, prices, demand, and impact of policy. Target PV-DSM markets are identified and the policy and industry challenges that must be met are defined.

  16. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source

  17. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  18. Microfabricated Instrumentation for Chemical Sensing in Industrial Process Control

    SciTech Connect

    Ramsey, J. M.

    2000-06-01

    The monitoring of chemical constituents in manufacturing processes is of economic importance to most industries. The monitoring and control of chemical constituents may be of importance for product quality control or, in the case of process effluents, of environmental concern. The most common approach now employed for chemical process control is to collect samples which are returned to a conventional chemical analysis laboratory. This project attempts to demonstrate the use of microfabricated structures, referred to as 'lab-on-a-chip' devices, that accomplish chemical measurement tasks that emulate those performed in the conventional laboratory. The devices envisioned could be used as hand portable chemical analysis instruments where samples are analyzed in the field or as emplaced sensors for continuous 'real-time' monitoring. This project focuses on the development of filtration elements and solid phase extraction elements that can be monolithically integrated onto electrophoresis and chromatographic structures pioneered in the laboratory. Successful demonstration of these additional functional elements on integrated microfabricated devices allows lab-on-a-chip technologies to address real world samples that would be encountered in process control environments. The resultant technology has a broad application to industrial environmental monitoring problems. such as monitoring municipal water supplies, waste water effluent from industrial facilities, or monitoring of run-off from agricultural activities. The technology will also be adaptable to manufacturing process control scenarios. Microfabricated devices integrating sample filtration, solid phase extraction, and chromatographic separation with solvent programming were demonstrated. Filtering of the sample was accomplished at the same inlet with an array of seven channels each 1 {micro}m deep and 18 {micro}m wide. Sample concentration and separation were performed on channels 5 {micro}m deep and 25 {micro

  19. Development of a process control sensor for the glass industry

    SciTech Connect

    Gardner, M.; Candee, A.; Kramlich, J.; Koppang, R.

    1991-05-01

    This project was initiated to fill a need in the glass industry for a non-contact temperature sensor for glass melts. At present, the glass forming industry (e.g., bottle manufacture) consumes significant amounts of energy. Careful control of temperature at the point the bottle is molded is necessary to prevent the bottle from being rejected as out-of-specification. In general, the entire glass melting and conditioning process is designed to minimize this rejection rate, maximize throughput and thus control energy and production costs. This program focuses on the design, development and testing of an advanced optically based pyrometer for glass melts. The pyrometer operates simultaneously at four wavelengths; through analytical treatment of the signals, internal temperature profiles within the glass melt can be resolved. A novel multiplexer alloys optical signals from a large number of fiber-optic sensors to be collected and resolved by a single detector at a location remote from the process. This results in a significant cost savings on a per measurement point basis. The development program is divided into two phases. Phase 1 involves the construction of a breadboard version on the instrument and its testing on a pilot-scale furnace. In Phase 2, a prototype analyzer will be constructed and tested on a commercial forehearth. This report covers the Phase 1 activities.

  20. Bates solar industrial process steam application environmental impact assessment

    SciTech Connect

    Not Available

    1981-06-30

    It is planned to install 34,440 square feet of linear parabolic trough solar collectors at a new corrugator plant for making corrugated boxes. The system is to operate in parallel with a fossil fuel boiler. An assessment is presented of the impacts of the solar energy system on the existing environment and to determine whether or not a more detailed environmental impact statement is needed. The environmental assessment is based on actual operational data obtained on the collector, fluid, and heat transport system. A description of the design of the solar energy system and its application is given. Also included is a discussion of the location of the new plant in Fort Worth, Texas, and of the surrounding environment. Environmental impacts are discussed in detail, and alternatives to the solar industrial process steam retrofit application are offered. It is concluded that the overall benefits from the solar industrial process heat system outweigh any negative environmental factors. Benefits include reduced fossil fuel demand, with attending reductions in air pollutants. The selection of a stable heat transfer fluid with low toxicity and biodegradable qualities minimizes environmental damage due to fluid spills, personal exposure, and degradation byproducts. The collector is found to be aesthetically attractive with minimal hazards due to glare. (LEW)

  1. Processing of nickel aluminides and their industrial applications

    SciTech Connect

    Sikka, V.K. ); Mavity, J.T.; Anderson, K. )

    1991-01-01

    Ductile Ni{sub 3}Al-based alloys offer unique properties. However, their use has been limited because information is lacking regarding their processing into various product forms. This paper describes the recent progress made toward melting, electroslag remelting, and the processing of large-scale ingots of one of the Ni{sub 3}Al-based alloys. Microstructural data are presented after various homogenization treatments. Both as-cast and homogenized samples were subjected to hot-compression testing. The hot-compression data for the commercial-size ingot showed the same behavior as previously reported on the experimental heats. The status of industrial applications of nickel-aluminide alloys is also described. 12 refs., 12 figs., 2 tabs.

  2. Industrial processing of complex fluids: Formulation and modeling

    SciTech Connect

    Scovel, J.C.; Bleasdale, S.; Forest, G.M.; Bechtel, S.

    1997-08-01

    The production of many important commercial materials involves the evolution of a complex fluid through a cooling phase into a hardened product. Textile fibers, high-strength fibers(KEVLAR, VECTRAN), plastics, chopped-fiber compounds, and fiber optical cable are such materials. Industry desires to replace experiments with on-line, real time models of these processes. Solutions to the problems are not just a matter of technology transfer, but require a fundamental description and simulation of the processes. Goals of the project are to develop models that can be used to optimize macroscopic properties of the solid product, to identify sources of undesirable defects, and to seek boundary-temperature and flow-and-material controls to optimize desired properties.

  3. Neural networks for process control and optimization: two industrial applications.

    PubMed

    Bloch, Gérard; Denoeux, Thierry

    2003-01-01

    The two most widely used neural models, multilayer perceptron (MLP) and radial basis function network (RBFN), are presented in the framework of system identification and control. The main steps for building such nonlinear black box models are regressor choice, selection of internal architecture, and parameter estimation. The advantages of neural network models are summarized: universal approximation capabilities, flexibility, and parsimony. Two applications are described in steel industry and water treatment, respectively, the control of alloying process in a hot dipped galvanizing line and the control of a coagulation process in a drinking water treatment plant. These examples highlight the interest of neural techniques, when complex nonlinear phenomena are involved, but the empirical knowledge of control operators can be learned.

  4. Industrial web inspection for manufacturing process understanding and control

    NASA Astrophysics Data System (ADS)

    Xu, Wenyuan; Floeder, Steven P.

    1999-03-01

    Many industrial manufacturing processes are not well understood and are treated as `black art' with few experts able to control the process and ensure product quality. However, modern manufacturing companies are finding it increasingly difficult to compete in the global marketplace without better process understanding and control. Automated inspection systems for general manufacturing have become more feasible through technical advances, primarily in sensor and computing technology. However, these systems have been used almost exclusively for the detection and subsequent removal of well defined, discrete defects from the product; thus guaranteeing high quality for the customer. This paper describes a larger opportunity to affect operations by employing web inspection techniques to dynamically analyze manufacturing conditions rather than just detecting the presence of defective material. One can then keep the process under better control, thereby eliminating defects, ensuring product quality, and optimizing manufacturing time on the production line. Specific image and data processing techniques will be illustrated including product uniformity metrics, automatic determination of thresholds for blob analysis, and localization of repeating defects within production data. The benefit of these techniques will be demonstrated through `real-world' examples of web-based manufactured products.

  5. Multiblock PLS analysis of an industrial pharmaceutical process.

    PubMed

    Lopes, J A; Menezes, J C; Westerhuis, J A; Smilde, A K

    2002-11-20

    The performance of an industrial pharmaceutical process (production of an active pharmaceutical ingredient by fermentation, API) was modeled by multiblock partial least squares (MBPLS). The most important process stages are inoculum production and API production fermentation. Thirty batches (runs) were produced according to an experimental planning. Rather than merging all these data into a single block of independent variables (as in ordinary PLS), four data blocks were used separately (manipulated and quality variables for each process stage). With the multiblock approach it was possible to calculate weights and scores for each independent block. It was found that the inoculum quality variables were highly correlated with API production for nominal fermentations. For the nonnominal fermentations, the manipulations of the fermentation stage explained the amount of API obtained (especially the pH and biomass concentration). Based on the above process analysis it was possible to select a smaller set of variables with which a new model was built. The amount of variance predicted of the final API concentration (cross-validation) for this model was 82.4%. The advantage of the multiblock model over the standard PLS model is that the contributions of the two main process stages to the API volumetric productivity were determined.

  6. The bioethanol industry in sub-Saharan Africa: history, challenges, and prospects.

    PubMed

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production.

  7. The Bioethanol Industry in Sub-Saharan Africa: History, Challenges, and Prospects

    PubMed Central

    Deenanath, Evanie Devi; Iyuke, Sunny; Rumbold, Karl

    2012-01-01

    Recently, interest in using bioethanol as an alternative to petroleum fuel has been escalating due to decrease in the availability of crude oil. The application of bioethanol in the motor-fuel industry can contribute to reduction in the use of fossil fuels and in turn to decreased carbon emissions and stress of the rapid decline in crude oil availability. Bioethanol production methods are numerous and vary with the types of feedstock used. Feedstocks can be cereal grains (first generation feedstock), lignocellulose (second generation feedstock), or algae (third generation feedstock) feedstocks. To date, USA and Brazil are the leading contributors to global bioethanol production. In sub-Saharan Africa, bioethanol production is stagnant. During the 1980s, bioethanol production has been successful in several countries including Zimbabwe, Malawi, and Kenya. However, because of numerous challenges such as food security, land availability, and government policies, achieving sustainability was a major hurdle. This paper examines the history and challenges of bioethanol production in sub-Saharan Africa (SSA) and demonstrates the bioethanol production potential in SSA with a focus on using bitter sorghum and cashew apple juice as unconventional feedstocks for bioethanol production. PMID:22536020

  8. High-performance polymers from nature: catalytic routes and processes for industry.

    PubMed

    Walther, Guido

    2014-08-01

    It is difficult to imagine life today without polymers. However, most chemicals are almost exclusively synthesized from petroleum. With diminishing oil reserves, establishing an industrial process to transform renewables into high-value chemicals may be more challenging than running a car without gasoline. This is due to the difficulty in setting up processes that are novel, profitable, and environmentally benign at the same time. Additionally, the quest for sustainability of renewable resources should be based on incorporating ethical considerations in the development of plans that utilize feedstocks intended for human nutrition and health. Thus, it is important to use bio-energy containing renewable resources in the most efficient way. This Concept goes beyond the synthesis of monomers and provides insights for establishing an industrial process that transforms renewable resources into high-value chemicals, and it describes careful investigations that are of paramount importance, including evaluations from an economical and an ecological perspective. The synthesis of monomers suitable for polymer production from renewable resources would ideally be accompanied by a reduction in CO2 emission and waste, through the complete molecular utilization of the feedstock. This Concept advocates the drop-in strategy, and is guided by the example of catalytically synthesized dimethyl 1,19-nonadecanedioate and its α,ω-functionalized derivatives. With respect to the Twelve Principles of Green Chemistry, this Concept describes a technological leap forward for a sustainable green chemical industry.

  9. Designing optimized industrial process analysers for closed loop control

    PubMed Central

    Grevesmuehl, Bernard; Kradjel, Cynthia; Kellner, Hanno

    1991-01-01

    Manufacturers are now looking closely at ways of optimizing ‘quality’ and increasing process efficiency while reducing manufacturing costs. Near infra-red (NIR) technology is a popular solution to this challenge: it provides manufacturers with rapid and reliable in-process analysis and thousands of systems have already been installed in the food, chemical, pharmaceutical and agricultural markets. For over 10 years, NIR has been successfully applied to at-line process analysis. Rugged and easy-to-operate filter analysers are traditionally located in the control room–process operators can then ‘grab samples’ and obtain results in less than a minute. There are many practical advantages to using at-line filter systems. Products from many lines can be run on one system, and, since there is no direct process interface, installation, operation and maintenance are quite simple. Many manufacturers, however, are now striving to achieve on-line closed loop control, in these cases the benefit of obtaining continuous measurement is well worth the effort required to automate the analysis. PMID:18924898

  10. Tackling optimization challenges in industrial load control and full-duplex radios

    NASA Astrophysics Data System (ADS)

    Gholian, Armen

    In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered

  11. Science, technology, and the industrialization of laser-driven processes

    SciTech Connect

    Davis, J.I.; Paisner, J.A.

    1985-05-01

    Members of the laser program at Lawrence Livermore National Laboratory (LLNL) reviewed potential applications of lasers in industry, some of which are: isotope separation; cleanup of radioactive waste; trace impurity removal; selective chemical reactions; photochemical activation or dissociation of gases; control of combustion particulates; crystal and powder chemistry; and laser induced biochemistry. Many of these areas are currently under active study in the community. The investigation at LLNL focused on laser isotope separation of atomic uranium because of the large demand (> 1000 tonnes/year) and high product enrichment price (> $600/kg of product) for material used as fuel in commercial light-water nuclear power reactors. They also believed that once the technology was fully developed and deployed, it could be applied directly to separating many elements economically on an industrial scale. The Atomic Vapor Laser Isotope Separation (AVLIS) program at LLNL has an extensive uranium and plutonium program of >$100 M in FY85 and a minor research program for other elements. This report describes the AVLIS program conducted covering the following topics; candidate elements; separative work units; spectroscopic selectivety; major systems; facilities; integrated process model;multivariable sensitivety studies; world market; and US enrichment enterprise. 23 figs. (AT)

  12. Industrial process heat data analysis and evaluation. Volume 2

    SciTech Connect

    Lewandowski, A; Gee, R; May, K

    1984-07-01

    The Solar Energy Research Institute (SERI) has modeled seven of the Department of Energy (DOE) sponsored solar Industrial Process Heat (IPH) field experiments and has generated thermal performance predictions for each project. Additionally, these performance predictions have been compared with actual performance measurements taken at the projects. Predictions were generated using SOLIPH, an hour-by-hour computer code with the capability for modeling many types of solar IPH components and system configurations. Comparisons of reported and predicted performance resulted in good agreement when the field test reliability and availability was high. Volume I contains the main body of the work; objective model description, site configurations, model results, data comparisons, and summary. Volume II contains complete performance prediction results (tabular and graphic output) and computer program listings.

  13. Exposures to carbon dioxide in the poultry processing industry

    SciTech Connect

    Jacobs, D.E.; Smith, M.S.

    1988-12-01

    The use of dry ice has increased dramatically in poultry processing plants because of changes in the fast food industry. Concentrations of carbon dioxide in four such plants were measured and were found to exceed the Immediately Dangerous to Life and Health Level (50,000 ppm) inside holding coolers where ventilation is poor. In other areas, where dry ice is delivered to poultry packages, time-weighted average exposures can exceed the threshold limit value of 5000 ppm by substantial margins, even if local exhaust ventilation systems are present. Reports of adverse health effects from carbon dioxide exposure and various control measures are reviewed. Recommendations regarding sampling and analytical techniques also are presented. Operators of poultry plants where dry ice is used need to recognize the occupational hazards of exposure to carbon dioxide.

  14. Integrating science and business models of sustainability for environmentally-challenging industries such as secondary lead smelters: a systematic review and analysis of findings.

    PubMed

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M

    2010-09-01

    Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such

  15. Nanotechnology-based drug delivery systems for Alzheimer's disease management: Technical, industrial, and clinical challenges.

    PubMed

    Wen, Ming Ming; El-Salamouni, Noha S; El-Refaie, Wessam M; Hazzah, Heba A; Ali, Mai M; Tosi, Giovanni; Farid, Ragwa M; Blanco-Prieto, Maria J; Billa, Nashiru; Hanafy, Amira S

    2017-01-10

    Alzheimer's disease (AD) is a neurodegenerative disease with high prevalence in the rapidly growing elderly population in the developing world. The currently FDA approved drugs for the management of symptomatology of AD are marketed mainly as conventional oral medications. Due to their gastrointestinal side effects and lack of brain targeting, these drugs and dosage regiments hinder patient compliance and lead to treatment discontinuation. Nanotechnology-based drug delivery systems (NTDDS) administered by different routes can be considered as promising tools to improve patient compliance and achieve better therapeutic outcomes. Despite extensive research, literature screening revealed that clinical activities involving NTDDS application in research for AD are lagging compared to NTDDS for other diseases such as cancers. The industrial perspectives, processability, and cost/benefit ratio of using NTDDS for AD treatment are usually overlooked. Moreover, active and passive immunization against AD are by far the mostly studied alternative AD therapies because conventional oral drug therapy is not yielding satisfactorily results. NTDDS of approved drugs appear promising to transform this research from 'paper to clinic' and raise hope for AD sufferers and their caretakers. This review summarizes the recent studies conducted on NTDDS for AD treatment, with a primary focus on the industrial perspectives and processability. Additionally, it highlights the ongoing clinical trials for AD management.

  16. Spectroscopy for Industrial Applications: High-Temperature Processes

    NASA Astrophysics Data System (ADS)

    Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2014-06-01

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a

  17. Waste management in the meat processing industry: Conversion of paunch and DAF sludge into solid fuel.

    PubMed

    Hamawand, Ihsan; Pittaway, Pam; Lewis, Larry; Chakrabarty, Sayan; Caldwell, Justin; Eberhard, Jochen; Chakraborty, Arpita

    2017-02-01

    This article addresses the novel dewatering process of immersion-frying of paunch and dissolved air flotation (DAF) sludge to produce high energy pellets. Literature have been analysed to address the feasibility of replacing conventional boiler fuel at meat processing facilities with high energy paunch-DAF sludge pellets (capsules). The value proposition of pelleting and frying this mixture into energy pellets is based on a Cost-Benefit Analysis (CBA). The CBA is based on information derived from the literature and consultation with the Australian Meat Processing Industry. The calorific properties of a mixture of paunch cake solids and DAF sludge were predicted from literature and industry consultation to validate the product. This study shows that the concept of pelletizing and frying paunch is economically feasible. The complete frying and dewatering of the paunch and DAF sludge mixture produces pellets with energy content per kilogram equivalent to coal. The estimated cost of this new product is half the price of coal and the payback period is estimated to be between 1.8 and 3.2years. Further research is required for proof of concept, and to identify the technical challenges associated with integrating this technology into existing meat processing plants.

  18. Reflection as Creative Process: Perspectives, Challenges and Practice

    ERIC Educational Resources Information Center

    Guillaumier, Christina

    2016-01-01

    This paper explores the challenges and opportunities for embedding reflection in practice-based curricula in the arts. Following the root and branch curriculum reform project recently completed at the Royal Conservatoire of Scotland, the paper presents a hermeneutic and analytical narrative of the challenges emerging from presenting reflection as…

  19. Inhomogeneous feed gas processing in industrial ozone generation.

    PubMed

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved.

  20. Proteolysis in Mozzarella cheeses manufactured by different industrial processes.

    PubMed

    Costabel, L; Pauletti, M S; Hynes, E

    2007-05-01

    The objective of the present study was to investigate the influence of stretching temperature, fat content, and time of brining on proteolysis during ripening of Mozzarella cheeses. Seventeen cheese-making experiments (batches) were carried out on an industrial scale on successive days, following the standard procedure with some modifications. Fat content of cheese milk, temperature at the stretching step, and time of brining varied from one batch to another as required by the experimental design, outlined by a surface response model. Proteolysis was assessed during ripening of samples, which was prolonged for at least 3 mo, by means of electrophoresis, nitrogen fractions, and soluble peptide mapping. The amount of soluble nitrogen at pH 4.6 was not significantly different in cheeses obtained by diverse procedures, but it increased during ripening of all samples. This result was coincident with the breakdown of alpha(s1)- and beta-caseins evidenced by electrophoresis, which reached similar extents at late stages of ripening, regardless of the cheese-making process. Multivariate analysis on soluble peptide profiles obtained by liquid chromatography also detected sample grouping according to ripening time, but did not evidence any separation caused by the cheese-making technology. We concluded that the changes in the cheese-making process assayed in this work were insufficient to produce significant differences in proteolysis of the cheeses. Ripening time had more influence on proteolysis of Mozzarella cheeses than any other assayed variable.

  1. Stress responses of the industrial workhorse Bacillus licheniformis to osmotic challenges.

    PubMed

    Schroeter, Rebecca; Hoffmann, Tamara; Voigt, Birgit; Meyer, Hanna; Bleisteiner, Monika; Muntel, Jan; Jürgen, Britta; Albrecht, Dirk; Becher, Dörte; Lalk, Michael; Evers, Stefan; Bongaerts, Johannes; Maurer, Karl-Heinz; Putzer, Harald; Hecker, Michael; Schweder, Thomas; Bremer, Erhard

    2013-01-01

    The Gram-positive endospore-forming bacterium Bacillus licheniformis can be found widely in nature and it is exploited in industrial processes for the manufacturing of antibiotics, specialty chemicals, and enzymes. Both in its varied natural habitats and in industrial settings, B. licheniformis cells will be exposed to increases in the external osmolarity, conditions that trigger water efflux, impair turgor, cause the cessation of growth, and negatively affect the productivity of cell factories in biotechnological processes. We have taken here both systems-wide and targeted physiological approaches to unravel the core of the osmostress responses of B. licheniformis. Cells were suddenly subjected to an osmotic upshift of considerable magnitude (with 1 M NaCl), and their transcriptional profile was then recorded in a time-resolved fashion on a genome-wide scale. A bioinformatics cluster analysis was used to group the osmotically up-regulated genes into categories that are functionally associated with the synthesis and import of osmostress-relieving compounds (compatible solutes), the SigB-controlled general stress response, and genes whose functional annotation suggests that salt stress triggers secondary oxidative stress responses in B. licheniformis. The data set focusing on the transcriptional profile of B. licheniformis was enriched by proteomics aimed at identifying those proteins that were accumulated by the cells through increased biosynthesis in response to osmotic stress. Furthermore, these global approaches were augmented by a set of experiments that addressed the synthesis of the compatible solutes proline and glycine betaine and assessed the growth-enhancing effects of various osmoprotectants. Combined, our data provide a blueprint of the cellular adjustment processes of B. licheniformis to both sudden and sustained osmotic stress.

