Science.gov

Sample records for industry productivity energy

  1. Productivity benefits of industrial energy efficiency measures

    SciTech Connect

    Worrell, Ernst; Laitner, John A.; Michael, Ruth; Finman, Hodayah

    2004-08-30

    We review the relationship between energy efficiency improvement measures and productivity in industry. We review over 70 industrial case studies from widely available published databases, followed by an analysis of the representation of productivity benefits in energy modeling. We propose a method to include productivity benefits in the economic assessment of the potential for energy efficiency improvement. The case-study review suggests that energy efficiency investments can provide a significant boost to overall productivity within industry. If this relationship holds, the description of energy-efficient technologies as opportunities for larger productivity improvements has significant implications for conventional economic assessments. The paper explores the implications this change in perspective on the evaluation of energy-efficient technologies for a study of the iron and steel industry in the US. This examination shows that including productivity benefits explicitly in the modeling parameters would double the cost-effective potential for energy efficiency improvement, compared to an analysis excluding those benefits. We provide suggestions for future research in this important area.

  2. India's Fertilizer Industry: Productivity and Energy Efficiency

    SciTech Connect

    Schumacher, K.; Sathaye, J.

    1999-07-01

    Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

  3. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    SciTech Connect

    Selldorff, John; Atwell, Monte

    2014-09-23

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  4. Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity

    ScienceCinema

    Selldorff, John; Atwell, Monte

    2016-07-12

    Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and practices, and technologies developed and manufactured in the U.S. enable greater competitiveness economy-wide.

  5. Industrial Assessment Centers - Small Manufacturers Reduce Energy & Increase Productivity

    SciTech Connect

    2015-11-06

    Since 1976, the Industrial Assessment Centers (IACs), administered by the US Department of Energy, have supported small and medium-sized American manufacturers to reduce energy use and increase their productivity and competitiveness. The 24 IACs, located at premier engineering universities around the country (see below), send faculty and engineering students to local small and medium-sized manufacturers to provide no-cost assessments of energy use, process performance and waste and water flows. Under the direction of experienced professors, IAC engineering students analyze the manufacturer’s facilities, energy bills and energy, waste and water systems, including compressed air, motors/pumps, lighting, process heat and steam. The IACs then follow up with written energy-saving and productivity improvement recommendations, with estimates of related costs and payback periods.

  6. India's pulp and paper industry: Productivity and energy efficiency

    SciTech Connect

    Schumacher, Katja

    1999-07-01

    Historical estimates of productivity growth in India's pulp and paper sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both statistical and econometric estimates of productivity growth for this sector. Their results show that productivity declined over the observed period from 1973-74 to 1993-94 by 1.1% p.a. Using a translog specification the econometric analysis reveals that technical progress in India's pulp and paper sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protection afforded by high tariffs on imported paper products and other policies, which allowed inefficient, small plants to enter the market and flourish. Will these trends continue into the future, particularly where energy use is concerned? The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with liberalization of the sector, and tighter environmental controls, the industry is moving towards higher efficiency and productivity. However, the analysis also shows that because these improvements are being hampered by significant financial and other barriers the industry might have a long way to go.

  7. The impact of energy prices on industrial energy efficiency and productivity

    SciTech Connect

    Boyd, G.A.

    1993-11-01

    Energy prices moved into the forefront of concern in the mid and late seventies when two oil price shocks drove up energy prices dramatically. The analysis of the subsequent increase in industrial energy efficiency, i.e., decline in energy use per unit of industrial output, has filled volumes of government and private studies. Despite the volumes of analysis, there remains no consensus on the magnitude of the effect of energy prices on industrial energy efficiency or the effect of the change in energy prices on productivity. This paper examines some sources of the controversy to initiate a dialog between policy makers, analysts, and the energy consumers and producers.

  8. Energy production from food industry wastewaters using bioelectrochemical cells

    SciTech Connect

    Hamilton, Choo Yieng

    2009-01-01

    Conversion of waste and renewable resources to energy using microbial fuel cells (MFCs) is an upcoming technology for enabling a cleaner and sustainable environment. This paper assesses the energy production potential from the US food industry wastewater resource. It also reports on an experimental study investigating conversion of wastewater from a local milk dairy plant to electricity. An MFC anode biocatalyst enriched on model sugar and organic acid substrates was used as the inoculum for the dairy wastewater MFC. The tests were conducted using a two-chamber MFC with a porous three dimensional anode and a Pt/C air-cathode. Power densities up to 690 mW/m2 (54 W/m3) were obtained. Analysis of the food industry wastewater resource indicated that MFCs can potentially recover 2 to 260 kWh/ton of food processed from wastewaters generated during food processing, depending on the biological oxygen demand and volume of water used in the process. A total of 1960 MW of power can potentially be produced from US milk industry wastewaters alone. Hydrogen is an alternate form of energy that can be produced using bioelectrochemical cells. Approximately 2 to 270 m3 of hydrogen can be generated per ton of the food processed. Application of MFCs for treatment of food processing wastewaters requires further investigations into electrode design, materials, liquid flow management, proton transfer, organic loading and scale-up to enable high power densities at the larger scale. Potential for water recycle also exists, but requires careful consideration of the microbiological safety and regulatory aspects and the economic feasibility of the process.

  9. India's cement industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1999-07-01

    Historical estimates of productivity growth in India's cement sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Analysis shows that in the twenty year period, 1973 to 1993, productivity in the aluminum sector increased by 0.8% per annum. An econometric analysis reveals that technical progress in India's cement sector has been biased towards the use of energy and capital, while it has been material and labor saving. The increase in productivity was mainly driven by a period of progress between 1983 and 1991 following partial decontrol of the cement sector in 1982. The authors examine the current changes in structure and energy efficiency in the sector. Their analysis shows that the Indian cement sector is moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use. However, substantial further energy savings and carbon reduction potentials still exist.

  10. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed.

  11. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-01-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  12. Appropriate Technology, Energy and Food Production in an Industrial Arts Curriculum.

    ERIC Educational Resources Information Center

    Pytlik, Edward; Scanlin, Dennis

    1979-01-01

    With modern agriculture, the growing, processing, packaging, and distribution of food fit well into an industrial arts curriculum. Many areas of this system need closer attention: the high cost of energy in food production, the problems of land preparation, fertilizers, irrigation, food processing, and agriculture in an industrial arts curriculum.…

  13. 19 CFR 12.50 - Consumer products and industrial equipment subject to energy conservation or labeling standards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Consumer products and industrial equipment subject... MERCHANDISE Consumer Products and Industrial Equipment Subject to Energy Conservation Or Labeling Standards § 12.50 Consumer products and industrial equipment subject to energy conservation or labeling...

  14. Production, energy, and carbon emissions: A data profile of the iron and steel industry

    SciTech Connect

    Battles, S.J.; Burns, E.M.; Adler, R.K.

    1999-07-01

    The complexities of the manufacturing sector unquestionably make energy-use analysis more difficult here than in other energy-using sectors. Therefore, this paper examines only one energy-intensive industry within the manufacturing sector--blast furnaces and steel mills (SIC 3312). SIC 3312, referred to as the iron and steel industry in this paper, is profiled with an examination of the products produced, how they are produced, and energy used. Energy trends from 1985 to 1994 are presented for three major areas of analysis. The first major area includes trends in energy consumption and expenditures. The next major area includes a discussion of energy intensity--first as to its definition, and then its measurement. Energy intensities presented include the use of different (1) measures of total energy, (2) energy sources, (3) end-use energy measures, (4) energy expenditures, and (5) demand indicators-economic and physical values are used. The final area of discussion is carbon emissions. Carbon emissions arise both from energy use and from certain industrial processes involved in the making of iron and steel. This paper focuses on energy use, which is the more important of the two. Trends are examined over time.

  15. Industrial Productivity

    NASA Technical Reports Server (NTRS)

    1977-01-01

    NASTRAN is an offshoot of the computer-design technique used in construction of airplanes and spacecraft. [n this technique engineers create a mathematical model of the aeronautical or space vehicle and "fly" it on the ground by means of computer simulation. The technique enables them to study performance and structural behavior of a number of different designs before settling on the final configuration and proceeding with construction. From this base of aerospace experience, NASA-Goddard developed the NASTRAN general purpose computer program, which offers an exceptionally wide range of analytic capability with regard to structures. NASTRAN has been applied to autos, trucks, railroad cars, ships, nuclear power reactors, steam turbines, bridges, and office buildings. NASA-Langley provides program maintenance services regarded as vital by many NASTRAN users. NASTRAN is essentially a predictive tool. It takes an electronic look at a computerire$.dedgn and reports how the structure will react under a great many different conditions. It can, for example, note areas where high stress levels will occur-potential failure points that need strengthening. Conversely, it can identify over-designed areas where weight and material might be saved safely. NASTRAN can tell how pipes stand up under strong fluid flow, how metals are affected by high temperatures, how a building will fare in an earthquake or how powerful winds will cause a bridge to oscillate. NASTRAN analysis is quick and inexpensive. It minimizes trial-and-error in the design process and makes possible better, safe, lighter structures affording large-scale savings in development time and materials. Some examples of the broad utility NASTRAN is finding among industrial firms are shown on these pages.

  16. Ethics and Industrial Production

    NASA Astrophysics Data System (ADS)

    Bernard, Daniel

    The development of nanotechnology seems inevitable, for it alone would be able to solve or circumvent the huge difficulties to be faced by industrial and post-industrial societies, in both their private and their public aspects, and including the ageing population and its expectations with regard to health, the evolution of the climate, pollution, the management of food resources and raw materials, access to drinking water, control of energy production and consumption, equitable and sustainable development, etc.

  17. Industry/government collaborations on short-rotation woody crops for energy, fiber and wood products

    SciTech Connect

    Wright, L.L.; Berg, S.

    1996-12-31

    More than twenty-five organizations can be identified in the US and Canada that have research plantings of 20 ha in size or greater of short-rotation woody crops and most of those are well-established forest products companies. In 1990, only 9 forest products companies had commercial or substantial research plantings of short-rotation woody crops. The recent harvest and use of hybrid poplars for pulp and paper production in the Pacific Northwest has clearly stimulated interest in the use of genetically superior hybrid poplar clones across North America. Industry and government supported research cooperatives have been formed to develop sophisticated techniques for producing genetically superior hybrid poplars and willows suited for a variety of locations in the US. While the primary use of commercially planted short-rotation woody crops is for pulp and paper, energy is a co-product in most situations. A document defining a year 2020 technology vision for America`s forest, wood and paper industry affirms that {open_quotes}biomass will be used not only for building materials and paper and paperboard products, but also increasingly for steam, power, and liquid fuel production.{close_quotes} To accomplish the goals of {open_quotes}Agenda 2020{close_quotes} a new collaborative research effort on sustainable forestry has been initiated by the Department of Energy (DOE) and the American Forest and Paper Association (AF&PA). Both the new and old collaborative efforts are focusing on achieving substantial and sustainable gains in U.S. wood production for both energy and traditional wood products. AF&PA and DOE hope that industry and government partnerships addressing the competitiveness and energy efficiency of U.S. industries, can serve as a model for future research efforts.

  18. Strategies for reconciling environmental goals, productivity improvement, and increased energy efficiency in the industrial sector: Analytic framework

    SciTech Connect

    Boyd, G.A.

    1995-06-01

    The project is motivated by recommendations that were made by industry in a number of different forums: the Industry Workshop of the White House Conference on Climate Change, and more recently, industry consultations for EPAct Section 131(c) and Section 160(b). These recommendations were related to reconciling conflicts in environmental goals, productivity improvements and increased energy efficiency in the industrial sector.

  19. Industrial waste materials and by-products as thermal energy storage (TES) materials: A review

    NASA Astrophysics Data System (ADS)

    Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.

    2016-05-01

    A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.

  20. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  1. Energy industries abroad

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The relationships between foreign governments and energy industries in many of the world's most important energy producing and consuming nations are examined. The history of hydrocarbon exploration and production is traced and the concessionary and other contractual arrangements entered into by foreign governments and international oil companies are reviewed. Petroleum legislation that was enacted, how government institutions gradually assumed more responsibility for energy matters, and how the former concessionaires adapted to accommodate this increased government participation in the energy sector is described.

  2. India's iron and steel industry: Productivity, energy efficiency and carbon emissions

    SciTech Connect

    Schumacher, Katja; Sathaye, Jayant

    1998-10-01

    Historical estimates of productivity growth in India's iron and steel sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. The authors derive both growth accounting and econometric estimates of productivity growth for this sector. Their results show that over the observed period from 1973--74 to 1993--94 productivity declined by 1.71{percent} as indicated by the Translog index. Calculations of the Kendrick and Solow indices support this finding. Using a translog specification the econometric analysis reveals that technical progress in India's iron and steel sector has been biased towards the use of energy and material, while it has been capital and labor saving. The decline in productivity was caused largely by the protective policy regarding price and distribution of iron and steel as well as by large inefficiencies in public sector integrated steel plants. Will these trends continue into the future, particularly where energy use is concerned? Most likely they will not. The authors examine the current changes in structure and energy efficiency undergoing in the sector. Their analysis shows that with the liberalization of the iron and steel sector, the industry is rapidly moving towards world-best technology, which will result in fewer carbon emissions and more efficient energy use in existing and future plants.

  3. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  4. 76 FR 37678 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... the enclosed workspace. The fan energy use is primarily determined by the design and operating... Certain Commercial and Industrial Equipment: Proposed Determination of Commercial and Industrial Fans... Energy (DOE) proposes to determine that commercial and industrial fans, blowers, and fume hoods meet...

  5. 77 FR 35299 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Certain Commercial and Industrial Equipment: Energy Conservation Standards for Residential Water Heaters... of its recently amended energy conservation standards for residential electric water heaters on... feedback on the effects of the amended energy conservation standards for electric storage water heaters...

  6. Low-energy treatment of colourant wastes using sponge biofilters for the personal care product industry.

    PubMed

    Ahammad, S Z; Zealand, A; Dolfing, J; Mota, C; Armstrong, D V; Graham, D W

    2013-02-01

    Four trickling biofilter designs were assessed as low-energy alternatives to aerobic activated sludge (AS) for the treatment of personal care product industry wastes. The designs included partially submerged packed-media and sponge reactors with and without active aeration. Partial submergence was used to reduce active aeration needs. Simulated colourant wastes (up to COD=12,480 mg/L, TN=128 mg/L) were treated for 201 days, including wastes with elevated oxidant levels. COD and TN removal efficiencies were always >79% and >30% (even without aeration). However, aerated sponge reactors consistently had the highest removal efficiencies, especially for TN (∼60%), and were most tolerant of elevated oxidants. This study shows sponge biofilters have great potential for treating colourant wastes because they achieve high treatment efficiencies and reduce energy use by >40% relative to AS systems.

  7. 76 FR 40285 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ..., U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Building Technologies... Product AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy. ACTION: Notice of.... Department of Energy, Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue,...

  8. Poultry Industry Energy Research

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The poultry industry, a multi-billion dollar business in the United States, uses great amounts of energy in such operations as broiler growing, feed manufacturing, poultry processing and packing. Higher costs and limited supply of fuels common to the industry are predicted, so poultry producers are seeking ways to reduce energy expenditure. NASA is providing assistance to Delmarva Poultry Industry, Inc., an association of some 4,000 growers and suppliers in one of the nation's largest poultry production areas. Delmarva is the East Coast peninsula that includes Delaware and parts of Maryland and Virginia. The upper right photo shows a weather station in the Delmarva area (wind indicator on the pole, other instruments in the elevated box). The station is located at the University of Maryland's Broiler Sub-station, Salisbury; Maryland, where the university conducts research on poultry production and processing. The sub-station is investigating ways of conserving energy in broiler production and also exploring the potential of solar collectors as an alternative energy source. For these studies, it is essential that researchers have continuous data on temperature, pressure, wind speed and direction, solar intensity and cloud cover. Equipment to acquire such data was loaned and installed by NASA's Wallops Flight Center, Wallops Island, Virginia.

  9. 76 FR 34914 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Certain Commercial and Industrial Equipment: Proposed Determination of Set-Top Boxes and Network Equipment... tentatively that set-top boxes and network equipment qualify as a covered product under Part A of Title III of... network equipment meet the criteria for covered products because classifying products of such type...

  10. The insurance and risk management industries: new players in thedelivery of energy-efficient and renewable energy products andservices

    SciTech Connect

    Mills, Evan

    2001-11-26

    The insurance industry is typically considered to have little concern about energy issues. However, the historical involvement by insurers and allied industries in the development and deployment of familiar loss-prevention technologies such as automobile air bags, fire prevention/suppression systems, and anti-theft devices, shows that this industry has a tradition of utilizing technology to improve safety and otherwise reduce the likelihood of losses for which they would otherwise have to pay. Through an examination of the connection between risk management and energy efficiency, we have identified nearly 80 examples of energy-efficient and renewable energy technologies that offer''loss-prevention'' benefits, and have mapped these opportunities onto the appropriate segments of the very diverse insurance sector (life, health,property, liability, business interruption, etc.). Some insurers and risk managers are beginning to recognize these previously un-noticed benefits.This paper presents the business case for insurer involvement in energy efficiency and documents case studies of insurer efforts along these lines. We review steps taken by 52 forward-looking insurers and reinsurers, 5 brokers, and 7 insurance organizations, and 13non-insurance organizations in the energy-efficiency arena. The approaches can be grouped into the categories of: information, education,and demonstration; financial incentives; specialized policies and products; direct investment to promote energy efficiency and renewables; value-added customer services and inspections; efficient codes,standards, and policies; research and development; and in-house energy management in insurer-owned properties. Specific examples include reduced premiums for architects and engineers who practice building commissioning(reduces risk of property loss and liability-related claims), insurer promotion of improved indoor air quality practices (mitigating life,health, and liability risks), and insurer promotion of

  11. 76 FR 56125 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ... proposed rulemaking (NOPR) in the Federal Register (76 FR 43941) which proposed amendments to DOE's... Industrial Equipment: Energy Conservation Standards for Direct Heating Equipment AGENCY: Office of Energy... rulemaking for direct heating equipment is extended to October 14, 2011. ] DATES: DOE will accept...

  12. 77 FR 49701 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... to estimating the FFC energy and emission impacts of alternative energy conservation standards levels... / Friday, August 17, 2012 / Rules and Regulations#0;#0; ] DEPARTMENT OF ENERGY 10 CFR Parts 430 and 431 RIN 1904-AC24 Energy Conservation Program for Consumer Products and Certain Commercial and...

  13. 77 FR 17364 - Inadmissibility of Consumer Products and Industrial Equipment Noncompliant With Applicable Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ... and industrial equipment deemed noncompliant with the Energy Policy and Conservation Act of 1975 (EPCA... FTC that identifies merchandise as noncompliant with applicable EPCA requirements. In lieu of... regulation, if adopted, will implement the mandate of the EPCA, as amended, to preclude admission into...

  14. Energy conservation in industry

    SciTech Connect

    Strub, A.S.; Ehringer, H.

    1984-01-01

    This book discusses combustion and heat recovery, engines and batteries, and applications and technologies. Some of the topics covered include: energy-saving technologies; heat exchangers, fluidized bed exchangers, industrial heat pumps; fluidized bed combustion; waste heat recovery; orc machines and cascading; engines and flywheels; new types of engines; advanced batteries; fuel cell; chemical industry and catalysis; metallurgy; textile industry; food industry; microwave applications; and cement and glass ceramic industry.

  15. Conversion of bioprocess ethanol to industrial chemical products - Applications of process models for energy-economic assessments

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ingham, John D.

    1992-01-01

    An assessment approach for accurate evaluation of bioprocesses for large-scale production of industrial chemicals is presented. Detailed energy-economic assessments of a potential esterification process were performed, where ethanol vapor in the presence of water from a bioreactor is catalytically converted to ethyl acetate. Results show that such processes are likely to become more competitive as the cost of substrates decreases relative to petrolium costs. A commercial ASPEN process simulation provided a reasonably consistent comparison with energy economics calculated using JPL developed software. Detailed evaluations of the sensitivity of production cost to material costs and annual production rates are discussed.

  16. New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report

    SciTech Connect

    Ray, W. Harmon

    2002-06-05

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

  17. 76 FR 51281 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... to expand the energy use and emissions information made available to consumers. Specifically, DOE... greenhouse gas (GHG) emissions of specific products to enable consumers to make cross-class comparisons of... (referred to herein as ``Notice'' or ``NOPP'') (75 FR 51423), the U.S. Department of Energy (DOE)...

  18. Ohio Aluminum Industries: Compressed air system improvement project saves energy and improves product quality

    SciTech Connect

    None, None

    2003-11-01

    In 2001, Ohio Aluminum Industries implemented the first phase of a compressed air system improvement project at its Cleveland, Ohio, plant. By completing this phase, the plant stabilized the system's pressure and improved its performance. Furthermore, it yielded annual energy savings of 716,000 kilowatt-hours and $73,200. The total cost for the project's first phase was $83,500, making the simple payback slightly more than 1 year.

  19. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  20. Where are the Industrial Technologies in Energy-Economy Models? An Innovative CGE Approach for Steel Production in Germany

    SciTech Connect

    Schumacher, Katja; Sands, Ronald D.

    2007-07-01

    Top-down computable general equilibrium models are used extensively for analysis of energy and climate policies. Energy-intensive industries are usually represented in top-down economic models as abstract economic production functions, of the constant-elasticity-of-substitution (CES) functional form. This study explores methods for improving the realism of energy-intensive industries in top-down economic models. We replace the CES production function with a set of specific technologies and provide a comparison between the traditional production function approach in CGE models and an approach with separate technologies for making iron and steel. In particular, we investigate the response of the iron and steel sector to a set of carbon price scenarios. Our technology-based, integrated approach permits a choice between several technologies for producing iron and steel and allows for shifts in technology characteristics over time towards best practice, innovative technologies. In addition, the general equilibrium framework allows us to analyze interactions between production sectors, for example between electricity generation and iron and steel production, investigate simultaneous economy-wide reactions and capture the main driving forces of greenhouse gas emissions reductions under a climate policy.

  1. Supporting industries energy and environmental profile

    SciTech Connect

    None, None

    2005-09-21

    As part of its Industries of the Future strategy, the Industrial Technologies Program within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy works with energy-intensive industries to improve efficiency, reduce waste, and increase productivity. These seven Industries of the Future (IOFs) – aluminum, chemicals, forest products, glass, metal casting, mining, and steel – rely on several other so-called “supporting industries” to supply materials and processes necessary to the products that the IOFs create. The supporting industries, in many cases, also provide great opportunities for realizing energy efficiency gains in IOF processes.

  2. Metal casting industry of the future: An integrated approach to delivering energy efficiency products and services

    SciTech Connect

    1998-12-01

    The Industries of the Future process is driven by industry. Through technology roadmaps, industry participants set technology priorities, assess the progress of R and D, and ultimately lead the way in applying research results. This approach to private-public partnerships ensures the most strategic allocation possible of limited resources for the development of new technologies and the enhancement of industrial processes. Based on industry`s request, OIT`s role is to help facilitate the Industries of the Future strategy and to support the development and deployment of technologies that will shape the future of the metal casting industry. Part of this role is to encourage industry to undertake long-term, sector-wide technology planning and to selectively cost-share with OIT in collaborative R and D activities that match OIT`s mission. OIT metal casting research requires a dollar for dollar industry cost share.

  3. Forest Products Industry Technology Roadmap

    SciTech Connect

    none,

    2010-04-01

    This document describes the forest products industry's research and development priorities. The original technology roadmap published by the industry in 1999 and was most recently updated in April 2010.

  4. Industrial energy performance indicator reports

    SciTech Connect

    Munroe, V.

    1999-07-01

    The mandate for this work originated in December, 1996, when a joint meeting of federal and provincial Ministers of Energy and Environment, in addressing their responsibility to provide leadership on the Greenhouse Gases/Climate Change agenda, endorsed the following statement ({number{underscore}sign}13 of 45 initiatives launches at that time): Industrial establishments will be provided with a confidential benchmarking report on their energy efficiency progress, including how they compare to national and international averages for their sector. Information will also be provided on energy management best practices in their industries. The goal of the initiative is to use information provided on the state of energy practice to prompt, motivate, and induce companies to implement further energy efficiency measures. And one premise underlying it is that useful guidance on the state of energy practice in a company can be obtained from existing data sources, primarily the Industrial Consumption of Energy (ICE) survey and the Annual Survey of Manufacturers (ASM), both products of Statistics Canada. In addition, there are existing surveys which include energy consumption that are undertaken by associations such as the Canadian Portland Cement Association, the Canadian Chemical Producers Association, the Canadian Pulp and Paper Association, etc. Since the commitment was made, Natural Resources Canada staff have undertaken a large amount of investigative and developmental work which will be presented. Existing data from three sectors, pulp, cement and fluid milk, has been analyzed and will be delivered with draft context and energy efficiency guidance notes to the management of about 100 establishments. The author will also be able to report on how this information was received by these managers, and on the recommendations that will have been collected from industry on the more specific nature and frequency of industrial energy performance reporting desired.

  5. 75 FR 51423 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... Adopting Full-Fuel-Cycle Analyses Into Energy Conservation Standards Program AGENCY: Office of Energy..., DOE proposes to use full-fuel-cycle (FFC) measures of energy and greenhouse gas (GHG) emissions... Policy for Full-Fuel-Cycle Analysis Docket No. EERE-2010-BT-NOA-0028 and/or RIN 1904-AC24,...

  6. 78 FR 20832 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... for Water Closets and Urinals,'' for water closets and urinals. 63 FR 13308 (March 18, 1998). Since... operate. 77 FR at 31748 (May 30, 2012). In other words, by certifying a given pairing of water closet bowl... and Industrial Equipment: Test Procedures for Showerheads, Faucets, Water Closets, Urinals,...

  7. 77 FR 31742 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... results that less accurately measure the water use of urinals during a representative average use cycle... Commercial and Industrial Equipment: Test Procedures for Showerheads, Faucets, Water Closets, Urinals, and..., faucets, water closets, and urinals. Specifically, DOE proposes to incorporate by reference the...

  8. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  9. Mass, energy and material balances of SRF production process. Part 1: SRF produced from commercial and industrial waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-08-01

    This paper presents the mass, energy and material balances of a solid recovered fuel (SRF) production process. The SRF is produced from commercial and industrial waste (C&IW) through mechanical treatment (MT). In this work various streams of material produced in SRF production process are analyzed for their proximate and ultimate analysis. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. Here mass balance describes the overall mass flow of input waste material in the various output streams, whereas material balance describes the mass flow of components of input waste stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. A commercial scale experimental campaign was conducted on an MT waste sorting plant to produce SRF from C&IW. All the process streams (input and output) produced in this MT plant were sampled and treated according to the CEN standard methods for SRF: EN 15442 and EN 15443. The results from the mass balance of SRF production process showed that of the total input C&IW material to MT waste sorting plant, 62% was recovered in the form of SRF, 4% as ferrous metal, 1% as non-ferrous metal and 21% was sorted out as reject material, 11.6% as fine fraction, and 0.4% as heavy fraction. The energy flow balance in various process streams of this SRF production process showed that of the total input energy content of C&IW to MT plant, 75% energy was recovered in the form of SRF, 20% belonged to the reject material stream and rest 5% belonged with the streams of fine fraction and heavy fraction. In the material balances, mass fractions of plastic (soft), plastic (hard), paper and cardboard and wood recovered in the SRF stream were 88%, 70%, 72% and 60% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC), rubber material and non

  10. Industrial energy-efficiency-improvement program

    SciTech Connect

    Not Available

    1980-12-01

    Progress made by industry toward attaining the voluntary 1980 energy efficiency improvement targets is reported. The mandatory reporting population has been expanded from ten original industries to include ten additional non-targeted industries and all corporations using over one trillion Btu's annually in any manufacturing industry. The ten most energy intensive industries have been involved in the reporting program since the signing of the Energy Policy and Conservation Act and as industrial energy efficiency improvement overview, based primarily on information from these industries (chemicals and allied products; primary metal industry; petroleum and coal products; stone, clay, and glass products; paper and allied products; food and kindred products; fabricated metal products; transportation equipment; machinery, except electrical; and textile mill products), is presented. Reports from industries, now required to report, are included for rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products. Additional data from voluntary submissions are included for American Gas Association; American Hotel and Motel Association; General Telephone and Electronics Corporation; and American Telephone and Telegraph Company. (MCW)

  11. 78 FR 26711 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Register (78 FR 20832) to propose amendments to its May 2012 notice of proposed rulemaking related to test..., Urinals and Commercial Prerinse Spray Valves AGENCY: Office of Energy Efficiency and Renewable Energy... test procedures for showerheads, faucets, water closets, urinals and commercial prerinse spray...