  2. An overview of industrial employees' exposure to noise in sundry processing and manufacturing industries in Ilorin metropolis, Nigeria.

    PubMed

    Olayinka, Oyedepo S; Abdullahi, Saadu A

    2009-04-01

    In this work, an overview of industrial employees' noise exposure level in five selected processing and manufacturing industries in Ilorin are evaluated and compared. Emphasis is given to noise emitted by individual industrial machinery from the selected industries. Event L(Aeq) and LN cycle were studied to identify the noisy machines and to generate baseline data. Findings show that, hammer mill machine from mineral crushing mills produced the highest average noise (98.4 dB(A), electric generator1 (95.6 dB(A) from soft drink bottling industry, electric generator (97.7 dB(A)) from beer brewing and bottling industry, vacuum pump (93.1 dB(A)) from tobacco making industry and electric generator 2 (94.1 dB(A) from mattress making industry. The highest and lowest average noise exposure levels are recorded in mineral crushing mills (93.16 dB(A)) and mattress making industry (84.69 dB(A)) respectively. The study shows that at 95% confidence level, there is significant difference (p<0.05) in noise levels in the industries surveyed. The percentages of machines emit noise above FEPA and OSHA recommendation (90 dB(A)) are: soft drink bottling industry (83.3%), beer brewing and bottling industry (42.9%), tobacco making industry (71.4%), mattress making industry (11.1%) and minerals crushing mills (87.5%). In the past 20 years, the noise levels in soft drink bottling industry reduced by 0.58 dB(A) and that of beer brewing and bottling industry reduced by 9.66 dB(A). But that of mattress making industry increased by 2.69 dB(A). On the average, the noise level in these industries has reduced by 2.52 dB(A). The results of this study show that the noise control measures put in place have significant impact on the noise exposure level in the industries surveyed.

  3. Business Education Students' Evaluation of the Benefits and Challenges Confronting Student Industrial Works Experience Scheme in Edo and Delta States

    ERIC Educational Resources Information Center

    Olumese, H. A.; Ediagbonya, Kennedy

    2016-01-01

    This research paper specifically investigated Business Education students' evaluation of the benefits and challenges confronting Student Industrial Works Experience Scheme (SIWES) in Edo and Delta States. Two research questions were raised to guide the study and were answered descriptively. The descriptive survey research design was adopted for…

  4. Opportunities and Challenges for Water and Wastewater Industries to Provide Exchangeable Services

    SciTech Connect

    Sparn, Bethany; Hunsberger, Randolph

    2015-11-13

    Water and wastewater treatment plants and distribution systems use significant amounts of energy, around 2 - 4% of the total electricity used in the US, and their energy use is projected to increase as populations increase and regulations become more stringent. Water and wastewater systems have largely been disconnected from the electric utilities' efforts to improve energy efficiency and provide energy efficiency and provide grid services, likely because their core mission is to provide clean water and treated wastewater. Energy efficiency has slowly crept into the water and wastewater industry as the economic benefit has become more apparent, but there is still potential for significant improvement. Some of the larger, more progressive water utilities are starting to consider providing grid services; however, it remains a foreign concept to many. This report explores intrinsic mechanisms by which the water and wastewater industries can provide exchangeable services, the benefit to the parties involved, and the barriers to implementation. It also highlights relevant case studies and next steps. Although opportunities for increasing process efficiencies are certainly available, this report focuses on the exchangeable services that water and wastewater loads can provide to help maintain grid reliability, keep overall costs down, and increase the penetration of distributed renewables on the electric grid. These services have potential to provide water utilities additional value streams, using existing equipment with modest or negligible upgrade cost.

  5. 76 FR 28662 - Industrial, Commercial, and Institutional Boilers and Process Heaters and Commercial and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... AGENCY 40 CFR Parts 60 and 63 RIN 2060-AQ25; 2060-AO12 Industrial, Commercial, and Institutional Boilers... Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters'' and ``Standards...: Industrial, Commercial, and Institutional Boilers and Process Heaters'': Mr. Brian Shrager, Energy...

  6. Discriminating Tectonic Tremor from Magmatic Processes in Observationally Challenging Environments

    NASA Astrophysics Data System (ADS)

    Brown, J. R.; Beroza, G. C.

    2011-12-01

    Deep tectonic tremor is a long-duration, low amplitude signal that has been shown to consist of low frequency earthquakes (LFEs) on the plate interface in subduction zones. Detecting LFEs from tremor-like signals in subduction settings can be challenging due to the combination of volcanic seismicity and sparse station geometry. This is particularly true for island arcs such as the Alaska-Aleutian subduction zone where the islands are small and noise levels are high. We have detected and located LFEs within tremor signals along the Alaska-Aleutian Arc in four locations: Kodiak Island, Alaska Peninsula, eastern Aleutians, and the Andreanof Islands. In all areas, the LFEs are located 10-40 km trenchward of the volcanic chain at depths ranging from 45-70 km. Location errors are significant (+/- 20 km in depth) due to sparse station geometry such that there is the possibility that the tremor could be associated with nearby volcanoes. Since most documented volcanic tremor is located in the shallow crust, it can often be discriminated from tectonic tremor simply based on location. However, deep volcanic tremor has been documented in Hawaii to depths of 40 km and could be more widespread. In the Aleutian arc, deep long period events (DLPs), which are thought to result from the movement of magma and volatiles, have been located as deep as 45 km and sometimes resemble tremor-like signals. The spectral character is another potential discriminant. We compare the cepstra (Fourier transform of the logarithmic power spectrum of a time series) of the tectonic tremor-like signals/LFEs and DLPs associated with volcanoes. Source characteristics of DLPs (non-shear slip) and tectonic tremor/LFEs (shear slip) are distinct and should be noticeable in the cepstral domain. This approach of using tremor locations and cepstral analysis could be useful for detecting and differentiating tectonic tremor from deep volcanic processes in other island arcs as well.

  7. Factors governing dissolution process of lignocellulosic biomass in ionic liquid: current status, overview and challenges.

    PubMed

    Badgujar, Kirtikumar C; Bhanage, Bhalchandra M

    2015-02-01

    The utilisation of non-feed lignocellulosic biomass as a source of renewable bio-energy and synthesis of fine chemical products is necessary for the sustainable development. The methods for the dissolution of lignocellulosic biomass in conventional solvents are complex and tedious due to the complex chemical ultra-structure of biomass. In view of this, recent developments for the use of ionic liquid solvent (IL) has received great attention, as ILs can solubilise such complex biomass and thus provides industrial scale-up potential. In this review, we have discussed the state-of-art for the dissolution of lignocellulosic material in representative ILs. Furthermore, various process parameters and their influence for biomass dissolution were reviewed. In addition to this, overview of challenges and opportunities related to this interesting area is presented.

  8. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3 billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them.

  9. Geotechnical characterization of mined clay from Appalachian Ohio: challenges and implications for the clay mining industry.

    PubMed

    Moran, Anthony R; Hettiarachchi, Hiroshan

    2011-07-01

    Clayey soil found in coal mines in Appalachian Ohio is often sold to landfills for constructing Recompacted Soil Liners (RSL) in landfills. Since clayey soils possess low hydraulic conductivity, the suitability of mined clay for RSL in Ohio is first assessed by determining its clay content. When soil samples are tested in a laboratory, the same engineering properties are typically expected for the soils originated from the same source, provided that the testing techniques applied are standard, but mined clay from Appalachian Ohio has shown drastic differences in particle size distribution depending on the sampling and/or laboratory processing methods. Sometimes more than a 10 percent decrease in the clay content is observed in the samples collected at the stockpiles, compared to those collected through reverse circulation drilling. This discrepancy poses a challenge to geotechnical engineers who work on the prequalification process of RSL material as it can result in misleading estimates of the hydraulic conductivity of the samples. This paper describes a laboratory investigation conducted on mined clay from Appalachian Ohio to determine how and why the standard sampling and/or processing methods can affect the grain-size distributions. The variation in the clay content was determined to be due to heavy concentrations of shale fragments in the clayey soils. It was also concluded that, in order to obtain reliable grain size distributions from the samples collected at a stockpile of mined clay, the material needs to be processed using a soil grinder. Otherwise, the samples should be collected through drilling.

  10. Reduce Natural Gas Use in Your Industrial Process Heating Systems Trifold

    SciTech Connect

    2010-06-25

    This DOE Industrial Technologies Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  11. Private Industry Councils Partner to Meet the Challenge of Change in Workforce Development.

    ERIC Educational Resources Information Center

    Knight, Robert

    1998-01-01

    Discusses the shift in function of PICs (Private Industry Councils) from overseeing training programs for unemployed workers to developing the skills of the entire work force in local communities. Analyzes the relationship between community colleges and Private Industry Councils. (JDI)

  12. Device processing of wide bandgap semiconductors - challenges and directions

    SciTech Connect

    Pearton, S.J.; Shul, R.J.; Zolper, J.C.

    1997-10-01

    The wide gap materials SiC, GaN and to a lesser extent diamond are attracting great interest for high power/high temperature electronics. There are a host of device processing challenges presented by these materials because of their physical and chemical stability, including difficulty in achieving stable, low contact resistances, especially for one conductivity type, absence of convenient wet etch recipes, generally slow dry etch rates, the high temperatures needed for implant activation, control of suitable gate dielectrics and the lack of cheap, large diameter conducting and semi-insulating substrates. The relatively deep ionization levels of some of the common dopants (Mg, in GaN; B, Al in SiC; P in diamond) means that carrier densities may be low at room temperature even if the impurity is electrically active - this problem will be reduced at elevated temperature, and thus contact resistances will be greatly improved provided the metallization is stable and reliable. Some recent work with CoSi{sub x} on SiC and W-alloys on GaN show promise for improved ohmic contacts. The issue of unintentional hydrogen passivation of dopants will also be covered - this leads to strong increases in resistivity of p-SiC and GaN, but to large decreases in resistivity of diamond. Recent work on development of wet etches has found recipes for AlN (KOH), while photochemical etching of SiC and GaN has been reported. In the latter cases p-type materials is not etched, which can be a major liability in some devices. The dry etch results obtained with various novel reactors, including ICP, ECR and LE4 will be compared - the high ion densities in the former techniques produce the highest etch rates for strongly-bonded materials, but can lead to preferential loss of N from the nitrides and therefore to a highly conducting surface. This is potentially a major problem for fabrication of dry etched, recessed gate FET structures.

  13. Zero-discharge: An application of process water recovery technology in the food processing industry

    SciTech Connect

    Fok, S.; Moore, B.

    1999-07-01

    Water is a valuable natural resource and the food processing industry has been among the leading industrial water users in California. With support from a major northern California utility and the California Institute for Food and Agricultural Research, Tri Valley Growers (TVG) has successfully installed the first US energy-efficient zero-discharge process water reclamation system at its Oberti Olive processing facility in Madera, California. The advanced zero-discharge system is the largest application in the world of membrane filtration for recovering water from a food processing plant. Previously, the plant discharged an average of 1 million gallons of salty wastewater (brine) a day into 160 acres of evaporation ponds. However, new environmental regulations made the ponds obsolete. The cost of process water disposal using alternate biotreatment system was prohibitive and would make continued operation uneconomical with plant closure and job loss the likely outcome. Through comprehensive pilot testing and subsequent system design and operational optimization, the advance membrane filtration system with pre- and post-treatment now recovers about 80% of the process liquid in high priority form of water for subsequent reuse at the plant. The solids produced in olive processing, plus concentrated process liquids are used off-site as an animal feed component, thus achieving the plant zero-discharge scheme. The successful implementation of the zero discharge system at the Oberti Olive processing plant has produced energy saving of 3,500,000 kilowatthours and 244,000 therms of gas a year of power as compared to the alternate biotreatment system. It also prevented plant closure and job loss. In addition, water conservation and the discontinuation of evaporation pond use is beneficial to the environment. The project was applauded by the California Environmental Protection Agency as a positive step forward for environmental technology in the agricultural sector in

  14. Fungal multienzyme production on industrial by-products of the citrus-processing industry.

    PubMed

    Mamma, Diomi; Kourtoglou, Elisavet; Christakopoulos, Paul

    2008-05-01

    Orange peels is the principal solid by-product of the citrus processing industry and the disposal of the fresh peels is becoming a major problem to many factories. Dry citrus peels are rich in pectin, cellulose and hemicellulose and may be used as a fermentation substrate. Production of multienzyme preparations containing pectinolytic, cellulolytic and xylanolytic enzymes by the mesophilic fungi Aspergillus niger BTL, Fusarium oxysporum F3, Neurospora crassa DSM 1129 and Penicillium decumbens under solid-state fermentation (SSF) on dry orange peels was enhanced by optimization of initial pH of the culture medium and initial moisture level. Under optimal conditions A. niger BTL was by far the most potent strain in polygalacturonase and pectate lyase, production followed by F. oxysporum F3, N. crassa DSM 1129 and P. decumbens. N. crassa DSM 1129 produced the highest endoglucanase activity and P. decumbens the lowest one. Comparison of xylanase production revealed that A. niger BTL produced the highest activity followed by N. crassa DSM 1129, P. decumbens and F. oxysporum F3. N. crassa DSM 1129 and P. decumbens did not produce any beta-xylosidase activity, while A. niger BTL produced approximately 10 times more beta-xylosidase than F. oxysporum F3. The highest invertase activity was produced by A. niger BTL while the lowest ones by F. oxysporum F3 and P. decumbens. After SSF of the four fungi, under optimal conditions, the fermented substrate was either directly exposed to autohydrolysis or new material was added, and the in situ produced multienzyme systems were successfully used for the partial degradation of orange peels polysaccharides and the liberation of fermentable sugars.

  15. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    PubMed

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  16. "Learning" from other industries: lessons and challenges for health care organizations.

    PubMed

    Kaissi, Amer

    2012-01-01

    Although it is true that health care has several distinguishing characteristics that set it apart, analysts both within and outside the industry point to several similarities with other fields and suggest opportunities for health care to learn from other industries. Applications from other industries have been described in the literature, but the transfer of learning at health care industry level has not been examined. This article investigates health care learning from other industries in the recent decade, focusing on aviation, high-reliability organizations, car manufacturing, telecommunication, car racing, entertainment, and retail; evidence suggests that most innovative practices originate with these fields. The diffusion of innovations from other industries appears to start with a few early adopter organizations (hospitals and health systems) and influential other organizations (The Joint Commission, Institute of Medicine, Agency for Healthcare Research and Quality, or Institute for Healthcare Improvement) pushing for the innovations. Once the trend becomes accepted, consultants and copying behavior seem to contribute to its spread across the industry. An important question to explore is whether the applications in the early adopter organizations are different (in terms of their effectiveness) from those in the rest of the industry. Another intriguing issue is to examine whether other industries learn from health care organizations.

  17. A Largely Unsatisfied Need: Continuing Professional Development for Process and Process Plant Industries. A Summary. FEU/PICKUP Project Report.

    ERIC Educational Resources Information Center

    Geldhart, D.; Brown, A. S.

    This summary report outlines the aims of a project that focused on provision of short courses for technical professionals in the chemical and allied process industry and the process plant industry. Continuing education needs of both companies and individuals, as well as corporate policies and attitudes toward continuing education and constraints…

  18. Global nuclear industry views: challenges arising from the evolution of the optimisation principle in radiological protection.

    PubMed

    Saint-Pierre, S

    2012-01-01

    Over the last few decades, the steady progress achieved in reducing planned exposures of both workers and the public has been admirable in the nuclear sector. However, the disproportionate focus on tiny public exposures and radioactive discharges associated with normal operations came at a high price, and the quasi-denial of a risk of major accident and related weaknesses in emergency preparedness and response came at an even higher price. Fukushima has unfortunately taught us that radiological protection (RP) for emergency and post-emergency situations can be much more than a simple evacuation that lasts 24-48 h, with people returning safely to their homes soon afterwards. On optimisation of emergency and post-emergency exposures, the only 'show in town' in terms of international RP policy improvements has been the issuance of the 2007 Recommendations of the International Commission on Radiological Protection (ICRP). However, no matter how genuine these improvements are, they have not been 'road tested' on the practical reality of severe accidents. Post-Fukushima, there is a compelling case to review the practical adequacy of key RP notions such as optimisation, evacuation, sheltering, and reference levels for workers and the public, and to amend these notions with a view to making the international RP system more useful in the event of a severe accident. On optimisation of planned exposures, the reality is that, nowadays, margins for further reductions of public doses in the nuclear sector are very small, and the smaller the dose, the greater the extra effort needed to reduce the dose further. If sufficient caution is not exercised in the use of RP notions such as dose constraints, there is a real risk of challenging nuclear power technologies beyond safety reasons. For nuclear new build, it is the optimisation of key operational parameters of nuclear power technologies (not RP) that is of paramount importance to improve their overall efficiency. In pursuing

  19. Inclusive Education as Complex Process and Challenge for School System

    ERIC Educational Resources Information Center

    Al-Khamisy, Danuta

    2015-01-01

    Education may be considered as a number of processes, actions and effects affecting human being, as the state or level of the results of these processes or as the modification of the functions, institutions and social practices roles, which in the result of inclusion become new, integrated system. Thus this is very complex process. Nowadays the…

  20. End User Functional and Performance Requirements for HTGR Energy Supply to Industrial Processes

    SciTech Connect

    L.E. Demick

    2010-09-01

    This document specifies end user functional and performance requirements to be used in the development of the design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to industrial processes. These requirements were developed from collaboration with industry and HTGR suppliers and from detailed evaluation of integration of the HTGR technology in industrial processes. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a plant design that will serve the broadest range of industrial applications.

  1. World methanol situation poses challenge in process design

    SciTech Connect

    Haggin, J.

    1984-07-16

    A review is presented of the technology and economics of methanol production processes. Synthesis gas production based on methane or coal are compared. Since methane-based synthesis gas is hydrogen rich and coal-based synthesis gas is carbon rich, the combination of both processes, as suggested by the M.W. Kellogg Co., should be economically attractive. A liquid-phase synthesis in the developmental stages and two reactor configurations under consideration for its use are discussed. The Wentworth system of catalytic processing, a Lurgi process using coal and methane for methanol, a Lurgi process for utilizing methanol in a variation of the Mobil methanol-to-gasoline process, and another Lurgi process to produce a methanol fuel mixture for direct use as a motor fuel, consisting of methanol and oxygenates, are also discussed.

  2. Recovery Processes of Organic Acids from Fermentation Broths in the Biomass-Based Industry.

    PubMed

    Li, Qian-Zhu; Jiang, Xing-Lin; Feng, Xin-Jun; Wang, Ji-Ming; Sun, Chao; Zhang, Hai-Bo; Xian, Mo; Liu, Hui-Zhou

    2016-01-01

    The new movement towards green chemistry and renewable feedstocks makes microbial production of chemicals more competitive. Among the numerous chemicals, organic acids are more attractive targets for process development efforts in the renewable-based biorefinery industry. However, most of the production costs in microbial processes are higher than that in chemical processes, among which over 60% are generated by separation processes. Therefore, the research of separation and purification processes is important for a promising biorefinery industry. This review highlights the progress of recovery processes in the separation and purification of organic acids, including their advantages and disadvantages, current situation, and future prospects in terms of recovery yields and industrial application.

  3. Diabetes mellitus: Exploring the challenges in the drug development process.

    PubMed

    Vaz, Julius A; Patnaik, Ashis

    2012-07-01

    Diabetes mellitus has reached epidemic proportions and continues to be a major burden on society globally. The International Diabetes Federation (IDF) estimated the global burden of diabetes to be 366 million in 2011 and predicted that by 2030 this will have risen to 552 million. In spite of newer and effective treatment options, newer delivery and diagnostic devices, stricter glycaemic targets, better treatment guidelines and increased awareness of the disease, baseline glycosylated hemoglobin remains relatively high in subjects diagnosed and treated with type 2 diabetes. The search continues for an ideal anti diabetic drug that will not only normalize blood glucose but also provide beta cell rest and possibly restoration of beta cell function. The development of anti diabetic drugs is riddled with fundamental challenges. The concept of beta cell rest and restoration is yet to be completely understood and proven on a long term. The ideal therapeutic approach to treating type 2 diabetes is not yet determined. Our understanding of drug safety in early clinical development is primarily limited to "Type A" reactions. Until marketing authorization most drugs are approved based on the principle of confirming non-inferiority with an existing gold standard or determining superiority to a placebo. The need to obtain robust pharmaco-economic data prior to marketing authorization in order to determine appropriate pricing of a new drug remains a major challenge. The present review outlines some of the challenges in drug development of anti-diabetic drugs citing examples of pulmonary insulin, insulin analogues, thiazolidinediones and the GLP1 analogues.

  4. Industrial processing versus home processing of tomato sauce: Effects on phenolics, flavonoids and in vitro bioaccessibility of antioxidants.

    PubMed

    Tomas, Merve; Beekwilder, Jules; Hall, Robert D; Sagdic, Osman; Boyacioglu, Dilek; Capanoglu, Esra

    2017-04-01

    The effect of industrial and home processing, in vitro gastrointestinal digestion, individual phenolic content, and antioxidant capacity of tomato into tomato sauce were investigated. Industrial processing of tomato fruit into sauce had an overall positive effect on the total antioxidant capacity (∼1.2-fold higher) compared to tomato fruit whereas home processing of tomato fruit into sauce led to a decrease in these values. Untargeted LC-QTOF-MS analysis revealed 31 compounds in tomato that changed upon processing, of which 18 could be putatively identified. Naringenin chalcone is only detectable in the fruit, while naringenin is strongly increased in the sauces. Rutin content increased by 36% in the industrial processed sauce whereas decreased by 26% in the home processed sauce when compared to fruit. According to the results of an in vitro gastrointestinal digestion model, industrial processing may lead to enhanced bioaccessibility of antioxidants.

  5. Understanding the Challenges in the Transition from Film Radiography in the Nuclear Power Industry

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Moran, Traci L.; Nove, Carol A.; Pardini, Allan F.

    2012-09-01

    Nondestructive examination (NDE) applications in the nuclear power industry using film radiography are shrinking due to the advent of modern digital imaging technologies and advances in alternative inspection methods that do not present an ionizing radiation hazard. Technologies that are used routinely in the medical industry for patient diagnosis are being adapted to industrial NDE applications including the detection and characterization of defects in welds. From the user perspective, non-film inspection techniques provide several advantages over film techniques. It is anticipated that the shift away from the application of film radiography in the nuclear power industry represents an irreversible trend. The U.S. Nuclear Regulatory Commission (NRC) has noted this trend in the U.S. nuclear power industry and will be working to ensure that the effectiveness and reliability of component inspections is not compromised by this transition. Currently, specific concerns are associated with 1) obtaining a fundamental understanding of how inspection effectiveness and reliability may be impacted by this transition and 2) ensuring training standards and qualifications remain compatible with modern industrial radiographic practice. This paper discusses recent trends in industrial radiography and assesses their advantages and disadvantages from the perspective of nuclear power plant component inspections.

  6. Managing the Industrial Labor Relations Process in Higher Education.

    ERIC Educational Resources Information Center

    Julius, Daniel J., Ed.

    This book contains 25 essays on the subject of industrial relations divided into the following parts: Essays and their authors are as follows: "The Context of Collective Bargaining in American Colleges and Universities" (Kenneth P. Mortimer); "Transformation of the U.S. Collective Bargaining System: The Impact on Higher Education" (James P.…

  7. Unit Operation Experiment Linking Classroom with Industrial Processing

    ERIC Educational Resources Information Center

    Benson, Tracy J.; Richmond, Peyton C.; LeBlanc, Weldon

    2013-01-01

    An industrial-type distillation column, including appropriate pumps, heat exchangers, and automation, was used as a unit operations experiment to provide a link between classroom teaching and real-world applications. Students were presented with an open-ended experiment where they defined the testing parameters to solve a generalized problem. The…

  8. Process Innovation and Changes in Industrial Energy Use

    ERIC Educational Resources Information Center

    Berg, Charles A.

    1978-01-01

    American industry in the 19th century switched from wood to coal as its primary energy resource. The history of this switch is reviewed, along with the history of preceding similar trends in Europe and later trends in the switch from coal to oil and gas. (Author/MA)

  9. Entrepreneurial Processes in an Emergent Resource Industry Community Embeddedness in Maine's Sea Urchin Industry

    ERIC Educational Resources Information Center

    Lauer, Sean

    2005-01-01

    The impact of economic changes on communities is not a new subject for rural sociology. However, a growing literature examines the impact of communal relations on economic action and organization. This paper contributes to this literature with an examination of entrepreneurship in an emergent resource industry ? the northwest Atlantic sea urchin…

  10. The Process-Oriented ESL Writing Assessment: Promises and Challenges

    ERIC Educational Resources Information Center

    Lee, Young-Ju

    2006-01-01

    This study examines a process-oriented ESL writing assessment called the Computerized Enhanced ESL Placement Test (CEEPT). The CEEPT at the University of Illinois at Urbana-Champaign or its non-computerized alternative (EEPT) have since 2000 offered a daylong process-oriented writing assessment in which test takers are given extended time to plan,…

  11. Web Centric Education--A Challenge for Process Redesign.

    ERIC Educational Resources Information Center

    Ferguson, John D.; Weir, George R. S.; Wilson, John N.

    This paper draws together current developments in computer-based education (CBE) with concepts from business process re-engineering. Topics discussed include: (1) re-engineering models, including the spectrum of approaches ranging from radical restructuring to evolutionary improvement, the stages of business process re-engineering (BPR), and…

  12. Assessment Moderation in an Australian Context: Processes, Practices, and Challenges

    ERIC Educational Resources Information Center

    Beutel, Denise; Adie, Lenore; Lloyd, Margaret

    2017-01-01

    Moderation is a quality assurance process that plays a central role in the teaching, learning, and assessment cycle in higher education. While there is a growing body of research globally on teaching, learning, and, to a lesser degree, assessment in higher education, the process of moderation of assessment has received even less attention. In a…

  13. Dual-Process Theories and Cognitive Development: Advances and Challenges

    ERIC Educational Resources Information Center

    Barrouillet, Pierre

    2011-01-01

    Dual-process theories have gained increasing importance in psychology. The contrast that they describe between an old intuitive and a new deliberative mind seems to make these theories especially suited to account for development. Accordingly, this special issue aims at presenting the latest applications of dual-process theories to cognitive…

  14. Fast engineering optimization: A novel highly effective control parameterization approach for industrial dynamic processes.

    PubMed

    Liu, Ping; Li, Guodong; Liu, Xinggao

    2015-09-01

    Control vector parameterization (CVP) is an important approach of the engineering optimization for the industrial dynamic processes. However, its major defect, the low optimization efficiency caused by calculating the relevant differential equations in the generated nonlinear programming (NLP) problem repeatedly, limits its wide application in the engineering optimization for the industrial dynamic processes. A novel highly effective control parameterization approach, fast-CVP, is first proposed to improve the optimization efficiency for industrial dynamic processes, where the costate gradient formulae is employed and a fast approximate scheme is presented to solve the differential equations in dynamic process simulation. Three well-known engineering optimization benchmark problems of the industrial dynamic processes are demonstrated as illustration. The research results show that the proposed fast approach achieves a fine performance that at least 90% of the computation time can be saved in contrast to the traditional CVP method, which reveals the effectiveness of the proposed fast engineering optimization approach for the industrial dynamic processes.

  15. Revisiting Parabolic Trough Concentrators for Industrial Process Heat in the United States

    SciTech Connect

    Turchi, Craig S.; Kurup, Parthiv; Zhu, Guangdong

    2016-06-03

    After significant interest in the 1970s, but relatively few deployments, the use of concentrating solar collectors for thermal applications, including enhanced oil recovery, desalination, and industrial process heat (IPH), is again increasing in global interest. In particular, recent advances in collector design and manufacturing have led to reduced cost per square meter of aperture area. In this study, analysis of a modern parabolic trough that is suited for use in small solar IPH (SIPH) applications predicts that the installed solar field cost can be as low as $170/m2. A slightly higher cost of $200/m2 is estimated for facilities typical of a SIPH plant size. Full project costs will include additional costs for contingency, piping and heat exchanger interface, and project indirect costs. The cost for solar-generated heat by SIPH is quantified by defining the levelized cost of heat (LCOH). California offers a favorable environment for SIPH given its good insolation, gas prices typically higher than the national average, and policies promoting solar-thermal deployment. Given historically low gas prices, competing with natural gas remains the primary challenge to deployment. However, this study finds that the solar LCOH for many regions in California is lower than the LCOH from natural gas, using a representative installed solar hardware price and the average price for industrial natural gas in California. Lastly, modification are in progress to the parabolic trough model within NREL's System Advisor Model (SAM) to allow users to more easily predict performance for these steam-generation applications.

  16. Meat-, fish-, and poultry-processing wastes. [Industrial wastes

    SciTech Connect

    Litchfield, J.H.

    1982-06-01

    A review of the literature dealing with the effectiveness of various waste processing methods for meat-, fish,-, and poultry-processing wastes is presented. Activated sludge processes, anaerobic digestion, filtration, screening, oxidation ponds, and aerobic digestion are discussed.

  17. [Innovation in pharmaceutical and health biotechnology industries: challenges for a virtuous agenda].

    PubMed

    Vargas, Marco; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira; Maldonado, José

    2012-12-01

    Pharmaceutical and biotechnology industries comprise a major production subsystem of the health industrial complex in Brazil. It stands out for both its economic importance and its prominent role in developing new technologies in strategic areas. Strengthening the local production of generic drugs in the last decade has significantly increased the number of Brazilian companies in the local pharmaceutical market and has been an important turning point for this industry's growth. However, there remain major structural bottlenecks both in terms of production and continuous innovation. These bottlenecks reveal the high vulnerability of the Brazilian National Health System and point to the need of public policies that promote strengthening the production base and innovation in the pharmaceutical industry and that at the same time meet health-related social demands in health in Brazil.

  18. Environmental management practices in the Lebanese pharmaceutical industries: implementation strategies and challenges.

    PubMed

    Massoud, May A; Makarem, N; Ramadan, W; Nakkash, R

    2015-03-01

    This research attempts to provide an understanding of the Lebanese pharmaceutical industries' environmental management strategies, priorities, and perceptions as well as drivers, barriers, and incentives regarding the implementation of the voluntary ISO 14001 Environmental Management System. Accordingly, a semistructured in-depth interview was conducted with the pharmaceutical industries. The findings revealed a significant lack of knowledge about the standard among the industries. The main perceived drivers for adopting the ISO 14001 are improving the companies' image and overcoming international trade. The main perceived barriers for acquiring the standard are the lack of government support and the fact that ISO 14001 is not being legally required or enforced by the government. Moreover, results revealed that adopting the ISO 14001 standard is not perceived as a priority for the Lebanese pharmaceutical industries. Although the cost of certification was not considered as a barrier for the implementation of ISO 14001, the majority of the pharmaceutical industries are neither interested nor willing to adopt the Standard if they are not exposed to any regulatory pressure or external demand. They are more concerned with quality and safety issues with the most adopted international standard among the industries being the ISO 9001 quality management system. This study highlights the aspect that financial barriers are not always the hurdles for implementing environmental management strategies in developing countries and underscores the need for regulatory frameworks and enforcement.

  19. Achievements and challenges of Space Station Freedom's safety review process

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    1993-01-01

    The most complex space vehicle in history, Space Station Freedom, is well underway to completion, and System Safety is a vital part of the program. The purpose is to summarize and illustrate the progress that over one-hundred System Safety engineers have made in identifying, documenting, and controlling the hazards inherent in the space station. To date, Space Station Freedom has been reviewed by NASA's safety panels through the first six assembly flights, when Freedom achieves a configuration known as Man Tended Capability. During the eight weeks of safety reviews spread out over a year and a half, over 200 preliminary hazard reports were presented. Along the way NASA and its contractors faced many challenges, made much progress, and even learned a few lessons.

  20. Common industrial processes and occupational irritants and allergens--an update.

    PubMed

    Goh, C L

    1994-09-01

    This paper reviews the recent development of the industrial processes in the construction, electronics and metal industries which are the predominant industries in developing countries. Common occupational irritants and allergens are presented. The information is essential for occupational dermatologists and physicians managing patients with occupational skin diseases. In the construction industry, the prefabrication construction methods are now widely used. The commonest irritant is cement and the allergens are chromate, rubber chemicals and epoxy resins. In the electronics industry, the commonest irritants include soldering flux, solvent and fibreglass, and allergens include resins and metals, rubber chemicals and amines and colophony. Cutting fluid is the commonest occupational irritant in the metal industry. Biocides and metals in The electro-discharge machining process now widely used in the metal industry for precision engineering uses the electrodischarge machining fluids (EDM fluids) which are a strong skin irritant. Preventive measures including health education are most effective against occupational dermatitis.

  1. 76 FR 4360 - Guidance for Industry on Process Validation: General Principles and Practices; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... the pharmaceutical industry on the elements of process validation for the manufacture of human and animal drug and biological products, including active pharmaceutical ingredients (APIs). The guidance is... pharmaceutical industry on the elements of process validation for the manufacture of human and animal drug...

  2. Challenger

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2002-01-01

    The events that led to the spectacular destruction of the Space Shuttle "Challenger" in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy. (Contains 4 figures and 2 footnotes.)

  3. Manufacturing process applications team (MATeam). [NASA/industry relations

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1978-01-01

    Forty additional statements were added to the list of 150 problem/opportunity statements identifying possibilities for transfer of NASA technology to various manufacturing industries. Selected statements that are considered to have a high potential for transfer in the 1978 program year are presented in the form of goals and milestones. The transfer of a flux used in the stud welding of aluminum is reported. Candidate RTOP programs are identified.

  4. Challenges associated with the implementation of the nursing process: A systematic review

    PubMed Central

    Zamanzadeh, Vahid; Valizadeh, Leila; Tabrizi, Faranak Jabbarzadeh; Behshid, Mojghan; Lotfi, Mojghan

    2015-01-01

    Background: Nursing process is a scientific approach in the provision of qualified nursing cares. However, in practice, the implementation of this process is faced with numerous challenges. With the knowledge of the challenges associated with the implementation of the nursing process, the nursing processes can be developed appropriately. Due to the lack of comprehensive information on this subject, the current study was carried out to assess the key challenges associated with the implementation of the nursing process. Materials and Methods: To achieve and review related studies on this field, databases of Iran medix, SID, Magiran, PUBMED, Google scholar, and Proquest were assessed using the main keywords of nursing process and nursing process systematic review. The articles were retrieved in three steps including searching by keywords, review of the proceedings based on inclusion criteria, and final retrieval and assessment of available full texts. Results: Systematic assessment of the articles showed different challenges in implementation of the nursing process. Intangible understanding of the concept of nursing process, different views of the process, lack of knowledge and awareness among nurses related to the execution of process, supports of managing systems, and problems related to recording the nursing process were the main challenges that were extracted from review of literature. Conclusions: On systematically reviewing the literature, intangible understanding of the concept of nursing process has been identified as the main challenge in nursing process. To achieve the best strategy to minimize the challenge, in addition to preparing facilitators for implementation of nursing process, intangible understanding of the concept of nursing process, different views of the process, and forming teams of experts in nursing education are recommended for internalizing the nursing process among nurses. PMID:26257793

  5. Remote detection of carbon monoxide by FTIR for simulating field detection in industrial process

    NASA Astrophysics Data System (ADS)

    Gao, Qiankun; Liu, Wenqing; Zhang, Yujun; Gao, Mingguang; Xu, Liang; Li, Xiangxian; Jin, Ling

    2016-10-01

    In order to monitor carbon monoxide in industrial production, we developed a passive gas radiation measurement system based on Fourier transform infrared spectroscopy and carried out infrared radiation measurement experiment of carbon monoxide detection in simulated industrial production environment by this system. The principle, condition, device and data processing method of the experiment are introduced in this paper. In order to solve the problem of light path jitter in the actual industrial field, we simulated the noise in the industrial environment. We combine the advantages of MATHEMATICA software in the aspects of graph processing and symbolic computation to data processing to improve the signal noise ratio and noise suppression. Based on the HITRAN database, the nonlinear least square fitting method was used to calculate the concentration of the CO spectra before and after the data processing. By comparing the calculated concentration, the data processed by MATHEMATICA is reliable and necessary in the industrial production environment.

  6. The emerging role of large eddy simulation in industrial practice: challenges and opportunities.

    PubMed

    Hutton, A G

    2009-07-28

    That class of methods for treating turbulence gathered under the banner of large eddy simulation is poised to enter mainstream engineering practice. There is a growing body of evidence that such methods offer a significant stretch in industrial capability over solely Reynolds-averaged Navier-Stokes (RANS)-based modelling. A key enabling development will be the adaptation of innovative processor architectures, resulting from the huge investment in the gaming industry, to engineering analysis. This promises to reduce the computational burden to practicable levels. However, there are many lessons to be learned from the history of the past three decades. These lessons should be analysed in order to inform, if not modulate, the unfolding of this next cycle in the development of industrial modelling capability. This provides the theme for this paper, which is written very much from the standpoint of the informed practitioner rather than the innovator; someone with a strong motivation to improve significantly the competence with which industrial turbulent flows are treated. It is asserted that the reliable deployment of the methodology in the industrial context will prove to be a knowledge-based discipline, as was the case with RANS-based modelling, if not more so. The community at large should collectively make great efforts to put in place that knowledge base from which best practice advice can be derived at the very start of this cycle of advancement and continue to enrich it as the cycle progresses.

  7. Summary of some feasibility studies for site-specific solar industrial process heat

    SciTech Connect

    1982-01-01

    Some feasibility studies for several different site specific solar industrial process heat applications are summarized. The followng applications are examined. Leather Tanning; Concrete Production: Lumber and Paper Processing; Milk Processing; Molding, Curing or Drying; Automobile Manufacture; and Food Processing and Preparation. For each application, site and process data, system design, and performance and cost estimates are summarized.

  8. Reducing the acrylamide content of processed potato products through germplasm improvement: opportunities, challenges and progress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Processed potato products, including french fries and potato chips, make a substantial contribution to total dietary acrylamide. Health safety concerns raised by acrylamide in food increase financial risks to the potato industry and have encouraged industry to take a proactive response toward acryla...

  9. Fundamentals of Alloy Solidification Applied to Industrial Processes

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solidification processes and phenomena, segregation, porosity, gravity effects, fluid flow, undercooling, as well as processing of materials in the microgravity environment of space, now available on space shuttle flights were discussed.

  10. Industrial wastes: meat, fish and poultry processing wastes

    SciTech Connect

    Litchfield, J.H.

    1980-06-01

    This article is a review of meat, fish and poultry processing wastes. Reviews on slaughterhouse and packinghouse wastewater treatment methods were mentioned together with processes for protein recovery from wastewater and wastewater treatment sludges.

  11. Quality Control through Design and Process: Gambrel Roof Truss Challenge

    ERIC Educational Resources Information Center

    Ward, Dell; Jones, James

    2011-01-01

    Customers determine whether a product fulfills their needs or satisfies them. "Quality control", then, is the process of finding out what the customer wants, along with designing, producing, delivering, and servicing the product--and ultimately satisfying the customer's expectations. For many years, people considered a product to be of good…

  12. Real World of Industrial Chemistry: The SHOP Process: An Example of Industrial Creativity.

    ERIC Educational Resources Information Center

    Reuben, Bryan; Wittcoff, Harold

    1988-01-01

    Discusses the Shell Higher Olefins Process (SHOP) in the manufacture of primary C11-C15 fatty alcohols. Offers examples and explanations of the four-step process. Gives uses for reaction products. (ML)

  13. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge.

    PubMed

    Ross, Richard B; Aeschliman, David B; Ahmad, Riaz; Brennan, John K; Brostrom, Myles L; Frankel, Kevin A; Moore, Jonathan D; Moore, Joshua D; Mountain, Raymond D; Poirier, Derrick M; Thommes, Matthias; Shen, Vincent K; Schultz, Nathan E; Siderius, Daniel W; Smith, Kenneth D

    2016-02-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison.

  14. Adsorption, X-ray Diffraction, Photoelectron, and Atomic Emission Spectroscopy Benchmark Studies for the Eighth Industrial Fluid Properties Simulation Challenge*+

    PubMed Central

    Ross, Richard B.; Aeschliman, David B.; Ahmad, Riaz; Brennan, John K.; Brostrom, Myles L.; Frankel, Kevin A.; Moore, Jonathan D.; Moore, Joshua D.; Mountain, Raymond D.; Poirier, Derrick M.; Thommes, Matthias; Shen, Vincent K.; Schultz, Nathan E.; Siderius, Daniel W.; Smith, Kenneth D.

    2016-01-01

    The primary goal of the eighth industrial fluid properties simulation challenge was to test the ability of molecular simulation methods to predict the adsorption of organic adsorbates in activated carbon materials. The challenge focused on the adsorption of perfluorohexane in the activated carbon standard BAM-P109 (Panne and Thünemann 2010). Entrants were challenged to predict the adsorption of perfluorohexane in the activated carbon at a temperature of 273 K and at relative pressures of 0.1, 0.3, and 0.6. The relative pressure (P/Po) is defined as that relative to the bulk saturation pressure predicted by the fluid model at a given temperature (273 K in this case). The predictions were judged by comparison to a set of experimentally determined values, which are published here for the first time and were not disclosed to the entrants prior to the challenge. Benchmark experimental studies, described herein, were also carried out and provided to entrants in order to aid in the development of new force fields and simulation methods to be employed in the challenge. These studies included argon, carbon dioxide, and water adsorption in the BAM-P109 activated carbon as well as X-ray diffraction, X-ray microtomography, photoelectron spectroscopy, and atomic emission spectroscopy studies of BAM-P109. Several concurrent studies were carried out for the BAM-P108 activated carbon (Panne and Thünemann 2010). These are included in the current manuscript for comparison. PMID:27840543

  15. Shortened processing time technique for color industrial radiography

    NASA Technical Reports Server (NTRS)

    Lapinski, N. P.

    1969-01-01

    Improved processing method reduces time required to generate a color radiograph. Prior to, or after exposure to penetrating radiation, the emulsion side of the film is flashed to a colored light which produces the hue changes in the processed radiograph. Agitation of the film during processing assures uniformity of results.

  16. The Potential of RFID Technology in the Textile and Clothing Industry: Opportunities, Requirements and Challenges

    NASA Astrophysics Data System (ADS)

    Legnani, Elena; Cavalieri, Sergio; Pinto, Roberto; Dotti, Stefano

    In the current competitive environment, companies need to extensively exploit the use of advanced technologies in order to develop a sustainable advantage, enhance their operational efficiency and better serve customers. In this context, RFID technology has emerged as a valid support for the company progress and its value is becoming more and more apparent. In particular, the textile and clothing industry, characterised by short life-cycles , quick response production , fast distribution, erratic customer preferences and impulsive purchasing, is one of the sectors which can extensively benefit from the RFID technology. However, actual applications are still very limited, especially in the upstream side of the supply network. This chapter provides an insight into the main benefits and potentials of this technology and highlights the main issues which are currently inhibiting its large scale development in the textile and clothing industry. The experience of two industry-academia projects and the relative fallouts are reported.

  17. Developing catalysts and catalytic processes with industrial relevance.

    PubMed

    Blaser, Hans-Ulrich

    2010-01-01

    The catalysis group of Solvias has its roots in the Central Research Laboratories of Ciba-Geigy. Since the early eighties its research has been focused on three areas of catalytic technology: heterogeneous hydrogenation, coupling catalysis, and enantioselective hydrogenation. Today, these are still the catalytic methods with the greatest industrial potential. In this overview a short description will be given how these methods have been developed further since the spin-off of Solvias in 1999. It will be discussed which strategies were successful and what the most important results have been in the first decade of Solvias.