  12. 78 FR 62970 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ...)) EPCA states that the test procedure for measuring the flow rate for commercial prerinse spray valves... spray valves at 10 CFR 431.264. 71 FR 71340. DOE last amended test procedures for showerheads, faucets... Commercial Prerinse Spray Valves AGENCY: Office of Energy Efficiency and Renewable Energy, Department...

  13. 75 FR 22031 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-effective from a national perspective. The national net present value (NPV) from standards could be as much... energy savings as a result of energy conservation standards for HID lamps. DOE presents the results of... conducted an initial LCC analysis to estimate the net financial benefit to users from the increased...

  14. Recombinant organisms for production of industrial products

    PubMed Central

    Adrio, Jose-Luis

    2010-01-01

    A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products. PMID:21326937

  15. Biohydrogen production from industrial wastewaters.

    PubMed

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  16. 78 FR 48821 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... determination relating to computers, published on July 12, 2013 (78 FR 41873), is extended. Comments are due... Energy, Building Technologies Program, Mailstop EE-2J, Proposed Determination for Computers, EERE-2013-BT... submit one signed paper original. Hand Delivery/Courier: Ms. Brenda Edwards, U.S. Department of...

  17. 78 FR 48821 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ..., 2013 (78 FR 41868) is extended. Comments are due September 12, 2013. ADDRESSES: Any comments submitted... message. Mail: Ms. Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE...., Washington, DC 20585-0121. Phone: (202) 586-2945. Please submit one signed paper original. Hand...

  18. 75 FR 37975 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... concludes that standards would be cost-effective from a national perspective. The national net present value... as appropriate. \\11\\ Shipment projections presented in National Energy Savings/ Net Present Value... report, and DOE found the value consistent with other lighting rules. 75 FR 22031, 22037 (April 27,...

  19. 78 FR 8998 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    .... Telephone: (202) 586- 7796. Email: Elizabeth.Kohl@hq.doe.gov . SUPPLEMENTARY INFORMATION: On December 31, 2012, the Department of Energy (DOE) published in the Federal Register (77 FR 76972) a notice of...: Jim.Raba@ee.doe.gov . In the Office of General Counsel, contact Ms. Elizabeth Kohl, U.S. Department...

  20. 78 FR 40388 - Inadmissibility of Consumer Products and Industrial Equipment Noncompliant With Applicable Energy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... FR 17364) a proposal to amend part 12 of title 19 of the Code of Federal Regulations (19 CFR Part 12... release such products for such purpose. 77 FR 17365. In addition, as noted in Sec. 12.50(d), conditionally... (77 FR 17364) on March 26, 2012. This final rule also includes non-substantive editorial changes...

  1. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications

    DOE PAGES

    Hu, Michael Z.; Zhu, Ting

    2015-12-04

    This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.

  2. Mining Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2007-07-01

    The Industrial Technologies Program (ITP) relies on analytical studies to identify large energy reduction opportunities in energy-intensive industries and uses these results to guide its R&D portfolio. The energy bandwidth illustrates the total energy-saving opportunity that exists in the industry if the current processes are improved by implementing more energy-efficient practices and by using advanced technologies. This bandwidth analysis report was conducted to assist the ITP Mining R&D program in identifying energy-saving opportunities in coal, metals, and mineral mining. These opportunities were analyzed in key mining processes of blasting, dewatering, drilling, digging, ventilation, materials handling, crushing, grinding, and separations.

  3. The role of thermal energy storage in industrial energy conservation

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1979-01-01

    Thermal Energy Storage for Industrial Applications is a major thrust of the Department of Energy's Thermal Energy Storage Program. Utilizing Thermal Energy Storage (TES) with process or reject heat recovery systems is shown to be extremely beneficial for several applications. Recent system studies resulting from contracts awarded by the Department of Energy (DOE) identified four especially significant industries where TES appears attractive - food processing, paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near term TES systems for these industries is over 9,000,000 bbl of oil. This savings is due to recuperation and storage in the food processing industry, direct fuel substitution in the paper and pulp industry and reduction in electric utility peak fuel use through inplant production of electricity from utilization of reject heat in the steel and cement industries.

  4. The energy efficient industrialized housing research program

    SciTech Connect

    Brown, G.Z.

    1990-01-01

    The United states housing industry is undergoing a metamorphosis from hand built to factory built products. Virtually all new housing incorporates manufactured components; indeed, an increasing percentage is totally assembled in a factory. The factory-built process offers the promise of houses that are more energy efficient, of higher quality, and less costly. To ensure that this promise can be met, the US industry must begin to develop and use new technologies, new design strategies, and new industrial processes. However, the current fragmentation of the industry makes research by individual companies prohibitively expensive, and retards innovation. This research program addresses the need to increase the energy efficiency of industrialized housing. Two research centers have responsibility for the program: the Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. The two organizations provide complementary architectural, systems engineering, and industrial engineering capabilities. In 1989 we worked on these tasks: the formation of a steering committee; the development of a multiyear research plan; analysis of the US industrialized housing industry; assessment of foreign technology; assessment of industrial applications; analysis of computerized design and evaluation tools; and assessment of energy performance of baseline and advanced industrialized housing concepts. Our goal is to develop techniques to produce marketable industrialized housing that is 25% more energy efficient that the most stringent US residential codes now require, and that costs less. Energy efficiency is the focus of the research, but it is viewed in the context of production and design. 63 refs.

  5. Steel Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2004-10-01

    ITP conducted a study on energy use and potential savings, or "bandwidth" study, in major steelmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results based on the 2nd law of thermodynamics. The Steel Industry Energy Bandwidth Study (PDF 133 KB) also estimates steel industry energy use in the year 2010, and uses that value as a basis for comparison against the minimum requirements. This energy savings opportunity for 2010 will aid focus on longer term R&D.

  6. Industrial energy conservation technology

    SciTech Connect

    Schmidt, P.S.; Williams, M.A.

    1980-01-01

    A separate abstract was prepared for each of the 60 papers included in this volume, all of which will appear in Energy Research Abstracts (ERA); 21 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  7. Industrial Energy Conservation Technology

    SciTech Connect

    Not Available

    1980-01-01

    A separate abstract was prepared for each of the 55 papers presented in this volume, all of which will appear in Energy Research Abstracts (ERA); 18 were selected for Energy Abstracts for Policy Analysis (EAPA). (MCW)

  8. Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry

    SciTech Connect

    1999-02-01

    The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

  9. Energy Production Systems. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in energy production systems is one of 15 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  10. Coal conversion products Industrial applications

    NASA Technical Reports Server (NTRS)

    Warren, D.; Dunkin, J.

    1980-01-01

    The synfuels economic evaluation model was utilized to analyze cost and product economics of the TVA coal conversion facilities. It is concluded that; (1) moderate yearly future escalations ( 6%) in current natural gas prices will result in medium-Btu gas becoming competitive with natural gas at the plant boundary; (2) utilizing DRI price projections, the alternate synfuel products, except for electricity, will be competitive with their counterparts; (3) central site fuel cell generation of electricity, utilizing MBG, is economically less attractive than the other synthetic fuels, given projected price rises in electricity produced by other means; and (4) because of estimated northern Alabama synfuels market demands, existing conventional fuels, infrastructure and industrial synfuels retrofit problems, a diversity of transportable synfuels products should be produced by the conversion facility.

  11. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Mazwell, L.; Roland, J.; Swart, W. )

    1989-12-01

    This document describes the research work completed in five areas in fiscal year 1989. (1) The analysis of the US industrialized housing industry includes statistics, definitions, a case study, and a code analysis. (2) The assessment of foreign technology reviews the current status of design, manufacturing, marketing, and installation of industrialized housing primarily in Sweden and Japan. (3) Assessment of industrialization applications reviews housing production by climate zone, has a cost and energy comparison of Swedish and US housing, and discusses future manufacturing processes and emerging components. (4) The state of computer use in the industry is described and a prototype design tool is discussed. (5) Side by side testing of industrialized housing systems is discussed.

  12. The US textile industry: An energy perspective

    SciTech Connect

    Badin, J. S.; Lowitt, H. E.

    1988-01-01

    This report investigates the state of the US textile industry in terms of energy consumption and conservation. Specific objectives were: To update and verify energy and materials consumption data at the various process levels in 1984; to determine the potential energy savings attainable with current (1984), state-of-the-art, and future production practices and technologies (2010); and to identify new areas of research and development opportunity that will enable these potential future savings to be achieved. Results of this study concluded that in the year 2010, there is a potential to save between 34% and 53% of the energy used in current production practices, dependent on the projected technology mix. RandD needs and opportunities were identified for the industry in three categories: process modification, basic research, and improved housekeeping practices that reduce energy consumption. Potential RandD candidates for DOE involvement with the private sector were assessed and selected from the identified list.

  13. A review of energy use in the food industry

    SciTech Connect

    Drescher, S.; Rao, N.; Kozak, J.; Okos, M.

    1997-07-01

    The US food and kindred products industry of Standard Industry Code (SIC) 20 plays a vital role in the US economy and in foreign trade due to its large size, growth, and diverse products. The objective of this study was to conduct a review of the energy use and trends in the food industry, the fifth largest user of energy within the SIC 20 sector. Energy use in the food industry is examined by cost of fuels and electricity in all SIC 20 industries, energy use by fuel type in the top SIC 20 energy consuming industries. Examination of energy use in the food industries reveals energy intensive industries that may have the most incentive to reduce energy costs by implementing energy efficient processing methods. Wet corn milling is the most energy intensive industry in the SIC 20 sector with a 15% share of the total energy used. The beet sugar industry is second in energy use (7%), while soybean oil mills, malt beverage, and meat packing plants take about 5% each of the total energy use in this sector. In order to determine which processes in an individual plant are energy intensive or inefficient, energy analyses must be performed. Processes and unit operations in the food industry vary in complexity and energy consumption. In this report, processes are defined as procedures using one or more unit operations. The most energy consuming processes and unit operations in each SIC sector are presented. Process heating and cooling was the most energy consuming process in the food industry taking up 44.6% of the total energy input. Boiler losses accounted for an average of about 22% of energy inputs. Wet corn milling, soybean oil milling, and the dairy industry are industries that have many opportunities for energy conservation and waste minimization. These industries are illustrated and opportunities for improvements discussed.

  14. Industrial Crafts (Production.) Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for an industrial crafts course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  15. Combining total energy and energy industrial center concepts to increase utilization efficiency of geothermal energy

    NASA Technical Reports Server (NTRS)

    Bayliss, B. P.

    1974-01-01

    Integrating energy production and energy consumption to produce a total energy system within an energy industrial center which would result in more power production from a given energy source and less pollution of the environment is discussed. Strong governmental support would be required for the crash drilling program necessary to implement these concepts. Cooperation among the federal agencies, power producers, and private industry would be essential in avoiding redundant and fruitless projects, and in exploiting most efficiently our geothermal resources.

  16. The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage.

    PubMed

    Zhang, Qiang; Huang, Jia-Qi; Qian, Wei-Zhong; Zhang, Ying-Ying; Wei, Fei

    2013-04-22

    The innovation on the low dimensional nanomaterials brings the rapid growth of nano community. Developing the controllable production and commercial applications of nanomaterials for sustainable society is highly concerned. Herein, carbon nanotubes (CNTs) with sp(2) carbon bonding, excellent mechanical, electrical, thermal, as well as transport properties are selected as model nanomaterials to demonstrate the road of nanomaterials towards industry. The engineering principles of the mass production and recent progress in the area of CNT purification and dispersion are described, as well as its bulk application for nanocomposites and energy storage. The environmental, health, and safety considerations of CNTs, and recent progress in CNT commercialization are also included. With the effort from the CNT industry during the past 10 years, the price of multi-walled CNTs have decreased from 45 000 to 100 $ kg(-1) and the productivity increased to several hundred tons per year for commercial applications in Li ion battery and nanocomposites. When the prices of CNTs decrease to 10 $ kg(-1) , their applications as composites and conductive fillers at a million ton scale can be anticipated, replacing conventional carbon black fillers. Compared with traditional bulk chemicals, the controllable synthesis and applications of CNTs on a million ton scale are still far from being achieved due to the challenges in production, purification, dispersion, and commercial application. The basic knowledge of growth mechanisms, efficient and controllable routes for CNT production, the environmental and safety issues, and the commercialization models are still inadequate. The gap between the basic scientific research and industrial development should be bridged by multidisciplinary research for the rapid growth of CNT nano-industry. PMID:23580370

  17. Emerging energy-efficient industrial technologies

    SciTech Connect

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing

  18. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  19. Benchmarks for industrial energy efficiency

    SciTech Connect

    Amarnath, K.R.; Kumana, J.D.; Shah, J.V.

    1996-12-31

    What are the standards for improving energy efficiency for industries such as petroleum refining, chemicals, and glass manufacture? How can different industries in emerging markets and developing accelerate the pace of improvements? This paper discusses several case studies and experiences relating to this subject emphasizing the use of energy efficiency benchmarks. Two important benchmarks are discussed. The first is based on a track record of outstanding performers in the related industry segment; the second benchmark is based on site specific factors. Using energy use reduction targets or benchmarks, projects have been implemented in Mexico, Poland, India, Venezuela, Brazil, China, Thailand, Malaysia, Republic of South Africa and Russia. Improvements identified through these projects include a variety of recommendations. The use of oxy-fuel and electric furnaces in the glass industry in Poland; reconfiguration of process heat recovery systems for refineries in China, Malaysia, and Russia; recycling and reuse of process wastewater in Republic of South Africa; cogeneration plant in Venezuela. The paper will discuss three case studies of efforts undertaken in emerging market countries to improve energy efficiency.

  20. Can industry afford solar energy

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Bezdek, R.

    1983-03-01

    Falling oil prices and conservation measures have reduced the economic impetus to develop new energy sources, thus decreasing the urgency for bringing solar conversion technologies to commercial readiness at an early date. However, the capability for solar to deliver thermal energy for industrial uses is proven. A year-round operation would be three times as effective as home heating, which is necessary only part of the year. Flat plate, parabolic trough, and solar tower power plant demonstration projects, though uneconomically operated, have revealed engineering factors necessary for successful use of solar-derived heat for industrial applications. Areas of concern have been categorized as technology comparisons, load temperatures, plant size, location, end-use, backup requirements, and storage costs. Tax incentives have, however, supported home heating and not industrial uses, and government subsidies have historically gone to conventional energy sources. Tax credit programs which could lead to a 20% market penetration by solar energy in the industrial sector by the year 2000 are presented.

  1. Energy saver for industrial lighting

    NASA Technical Reports Server (NTRS)

    Arline, J.; Lapalme, J.; Warren, C.

    1980-01-01

    Electronic controller switches lights on or off in response to amount of sunlight available. Is application in offices and industrial installations where electrical energy is wasted by using artificial light in sunlit areas. Device utilizes electronic monitor that varies artificial lighting according to amount of sunlight in given area.

  2. Establishment of a mammalian cell line suitable for industrial production of recombinant protein using mutations induced by high-energy beam radiation.

    PubMed

    Chida, Yasuhito; Takagi, Keiichi; Terada, Satoshi

    2013-12-01

    Mammalian cells are extensively used for production of biopharmaceuticals. Most cells used in industry have infinite proliferative capacity, which provides a high number of cells and corresponding productivity. However, infinite cells will continue to multiply even after cell density reaches sufficient levels. This excess proliferation aggravates the culture environment and induces low productivity. Therefore, after cell density reaches sufficient levels, downregulation of proliferation would prevent such aggravation and extend the culture period and improve productivity. To realize such suitable proliferation, we aimed to establish a novel cell line whose proliferation was spontaneously downregulated after reaching a sufficient population level. Mutagenesis using high-energy beam irradiation was used. CHO-DP12 cells were irradiated with 2.5 Gy X-rays and screened with hydroxyurea and 5-fluorouracil to eliminate any cells multiplying after confluence and to concentrate desired mutants. One clone was established and named CHO-M1. Cell cycle analysis indicated that CHO-M1 cells had a similar cell cycle profile in the exponential growth phase, but cells rapidly accumulated in G1 phase just before confluence and did not progress through the cell cycle. This suggested that until confluence, proliferation of CHO-M1 was similar to parental CHO, but after confluence, it was inhibited and under G1 arrest. The specific antibody production rate of CHO-M1 was kept high, even after confluence, while that of parental CHO was drastically decreased in stationary phase. These results suggest that the desired cell line was successfully established and that high-energy beam irradiation could be an efficient mutagenic technique for breeding industrial cells.

  3. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  4. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    PubMed Central

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of annual cash flows and minimum biogas and ethanol selling prices (MBSP and MESP). Results Producing biogas, heat and power from chopped hemp has the highest overall energy efficiency, 84% of the theoretical maximum (based on lower heating values), providing that the maximum capacity of district heat is delivered. The combined production of ethanol, biogas, heat and power has the highest energy efficiency (49%) if district heat is not produced. Neither the inclusion of steam pretreatment nor co-production with ethanol has a large impact on the MBSP. Ethanol is more expensive to produce than biogas is, but this is compensated for by its higher market price. None of the scenarios examined are economically viable, since the MBSP (EUR 103–128 per MWh) is higher than the market price of biogas (EUR 67 per MWh). The largest contribution to the cost is the cost of feedstock. Decreasing the retention time in the biogas process for low solids streams by partly replacing continuous stirred tank reactors by high-rate bioreactors decreases the MBSP. Also, recycling part of the liquid from the effluent from anaerobic digestion decreases the MBSP. The production and prices of methane and ethanol influence the process economics more than the production and prices of electricity and district heat. Conclusions To reduce the production cost of ethanol and biogas from biomass, the use of feedstocks that are cheaper than hemp, give higher output of ethanol and biogas, or combined production with

  5. Setting the Standard for Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

    2007-06-01

    Industrial motor-driven systems use more than 2194 billionkWh annually on a global basis and offer one of the largest opportunitiesfor energy savings.1 The International Energy Agency estimates thatoptimization of motor driven systems could reduce global electricitydemand by 7 percent through the application of commercially availabletechnologies and using well-tested engineering practices. Yet manyindustrial firms remain either unaware of or unable to achieve theseenergy savings. The same factors that make it so challenging to achieveand sustain energy efficiency in motor-driven systems (complexity,frequent changes) apply to the production processes that they support.Yet production processes typically operate within a narrow band ofacceptable performance. These processes are frequently incorporated intoISO 9000/14000 quality and environmental management systems, whichrequire regular, independent audits to maintain ISO certification, anattractive value for international trade. It is our contention that acritical step in achieving and sustaining energy efficiency ofmotor-driven systems specifically, and industrial energy efficiencygenerally, is the adoption of a corporate energy management standard thatis consistent with current industrial quality and environmentalmanagement systems such as ISO. Several energy management standardscurrently exist (US, Denmark, Ireland, Sweden) and specifications(Germany, Netherlands) others are planned (China, Spain, Brazil, Korea).This paper presents the current status of energy management standardsdevelopment internationally, including an analysis of their sharedfeatures and differences, in terms of content, promulgation, andimplementation. The purpose of the analysis is to describe the currentstate of "best practices" for this emerging area of energy efficiencypolicymaking and tosuggest next steps toward the creation of a trulyinternational energy management standard that is consistent with the ISOprinciples of measurement

  6. Applications of fusion thermal energy to industrial processes

    SciTech Connect

    Bowman, R. M.; Jody, B. J.; Lu, K. C.

    1980-01-01

    The feasibility of applying fusion thermal energy as process heat in the iron-steel industry, petrochemical industry, cement industry, and in the production of acetylene fom coal via calcium carbide are discussed. These four industries were selected for analysis because they require massive amounts of energy. This preliminary study concludes that the production of synthetic fuels using fusion heat appears to be the most promising method of storing and transporting this heat. Of the four industries studied, the iron-steel and the petrochemical industries appear to be the most promising because they consume substantial amounts of hydrogen and oxygen as feedstocks. These can be produced from water using the high-temperature fusion heat. The production of hydrogen and oxygen using fusion heat will also reduce the capital investment required for these industries. These two industries also consume tremendous amounts of heat at temperatures which can be delivered from a fusion blanket via chemical heat pipes.

  7. Product stewardship in the composites industry

    NASA Technical Reports Server (NTRS)

    Aldrich, Donald C.; Merriman, Edmund A.

    1994-01-01

    The definition and purpose of Product Stewardship is discussed. Its' impact in the composites industry is stated. The report also outlines 12 ways that Product Stewardship can be utilized by consumers.

  8. New trends in industrial energy efficiency in the Mexico iron and steel industry

    SciTech Connect

    Ozawa, Leticia; Martin, Nathan; Worrell, Ernst; Price, Lynn; Sheinbaum, Claudia

    1999-07-31

    Energy use in the Mexican industrial sector experienced important changes in the last decade related to changes in the Mexican economy. In previous studies, we have shown that a real change in energy-intensity was the most important factor in the overall decline of energy use and CO2 emissions in the Mexican industrial sector. Real changes in energy intensity were explained by different factors, depending on the industrial sub-sector. In this paper, we analyze the factors that influenced energy use in the Mexican iron and steel industry, the largest energy consuming and energy-intensive industry in the country. To understand the trends in this industry we used a decomposition analysis based on physical indicators to decompose the changes in intra-sectoral structural changes and efficiency improvements. Also, we use a structure-efficiency analysis for international comparisons, considering industrial structure and the best available technology. In 1995, Mexican iron and steel industry consumed 17.7 percent of the industrial energy consumption. Between 1970 and 1995, the steel production has increased with an annual growth rate of 4.7 percent, while the specific energy consumption (SEC) has decreased from 28.4 to 23.8 GJ/tonne of crude steel. This reduction was due to energy efficiency improvements (disappearance of the open hearth production, increase of the share of the continuous casting) and to structural changes as well (increase of the share of scrap input in the steelmaking).

  9. Production Methods in Industrial Microbiology.

    ERIC Educational Resources Information Center

    Gaden, Elmer L., Jr.

    1981-01-01

    Compares two methods (batch and continuous) in which microorganisms are used to produce industrial chemicals. Describes batch and continuous stirred-tank reactors and offers reasons why the batch method may be preferred. (JN)

  10. Characterizing emerging industrial technologies in energy models

    SciTech Connect

    Laitner, John A.; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

    2003-07-29

    Conservation supply curves are a common tool in economic analysis. As such, they provide an important opportunity to include a non-linear representation of technology and technological change in economy-wide models. Because supply curves are closely related to production isoquants, we explore the possibility of using bottom-up technology assessments to inform top-down representations of energy models of the U.S. economy. Based on a recent report by LBNL and ACEEE on emerging industrial technologies within the United States, we have constructed a supply curve for 54 such technologies for the year 2015. Each of the selected technologies has been assessed with respect to energy efficiency characteristics, likely energy savings by 2015, economics, and environmental performance, as well as needs for further development or implementation of the technology. The technical potential for primary energy savings of the 54 identified technologies is equal to 3.54 Quads, or 8.4 percent of the assume d2015 industrial energy consumption. Based on the supply curve, assuming a discount rate of 15 percent and 2015 prices as forecasted in the Annual Energy Outlook2002, we estimate the economic potential to be 2.66 Quads - or 6.3 percent of the assumed forecast consumption for 2015. In addition, we further estimate how much these industrial technologies might contribute to standard reference case projections, and how much additional energy savings might be available assuming a different mix of policies and incentives. Finally, we review the prospects for integrating the findings of this and similar studies into standard economic models. Although further work needs to be completed to provide the necessary link between supply curves and production isoquants, it is hoped that this link will be a useful starting point for discussion with developers of energy-economic models.

  11. Energy Sources (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for an energy sources course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  12. Industrial Energy Efficiency and Climate Change Mitigation

    SciTech Connect

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  13. Restructuring the energy industry: A financial perspective

    SciTech Connect

    Abrams, W.A.

    1995-12-31

    This paper present eight tables summarizing financial aspects of energy industry restructuring. Historical, current, and future business characteristics of energy industries are outlined. Projections of industry characteristics are listed for the next five years and for the 21st century. Future independent power procedures related to financial aspects are also outlined. 8 tabs.

  14. Conservation in the energy industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The basic energy supply and utilization problems faced by the United States were described. Actions which might alleviate the domestic shortfall of petroleum and natural gas are described, analyzed and overall impacts are assessed. Specific actions included are coal gasification, in situ shale oil production, improved oil and gas recovery, importation of liquid natural gas and deregulation of natural gas prices. These actions are weighed against each other as alternate techniques of alleviating or overcoming existing shortfalls.

  15. Our Finished Product--Industry's Raw Product

    ERIC Educational Resources Information Center

    Johnson, L. Myron

    1978-01-01

    Comparing students in agribusiness sales, supply, and service courses to raw products in need of development, the author discusses the backgrounds of these students and their developing maturity through supervised occupational experience. (BM)

  16. Industrial production of RHIC magnets

    SciTech Connect

    Anerella, M.D.; Fisher, D.H.; Sheedy, E.; McGuire, T.

    1996-07-01

    RHIC 8 cm aperture dipole magnets and quadrupole cold masses are being built for Brookhaven National Laboratory (BNL) by Northrop Grumman Corporation at a production rate of one dipole magnet and two quadrupole cold masses per day. This work was preceded by a lengthy Technology Transfer effort which is described elsewhere. This paper describes the tooling which is being used for the construction effort, the production operations at each workstation, and also the use of trend plots of critical construction parameters as a tool for monitoring performance in production. A report on the improvements to production labor since the start of the programs is also provided. The magnet and cold mass designs, and magnetic test results are described in more detail in a separate paper.

  17. Fermentation products and their industrial use

    SciTech Connect

    Lefebvre, G.; Arlie, J.P.

    1982-01-01

    A review on the tonnage of production of various industrial chemicals, their methods of synthesis, and the possibilities of the fermentative method being competitive with the synthetic method is given.

  18. Renewable energy: Energy from agricultural products

    NASA Astrophysics Data System (ADS)

    1984-06-01

    Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production. Wider applications will require either government incentives or genetic engineering of crops and improve efficiencies in conversion processes to lower costs.

  19. A Partnership between a Midwest Community College and the Highly Regulated Power Production Industry: A Case Study Regarding the Development of an Energy Production Technology Program

    ERIC Educational Resources Information Center

    Flowers, Kenneth W.

    2015-01-01

    With nearly every industry predicting severe employee shortages, the available worker pipeline, including the employed, may need to upgrade their skills. In addition, the number of jobs available will soon exceed the number of available workers, even if all the workers were skilled. This study investigated the perceptions held by key individuals…

  20. Energy efficiency programs and policies in the industrial sector in industrialized countries

    SciTech Connect

    Galitsky, Christina; Price, Lynn; Worrell, Ernst

    2004-06-01

    About 37% of the primary energy consumed both in the U.S. and globally is used by the industrial sector. A variety of energy efficiency policies and programs have been implemented throughout the world in an effort to improve the energy efficiency of this sector. This report provides an overview of these policies and programs in twelve industrialized nations and the European Union (EU). We focus on energy efficiency products and services that are available to industrial consumers, such as reports, guidebooks, case studies, fact sheets, profiles, tools, demonstrations, roadmaps and benchmarking. We also focus on the mechanisms to communicate the availability and features of these products and services and to disseminate them to the industrial consumers who can use them. Communication channels include customer information centers and websites, conferences and trade shows, workshops and other training mechanisms, financial assistance programs, negotiated agreements, newsletters, publicity, assessments, tax and subsidy schemes and working groups. In total, over 30 types of industrial sector energy efficiency products, services and delivery channels have been identified in the countries studied. Overall, we found that the United States has a large variety of programs and offers industry a number of supporting programs for improving industrial energy efficiency. However, there are some products and services found in other industrialized countries that are not currently used in the U.S., including benchmarking programs, demonstration of commercialized technologies and provision of energy awareness promotion materials to companies. Delivery mechanisms found in other industrialized countries that are not employed in the U.S. include negotiated agreements, public disclosure and national-level tax abatement for energy-efficient technologies.

  1. Analyzing industrial energy use through ordinary least squares regression models

    NASA Astrophysics Data System (ADS)

    Golden, Allyson Katherine

    Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and

  2. Energy implications of product leasing.

    PubMed

    Intlekofer, Koji; Bras, Bert; Ferguson, Mark

    2010-06-15

    A growing number of advocates have argued that leasing is a "greener" form of business transactions than selling. Leasing internalizes the costs of process wastes and product disposal, placing the burden on the OEMs, who gain from reducing these costs. Product leasing results in closed material loops, promotes remanufacturing or recycling, and sometimes leads to shorter life cycles. This paper provides two case studies to quantitatively test these claims for two distinct product categories. Life cycle optimization and scenario analysis are applied, respectively, to the household appliance and computer industries to determine the effect that life spans have on energy usage and to what extent leasing the product versus selling it may influence the usage life span. The results show that products with high use impacts and improving technology can benefit from reduced life cycles (achieved through product leases), whereas products with high manufacturing impacts and no improving technology do not.

  3. Industrial application of geothermal energy in southeast Idaho

    NASA Astrophysics Data System (ADS)

    Batdorf, J. A.; McClain, D. W.; Gross, M.; Simmons, G. M.

    1980-02-01

    The main industries in Southeastern Idaho are phosphorus/ phosphate production and potato processing. Most of the energy required in the phosphate industries is electrical and therefore not replaceable by direct application of geothermal energy. The main area for direct use of geothermal energy in the phosphate industry is for drying of the ore at the mine site; however, most of this is energy now supplied by waste heat from the calcining process. There exists a large need for a dedicated supply of electrical energy to these industries and the possibility of using geothermal energy to generate electricity for these areas should be investigated. The potato processing industry uses most of its energy to provide process steam for drying and cooking. Geothermal energy can potentially replace most of these energy requirements provided a high energy source temperature can be located. A 200 F geothermal source could supply about 40% of the industry's needs. A 400 F geothermal source could supply nearly 90% of the industry's needs.

  4. Current and future industrial energy service characterizations

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  5. Energy and the English Industrial Revolution.

    PubMed

    Wrigley, E A

    2013-03-13

    Societies before the Industrial Revolution were dependent on the annual cycle of plant photosynthesis for both heat and mechanical energy. The quantity of energy available each year was therefore limited, and economic growth was necessarily constrained. In the Industrial Revolution, energy usage increased massively and output rose accordingly. The energy source continued to be plant photosynthesis, but accumulated over a geological age in the form of coal. This poses a problem for the future. Fossil fuels are a depleting stock, whereas in pre-industrial time the energy source, though limited, was renewed each year.

  6. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This report discusses the major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10 percent of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10 percent mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; and improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  7. Renewable energy: energy from agricultural products

    SciTech Connect

    Not Available

    1984-06-01

    This study discusses major issues concerning fuels derived from agricultural products. Agricultural products, particularly sugarcane and corn, are currently meeting major energy needs in Florida. Recent figures indicate that about 10% of the gasoline sold in Florida is ethanol enriched. This gasohol contains a 10% mix of ethanol, which is generally produced from corn or sugarcane molasses. Sugarcane residues (bagasse) also supply most of the fuel to power Florida's large sugar processing industry. These products have the potential to play an expanded role in Florida's energy future. Principle areas of interest are: Growing crops such as napier grass or harvesting water hyacinths to produce methane that can be substituted for natural gas; expanded use of sugar, starch, and industrial and agricultural wastes as raw materials for ethanol production; improved efficiency in conversion processes such as anaerobic digestion and fermentation. The Institute of Food and Agricultural Sciences at the University of Florida plays a leading national role in energy crops research, while Walt Disney World is using a demonstration project to convert water hyacinths into methane. Increased use of fuels produced from agricultural products depends largely on their costs compared to other fuels. Ethanol is currently attractive because of federal and state tax incentives. The growth potential of ethanol and methane is enhanced by the ease with which they can be blended with fossil fuels and thereby utilize the current energy distribution system. Neither ethanol nor methane appear able to compete in the free market for mass distribution at present, although studies indicate that genetic engineering and more efficient conversion processes may lower prices to cost effective levels. These fuels will be most cost effective in cases where waste products are utilized and the fuel is used close to the site of production.

  8. Forest Products Industry of the Future

    SciTech Connect

    Los Alamos Technical Associates, Inc

    2002-05-01

    Los Alamos Technical Associates, Inc (LATA) conducted an evaluation of the potential impact and value of a portion of the current portfolio of r&d projects supported by the Office of Industrial Technology and the Forest Products Industry of the Future. The mission of the evaluation was to (a) assess the potential impact of the projects to meet the critical goals of the industry as identified in the vision and roadmapping documents. (b) Evaluate the relationship between the current portfolio of projects and the Agenda 202 Implementation Plan. In addition, evaluate the relationship between the portfolio and the newly revised draft technology strategy being created by the industry. (c) Identify areas where current efforts are making significant progress towards meeting industry goals and identify areas where additional work my be required to meet these goals. (d) Make recommendations to the DOE and the Forest Products Industry on possible improvements in the portfolio and in the current methodology that DOE uses to assess potential impacts on its R&D activities.

  9. Energy Efficiency Improvement in the Petroleum RefiningIndustry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina

    2005-05-01

    Information has proven to be an important barrier inindustrial energy efficiency improvement. Voluntary government programsaim to assist industry to improve energy efficiency by supplyinginformation on opportunities. ENERGY STAR(R) supports the development ofstrong strategic corporate energy management programs, by providingenergy management information tools and strategies. This paper summarizesENERGY STAR research conducted to develop an Energy Guide for thePetroleum Refining industry. Petroleum refining in the United States isthe largest in the world, providing inputs to virtually every economicsector, including the transport sector and the chemical industry.Refineries spend typically 50 percent of the cash operating costs (e.g.,excluding capital costs and depreciation) on energy, making energy amajor cost factor and also an important opportunity for cost reduction.The petroleum refining industry consumes about 3.1 Quads of primaryenergy, making it the single largest industrial energy user in the UnitedStates. Typically, refineries can economically improve energy efficiencyby 20 percent. The findings suggest that given available resources andtechnology, there are substantial opportunities to reduce energyconsumption cost-effectively in the petroleum refining industry whilemaintaining the quality of the products manufactured.

  10. Measuring industrial energy efficiency: Physical volume versus economic value

    SciTech Connect

    Freeman, S.L.; Niefer, M.J.; Roop, J.M.

    1996-12-01

    This report examines several different measures of industrial output for use in constructing estimates of industrial energy efficiency and discusses some reasons for differences between the measures. Estimates of volume-based measures of output, as well as 3 value-based measures of output (value of production, value of shipments, and value added), are evaluated for 15 separate 4-digit industries. Volatility, simple growth rate, and trend growth rate estimates are made for each industry and each measure of output. Correlations are made between the volume- and value-based measures of output. Historical energy use data are collected for 5 of the industries for making energy- intensity estimates. Growth rates in energy use, energy intensity, and correlations between volume- and value-based measures of energy intensity are computed. There is large variability in growth trend estimates both long term and from year to year. While there is a high correlation between volume- and value-based measures of output for a few industries, typically the correlation is low, and this is exacerbated for estimates of energy intensity. Analysis revealed reasons for these low correlations. It appears that substantial work must be done before reliable measures of trends in the energy efficiency of industry can be accurately characterized.

  11. Industrial energy systems and assessment opportunities

    NASA Astrophysics Data System (ADS)

    Barringer, Frank Leonard, III

    Industrial energy assessments are performed primarily to increase energy system efficiency and reduce energy costs in industrial facilities. The most common energy systems are lighting, compressed air, steam, process heating, HVAC, pumping, and fan systems, and these systems are described in this document. ASME has produced energy assessment standards for four energy systems, and these systems include compressed air, steam, process heating, and pumping systems. ASHRAE has produced an energy assessment standard for HVAC systems. Software tools for energy systems were developed for the DOE, and there are software tools for almost all of the most common energy systems. The software tools are AIRMaster+ and LogTool for compressed air systems, SSAT and 3E Plus for steam systems, PHAST and 3E Plus for process heating systems, eQUEST for HVAC systems, PSAT for pumping systems, and FSAT for fan systems. The recommended assessment procedures described in this thesis are used to set up an energy assessment for an industrial facility, collect energy system data, and analyze the energy system data. The assessment recommendations (ARs) are opportunities to increase efficiency and reduce energy consumption for energy systems. A set of recommended assessment procedures and recommended assessment opportunities are presented for each of the most common energy systems. There are many assessment opportunities for industrial facilities, and this thesis describes forty-three ARs for the seven different energy systems. There are seven ARs for lighting systems, ten ARs for compressed air systems, eight ARs for boiler and steam systems, four ARs for process heating systems, six ARs for HVAC systems, and four ARs for both pumping and fan systems. Based on a history of past assessments, average potential energy savings and typical implementation costs are shared in this thesis for most ARs. Implementing these ARs will increase efficiency and reduce energy consumption for energy systems in

  12. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  13. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  14. Energy use and energy intensity of the U.S. chemical industry

    SciTech Connect

    Worrell, E.; Phylipsen, D.; Einstein, D.; Martin, N.

    2000-04-01

    The U.S. chemical industry is the largest in the world, and responsible for about 11% of the U.S. industrial production measured as value added. It consumes approximately 20% of total industrial energy consumption in the U.S. (1994), and contributes in similar proportions to U.S. greenhouse gas emissions. Surprisingly, there is not much information on energy use and energy intensity in the chemical industry available in the public domain. This report provides detailed information on energy use and energy intensity for the major groups of energy-intensive chemical products. Ethylene production is the major product in terms of production volume of the petrochemical industry. The petrochemical industry (SIC 2869) produces a wide variety of products. However, most energy is used for a small number of intermediate compounds, of which ethylene is the most important one. Based on a detailed assessment we estimate fuel use for ethylene manufacture at 520 PJ (LHV), excluding feedstock use. Energy intensity is estimated at 26 GJ/tonne ethylene (LHV), excluding feedstocks.The nitrogenous fertilizer production is a very energy intensive industry, producing a variety of fertilizers and other nitrogen-compounds. Ammonia is the most important intermediate chemical compound, used as basis for almost all products. Fuel use is estimated at 268 PJ (excluding feedstocks) while 368 PJ natural gas is used as feedstock. Electricity consumption is estimated at 14 PJ. We estimate the energy intensity of ammonia manufacture at 39.3 GJ/tonne (including feedstocks, HHV) and 140 kWh/tonne, resulting in a specific primary energy consumption of 40.9 GJ/tonne (HHV), equivalent to 37.1 GJ/tonne (LHV). Excluding natural gas use for feedstocks the primary energy consumption is estimated at 16.7 GJ/tonne (LHV). The third most important product from an energy perspective is the production of chlorine and caustic soda. Chlorine is produced through electrolysis of a salt-solution. Chlorine production is

  15. GELCASTING: From laboratory development toward industrial production

    SciTech Connect

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  16. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; Mc Donald, M.; McGinn, B.; Ryan, P.; Sekiguchi, T. . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1989-01-01

    This is the second volume of a two volume report on energy efficient industrialized housing. Volume II contains support documentation for Volume I. The following items are included: individual trip reports; software bibliography; industry contacts in the US, Denmark, and Japan; Cost comparison of industrialized housing in the US and Denmark; draft of the final report on the systems analysis for Fleetwood Mobile Home Manufacturers. (SM)

  17. Energy and materials flows in the copper industry

    SciTech Connect

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  18. Plant Profiles - Industrial Energy Management in Action

    SciTech Connect

    2001-02-01

    This 24-page brochure profiles industrial manufacturing firms who are achieving significant energy savings in their plants. The DOE Office of Industrial Technologies six plant-of-the-year nominees are featured, and an additional 10 projects from other companies are also highlighted. Information on OIT's awards and recognition process, and information on OIT and BestPractices is also included.

  19. Industrial Energy in Transition: A Petrochemical Perspective

    ERIC Educational Resources Information Center

    Wishart, Ronald S.

    1978-01-01

    An industrial development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municiple wastes to produce steam for electricity generation. These gases may also serve as chemical feedstocks. (Author/MA)

  20. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products. PMID:26776601

  1. Oil industry waste: a potential feedstock for biodiesel production.

    PubMed

    Abbas, Javeria; Hussain, Sabir; Iqbal, Muhammad Javid; Nadeem, Habibullah; Qasim, Muhammad; Hina, Saadia; Hafeez, Farhan

    2016-08-01

    The worldwide rising energy demands and the concerns about the sustainability of fossil fuels have led to the search for some low-cost renewable fuels. In this scenario, the production of biodiesel from various vegetable and animal sources has attracted worldwide attention. The present study was conducted to evaluate the production of biodiesel from the oil industry waste following base-catalysed transesterification. The transesterification reaction gave a yield of 83.7% by 6:1 methanol/oil molar ratio, at 60°C over 80 min of reaction time in the presence of NaOH. The gas chromatographic analysis of the product showed the presence of 16 fatty acid methyl esters with linoleic and oleic acid as principal components representing about 31% and 20.7% of the total methyl esters, respectively. The fourier transform infrared spectroscopy spectrum of oil industry waste and transesterified product further confirmed the formation of methyl esters. Furthermore, the fuel properties of oil industry waste methyl esters, such as kinematic viscosity, cetane number, cloud point, pour point, flash point, acid value, sulphur content, cold filter plugging point, copper strip corrosion, density, oxidative stability, higher heating values, ash content, water content, methanol content and total glycerol content, were determined and discussed in the light of ASTM D6751 and EN 14214 biodiesel standards. Overall, this study presents the production of biodiesel from the oil industry waste as an approach of recycling this waste into value-added products.

  2. The emerging open market customer. Market-smart consumers, new suppliers, and new products will combine to shape the ``new energy industry``

    SciTech Connect

    Gellings, C.; Gudger, K.

    1998-07-01

    Americans spend $780 billion annually on non-transportation energy--only a third of which comprises traditional energy utilities` revenue. Through a confluence of emerging technologies, growing consumer awareness, and a changing regulatory framework, one is witnessing the creation of the Open Market Customer. This article defines the Open Market Customer, considers how consumers and suppliers will interact, and suggests some of the dramatic results that could emerge as a result. The paper gives an historical perspective on the electric energy business, defines the open market customer and the industry which serves them, and discusses customer considerations in the open marketplace, customer expectation for demand-pull and supply-push, and ten ideas about the future.

  3. Energy efficient industrialized housing research program

    SciTech Connect

    Berg, R.; Brown, G.Z.; Finrow, J.; Kellett, R.; McDonald, M.; McGinn, B.; Ryan, P.; Sekiguchi, Tomoko . Center for Housing Innovation); Chandra, S.; Elshennawy, A.K.; Fairey, P.; Harrison, J.; Maxwell, L.; Roland, J.; Swart, W. )

    1990-02-01

    This report summarizes three documents: Multiyear Research Plan, Volume I FY 1989 Task Reports, and Volume II Appendices. These documents describe tasks that were undertaken from November 1988 to December 1989, the first year of the project. Those tasks were: (1) the formation of a steering committee, (2) the development of a multiyear research plan, (3) analysis of the US industrialized housing industry, (4) assessment of foreign technology, (5) assessment of industrial applications, (6) analysis of computerized design and evaluation tools, and (7) assessment of energy performance of baseline and advanced industrialized housing concepts. While this document summarizes information developed in each task area, it doesn't review task by task, as Volume I FY 1989 Task Reports does, but rather treats the subject of energy efficient industrialized housing as a whole to give the reader a more coherent view. 7 figs., 9 refs.

  4. Studies in energy retrofit: Industrial

    SciTech Connect

    Sangesland, O.E.

    1986-03-01

    At a time when many U.S. companies have relaxed efforts to conserve energy, the Grumman Corporation not only remains committed to an energy program launched in 1973, but it is also projecting significant gains into the next century on top of already substantial savings. Grumman estimates that despite a 29 percent increase in plant and office space during the 13 yr period through 1985, the company has slashed $74 million from its utility bill and reduced its energy consumption per sq ft of facility space by 29 percent. It expects to raise that amount to 40 percent by 1990 and to 50 percent by the century's end.

  5. Human Settlements, Energy, and Industry

    SciTech Connect

    Scott, Michael J.; Gupta, Sujata; Jauregui, Ernesto; Nwafor, James; Satterthwaite, David; Wanasinghe, Yapa; Wilbanks, Thomas; Yoshino, Masatoshi; Kelkar, Ulka

    2001-01-15

    Human settlements are integrators of many of the climate impacts initially felt in other sectors, and differ from each other in geographic location, size, economic circumstances, and political and social capacity. The most wide-spread serious potential impact is flooding and landslides, followed by tropical cyclones. A growing literature suggests that a very wide variety of settlements in nearly every climate zone may be affected, although the specific evidence is still very limited. Settlements with little economic diversification and where a high percentage of incomes derive from climate sensitive primary resource industries (agriculture, forestry and fisheries) are more sensitive than more diversified settlements

  6. Energy and materials flows in the iron and steel industry

    SciTech Connect

    Sparrow, F.T.

    1983-06-01

    Past energy-consumption trends and future energy-conservation opportunities are investigated for the nation's iron and steel industry. It is estimated that, in 1980, the industry directly consumed approximately 2.46 x 10/sup 15/ Btu of energy (roughly 3% of total US energy consumption) to produce 111 million tons of raw steel and to ship 84 million tons of steel products. Direct plus indirect consumption is estimated to be about 3.1 x 10/sup 15/ Btu. Of the set of conservation technologies identified, most are judged to be ready for commercialization if and when the industry's capital formation and profitability problems are solved and the gradual predicted increase in energy prices reduces the payback periods to acceptable levels.

  7. Economical Recovery of By-products in the Mining Industry

    SciTech Connect

    Berry, J.B.

    2001-12-05

    The U.S. Department of Energy (DOE) Office of Industrial Technologies, Mining Industry of the Future Program, works with the mining industry to further the industry's advances toward environmental and economic goals. Two of these goals are (1) responsible emission and by-product management and (2) low-cost and efficient production (DOE 1998). DOE formed an alliance with the National Mining Association (NMA) to strengthen the basis for research projects conducted to benefit the mining industry. NMA and industry representatives actively participate in this alliance by evaluating project proposals and by recommending research project selection to DOE. Similarly, the National Research Council (NRC) has recently and independently recommended research and technology development opportunities in the mining industry (NRC 2001). The Oak Ridge National Laboratory (ORNL) and Colorado School of Mines engineers conducted one such project for DOE regarding by -product recovery from mining process residue. The results of this project include this report on mining industry process residue and waste with opportunity for by-product recovery. The U.S. mineral processing industry produces over 30,000,000 metric tons per year of process residue and waste that may contain hazardous species as well as valuable by-products. This study evaluates the copper, lead, and zinc commodity sectors which generate between 23,300,000 and 24,000,000 metric tons per year. The distribution of residual elements in process residues and wastes varies over wide ranges* because of variations in the original ore content as it is extracted from the earth's crust. In the earth's crust, the elements of interest to mining fall into two general geochemical classifications, lithophiles and chalcophiles** (Cox 1997). Groups of elements are almost always present together in a given geochemical classification, but the relative amounts of each element are unique to a particular ore body. This paper generally describes

  8. Industrial Arts Curriculum Guide for Alternative Energy.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational and Adult Education.

    This curriculum guide for alternative energy courses is part of a series of curriculum guides for use in the industrial arts curriculum in Connecticut. The guide contains two parts. Part 1 provides the following overview: (1) objectives of alternative energy education, including suggestions for course levels, class sizes, teaching methods, and…

  9. Solar energy for industrial process heat

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  10. Material and Energy Productivity

    PubMed Central

    2011-01-01

    Resource productivity, measured as GDP output per resource input, is a widespread sustainability indicator combining economic and environmental information. Resource productivity is ubiquitous, from the IPAT identity to the analysis of dematerialization trends and policy goals. High resource productivity is interpreted as the sign of a resource-efficient, and hence more sustainable, economy. Its inverse, resource intensity (resource per GDP) has the reverse behavior, with higher values indicating environmentally inefficient economies. In this study, we investigate the global systematic relationship between material, energy and carbon productivities, and economic activity. We demonstrate that different types of materials and energy exhibit fundamentally different behaviors, depending on their international income elasticities of consumption. Biomass is completely inelastic, whereas fossil fuels tend to scale proportionally with income. Total materials or energy, as aggregates, have intermediate behavior, depending on the share of fossil fuels and other elastic resources. We show that a small inelastic share is sufficient for the total resource productivity to be significantly correlated with income. Our analysis calls into question the interpretation of resource productivity as a sustainability indicator. We conclude with suggestions for potential alternatives. PMID:21210661

  11. Energy Industry Powers CTE Program

    ERIC Educational Resources Information Center

    Khokhar, Amy

    2012-01-01

    Michael Fields is a recent graduate of Buckeye Union High School in Buckeye, Arizona. Fields is enrolled in the Estrella Mountain Community College (EMCC) Get Into Energy program, which means he is well on his way to a promising career. Specializing in power plant technology, in two years he will earn a certificate that will all but guarantee a…

  12. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  13. Production of gaseous radiotracers for industrial applications.

    PubMed

    Sharma, V K; Pant, H J; Goswami, Sunil; Jagadeesan, K C; Anand, S; Chitra, S; Rana, Y S; Sharma, Archana; Singh, Tej; Gujar, H G; Dash, Ashutosh

    2016-10-01

    This paper describes prerequisite tests, analysis and the procedure for irradiation of gaseous targets and production of gaseous radioisotopes i.e. argon-41 ((41)Ar) and krypton-79 ((79)Kr) in a 100MWTh DHRUVA reactor located at Bhabha Atomic Research Center (BARC), Trombay, Mumbai, India. The produced radioisotopes will be used as radiotracers for tracing gas phase in industrial process systems. Various details and prequalification tests required for irradiation of gaseous targets are discussed. The procedure for regular production of (41)Ar and (79)Kr, and assay of their activity were standardized. Theoretically estimated and experimentally produced amounts of activities of the two radioisotopes, irradiated at identical conditions, were compared and found to be in good agreement. Based on the various tests, radiological safety analysis and standardization of the irradiation procedure, necessary approval was obtained from the competent reactor operating and safety authorities for regular production of gaseous radiotracers in DHRUVA reactor. PMID:27518216

  14. Potential environmental effects of energy conservation measures in northwest industries

    SciTech Connect

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  15. Plastic Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for a plastic technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  16. Wood Technology (Production). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Claus, Robert; And Others

    This course guide for a wood technology course is one of four developed for the production area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--energy/power and graphic communications.) Part 1 provides such introductory information as a definition and…

  17. Energy Savings from Industrial Water Reductions

    SciTech Connect

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  18. Energy conservation in ethylene production

    SciTech Connect

    Kobayashi, N.

    1983-10-01

    The petrochemical industry is one of the most important industries and is of critical importance to the steel industry, petroleum refining industry and other heavy-and-chemical industries. These heavy-andchemical industries are the basis of the driving and growing force of the Japanese economic progress. And these industries consume a large amount of material and energy. Last year, the Chiba Plant won a commendation for being an excellent energy-controlling plant by the Chief of Resources and Energy Office. It was the first commendation among the many ethylene units. In light of this, the authors have prepared a review of the efforts in the field of saving energy in ethylene unit.

  19. Resource and energy recovery options for fermentation industry residuals.

    PubMed

    Chiesa, S C; Manning, J F

    1989-01-01

    Over the last 40 years, the fermentation industry has provided facility planners, plant operators and environmental engineers with a wide range of residuals management challenges and resource/energy recovery opportunities. In response, the industry has helped pioneer the use of a number of innovative resource and energy recovery technologies. Production of animal feed supplements, composts, fertilizers, soil amendments, commercial baking additives and microbial protein materials have all been detailed in the literature. In many such cases, recovery of by-products significantly reduces the need for treatment and disposal facilities. Stable, reliable anaerobic biological treatment processes have also been developed to recovery significant amounts of energy in the form of methane gas. Alternatively, dewatered or condensed organic fermentation industry residuals have been used as fuels for incineration-based energy recovery systems. The sale or use of recovered by-products and/or energy can be used to offset required processing costs and provide a technically and environmentally viable alternative to traditional treatment and disposal strategies. This review examines resource recovery options currently used or proposed for fermentation industry residuals and the conditions necessary for their successful application. PMID:14542988

  20. Energy conservation and cost benefits in the dairy processing industry

    SciTech Connect

    1982-01-01

    Guidance is given on measuring energy consumption in the plant and pinpointing areas where energy-conservation activities can return the most favorable economics. General energy-conservation techniques applicable to most or all segments of the dairy processing industry, including the fluid milk segment, are emphasized. These general techniques include waste heat recovery, improvements in electric motor efficiency, added insulation, refrigeration improvements, upgrading of evaporators, and increases in boiler efficiency. Specific examples are given in which these techniques are applied to dairy processing plants. The potential for energy savings by cogeneration of process steam and electricity in the dairy industry is also discussed. Process changes primarily applicable to specific milk products which have resulted in significant energy cost savings at some facilities or which promise significant contributions in the future are examined. A summary checklist of plant housekeeping measures for energy conservation and guidelines for economic evaluation of conservation alternatives are provided. (MHR)

  1. Energy conservation in the textile industry: 10 case histories

    SciTech Connect

    1982-01-01

    Presented are ten case studies of energy conserving technologies that have been implemented by the textile industry. For each case is given: the name and location of the plant and an employee contact, description of products, energy consumption and costs in years before and after the energy conserving technology was implemented, energy savings since the energy conserving technology was implemented, description of investment decision-making process, and description of any institutional and environmental considerations. Measures included are: tandem preparation line, dyebath reuse, bump-and-run (dyebath temperature drifts for the last 85% of the hold time), foam finishing, wastewater heat recovery, wastewater chlorination and reuse, oven exhaust air counterflow, boiler economizer, wood-fired boiler, and solar industrial process heat. Several other energy conserving technologies that were not studied are briefly summarized. (LEW)

  2. Energy resource management for energy-intensive manufacturing industries

    SciTech Connect

    Brenner, C.W.; Levangie, J.

    1981-10-01

    A program to introduce energy resource management into an energy-intensive manufacturing industry is presented. The food industry (SIC No. 20) was chosen and 20 companies were selected for interviews, but thirteen were actually visited. The methodology for this program is detailed. Reasons for choosing the food industry are described. The substance of the information gained and the principal conclusions drawn from the interviews are given. Results of the model Energy Resource Management Plan applied to three companies are compiled at length. Strategies for dissemination of the information gained are described. (MCW)

  3. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  4. Engineering organisms for industrial fuel production.

    PubMed

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy.

  5. Engineering organisms for industrial fuel production.

    PubMed

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy. PMID:21326829

  6. Energy concentration and phosphorus digestibility in yeast products produced from the ethanol industry, and in brewers' yeast, fish meal, and soybean meal fed to growing pigs.

    PubMed

    Kim, B G; Liu, Y; Stein, H H

    2014-12-01

    not different from the STTD of P in S-yeast and fish meal (67.3%) but was greater (P<0.05) than the STTD of P in soybean meal (56.7%). In conclusion, the 2 novel sources of yeast contain similar or greater concentrations of energy compared with brewers' yeast, corn, fish meal, and soybean meal, and the STTD of P in the 2 yeast products is not different from the STTD of P in fish meal.