  18. Cogeneration handbook for the chemical process industries. [Contains glossary

    SciTech Connect

    Fassbender, A.G.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The desision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the chemical industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  19. Multiphase problems related to safety studies in the process industries

    NASA Astrophysics Data System (ADS)

    Baron, R. Grollier

    Safety risk and analysis, particularly in the petrochemical industry, are discussed. Multiphase flow problems resulting from loss of confinement are described: rupture of long pipes used for transporting liquefied gas; rupture of short pipes and branch connections in an installation; rupture of a container holding liquefied gas or another liquid at a temperature higher than its normal boiling temperature; and rupture of a container holding gas in the supercritical state. Operation of valves and rupture disks during reaction runaway; and artificial dispersion of gas layers are considered.

  20. Photovoltaic industry process from 1980 to mid 1986

    SciTech Connect

    Watts, R.L.; Smith, S.A.

    1986-08-01

    The objective of this report is to describe PV insustry developments in 1985 and present forecasts for 1986. Information is presented on a regional basis (United States, Europe, Japan, other) to avoid disclosing company confidential data. Information was gleaned from several sources, including a review of technical literature and direct contacts with many PV manufacturers. prior to publishing the regional totals, all numbers were compared with those from other sources published in the United States and those supplied by Japanese industry through their solar energy organization.

  1. Modeling of additive manufacturing processes for metals: Challenges and opportunities

    DOE PAGES

    Francois, Marianne M.; Sun, Amy; King, Wayne E.; ...

    2017-01-09

    Here, with the technology being developed to manufacture metallic parts using increasingly advanced additive manufacturing processes, a new era has opened up for designing novel structural materials, from designing shapes and complex geometries to controlling the microstructure (alloy composition and morphology). The material properties used within specific structural components are also designable in order to meet specific performance requirements that are not imaginable with traditional metal forming and machining (subtractive) techniques.

  2. CD and defect improvement challenges for immersion processes

    NASA Astrophysics Data System (ADS)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  3. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  4. Public Health Ethics, Legitimacy, and the Challenges of Industrial Wind Turbines: The Case of Ontario, Canada

    ERIC Educational Resources Information Center

    Shain, Martin

    2011-01-01

    While industrial wind turbines (IWTs) clearly raise issues concerning threats to the health of a few in contrast to claimed health benefits to many, the trade-off has not been fully considered in a public health framework. This article reviews public health ethics justifications for the licensing and installation of IWTs. It concludes that the…

  5. Opportunities and Challenges for Development of a Mature Concentrating Photovoltaic Power Industry (Revision)

    SciTech Connect

    Kurtz, S.

    2012-11-01

    This report summarizes the current status of the CPV industry and is updated from previous versions to include information from the last year. New information presented at the CPV-8 conference is included along with the addition of new companies that have announced their interest in CPV, and estimates of production volumes for 2011 and 2012.

  6. Digital Dividend Aware Business Models for the Creative Industries: Challenges and Opportunities in EU Markets

    NASA Astrophysics Data System (ADS)

    Cossiavelou, Vassiliki

    EU counties have a historically unique opportunity to enable their creative industries to promote the knowledge societies, applying new business models to their media content and networks markets, that are digital dividend (DD) aware. This new extra-media gatekeeping factor could shape new alliances and co operations among the member states and the global media markets, as well.

  7. Working Partnerships: The Challenge of Creating Mutual Benefit for Academics and Industry

    ERIC Educational Resources Information Center

    Kruss, Glenda

    2006-01-01

    Networks and partnerships between higher education institutions and industry have been identified as a primary means of addressing higher education's role in economic development, globally and in South Africa. This article draws on one component of a Human Sciences Research Council (HSRC) study to provide an empirically based overview of the…

  8. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.

    PubMed

    Velicu, Magdalena; Fu, Hongxiang; Suri, Rominder P S; Woods, Kevin

    2007-09-30

    Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF).

  9. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  10. Reengineering the Fleet and Industrial Supply Center’s Procurement Process

    DTIC Science & Technology

    1993-12-01

    NAVAL POSTGRADUATE SCHOOL SMonterey. CQlifonrda N MAR 0 7 1994 lE -J THESiS ___ Reengineering the Fleet and Industrial Supply Center’s Procurement...AND SUBTITLE REENGINEERING THE FLEET AND 5. FDING NUMBERS INDUSTRIAL SUPPLY CENTER’S PROCUREMENT PROCESS. 6. AUTHOR(S) Wayne J. Bergeron 7. PERFORMING... Industrial Supply Center. 84 16. _ 16. PRICE CODE 17. 18. 19. 20. SECURITY CLASSIFICATION SECURITY CLASSIFICATION SECURITY CLASSIFICATION LIMITATION OF OF

  11. The approach to risk analysis in three industries - Nuclear power, space systems, and chemical process

    NASA Astrophysics Data System (ADS)

    Garrick, B. J.

    A review is presented of how safety and risk analysis is conducted in the three major industries of space flight, nuclear power, and chemical and petroleum processes. This review is presented in the belief that safety enhancements and efficiencies may result from a greater exchange of risk assessment technology between these industries. The focus of this review relates to the engineered systems involved in the three industries.

  12. Challenges to natural process restoration: common dam removal management concerns

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Tullos, D. D.; Bellmore, J. R.; Bountry, J.; Connolly, P. J.; Shafroth, P. B.; Wilcox, A. C.

    2015-12-01

    Practitioners must make dam removal decisions in spite of uncertainty about physical and ecological responses. This can result in implementing structural controls or other interventions at a site to avoid anticipated negative effects, sometimes even if a given concern is not warranted. We used a newly available dam removal science database and other information sources to explore seven frequently raised issues we call "Common Management Concerns" (CMCs), investigating their occurrence and the contributing biophysical controls. We describe these controls to enable managers to better assess if further analyses are warranted at their sites before interventions are planned and implemented. The CMCs addressed are: rate and degree of reservoir sediment erosion; drawdown impacts on local water infrastructure; excessive channel incision; downstream sediment aggradation; elevated turbidity; colonization of reservoir sediments by non-native plants; and expansion of invasive fish. The relative dearth of case studies available for many CMCs limited the generalizable conclusions we could draw about prevalence, but the available data and established understanding of relevant processes revealed important biophysical phenomena controlling the likelihood of CMC occurrence. To assess CMC risk, we recommend managers concurrently evaluate if site conditions suggest the ecosystem, infrastructure, or other human uses will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other important factors like watershed disturbance history, natural variability, and dam removal tradeoffs. Better understanding CMCs and how to evaluate them will enable practitioners to avoid unnecessary interventions and thus maximize opportunities for working with natural processes to restore river

  13. New Challenging Approaches to Engineering Education: Enhancing University-Industry Co-Operation

    ERIC Educational Resources Information Center

    Korhonen-Yrjanheikki, Kati; Tukiainen, Taina; Takala, Minna

    2007-01-01

    Globalization, accelerated time-based competition, qualitative dynamics, rapid development of technology and especially Information and Communications Technology (ICT) developments challenge engineering education and capability development of each engineer. The success and the competitiveness of companies are increasingly based on their employees.…

  14. Developing a Rural and Regional Science Challenge to Utilise Community and Industry-Based Partnerships

    ERIC Educational Resources Information Center

    Blake, Damian; Campbell, Coral

    2009-01-01

    Interest and participation in science in schools has been declining for many years and there is a genuine need to rejuvenate interest in science at the high school level. One possible solution is the completion of challenging science projects which fulfill an authentic purpose in the community. This paper discusses the results of ongoing research…

  15. [Organization of nutrition and nutritional status in major jobs workers engaged in gas-processing industry].

    PubMed

    Beĭlin, S M; Fateeva, T A

    2009-01-01

    The workers of gas-processing industry are exposed to a complex of industrial factors throughout their labor activity. Curative diet is in full measure unable to neutralize reactants and to optimize metabolic processes so there is a need for warranting, designing, and introducing a functional diet. The nutrition of major jobs workers engaged in gas-processing industry is inadequate, improper, and unbalanced, which leads to an excess nutritional status in the majority of workers. It is necessary to develop a functional nutrition concept that makes it possible to correct the intake of essential nutrients and to normalize the nutritional status of the workers, by including functional foods into their diet.

  16. Thermal control system. [removing waste heat from industrial process spacecraft

    NASA Technical Reports Server (NTRS)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  17. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    PubMed

    Sobolev, Konstantin

    2003-05-05

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  18. [Expansion of the tobacco industry and smuggling: challenges for public health in developing countries].

    PubMed

    Enrique Armendares, Pedro; Reynales Shigematsu, Luz Myriam

    2006-01-01

    The international tobacco industry, in its constant quest for new markets, has expanded aggressively to middle- and low-income nations. At the same time there has been a marked increase in tobacco smuggling, especially of cigarettes. Smuggling produces serious fiscal losses to governments the world over, erodes tobacco control policies and is an incentive to international organized crime. In addition, smuggling results in increased demand for and consumption of tobacco, which in turn benefits the tobacco companies. Moreover, there is evidence indicating that the international tobacco industry has instigated cigarette smuggling and has participated directly in these activities, while at the same time carrying out costly lobbying campaigns to pressure governments against tax increases and to promote their own interests. Academic studies and empirical evidence show that tobacco control can be promoted through high tax rates without causing significant increases in smuggling. To achieve this tobacco smuggling must be attacked through the use of strategies including multilateral controls and actions such as those included in the Framework Convention on Tobacco Control, which establishes the basis for combating smuggling through an international, global approach. It is also necessary to increase the penalties for smuggling and to make the tobacco industry, including producers and distributors, responsible for the final destination of their exports.

  19. [NAFTA: a challenge and an opportunity for environmental health. The case of the maquila industry].

    PubMed

    Espinosa-Torres, F; Hernández-Avila, M; López-Carrillo, L

    1994-01-01

    The three countries that have signed the North American Free Trade Agreement (NAFTA) have focused particular interest and concern on the potential impact that this agreement will have on the environmental health, based on the premise that economical development should not detriment neither the environment nor the human health. In this paper, the NAFTA is presented as an opportunity to improve environmental and occupational health in Mexico and assumes that the study of the potential impact of NAFTA could help to find the solutions of the former and actual environmental health problems. From this perspective, the north-border maquila industry is analyzed as a case study for the purpose of identifying and predicting the impact of NAFTA on environmental and the occupational health. Preventive as well as control measurements are suggested. The general characteristics of the U.S.-Mexico border and the maquila industry are presented. The lack of both social investment and urban planning along with population and economical growth are described. An explanation of the impact that these factors have had on the environmental and occupational problems is discussed. Special emphasis is given to the human health problems including that of water, air and soil contamination by industrial toxic residues. Also, some possible health impact of NAFTA are outlined. Finally a sustainable developmental intervention is suggested, based on NAFTA as an opportunity to take advantage of coming structural changes that will improve the environmental health conditions at the northern-border and in the entire country.

  20. Renewable-energy-resource options for the food-processing industry

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.

    1981-09-01

    The food processing industry generates significant quantities of organic process wastes which often require treatment prior to disposal or result in additional expenses for disposal. The food processing industry also requires fuel and electricity to provide the process energy to convert raw materials into finished food products. Depending on the particular process, organic wastes can represent a potential resource for conversion to energy products that can be used for providing process energy or other energy products. This document reports the results of an evaluation of renewable energy resource options for the food processing industry. The options evaluated were direct combustion for providing process heat, fermentation for ethanol production and anaerobic digestion for generation of methane.

  1. Within and beyond the communal turn to informed consent in industry-sponsored pharmacogenetics research: merits and challenges of community advisory boards.

    PubMed

    Soofi, Hojjat; van Leeuwen, Evert

    2016-10-01

    The one-size-fits-all paradigm of drug development fails to address inter-individual variability in drug response. Pharmacogenetics research aims at studying the role of genotypic differences in drug response. Recently, the pharmaceutical industry has shown interest to embed pharmacogenetics studies in the process of drug development. Nevertheless, population-based and commercial aspects of such future-oriented studies pose challenges for individually based informed consent (IC). As an exemplar of the communal turn to IC procedures, community advisory boards (CABs) have been integrated into different types of medical research. CABs hold the promise of organizing the relationship between participants and researchers in a more reciprocal and participatory way, offering possible means of overcoming the lapses of individualistic IC. However, the involvement of CABs with pharmacogenetics research might be rife with difficulties, uncertainties, and challenges. The current study first reviews the existing literature to discuss added values and challenges of relying on CABs as a supplement to individually based IC. Then, the particular moral and regulatory landscape of pharmacogenetics research will be delineated to argue that community engagement is both necessary and promising beyond the communal turn to IC processes. Three main features of the landscape include (1) new supportive stances that some regulatory bodies have adopted toward pharmacogenetics research, (2) the motivation of the industry to draw reception and trust from the subpopulations, and (3) the important role of the society in generating and embedding pharmacogenetics knowledge. Finally, some points to consider will be discussed to contextualize relying on CABs within this landscape.

  2. Experiment in Materials Processing Engineering Education: The Industrial Internship Program. Summary Report on Task "A".

    ERIC Educational Resources Information Center

    Weinmann, K. J.; And Others

    The final report on a program to encourage industry-university interaction in the materials processing industries presents the findings of various proposed activities, establishes some conclusions, and provides suggestions and recommendations for extending the task to the actual design and conduct of the project. The background in which the…

  3. Material Processing Handbook. The Wisconsin Guide to Local Curriculum Improvement in Industrial Education K-12.

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Public Instruction, Madison. Div. of Instructional Services.

    This handbook is intended to aid industrial educators in developing material processing activities for their programs; it is especially designed to aid educators in implementing "The Wisconsin Guide to Local Curriculum Improvement in Industrial Education, K-12." The guide provides suggested outlines and models that could be used to…

  4. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    NASA Astrophysics Data System (ADS)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  5. Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey.

    PubMed

    Alyuz, Ummugulsum; Alp, Kadir

    2014-08-01

    The broad objective of this study was to develop CO2, PM, SOx, CO, NOx, VOC, NH3 and N2O emission inventory of organic and inorganic chemicals, mineral products, metallurgical, petroleum refining, wood products, food industries of Turkey for 2010 for both co]ntrolled and uncontrolled conditions. In this study, industries were investigated in 7 main categories and 53 sub-sectors and a representative number of pollutants per sub-sector were considered. Each industry was evaluated in terms of emitted emissions only from industrial processes, and fuel combustion activities were excluded (except cement industry). The study employed an approach designed in four stages; identification of key categories; activity data & emission factor search; emission factor analyzing; calculation of emissions. Emission factor analyzing required aggregate and firm analysis of sectors and sub-sectors and deeper insights into underlying specific production methods used in the industry to decide on the most representative emission factor. Industry specific abatement technologies were considered by using open-source documents and industry specific reports. Regarding results of this study, mineral industry and iron & steel industry were determined as important contributors of industrial emissions in Turkey in 2010. Respectively, organic chemicals, petroleum refining, and pulp & paper industries had serious contributions to Turkey's air pollutant emission inventory from industrial processes. The results showed that calculated CO2 emissions for year 2010 was 55,124,263 t, also other emissions were 48,853 t PM, 24,533 t SOx, 79,943 t NOx, 31,908 t VOC, 454 t NH3 and 2264 t N2O under controlled conditions.

  6. Photonic signal processing for biomedical and industrial ultrasonic probes

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.

    1996-12-01

    Ultrasonics has been widely used in medical, industrial, and scientific applications. In medical applications, ultrasonics is an essential diagnostic method in internal medicine, urology, and vascular surgery. High-Intensity Focussed Ultrasound (HIFU) and lithotripsy applications use relatively low ultrasonic frequencies (< 100 KHz), while a 5-15 MHz band is typically used in diagnostic external cavity imaging ultrasound. Today, with endoscopic applications in mind, a very high ultrasonic frequency, e.g., 100 MHz, probe with high (> 50%) instantaneous bandwidths is highly desirable as higher frequencies give higher imaging resolution and smaller physical dimensions of the front-end intracavity transducer array. It is desirable to have an ultrasonic energy control system that, with minimal hardware change, is compact and can operate over wide tunable and instantaneous bandwidths a requirement for different ultrasonic medical modes. Today, passive fiber-optics (FO's) coupled with active photonic devices, could lead to this multi-band, ultra-compact ultrasonic system. Hence, we have put forth, perhaps, the first proposal using photonic beamforming and fiber remoting of the front-end ultrasonic probe, for both narrowband1 and wideband2-3 ultrasonic arrays.

  7. Miniaturized FT-IR spectrometer for industrial process measurements

    NASA Astrophysics Data System (ADS)

    Herrala, Esko; Niemela, Pentti; Hannula, Tapio

    1990-08-01

    There have been made some attempts to transfer the advantages of FT-JR to industrial use. Commercially available research grade instruments have been large and rather expensive. However in many potential applications only medium resolution is required which means that the mirror displacement in a Michelson type interferometer remains short and computation of the Fourier transform can be executed by a small computer. Medium resolution gives also other advantages in spectrometer design simple source and detector optics less severe requirements for mirror transport and small size. We have used a Michelson type interferometer where the moving mirror is suspended by two flexures and driven by a coil actuator. Displacement of the mirror is monitored using moire transducer which is much smaller and has better thermal stability than the conventionally used HeNe laser. The beamsplitter is a standard CaF2/Si and a thermoelectrically cooled PbSe is used as the detector. In the present prototype data is transferred via parallel bus to a PC/AT compatible computer where the necessary mathematics is done. The spectral range is from 5000 to 1800 cm1 with resolution better than 8 cm1. Interferograins can be recorded several times per second and the computation time for a 2000 point spectrum is 10 seconds. Results of environmental tests carried out for the spectrometer will be presented. The results show that it is possible to construct a simple rugged and inexpensive FT-IR spectrometer

  8. Energy characterisation of ultrasonic systems for industrial processes.

    PubMed

    Al-Juboori, Raed A; Yusaf, Talal; Bowtell, Leslie; Aravinthan, Vasantha

    2015-03-01

    Obtaining accurate power characteristics of ultrasonic treatment systems is an important step towards their industrial scalability. Calorimetric measurements are most commonly used for quantifying the dissipated ultrasonic power. However, accuracy of these measurements is affected by various heat losses, especially when working at high power densities. In this work, electrical power measurements were conducted at all locations in the piezoelectric ultrasonic system equipped with ½″ and ¾″ probes. A set of heat transfer calculations were developed to estimate the convection heat losses from the reaction solution. Chemical dosimeters represented by the oxidation of potassium iodide, Fricke solution and 4-nitrophenol were used to chemically correlate the effect of various electrical amplitudes and treatment regimes. This allowed estimation of sonochemical-efficiency (SE) and energy conversion (XUS) of the ultrasonic system. Results of this study showed overall conversion efficiencies of 60-70%. This correlated well with the chemical dosimeter yield curves of both organic and inorganic aqueous solutions. All dosimeters showed bubble shielding and coalescence effects at higher ultrasonic power levels, less pronounced for the ½″ probe case. SE and XUS values in the range of 10(-10) mol/J and 10(-3) J/J respectively confirmed that conversion of ultrasonic power to chemical yield declined with amplitude.

  9. Green biocides, a promising technology: current and future applications to industry and industrial processes.

    PubMed

    Ashraf, Muhammad Aqeel; Ullah, Saleem; Ahmad, Irshad; Qureshi, Ahmad Kaleem; Balkhair, Khaled S; Abdur Rehman, Muhammad

    2014-02-01

    The study of biofilms has skyrocketed in recent years due to increased awareness of the pervasiveness and impact of biofilms. It costs the USA literally billions of dollars every year in energy losses, equipment damage, product contamination and medical infections. But biofilms also offer huge potential for cleaning up hazardous waste sites, filtering municipal and industrial water and wastewater, and forming biobarriers to protect soil and groundwater from contamination. The complexity of biofilm activity and behavior requires research contributions from many disciplines such as biochemistry, engineering, mathematics and microbiology. The aim of this review is to provide a comprehensive analysis of emerging novel antimicrobial techniques, including those using myriad organic and inorganic products as well as genetic engineering techniques, the use of coordination complex molecules, composite materials and antimicrobial peptides and the use of lasers as such or their modified use in combination treatments. This review also addresses advanced and recent modifications, including methodological changes, and biocide efficacy enhancing strategies. This review will provide future planners of biofilm control technologies with a broad understanding and perspective on the use of biocides in the field of green developments for a sustainable future.

  10. Bates solar industrial process-steam application: preliminary design review

    SciTech Connect

    Not Available

    1980-01-07

    The design is analyzed for a parabolic trough solar process heat system for a cardboard corrugation fabrication facility in Texas. The program is briefly reviewed, including an analysis of the plant and process. The performance modeling for the system is discussed, and the solar system structural design, collector subsystem, heat transport and distribution subsystem are analyzed. The selection of the heat transfer fluid, and ullage and fluid maintenance are discussed, and the master control system and data acquisition system are described. Testing of environmental degradation of materials is briefly discussed. A brief preliminary cost analysis is included. (LEW)

  11. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention.

    PubMed

    Atungulu, Griffiths G; Pan, Zhongli

    2014-09-01

    Various processing methods are used in the food industry worldwide to produce numerous rice products with desirable sensory qualities based on cultural and cooking preferences and nutritional considerations. The processes result in variable degrees of macro- and micronutrient content, stability, and retention, depending on rice variety and original nutritional quality. In this article, modern and traditional premilling, milling, and postmilling processing methods of different rice types are comprehensively reviewed. The implications of industrial rice processing methods, especially milling, as well as techniques for nutrient extraction, transfer, and enhancement, such as rice parboiling, sprouting, and fortification, for macro- and micronutrient content and consumer acceptance of the products, are documented. Socioeconomic constraints facing various aspects of rice processing methods are also discussed. This article reviews up-to-date research on rice industrial processing worldwide and aims to benefit engineers dealing with food processing, nutritionists and dieticians, food companies, education and research institutions, and quality-control and safety managers.