  7. Decomposition and control of complex systems - Application to the analysis and control of industrial and economic systems /energy production/ with limited supplies

    NASA Astrophysics Data System (ADS)

    de Coligny, M.

    Optimized control strategies are developed for industrial installations where many variables of energy supply and storage are involved, with a particular focus on characteristics of a solar central tower power plant. It is shown that optimal regulation resides in controlling all disturbances which occur in a limited domain of the entire system, using robust control schemes. Choosing a command is then dependent on defining precise operational limits as constraints on the machines' performances. Attention is given to the development of variational principles used for the elements of the command logic. Particular consideration is given to a limited supply in storage in spatial and temporal terms. Commands for alterations in functions are then available on-line, and discontinuities are not a feature of the control system. The strategy is applied to the case of a field of heliostats and a central tower themal receiver showing that management is possible on the basis of a sliding horizon.

  8. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  9. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  10. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity.

  11. Net energy analysis of alcohol production from sugarcane

    NASA Astrophysics Data System (ADS)

    Hopkinson, C. S., Jr.; Day, J. W., Jr.

    1980-01-01

    Energy requirements were calculated for the agricultural and the industrial phase of ehtyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54 percent of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  12. Net energy analysis of alcohol production from sugarcane

    SciTech Connect

    Hopkinson, C.S. Jr.; Day, J.W. Jr.

    1980-01-18

    Energy requirements were calculated for the agricultural and the industrial phase of ethyl alcohol production from sugarcane grown in Louisiana. Agricultural energy requirements comprised 54% of all energy inputs, with machinery, fuel, and nitrogen fertilizer representing most of the energy subsidies. Overall net energy benefits (output:input) for alcohol production ranged from 1.8:1 to 0.9:1 depending on whether crop residues or fossil fuels were used for industrial processes.

  13. Chemical production from industrial by-product gases: Final report

    SciTech Connect

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  14. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  15. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  16. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  17. 10 CFR 40.25 - General license for use of certain industrial products or devices.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false General license for use of certain industrial products or... General Licenses § 40.25 General license for use of certain industrial products or devices. (a) A general... of paragraphs (b), (c), (d), and (e) of this section, depleted uranium contained in...

  18. US energy industry financial developments, 1993 first quarter

    SciTech Connect

    Not Available

    1993-06-25

    Net income for 259 energy companies-- including, 20 major US petroleum companies-- rose 38 percent between the first quarter of 1992 and the first quarter of 1993. An increased level of economic activity, along with colder weather, helped lift the demand for natural gas. crude oil, coal, and electricity. The sharp rise in the domestic price of natural gas at the wellhead relative to the year-ago quarter was the most significant development in US energy during the first quarter. As a consequence of higher natural gas prices, the upstream segment of the petroleum industry reported large gains in income, while downstream income rose due to higher refined product demand. Increased economic activity and higher weather-related natural gas demand also led to improvements in income for the rate-regulated energy segment. However, declining domestic oil production continued to restrain upstream petroleum industry earnings growth, despite a moderate rise in crude oil prices.

  19. Modeling Innovations Advance Wind Energy Industry

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In 1981, Glenn Research Center scientist Dr. Larry Viterna developed a model that predicted certain elements of wind turbine performance with far greater accuracy than previous methods. The model was met with derision from others in the wind energy industry, but years later, Viterna discovered it had become the most widely used method of its kind, enabling significant wind energy technologies-like the fixed pitch turbines produced by manufacturers like Aerostar Inc. of Westport, Massachusetts-that are providing sustainable, climate friendly energy sources today.

  20. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. Michigan Univ., Ann Arbor, MI . Dept. of Physics Argonne National Lab., IL . Environmental Assessment and Information Sciences Div.); Hwang, R. )

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  1. A model for Long-term Industrial Energy Forecasting (LIEF)

    SciTech Connect

    Ross, M. ||; Hwang, R.

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  2. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  3. Energy Efficient Industrialized Housing Research Program

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  4. Transportation (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for a transportation course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  5. Power Technology (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for a power technology course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  6. Incentives for solar energy in industry

    NASA Astrophysics Data System (ADS)

    Bergeron, K. D.

    1981-05-01

    Several issues are analyzed on the effects that government subsidies and other incentives have on the use of solar energy in industry, as well as on other capital-intensive alternative energy supplies. Discounted cash flow analysis is used to compare tax deductions for fuel expenses with tax credits for capital investments for energy. The result is a simple expression for tax equity. The effects that market penetration of solar energy has on conventional energy prices are analyzed with a free market model. It is shown that net costs of a subsidy program to the society can be significantly reduced by price. Several government loan guarantee concepts are evaluated as incentives that may not require direct outlays of government funds; their relative effectiveness in achieving loan leverage through project financing, and their cost and practicality, are discussed.

  7. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2013-01-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  8. Energy efficiency in buildings, industry and transportation

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dobrica; Babic, Milun; Jovicic, Nebojsa; Gordic, Dusan

    2012-11-01

    This paper reviews the literature concerning the energy saving and outlines the importance of energy efficiency, particularly in three the most important areas: buildings, industry and transportation. Improving energy efficiency plays a crucial role in minimizing the societal and environmental impacts of economic growth and offers a powerful tool for achieving sustainable development by reducing the need for investment in new infrastructure, by cutting fuel costs, and by increasing competitiveness for businesses and welfare for consumers. It creates environmental benefits through reduced emissions of greenhouse gases and local air pollutants. It can offer social benefits in the form of increased energy security (through reduced dependence on fossil fuels, particularly when imported) and better energy services.

  9. Productivity improvement using industrial engineering tools

    NASA Astrophysics Data System (ADS)

    Salaam, H. A.; How, S. B.; Faisae, M. F.

    2012-09-01

    Minimizing the number of defects is important to any company since it influence their outputs and profits. The aim of this paper is to study the implementation of industrial engineering tools in a manufacturing recycle paper box company. This study starts with reading the standard operation procedures and analyzing the process flow to get the whole idea on how to manufacture paper box. At the same time, observations at the production line were made to identify problem occurs in the production line. By using check sheet, the defect data from each station were collected and have been analyzed using Pareto Chart. From the chart, it is found that glue workstation shows the highest number of defects. Based on observation at the glue workstation, the existing method used to glue the box was inappropriate because the operator used a lot of glue. Then, by using cause and effect diagram, the root cause of the problem was identified and solutions to overcome the problem were proposed. There are three suggestions proposed to overcome this problem. Cost reduction for each solution was calculated and the best solution is using three hair drier to dry the sticky glue which produce only 6.4 defects in an hour with cost of RM 0.0224.

  10. Clinical laboratories: production industry or medical services?

    PubMed

    Plebani, Mario

    2015-06-01

    The current failure to evidence any link between laboratory tests, clinical decision-making and patient outcomes, and the scarcity of financial resources affecting healthcare systems worldwide, have put further pressure on the organization and delivery of laboratory services. Consolidation, merger, and laboratory downsizing have been driven by the need to deliver economies of scale and cut costs per test while boosting productivity. Distorted economics, based on payment models rewarding volume and efficiency rather than quality and clinical effectiveness, have underpinned the entrance of clinical laboratories into the production industry thus forcing them to relinquish their original mission of providing medical services. The sea change in laboratory medicine in recent years, with the introduction of ever newer and ever more complex tests, including 'omics', which impact on clinical decision-making, should encourage clinical laboratories to return to their original mission as long as payments models are changed. Rather than being considered solely in terms of costs, diagnostic testing must be seen in the context of an entire hospital stay or an overall payment for a care pathway: the testing process should be conceived as a part of the patient's entire journey. PMID:25405721

  11. Worker productivity rises with energy efficiency

    SciTech Connect

    Romm, J.J. )

    1995-01-01

    Many American companies have found that saving energy and cutting pollution dramatically improves the bottom line. But beyond these gains, businesses that launch energy efficiency programs to save money are often astonished to discover unforeseen benefits: energy efficient lighting, heating, cooling, motors, and industrial processes can increase worker productivity, decrease absenteeism, and improve the quality of work performed. Profits created by the jump in worker productivity can exceed energy savings by a factor of ten. Energy efficiency and pollution prevention represent the next wave in manufacturing, following the quality revolution launched by the Japanese in the 1960s. Unless America leads the lean and clean revolution, economic health will be undermined as other countries develop clean processes and products and US companies suffer competitively. Also, developing countries will leapfrog their wasteful model and buy products and manufacturing processes from foreign firms already practicing lean and clean.

  12. [Guidelines to productivity bargaining in the health care industry].

    PubMed

    Fottler, M D; Maloney, W F

    1979-01-01

    A potential conflict exists between the recent growth of unionization in the health care industry and management efforts to increase productivity. One method of managing this conflict is to link employee rewards to employee productivity through productivity bargaining.

  13. Save Energy Now: Successful Partnership Benefits Industry's Bottom Line

    SciTech Connect

    Not Available

    2006-10-01

    This fact sheet describes the elements and benefits of the U.S. DOE Industrial Technologies Program's Save Energy Now initiative. Save Energy Now is part of a national campaign, ''Easy Ways to Save Energy'', announced by DOE in 2005. This campaign educates the public about simple but effective energy choices, helps U.S. industry and the government reduce their energy use, and supports national goals for energy security. Through Save Energy Now, DOE's Industrial Technologies Program (ITP) helps industrial plants operate more efficiently and profitably by identifying ways to reduce energy use in key industrial process systems.

  14. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process. PMID:18942836

  15. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce.

    PubMed

    Akoh, Casimir C; Chang, Shu-Wei; Lee, Guan-Chiun; Shaw, Jei-Fu

    2008-11-26

    Many industrial products and functional foods can be obtained from cheap and renewable raw agricultural materials. For example, starch can be converted to bioethanol as biofuel to reduce the current demand for petroleum or fossil fuel energy. On the other hand, starch can also be converted to useful functional ingredients, such as high fructose and high maltose syrups, wine, glucose, and trehalose. The conversion process involves fermentation by microorganisms and use of biocatalysts such as hydrolases of the amylase superfamily. Amylases catalyze the process of liquefaction and saccharification of starch. It is possible to perform complete hydrolysis of starch by using the fusion product of both linear and debranching thermostable enzymes. This will result in saving energy otherwise needed for cooling before the next enzyme can act on the substrate, if a sequential process is utilized. Recombinant enzyme technology, protein engineering, and enzyme immobilization are powerful tools available to enhance the activity of enzymes, lower the cost of enzyme through large scale production in a heterologous host, increase their thermostability, improve pH stability, enhance their productivity, and hence making it competitive with the chemical processes involved in starch hydrolysis and conversions. This review emphasizes the potential of using biocatalysis for the production of useful industrial products and functional foods from cheap agricultural produce and transgenic plants. Rice was selected as a typical example to illustrate many applications of biocatalysis in converting low-value agricultural produce to high-value commercial food and industrial products. The greatest advantages of using enzymes for food processing and for industrial production of biobased products are their environmental friendliness and consumer acceptance as being a natural process.

  16. Partnership with Industry: Film Production Technology.

    ERIC Educational Resources Information Center

    Rietveld, Richard; And Others

    The 1988 final report of a task force from the Florida Postsecondary Education Planning Commission stated that in order to ensure continued growth of the motion picture film industry in the state, the postsecondary community must provide a well-trained and competent work force adept in all aspects of the industry. The film industry is a growing…

  17. Industrial energy in transition: a petrochemical perspective.

    PubMed

    Wishart, R S

    1978-02-10

    The future growth of the petrochemical industry depends in part on the industry's ability to improve efficiency in the use of oil and gas feedstocks and to develop promising alternatives. Technological innovation is proving to be the key to the long-term viability of the industry. The next 6 to 7 years will be characterized by the commercialization of new technologies designed to improve the efficiency of petroleum as a feedstock. Union Carbide's advanced cracking reactor, now nearing the demonstration stage, exemplifies this type of effort. The increasing price of oil and gas will make coal-based synthesis gas more attractive as a feedstock, particularly for oxygenated petrochemical products. A further development involves the conversion of biomass, through fermentation, to useful chemical products and the gasification of municipal wastes to raise steam for electricity generation and as a possible, supplemental feedstock. By the year 2000, it is predicted that feedstocks from all sources other than oil and gas may constitute 10 to 14 percent of the total new material requirement for the petrochemical industry.

  18. Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch

    SciTech Connect

    Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

    1981-12-01

    An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

  19. Advances in Energy Conservation of China Steel Industry

    PubMed Central

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980–2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011–2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics. PMID:23533344

  20. Advances in energy conservation of China steel industry.

    PubMed

    Sun, Wenqiang; Cai, Jiuju; Ye, Zhu

    2013-01-01

    The course, technical progresses, and achievements of energy conservation of China steel industry (CSI) during 1980-2010 were summarized. Then, the paper adopted e-p method to analyze the variation law and influencing factors of energy consumptions of large- and medium-scale steel plants within different stages. It is pointed out that energy consumption per ton of crude steel has been almost one half lower in these thirty years, with 60% as direct energy conservation owing to the change of process energy consumption and 40% as indirect energy conservation attributed to the adjustment of production structure. Next, the latest research progress of some key common technologies in CSI was introduced. Also, the downtrend of energy consumption per ton of crude steel and the potential energy conservation for CSI during 2011-2025 were forecasted. Finally, it is indicated that the key topic of the next 15 years' research on the energy conservation of CSI is the synergistic operation of material flow and energy flow. It could be achieved by the comprehensive study on energy flow network optimization, such as production, allocation, utilization, recovery, reuse, and resource, according to the energy quantity, quality, and user demand following the first and second laws of thermodynamics.

  1. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  2. GUIDE TO INDUSTRIAL ASSESSMENTS FOR POLLUTION PREVENTION AND ENERGY EFFICIENCY

    EPA Science Inventory

    This document presents an overview of industrial assessments and the general framework for conducting an assessment. It describes combined assessments for pollution prevention and energy, "industrial assessments," providing guidance to those performing assessments at industrial o...

  3. Potential for energy conservation in the cement industry

    SciTech Connect

    Garrett-Price, B.A.

    1985-02-01

    This report assesses the potential for energy conservation in the cement industry. Energy consumption per ton of cement decreased 20% between 1972 and 1982. During this same period, the cement industry became heavily dependent on coal and coke as its primary fuel source. Although the energy consumed per ton of cement has declined markedly in the past ten years, the industry still uses more than three and a half times the fuel that is theoretically required to produce a ton of clinker. Improving kiln thermal efficiency offers the greatest opportunity for saving fuel. Improving the efficiency of finish grinding offers the greatest potential for reducing electricity use. Technologies are currently available to the cement industry to reduce its average fuel consumption per ton by product by as much as 40% and its electricity consumption per ton by about 10%. The major impediment to adopting these technologies is the cement industry's lack of capital as a result of low or no profits in recent years.

  4. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  5. Industrial Food Animal Production and Community Health.

    PubMed

    Casey, Joan A; Kim, Brent F; Larsen, Jesper; Price, Lance B; Nachman, Keeve E

    2015-09-01

    Industrial food animal production (IFAP) is a source of environmental microbial and chemical hazards. A growing body of literature suggests that populations living near these operations and manure-applied crop fields are at elevated risk for several health outcomes. We reviewed the literature published since 2000 and identified four health outcomes consistently and positively associated with living near IFAP: respiratory outcomes, methicillin-resistant Staphylococcus aureus (MRSA), Q fever, and stress/mood. We found moderate evidence of an association of IFAP with quality of life and limited evidence of an association with cognitive impairment, Clostridium difficile, Enterococcus, birth outcomes, and hypertension. Distance-based exposure metrics were used by 17/33 studies reviewed. Future work should investigate exposure through drinking water and must improve exposure assessment with direct environmental sampling, modeling, and high-resolution DNA typing methods. Investigators should not limit study to high-profile pathogens like MRSA but include a broader range of pathogens, as well as other disease outcomes.

  6. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  7. US energy industry financial developments, 1993 second quarter

    SciTech Connect

    Not Available

    1993-09-29

    US Energy Industry Financial Developments, 1993 Second Quarter provides information on the financial performance of energy companies during the most recent reporting period. The data are taken from public sources such as the Wall Street Journal, Energy Information Administration publications, corporate press releases, and other public sources. Based on information provided in 1993 second quarter financial disclosures, net income for 114 petroleum companies--including 19 majors--rose 33 percent between the second quarter of 1992 and the second quarter of 1993. Both upstream (oil and gas exploration, development and production) operations and downstream (petroleum refining, marketing, and transport) contributed to the improved financial Performance of petroleum companies consolidated operations. Rate-regulated industries also showed positive income growth between the second quarter of 1992 and the second quarter of 1993 due to higher natural gas prices and increased electricity consumption.

  8. US energy industry financial developments, 1994 first quarter

    SciTech Connect

    Not Available

    1994-06-23

    This report traces key financial trends in the US energy industry for the first quarter of 1994. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s, Earnings Digest. Return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area. These data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations.

  9. Waste-to-energy industry maturing

    SciTech Connect

    Marier, D.

    1987-09-01

    The rapidly developing waste-to-energy industry is showing that it is offering some very real solutions to their waste-disposal problems. A recent survey showed that there were 196 resource recovery facilities, having a combined processing capacity of 156,000 tons per day (TPD), either operating, under construction, or in the advanced planning stages in the US at this time. There are growing indications, however, that the industry is already moving from the early gold rush days to the maturation stage. There is also increasing environmental opposition as the not-in-my-backyard syndrome spreads and as environmental groups increase their activities. There is every indication that politics will continue to play an important role in waste management decisions. Changing economics can also have their effect. While projects may be delayed or postponed indefinitely, there is no doubt that the waste-to-energy industry will continue to bring plants on-line. A review of 9 contract award announcements and new plant dedications is made.

  10. Advanced Energy Industries, Inc. SEGIS developments.

    SciTech Connect

    Scharf, Mesa P.; Bower, Ward Isaac; Mills-Price, Michael A.; Sena-Henderson, Lisa; David, Carolyn; Akhil, Abbas Ali; Kuszmaul, Scott S.; Gonzalez, Sigifredo

    2012-03-01

    The Solar Energy Grid Integration Systems (SEGIS) initiative is a three-year, three-stage project that includes conceptual design and market analysis (Stage 1), prototype development/testing (Stage 2), and commercialization (Stage 3). Projects focus on system development of solar technologies, expansion of intelligent renewable energy applications, and connecting large-scale photovoltaic (PV) installations into the electric grid. As documented in this report, Advanced Energy Industries, Inc. (AE), its partners, and Sandia National Laboratories (SNL) successfully collaborated to complete the final stage of the SEGIS initiative, which has guided new technology development and development of methodologies for unification of PV and smart-grid technologies. The combined team met all deliverables throughout the three-year program and commercialized a broad set of the developed technologies.

  11. Barriers to Industrial Energy Efficiency - Study (Appendix A), June 2015

    SciTech Connect

    2015-06-01

    This study examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This study also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  12. Barriers to Industrial Energy Efficiency - Report to Congress, June 2015

    SciTech Connect

    2015-06-01

    This report examines barriers that impede the adoption of energy efficient technologies and practices in the industrial sector, and identifies successful examples and opportunities to overcome these barriers. Three groups of energy efficiency technologies and measures were examined: industrial end-use energy efficiency, industrial demand response, and industrial combined heat and power. This report also includes the estimated economic benefits from hypothetical Federal energy efficiency matching grants, as directed by the Act.

  13. Guide to the energy industries. [Index of 2930 items

    SciTech Connect

    Not Available

    1983-01-01

    The primary focus of the guide is the identification of marketing and financial data on seven specific energy industries: coal, energy alternatives, hydroelectric power, natural gas, nuclear energy, petroleum, and solar energy. The guide is divided into four parts. Part 1 contains sources of data that concern the seven energy industries. It is arranged alphabetically by industry and, within each industry, by broad geographic region. Part 2 lists publishers of energy industry data and includes an index to sources produced by those publishers. Part 3 contains indexes by SIC code and by subject. Part 4 is a title index.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  15. New industrial heat pump applications to ethanol production

    SciTech Connect

    Not Available

    1990-04-01

    An energy cost reduction study of the Midwest Grain Products, Atchison, Kansas Beverage grade alcohol (from grain) and speciality starch plant has been completed. The objective was to find out effective energy cost reduction projects and to develop a coherent strategy for realizing the savings. There are many possible options for reducing energy cost. To facilitate a fair comparison of the options, Pinch Technology was used to identify appropriate heat recovery, heat pumping and cogeneration options. Of particular interest were the opportunities for utilizing heat pumps, for energy cost reduction or other profit increasing uses. Therefore, where a heat pumping scheme was identified, its merits relative to other potential projects was carefully evaluated to ensure that the heat pump was technically and economically sound. It is felt that the results obtained in this study are applicable to other alcohol plants, due to the similarity of processes throughout the industry. This study and others indicate that reductions in thermal energy consumption of 10--30% can be expected through increased heat recovery. Additional energy cost reductions can be achieved through the use of MVR evaporators and other heat pump systems. 16 figs., 3 tabs.

  16. Industrial utilization of waste derived energy

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A technical and economic feasibility study of a partial oxidation unit was conducted. Major objectives of the program were: (1) disposal of both urban (municipal refuse and sewage sludge) and agricultural (dairy) wastes; and (2) the production of a medium-Btu fuel gas. The investigated wasteshed includes those portions of Western San Bernardino County, Eastern Los Angeles County, and Northwestern Riverside County. The available waste supply, transportation of these waste materials, product quantities and energy products of fuel gas steam, and electricity, markets, ferrous metals, aluminum, nonferrous metals, and slag are studied.

  17. Selling green power in California: Product, industry, and market trends

    SciTech Connect

    Wiser, R.H.; Pickle, S.J.

    1998-05-01

    As one of the first US stages to open its doors to retail electric competition, California offers an important opportunity to assess the effectiveness of green power marketing as a mechanism for supporting renewable energy. This report is an interim assessment of key green power product, industry, and market trends in California. The report identifies and analyzes: the potential size of the green power market in California; the companies participating in the green power market; the green power products being offered and their prices; the impact of the green market on renewable generators and the environment; and the influence of several public policies and non-governmental programs on the market for green power. Data used in this paper have been collected, in large part, from surveys and interviews with green power marketers that took place between December 1997 and April 1998. There remain legitimate concerns over the viability of green power marketing to support significant quantities of renewable energy and provide large environmental gains, and it is far too early to assess the overall strength of customer demand for renewable energy. A critical finding of this report is that, because of the high cost of acquiring and servicing residential customers and the low utility default service price, green power marketing affords new energy service providers one of the only viable entrees to California`s residential marketplace.

  18. Analysis on the Impact of Tax Policy over China's New Energy Industry Development

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Li, Yang

    Energy is a kind of resource which can be used directly or offer people what they need by some conversions, the development of energy is the headspring of economic growth With the development of our national economy, new energy industry has become China's current vigorously the mainstream of development The analysis on influence of tax policy on the development of national new energy industry is mainly discussed, as well as the alternative analysis on the production output and sales tax aspects in the areas of new energy, and based on this, some tax policy suggestions on how to promote the development of national new energy industry are given finally.

  19. Energy efficiency opportunities in the brewery industry

    SciTech Connect

    Worrell, Ernst; Galitsky, Christina; Martin, Nathan

    2002-06-28

    Breweries in the United States spend annually over $200 Million on energy. Energy consumption is equal to 3-8% of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that there may still be opportunities to reduce energy consumption cost-effectively for breweries. Major brewing companies have and will continue to spend capital on cost effective measures that do not impact the quality of the beer. Further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies at individual breweries.

  20. Biobased industrial products. Priorities for research and commercialization

    SciTech Connect

    2000-01-01

    Biological sciences are likely to make the same impact on the formation of new industries in the next century as the physical and chemical sciences have had on industrial development throughout the century now coming to a close. The biological sciences, when combined with recent and future advances in process engineering, can become the foundation for producing a wide variety of industrial products from renewable plant resources. These "biobased industrial products" will include liquid fuels, chemicals, lubricants, plastics, and building materials. For example, genetically engineered crops currently under development include rapeseed that produces industrial oils, corn that produces specialty chemicals, and transgenic plants that produce polyesters. Except perhaps for large-scale production of bioenergy crops, the land and other agricultural resources of the United States are sufficient to satisfy current domestic and export demands for food, feed, and fiber and still produce the raw materials for most biobased industrial products.

  1. Energy Vs. Productivity: Diminishing Returns

    ERIC Educational Resources Information Center

    MOSAIC, 1975

    1975-01-01

    Energy invested in corn production is compared with food energy returned in calculations by David Pimentel at Cornell University. The rate of return is falling off sharply in this already energy-intensive agriculture. Increased energy input, in the form of fertilizer, would yield far greater returns where agriculture is less sophisticated.…

  2. Industrial Energy-Efficiency Improvement Program. Annual report to the Congress and the President 1979

    SciTech Connect

    Not Available

    1980-12-01

    The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies and practices which will improve energy efficiency; encourage substitution of more plentiful domestic fuels; and enhance recovery of energy and materials from industrial waste streams is described. The role of research, development, and demonstration; technology implementation; the reporting program; and progress are covered. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. Additional data from voluntary submissions, a summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix are briefly presented. (MCW)

  3. Environmental consequences of energy production: Proceedings

    SciTech Connect

    none,

    1989-01-01

    The Seventeenth Annual Illinois Energy conference entitled Environmental consequences of Energy Production was held in Chicago, Illinois on October 19-20, 1989. The purpose of the meeting was to provide a forum for exchange of information on the technical, economic and institutional issues surrounding energy production and related environmental problems. The conference program was developed by a planning committee which included Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. The conference included presentations on four major topic areas. The issue areas were: urban pollution: where are we now and what needs to be done in the future; the acid rain problem: implications of proposed federal legislation on the Midwest; global warming: an update on the scientific debate; and strategies to minimize environmental damage. Separate abstracts have been prepared for the individual presentations. (FL)

  4. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  5. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  6. The Microbiological Production of Industrial Chemicals.

    ERIC Educational Resources Information Center

    Eveleigh, Douglas E.

    1981-01-01

    Compares traditional and newer methods by which microorganisms are used to produce industrial chemicals. Includes a discussion of economic considerations and new genetic methods in programing microorganisms. Details methods for producing enzymes, aliphatic organic compounds, amino acids, ethanol, n-butanol, and alkene oxides. (CS)

  7. Policy modeling for industrial energy use

    SciTech Connect

    Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

    2003-03-01

    The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of

  8. The feasibility of effluent trading in the energy industries

    SciTech Connect

    Veil, J.A.

    1997-05-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all point sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.

  9. United States Industrial Sector Energy End Use Analysis

    SciTech Connect

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a

  10. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomaston Mills, Inc.): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    SciTech Connect

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  11. Industrial recovered-materials-utilization targets for the metals and metal-products industry

    SciTech Connect

    1980-03-01

    The National Energy Conservation Policy Act of 1978 directs DOE to set targets for increased utilization of energy-saving recovered materials for certain industries. These targets are to be established at levels representing the maximum feasible increase in utilization of recovered materials that can be achieved progressively by January 1, 1987 and is consistent with technical and economic factors. A benefit to be derived from the increased use of recoverable materials is in energy savings, as state in the Act. Therefore, emhasis on different industries in the metals sector has been related to their energy consumption. The ferrous industry (iron and steel, ferrour foundries and ferralloys), as defined here, accounts for approximately 3%, and all others for the remaining 3%. Energy consumed in the lead and zinc segments is less than 1% each. Emphasis is placed on the ferrous scrap users, followed by the aluminum and copper industries. A bibliography with 209 citations is included.

  12. Integrating energy and environmental management in wood furniture industry.

    PubMed

    Gordić, Dušan; Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review.

  13. Integrating Energy and Environmental Management in Wood Furniture Industry

    PubMed Central

    Babić, Milun; Jelić, Dubravka; Konćalović, Davor; Vukašinović, Vladimir

    2014-01-01

    As energy costs continue to rise, industrial plants (even those of energy nonintensive industries such as furniture industry) need effective way to reduce the amount of energy they consume. Besides, there are a number of economic and environmental reasons why a company should consider environmental management initiatives. This paper provides a detailed guideline for implementing joint energy and environmental management system in wood furniture industrial company. It covers in detail all essential aspects of the system: initial system assessment, organization, policy development, energy and environmental auditing, action plan development, system promotion, checking system performance, and management review. PMID:24587734

  14. Workshop proceeding of the industrial building energy use

    SciTech Connect

    Akbari, H.; Gadgil, A.

    1988-01-01

    California has a large number of small and medium sized industries which have a major impact on the demand growth of California utilities. Energy use in building services (lighting, HVAC, office equipment, computers, etc.). These industries constitute an important but largely neglected fraction of the total site energy use. The ratio of energy use in building service to the total site energy use is a function of the industrial activity, its size, and the climate at the site of the facility. Also, energy use in building services is more responsive to weather and occupant schedules than the traditional base-load'' industrial process energy. Industrial energy use is considered as a base-load'' by utility companies because it helps to increase the utilities' load factor. To increase this further, utilities often market energy at lower rates to industrial facilities. Presently, the energy use in the building services of the industrial sector is often clubbed together with industrial process load. Data on non-process industrial energy use are not readily available in the literature. In cases where the major portion of the energy is used in the building services (with daily and seasonal load profiles that in fact peak at the same time as systemwide load peaks), the utility may be selling below cost at peak power times. These cases frequently happen with electric utilities. 30 figs., 6 tabs.

  15. Energy Efficiency Improvement Opportunities for the Cement Industry

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in this

  16. US Energy Industry Financial Developments, 1993 fourth quarter, April 1994

    SciTech Connect

    Not Available

    1994-04-14

    This report traces key financial trends in the US energy industry for the fourth quarter of 1993. Financial data (only available for publicly-traded US companies) are included in two broad groups -- fossil fuel production and rate-regulated electric utilities. All financial data are taken from public sources such as energy industry corporate reports and press releases, energy trade publications, and The Wall Street Journal`s Earnings Digest; return on equity is calculated from data available from Standard and Poor`s Compustat data service. Since several major petroleum companies disclose their income by lines of business and geographic area, these data are also presented in this report. Although the disaggregated income concept varies by company and is not strictly comparable to corporate income, relative movements in income by lines of business and geographic area are summarized as useful indicators of short-term changes in the underlying profitability of these operations. Based on information provided in 1993 fourth quarter financial disclosures, the net income for 82 petroleum companies -- including 18 majors -- was unchanged between the fourth quarter of 1992 and the fourth quarter of 1993. An 18-percent decline in crude oil prices resulted in a deterioration of the performance of upstream (oil and gas production) petroleum companies during the final quarter of 1993. However, prices for refined products fell much less than the price of crude oil, resulting in higher refined product margins and downstream (refining, marketing and transport) petroleum earnings. An increase in refined product demand also contributed to the rise in downstream income.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  18. Medical equipment industry in India: Production, procurement and utilization.

    PubMed

    Chakravarthi, Indira

    2013-01-01

    This article presents information on the medical equipment industry in India-on production, procurement and utilization related activities of key players in the sector, in light of the current policies of liberalization and growth of a "health-care industry" in India. Policy approaches to medical equipment have been discussed elsewhere.

  19. Report on Community College Industrial Production Technology Programs.

    ERIC Educational Resources Information Center

    Illinois Community Coll. Board, Springfield.

    This report provides an in-depth analysis of the Industrial Production Technology Programs in Illinois, which, according to Illinois Community College Board policy, must be reviewed at least once every five years. The disciplines included in this report are: industrial manufacturing technology, corrosion technology, plastics technology, and…

  20. Medical equipment industry in India: Production, procurement and utilization.

    PubMed

    Chakravarthi, Indira

    2013-01-01

    This article presents information on the medical equipment industry in India-on production, procurement and utilization related activities of key players in the sector, in light of the current policies of liberalization and growth of a "health-care industry" in India. Policy approaches to medical equipment have been discussed elsewhere. PMID:24351379

  1. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  2. Emergy-based comparative analysis of energy intensity in different industrial systems.

    PubMed

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  3. Emergy-based comparative analysis of energy intensity in different industrial systems.

    PubMed

    Liu, Zhe; Geng, Yong; Wang, Hui; Sun, Lu; Ma, Zhixiao; Tian, Xu; Yu, Xiaoman

    2015-12-01

    With the rapid economic development, energy consumption of China has been the second place in the world next to the USA. Usually, measuring energy consumption intensity or efficiency applies heat unit which is joule per gross domestic production (GDP) or coal equivalent per GDP. However, this measuring approach is only oriented by the conversion coefficient of heat combustion which does not match the real value of the materials during their formation in the ecological system. This study applied emergy analysis to evaluate the energy consumption intensity to fill this gap. Emergy analysis is considered as a bridge between ecological system and economic system, which can evaluate the contribution of ecological products and services as well as the load placed on environmental systems. In this study, emergy indicator for performing energy consumption intensity of primary energy was proposed. Industrial production is assumed as the main contributor of energy consumption compared to primary and tertiary industries. Therefore, this study validated this method by investigating the two industrial case studies which were Dalian Economic Development Area (DEDA) and Fuzhou economic and technological area (FETA), to comparatively study on their energy consumption intensity between the different kinds of industrial systems and investigate the reasons behind the differences. The results show that primary energy consumption (PEC) of DEDA was much higher than that of FETA during 2006 to 2010 and its primary energy consumption ratio (PECR) to total emergy involvement had a dramatically decline from year 2006 to 2010. In the same time, nonrenewable energy of PEC in DEDA was also much higher than that in FETA. The reason was that industrial structure of DEDA was mainly formed by heavy industries like petro-chemistry industry, manufacturing industries, and high energy-intensive industries. However, FETA was formed by electronic business, food industry, and light industries. Although

  4. Renewable-energy-resource options for the food-processing industry

    SciTech Connect

    Eakin, D.E.; Clark, M.A.; Inaba, L.K.

    1981-09-01

    The food processing industry generates significant quantities of organic process wastes which often require treatment prior to disposal or result in additional expenses for disposal. The food processing industry also requires fuel and electricity to provide the process energy to convert raw materials into finished food products. Depending on the particular process, organic wastes can represent a potential resource for conversion to energy products that can be used for providing process energy or other energy products. This document reports the results of an evaluation of renewable energy resource options for the food processing industry. The options evaluated were direct combustion for providing process heat, fermentation for ethanol production and anaerobic digestion for generation of methane.

  5. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  6. A dynamic model of industrial energy demand in Kenya

    SciTech Connect

    Haji, S.H.H.

    1994-12-31

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  7. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as “White Paper 2010”, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this year’s paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  8. Sustainable Energy Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels currently supply a small portion of the world’s energy needs but this is increasing due to mandates intended to reduce use of fossil fuels and the associated environmental impacts. However, the potentials of plant based feedstocks to substitute for fossil fuels and mitigate environmental im...

  9. Renewable energy for productive uses in Mexico

    SciTech Connect

    Hanley, C.

    1997-12-01

    This paper describes a USAID/USDOE sponsored program to implement renewable energy in Mexico for productive uses. The objectives are to expand markets for US and Mexican industries, and to combat global climate change - primarily greenhouse gas emissions. The focus is on off-grid applications, with an emphasis on developing the institution structure to support the development of these industries within the country. Agricultural development is an example of the type of industry approached, where photovoltaic and wind power can be used for water pumping. There are hundreds of projects under review, and this interest has put renewables as a line item in Mexico`s rural development budget. Village power projects are being considered in the form of utility partnerships.

  10. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU

  11. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and

  12. Vanguard industrial linear accelerator rapid product development

    NASA Astrophysics Data System (ADS)

    Harroun, Jim

    1994-07-01

    Siemens' ability to take the VanguardTM Industrial Linear Accelerator from the development stage to the market place in less than two years is described. Emphasis is on the development process, from the business plan through the shipment of the first commercial sale. Included are discussions on the evolution of the marketing specifications, with emphasis on imaging system requirements, as well as flexibility for expansion into other markets. Requirements used to create the engineering specifications, how they were incorporated into the design, and lessons learned from the demonstration system are covered. Some real-life examples of unanticipated problems are presented, as well as how they were resolved, including some discussion of the special problems encountered in developing a user interface and a training program for an international customer.

  13. Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector

    SciTech Connect

    Amelie Goldberg; Taylor, Robert P.; Hedman, Bruce

    2014-03-21

    This report provides state regulators, utilities, and other program administrators with an overview of U.S. industrial energy efficiency programs and assesses some of the key features of programs that have generated increased energy savings.

  14. International Data Base for the U.S. Renewable Energy Industry

    SciTech Connect

    1986-05-01

    The International Data Base for the US Renewable Energy Industry was developed to provide the US renewable energy industry with background data for identifying and analyzing promising foreign market opportunities for their products and services. Specifically, the data base provides the following information for 161 developed and developing countries: (1) General Country Data--consisting of general energy indicators; (2) Energy Demand Data--covering commercial primary energy consumption; (3) Energy Resource Data--identifying annual average insolation, wind power, and river flow data; (4) Power System Data--indicating a wide range of electrical parameters; and (5) Business Data--including currency and credit worthiness data.

  15. Energy conservation by hyperfiltration: food industry background literature survey

    SciTech Connect

    Not Available

    1980-04-15

    The application of hyperfiltration to selected food product streams and food processing wastewaters for energy conservation was examined. This literature survey had led to the following conclusions: no research has been conducted in the food industry using membranes with hot process streams due to the temperature limitation (< 40/sup 0/C) of the typically studied cellulose acetate membranes; based on the bench-scale research reviewed, concentration of fruit and vegetable juices with membranes appears to be technically feasible; pretreatment and product recovery research was conducted with membranes on citrus peel oil, potato processing and brine wastewaters and wheys. The experiments demonstrated that these applications are feasible; many of the problems that have been identified with membranes are associated with either the suspended solids or the high osmotic pressure and viscosity of many foods; research using dynamic membranes has been conducted with various effluents, at temperatures to approx. 100/sup 0/C, at pressures to 1200 psi and with suspended solids to approx. 2%; and, the dynamic membrane is being prototype tested by NASA for high temperature processing of shower water. The literature review substantiates potential for dynamic membrane on porous stainless tubes to process a number of hot process and effluent streams in the food processing industry. Hot water for recycle and product concentrations are major areas with potential for economic application. The two plants involved in the first phase of the project should be reviewed to identify potential energy conservation applications. As many as possible of the conservation applications should be tested during the screening phase at each site. The most promising applications at each site should be evaluated more intensively to establish engineering estimates of the economics of this technology for the canned fruit and vegetable segment of the food industry.

  16. Energy use and carbon dioxide emissions in energy-intensive industries in key developing countries

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Phylipsen, Dian

    1999-09-01

    The industrial sector is the most important end-use sector in developing countries in terms of energy use and was responsible for 50% of primary energy use and 53% of associated carbon dioxide emissions in 1995 (Price et al., 1999). The industrial sector is extremely diverse, encompassing the extraction of natural resources, conversion of these resources into raw materials, and manufacture of finished products. Five energy-intensive industrial subsectors account for the bulk of industrial energy use and related carbon dioxide emissions: iron and steel, chemicals, petroleum refining, pulp and paper, and cement. In this paper, we focus on the steel and cement sectors in Brazil, China, India, and Mexico.1 We review historical trends, noting that China became the world's largest producer of cement in 1985 and of steel in 1996. We discuss trends that influence energy consumption, such as the amount of additives in cement (illustrated through the clinker/cement ratio), the share of electric arc furnaces, and the level of adoption of continuous casting. To gauge the potential for improvement in production of steel and cement in these countries, we calculate a ''best practice'' intensity based on use of international best practice technology to produce the mix of products manufactured in each country in 1995. We show that Brazil has the lowest potential for improvement in both sectors. In contrast, there is significant potential for improvement in Mexico, India, and especially China, where adoption of best practice technologies could reduce energy use and carbon dioxide emissions from steel production by 50% and cement production by 37%. We conclude by comparing the identified potential for energy efficiency improvement and carbon dioxide emissions reduction in these key developing countries to that of the U.S. This comparison raises interesting questions related to efforts to improve energy efficiency in developing countries, such as: what is the appropriate role of

  17. Energy: Production, Consumption, and Consequences.

    ERIC Educational Resources Information Center

    Helm, John L., Ed.

    Energy policy in the United States and much of the analysis behind those policies is largely incomplete according to many. Systems for energy production, distribution, and use have traditionally been analyzed by supply sector, yet such analyses cannot capture the complex interplay of technology, economics, public policy, and environmental concerns…

  18. Microbial xylanases: engineering, production and industrial applications.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications.

  19. Consolidation of the Uranium Production Industry

    SciTech Connect

    Beyer, C.M.

    1993-08-01

    As uranium prices fell from the record-high levels of the late 1970s, high-cost, unsubsidized producers the world over began to curtail operations or exit the uranium business entirely. Since 1980, the number of companies actively involved in uranium mining or exploration has decreased markedly. As this exodus has taken place, existing reserves and production operations have become consolidated in the hands of a shrinking number of producers. Some of these are large, vertically integrated nuclear fuel companies that adhere to a very long-term view of the uranium market. To that end, they continue to acquire reserves for that period when most analysts agree the uranium market will recover and prices will rebound to higher levels. For consumers, however, this consolidation of production and reserves into fewer hands could have serious implications in future years.

  20. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  1. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    SciTech Connect

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  2. Industry Efficiency and Total Factor Productivity Growth under Resources and Environmental Constraint in China

    PubMed Central

    Tao, Feng; Li, Ling; Xia, X. H.

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  3. Industry efficiency and total factor productivity growth under resources and environmental constraint in China.

    PubMed

    Tao, Feng; Li, Ling; Xia, X H

    2012-01-01

    The growth of China's industry has been seriously depending on energy and environment. This paper attempts to apply the directional distance function and the Luenberger productivity index to measure the environmental efficiency, environmental total factor productivity, and its components at the level of subindustry in China over the period from 1999 to 2009 while considering energy consumption and emission of pollutants. This paper also empirically examines the determinants of efficiency and productivity change. The major findings are as follows. Firstly, the main sources of environmental inefficiency of China's industry are the inefficiency of gross industrial output value, the excessive energy consumption, and pollutant emissions. Secondly, the highest growth rate of environmental total factor productivity among the three industrial categories is manufacturing, followed by mining, and production and supply of electricity, gas, and water. Thirdly, foreign direct investment, capital-labor ratio, ownership structure, energy consumption structure, and environmental regulation have varying degrees of effects on the environmental efficiency and environmental total factor productivity. PMID:23365517

  4. The U.S. Chemical Industry, the Products It Makes

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    This section of the annual report on the chemical industry presents data on these areas of chemical production: growth rates, man-made fibers; the 50 largest volume chemicals, major inorganics and organics, plastics, drugs, magnesium, and paint. Includes production figures for 1961, 1969, 1970, 1971 and percent change for 1970-71 and for 1961-71.…

  5. Video Production Curriculum Guide. Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Fish, Calvin

    This curriculum guide is intended to help instructors implement video production as a trade and industrial education course offering with communication skills woven into each unit. The guide is written for a double-period class, meeting 350 hours per year for two years. The first year is based on single camera production; the second year is based…

  6. Total Energy CMR Production

    SciTech Connect

    Friedrich, S; Kolagani, R M

    2008-08-11

    The following outlines the optimized pulsed laser deposition (PLD) procedure used to prepare Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} (NSMO) temperature sensors at Towson University (Prof. Rajeswari Kolagani) for the LCLS XTOD Total Energy Monitor. The samples have a sharp metal/insulator transition at T {approx} 200 K and are optimized for operation at T {approx} 180 K, where their sensitivity is the highest. These samples are epitaxial multilayer structures of Si/YSZ/CeO/NSMO, where these abbreviations are defined in table 1. In this heterostructure, YSZ serves as a buffer layer to prevent deleterious chemical reactions, and also serves to de-oxygenate the amorphous SiO{sub 2} surface layer to generate a crystalline template for epitaxy. CeO and BTO serve as template layers to minimize the effects of thermal and lattice mismatch strains, respectively. More details on the buffer and template layer scheme are included in the attached manuscript accepted for publication in Sensor Letters (G. Yong et al., 2008).

  7. Impact of recent energy legislation on the aluminum industry

    SciTech Connect

    Edelson, E.; Emery, J.G.; Hopp, W.J.; Kretz, A.L.

    1981-06-01

    This report examines the aluminum industry's technology in energy use and emissions control. Data on consumption and pollution levels are presented. A history of the aluminum industry in the Pacific Northwest, its role in providing power reserves, and how that role fits into the present power situation are given. The Northwest Power Act, the rates the industry will probably pay as a result of the Act, the implications of those rates to the industry, as well as the availability of federal power to the industry are discussed. Finally, the Act's effects on the relative competitiveness of the industry in both domestic and world markets are examined.

  8. Competition and product quality in the supermarket industry.

    PubMed

    Matsa, David A

    2011-01-01

    This article analyzes the effect of competition on a supermarket firm's incentive to provide product quality. In the supermarket industry, product availability is an important measure of quality. Using U.S. Consumer Price Index microdata to track inventory shortfalls, I find that stores facing more intense competition have fewer shortfalls. Competition from Walmart—the most significant shock to industry market structure in half a century—decreased shortfalls among large chains by about a third. The risk that customers will switch stores appears to provide competitors with a strong incentive to invest in product quality.

  9. US energy industry financial developments, 1993 third quarter

    SciTech Connect

    Not Available

    1993-12-01

    Based on information provided in 1993 third quarter financial disclosures, the average net income for 112 petroleum companies -- including 18 majors -- rose 13 percent between the third quarter of 1992 and the third quarter of 1993. The gain in overall petroleum income was derived from increases in refined product consumption and margins, which improved the profitability of downstream petroleum (refining, marketing and transport) operations. A 17-percent decline in crude oil prices led to reduced income for upstream (oil and gas exploration, development and production) operations. A 16-percent rise in natural gas wellhead prices only partially offset the negative effects of low crude oil prices. Electric utilities also reported improved financial results for the third quarter of 1993 as hotter summer temperatures relative to the year-earlier quarter helped boost air conditioning demand and overall electricity usage. The following points highlight third-quarter energy industry financial developments: (1) Refined product demand and margins lift downstream earnings. Petroleum product consumption rose 2 percent between the third quarter of 1992 and the third quarter of 1993. Although petroleum product prices declined in the most recent reporting period, they did not decline as much as crude oil input prices. As a consequence, refined product margins widened. (2) Lower crude oil prices reduce upstream earnings. Crude oil prices fell 17 percent between the third quarter of 1992 and the third quarter of 1993 leading to a substantial reduction in income for the major petroleum companies` upstream operations. (3) Drilling income rises with increased North American exploratory activity.

  10. Developing an energy efficiency service industry in Shanghai

    SciTech Connect

    Lin, Jiang; Goldman, Charles; Levine, Mark; Hopper, Nicole

    2004-02-10

    The rapid development of the Chinese economy over the past two decades has led to significant growth in China's energy consumption and greenhouse gas (GHG) emissions. Between 1980 and 2000, China's energy consumption more than doubled from 602 million to 1.3 billion tons of coal-equivalent (NBS, 2003). In 2000, China's GHG emissions were about 12% of the global total, ranked second behind only the US. According to the latest national development plan issued by the Chinese government, China's energy demand is likely to double again by 2020 (DRC, 2004), based on a quadrupling of its gross domestic product (GDP). The objectives of the national development plan imply that China needs to significantly raise the energy efficiency of its economy, i.e., cutting the energy intensity of its economy by half. Such goals are extremely ambitious, but not infeasible. China has achieved such reductions in the past, and its current overall level of energy efficiency remains far behind those observed in other developed economies. However, challenges remain whether China can put together an appropriate policy framework and the institutions needed to improve the energy efficiency of its economy under a more market-based economy today. Shanghai, located at the heart of the Yangtze River Delta, is the most dynamic economic and financial center in the booming Chinese economy. With 1% of Chinese population (13 million inhabitants), its GDP in 2000 stood at 455 billion RMB yuan (5% of the national total), with an annual growth rate of 12%--much higher than the national average. It is a major destination for foreign as well as Chinese domestic investment. In 2003, Shanghai absorbed 10% of actual foreign investment in all China (''Economist'', January 17-23, 2004). Construction in Shanghai continues at a breakneck pace, with an annual addition of approximately 200 million square foot of residential property and 100 million square foot of commercial and industrial space over the last 5 years

  11. Work environment and production development in Swedish manufacturing industry.

    PubMed

    Johansson, Bo

    2010-01-01

    Swedish manufacturing industry has previous held a leading position regarding the development of attractive industrial work environments, but increasing market competition has changed the possibilities to maintain the position. The purpose of this literature study is therefore to describe and analyze how Swedish manufacturing industry manages work environment and production development in the new millennium. The description and analysis is based on recently reported Swedish research and development. The gathered picture of how production systems generally are developed in Sweden strongly contrasts against the idealized theoretical and legal view of how production systems should be developed. Even if some of the researchers' and authorities' ambitions and demands may seem unrealistically high today, there still is a very large potential for improving the processes and tools for designing production systems and work environment. PMID:20828493

  12. Work environment and production development in Swedish manufacturing industry.

    PubMed

    Johansson, Bo

    2010-01-01

    Swedish manufacturing industry has previous held a leading position regarding the development of attractive industrial work environments, but increasing market competition has changed the possibilities to maintain the position. The purpose of this literature study is therefore to describe and analyze how Swedish manufacturing industry manages work environment and production development in the new millennium. The description and analysis is based on recently reported Swedish research and development. The gathered picture of how production systems generally are developed in Sweden strongly contrasts against the idealized theoretical and legal view of how production systems should be developed. Even if some of the researchers' and authorities' ambitions and demands may seem unrealistically high today, there still is a very large potential for improving the processes and tools for designing production systems and work environment.

  13. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.

    PubMed

    Moomaw, William R

    2002-03-01

    Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants. PMID:12078008

  14. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.

    PubMed

    Moomaw, William R

    2002-03-01

    Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants.

  15. Refractories for Industrial Processing. Opportunities for Improved Energy Efficiency

    SciTech Connect

    Hemrick, James G.; Hayden, H. Wayne; Angelini, Peter; Moore, Robert E.; Headrick, William L.

    2005-01-01

    Refractories are a class of materials of critical importance to manufacturing industries with high-temperature unit processes. This study describes industrial refractory applications and identifies refractory performance barriers to energy efficiency for processing. The report provides recommendations for R&D pathways leading to improved refractories for energy-efficient manufacturing and processing.

  16. Summary of current state industrial energy conservation programs

    SciTech Connect

    Anderson, R.W.; Evans, A.R.; Grogan, P.J.

    1980-05-01

    A preliminary study of industrial energy conservation measures initiated by states under the State Energy Conservation Program is presented. Elements, targets, and administration of state programs are briefly examined. As the results of the study indicate, the states perceive the need for Federal assistance in programs to: establish a forum for coordination of state programs and interchange of approaches and program materials; provide to state offices direct technical assistance, including specific program information, training materials and manuals directed toward specific industries, and an energy accounting methodology; promote national industrial energy conservation measures; develop methods for providing financial assistance to companies, especially small business, for incorporating energy conserving measures; devise a plan for coordinating the state energy-related regulatory activities; and disseminate information on Federal programs and regulations that may impact energy-related decisions at the state level and within private industry.

  17. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  18. World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

    SciTech Connect

    Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina; Zhou, Nan

    2007-06-05

    "World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.

  19. Pulp and Paper Industry Energy Bandwidth Study

    SciTech Connect

    none,

    2006-08-01

    The study provides energy estimates for the following four cases: current average mill energy consumption, state-of-the-art art mill energy consumption, mill energy consumption if advanced technologies requiring further R&D were employed, and theoretical minimum mill energy consumption.

  20. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-09-30

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. The original project objectives had to be modified as a result of DOE funding cuts, the Biomass Program did not receive adequate funding to fully fund its selected projects. Nonetheless, effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. PI Dorgan taught one of the newly developed classes will in the Fall 2006, after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revisions. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the

  1. Multidisciplinary Graduate Curriculum in Support of the Biobased Products Industry

    SciTech Connect

    John R. Dorgan

    2005-07-31

    The project had a dominant education component. The project involved revising curriculum to educate traditional engineering students in the emerging field of industrial biotechnology. New classes were developed and offered. As a result, the curriculum of the Colorado School of Mines was expanded to include new content. Roughly 100 undergraduates and about 10 graduate students each year benefit from this curricular expansion. The research associated with this project consisted of developing new materials and energy sources from renewable resources. Several significant advances were made, most importantly the heat distortion temperature of polylactide (PLA) was increased through the addition of cellulosic nanowhiskers. The resulting ecobionanocomposites have superior properties which enable the use of renewable resource based plastics in a variety of new applications. Significant amounts of petroleum are thereby saved and considerable environmental benefits also result. Effectiveness and economic feasibility of the project proved excellent. The educational activities are continuing in a sustainable fashion, now being supported by tuition revenues and the normal budgeting of the University. The PI will be teaching one of the newly developed classes will next Fall (Fall 2006), after the close of the DOE grant, and again repeatedly into the future. Now established, the curriculum in biobased products and energy will grow and evolve through regular teaching and revision. On the research side, the new plastic materials appear economically feasible and a new collaboration between the PI’s group and Sealed Air, a major food-packaging manufacturer, has been established to bring the new green plastics to market. Public benefits of the project are noteworthy in many respects. These include the development of a better educated workforce and citizenry capable of providing technological innovation as a means of growing the economy and providing jobs. In particular, the

  2. Hydrogen production from solar energy

    NASA Technical Reports Server (NTRS)

    Eisenstadt, M. M.; Cox, K. E.

    1975-01-01

    Three alternatives for hydrogen production from solar energy have been analyzed on both efficiency and economic grounds. The analysis shows that the alternative using solar energy followed by thermochemical decomposition of water to produce hydrogen is the optimum one. The other schemes considered were the direct conversion of solar energy to electricity by silicon cells and water electrolysis, and the use of solar energy to power a vapor cycle followed by electrical generation and electrolysis. The capital cost of hydrogen via the thermochemical alternative was estimated at $575/kW of hydrogen output or $3.15/million Btu. Although this cost appears high when compared with hydrogen from other primary energy sources or from fossil fuel, environmental and social costs which favor solar energy may prove this scheme feasible in the future.

  3. Development of a performance-based industrial energy efficiency indicator for cement manufacturing plants.

    SciTech Connect

    Boyd, G.; Decision and Information Sciences

    2006-07-21

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing the plant performance with that of similar plants in the same industry. Manufacturing plants can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the cement manufacturing industry to provide a plant-level indicator of energy efficiency for assembly plants that produce a variety of products, including Portland cement and other specialty cement products, in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for cement manufacturing plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  4. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  5. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie; Nimbalkar, Sachin U; Cox, Daryl

    2013-01-01

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  6. Opportunity knocks - the sustainable energy industry and climate change

    SciTech Connect

    Price, B.; Keegan, P.

    1997-12-31

    Climate change mitigation, if intelligently undertaken, can stimulate economic growth. The main tools available for this task are energy efficiency, renewable energy, and clean energy technologies and services, which are collectively known as sustainable energy. To unleash this potential, the US and other governments need the full cooperation of the sustainable energy industry. This industry knows more than most other about turning energy-related pollution prevention into profits. If engaged, they can help: (1) Identify the economic benefits of greenhouse gas mitigation; (2) Identify barriers to the implementation of greenhouse gas mitigation projects; (3) Develop policies and measures to overcome these barriers; and (4) Implement greenhouse gas mitigation projects. 7 refs.

  7. Xanthophyllomyces dendrorhous for the industrial production of astaxanthin.

    PubMed

    Rodríguez-Sáiz, Marta; de la Fuente, Juan Luis; Barredo, José Luis

    2010-10-01

    Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin). PMID:20711573

  8. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;

    SciTech Connect

    Not Available

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  9. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations

    SciTech Connect

    2006-04-01

    DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

  10. Wave energy and intertidal productivity

    PubMed Central

    Leigh, Egbert G.; Paine, Robert T.; Quinn, James F.; Suchanek, Thomas H.