  12. Housing Seasonal Workers for the Minnesota Processed Vegetable Industry

    ERIC Educational Resources Information Center

    Ziebarth, Ann

    2006-01-01

    The place where we live and work is a reflection of a complex set of economic conditions and social relationships. Very little information is available regarding housing for Minnesota's migrant workers. It is estimated that approximately 20,000 people migrate to Minnesota each summer to work in the production and processing of green peas and sweet…

  13. Regional Transformation Processes through the Universities-Institutions-Industry Relationship

    ERIC Educational Resources Information Center

    Cassia, Lucio; Colombelli, Alessandra; Paleari, Stefano

    2008-01-01

    The purpose of this paper is, first, to highlight the role of the relationships between universities, institutions and firms in different regional development processes working towards a knowledge economy, and, second, to draw some implications for local policy makers. Adopting the regional innovation system (RIS) approach, the authors analyse …

  14. 27 CFR 19.67 - Spirits produced in industrial processes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... produced as a by-product in connection with chemical or other processes) are distillers and are required to... nonpotable chemical mixtures containing spirits, including any provision relating to qualification, if such...; (ii) Chemical composition and source of the nonpotable mixture; (iii) Approximate percentages...

  15. Aquatic environmental risk assessment of manganese processing industries.

    PubMed

    Marks, Becky; Peters, Adam; McGough, Doreen

    2017-01-01

    An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL(-1) for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions

  16. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  17. MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES

    EPA Science Inventory

    The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. However, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some...

  18. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    PubMed Central

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T.; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals. PMID:25999858

  19. Union elections and the NLRB. The healthcare industry continues to challenge bargaining unit determinations.

    PubMed

    Zimmerman, D A; King, G R

    1990-01-01

    In the healthcare industry today, unions and management must cope with a confused, contradictory, and often changeable body of law and National Labor Relations Board (NLRB) policy when unions attempt to establish themselves at a particular institution. More than 15 years ago, Congress amended the National Labor Relations Act to grant labor unions the right to organize employees of not-for-profit hospitals and other healthcare organizations. An election to form a union cannot be held, however, until the NLRB determines which employee classifications constitute an "appropriate" collective bargaining unit. Since 1974, labor and management have fought over this basic question before Congress, the NLRB, and the federal courts. One paragraph of congressional instruction to the NLRB, which stipulates that the board prevent "proliferation of bargaining units in the health care industry," has over the years been construed in widely varying ways by the board and the courts. Management has argued that two units should be the maximum number allowed as appropriate whereas unions have argued for more. Last April the NLRB established a rule allowing for as many as eight bargaining units at a particular institution, but three months later a federal district court issued a permanent injunction against the rule. The board has appealed the injunction, and as both sides await a ruling, dozens of pending hospital union election cases have mounted up. Nor does a decision by a court of appeals promise to resolve the issue.

  20. Radiological impacts of the amang processing industry on neighbouring residents.

    PubMed

    Ismail, B; Redzuwan, Y; Chua, R S; Shafiee, W

    2001-03-01

    The processing of amang (one of a number of tin-tailing products) for its valuable minerals has associated with the radiological and environmental problems. The processing and stockpiling of amang and ilmenite in open-air spaces, subject as it is to environmental influences, gives rise to a potential for affecting residents in adjacent area. A case study was carried out in a residential area neighbouring a typical amang plant to investigate the radiological impact to the residents. The average Effective Dose rates, calculated based on the contributions of Effective Dose rates from inhaled suspended radioactive dust, radon-thoron and their progeny, and external gamma radiation, were determined for selected houses. Results show that the occupants of those houses received Effective Dose rate, which cannot be differentiated from background. The major contributor to the average Effective Dose rate came from external radiation sources. Inhaled radon and its progeny was the second major contributor.

  1. {open_quotes}Industry views--timing/structure of consultative process{close_quotes}

    SciTech Connect

    Volgelsberg, T.

    1995-12-31

    This paper examines industry`s perspective on the issues concerning the politics and economics of climatic change. The climate change issue complexity goes beyond science and involves: technology, economics, lifestyle, population, intergenerational equity, etc. Industry resources should be actively involved in technology, timeframes, economic assessments, and the political process. Climate mitigation options should be viewed on a holistic or total impact basis. Technology and economic assessment should not create winners and losers. The climate change process is like peeling an onion - long timeframes are required for cultural and infrastructure changes, there are both short term small improvement and long term structural changes, and implementation may take generations. Interdisciplinary communications are critical, cutting across the fields of social science, physical science, economics, technology, demographics, etc. Finally, industry must play or be played - industry can either help shape or be left to live with policy.

  2. Process variation challenges and resolution in the negative-tone develop double patterning for 20nm and below technology node

    NASA Astrophysics Data System (ADS)

    Mehta, Sohan S.; Ganta, Lakshmi K.; Chauhan, Vikrant; Wu, Yixu; Singh, Sunil; Ann, Chia; Subramany, Lokesh; Higgins, Craig; Erenturk, Burcin; Srivastava, Ravi; Singh, Paramjit; Koh, Hui Peng; Cho, David

    2015-03-01

    Immersion based 20nm technology node and below becoming very challenging to chip designers, process and integration due to multiple patterning to integrate one design layer . Negative tone development (NTD) processes have been well accepted by industry experts for enabling technologies 20 nm and below. 193i double patterning is the technology solution for pitch down to 80 nm. This imposes tight control in critical dimension(CD) variation in double patterning where design patterns are decomposed in two different masks such as in litho-etch-litho etch (LELE). CD bimodality has been widely studied in LELE double patterning. A portion of CD tolerance budget is significantly consumed by variations in CD in double patterning. The objective of this work is to study the process variation challenges and resolution in the Negative Tone Develop Process for 20 nm and Below Technology Node. This paper describes the effect of dose slope on CD variation in negative tone develop LELE process. This effect becomes even more challenging with standalone NTD developer process due to q-time driven CD variation. We studied impact of different stacks with combination of binary and attenuated phase shift mask and estimated dose slope contribution individually from stack and mask type. Mask 3D simulation was carried out to understand theoretical aspect. In order to meet the minimum insulator requirement for the worst case on wafer the overlay and critical dimension uniformity (CDU) budget margins have slimmed. Besides the litho process and tool control using enhanced metrology feedback, the variation control has other dependencies too. Color balancing between the two masks in LELE is helpful in countering effects such as iso-dense bias, and pattern shifting. Dummy insertion and the improved decomposition techniques [2] using multiple lower priority constraints can help to a great extent. Innovative color aware routing techniques [3] can also help with achieving more uniform density and

  3. Radiotracer Technology in Mixing Processes for Industrial Applications

    PubMed Central

    Othman, N.; Kamarudin, S. K.

    2014-01-01

    Many problems associated with the mixing process remain unsolved and result in poor mixing performance. The residence time distribution (RTD) and the mixing time are the most important parameters that determine the homogenisation that is achieved in the mixing vessel and are discussed in detail in this paper. In addition, this paper reviews the current problems associated with conventional tracers, mathematical models, and computational fluid dynamics simulations involved in radiotracer experiments and hybrid of radiotracer. PMID:24616642

  4. Selected US building industry processes and characteristics. A Project SAGE report

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Schoen, R.

    1978-01-01

    Selected multifamily processes were examined using a primarily graphic approach to clarify some of the operational modes into which Project SAGE (solar-assisted gas energy) must fit, both as a product and a process in the U.S. building industry. What SAGE must have or do in order to fit the building industry in the short term, that is, the multifamily submarket as it is presently configured, is delineated.

  5. Fuzzy-based HAZOP study for process industry.

    PubMed

    Ahn, Junkeon; Chang, Daejun

    2016-11-05

    This study proposed a fuzzy-based HAZOP for analyzing process hazards. Fuzzy theory was used to express uncertain states. This theory was found to be a useful approach to overcome the inherent uncertainty in HAZOP analyses. Fuzzy logic sharply contrasted with classical logic and provided diverse risk values according to its membership degree. Appropriate process parameters and guidewords were selected to describe the frequency and consequence of an accident. Fuzzy modeling calculated risks based on the relationship between the variables of an accident. The modeling was based on the mean expected value, trapezoidal fuzzy number, IF-THEN rules, and the center of gravity method. A cryogenic LNG (liquefied natural gas) testing facility was the objective process for the fuzzy-based and conventional HAZOPs. The most significant index is the frequency to determine risks. The comparison results showed that the fuzzy-based HAZOP provides better sophisticated risks than the conventional HAZOP. The fuzzy risk matrix presents the significance of risks, negligible risks, and necessity of risk reduction.

  6. Challenges associated with privacy in health care industry: implementation of HIPAA and the security rules.

    PubMed

    Choi, Young B; Capitan, Kathleen E; Krause, Joshua S; Streeper, Meredith M

    2006-02-01

    This paper discusses the challenges associated with privacy in health care in the electronic information age based on the Health Insurance Portability and Accountability Act (HIPAA) and the Security Rules. We examine the storing and transmission of sensitive patient data in the modem health care system and discuss current security practices that health care providers institute to comply with HIPAA Security Rule regulations. Based on our research results, we address current outstanding issues that act as impediments to the successful implementation of security measures and conclude the discussion and offer possible avenues of future research.

  7. Challenges and recommendations for obtaining chemical structures of industry-provided repurposing candidates.

    PubMed

    Southan, Christopher; Williams, Antony J; Ekins, Sean

    2013-01-01

    There is an expanding amount of interest directed at the repurposing and repositioning of drugs, as well as how in silico methods can assist these endeavors. Recent repurposing project tendering calls by the National Center for Advancing Translational Sciences (USA) and the Medical Research Council (UK) have included compound information and pharmacological data. However, none of the internal company development code names were assigned to chemical structures in the official documentation. This not only abrogates in silico analysis to support repurposing but consequently necessitates data gathering and curation to assign structures. Here, we describe the approaches, results and major challenges associated with this.

  8. How the Food Processing Industry Is Diversifying Rural Minnesota. JSRI Working Paper.

    ERIC Educational Resources Information Center

    Fennelly, Katherine; Leitner, Helga

    The diversification of rural Minnesota is largely the result of the restructuring of the food processing industry and its recruitment of low-wage laborers. The relocation and expansion of food processing plants into rural areas of Minnesota creates a demand for low-wage labor that can not be met locally. Food processing businesses attract…

  9. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective.

    PubMed

    Hare, Jennifer I; Lammers, Twan; Ashford, Marianne B; Puri, Sanyogitta; Storm, Gert; Barry, Simon T

    2017-01-01

    Successfully translating anti-cancer nanomedicines from pre-clinical proof of concept to demonstration of therapeutic value in the clinic is challenging. Having made significant advances with drug delivery technologies, we must learn from other areas of oncology drug development, where patient stratification and target-driven design have improved patient outcomes. We should evolve our nanomedicine development strategies to build the patient and disease into the line of sight from the outset. The success of small molecule targeted therapies has been significantly improved by employing a specific decision-making framework, such as AstraZeneca's 5R principle: right target/efficacy, right tissue/exposure, right safety, right patient, and right commercial potential. With appropriate investment and collaboration to generate a platform of evidence supporting the end clinical application, a similar framework can be established for enhancing nanomedicine translation and performance. Building informative data packages to answer these questions requires the following: (I) an improved understanding of the heterogeneity of clinical cancers and of the biological factors influencing the behaviour of nanomedicines in patient tumours; (II) a transition from formulation-driven research to disease-driven development; (III) the implementation of more relevant animal models and testing protocols; and (IV) the pre-selection of the patients most likely to respond to nanomedicine therapies. These challenges must be overcome to improve (the cost-effectiveness of) nanomedicine development and translation, and they are key to establishing superior therapies for patients.

  10. Challenge and threat motivation: effects on superficial and elaborative information processing

    PubMed Central

    Fonseca, Ricardo; Blascovich, James; Garcia-Marques, Teresa

    2014-01-01

    This paper integrates the motivational states of challenge and threat within a dual processing perspective. Previous research has demonstrated that individuals experience a challenge state when individuals have sufficient resources to cope with the demands of a task (Blascovich et al., 1993). Because the experience of resource availability has been shown to be associated with superficial processing (Garcia-Marques and Mackie, 2007), we tested the hypothesis that challenge is associated with superficial processing in two persuasion experiments. Experiment 1 revealed that inducing attitudes of participants in a challenge state was not sensitive to the quality of arguments presented. Experiment 2 demonstrated that the effect occurs even when task engagement, manipulated by the presence (vs. the absence) of a task observer (Blascovich et al., 1993), is high. The implications of these results for the biopsychosocial model model and the cognitive and motivational literature are discussed. PMID:25352823

  11. Assessment of noise level in sundry processing and manufacturing industries in Ilorin metropolis, Nigeria.

    PubMed

    Oyedepo, Olayinka S; Saadu, Abdullahi A

    2010-03-01

    In this work, noise level in five selected processing and manufacturing industries in Ilorin are evaluated and compared. Emphasis is given to noise emitted by individual industrial machinery from the selected industries. Event L(Aeq) and L(N) cycles were studied to identify the noisy machines and to generate baseline data. Findings show that hammer mill machine from mineral-bearing rock-crushing mills produced the highest average noise [98.4 dB(A)], an electric generator 1 [95.6 dB(A)] from the soft drink bottling industry, an electric generator [97.7 dB(A)] from the beer brewing and bottling industry, a vacuum pump [93.1 dB(A)] from the tobacco making industry, and an electric generator 2 [94.1 dB(A)] from the mattress-making industry. The highest and lowest average noise exposure levels are recorded in mineral-bearing rock-crushing mills [93.16 dB(A)] and the mattress making industry [84.69 dB(A)], respectively. The study shows that, at 95% confidence level, there is significant difference (P < 0.05) in noise levels in the industries surveyed. The percentages of machines that emit noise above Federal Environmental Protection Agency and Occupational Safety and Health Administration recommendations [90 dB(A)] are from the soft drink bottling industry (83.3%), the beer brewing and bottling industry (42.9%), the tobacco making industry (71.4%), the mattress making industry (11.1%), and minerals crushing mills (87.5%). In the past 20 years, the noise levels in the soft drink bottling industry were reduced by 0.58 dB(A), and those of the beer brewing and bottling industry were reduced by 9.66 dB(A). However, that of the mattress making industry increased by 2.69 dB(A). On average, the noise level in these industries has been reduced by 2.52 dB(A). The results of this study show that the noise control measures put in place have significant impacts on the noise exposure level in the industries surveyed.

  12. The potential for bulk undercooling as an industrial process

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1984-01-01

    The main focus is on solidification occurring in highly supercooled melts. Solidification rates in such melts are extremely high, an attractive feature from a commercial standpoint. Thus, the reported growth velocities for pure Ni and Co dendrites at a supercooling of 175 K are in excess of 180 km/hr. Rapidly quenched crystalline alloys produced by various atomization processes (e.g., centrifugal atomization or inert gas atomization) or melt spinning are examples of solidification processes, currently being intensively explored commercially, wherein extremely high solidification rates are achieved. Estimated dendrite tip growth rates are about 2 km/hr in a binary Al-4.5 wt % alloy, with a heat transfer coefficient of 6.4x10 sub 5 w/sq cm K or 15 cal/cu cm sK. In the limit, when the solidification rate exceeds a critical value, a glassy microstructure is obtained even in highly alloyed melts, which under normal conditions would solidity to form one or more crystalline phases. Glassy metals, also called metallic glasses, are candidate materials for distribution transformers because of their very low energy losses and are also being used in brazing and soldering applications.

  13. Health hazards of China's lead-acid battery industry: a review of its market drivers, production processes, and health impacts.

    PubMed

    van der Kuijp, Tsering Jan; Huang, Lei; Cherry, Christopher R

    2013-08-03

    Despite China's leaded gasoline phase out in 2000, the continued high rates of lead poisoning found in children's blood lead levels reflect the need for identifying and controlling other sources of lead pollution. From 2001 to 2007, 24% of children in China studied (N = 94,778) were lead poisoned with levels exceeding 100 μg/L. These levels stand well above the global average of 16%. These trends reveal that China still faces significant public health challenges, with millions of children currently at risk of lead poisoning. The unprecedented growth of China's lead-acid battery industry from the electric bike, automotive, and photovoltaic industries may explain these persistently high levels, as China remains the world's leading producer, refiner, and consumer of both lead and lead-acid batteries.This review assesses the role of China's rising lead-acid battery industry on lead pollution and exposure. It starts with a synthesis of biological mechanisms of lead exposure followed by an analysis of the key technologies driving the rapid growth of this industry. It then details the four main stages of lead battery production, explaining how each stage results in significant lead loss and pollution. A province-level accounting of each of these industrial operations is also included. Next, reviews of the literature describe how this industry may have contributed to mass lead poisonings throughout China. Finally, the paper closes with a discussion of new policies that address the lead-acid battery industry and identifies policy frameworks to mitigate exposure.This paper is the first to integrate the market factors, production processes, and health impacts of China's growing lead-acid battery industry to illustrate its vast public health consequences. The implications of this review are two-fold: it validates calls for a nationwide assessment of lead exposure pathways and levels in China as well as for a more comprehensive investigation into the health impacts of the lead

  14. Metabolic engineering of microbial competitive advantage for industrial fermentation processes.

    PubMed

    Shaw, A Joe; Lam, Felix H; Hamilton, Maureen; Consiglio, Andrew; MacEwen, Kyle; Brevnova, Elena E; Greenhagen, Emily; LaTouf, W Greg; South, Colin R; van Dijken, Hans; Stephanopoulos, Gregory

    2016-08-05

    Microbial contamination is an obstacle to widespread production of advanced biofuels and chemicals. Current practices such as process sterilization or antibiotic dosage carry excess costs or encourage the development of antibiotic resistance. We engineered Escherichia coli to assimilate melamine, a xenobiotic compound containing nitrogen. After adaptive laboratory evolution to improve pathway efficiency, the engineered strain rapidly outcompeted a control strain when melamine was supplied as the nitrogen source. We additionally engineered the yeasts Saccharomyces cerevisiae and Yarrowia lipolytica to assimilate nitrogen from cyanamide and phosphorus from potassium phosphite, and they outcompeted contaminating strains in several low-cost feedstocks. Supplying essential growth nutrients through xenobiotic or ecologically rare chemicals provides microbial competitive advantage with minimal external risks, given that engineered biocatalysts only have improved fitness within the customized fermentation environment.

  15. Challenges of information security incident learning: an industrial case study in a Chinese healthcare organization.

    PubMed

    He, Ying; Johnson, Chris

    2017-01-09

    Security incidents can have negative impacts on healthcare organizations, and the security of medical records has become a primary concern of the public. However, previous studies showed that organizations had not effectively learned lessons from security incidents. Incident learning as an essential activity in the "follow-up" phase of security incident response lifecycle has long been addressed but not given enough attention. This paper conducted a case study in a healthcare organization in China to explore their current obstacles in the practice of incident learning. We interviewed both IT professionals and healthcare professionals. The results showed that the organization did not have a structured way to gather and redistribute incident knowledge. Incident response was ineffective in cycling incident knowledge back to inform security management. Incident reporting to multiple stakeholders faced a great challenge. In response to this case study, we suggest the security assurance modeling framework to address those obstacles.

  16. Bleeding talent: a lesson from industry on embracing physician workforce challenges.

    PubMed

    Kneeland, Patrick P; Kneeland, Christine; Wachter, Robert M

    2010-01-01

    Shortages of both generalist and specialist physicians are intensifying as the US healthcare system confronts an unprecedented confluence of demographic pressures, including an aging population, the retirement of thousands of baby-boomer physicians, the growth of nonpractice opportunities for MDs, and physician demands for greater work-life balance. This work posits that the medical profession might benefit from recognizing how progressive nonmedical companies systematically approach similar "talent shortages" through a recruiting and retention strategy called "talent facilitation." It highlights the 4 actions of talent facilitation (attract, engage, develop, and retain) and provides examples of how each action might be utilized to address medicine's recruitment and retention challenges. Although other policy maneuvers are needed to address overall physician workforce shortages (such as the planned opening of more medical schools and changes in the payment system to promote primary care), the talent facilitation approach can help individual organizations meet their needs and those of their patients.

  17. Challenges for Australia's Bio/Nanopharma Policies: trade deals, public goods and reference pricing in sustainable industrial renewal

    PubMed Central

    Faunce, Thomas A

    2007-01-01

    controversial interpretations of reward of pharmaceutical 'innovation' provisions in the Australia-US Free Trade Agreement (AUSFTA) through the policy-development mechanisms of the AUSFTA Medicines Working Group and most recently an Innovative Medicines Working Group with the Department of Health and Ageing. This paper critically analyses such arguments in the context of emerging challenges for sustainable industrial renewal in Australia's bio/nanopharma sector. PMID:17543114

  18. Challenges for Australia's Bio/Nanopharma Policies: trade deals, public goods and reference pricing in sustainable industrial renewal.

    PubMed

    Faunce, Thomas A

    2007-06-01

    controversial interpretations of reward of pharmaceutical 'innovation' provisions in the Australia-US Free Trade Agreement (AUSFTA) through the policy-development mechanisms of the AUSFTA Medicines Working Group and most recently an Innovative Medicines Working Group with the Department of Health and Ageing. This paper critically analyses such arguments in the context of emerging challenges for sustainable industrial renewal in Australia's bio/nanopharma sector.

  19. Industrial and occupational ergonomics in the petrochemical process industry: a regression trees approach.

    PubMed

    Bevilacqua, M; Ciarapica, F E; Giacchetta, G

    2008-07-01

    This work is an attempt to apply classification tree methods to data regarding accidents in a medium-sized refinery, so as to identify the important relationships between the variables, which can be considered as decision-making rules when adopting any measures for improvement. The results obtained using the CART (Classification And Regression Trees) method proved to be the most precise and, in general, they are encouraging concerning the use of tree diagrams as preliminary explorative techniques for the assessment of the ergonomic, management and operational parameters which influence high accident risk situations. The Occupational Injury analysis carried out in this paper was planned as a dynamic process and can be repeated systematically. The CART technique, which considers a very wide set of objective and predictive variables, shows new cause-effect correlations in occupational safety which had never been previously described, highlighting possible injury risk groups and supporting decision-making in these areas. The use of classification trees must not, however, be seen as an attempt to supplant other techniques, but as a complementary method which can be integrated into traditional types of analysis.

  20. The scientific study of inspiration in the creative process: challenges and opportunities

    PubMed Central

    Oleynick, Victoria C.; Thrash, Todd M.; LeFew, Michael C.; Moldovan, Emil G.; Kieffaber, Paul D.