    1987-01-01

    In the northeastern Pacific, intertidal zones of the most wave-beaten shores receive more energy from breaking waves than from the sun. Despite severe mortality from winter storms, communities at some wave-beaten sites produce an extraordinary quantity of dry matter per unit area of shore per year. At wave-beaten sites of Tatoosh Island, WA, sea palms, Postelsia palmaeformis, can produce > 10 kg of dry matter, or 1.5 × 108 J, per m2 in a good year. Extraordinarily productive organisms such as Postelsia are restricted to wave-beaten sites. Intertidal organisms cannot transform wave energy into chemical energy, as photosynthetic plants transform solar energy, nor can intertidal organisms “harness” wave energy. Nonetheless, wave energy enhances the productivity of intertidal organisms. On exposed shores, waves increase the capacity of resident algae to acquire nutrients and use sunlight, augment the competitive ability of productive organisms, and protect intertidal residents by knocking away their enemies or preventing them from feeding. PMID:16593813

  11. Process models: analytical tools for managing industrial energy systems

    SciTech Connect

    Howe, S O; Pilati, D A; Balzer, C; Sparrow, F T

    1980-01-01

    How the process models developed at BNL are used to analyze industrial energy systems is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for managing industrial energy systems.

  12. Particle production at collider energies

    SciTech Connect

    Geich-Gimbel, C. )

    1989-01-01

    High energy particle physics, which has been trying to understand and to devise new laws governing nature at per particle energies far beyond everyday energies, has entered a new episode. Having surpassed the low energy regime, where (s channel) resonance production dominantly projects onto the final state, very interesting features of the strong interaction arose at c.m. energies in the tens of GEV range, as found at the CERN Intersecting Storage Rings (ISR). One recalls the onset of hard scattering processes, which was understood as a scattering between constituents of the nucleon, hence supporting the Quark Parton Model (QPM). Surprisingly enough the total cross section started to rise again, when it was initially believed to have reached a constant value, suggesting an asymptotia. Furthermore correlations among the final state particles produced were observed, and especially long range correlations, which must reflect dynamical laws.

  13. U.S. Ethanol Industry Production Capacity Outlook: Update of 2001 Survey Results

    SciTech Connect

    MaDonald, Tom; Yowell, Gary; McCormack, Mike

    2002-07-18

    California Energy Commission staff conducted a survey of the U.S. ethanol industry between May and August 2001. This survey was designed to develop a complete and accurate inventory of the country’s existing and planned ethanol production capacity during the period California is looking to increase its use of ethanol as a substitute for the gasoline additive MTBE.

  14. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization

    NASA Astrophysics Data System (ADS)

    Ji, Xi; Chen, Zhanming; Li, Jinkai

    2014-03-01

    Cities are the main material processors associated with industrialization. The development of urban production based on fossil fuels is the major contributor to the rise of greenhouse gas density, and to global warming. The concept of urban industrial structure optimization is considered to be a solution to urban sustainable development and global climate issues. Enforcing energy conservation and reducing carbon emissions are playing key roles in addressing these issues. As such, quantitative accounting and the evaluation of energy consumption and corresponding carbon emissions, which are by-products of urban production, are critical, in order to discover potential opportunities to save energy and to reduce emissions. Conventional evaluation indicators, such as "energy consumption per unit output value" and "emissions per unit output value", are concerned with immediate consumptions and emissions; while the indirect consumptions and emissions that occur throughout the supply chain are ignored. This does not support the optimization of the overall urban industrial system. To present a systematic evaluation framework for cities, this study constructs new evaluation indicators, based on the concepts of "embodied energy" and "embodied carbon emissions", which take both the immediate and indirect effects of energy consumption and emissions into account. Taking Beijing as a case, conventional evaluation indicators are compared with the newly constructed ones. Results show that the energy consumption and emissions of urban industries are represented better by the new indicators than by conventional indicators, and provide useful information for urban industrial structure optimization.

  15. Production of Energy Efficient Preform Structures (PEEPS)

    SciTech Connect

    Dr. John A. Baumann

    2012-06-08

    Due to its low density, good structural characteristics, excellent fabrication properties, and attractive appearance, aluminum metal and its alloys continue to be widely utilized. The transportation industry continues to be the largest consumer of aluminum products, with aerospace as the principal driver for this use. Boeing has long been the largest single company consumer of heat-treated aluminum in the U.S. The extensive use of aluminum to build aircraft and launch vehicles has been sustained, despite the growing reliance on more structurally efficient carbon fiber reinforced composite materials. The trend in the aerospace industry over the past several decades has been to rely extensively on large, complex, thin-walled, monolithic machined structural components, which are fabricated from heavy billets and thick plate using high speed machining. The use of these high buy-to-fly ratio starting product forms, while currently cost effective, is energy inefficient, with a high environmental impact. The widespread implementation of Solid State Joining (SSJ) technologies, to produce lower buy-to-fly ratio starting forms, tailored to each specific application, offers the potential for a more sustainable manufacturing strategy, which would consume less energy, require less material, and reduce material and manufacturing costs. One objective of this project was to project the energy benefits of using SSJ techniques to produce high-performance aluminum structures if implemented in the production of the world fleet of commercial aircraft. A further objective was to produce an energy consumption prediction model, capable of calculating the total energy consumption, solid waste burden, acidification potential, and CO2 burden in producing a starting product form - whether by conventional or SSJ processes - and machining that to a final part configuration. The model needed to be capable of computing and comparing, on an individual part/geometry basis, multiple possible

  16. Potential utilization of guar gum industrial waste in vermicompost production.

    PubMed

    Suthar, Surendra

    2006-12-01

    Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.

  17. Expanding the Pool of Federal Policy Options to Promote Industrial Energy Efficiency

    SciTech Connect

    Brown, Dr. Marilyn Ann; Cox, Matthew; Jackson, Roderick K; Lapsa, Melissa Voss

    2011-01-01

    Improving the energy efficiency of industry is essential for maintaining the viability of domestic manufacturing, especially in a world economy where production is shifting to low-cost, less regulated developing countries. Numerous studies have shown the potential for significant cost-effective energy-savings in U.S. industries, but the realization of this potential is hindered by regulatory, information, workforce, and financial obstacles. This report evaluates seven federal policy options aimed at improving the energy efficiency of industry, grounded in an understanding of industrial decision-making and the barriers to efficiency improvements. Detailed analysis employs the Georgia Institute of Technology's version of the National Energy Modeling System and spreadsheet calculations, generating a series of benefit/cost metrics spanning private and public costs and energy bill savings, as well as air pollution benefits and the social cost of carbon. Two of the policies would address regulatory hurdles (Output-Based Emissions Standards and a federal Energy Portfolio Standard with Combined Heat and Power); three would help to fill information gaps and workforce training needs (the Superior Energy Performance program, Implementation Support Services, and a Small Firm Energy Management program); and two would tackle financial barriers (Tax Lien Financing and Energy-Efficient Industrial Motor Rebates). The social benefit-cost ratios of these policies appear to be highly favorable based on a range of plausible assumptions. Each of the seven policy options has an appropriate federal role, broad applicability across industries, utilizes readily available technologies, and all are administratively feasible.

  18. The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry

    SciTech Connect

    Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

    2006-05-01

    For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

  19. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  20. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    PubMed

    Dale, Michael; Benson, Sally M

    2013-04-01

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  1. Industry Immersion for Reading and Mathematics Improvement. Valley Products Company.

    ERIC Educational Resources Information Center

    Jones, Paul L.; And Others

    An intensive industry immersion program of reading and mathematics was conducted in Spring 1989 for employees at Valley Products, Inc., in a cooperative venture by the Literacy Foundation, Memphis, the Memphis City Schools Adult Education Program, and the company. Employee participants were assessed with the San Diego Quick Assessment Test to…

  2. Pennsylvania's Energy Curriculum for the Secondary Grades: Industrial Arts.

    ERIC Educational Resources Information Center

    Wighaman, Paul F.; Zimmerman, Earl R.

    Compiled in this guide are 23 previously published documents for use by secondary school industrial arts teachers who want to incorporate energy studies into their curricula. Over half of the entries describe energy-related projects such as fireplaces, solar water heaters, and solar ovens. Other materials presented address the place of energy in…

  3. Solar energy and the aeronautics industry

    NASA Astrophysics Data System (ADS)

    Benedek, L.

    1985-11-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  4. Solar energy and the aeronautics industry. Thesis

    NASA Technical Reports Server (NTRS)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  5. Electrical/Electronic Technology (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for an electrical/electronic technology course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a…

  6. Energy-Efficiency Improvement Opportunities for the Textile Industry

    SciTech Connect

    China Energy Group; Hasanbeigi, Ali

    2010-09-29

    The textile industry is one of the most complicated manufacturing industries because it is a fragmented and heterogeneous sector dominated by small and medium enterprises (SMEs). Energy is one of the main cost factors in the textile industry. Especially in times of high energy price volatility, improving energy efficiency should be a primary concern for textile plants. There are various energy-efficiency opportunities that exist in every textile plant, many of which are cost-effective. However, even cost-effective options often are not implemented in textile plants mostly because of limited information on how to implement energy-efficiency measures, especially given the fact that a majority of textile plants are categorized as SMEs and hence they have limited resources to acquire this information. Know-how on energy-efficiency technologies and practices should, therefore, be prepared and disseminated to textile plants. This guidebook provides information on energy-efficiency technologies and measures applicable to the textile industry. The guidebook includes case studies from textile plants around the world and includes energy savings and cost information when available. First, the guidebook gives a brief overview of the textile industry around the world, with an explanation of major textile processes. An analysis of the type and the share of energy used in different textile processes is also included in the guidebook. Subsequently, energy-efficiency improvement opportunities available within some of the major textile sub-sectors are given with a brief explanation of each measure. The conclusion includes a short section dedicated to highlighting a few emerging technologies in the textile industry as well as the potential for the use of renewable energy in the textile industry.

  7. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  8. Industrial water demand management and cleaner production potential: a case of three industries in Bulawayo, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Gumbo, Bekithemba; Mlilo, Sipho; Broome, Jeff; Lumbroso, Darren

    The combination of water demand management and cleaner production concepts have resulted in both economical and ecological benefits. The biggest challenge for developing countries is how to retrofit the industrial processes, which at times are based on obsolete technology, within financial, institutional and legal constraints. Processes in closed circuits can reduce water intake substantially and minimise resource input and the subsequent waste thereby reducing pollution of finite fresh water resources. Three industries were studied in Bulawayo, Zimbabwe to identify potential opportunities for reducing water intake and material usage and minimising waste. The industries comprised of a wire galvanising company, soft drink manufacturing and sugar refining industry. The results show that the wire galvanising industry could save up to 17% of water by recycling hot quench water through a cooling system. The industry can eliminate by substitution the use of toxic materials, namely lead and ammonium chloride and reduce the use of hydrochloric acid by half through using an induction heating chamber instead of lead during the annealing step. For the soft drink manufacturing industry water intake could be reduced by 5% through recycling filter-backwash water via the water treatment plant. Use of the pig system could save approximately 12 m 3/month of syrup and help reduce trade effluent fees by Z30/m 3 of “soft drink”. Use of a heat exchanger system in the sugar refining industry can reduce water intake by approximately 57 m 3/100 t “raw sugar” effluent volume by about 28 m 3/100 t “raw sugar”. The water charges would effectively be reduced by 52% and trade effluent fees by Z3384/100 t “raw sugar” (57%). Proper equipment selection, equipment modification and good house-keeping procedures could further help industries reduce water intake and minimise waste.

  9. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  10. World Energy Projection System Plus Model Documentation: Industrial Model

    EIA Publications

    2016-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. World Energy Projection System Plus Model Documentation: Industrial Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) World Industrial Model (WIM). It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  12. Energy end-use model of the Jordanian SMES industries

    NASA Astrophysics Data System (ADS)

    Al-Bashir, Adnan; Al-Ghandoor, Ahmed; Abdallat, Yousef; Al-Hadethi, Rami

    2012-11-01

    In this paper, an energy end-use model of the Jordanian SMEs industries is presented. The industrial sector in Jordan consumes about 23% of the country's total energy. To establish the end-use model, a survey covering 150 facilities of different types of industries was conducted. The results show that the main electricity end-use consumers are electrical motors with a share of 55% of the total electricity consumption. On the other hand, fossil fuel is mainly used for hot water and steam generation with diesel fuel as a dominant fuel. The results of the study can be considered as an insight into the energy usage pattern of the Jordanian industrial sector for the policy maker. Furthermore, the results could provide important guidelines and insights for future research and development allocations and energy projects.

  13. Industrial Energy Conservation, Forced Internal Recirculation Burner

    SciTech Connect

    Joseph Rabovitser

    2003-06-19

    The overall objective of this research project is to develop and evaluate an industrial low NOx burner for existing and new gas-fired combustion systems for intermediate temperature (1400 degree to 2000 degree F) industrial heating devices such as watertube boilers and process fluid heaters. A multi-phase effort is being pursued with decision points to determine advisability of continuance. The current contract over Phases II and III of this work. The objectives of each phase are as follows. Phase II - to design, fabricate, and evaluate prototype burners based on the Forced Internal Recirculation (FIR) concept. Phase III - to evaluate the performance of an FIR burner under actual operating conditions in a full-scale field test and establish the performance necessary for subsequent commercialization

  14. Design and industrial production of frequency standards in the USSR

    NASA Technical Reports Server (NTRS)

    Demidov, Nikolai A.; Uljanov, Adolph A.

    1990-01-01

    Some aspects of research development and production of quantum frequency standards, carried out in QUARTZ Research and Production Association (RPA), Gorky, U.S.S.R., were investigated for the last 25 to 30 years. During this period a number of rubidium and hydrogen frequency standards, based on the active maser, were developed and put into production. The first industrial model of a passive hydrogen maser was designed in the last years. Besides frequency standards for a wide application range, RPA QUARTZ investigates metrological frequency standards--cesium standards with cavity length 1.9 m and hydrogen masers with a flexible storage bulb.

  15. Industrial energy use, annual report for 1979 - 1980

    NASA Astrophysics Data System (ADS)

    Lerner, M. O.; Kothari, V. S.; Sarin, A.; Hauth, D. C.; Kaplan, C. P.

    1982-01-01

    Results of a study covering major energy-intensive industries to identify areas with high potentials for improvement in the efficiency of industrial gas use are given. About 85 percent of all natural gas used in industrial process heaters is accounted for in the seven industries which are primary metals (iron and steel, aluminum), stone, clay and glass, petroleum, chemicals, food, textiles, and paper. The study proceeded in four major steps. In step 1, the most recent industrial fuel use data was collected, checked, and disaggregated by process, furnace, and fuel type using five national energy consumption data bases. In Step 2, efficiency and heat distribution for 40 furnaces were determined using energy and material balances. In Step 3, discussions were held with industry representatives to obtain feedback on the study's findings relating to current and future uses of alternate energy sources and promising conservation options which are available or under development. In Step 4, quantitative data on total energy use and typical furnace efficiency were incorporated with qualitative information on future fuel use trends, future changes in process/furnace mix, etc., to identify areas where maximum gains in energy efficiency could occur.

  16. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  17. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  18. Greening Industrial Production through Waste Recovery: "Comprehensive Utilization of Resources" in China.

    PubMed

    Zhu, Junming; Chertow, Marian R

    2016-03-01

    Using nonhazardous wastes as inputs to production creates environmental benefits by avoiding disposal impacts, mitigating manufacturing impacts, and conserving virgin resources. China has incentivized reuse since the 1980s through the "Comprehensive Utilization of Resources (CUR)" policy. To test whether and to what extent environmental benefits are generated, 862 instances in Jiangsu, China are analyzed, representing eight industrial sectors and 25 products that qualified for tax relief through CUR. Benefits are determined by comparing life cycle inventories for the same product from baseline and CUR-certified production, adjusted for any difference in the use phase. More than 50 million tonnes of solid wastes were reused, equivalent to 51% of the provincial industrial total. Benefits included reduction of 161 petajoules of energy, 23 million tonnes of CO2 equivalent, 75 000 tonnes of SO2 equivalent, 33 000 tonnes of NOX, and 28 000 tonnes of PM10 equivalent, which were 2.5%-7.3% of the provincial industrial consumption and emissions. The benefits vary substantially across industries, among products within the same industry, and when comparing alternative reuse processes for the same waste. This first assessment of CUR results shows that CUR has established a firm foundation for a circular economy, but also suggest additional opportunities to refine incentives under CUR to increase environmental gain. PMID:26789437

  19. Greening Industrial Production through Waste Recovery: "Comprehensive Utilization of Resources" in China.

    PubMed

    Zhu, Junming; Chertow, Marian R

    2016-03-01

    Using nonhazardous wastes as inputs to production creates environmental benefits by avoiding disposal impacts, mitigating manufacturing impacts, and conserving virgin resources. China has incentivized reuse since the 1980s through the "Comprehensive Utilization of Resources (CUR)" policy. To test whether and to what extent environmental benefits are generated, 862 instances in Jiangsu, China are analyzed, representing eight industrial sectors and 25 products that qualified for tax relief through CUR. Benefits are determined by comparing life cycle inventories for the same product from baseline and CUR-certified production, adjusted for any difference in the use phase. More than 50 million tonnes of solid wastes were reused, equivalent to 51% of the provincial industrial total. Benefits included reduction of 161 petajoules of energy, 23 million tonnes of CO2 equivalent, 75 000 tonnes of SO2 equivalent, 33 000 tonnes of NOX, and 28 000 tonnes of PM10 equivalent, which were 2.5%-7.3% of the provincial industrial consumption and emissions. The benefits vary substantially across industries, among products within the same industry, and when comparing alternative reuse processes for the same waste. This first assessment of CUR results shows that CUR has established a firm foundation for a circular economy, but also suggest additional opportunities to refine incentives under CUR to increase environmental gain.

  20. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  1. Energy conservation: Industry. Citations from the NITS data base

    NASA Astrophysics Data System (ADS)

    Hundemann, A. S.

    1980-07-01

    The 335 citations, 37 of which are new entries, discuss potential methods of conserving energy. Many abstracts deal with reports that also cover processes used, amount of energy consumed, and environmental considerations of energy conserving options. Industries covered include food, paper, chemical, cement, metals, petroleum refining, contract construction, synthetic rubber, plastics, drug manufacturing, and stone, clay, and glass. Energy conservation through the use of waste heat is covered in a related Published Search entitled Waste Heat Utilization.

  2. Products Depend on Creative Potential: A Comment on the Productivist Industrial Model of Knowledge Production

    ERIC Educational Resources Information Center

    Runco, Mark A.

    2010-01-01

    Ghassib (2010) presents a provocative view of science as industry. He ties science specifically to a "productivist" industrial model and to knowledge production. If judged based on what is explicit in this article, his theory is useful and logical. There are, however, several concerns as well. Some of these are implied by the title of his article,…

  3. Prospects and challenges for industrial production of seaweed bioactives.

    PubMed

    Hafting, Jeff T; Craigie, James S; Stengel, Dagmar B; Loureiro, Rafael R; Buschmann, Alejandro H; Yarish, Charles; Edwards, Maeve D; Critchley, Alan T

    2015-10-01

    Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products.

  4. Prospects and challenges for industrial production of seaweed bioactives.

    PubMed

    Hafting, Jeff T; Craigie, James S; Stengel, Dagmar B; Loureiro, Rafael R; Buschmann, Alejandro H; Yarish, Charles; Edwards, Maeve D; Critchley, Alan T

    2015-10-01

    Large-scale seaweed cultivation has been instrumental in globalizing the seaweed industry since the 1950s. The domestication of seaweed cultivars (begun in the 1940s) ended the reliance on natural cycles of raw material availability for some species, with efforts driven by consumer demands that far exceeded the available supplies. Currently, seaweed cultivation is unrivaled in mariculture with 94% of annual seaweed biomass utilized globally being derived from cultivated sources. In the last decade, research has confirmed seaweeds as rich sources of potentially valuable, health-promoting compounds. Most existing seaweed cultivars and current cultivation techniques have been developed for producing commoditized biomass, and may not necessarily be optimized for the production of valuable bioactive compounds. The future of the seaweed industry will include the development of high value markets for functional foods, cosmeceuticals, nutraceuticals, and pharmaceuticals. Entry into these markets will require a level of standardization, efficacy, and traceability that has not previously been demanded of seaweed products. Both internal concentrations and composition of bioactive compounds can fluctuate seasonally, geographically, bathymetrically, and according to genetic variability even within individual species, especially where life history stages can be important. History shows that successful expansion of seaweed products into new markets requires the cultivation of domesticated seaweed cultivars. Demands of an evolving new industry based upon efficacy and standardization will require the selection of improved cultivars, the domestication of new species, and a refinement of existing cultivation techniques to improve quality control and traceability of products. PMID:26986880

  5. Industrialization, energy efficiency and environmental protection in Asian industrializing countries: The role of technological change

    SciTech Connect

    Chen, X.

    1995-06-01

    Rapid industrialization in many Asian developing countries has caused an explosive growth in energy consumption and an unsustainable environmental pressure: local water and atmospheric pollution are compromising the results of economic growth with health and ecological destruction, whereas increasing emission of greenhouse gases contributes to the global climate change. The key question is how to orient this industrialization process toward a more energy efficient and environmentally sound direction in order to avoid the errors made by the present day developed countries during their industrialization period. Rapid uptake of technological innovation, fostered by a high turnover of the capital stock and a strong trade orientation, and advantages as latecomers in the industrialization process may help these countries to adopt the latest available technologies in the form of clean process innovations, thus ``leap-frogging`` some of the problems associated with industrialization and avoiding many of the more serious environmental impacts of old technologies. This paper focuses its analysis on the role of technologic change in the greening of industrialization processes of Asian developing countries. After analyzing the technological causes of energy and environmental problems created by the rapid industrialization process in these Asian countries, the paper suggests that not only should the ``end-of-the-pipe`` cleaning technologies be widely promoted, but also the clean process innovations be encouraged, thus tackling the pollution problems in their roots.

  6. Heterologous laccase production and its role in industrial applications

    PubMed Central

    Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Sannia, Giovanni

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  7. Heterologous laccase production and its role in industrial applications.

    PubMed

    Piscitelli, Alessandra; Pezzella, Cinzia; Giardina, Paola; Faraco, Vincenza; Giovanni, Sannia

    2010-01-01

    Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry. PMID:21327057

  8. Food Production and the Energy Crisis

    ERIC Educational Resources Information Center

    And Others; Pimentel, David

    1973-01-01

    Analyzes the energy inputs in United States and green revolution crop production techniques, using corn as a typical crop. Examines the energy needs for a world food supply that depends on modern energy intensive agriculture, and considers alternatives in crop production technology which might reduce energy inputs in food production. (CC)

  9. An assessment of selected solar energy industry activities

    NASA Astrophysics Data System (ADS)

    Roessner, J. D.

    1980-11-01

    The past, present, and near-term conditions of four industries based on solar energy technologies are examined-solar heating; photovoltaics; concentrating solar collectors for process heat and electric power applications; and passive components such as skylights and greenhouses. The report identifies key, unresolved issues for government policies intended to influence future solar industrial development; assesses the past and current federal role in these industries; and draws tentative conclusions about how government policies have affected their evolution. This evolution is compared to the evolution of typical, innovation-based industries. For each of the four solar industries researched, the collected data are discussed as follows: characteristics of sales; the government role; investment strategies and R & D activities; near-term trends; and comparisons with other industries.

  10. New industrial heat pump applications to fructose production

    SciTech Connect

    Not Available

    1990-04-01

    An energy cost reduction study of the American Fructose Decatur,Inc. High Fructose Corn Syrup process has been completed. The objective was to find cost effective energy cost reduction projects and to develop a coherent strategy for realizing the savings. There are many possible options for reducing energy cost. To facilitate a fair comparison of the options, Pinch Technology was used to identify appropriate heat recovery, heat pumping and cogeneration options. Of particular interest were the opportunities for utilizing heat pumps, for energy cost reduction or other profit increasing uses. Therefore, where a heat pumping scheme was identified, its merits relative to other potential projects was carefully evaluated to ensure that the heat pump was technically and economically sound. It is felt that the results obtained in this study are applicable to other wet corn milling sites which include a refinery section, due to the similarity of processes throughout the industry. This study and others indicate that reductions in thermal energy consumption of 15--25% can be expected through increased heat recovery. Also, the use of MVR and thermocompression evaporators is appropriate and additional economically viable opportunities exist for using industrial heat pumps to increase even further the level of energy cost reduction achievable. 17 figs., 4 tabs.

  11. Technical analysis of the use of biomass for energy production

    NASA Astrophysics Data System (ADS)

    Spiewak, I.; Nichols, J. P.; Alvic, D.; Delene, J. G.; Fitzgerald, B. H.; Hightower, J. R.; Klepper, O. H.; Krummel, J. R.; Mills, J. B.

    1982-08-01

    Results of a technical and economic evaluation of the use of biomass for energy production are presented. Estimates are made of the current and projected production and uses of biomass in the forms of wood, crop residues, grass and herbage, special crops, and animal wastes in various sectors of the US energy market. These studies indicate that because of its higher-value uses, bulkiness, diffuseness, and high water content, biomass is generally not competitive with conventional energy sources and is expected to have only limited application for energy production in the major market sectors - including the commercial sector, manufacturing, transportation, and electric utilities. The use of biomass for energy production is increasing in the forest-products industry, in farm applications, and in home heating because it is readily available to those users.

  12. Efficiency in energy production and consumption

    NASA Astrophysics Data System (ADS)

    Kellogg, Ryan Mayer

    This dissertation deals with economic efficiency in the energy industry and consists of three parts. The first examines how joint experience between pairs of firms working together in oil and gas drilling improves productivity. Part two asks whether oil producers time their drilling optimally by taking real options effects into consideration. Finally, I investigate the efficiency with which energy is consumed, asking whether extending Daylight Saving Time (DST) reduces electricity use. The chapter "Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch" examines how oil production companies and the drilling rigs they hire improve drilling productivity by learning through joint experience. I find that the joint productivity of a lead firm and its drilling contractor is enhanced significantly as they accumulate experience working together. Moreover, this result is robust to other relationship specificities and standard firm-specific learning-by-doing effects. The second chapter, "Drill Now or Drill Later: The Effect of Expected Volatility on Investment," investigates the extent to which firms' drilling behavior accords with a key prescription of real options theory: irreversible investments such as drilling should be deferred when the expected volatility of the investments' payoffs increases. I combine detailed data on oil drilling with expectations of future oil price volatility that I derive from the NYMEX futures options market. Conditioning on expected price levels, I find that oil production companies significantly reduce the number of wells they drill when expected price volatility is high. I conclude with "Daylight Time and Energy: Evidence from an Australian Experiment," co-authored with Hendrik Wolff. This chapter assesses DST's impact on electricity demand using a quasi-experiment in which parts of Australia extended DST in 2000 to facilitate the Sydney Olympics. We show that the extension did not reduce overall

  13. Haiti: energy efficiency in the sugar and manufacturing industries

    SciTech Connect

    Streicher, A.

    1985-03-28

    A review of energy use in Haiti, aimed at identifying possible projects to complement current A.I.D. support for institution building and energy planning within the Ministry of Mines and Energy Resources (MMRE), is presented. Key findings are that: (1) the sugar and manufacturing industries rely heavily on biomass fuels - wood, charcoal, and bagasse (sugar cane residue); and (2) demand for commercial energy and for electricity is growing rapidly despite supply constraints. The report calls for A.I.D. to: initiate a program to reduce biomass consumption (which is causing severe soil erosion and deforestation), especially in the small distilleries called guildives; collaborate with MMRE and the World Bank to develop a detailed workplan to promote energy efficiency in the guildives, focusing on technology development; help MMRE and the private sector to project Haiti's industrial energy and electricity needs through the year 2000; and sponsor a program of energy audits and efficiency improvements in the manufacturing sector.