    2014-01-01

    Inspiration is a motivational state that compels individuals to bring ideas into fruition. Creators have long argued that inspiration is important to the creative process, but until recently, scientists have not investigated this claim. In this article, we review challenges to the study of creative inspiration, as well as solutions to these challenges afforded by theoretical and empirical work on inspiration over the past decade. First, we discuss the problem of definitional ambiguity, which has been addressed through an integrative process of construct conceptualization. Second, we discuss the challenge of how to operationalize inspiration. This challenge has been overcome by the development and validation of the Inspiration Scale (IS), which may be used to assess trait or state inspiration. Third, we address ambiguity regarding how inspiration differs from related concepts (creativity, insight, positive affect) by discussing discriminant validity. Next, we discuss the preconception that inspiration is less important than “perspiration” (effort), and we review empirical evidence that inspiration and effort both play important—but different—roles in the creative process. Finally, with many challenges overcome, we argue that the foundation is now set for a new generation of research focused on neural underpinnings. We discuss potential challenges to and opportunities for the neuroscientific study of inspiration. A better understanding of the biological basis of inspiration will illuminate the process through which creative ideas “fire the soul,” such that individuals are compelled to transform ideas into products and solutions that may benefit society. PMID:25009483

  1. Information technology in pharmacovigilance: Benefits, challenges, and future directions from industry perspectives

    PubMed Central

    Lu, Zhengwu

    2009-01-01

    Risk assessment during clinical product development needs to be conducted in a thorough and rigorous manner. However, it is impossible to identify all safety concerns during controlled clinical trials. Once a product is marketed, there is generally a large increase in the number of patients exposed, including those with comorbid conditions and those being treated with concomitant medications. Therefore, postmarketing safety data collection and clinical risk assessment based on observational data are critical for evaluating and characterizing a product’s risk profile and for making informed decisions on risk minimization. Information science promises to deliver effective e-clinical or e-health solutions to realize several core benefits: time savings, high quality, cost reductions, and increased efficiencies with safer and more efficacious medicines. The development and use of standard-based pharmacovigilance system with integration connection to electronic medical records, electronic health records, and clinical data management system holds promise as a tool for enabling early drug safety detections, data mining, results interpretation, assisting in safety decision making, and clinical collaborations among clinical partners or different functional groups. The availability of a publicly accessible global safety database updated on a frequent basis would further enhance detection and communication about safety issues. Due to recent high-profile drug safety problems, the pharmaceutical industry is faced with greater regulatory enforcement and increased accountability demands for the protection and welfare of patients. This changing climate requires biopharmaceutical companies to take a more proactive approach in dealing with drug safety and pharmacovigilance. PMID:21701609

  2. Fourth-Grade Primary School Students' Thought Processes and Challenges Encountered during the Butter Beans Problem

    ERIC Educational Resources Information Center

    Sahin, Neslihan; Eraslan, Ali

    2017-01-01

    In parallel with mathematical modeling studies that have gradually drawn interest in recent years, the aim of this study is to investigate the thought processes of fourth-grade students in the Butter Beans Problem and to identify possible challenges in this process. For this purpose, a qualitative study was conducted at a university-foundation…

  3. Rocks in the River: The Challenge of Piloting the Inquiry Process in Today's Learning Environment

    ERIC Educational Resources Information Center

    Lambusta, Patrice; Graham, Sandy; Letteri-Walker, Barbara

    2014-01-01

    School librarians in Newport News, Virginia, are meeting the challenges of integrating an Inquiry Process Model into instruction. In the original model the process began by asking students to develop questions to start their inquiry journey. As this model was taught it was discovered that students often did not have enough background knowledge to…

  4. Functionally Approached Body (FAB) Strategies for Young Children Who Have Behavioral and Sensory Processing Challenges

    ERIC Educational Resources Information Center

    Pagano, John

    2005-01-01

    Functionally Approached Body (FAB) Strategies offer a clinical approach to help parents of young children with behavioral and sensory processing strategies. This article introduces the FAB Strategies, clinical strategies developed by the author for understanding and addressing young children's behavioral and sensory processing challenges. The FAB…

  5. Unleashing the potential of ligninolytic bacterial contributions towards pulp and paper industry: key challenges and new insights.

    PubMed

    Priyadarshinee, Rashmi; Kumar, Anuj; Mandal, Tamal; Dasguptamandal, Dalia

    2016-12-01

    Lignocellulose biomass predominantly constitutes the main feedstock for pulp and paper industry. Though some products of pulp and paper industry require the presence of lignin content, for most of the useful products formation lies in the efficient and selective removal of lignin component to make use of the intact cellulose fraction during the pretreatment of pulp. Lignin is a recalcitrant heteropolymer comprised of several complex stable bonds and linkages. The chemicals or intense energy processes used for delignification process release the hazardous chemicals compounds in the wastewater which cause toxicity and environmental pollution. The implementation of bacterial species has elucidated an effective approach in the generation of value-added products while degrading lignin from pulp biomass as well as detoxification of effluent. The direct use of bacterial cells in lignocellulose biomass and wastewater streams is promising as it outperforms the practical and technical constraints largely confronted by fungal and enzymatic means. The present review paper thus unleashed the potential of ligninolytic bacteria towards delignification of pulp biomass and treatment of effluent together with bioconversion of biomass and lignin into value-added products. Graphical abstract Schematic illustration of potential possible contribution of ligninolytic bacteria towards pulp and paper industry.

  6. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  7. Biochemistry in an Industrial Context: Methods of Protein Purification and Downstream Processing.

    ERIC Educational Resources Information Center

    Weathers, Pamela J.

    1988-01-01

    Explores a graduate level bioprocess engineering course in protein purification and downstream processing. Designed to provide students with hands-on training in the design and implementation of product processing for the biotechnology industry. Includes syllabus and plan of study. (MVL)

  8. Characteristics of extraction and functionality of protein from tomato pomace produced with different industrial processing methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The seeds from tomato pomace, a by-product of tomato processing, contains valuable but underutilized protein with unique functional properties. The objectives of this research were to study the impact of industrial hot and cold break tomato processing on protein extraction from defatted tomato seeds...

  9. Rice industrial processing worldwide and impact on macro- and micronutrient content, stability, and retention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various processing methods are used in the food industry worldwide to produce numerous rice products with desirable sensory qualities based on cultural and cooking preferences and nutritional considerations. The processes result in variable degrees of macro- and micronutrient content, stability, and...

  10. Ultra-Fast Boriding in High-Temperature Materials Processing Industries

    SciTech Connect

    2008-12-01

    This factsheet describes a research project whose main objective is to further develop, optimize, scale-up, and commercialize an ultra-fast boriding (also referred to as “boronizing”) process that can provide much higher energy efficiency, productivity, and near-zero emissions in many of the high-temperature materials processing industries.

  11. Solar Program Assessment: Environmental Factors - Solar Agricultural and Industrial Process Heat.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental issues associated with the further development of solar energy as a source of process heat in the industrial and agricultural sectors. To provide a background for this environmental analysis, the basic concepts and technologies of solar process heating are reviewed.…

  12. Future supply chains enabled by continuous processing--opportunities and challenges. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Srai, Jagjit Singh; Badman, Clive; Krumme, Markus; Futran, Mauricio; Johnston, Craig

    2015-03-01

    This paper examines the opportunities and challenges facing the pharmaceutical industry in moving to a primarily "continuous processing"-based supply chain. The current predominantly "large batch" and centralized manufacturing system designed for the "blockbuster" drug has driven a slow-paced, inventory heavy operating model that is increasingly regarded as inflexible and unsustainable. Indeed, new markets and the rapidly evolving technology landscape will drive more product variety, shorter product life-cycles, and smaller drug volumes, which will exacerbate an already unsustainable economic model. Future supply chains will be required to enhance affordability and availability for patients and healthcare providers alike despite the increased product complexity. In this more challenging supply scenario, we examine the potential for a more pull driven, near real-time demand-based supply chain, utilizing continuous processing where appropriate as a key element of a more "flow-through" operating model. In this discussion paper on future supply chain models underpinned by developments in the continuous manufacture of pharmaceuticals, we have set out; The significant opportunities to moving to a supply chain flow-through operating model, with substantial opportunities in inventory reduction, lead-time to patient, and radically different product assurance/stability regimes. Scenarios for decentralized production models producing a greater variety of products with enhanced volume flexibility. Production, supply, and value chain footprints that are radically different from today's monolithic and centralized batch manufacturing operations. Clinical trial and drug product development cost savings that support more rapid scale-up and market entry models with early involvement of SC designers within New Product Development. The major supply chain and industrial transformational challenges that need to be addressed. The paper recognizes that although current batch operational

  13. Potential for Solar Industrial Process Heat in the United States: A Look at California

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig

    2016-05-31

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  14. Potential for solar industrial process heat in the United States: A look at California

    NASA Astrophysics Data System (ADS)

    Kurup, Parthiv; Turchi, Craig

    2016-05-01

    The use of Concentrating Solar Power (CSP) collectors (e.g., parabolic trough or linear Fresnel systems) for industrial thermal applications has been increasing in global interest in the last few years. In particular, the European Union has been tracking the deployment of Solar Industrial Process Heat (SIPH) plants. Although relatively few plants have been deployed in the United States (U.S.), we establish that 29% of primary energy consumption in the U.S. manufacturing sector is used for process heating. Perhaps the best opportunities for SIPH reside in the state of California due to its excellent solar resource, strong industrial base, and solar-friendly policies. This initial analysis identified 48 TWhth/year of process heat demand in certain California industries versus a technical solar-thermal energy potential of 23,000 TWhth/year. The top five users of industrial steam in the state are highlighted and special attention paid to the food sector that has been an early adopter of SIPH in other countries. A comparison of the cost of heat from solar-thermal collectors versus the cost of industrial natural gas in California indicates that SIPH may be cost effective even under the relatively low gas prices seen in 2014. A recommended next step is the identification of pilot project candidates to promote the deployment of SIPH facilities.

  15. Curbing variations in packaging process through Six Sigma way in a large-scale food-processing industry

    NASA Astrophysics Data System (ADS)

    Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar

    2015-08-01

    Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.

  16. Reproductive challenges facing the cattle industry at the beginning of the 21st century.

    PubMed

    Sheldon, I M; Dobson, H

    2003-01-01

    trophoblast produces interferon to prevent luteolysis, but the immunological implications are unknown and it is not clear how the rest of pregnancy is maintained. Profiles of pregnancy specific protein B (PSPB) have increased understanding of embryonic death. However, 25% of cows in abattoirs are pregnant, even though 30% of involuntary cullings are 'for failing to conceive'. Clearly, this is an area of wastage that requires urgent resolution. It is unknown why undernutrition at the time of insemination or in early pregnancy leads to delayed births, low fetal weights and later adverse health. At the end of pregnancy, the fetus controls the onset of parturition, but very little is known about the biochemical control of cervical dilation and placental separation. On the male side, bulls are selected for optimal freezability of semen; however, there is as yet no reliable predictor for semen fertility. Methods for accurately pre-determining the sex of both semen and embryos will revolutionize the dairy and beef industries.

  17. Technical and commerical challenges in high Tc SQUIDs and their industrial applications

    NASA Technical Reports Server (NTRS)

    Lu, D. F.

    1995-01-01

    A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.

  18. Technical and commerical challenges in high Tc SQUIDs and their industrial applications

    NASA Astrophysics Data System (ADS)

    Lu, D. F.

    1995-04-01

    A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.

  19. Recovery of waste heat from industrial slags via modified float glass process

    SciTech Connect

    Serth, R.W.; Ctvrtnicek, T.E.; McCormick, R.J.; Zanders, D.L.

    1981-01-01

    A novel process for recovering waste heat from molten slags produced as by-products in the steel, copper, and elemental phosphorus industries is investigated. The process is based on technology developed in the glass industry for the commercial production of flat glass. In this process, energy is recovered from molten slag as it cools and solidifies on the surface of a pool of molten tin. In order to determine the technical and economic feasibility of the process, an energy recovery facility designed to handle the slag from a large elemental phosphorus plant is studied. Results indicate that the process is marginally economical at current energy price levels. A number of technical uncertainties in the process design are also identified. 9 refs.

  20. Industrial fuel gas demonstration plant program. License agreements for proprietary processes. (Deliverable No. 30)

    SciTech Connect

    1980-01-01

    The proprietary processes included within the Industrial Fuel Gas Demonstration Plant are listed. Draft license agreements covering the use of these processes, with the exception of the Westfield Process (Conoco), have been included at the end of this document. Except for the Claus Process (Amoco) all draft license agreements will be executed directly between MLGW and the licensor. All the draft license agreements provided have been prepared by the licensors after preliminary discussions. Presently these agreements are being reviewed by MLGW for acceptability. As stated above, the Amoco Sulfur Recovery Process will be covered by an existing agreement between Standard Oil and FWEC. Suitable clauses have been provided under Tab V. These clauses will be incorporated into the MLGW/FWEC subcontract for the protection of MLGW, FWEC, and licensor. At this writing the Industrial Team has no secrecy agreement executed with Conoco Methanation Company (Westfield Methanation Process) nor has any draft license agreement been transmitted by Conoco.

  1. Petrochemical industry standards activity aimed at improving the mechanical integrity of process piping

    SciTech Connect

    Reynolds, J.T.

    1996-07-01

    This paper will cover numerous changes being made to existing standards and several new standards being created, all focusing on increasing mechanical integrity of petrochemical industry process piping. Those new standards include ones for (1) Risk-Based Inspection (2) Fitness for Service Analysis, (3) Positive Material Identification, and (4) In-service Inspection and Maintenance for Process Piping. A progress report is included for the Process Industry Practices (PIP) being created to consolidate individual company piping standards into one consistent industry set. And finally, recent initiatives toward standards cooperation/coordination between the American Petroleum Institute(API), American Society of Mechanical Engineers (ASME), International Standards Organization (ISO) and National Board are highlighted.

  2. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses.

  3. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry.

    PubMed

    Ojanguren, Aitziber; Ayo, Josune

    2013-06-20

    Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA) bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air) on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80-200 °C) and air flow (7-20 L/h) range. Oil stability index (Rancimat method) was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow). It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  4. Changes in phenolic content of commercial potato varieties through industrial processing and fresh preparation.

    PubMed

    Furrer, Amber; Cladis, Dennis P; Kurilich, Anne; Manoharan, Ramesh; Ferruzzi, Mario G

    2017-03-01

    Reported content and process stability of phenolics in potato products is inconsistent. Changes in phenolic content of select varieties through fresh and industrial preparation/reconstitution were assessed. Total chlorogenic acids (CQAs) ranged from 43 to 953mg/100g dw and were more concentrated in pigmented compared to white/yellow-fleshed potatoes. Anthocyanin (ANC) content ranged from 18.6 to 22.9mg/100g dw and were mainly present in the flesh of pigmented potatoes. Retention of phenolics through commercial processing ranged from 49 to 85% for pigmented varieties and 32-55% for white/yellow. CQA levels were reduced through processing but to a greater extent in white relative to pigmented potatoes. ANCs were well retained through industrial processing of pigmented potatoes (79-129%). Levels of CQA were significantly (p<0.05) lower in some industrially versus freshly processed products but not for all products. While some differences exist, overall, industrially processed potato products compare favorably to fresh preparation in levels and recovery of phenolics.

  5. Second i2b2 workshop on natural language processing challenges for clinical records.

    PubMed

    Uzuner, Ozlem

    2008-11-06

    The second i2b2 workshop on Natural Language Processing (NLP) for clinical records presents a shared-task and challenge on the automated extraction of obesity information from narrative patient records. The goal of the obesity challenge is to continue i2b2's effort to open patient records to studies by the NLP and Medical Informatics communities for the advancement of the state of the art in medical language processing. For this, i2b2 made available a set of de-identified patient records that are hand-annotated by medical professionals for obesity-related information, and invited the development of systems that can automatically mark the presence of obesity and co-morbidities in each patient from information in their records. In this workshop, we will discuss the obesity challenge, review some approaches to automatically identifying obese patients and obesity co-morbidities from medical records, and present the challenge results. The findings of the i2b2 challenge on obesity will shed light onto the state of the art in natural language processing for multi-label multi-class classification of narrative records for clinical applications.

  6. Opportunities for Automated Demand Response in California’s Dairy Processing Industry

    SciTech Connect

    Homan, Gregory K.; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-30

    During periods of peak electrical demand on the energy grid or when there is a shortage of supply, the stability of the grid may be compromised or the cost of supplying electricity may rise dramatically, respectively. Demand response programs are designed to mitigate the severity of these problems and improve reliability by reducing the demand on the grid during such critical times. In 2010, the Demand Response Research Center convened a group of industry experts to suggest potential industries that would be good demand response program candidates for further review. The dairy industry was suggested due to the perception that the industry had suitable flexibility and automatic controls in place. The purpose of this report is to provide an initial description of the industry with regard to demand response potential, specifically automated demand response. This report qualitatively describes the potential for participation in demand response and automated demand response by dairy processing facilities in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use. Typical process equipment and controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Two case studies of demand response at dairy facilities in California and across the country are reviewed. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  7. Influence of industrial processing on orange juice flavanone solubility and transformation to chalcones under gastrointestinal conditions.

    PubMed

    Gil-Izquierdo, Angel; Gil, María Isabel; Tomas-Barberan, Francisco Abraham; Ferreres, Federico

    2003-05-07

    Orange juice manufactured at industrial scale was subjected to digestion under in vitro gastrointestinal conditions (pH, temperature, and enzyme and chemical conditions) to evaluate the influence of individual industrial processing treatments on flavanone solubility, stability, and ability to permeate through a membrane under simulated physiological conditions. Four industrial processes including squeezing, standard pasteurization, concentration, and freezing were evaluated. Hand squeezing was compared with industrial squeezing. After in vitro gastrointestinal digestion of the orange juices, the flavanones able to permeate through a dialysis membrane, and those remaining in the retentate were evaluated by HPLC as were those present in the insoluble fraction. In all of the assayed orange juices, a high content of precipitated chalcones ( approximately 70% of the total flavanones) was formed under the physiological conditions of the gastrointestinal tract. Hand squeezing provided a higher concentration of flavanones in the permeated fraction and lower transformation to chalcones than industrial squeezing. Standard pasteurization did not influence the solubility and permeability of the orange juice flavanones and chalcones. Industrial concentration did not affect the amount of flavanones able to permeate but decreased the chalcones produced. Juices produced from frozen orange juice contained considerably smaller amounts of both soluble flavanones and insoluble chalcones.

  8. Assessment of selected conservation measures for high-temperature process industries

    SciTech Connect

    Kusik, C L; Parameswaran, K; Nadkarni, R; O'Neill, J K; Malhotra, S; Hyde, R; Kinneberg, D; Fox, L; Rossetti, M

    1981-01-01

    Energy conservation projects involving high-temperature processes in various stages of development are assessed to quantify their energy conservation potential; to determine their present status of development; to identify their research and development needs and estimate the associated costs; and to determine the most effective role for the Federal government in developing these technologies. The program analyzed 25 energy conserving processes in the iron and steel, aluminium, copper, magnesium, cement, and glassmaking industries. A preliminary list of other potential energy conservation projects in these industries is also presented in the appendix. (MCW)

  9. Interated Intelligent Industrial Process Sensing and Control: Applied to and Demonstrated on Cupola Furnaces

    SciTech Connect

    Mohamed Abdelrahman; roger Haggard; Wagdy Mahmoud; Kevin Moore; Denis Clark; Eric Larsen; Paul King

    2003-02-12

    The final goal of this project was the development of a system that is capable of controlling an industrial process effectively through the integration of information obtained through intelligent sensor fusion and intelligent control technologies. The industry of interest in this project was the metal casting industry as represented by cupola iron-melting furnaces. However, the developed technology is of generic type and hence applicable to several other industries. The system was divided into the following four major interacting components: 1. An object oriented generic architecture to integrate the developed software and hardware components @. Generic algorithms for intelligent signal analysis and sensor and model fusion 3. Development of supervisory structure for integration of intelligent sensor fusion data into the controller 4. Hardware implementation of intelligent signal analysis and fusion algorithms

  10. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  11. Evaluation of the measurement geometries and data processing algorithms for industrial gamma tomography technology.

    PubMed

    Lee, N Y; Jung, S H; Kim, J B

    2009-01-01

    In this paper, we evaluated the measurement geometries and data processing algorithms for industrial gamma tomography technology. Several phantoms simulating industrial objects were tested in various conditions with the gamma-ray CT system developed in KAERI (Korea Atomic Energy Research Institute). Radiation was measured with lead shielded 24 1x1in Nal detectors. Regarding the parallel beam geometry, the EM algorithm showed the best resolution among the algebraic reconstruction technique (ART), simultaneous iterative reconstructive technique (SIRT) and expectation maximization (EM). However, the fan beam scanning was more time efficient than the parallel projection for the similar quality of reconstructed image. Future developments of the industrial gamma ray CT will be focused on a large-scale application which is more practical for a diagnosis in the petrochemical industry.

  12. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  13. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  14. The role of contextual factors for musculoskeletal disorders in the New Zealand meat processing industry.

    PubMed

    Tappin, D C; Bentley, T A; Vitalis, A

    2008-10-01

    Musculoskeletal disorders (MSD) are the leading cause of occupational injury internationally. In New Zealand, the highest incidence of MSD is in meat processing, accounting for over half the injury compensation costs for the sector. MSD in meat processing have proven highly resistant to physical, micro-level interventions, suggesting a new approach is required. This paper reports on part of a 2-year study looking at MSD in the New Zealand meat processing industry. The qualitative study involved interviews with 237 workers, management, union and safety personnel in 28 processing sites. These data were summarised into a list of contextual factors, which, it is postulated, may create conditions under which greater exposure to physical and psychosocial factors can occur in meat processing. Some of the contextual factors are recognised as problematic by the industry, but have not previously been associated with MSD risk. The paper concludes by reflecting on conducting MSD research with a focus on contextual factors and how this may influence MSD prevention. The manuscript provides industry-based data on MSD risk and outlines the approach used in its collection. Identifying contextual factors and understanding their role in creating MSD risk may help improve the acceptance and effectiveness of MSD interventions in industry.

  15. Microwave processing of cement and concrete materials – towards an industrial reality?

    SciTech Connect

    Buttress, Adam Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  16. Measuring Cognitive and Metacognitive Regulatory Processes during Hypermedia Learning: Issues and Challenges

    ERIC Educational Resources Information Center

    Azevedo, Roger; Moos, Daniel C.; Johnson, Amy M.; Chauncey, Amber D.

    2010-01-01

    Self-regulated learning (SRL) with hypermedia environments involves a complex cycle of temporally unfolding cognitive and metacognitive processes that impact students' learning. We present several methodological issues related to treating SRL as an event and strengths and challenges of using online trace methodologies to detect, trace, model, and…

  17. Managed Moves: School and Local Authority Staff Perceptions of Processes, Success and Challenges

    ERIC Educational Resources Information Center

    Bagley, Christopher; Hallam, Susan

    2015-01-01

    The current research aimed to increase understanding of the processes of managed moves for children at risk of exclusion from school, particularly exploring what contributed to success and the nature of the challenges experienced. The study was conducted in one English local authority where 11 school staff and 5 local authority staff were…

  18. Wavelet image processing applied to optical and digital holography: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2005-08-01

    The link between wavelets and optics goes back to the work of Dennis Gabor who both invented holography and developed Gabor decompositions. Holography involves 3-D images. Gabor decompositions involves 1-D signals. Gabor decompositions are the predecessors of wavelets. Wavelet image processing of holography, both optical holography and digital holography, will be examined with respect to past achievements and future challenges.

  19. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  20. The Perceived Influence of Industry-Sponsored Credentials on the Recruitment Process in the Information Technology Industry: Employer and Employee Perspectives

    ERIC Educational Resources Information Center

    Bartlett, Kenneth R.; Horwitz, Sujin K.; Ipe, Minu; Liu, Yuwen

    2005-01-01

    The increase in the number of industry-sponsored credential programs raises many questions for career and technical education. This study investigated the perceived influence of industry-sponsored credentials on the recruitment process in the information technology (IT) field. Influence is examined from the perspective of Human Resource (HR)…

  1. Monitoring of industrial welding processes using high-speed uncooled MWIR imaging sensors

    NASA Astrophysics Data System (ADS)

    Linares, Rodrigo; Vergara, Germán.; Gutiérrez, Raul; Fernández, Carlos; Montojo, M. Teresa; Villamayor, Victor; Gómez, Luis; González, Maria; Baldasano, Arturo

    2014-05-01

    The paper is focused on the application of uncooled MWIR imaging sensors for the monitoring of industrial welding processes: resistance spot welding, resistance seam welding and laser welding. During the last 40 years, there has been little advancement in sensor systems for inline quality control monitoring of the welding process. Most of the existing systems are oriented for current, voltage and welding force monitoring. However, the temperatures reached during the majority of the welding processes lead to infrared sensing as a powerful tool, and to the MWIR band in particular as the most useful spectral band for monitoring this type of industrial processes. Infrared image information is a powerful tool to study the energy distribution in the HAZ (Heat Affected Zone). The work presents some experimental results obtained with uncooled MWIR imaging sensors, by monitoring several welding processes. These results may be applied for real-time quality assurance of the process leading to better throughputs in industrial manufacturing. The high-speed capability of the sensors used helped also to characterize the dynamics of the welding process.

  2. Influence of Cultivar and Industrial Processing on Polyphenols in Concentrated Sour Cherry (Prunus cerasus L.) Juice

    PubMed Central

    Repajić, Maja; Kovačević, Danijela Bursać; Dragović-Uzelac, Verica; Kušt, Josipa; Čošić, Zrinka; Levaj, Branka

    2015-01-01

    Summary The objective of this study is to investigate the influence of cultivar and industrial processing on total polyphenols, anthocyanins, hydroxycinnamic acids and antioxidant activity in concentrated sour cherry (Prunus cerasus L., cvs. Marasca and Oblačinska) juices. Samples were collected during four processing steps: from fresh fruit prior to processing, then from pressed, filtered and concentrated juices. The content of total phenols was the same in both cultivars, but antioxidant activity (Oblačinska>Marasca) and total monomeric anthocyanins (Marasca>Oblačinska) differed. All processing steps significantly influenced the content of total phenols, total monomeric anthocyanins and antioxidant activity. In all samples four major anthocyanins were identified by HPLC with UV/VIS PDA detector, listed in the descending order based on their abundance: cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside, cyanidin-3-sophoroside and cyanidin-3-glucoside. Marasca cv. contained more total anthocyanins, and contents of cyanidin-3-sophoroside and cyanidin-3- -glucosylrutinoside. The content of total hydroxycinnamic acids was also higher in Marasca than Oblačinska cv. After processing, the concentration of all identified anthocyanins increased in both cultivars. Majority of the highest values of polyphenols were detected in the juice after pressing. The content of polyphenols and their antioxidant activity were considerably stable during industrial processing to concentrated juice. Although Marasca had higher polyphenolic content than Oblačinska, both cultivars showed promising industrial potential for processing to concentrated juice. PMID:27904351

  3. Influence of Cultivar and Industrial Processing on Polyphenols in Concentrated Sour Cherry (Prunus cerasus L.) Juice.

    PubMed

    Repajić, Maja; Kovačević, Danijela Bursać; Putnik, Predrag; Dragović-Uzelac, Verica; Kušt, Josipa; Čošić, Zrinka; Levaj, Branka

    2015-06-01

    The objective of this study is to investigate the influence of cultivar and industrial processing on total polyphenols, anthocyanins, hydroxycinnamic acids and antioxidant activity in concentrated sour cherry (Prunus cerasus L., cvs. Marasca and Oblačinska) juices. Samples were collected during four processing steps: from fresh fruit prior to processing, then from pressed, filtered and concentrated juices. The content of total phenols was the same in both cultivars, but antioxidant activity (Oblačinska>Marasca) and total monomeric anthocyanins (Marasca>Oblačinska) differed. All processing steps significantly influenced the content of total phenols, total monomeric anthocyanins and antioxidant activity. In all samples four major anthocyanins were identified by HPLC with UV/VIS PDA detector, listed in the descending order based on their abundance: cyanidin-3-glucosylrutinoside, cyanidin-3-rutinoside, cyanidin-3-sophoroside and cyanidin-3-glucoside. Marasca cv. contained more total anthocyanins, and contents of cyanidin-3-sophoroside and cyanidin-3- -glucosylrutinoside. The content of total hydroxycinnamic acids was also higher in Marasca than Oblačinska cv. After processing, the concentration of all identified anthocyanins increased in both cultivars. Majority of the highest values of polyphenols were detected in the juice after pressing. The content of polyphenols and their antioxidant activity were considerably stable during industrial processing to concentrated juice. Although Marasca had higher polyphenolic content than Oblačinska, both cultivars showed promising industrial potential for processing to concentrated juice.

  4. The Large Laboratory Course: Organize It to Parallel Industrial Process Development.

    ERIC Educational Resources Information Center

    Eckert, Roger E.; Ybarra, Robert M.

    1988-01-01

    Describes a senior level chemical engineering course at Purdue University that parallels an industrial process development department. Stresses the course organization, manager-engineer contract, evaluation of students, course evaluation, and gives examples of course improvements made during the course. (CW)

  5. High Performance Parallel Processing Project: Industrial computing initiative. Progress reports for fiscal year 1995

    SciTech Connect

    Koniges, A.

    1996-02-09

    This project is a package of 11 individual CRADA`s plus hardware. This innovative project established a three-year multi-party collaboration that is significantly accelerating the availability of commercial massively parallel processing computing software technology to U.S. government, academic, and industrial end-users. This report contains individual presentations from nine principal investigators along with overall program information.

  6. Towards novel processes for the fine-chemical and pharmaceutical industries.

    PubMed

    Huisman, Gjalt W; Gray, David

    2002-08-01

    In response to the need in the pharmaceutical industry for more complex, chiral molecules, fine-chemical companies are embracing new manufacturing technologies to produce compounds of these specifications. In particular, recent developments in biocatalysis combined with novel process engineering are providing improved methods for the production of valuable chemical intermediates.

  7. Improvement of PNPI experimental industrial plant based on CECE process for heavy water detritiation

    SciTech Connect

    Bondarenko, S. D.; Alekseev, I. A.; Fedorchenko, O. A.; Vasyanina, T. V.; Konoplev, K. A.; Arkhipov, E. A.; Uborsky, V. V.

    2008-07-15

    An updated experimental industrial plant of PNPI for the development of CECE technology is described. Experimental results for heavy water detritiation in different operating modes are shown. The effect of pressure, temperatures and gas flow rate on the detritiation factor for the CECE process is presented. (authors)

  8. Learning in the Process of Industrial Work--A Comparative Study of Finland, Sweden and Germany

    ERIC Educational Resources Information Center

    Kira, Mari

    2007-01-01

    By combining a positivistic and an interpretive approach, this research investigates the learning opportunities that contemporary industrial work processes and workplaces offer for employees individually and collectively. The research explores how employees can become trained through their work and how individual development may expand to…

  9. Control of cell morphology of probiotic Lactobacillus acidophilus for enhanced cell stability during industrial processing.

    PubMed

    Senz, Martin; van Lengerich, Bernhard; Bader, Johannes; Stahl, Ulf

    2015-01-02

    The viability of bacteria during industrial processing is an essential quality criterion for bacterial preparations, such as probiotics and starter cultures. Therefore, producing stable microbial cultures during proliferation is of great interest. A strong correlation between the culture medium and cellular morphology was observed for the lactic acid bacterium Lactobacillus acidophilus NCFM, which is commonly used in the dairy industry as a probiotic supplement and as a starter culture. The cell shapes ranged from single short rods to long filamentous rods. The culture medium composition could control this phenomenon of pleomorphism, especially the use of peptone in combination with an adequate heating of the medium during preparation. Furthermore, we observed a correlation between the cell size and stability of the microorganisms during industrial processing steps, such as freeze-drying, extrusion encapsulation and storage following dried preparations. The results revealed that short cells are more stable than long cells during each of the industrially relevant processing steps. As demonstrated for L. acidophilus NCFM, the adaptation of the medium composition and optimized medium preparation offer the possibility to increase the concentration of viable cells during up- and survival rate during down-stream processing.

  10. Catalyst for Desulfurization of Industrial Waste Gases and Process for Preparing the Catalyst

    SciTech Connect

    Dupin, T.

    1983-12-27

    Industrial waste gases containing objectionable/polluting compounds of sulfur, e.g., H/sub 2/S, SO/sub 2/ and such organo-sulfur derivatives as COS, CS/sub 2/ and mercaptans, are catalytically desulfurized, e.g., by Claus process, employing an improved catalyst comprising titanium dioxide and calcium, barium, strontium or magnesium sulfate.

  11. Design considerations for solar industrial process heat systems: nontracking and line focus collector technologies

    SciTech Connect

    Kutscher, C.F.

    1981-03-01

    Items are listed that should be considered in each aspect of the design of a solar industrial process heat system. The collector technologies covered are flat-plate, evacuated tube, and line focus. Qualitative design considerations are stressed rather than specific design recommendations. (LEW)

  12. An Investigation of the Applicability of Modern Management Processes by Industrial Managers in Turkey.

    ERIC Educational Resources Information Center

    Lauter, Geza Peter

    This study noted American concepts of modern management which Turkish industrial managers tend to find difficult: identified cultural, economic, and other factors that impede application of modern management processes; and compared the practices of American overseas managers with those of Turkish managers of domestic firms. Managerial performance…

  13. Application of ozonation process in industrial wastewaters: textile, kraft E1 and whey effluents.

    PubMed

    Assalin, M R; Almeida, E S; Rosa, M A; Moraes, S G; Duran, N

    2004-08-01

    A large variety of organic and inorganic compounds can be found in wastewater from industrial processes. In this work, Advanced Oxidative Processes (AOPs) have been applied for the control of water pollution and the ozonation of different effluents was investigated. Wastewater from textile, kraft E1 and cheese manufacturing processes were chosen as examples of industrial effluents. The efficiency of substrate mineralization has been comparatively analyzed by the decrease in total organic carbon (TOC), color, and toxicity. The results revealed that the ozonation process can be a method for decolorization of effluent, but it is not effective for TOC reduction. The whey effluent was the most recalcitrant wastewater for ozone treatment which produced no TOC removal.

  14. Mathematical modeling of the integrated process of mercury bioremediation in the industrial bioreactor.

    PubMed

    Głuszcz, Paweł; Petera, Jerzy; Ledakowicz, Stanisław

    2011-03-01

    The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic mercury bioreduction to Hg(0) by immobilized microorganisms. Model calculations were verified using experimental data obtained during the process of industrial wastewater bioremediation in the bioreactor of 1 m³ volume. It was found that the presented model reflects the properties of the real system quite well. Numerical simulation of the bioremediation process confirmed the experimentally observed positive effect of the integration of ionic mercury adsorption and bioreduction in one apparatus.

  15. Industrial application and validation of forming simulation in the flexforming process

    NASA Astrophysics Data System (ADS)

    Leacock, Alan; Ling, Dave; Bergkvist, Mikael

    2016-08-01

    The flex-forming process is used extensively in aerospace industry for net shape forming of sheet metal structural components. Common metals used in the manufacture of these components include 7075 and 2024 aluminium alloys; usually in an as quenched condition following solution heat treatment. While the process is commonplace, the level of manual rework remains high, driven by inherent process and material variability and the lack of upfront analysis before the manufacture of tooling. A suitable process modelling method using AutoForm is presented along with an industrial validation study for the manufacture of an aerospace frame component in 7075-W aluminium alloy. The results illustrate the importance of material model accuracy and the inclusion of through thickness compressive stresses in predicting the flange springback of the component.

  16. End-use matching for solar industrial process heat. Final report

    SciTech Connect

    Brown, K.C.; Hooker, D.W.; Rabl, A.; Stadjuhar, S.A.; West, R.E.

    1980-01-01

    Because of the large energy demand of industry (37% of US demand) and the wide spectrum of temperatures at which heat is required, the industrial sector appears to be very suitable for the matching of solar thermal technology with industrial process heat (IPH) requirements. A methodology for end-use matching has been devised, complete with required data bases and an evaluation program PROSYS/ECONMAT. Six cities in the United States were selected for an analysis of solar applications to IPH. Typical process heat requirements for 70% of the industrial plants in each city were identified and evaluated in conjunction with meteorological and economic data for each site to determine lowest-cost solar systems for each application. The flexibility and scope of PROSYS/ECONMAT is shown in a variety of sensitivity studies that expand the results of the six-city analysis. Case studies of two industrial plants were performed to evaluate the end-use matching procedure; these results are reported.

  17. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect

    Saini, K. K.; Saini, Sanju

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  18. The Application of Neural Networks with Artificial Intelligence Technique in the Modeling of Industrial Processes

    NASA Astrophysics Data System (ADS)

    Saini, K. K.; Saini, Sanju

    2008-10-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can "learn," automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  19. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process.

    PubMed

    García, Carlos; Oyaneder-Terrazas, Javiera; Contreras, Cristóbal; Del Campo, Miguel; Torres, Rafael; Contreras, Héctor R

    2016-11-01

    Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg(-)(1)), toxicity can be reduced to safe levels through industrial preparation procedures.

  20. Quality assessment of baby food made of different pre-processed organic raw materials under industrial processing conditions.

    PubMed

    Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene

    2015-02-01

    The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p < 0.001). Samples processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.

  1. Safety Challenges and Oversight in the Motorcoach Industry: Attitudes and Perceptions of Drivers, Roadside Inspectors, and Federal Investigators

    PubMed Central

    Braver, Elisa R.; Dodd, Robert S.; Cheung, Ivan; Long, Lindsay O.

    2012-01-01

    Interstate motorcoach travel has been the fastest-growing transportation mode in recent years. To identify challenges to monitoring compliance with motorcoach safety regulations and to examine factors affecting safety, four focus groups with a total of 32 participants were conducted during 2011, one with federal safety investigators, one with state motor carrier inspectors, and two with motorcoach drivers. Investigators and inspectors expressed concern about falsified logbooks, inadequate sleep among motorcoach drivers, hazards from speeding motorcoaches, practices by motorcoach carriers to mask ownership and avoid oversight, and difficulties keeping up with rapid motorcoach industry growth. Drivers described problems with getting sufficient sleep, pressure to drive longer than permitted, and fears of motor carriers giving them less work if they turned down driving jobs. Drivers said that driving 72–74 mph was acceptable in light traffic. To help assess workload among personnel performing safety oversight, data on numbers of motor carriers, commercial motor vehicles, federal investigators, and state inspectors were obtained from the Federal Motor Carrier Safety Administration (FMCSA). The data suggested a heavy workload (2.13 inspectors per 1,000 commercial motor vehicles). The focus groups of inspectors, investigators, and drivers indicated the existence of serious motorcoach safety problems, provided insight about the multiple factors contributing to them, and described major obstacles to effective safety oversight. The qualitative nature of focus group research means that these notable findings will need to be measured using other methods such as surveys and observational studies. PMID:23169117

  2. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    PubMed

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling.

  3. [Revision process and thinking of emission standard of air pollutants for cement industry].

    PubMed

    Jiang, Mei; Li, Xiao-Qian; Ji, Liang; Zou, Lan; Wei, Yu-Xia; Zhao, Guo-Hua; Che, Fei; Li, Gang; Zhang, Guo-Ning

    2014-12-01

    The new National Emission Standard of Air Pollutants for Cement Industry (GB 4915-2013) was released recently, which is the third revision since the first release in 1985. This paper reviewed the revision process for the emission standard of air pollutants in cement industry, analyzed the impact of environmental protection situation and management policies changes on the content and form of the standard. The standard formulating principles and several key issues together constitute the base of emission standard, which are not only important to complete the theories and methods of emission standard development, but also important to improve the environmental management and pollution control level.

  4. Measuring Systems for Temperature Monitoring of Thermal Spraying and Combustion Processes in Industry

    NASA Astrophysics Data System (ADS)

    Senchenko, V. N.; Dozhdikov, V. S.

    2003-09-01

    Conventional optical pyrometry methods do not always yield satisfactory results in cases of temperature monitoring in complicated industrial processes. For example, measuring the temperature of heated particles in thermal plasma spraying jets requires recognizing the object being measured by solving a mathematical problem. In addition to diagnosis of the temperature of a heated gas flow based on its self-radiation, it is necessary to utilize an irradiation physical model of IR active molecules. The paper briefly describes two diagnostic systems and methods for the above-mentioned industrial application. The main details of the system design, calibration and performance are presented.

  5. Design approaches for solar industrial process-heat systems: Nontracking and line-focus collector technologies

    NASA Astrophysics Data System (ADS)

    Kutscher, C. F.; Davenport, R. L.; Dougherty, D. A.; Gee, R. C.; Masterson, P. M.; May, E. K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer generated graphs are supplied that allow the user to select a collector type. Energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start up details, economics, and safety and environmental issues are explained.

  6. Design approaches for solar industrial process-heat systems: nontracking and line-focus collector technologies

    SciTech Connect

    Kutscher, C.F.; Davenport, R.L.; Dougherty, D.A.; Gee, R.C.; Masterson, P.M.; May, E.K.

    1982-08-01

    The design methodology for solar industrial process heat systems is described, and an overview is given of the use of solar energy in industry. A way to determine whether solar energy makes sense for a particular application is described. The basic system configurations used to supply hot water or steam are discussed, and computer-generated graphs are supplied that allow the user to select a collector type. Detailed energy calculations are provided, including the effects of thermal losses and storage. The selection of subsystem components is described, and control systems, installation and start-up details, economics, and safety and environmental issues are explained. (LEW)

  7. Predicting the Future: Opportunities and Challenges for the Chemical Industry to Apply 21st-Century Toxicity Testing

    PubMed Central

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-01-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process. PMID:25836969

  8. Predicting the future: opportunities and challenges for the chemical industry to apply 21st-century toxicity testing.

    PubMed

    Settivari, Raja S; Ball, Nicholas; Murphy, Lynea; Rasoulpour, Reza; Boverhof, Darrell R; Carney, Edward W

    2015-03-01

    Interest in applying 21st-century toxicity testing tools for safety assessment of industrial chemicals is growing. Whereas conventional toxicology uses mainly animal-based, descriptive methods, a paradigm shift is emerging in which computational approaches, systems biology, high-throughput in vitro toxicity assays, and high-throughput exposure assessments are beginning to be applied to mechanism-based risk assessments in a time- and resource-efficient fashion. Here we describe recent advances in predictive safety assessment, with a focus on their strategic application to meet the changing demands of the chemical industry and its stakeholders. The opportunities to apply these new approaches is extensive and include screening of new chemicals, informing the design of safer and more sustainable chemical alternatives, filling information gaps on data-poor chemicals already in commerce, strengthening read-across methodology for categories of chemicals sharing similar modes of action, and optimizing the design of reduced-risk product formulations. Finally, we discuss how these predictive approaches dovetail with in vivo integrated testing strategies within repeated-dose regulatory toxicity studies, which are in line with 3Rs principles to refine, reduce, and replace animal testing. Strategic application of these tools is the foundation for informed and efficient safety assessment testing strategies that can be applied at all stages of the product-development process.

  9. Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch

    SciTech Connect

    Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

    1981-12-01

    An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

  10. In situ control of industrial processes using laser light scattering and optical rotation

    NASA Astrophysics Data System (ADS)

    Mendoza Sanchez, Patricia Judith; López Echevarria, Daniel; Huerta Ruelas, Jorge Adalberto

    2006-02-01

    We present results of optical measurements in products or processes usually found in industrial processes, which can be used to control them. Laser light scattering was employed during semiconductor epitaxial growth by molecular beam epitaxy. With this technique, it was possible to determine growth rate, roughness and critical temperatures related to substrate degradation. With the same scattering technique, oil degradation as function of temperature was monitored for different automotive lubricants. Clear differences can be studied between monograde and multigrade oils. Optical rotation measurements as function of temperature were performed in apple juice in a pasteurization process like. Average variations related to optical rotation dependence of sugars were measured and monitored during heating and cooling process, finding a reversible behavior. As opposite behavior, sugar-protein solution was measured in a similar heating and cooling process. Final result showed a non-reversible behavior related to protein denaturation. Potential applications are discussed for metal-mechanic, electronic, food, and pharmaceutical industry. Future improvements in optical systems to make them more portable and easily implemented under typical industry conditions are mentioned.