  14. State of the art of industrial waste energy recovery

    SciTech Connect

    Kiang, Y.H.

    1982-06-01

    Several possible methods for industrial heat recovery are surveyed in this paper. An industrial plant energy flow is shown schematically. The basic heat recovery systems treat waste fuel, flue gas, and drain water. In order to study the feasibility of waste energy recovery, an energy mapping study should be conducted. The energy map can then be scrambled, or ''cascaded.'' By cascading energy input, the waste energy can be minimized. Two approaches to recover energy from waste fuel are studied: direct combustion, and pyrolysis (both slagging and non-slagging). Refinery fired heaters, gas turbines, and dirty process gases are also mentioned. Low grade waste heat recovery, carried by drain water, is also an excellent heat source for greenhouses, and aquaculture.

  15. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  16. The Productivity Analysis of Chennai Automotive Industry Cluster

    NASA Astrophysics Data System (ADS)

    Bhaskaran, E.

    2014-07-01

    Chennai, also called the Detroit of India, is India's second fastest growing auto market and exports auto components and vehicles to US, Germany, Japan and Brazil. For inclusive growth and sustainable development, 250 auto component industries in Ambattur, Thirumalisai and Thirumudivakkam Industrial Estates located in Chennai have adopted the Cluster Development Approach called Automotive Component Cluster. The objective is to study the Value Chain, Correlation and Data Envelopment Analysis by determining technical efficiency, peer weights, input and output slacks of 100 auto component industries in three estates. The methodology adopted is using Data Envelopment Analysis of Output Oriented Banker Charnes Cooper model by taking net worth, fixed assets, employment as inputs and gross output as outputs. The non-zero represents the weights for efficient clusters. The higher slack obtained reveals the excess net worth, fixed assets, employment and shortage in gross output. To conclude, the variables are highly correlated and the inefficient industries should increase their gross output or decrease the fixed assets or employment. Moreover for sustainable development, the cluster should strengthen infrastructure, technology, procurement, production and marketing interrelationships to decrease costs and to increase productivity and efficiency to compete in the indigenous and export market.

  17. Energy Reporting Practices among Top Energy Intensive Industries in Malaysia

    NASA Astrophysics Data System (ADS)

    Tasrip, N. E.; Mat Husin, N.; Alrazi, B.

    2016-03-01

    This study content analyses the energy content in the corporate report of top 30 Malaysian energy-intensive companies. Motivated by the gap among prior corporate social responsibility and environmental reporting studies in respect of energy, this study provides evidence of Malaysian companies’ initiative to reduce energy consumption. While the evidence suggests that not all 30 companies have reported energy-related information, the findings provide an overview on the response of energy intensive companies in relation to Malaysian government initiatives on energy.

  18. Product differentiation, competition and prices in the retail gasoline industry

    NASA Astrophysics Data System (ADS)

    Manuszak, Mark David

    This thesis presents a series of studies of the retail gasoline industry using data from Hawaii. This first chapter examines a number of pricing patterns in the data and finds evidence that gasoline stations set prices which are consistent with a number of forms of price discrimination. The second chapter analyzes various patterns of cross-sectional, cross-market and intertemporal variation in the data to investigate their suitability for use in structural econometric estimation. The remainder of the dissertation consists of specification and estimation of a structural model of supply and demand for retail gasoline products sold at individual gasoline stations. This detailed micro-level analysis permits examination of a number of important issues in the industry, most notably the importance of spatial differentiation in the industry. The third chapter estimates the model and computes new equilibria under a number of asymmetric taxation regimes in order to examine the impact of such tax policies on producer and consumer welfare as well as tax revenue. The fourth chapter examines whether there is any evidence of tacitly collusive behavior in the Hawaiian retail gasoline industry and concludes that, in fact, conduct is fairly competitive in this industry and market.

  19. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  20. Methods for assessing the energy-saving efficiency of industrial symbiosis in industrial parks.

    PubMed

    Li, Wenfeng; Cui, Zhaojie; Han, Feng

    2015-01-01

    The available energy resources are being depleted worldwide. Industrial symbiosis (IS) provides a promising approach for increasing the efficiency of energy utilization, with numerous studies reporting the superiority of this technology. However, studies quantifying the energy-saving efficiency of IS remain insufficient. This paper proposes an index system for the quantitative evaluation of the energy-saving efficiency of IS. Both energy-saving and financial indexes were selected, the former include the IS energy-saving index, the contribution rate of energy saved through IS, fractional energy savings, and cut rate of energy consumption per total output value; and the latter include the IS investment payback period, IS input-output ratio, net present value (NPV), and internal rate of return (IRR) of IS. The proposed methods were applied to a case study on the XF Industrial Park (XF IP), in the city of Liaocheng in Shandong Province of China. Three energy-saving channels using IS were found in the XF IP: (a) utilizing the energy of high-temperature materials among industrial processes, (b) recovering waste heat and steam between different processes, and (c) saving energy by sharing infrastructures. The results showed that the energy efficiency index of IS was 0.326, accounting for 34.6% of the comprehensive energy-saving index in 2011, and the fractional energy-savings were 12.42%. The index of energy consumption per total industrial output value varied from 90.9 tce/MRMB to 51.6 tce/MRMB. Thus, the cut rate of energy consumption per total industrial output value was 43.42%. The average values of the IS input-output ratio was 406.2 RMB/tce, 57.2% lower than the price of standard coal. Static investment payback period in the XF IP was 8.5 months, indicating that the XF IP began to earn profit 8.5 months after the construction of all IS modes. The NVP and IRR of each IS mode in the XF IP were greater than zero, with average values equal to 1,789.96 MRMB and 140

  1. Energy use pattern in rice milling industries-a critical appraisal.

    PubMed

    Goyal, S K; Jogdand, S V; Agrawal, A K

    2014-11-01

    Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel. PMID:26396286

  2. Energy use pattern in rice milling industries-a critical appraisal.

    PubMed

    Goyal, S K; Jogdand, S V; Agrawal, A K

    2014-11-01

    Rice milling industry is one of the most energy consuming industries. Like capital, labour and material, energy is one of the production factors which used to produce final product. In economical term, energy is demand-derived goods and can be regarded as intermediate good whose demand depends on the demand of final product. This paper deals with various types of energy pattern used in rice milling industries viz., thermal energy, mechanical energy, electrical energy and human energy. The important utilities in a rice mill are water, air, steam, electricity and labour. In a rice mill some of the operations are done manually namely, cleaning, sun drying, feeding paddy to the bucket elevators, weighing and packaging, etc. So the man-hours are also included in energy accounting. Water is used for soaking and steam generation. Electricity is the main energy source for these rice mills and is imported form the state electricity board grids. Electricity is used to run motors, pumps, blowers, conveyors, fans, lights, etc. The variations in the consumption rate of energy through the use of utilities during processing must also accounted for final cost of the finished product. The paddy milling consumes significant quantity of fuels and electricity. The major energy consuming equipments in the rice milling units are; boilers and steam distribution, blowers, pumps, conveyers, elevators, motors, transmission systems, weighing, etc. Though, wide variety of technologies has been evolved for efficient use of energy for various equipments of rice mills, so far, only a few have improved their energy efficiency levels. Most of the rice mills use old and locally available technologies and are also completely dependent on locally available technical personnel.

  3. National Environmental/Energy Workforce Assessment: Business and Industry.

    ERIC Educational Resources Information Center

    National Field Research Center Inc., Iowa City, IA.

    This report presents an indication of existing workforce levels and career potentials for environmental/energy occupations within private industry. The study concerns itself with the environmental pollution control areas of air, noise, potable water, pesticides, radiation, solid waste, wastewater, and energy. The format includes an introduction to…

  4. Alternative Energy Curriculum for Trade and Industry Exploratory. Final Report.

    ERIC Educational Resources Information Center

    University of Central Arkansas, Conway.

    This study was a descriptive curriculum research project covering the development of learning packets on alternative energy. The purpose of the project was to improve instruction in trades and industry exploratory programs by providing alternative energy materials. It was anticipated that the use of a prepared learning package would facilitate the…

  5. Energy Matters: An invitation to Chat About Industrial Efficiency

    ScienceCinema

    Hogan, Kathleen

    2016-07-12

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  6. Energy Matters: An invitation to Chat About Industrial Efficiency

    SciTech Connect

    Hogan, Kathleen

    2011-01-01

    Do you have questions or ideas about how the U.S. Department of Energy can contribute to global competitiveness through industrial efficiency? Dr. Kathleen Hogan would like to hear them. Submit your questions via: Email ( newmedia@hq.doe.gov ) Twitter ( @Energy ) Facebook ( Facebook.com/Energygov ) **LIVE CHAT IS EXPIRED**

  7. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  8. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  9. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  10. Robust control charts in industrial production of olive oil

    NASA Astrophysics Data System (ADS)

    Grilo, Luís M.; Mateus, Dina M. R.; Alves, Ana C.; Grilo, Helena L.

    2014-10-01

    Acidity is one of the most important variables in the quality analysis and characterization of olive oil. During the industrial production we use individuals and moving range charts to monitor this variable, which is not always normal distributed. After a brief exploratory data analysis, where we use the bootstrap method, we construct control charts, before and after a Box-Cox transformation, and compare their robustness and performance.

  11. Nanotechnology for the Forest Products Industry Vision and Technology Roadmap

    SciTech Connect

    Atalla, Rajai; Beecher, James; Caron, Robert; Catchmark, Jeffrey; Deng, Yulin; Glasser, Wolfgang; Gray, Derek; Haigler, Candace; Jones, Philip; Joyce, Margaret; Kohlman, Jane; Koukoulas, Alexander; Lancaster, Peter; Perine, Lori; Rodriguez, Augusto; Ragauskas, Arthur; Wegner, Theodore; Zhu, Junyong

    2005-03-01

    A roadmap for Nanotechnology in the Forest Products Industries has been developed under the umbrella of the Agenda 2020 program overseen by the CTO committee. It is expected that the use of new analytical techniques and methodologies will allow us to understand the complex nature of wood based materials and allow the dramatically enhanced use of the major strategic asset the US has in renewable, recyclable resources based on its well managed Forests.

  12. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  13. The Department of Energy`s Solar Industrial Program: 1994 review

    SciTech Connect

    1995-03-01

    This is a report on DOE`s Solar Industrial Program. The topics of the report include an overview of the program, it`s participants and it`s objectives; solar detoxification--using solar energy to destroy environmental contaminants in air, water, and soil; solar process heat--generating industrial quantities of hot water, steam, and hot air from solar energy; and advanced processes--using concentrated solar energy to manufacture high-technology materials and develop new industrial processes.

  14. Semi industrial scale RVNRL preparation, products manufacturing and properties

    NASA Astrophysics Data System (ADS)

    Zin, Wan Manshol Bin W.

    1998-06-01

    Natural rubber latex vulcanisation by radiation aims towards the preparation of prevulcanised natural rubber latex in the name of RVNRL for use to produce chemical-free and environment-friendly latex products. Scale up RVNRL preparation is proven possible when a semi-commercial latex irradiator was commissioned in MINT in March 1996. The plant is designed to irradiate up to 6 000 cubic meters per annum of natural rubber latex. RVNRL has the required properties and successfully used on industrial scale production of quality gloves and balloons.

  15. Essays on Industry Response to Energy and Environmental Policy

    NASA Astrophysics Data System (ADS)

    Sweeney, Richard Leonard

    This dissertation consists of three essays on the relationship between firm incentives and energy and environmental policy outcomes. Chapters 1 and 2 study the impact of the 1990 Clean Air Act Amendments on the United States oil refining industry. This legislation imposed extensive restrictions on refined petroleum product markets, requiring select end users to purchase new cleaner versions of gasoline and diesel. In Chapter 2, I estimate the static impact of this intervention on refining costs, product prices and consumer welfare. Isolating these effects is complicated by several challenges likely to appear in other regulatory settings, including overlap between regulated and non-regulated markets and deviations from perfect competition. Using a rich database of refinery operations, I estimate a structural model that incorporates each of these dimensions, and then use this cost structure to simulate policy counterfactuals. I find that the policies increased gasoline production costs by 7 cents per gallon and diesel costs by 3 cents per gallon on average, although these costs varied considerably across refineries. As a result of these restrictions, consumers in regulated markets experienced welfare losses on the order of 3.7 billion per year, but this welfare loss was partially offset by gains of 1.5 billion dollars per year among consumers in markets not subject to regulation. The results highlight the importance of accounting for imperfect competition and market spillovers when assessing the cost of environmental regulation. Chapter 2 estimates the sunk costs incurred by United States oil refineries as a result of the low sulfur diesel program. The complex, regionally integrated nature of the industry poses many challenges for estimating these costs. I overcome them by placing the decision to invest in sulfur removal technology within the framework of a two period model and estimate the model using moment inequalities. I find that the regulation induced between 2

  16. Sugar Beet, Energy Beet, and Industrial Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris) is a temperate root crop grown primarily as a source of sucrose for human diets. Breeding has focused on sucrose yield, which is simply the product of total root yield times the proportion of sucrose in the harvested roots, minus loss of sucrose in molasses due to impuriti...

  17. Energy Conservation Projects to Benefit the Railroad Industry

    SciTech Connect

    Clifford Mirman; Promod Vohra

    2009-12-31

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. The team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction

  18. Food Safety Practices in the Egg Products Industry.

    PubMed

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations.

  19. Food Safety Practices in the Egg Products Industry.

    PubMed

    Viator, Catherine L; Cates, Sheryl C; Karns, Shawn A; Muth, Mary K; Noyes, Gary

    2016-07-01

    We conducted a national census survey of egg product plants (n = 57) to obtain information on the technological and food safety practices of the egg products industry and to assess changes in these practices from 2004 to 2014. The questionnaire asked about operational and sanitation practices, microbiological testing practices, food safety training for employees, other food safety issues, and plant characteristics. The findings suggest that improvements were made in the industry's use of food safety technologies and practices between 2004 and 2014. The percentage of plants using advanced pasteurization technology and an integrated, computerized processing system increased by almost 30 percentage points. Over 90% of plants voluntarily use a written hazard analysis and critical control point (HACCP) plan to address food safety for at least one production step. Further, 90% of plants have management employees who are trained in a written HACCP plan. Most plants (93%) conduct voluntary microbiological testing. The percentage of plants conducting this testing on egg products before pasteurization has increased by almost 30 percentage points since 2004. The survey findings identify strengths and weaknesses in egg product plants' food safety practices and can be used to guide regulatory policymaking and to conduct required regulatory impact analysis of potential regulations. PMID:27357041

  20. Diversity, Productivity, and Stability of an Industrial Microbial Ecosystem

    PubMed Central

    Tang, Pei-Zhong; Becker, Scott; Hoang, Tony; Bilgin, Damla; Lim, Yan Wei; Peterson, Todd C.; Mayfield, Stephen; Haerizadeh, Farzad; Shurin, Jonathan B.; Bafna, Vineet; McBride, Robert

    2016-01-01

    Managing ecosystems to maintain biodiversity may be one approach to ensuring their dynamic stability, productivity, and delivery of vital services. The applicability of this approach to industrial ecosystems that harness the metabolic activities of microbes has been proposed but has never been tested at relevant scales. We used a tag-sequencing approach with bacterial small subunit rRNA (16S) genes and eukaryotic internal transcribed spacer 2 (ITS2) to measuring the taxonomic composition and diversity of bacteria and eukaryotes in an open pond managed for bioenergy production by microalgae over a year. Periods of high eukaryotic diversity were associated with high and more-stable biomass productivity. In addition, bacterial diversity and eukaryotic diversity were inversely correlated over time, possibly due to their opposite responses to temperature. The results indicate that maintaining diverse communities may be essential to engineering stable and productive bioenergy ecosystems using microorganisms. PMID:26896141

  1. Water, energy, and farm production

    SciTech Connect

    Ulibarri, C.A.; Seely, H.S.; Willis, D.B.; Anderson, D.M.

    1996-04-01

    Electric utility rate deregulation can have disproportionate impacts on water-intensive crops, which have historically relied upon pressurized irrigation technologies and surface water resources. Based on a case study of agricultural growers in southern California, the paper models the impacts of utility rates considered in the Western Area Power Administration`s Sierra Nevada Customer Service Region. The study was performed as part of the 2004 Power Marketing Program Draft Environmental Impact Statement. The empirical results reflect linear-programming estimates of the income transfers from growers to energy providers based on county-wide coverage of 13 junior and senior irrigation districts and short-run production possibilities of 11 irrigated crops. Transfers of income from growers to energy suppliers occur through their losses in producer surplus.

  2. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    SciTech Connect

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  3. Management of old landfills by utilizing forest and energy industry waste flows.

    PubMed

    Niutanen, Ville; Korhonen, Jouni

    2002-05-01

    The lack of landfill capacity, forthcoming EU waste disposal and landfill management legislation and the use of non-renewable and energy intensive natural resources for the end-treatment of old landfills increase pressures to develop new landfill management methods. This paper considers a method for the end-management of old landfills in Finland, which is based on the utilization of forest and paper industry waste flows, wastes from paper recycling (de-inking) and wastes from forest industry energy production. Fibre clay wastes from paper mills, de-inking sludges from de-inking of recovered waste paper and incineration ash from forest industry power plants serve to substitute the use of natural clay for the building of landfill structures for closed landfills. Arguably, this method is preferable to existing practices of natural clay use for landfill building, because it (1) substitutes non-renewable natural clay, (2) consumes less energy and generates less CO2 emissions than the use of natural clay, and (3) eliminates considerable amounts of wastes from paper production, paper consumption and from forest industry energy production. Some difficulties in the application of the method are considered and the waste flow utilization is incorporated into a local forest industry recycling network. PMID:12173421

  4. Management of old landfills by utilizing forest and energy industry waste flows.

    PubMed

    Niutanen, Ville; Korhonen, Jouni

    2002-05-01

    The lack of landfill capacity, forthcoming EU waste disposal and landfill management legislation and the use of non-renewable and energy intensive natural resources for the end-treatment of old landfills increase pressures to develop new landfill management methods. This paper considers a method for the end-management of old landfills in Finland, which is based on the utilization of forest and paper industry waste flows, wastes from paper recycling (de-inking) and wastes from forest industry energy production. Fibre clay wastes from paper mills, de-inking sludges from de-inking of recovered waste paper and incineration ash from forest industry power plants serve to substitute the use of natural clay for the building of landfill structures for closed landfills. Arguably, this method is preferable to existing practices of natural clay use for landfill building, because it (1) substitutes non-renewable natural clay, (2) consumes less energy and generates less CO2 emissions than the use of natural clay, and (3) eliminates considerable amounts of wastes from paper production, paper consumption and from forest industry energy production. Some difficulties in the application of the method are considered and the waste flow utilization is incorporated into a local forest industry recycling network.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  6. Economic analysis of waste-to-energy industry in China.

    PubMed

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions.

  7. Economic analysis of waste-to-energy industry in China.

    PubMed

    Zhao, Xin-Gang; Jiang, Gui-Wu; Li, Ang; Wang, Ling

    2016-02-01

    The generation of municipal solid waste is further increasing in China with urbanization and improvement of living standards. The "12th five-year plan" period (2011-2015) promotes waste-to-energy technologies for the harmless disposal and recycling of municipal solid waste. Waste-to-energy plant plays an important role for reaching China's energy conservation and emission reduction targets. Industrial policies and market prospect of waste-to-energy industry are described. Technology, cost and benefit of waste-to-energy plant are also discussed. Based on an economic analysis of a waste-to-energy project in China (Return on Investment, Net Present Value, Internal Rate of Return, and Sensitivity Analysis) the paper makes the conclusions. PMID:26514312

  8. [Example of product development by industry and research solidarity].

    PubMed

    Seki, Masayoshi

    2014-01-01

    When the industrial firms develop the product, the research result from research institutions is used or to reflect the ideas from users on the developed product would be significant in order to improve the product. To state the software product which developed jointly as an example to describe the adopted development technique and its result, and to consider the modality of the industry solidarity seen from the company side and joint development. The software development methods have the merit and demerit and necessary to choose the optimal development technique by the system which develops. We have been jointly developed the dose distribution browsing software. As the software development method, we adopted the prototype model. In order to display the dose distribution information, it is necessary to load four objects which are CT-Image, Structure Set, RT-Plan, and RT-Dose, are displayed in a composite manner. The prototype model which is the development technique was adopted by this joint development was optimal especially to develop the dose distribution browsing software. In a prototype model, since the detail design was created based on the program source code after the program was finally completed, there was merit on the period shortening of document written and consist in design and implementation. This software eventually opened to the public as an open source. Based on this developed prototype software, the release version of the dose distribution browsing software was developed. Developing this type of novelty software, it normally takes two to three years, but since the joint development was adopted, it shortens the development period to one year. Shortening the development period was able to hold down to the minimum development cost for a company and thus, this will be reflected to the product price. The specialists make requests on the product from user's point of view are important, but increase in specialists as professionals for product

  9. [Example of product development by industry and research solidarity].

    PubMed

    Seki, Masayoshi

    2014-01-01

    When the industrial firms develop the product, the research result from research institutions is used or to reflect the ideas from users on the developed product would be significant in order to improve the product. To state the software product which developed jointly as an example to describe the adopted development technique and its result, and to consider the modality of the industry solidarity seen from the company side and joint development. The software development methods have the merit and demerit and necessary to choose the optimal development technique by the system which develops. We have been jointly developed the dose distribution browsing software. As the software development method, we adopted the prototype model. In order to display the dose distribution information, it is necessary to load four objects which are CT-Image, Structure Set, RT-Plan, and RT-Dose, are displayed in a composite manner. The prototype model which is the development technique was adopted by this joint development was optimal especially to develop the dose distribution browsing software. In a prototype model, since the detail design was created based on the program source code after the program was finally completed, there was merit on the period shortening of document written and consist in design and implementation. This software eventually opened to the public as an open source. Based on this developed prototype software, the release version of the dose distribution browsing software was developed. Developing this type of novelty software, it normally takes two to three years, but since the joint development was adopted, it shortens the development period to one year. Shortening the development period was able to hold down to the minimum development cost for a company and thus, this will be reflected to the product price. The specialists make requests on the product from user's point of view are important, but increase in specialists as professionals for product

  10. Estimated Energy Savings and Financial Impacts of Nanomaterials by Design on Selected Applications in the Chemical Industry

    SciTech Connect

    Thayer, Gary R.; Roach, J. Fred; Dauelsberg, Lori

    2006-03-01

    This study provides a preliminary analysis of the potential impact that nanotechnology could have on energy efficiency, economic competitiveness, waste reduction, and productivity, in the chemical and related industries.

  11. [Reflection on developing bio-energy industry of large oil company].

    PubMed

    Sun, Haiyang; Su, Haijia; Tan, Tianwei; Liu, Shumin; Wang, Hui

    2013-03-01

    China's energy supply becomes more serious nowadays and the development of bio-energy becomes a major trend. Large oil companies have superb technology, rich experience and outstanding talent, as well as better sales channels for energy products, which can make full use of their own advantages to achieve the efficient complementary of exist energy and bio-energy. Therefore, large oil companies have the advantages of developing bio-energy. Bio-energy development in China is in the initial stage. There exist some problems such as available land, raw material supply, conversion technologies and policy guarantee, which restrict bio-energy from industrialized development. According to the above key issues, this article proposes suggestions and methods, such as planting energy plant in the marginal barren land to guarantee the supply of bio-energy raw materials, cultivation of professional personnel, building market for bio-energy counting on large oil companies' rich experience and market resources about oil industry, etc, aimed to speed up the industrialized process of bio-energy development in China.

  12. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    PubMed

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry. PMID:18075108

  13. Producing bio-based bulk chemicals using industrial biotechnology saves energy and combats climate change.

    PubMed

    Hermann, B G; Blok, K; Patel, M K

    2007-11-15

    The production of bulk chemicals from biomass can make a significant contribution to solving two of the most urgent environmental problems: climate change and depletion of fossil energy. We analyzed current and future technology routes leading to 15 bulk chemicals using industrial biotechnology and calculated their CO2 emissions and fossil energy use. Savings of more than 100% in non-renewable energy use and greenhouse gas emissions are already possible with current state of the art biotechnology. Substantial further savings are possible for the future by improved fermentation and downstream processing. Worldwide CO2 savings in the range of 500-1000 million tons per year are possible using future technology. Industrial biotechnology hence offers excellent opportunities for mitigating greenhouse gas emissions and decreasing dependence on fossil energy sources and therefore has the potential to make inroads into the existing chemical industry.

  14. Energy efficiency opportunities in China. Industrial equipment and small cogeneration

    SciTech Connect

    1995-02-01

    A quick glance at comparative statistics on energy consumption per unit of industrial output reveals that China is one of the least energy efficient countries in the world. Energy waste not only impedes economic growth, but also creates pollution that threatens human health, regional ecosystems, and the global climate. China`s decision to pursue economic reform and encourage technology transfer from developed countries has created a window of opportunity for significant advances in energy efficiency. Policy changes, technical training, public education, and financing can help China realize its energy conservation potential.

  15. Utilization of oleo-chemical industry by-products for biosurfactant production

    PubMed Central

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  16. Utilization of oleo-chemical industry by-products for biosurfactant production.

    PubMed

    Bhardwaj, Garima; Cameotra, Swaranjit Singh; Chopra, Harish Kumar

    2013-01-01

    Biosurfactants are the surface active compounds produced by micro-organisms. The eco-friendly and biodegradable nature of biosurfactants makes their usage more advantageous over chemical surfactants. Biosurfactants encompass the properties of dropping surface tension, stabilizing emulsions, promoting foaming and are usually non- toxic and biodegradable. Biosurfactants offer advantages over their synthetic counterparts in many applications ranging from environmental, food, and biomedical, cosmetic and pharmaceutical industries. The important environmental applications of biosurfactants include bioremediation and dispersion of oil spills, enhanced oil recovery and transfer of crude oil. The emphasis of present review shall be with reference to the commercial production, current developments and future perspectives of a variety of approaches of biosurfactant production from the micro-organisms isolated from various oil- contaminated sites and from the by-products of oleo-chemical industry wastes/ by-products viz. used edible oil, industrial residues, acid oil, deodorizer distillate, soap-stock etc. PMID:24262384

  17. 77 FR 22568 - Madison Paper Industries, FPL Energy Maine Hydro, LLC, Merimil Limited Partnership; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Madison Paper Industries, FPL Energy Maine Hydro, LLC, Merimil Limited... Industries, FPL Energy Maine Hydro, LLC, and Merimil Limited Partnership, licensees for the...

  18. Food production and the energy crisis.

    PubMed

    Pimentel, D; Hurd, L E; Bellotti, A C; Forster, M J; Oka, I N; Sholes, O D; Whitman, R J

    1973-11-01

    The principal raw material of modern U.S. agriculture is fossil fuel, whereas the labor input is relatively small (about 9 hours per crop acre). As agriculture is dependent upon fossil energy, crop production costs will also soar when fuel costs increase two- to fivefold. A return of 2.8 kcal of corn per 1 kcal of fuel input may then be uneconomical. Green revolution agriculture also uses high energy crop production technology, especially with respect to fertilizers and pesticides. While one may not doubt the sincerity of the U.S. effort to share its agricultural technology so that the rest of the world can live and eat as it does, one must be realistic about the resources available to accomplish this mission. In the United States we are currently using an equivalent of 80 gallons of gasoline to produce an acre of corn. With fuel shortages and high prices to come, we wonder if many developing nations will be able to afford the technology of U.S. agriculture. Problems have already occurred with green revolution crops, particularly problems related to pests (57). More critical problems are expected when there is a world energy crisis. A careful assessment should be made of the benefits, costs, and risks of high energy-demand green revolution agriculture in order to be certain that this program will not aggravate the already serious world food situation (58). To reduce energy inputs, green revolution and U.S. agriculture might employ such alternatives as rotations and green manures to reduce the high energy demand of chemical fertilizers and pesticides. U.S. agriculture might also reduce energy expenditures by substituting some manpower currently displaced by mechanization. While no one knows for certain what changes will have to be made, we can be sure that when conventional energy resources become scarce and expensive, the impact on agriculture as an industry and a way of life will be significant. This analysis is but a preliminary investigation of a significant

  19. Technologies and Policies to Improve Energy Efficiency in Industry

    SciTech Connect

    Price, Lynn; Price, Lynn

    2008-03-01

    The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

  20. First biomass conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 3

    SciTech Connect

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume deal with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. What works for energy efficiency in large industry

    SciTech Connect

    Peach, H.G.; Bonnyman, C.E.; Ghislain, J.C.