  11. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    NASA Astrophysics Data System (ADS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2008-11-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R&D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  12. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    SciTech Connect

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  13. Integrated process for the removal of emulsified oils from effluents in the steel industry

    SciTech Connect

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  14. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge.

    PubMed

    Wilcox, Jennifer; Haghpanah, Reza; Rupp, Erik C; He, Jiajun; Lee, Kyoungjin

    2014-01-01

    Reducing CO2 in the atmosphere and preventing its release from point-source emitters, such as coal and natural gas-fired power plants, is a global challenge measured in gigatons. Capturing CO2 at this scale will require a portfolio of gas-separation technologies to be applied over a range of applications in which the gas mixtures and operating conditions will vary. Chemical scrubbing using absorption is the current state-of-the-art technology. Considerably less attention has been given to other gas-separation technologies, including adsorption and membranes. It will take a range of creative solutions to reduce CO2 at scale, thereby slowing global warming and minimizing its potential negative environmental impacts. This review focuses on the current challenges of adsorption and membrane-separation processes. Technological advancement of these processes will lead to reduced cost, which will enable subsequent adoption for practical scaled-up application.

  15. Challenges in the characterization of plasma-processed three-dimensional polymeric scaffolds for biomedical applications.

    PubMed

    Fisher, Ellen R

    2013-10-09

    Low-temperature plasmas offer a versatile method for delivering tailored functionality to a range of materials. Despite the vast array of choices offered by plasma processing techniques, there remain a significant number of hurdles that must be overcome to allow this methodology to realize its full potential in the area of biocompatible materials. Challenges include issues associated with analytical characterization, material structure, plasma processing, and uniform composition following treatment. Specific examples and solutions are presented utilizing results from analyses of three-dimensional (3D) poly(ε-caprolactone) scaffolds treated with different plasma surface modification strategies that illustrate these challenges well. Notably, many of these strategies result in 3D scaffolds that are extremely hydrophilic and that enhance human Saos-2 osteoblast cell growth and proliferation, which are promising results for applications including tissue engineering and advanced biomedical devices.

  16. Brain signatures of artificial language processing: evidence challenging the critical period hypothesis.

    PubMed

    Friederici, Angela D; Steinhauer, Karsten; Pfeifer, Erdmut

    2002-01-08

    Adult second language learning seems to be more difficult and less efficient than first language acquisition during childhood. By using event-related brain potentials, we show that adults who learned a miniature artificial language display a similar real-time pattern of brain activation when processing this language as native speakers do when processing natural languages. Participants trained in the artificial language showed two event-related brain potential components taken to reflect early automatic and late controlled syntactic processes, whereas untrained participants did not. This result challenges the common view that late second language learners process language in a principally different way from native speakers. Our findings demonstrate that a small system of grammatical rules can be syntactically instantiated by the adult speaker in a way that strongly resembles native-speaker sentence processing.

  17. Fault detection and diagnosis in an industrial fed-batch cell culture process.

    PubMed

    Gunther, Jon C; Conner, Jeremy S; Seborg, Dale E

    2007-01-01

    A flexible process monitoring method was applied to industrial pilot plant cell culture data for the purpose of fault detection and diagnosis. Data from 23 batches, 20 normal operating conditions (NOC) and three abnormal, were available. A principal component analysis (PCA) model was constructed from 19 NOC batches, and the remaining NOC batch was used for model validation. Subsequently, the model was used to successfully detect (both offline and online) abnormal process conditions and to diagnose the root causes. This research demonstrates that data from a relatively small number of batches (approximately 20) can still be used to monitor for a wide range of process faults.

  18. Shifting post production patterns: exploring changes in New Zealand's seafood processing industry.

    PubMed

    Stringer, Christina; Simmons, Glenn; Rees, Eugene

    2011-01-01

    This paper examines the changing nature of New Zealand's seafood companies' production practices. The past 15 years has seen the offshore outsourcing of post-harvest fish gain unprecedented momentum. The growth in offshore processing is a further stage in an increasingly globalised fisheries value chain. Fish is head and gutted, frozen and then transported to processing sites in China where it is thawed, value-added processed and refrozen for export to the original sourcing country or third country markets. Reasons advanced by the industry for this shift in production practices include quota reductions, increasing production costs and the sale of trawlers.

  19. Commercial Crew Cost Estimating - A Look at Estimating Processes, Challenges and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Battle, Rick; Cole, Lance

    2015-01-01

    To support annual PPBE budgets and NASA HQ requests for cost information for commercial crew transportation to the International Space Station (ISS), the NASA ISS ACES team developed system development and per flight cost estimates for the potential providers for each annual PPBE submit from 2009-2014. This paper describes the cost estimating processes used, challenges and lessons learned to develop estimates for this key NASA project that diverted from the traditional procurement approach and used a new way of doing business

  20. Effects of achievement goals on challenge seeking and feedback processing: behavioral and FMRI evidence.

    PubMed

    Lee, Woogul; Kim, Sung-il

    2014-01-01

    We conducted behavioral and functional magnetic resonance imaging (fMRI) research to investigate the effects of two types of achievement goals--mastery goals and performance-approach goals--on challenge seeking and feedback processing. The results of the behavioral experiment indicated that mastery goals were associated with a tendency to seek challenge, both before and after experiencing difficulty during task performance, whereas performance-approach goals were related to a tendency to avoid challenge after encountering difficulty during task performance. The fMRI experiment uncovered a significant decrease in ventral striatal activity when participants received negative feedback for any task type and both forms of achievement goals. During the processing of negative feedback for the rule-finding task, performance-approach-oriented participants showed a substantial reduction in activity in the dorsolateral prefrontal cortex (DLPFC) and the frontopolar cortex, whereas mastery-oriented participants showed little change. These results suggest that performance-approach-oriented participants are less likely to either recruit control processes in response to negative feedback or focus on task-relevant information provided alongside the negative feedback. In contrast, mastery-oriented participants are more likely to modulate aversive valuations to negative feedback and focus on the constructive elements of feedback in order to attain their task goals. We conclude that performance-approach goals lead to a reluctant stance towards difficulty, while mastery goals encourage a proactive stance.

  1. Twenty-First Century Research Needs in Electrostatic Processes Applied to Industry and Medicine

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Sims, R. A.; Biris, A. S.; Srirama, P. K.; Saini, D.; Yurteri, C. U.; Trigwell, S.; De, S.; Sharma, R.

    2005-01-01

    From the early century Nobel Prize winning (1923) experiments with charged oil droplets, resulting in the discovery of the elementary electronic charge by Robert Millikan, to the early 21st century Nobel Prize (2002) awarded to John Fenn for his invention of electrospray ionization mass spectroscopy and its applications to proteomics, electrostatic processes have been successfully applied to many areas of industry and medicine. Generation, transport, deposition, separation, analysis, and control of charged particles involved in the four states of matter: solid, liquid, gas, and plasma are of interest in many industrial and biomedical processes. In this paper, we briefly discuss some of the applications and research needs involving charged particles in industrial and medical applications including: (1) Generation and deposition of unipolarly charged dry powder without the presence of ions or excessive ozone, (2) Control of tribocharging process for consistent and reliable charging, (3) Thin film (less than 25 micrometers) powder coating and Powder coating on insulative surfaces, (4) Fluidization and dispersion of fine powders, (5) Mitigation of Mars dust, (6) Effect of particle charge on the lung deposition of inhaled medical aerosols, (7) Nanoparticle deposition, and (8) Plasma/Corona discharge processes. A brief discussion on the measurements of charged particles and suggestions for research needs are also included.

  2. Solar feasibility study for site-specific industrial-process-heat applications. Final report

    SciTech Connect

    Murray, O.L.

    1980-03-18

    This study addresses the technical feasibility of solar energy in industrial process heat (IPH) applications in Mid-America. The study was one of two contracted efforts covering the MASEC 12-state region comprised of: Illinois, Michigan, North Dakota, Indiana, Minnesota, Ohio, Iowa, Missouri, South Dakota, Kansas, Nebraska, Wisconsin. The results of our study are encouraging to the potential future role of solar energy in supplying process heat to a varied range of industries and applications. We identified and developed Case Study documentation of twenty feasible solar IPH applications covering eight major SIC groups within the Mid-American region. The geographical distribution of these applications for the existing range of solar insolation levels are shown and the characteristics of the applications are summarized. The results of the study include process identification, analysis of process heat requirements, selection of preliminary solar system characteristics, and estimation of system performance and cost. These are included in each of the 20 Case Studies. The body of the report is divided into two primary discussion sections dealing with the Study Methodology employed in the effort and the Follow-On Potential of the identified applications with regard to possible demonstration projects. The 20 applications are rated with respect to their relative overall viability and procedures are discussed for possible demonstration project embarkment. Also, a possible extension of this present feasibility study for late-comer industrial firms expressing interest appears worthy of consideration.

  3. Homogeneous sonophotolysis of food processing industry wastewater: Study of synergistic effects, mineralization and toxicity removal.

    PubMed

    Durán, A; Monteagudo, J M; Sanmartín, I; Gómez, P

    2013-03-01

    The mineralization of industrial wastewater coming from food industry using an emerging homogeneous sonophotolytic oxidation process was evaluated as an alternative to or a rapid pretreatment step for conventional anaerobic digestion with the aim of considerably reducing the total treatment time. At the selected operation conditions ([H(2)O(2)]=11,750ppm, pH=8, amplitude=50%, pulse length (cycles)=1), 60% of TOC is removed after 60min and 98% after 180min when treating an industrial effluent with 2114ppm of total organic carbon (TOC). This process removed completely the toxicity generated during storing or due to intermediate compounds. An important synergistic effect between sonolysis and photolysis (H(2)O(2)/UV) was observed. Thus the sonophotolysis (ultrasound/H(2)O(2)/UV) technique significantly increases TOC removal when compared with each individual process. Finally, a preliminary economical analysis confirms that the sono-photolysis with H(2)O(2) and pretreated water is a profitable system when compared with the same process without using ultrasound waves and with no pretreatment.

  4. Low effluent processing in the pulp and paper industry: Electrodialysis for continuous selective chloride removal

    SciTech Connect

    Pfromm, P.H.

    1997-12-01

    Pollution prevention is currently a major focus of the United States pulp and paper industry. Significant process changes are inevitable to implement low effluent processing. The kraft pulping process is prevalent for the production of wood pulp. About 50 million tons of wood pulp are produced annually in the United States alone using the kraft process. Water consumption is currently roughly between 30 and 200 m{sup 3} of water per ton of air dry bleached kraft pulp. In-process recycling of water is now being implemented by many mills to reduce the use of increasingly scarce water resources and to reduce the need for waste-water treatment. Mass balance considerations and industrial experience show that nonprocess elements, which are detrimental to the kraft process, such as chloride and potassium, will quickly build up once water use is significantly reduced. High concentrations of chloride and potassium can cause corrosion and lead to more frequent mill shutdowns due to fouling of heat exchanger surfaces in the kraft recovery furnace. Electrodialysis will monovalent selective anion and cation exchange membranes was explored here to selectively remove chlorine as sodium and potassium chloride from a feed stream with very high ionic strength. Experiments with model solutions and extended tests with the actual pulp mill materials were performed. Very good selectivities and current efficiencies were observed for chloride over sulfate. The outstanding performance of the process with actual mill materials containing organic and inorganic contamination shows great promise for rapid transfer to the pilot scale. This work is an example of the usefulness of membrane separations as a kidney in low effluent industrial processing.

  5. Microstructural Development and Technical Challenges in Laser Additive Manufacturing: Case Study with a 316L Industrial Part

    NASA Astrophysics Data System (ADS)

    Marya, Manuel; Singh, Virendra; Marya, Surendar; Hascoet, Jean Yves

    2015-08-01

    Additive manufacturing (AM) brings disruptive changes to the ways parts, and products are designed, fabricated, tested, qualified, inspected, marketed, and sold. These changes introduce novel technical challenges and concerns arising from the maturity and diversity of today's AM processes, feedstock materials, and process parameter interactions. AM bears a resemblance with laser and electron beam welding in the so-called conduction mode, which involves a multitude of dynamic physical events between the projected feedstock and a moving heat source that eventually influence AM part properties. For this paper, an air vent was selected for its thin-walled, hollow, and variable cross section, and limited size. The studied air vents, randomly selected from a qualification batch, were fabricated out of 316L stainless steel using a 4 kW fiber laser powder-fed AM system, referred to as construction laser additive direct (CLAD). These were systematically characterized by microhardness indentation, visual examination, optical and scanning electron microscopy, and electron-back-scattering diffraction in order to determine AM part suitability for service and also broadly discuss metallurgical phenomena. The paper then briefly expands the discussion to include additional engineering alloys and further analyze relationships between AM process parameters and AM part properties, consistently utilizing past experience with the same powder-fed CLAD 3D printer, the well-established science and technology of welding and joining, and recent publications on additive manufacturing.

  6. Column flotation: Processes, designs and practices. Process engineering for the chemical, metals and minerals industry, Volume 2

    SciTech Connect

    Rubinstein, J.B. . Flotation Equipment and Process Engineering Dept.)

    1994-01-01

    Practically all mined ores of non-ferrous and rare metals and an increasing share of industrial minerals and coal are processed through flotation. This book presents the analysis of a wide range of problems in the process theory of flotation columns, including the first published analysis of models of flotation froths. The experience of pilot tests and commercial applications of column flotation for mineral processing and in waste water treatment circuits are also considered. This is the first book to consider column flotation design and operation experience and to present data on column parameters. Topics include: design of flotation columns; aerators in flotation columns; experimental methods of column aerohydrodynamics investigation; aerohydrodynamic characteristics of flotation columns; experimental investigation of the flotation process in columns; kinetics aspects of column flotation; scaling-up methods for flotation columns; structure and mass transfer in flotation froths; column flotation practice; and column flotation control.

  7. The challenge of implementing an IRP process in Asia: The case of Hainan Province, China

    SciTech Connect

    Hill, L.J.

    1994-12-31

    Developing a modern electric power sector is necessary for economic growth and development to proceed. Institutions to implement an IRP (integrated resource planning) process do not exist in many countries. Hainan`s economy is growing rapidly with a concomitant increase in electricity demand. This is an ideal time in Hainan`s development to implement an IRP process. The challenge is for Hainan to develop institutions and incentive mechanisms for HEPCO (Hainan Electric Power Co.) to adopt cost-based pricing, run DSM programs, construct renewable generating plants, etc. One proposal is to great a Hainan government-wide IRP committee.

  8. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  9. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  10. Solar production of industrial process steam at the Home Cleaning and Laundry Co. Final technical report

    SciTech Connect

    Not Available

    1984-06-01

    This report presents the results of the operation and performance evaluation period at the Home Laundry Solar Industrial Process Heat Project at Pasadena, California. The installation comprises 6496 ft/sup 2/ (603.5 m/sup 2/) of linear parabolic trough concentrating collectors supplying solar thermal energy for use in laundry and dry cleaning processes. The design phase began in September 1977, and an acceptance test was conducted during the week of April 12, 1982. The plant has been in operation since May 1982, with the 12-month Phase III (operational) period starting in October 1982. The objective of the operational evaluation experiment was to maximize energy delivery to the industrial participant while characterizing system performance. Data were acquired for monthly documentation of system performance, maintenance requirements, and operating costs.

  11. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    PubMed Central

    Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba

    2010-01-01

    The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407

  12. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life.

    PubMed

    Castro-Aguirre, E; Iñiguez-Franco, F; Samsudin, H; Fang, X; Auras, R

    2016-12-15

    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.

  13. Intensifying of the processes of mechanical separation of oil products from industrial waste water

    SciTech Connect

    Kostova, I.

    1995-11-01

    The raised requirements for discharge of industrial effluents in the Black Sea and in the rivers lead to the development of more efficient technologies for additional treatment and improving the existing facilities. Pollutants with concentrations which are several times higher than the admissible rates according to the Bulgarian Standards, are found at many places along the Black Sea Coast. This is due to the imperfect construction of the water treatment facilities and their improper maintenance. Oil products are one of the main pollutants in water basins. The negative influence which they have on the ecological balance comes from the fact that they are among the most difficulty and slowly dissociating organic substances. They have negative impact on the physical and chemical qualities of water and obstruct the self-purification process disrupting its biological life. In this paper the opportunity to intensify the processes of mechanical separation of oil products from industrial waste water is discussed.

  14. 1,3-butadiene in urban and industrial areas and its role in photochemical processes

    NASA Astrophysics Data System (ADS)

    Czader, Beata; Rappenglück, Bernhard

    2015-04-01

    1,3-butadiene is an important pollutant in terms of public health and important driver for photochemical processes influencing ozone formation in the area of Houston. Ambient levels of 1,3-butadiene were simulated with the Community Multiscale Air Quality model (CMAQ) including the SAPRC99-extended mechanism and the results were compared to spatially and temporally resolved observations of 1,3-butadiene for an episodic period during Summer 2006. Relative contributions of different type of emissions and chemical reactions to 1,3-butadiene concentrations were examined, the highest contribution was found to be from industrial emission sources. 1,3-butadiene mixing ratios in the urban area were found to be lower than in the industrial area. Although emissions of 1,3-butadiene peak during daytime its mixing ratios are lower during daytimes as compared to nighttime. 1,3-butadiene is removed from the surface through vertical upward transport (~90%) and chemical reactions (~10%). During daytime 1,3-butadiene reacts mainly with the OH radical (90%), during nighttime this reaction pathway is still significant in the industrial area (57% of all reaction pathways). Reaction with NO3 during nighttime contributes 33% in industrial and 56% in urban areas, where high NOx emissions occur. Reaction with ozone contributes 10% and 13% in industrial and urban areas, respectively. Analysis of measured data revealed that episodically very high emissions spikes of 1,3-butadiene occur. CMAQ often underpredicts 1,3-butadiene mixing ratios when sites are exposed to sporadic releases from industrial facilities. These releases are not accounted for in the emission inventory. It also appears that emissions of 1,3-butadiene from point sources have much more variability than those listed in the emission inventory.

  15. Visual Analysis of Residuals from Data-Based Models in Complex Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ordoñez, Daniel G.; Cuadrado, Abel A.; Díaz, Ignacio; García, Francisco J.; Díez, Alberto B.; Fuertes, Juan J.

    2012-10-01

    The use of data-based models for visualization purposes in an industrial background is discussed. Results using Self-Organizing Maps (SOM) show how through a good design of the model and a proper visualization of the residuals generated by the model itself, the behavior of essential parameters of the process can be easily tracked in a visual way. Real data from a cold rolling facility have been used to prove the advantages of these techniques.

  16. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    SciTech Connect

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias; Lee, In-Beum

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  17. Energy use patterns and environmental implications of direct-fired industrial processes. Final report 16 June-19 December 1979

    SciTech Connect

    Hoover, J.R.; Blacksmith, J.R.; Spaite, P.W.

    1980-08-01

    Energy consumption patterns and environmental impacts of direct-fired processes in the industrial sector were identified. The potential effects of fuel switching in several of these processes were determined. An extensive bibliography lists the sources consulted in this study.

  18. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    SciTech Connect

    Bennett, Bonnie; Boddy, Mark; Doyle, Frank; Jamshidi, Mo; Ogunnaike, Tunde

    2004-11-01

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement, productivity improvement, and reduction of recycle.

  19. IMPACT OF LEATHER PROCESSING INDUSTRIES ON CHROMIUM CONCENTRATION IN GROUNDWATER SOUTH OF CHENNAI CITY, INDIA

    NASA Astrophysics Data System (ADS)

    Elango, L.; Brindha, K.; G. Rajesh, V.

    2009-12-01

    The groundwater quality is under threat due to disposal of effluents from a number of industries. Poor practice of treatment of wastes from tanning industries or leather processing industries lead to pollution of groundwater. This study was carried out with the objective of assessing the impact of tanneries on groundwater quality in Chromepet area which is a part of the metropolitan area of Chennai, Tamil Nadu, India. This area serves as the home town for a number of small and large scale tanning industries. People in certain parts of this area depend on the groundwater for their domestic needs as there is no piped drinking water supply system. Topographically this region is generally flat with gentle slope towards east and north east. The charnockite rocks occur as basement at the depth of about 15m from the surface of this area. Weathered charnockite rock occurs at the depth from 7m to 15m from the ground surface. The upper layer consists of loamy soil. Groundwater occurs in the unconfined condition at a depth from 0.5m to 5m. Thirty six groundwater samples were collected during March 2008 and the groundwater samples were analysed for their heavy metal (chromium) content using atomic absorption spectrophotometer. Bureau of Indian Standards (BIS) recommended the maximum permissible limit of chromium in drinking water as 0.05 mg/l. Considering this, it was found that 86% of the groundwater samples possessed concentration of chromium above the maximum permissible limit recommended by BIS. The tanneries use chrome sulphate to strengthen the leather and make it water repellent. The excess of chromium gets washed off and remains in the wastewater. This wastewater is disposed into open uncovered drains either untreated or after partial treatment. Thus the chromium leaches through the soil and reaches the groundwater table. Apart from this, there is also huge quantity of solid waste resulting from the hides and skins which are dumped off without suitable treatment. The

  20. (Development of industrial processes for manufacturing of silicon sampling hadron calorimeters)

    SciTech Connect

    Plasil, F.; Walter, J.

    1991-01-04

    The travelers attended meetings in Dubna and in Zelenograd. Discussions in Dubna centered on (1) obtaining information on USSR capabilities in silicon detector manufacture and testing and on (2) strategy regarding the development of an industrial process and the manufacture of a large quantity of silicon detectors for the SSC L* collaboration. The ELMA plant in Zelenograd was inspected, and discussions were held on production process development and on a possible detector supply time line. In addition, J. Walter participated in technical and cost estimate forecast discussions with representatives of Wacker-Chemitronic Factory (Germany) about silicon crystals for possible use in the SSC.