    1997-07-01

    In recent years it has become clear that various groups interested in energy efficiency, including state energy agencies, utilities, and advocacy groups do not know how energy efficiency efforts are conceived and carried out within global industrial corporations. There are vast energy efficiency efforts underway of which almost no one knows, except those directly involved. Nevertheless, the criteria employed, the viewpoint on efficiency, the constraints, and the methods of evaluation are all either somewhat or even quite different in an industrial setting. This paper reports on work underway at Ford Motor Company. Ford Motor Company has demonstrated a major commitment to energy efficiency. This paper illustrates the ways energy efficiency is approached, explains something of how the internal process works. and provides examples of the types of projects recently completed and underway. This paper first reviews certain organizational features of large industrial Demand Side Management (DSM). Second, it explores the model provided by ISO 14001. Third, specific experience of Ford Motor Company, General Motors, and Chrysler in working cooperatively with the Detroit Edison electric utility is reported. Finally, the broader scope of energy efficiency at Ford is indicated, and the ethical nature of energy efficiency is asserted.

  2. CAD/CAM approach to improving industry productivity gathers momentum

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.

    1982-01-01

    Recent results and planning for the NASA/industry Integrated Programs for Aerospace-Vehicle Design (IPAD) program for improving productivity with CAD/CAM methods are outlined. The industrial group work is being mainly done by Boeing, and progress has been made in defining the designer work environment, developing requirements and a preliminary design for a future CAD/CAM system, and developing CAD/CAM technology. The work environment was defined by conducting a detailed study of a reference design process, and key software elements for a CAD/CAM system have been defined, specifically for interactive design or experiment control processes. Further work is proceeding on executive, data management, geometry and graphics, and general utility software, and dynamic aspects of the programs being developed are outlined

  3. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  4. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  5. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  6. Case history studies of energy conservation improvements in the dairy industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are ten case histories about energy-efficient technologies implemented by the dairy industry. For each case is presented: the name and location of the company, and its product line; energy consumption and costs at the plant before and after implementation of energy-conserving technology; the factors that prompted the investment; and product quality as a result of the new equipment. The measures presented are: refrigeration compressor replacement, turbulators in boiler tubes, stack exchange on boilers, reverse osmosis, six-effect evaporator, multi-effect evaporator with thermal vapor recompressor, spray dryer heat recovery, efficient compressor operations, mechanical vapor recompression evaporator, preheated spray dryer air with recoverable waste heat. (LEW)

  7. First Biomass Conference of the Americas: Energy, environment, agriculture, and industry. Proceedings, Volume 2

    SciTech Connect

    Not Available

    1993-10-01

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume cover Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. First Biomass Conference of the Americas: Energy, Environment, Agriculture, and Industry, volume 2

    NASA Astrophysics Data System (ADS)

    This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: resource base, power production, transportation fuels, chemicals and products, environmental issues, commercializing biomass projects, biomass energy system studies, and biomass in latin america. The papers in this second volume cover transportation fuels, and chemicals and products. Transportation fuels topics include: biodiesel, pyrolytic liquids, ethanol, methanol and ethers, and commercialization. The chemicals and products section includes specific topics in: research, technology transfer, and commercial systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    PubMed

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  10. Assessment of industrial activity in the utilization of biomass for energy

    NASA Astrophysics Data System (ADS)

    1980-09-01

    Federal programs in biomass energy are defined by identifying the status and objectives of private sector activity in the biomass field as of mid 1979. The industry's perceptions of government activites are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities, petroleum refiners and distributors, research and engineering firms, and trade organizations. The study focused on four key questions: (1) what is the composition of the biomass industry? (2) what are the companies doing? (3) what are their objectives and strategies? (4) what are the implications for government policy?

  11. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Deception as to origin or source of industry... GUIDES FOR THE NURSERY INDUSTRY § 18.8 Deception as to origin or source of industry products. (a) It is an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product...

  12. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Deception as to origin or source of industry... GUIDES FOR THE NURSERY INDUSTRY § 18.8 Deception as to origin or source of industry products. (a) It is an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product...

  13. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Deception as to origin or source of industry... GUIDES FOR THE NURSERY INDUSTRY § 18.8 Deception as to origin or source of industry products. (a) It is an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product...

  14. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Deception as to origin or source of industry... GUIDES FOR THE NURSERY INDUSTRY § 18.8 Deception as to origin or source of industry products. (a) It is an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product...

  15. 16 CFR 18.8 - Deception as to origin or source of industry products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Deception as to origin or source of industry... GUIDES FOR THE NURSERY INDUSTRY § 18.8 Deception as to origin or source of industry products. (a) It is an unfair or deceptive act or practice to sell, offer for sale, or advertise an industry product...

  16. International mobility of hazardous products, industries, and wastes.

    PubMed

    Castleman, B I; Navarro, V

    1987-01-01

    The export of hazards to developing countries, frequently associated with the transfer of technology, is an increasing public health problem. It may arise from the export of hazardous products and wastes, or from the transfer of hazardous industries in the absence of appropriate safeguards. Multinational corporations bear a major responsibility for having lower standards of health protection in manufacturing and marketing in the developing countries than in home-country operations. These firms are coming under growing international pressure from concerned citizens, unions, environmental groups, national governments and international organizations, religious groups, the media, and public health professionals.

  17. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    PubMed

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals. PMID:18980741

  18. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].

    PubMed

    Lopes Ferreira, Nicolas

    2008-01-01

    Plants, which are one of major groups of life forms, are constituted of an amazing number of molecules such as sugars, proteins, phenolic compounds etc. These molecules display multiple and complementary properties involved in various compartments of plants (structure, storage, biological activity etc.). The first uses of plants in industry were for food and feed, paper manufacturing or combustion. In the coming decades, these renewable biological materials will be the basis of a new concept: the "biorefiner" i.e. the chemical conversion of the whole plant to various products and uses. This concept, born in the 90ies, is analogous to today's petroleum refinery, which produces multiple fuels and derivative products from petroleum. Agriculture generates lots of co-products which were most often wasted. The rational use of these wasted products, which can be considered as valuable renewable materials, is now economically interesting and will contribute to the reduction of greenhouse has emissions by partially substituting for fossil fuels. Such substructures from biological waste products and transforming them into biofuels and new industrial products named "bioproducts". These compounds, such as bioplastics or biosurfactants, can replace equivalent petroleum derivatives. Towards that goal, lots of filamentous fungi, growing on a broad range of vegetable species, are able to produce enzymes adapted to the modification of these type of substrates. The best example, at least the more industrially developed to date, is the second generation biofuel technology using cellulose as a raw material. The process includes an enzymatic hydrolysis step which requires cellulases secreted from Trichoderma fungal species. This industrial development of a renewable energy will contribute to the diversification of energy sources used to transport and to the development of green chemistry which will partially substitute petrochemicals.

  19. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

  20. Net energy analysis of methanol and ethanol production

    NASA Astrophysics Data System (ADS)

    Perez-Blanco, H.; Hannon, B.

    1982-03-01

    Methanol (MeOH) and ethanol (EtOH) are industrial alcohols that can be used as liquid fuels. They may be obtained from renewable or non-renewable feedstocks. The production processes and end uses are analyzed in order to assess the potential energy savings introduced by alcohol production from renewable instead of nonrenewable feedstock. Whereas MeOH production from wood brings about energy savings, EtOH production from corn may or may not save energy depending on the end use of the alcohol. If the alcohol is used as a motor fuel, no overall energy savings are found. The economics and total labor requirements of each process are also considered.

  1. Development of industrial catalysts for sustainable chlorine production.

    PubMed

    Mondelli, Cecilia; Amrute, Amol P; Moser, Maximilian; Schmidt, Timm; Pérez-Ramírez, Javier

    2012-01-01

    The heterogeneously catalyzed gas-phase oxidation of HCl to Cl(2) offers an energy-efficient and eco- friendly route to recover chlorine from HCl-containing byproduct streams in the chemical industry. This process has attracted renewed interest in the last decade due to an increased chlorine demand and the growing excess of byproduct HCl from chlorination processes. Since its introduction (by Deacon in 1868) and till recent times, the industrialization of this reaction has been hindered by the lack of sufficiently active and durable materials. Recently, RuO(2)-based catalysts with outstanding activity and stability have been designed and they are being implemented for large-scale Cl(2) recycling. Herein, we review the main limiting features of traditional Cu-based catalysts and survey the key steps in the development of the new generation of industrial RuO(2)-based materials. As the expansion of this technology would benefit from cheaper, but comparably robust, alternatives to RuO(2)-based catalysts, a nov el CeO(2)-based catalyst which offers promising perspectives for application in this field has been introduced.

  2. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  3. Organizations and associations serving the Waste-To-energy industry

    SciTech Connect

    Not Available

    1998-12-01

    Professional organizations can provide leadership in disseminating information and answering questions about, and in providing support for, the industry. Eleven such organizations and association that directly, or in part, promote or provide technical assistance in the waste-to-energy field are listed and described briefly. Some actively lobby on waste-to-energy issues. Some provide useful publications and newsletters for those interested in keeping up with changes in the field.

  4. Linking Energy Efficiency and ISO: Creating a Framework forSustainable Industrial Energy Efficiency

    SciTech Connect

    McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams,Robert

    2005-04-01

    Industrial motor-driven systems consume more than 2194billion kWh annually on a global basis and offer one of the largestopportunities for energy savings. In the United States (US), they accountfor more than 50 percent of all manufacturing electricity use. Incountries with less well-developed consumer economies, the proportion ofelectricity consumed by motors is higher-more than 50 percent ofelectricity used in all sectors in China is attributable to motors.Todate, the energy savings potential from motor-driven systems haveremained largely unrealized worldwide. Both markets and policy makerstend to focus on individual system components, which have a typicalimprovement potential of 2-5 percent versus 20-50 percent for completesystems. Several factors contribute to this situation, most notably thecomplexity of the systems themselves. Determining how to optimize asystem requires a high level of technical skill. In addition, once anenergy efficiency project is completed, the energy savings are often notsustained due to changes in personnel and production processes. Althoughtraining and educational programs in the US, UK, and China to promotesystem optimization have proven effective, these resource-intensiveefforts have only reached a small portion of the market.The same factorsthat make it so challenging to achieve and sustain energy efficiency inmotor-driven systems (complexity, frequent changes) apply to theproduction processes that they support. Yet production processestypically operate within a narrow band of acceptable performance. Theseprocesses are frequently incorporated into ISO 9000/14000 quality andenvironmental management systems, which require regular, independentaudits to maintain ISO certification, an attractive value forinternational trade.This paper presents a new approach to achievingindustrial system efficiency (motors and steam) that will encourageplants to incorporate system energy efficiency into their existing ISOmanagement systems. We will

  5. [The shoe industry: from productive reality to risk individualization].

    PubMed

    Saretto, Gianni; Dulio, Sergio

    2012-01-01

    This article describes in detail each stage of the shoe manufacturing process: design, cutting and shearing, sewing and trimming, assemblage, sole preparation, finishing, packaging and stocking, shoe manufacturing with synthetic materials. It will then discuss new technologies and their impact on the improvement of the worker's health, safety and convenience. A definition of the shoe parts and of the materials and machinery employed in its production will be provided, as well as a synthesis of the occupational hazards involved in each department. Although dealing with competitors who can take advantage of low-cost production and lack of concern for labour protection and environmental issues, the industry should always take great care of topics such as innovation and automation, but also workplace health and safety, while pushing the limits of that technological advance which companies have to face. PMID:22697024

  6. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules.

  7. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. PMID:26645658

  8. [The shoe industry: from productive reality to risk individualization].

    PubMed

    Saretto, Gianni; Dulio, Sergio

    2012-01-01

    This article describes in detail each stage of the shoe manufacturing process: design, cutting and shearing, sewing and trimming, assemblage, sole preparation, finishing, packaging and stocking, shoe manufacturing with synthetic materials. It will then discuss new technologies and their impact on the improvement of the worker's health, safety and convenience. A definition of the shoe parts and of the materials and machinery employed in its production will be provided, as well as a synthesis of the occupational hazards involved in each department. Although dealing with competitors who can take advantage of low-cost production and lack of concern for labour protection and environmental issues, the industry should always take great care of topics such as innovation and automation, but also workplace health and safety, while pushing the limits of that technological advance which companies have to face.

  9. Automation Power Energy Management Strategy for Mobile Telecom Industry

    NASA Astrophysics Data System (ADS)

    Hwang, Jong-Ching; Chen, Jung-Chin; Pan, Jeng-Shyang; Huang, Yi-Chao

    The aim of this research is to study the power energy cost reduction of the mobile telecom industry through the supervisor control and data acquisition (SCADA) system application during globalization and liberalization competition. Yet this management system can be proposed functions: operating monitors, the analysis on load characteristics and dropping the cost of management.

  10. Process Innovation and Changes in Industrial Energy Use

    ERIC Educational Resources Information Center

    Berg, Charles A.

    1978-01-01

    American industry in the 19th century switched from wood to coal as its primary energy resource. The history of this switch is reviewed, along with the history of preceding similar trends in Europe and later trends in the switch from coal to oil and gas. (Author/MA)

  11. Production of lightweight aggregate from industrial waste and carbon dioxide.

    PubMed

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere. PMID:19577916

  12. Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector

    SciTech Connect

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

  13. Industrial-hygiene survey report, Parkway Products, Inc. , Cincinnati, Ohio

    SciTech Connect

    Clapp, D.E.

    1986-05-01

    Industrial hygiene and biomonitoring data were collected during a survey at the Parkway Products Inc. facility located in Cincinnati, Ohio, one of the largest users of 4,4'-methylenebis (2-chloroaniline) (MBOCA). Customized polyurethane products were manufactured for industry at this facility. Urinary concentrations of MBOCA were below the California standard of 100 micrograms/liter, with the exception of two samples taken from MBOCA mixers. The wipe samples taken showed a range of concentrations from 4 to 53 micrograms MBOCA per wipe which were collected near the MBOCA room where the chemical was stored as well as handled. Night-shift workers were exposed to higher concentrations, probably indicating that less care was taken during this shift in controlling the hazardous substance. There was no clear cut relationship established between environmental and biomonitoring results in this study, except for the workers in the MBOCA room. The author recommends frequent washing down of exposed areas, changing protective workclothes in specified facility locations, prohibition of eating or drinking or smoking in work areas, monthly urine monitoring, and continued education as to the hazards of the job.

  14. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  15. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  16. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.

    PubMed

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-01

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic

  17. Developments in the use of Bacillus species for industrial production.

    PubMed

    Schallmey, Marcus; Singh, Ajay; Ward, Owen P

    2004-01-01

    Bacillus species continue to be dominant bacterial workhorses in microbial fermentations. Bacillus subtilis (natto) is the key microbial participant in the ongoing production of the soya-based traditional natto fermentation, and some Bacillus species are on the Food and Drug Administration's GRAS (generally regarded as safe) list. The capacity of selected Bacillus strains to produce and secrete large quantities (20-25 g/L) of extracellular enzymes has placed them among the most important industrial enzyme producers. The ability of different species to ferment in the acid, neutral, and alkaline pH ranges, combined with the presence of thermophiles in the genus, has lead to the development of a variety of new commercial enzyme products with the desired temperature, pH activity, and stability properties to address a variety of specific applications. Classical mutation and (or) selection techniques, together with advanced cloning and protein engineering strategies, have been exploited to develop these products. Efforts to produce and secrete high yields of foreign recombinant proteins in Bacillus hosts initially appeared to be hampered by the degradation of the products by the host proteases. Recent studies have revealed that the slow folding of heterologous proteins at the membrane-cell wall interface of Gram-positive bacteria renders them vulnerable to attack by wall-associated proteases. In addition, the presence of thiol-disulphide oxidoreductases in B. subtilis may be beneficial in the secretion of disulphide-bond-containing proteins. Such developments from our understanding of the complex protein translocation machinery of Gram-positive bacteria should allow the resolution of current secretion challenges and make Bacillus species preeminent hosts for heterologous protein production. Bacillus strains have also been developed and engineered as industrial producers of nucleotides, the vitamin riboflavin, the flavor agent ribose, and the supplement poly

  18. Fungal Morphology in Industrial Enzyme Production--Modelling and Monitoring.

    PubMed

    Quintanilla, Daniela; Hagemann, Timo; Hansen, Kim; Gernaey, Krist V

    2015-01-01

    Filamentous fungi are widely used in the biotechnology industry for the production of industrial enzymes. Thus, considerable work has been done with the purpose of characterizing these processes. The ultimate goal of these efforts is to be able to control and predict fermentation performance on the basis of "standardized" measurements in terms of morphology, rheology, viscosity, mass transfer and productivity. However, because the variables are connected or dependent on each other, this task is not trivial. The aim of this review article is to gather available information in order to explain the interconnectivity between the different variables in submerged fermentations. An additional factor which makes the characterization of a fermentation broth even more challenging is that the data obtained are also dependent on the way they have been collected-meaning which technologies or probes have been used, and on the way the data is interpreted-i.e. which models were applied. The main filamentous fungi used in industrial fermentation are introduced, ranging from Trichoderma reesei to Aspergillus species. Due to the fact that secondary metabolites, like antibiotics, are not to be considered bulk products, organisms like e.g. Penicillium chrysogenum are just briefly touched upon for the description of some characterization techniques. The potential for development of different morphological phenotypes is discussed as well, also in view of what this could mean to productivity and-equally important-the collection of the data. An overview of the state of the art techniques for morphology characterization is provided, discussing methods that finally can be employed as the computational power has grown sufficiently in the recent years. Image analysis (IA) clearly benefits most but it also means that methods like near infrared measurement (NIR), capacitance and on-line viscosity now provide potential alternatives as powerful tools for characterizing morphology. These measuring

  19. 77 FR 13121 - Solar Energy Industries Association: Notice of Petition for Rulemaking

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... Energy Regulatory Commission Solar Energy Industries Association: Notice of Petition for Rulemaking Take notice that on February 16, 2012, Solar Energy Industries Association, pursuant to sections 205 and 206... procedures \\1\\ for solar electric generation. \\1\\ Standardization of Small Generator...

  20. Voluntary agreements for increasing energy-efficiency in industry: Case study of a pilot project with the steel industry in Shandong Province, China

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Sinton, Jonathan; Yun, Jiang

    2003-03-01

    China faces a significant challenge in the years ahead to continue to provide essential materials and products for a rapidly-growing economy while addressing pressing environmental concerns. China's industrial sector is heavily dependent on the country's abundant, yet polluting, coal resources. While tremendous energy conservation and environmental protection achievements were realized in the industrial sector in the past, there remains a great gulf between the China's level of energy efficiency and that of the advanced countries of the world. Internationally, significant energy efficiency improvement in the industrial sector has been realized in a number of countries using an innovative policy mechanism called Voluntary Agreements. This paper describes international experience with Voluntary Agreements in the industrial sector as well as the development of a pilot program to test the use of such agreements with two steel mills in Shandong Province, China.

  1. Understanding Potential Climate Variability Impacts on the Offshore Energy Industry

    NASA Astrophysics Data System (ADS)

    Stear, J.

    2014-12-01

    Climate variability may have important implications for the offshore energy industry. Scenarios of increased storm activity and changes in sea level could require the retrofit of existing offshore platforms and coastal infrastructure, the decommissioning of facilities for which upgrade or relocation is not economically viable, and the development of new methods and equipment which are removed from or less sensitive to environmental loads. Over the past years the energy industry has been actively involved in collaborative research efforts with government and academia to identify the potential changes in the offshore operating environment, and corresponding risk implications. This presentation will review several of these efforts, and for several of the hypothetical climate variation scenarios, review the potential impacts on and possible mitigations for offshore and coastal energy infrastructure and operations.

  2. Estimating energy-augmenting technological change in developingcountry industries

    SciTech Connect

    Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

    2006-07-07

    Assumptions regarding the magnitude and direction ofenergy-related technological change have long beenrecognized as criticaldeterminants of the outputs and policy conclusions derived fromintegrated assessment models. Particularly in the case of developingcountries, however, empirical analysis of technological change has laggedbehind simulation modeling. This paper presents estimates of sectoralproductivity trends and energy-augmenting technological change forseveral energy-intensive industries in India and South Korea, and, forcomparison, the United States. The key findings are substantialheterogeneity among both industries and countries, and a number of casesof declining energy efficiency. The results are subject to certaintechnical qualifications both in regards to the methodology and to thedirect comparison to integrated assessment parameterizations.Nevertheless, they highlight the importance of closer attention to theempirical basis for common modeling assumptions.

  3. Energy conservation in electrostatic fabric filtration of industrial dust

    SciTech Connect

    Ariman, T.

    1981-12-01

    Conservation in energy consumption in industrial fabric filtration systems has become very important due to the substantial increase in energy costs. Recently, an external electric field was utilized in the industrial dust control by fabric filters with very promising initial results. A substantial decrease in the pressure drop and an increase in collection efficiency were observed. The detailed outcome of the experimental research program in electrostatic fabric filtration was presented. The results show that pressure drop decreases substantially with the increased electrostatic field strength for all relevant parameters. Furthermore, the data of the experimental program was utilized to develop a semi-empirical model for the determination of the pressure drop and to establish an Energy-Optimized Design Criteria.

  4. Design for energy efficiency: Energy efficient industrialized housing research program. Progress report

    SciTech Connect

    Kellett, R.; Berg, R.; Paz, A.; Brown, G.Z.

    1991-03-01

    Since 1989, the U.S. Department of Energy has sponsored the Energy Efficient Industrialized Housing research program (EEIH) to improve the energy efficiency of industrialized housing. Two research centers share responsibility for this program: The Center for Housing Innovation at the University of Oregon and the Florida Solar Energy Center, a research institute of the University of Central Florida. Additional funding is provided through the participation of private industry, state governments and utilities. The program is guided by a steering committee comprised of industry and government representatives. This report summarizes Fiscal Year (FY) 1990 activities and progress, and proposed activities for FY 1991 in Task 2.1 Design for Energy Efficiency. This task establishes a vision of energy conservation opportunities in critical regions, market segments, climate zones and manufacturing strategies significant to industrialized housing in the 21st Century. In early FY 1990, four problem statements were developed to define future housing demand scenarios inclusive of issues of energy efficiency, housing design and manufacturing. Literature surveys were completed to assess seven areas of influence for industrialized housing and energy conservation in the future. Fifty-five future trends were identified in computing and design process; manufacturing process; construction materials, components and systems; energy and environment; demographic context; economic context; and planning policy and regulatory context.

  5. Production of a recombinant industrial protein using barley cell cultures.

    PubMed

    Ritala, A; Wahlström, E H; Holkeri, H; Hafren, A; Mäkeläinen, K; Baez, J; Mäkinen, K; Nuutila, A M

    2008-06-01

    The use of recombinant DNA-based protein production using genetically modified plants could provide a reproducible, consistent quality, safe, animal-component free, origin-traceable, and cost-effective source for industrial proteins required in large amounts (1000s of metric tons) and at low cost (below US$100/Kg). The aim of this work was to demonstrate the feasibility of using barley suspension cell culture to support timely testing of the genetic constructs and early product characterization to detect for example post-translational modifications within the industrial protein caused by the selected recombinant system. For this study the human Collagen I alpha 1 (CIa1) chain gene encoding the complete helical region of CIa1 optimized for monocot expression was fused to its N- and C-terminal telopeptide and to a bacteriophage T4 fibritin foldon peptide encoding sequences. The CIa1 accumulation was targeted to the endoplasmic reticulum (ER) by fusing the CIa1 gene to an ER-directing signal peptide sequence and an ER retention signal HDEL. The construct containing the CIa1 gene was then introduced into immature barley half embryos or barley cells by particle bombardment. Transgenic barley cells resulting from these transformations were grown as suspension cultures in flasks and in a Wave bioreactor producing CIa1 similar to CIa1 purified from the yeast Pichia pastoris based on Western blotting, pepsin resistance, and mass spectroscopy analysis. The barley cell culture derived-CIa1 intracellular accumulation levels ranged from 2 to 9 microg/l illustrating the need for further process improvement in order to use this technology to supply material for product development activities.

  6. Significance of electric energy costs to industrial firms in Arkansas

    SciTech Connect

    Taylor, P.; Hirsch, M.S.

    1985-06-27

    The authors report their findings from a research project undertaken to determine the significance of expenditures for electric energy for manufacturing and other industrial establishments in Arkansas and the impact of those expenditures on competitive position and on potential expansions and relocations. On the basis of questionnaire responses, Arkansas industrial location advantages included an available labor pool and a prevailing work ethic, market proximity, good weather and environment, and low electric power costs, although these were offset by future uncertainties. The study identified uncertainty associated with electric rates as one of several negative locational factors. 2 tables.

  7. Energy Efficient Industrialized Housing Research Program. Annual report, FY 1991

    SciTech Connect

    Not Available

    1992-03-01

    Six area reported progress in the Energy Efficient Industrialized Housing Research Program during FY 1991. As part of Industry Guidance, meetings were held with steering and technical committees in computers, housing design and manufacturing. This task area enables the program to benefit from the expertise of industry representatives and communicate research results directly to them. As part of the Design Process performance specifications were being developed for the future housing system designed last year. These house designs coordinate and optimize predicted and desirable advances in computerized design processes, materials, components, and manufacturing automation to achieve energy efficiency at reduced first cost. Energy design software were being developed for CAD systems, stressed skin insulating core panel manufacturers; and a prototype energy sales tool. A prototype design was to be developed to integrate one or more subsystems with the building skin. As part of the Manufacturing Process we are developing a manufacturing process simulation and data base to help current and new entrants to the industrialized housing industry in assessing the impact of implementing new manufacturing techniques. For Evaluation we are developing testing plans for six units of housing on the UO campus and the stressed skin insulating core house to be constructed in Oregon. The DOW Chemical test structure will be retrofitted with a tile roof and retested to compare to the dome and conventional construction structures. Calibration of the wind tunnel will be completed so that laboratory tests can be conducted to simulate the ventilation cooling efficiency of houses in design. Research utilization and program management were either aspects of this program.

  8. An Industrial Ecology Approach to Municipal Solid Waste Management: II. Case Studies for Recovering Energy from the Organic Fraction of MSW

    EPA Science Inventory

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...

  9. Minnesota timber industry: An assessment of timber product output and use, 1990. Forest Service resource bulletin

    SciTech Connect

    Hackett, R.L.; Dahlman, R.A.

    1993-01-01

    The bulletin includes recent Minnesota forest industry trends and report the results of a detailed study of forest industry, industrial roundwood production, and associated primary mill wood and bark residue in Minnesota in 1990. Such detailed information is necessary for intelligent planning and decisionmaking in wood procurement, forest resource management, and forest industry development. Likewise, researchers need current forest industry and industrial roundwood information for planning projects.

  10. New industrial heat pump applications to cheese production

    SciTech Connect

    Not Available

    1990-04-01

    A energy cost reduction of the Sorrento Cheese Co. Inc. cheese/whey powder process has been completed. Of Particular interest were the opportunities for utilizing heat pumps for energy cost reduction or other profit improving uses. Pinch Technology was used to identify heat recovery, heat pumping, process modification and congeneration options. Pinch Technology provides a thermodynamically consistent base from which the relative merits of competing cost reduction options can be assessed. The study identified heat recovery opportunities which could save $198,000/yr at an over all payback of 26 months. Individual project paybacks range from 18 to 36 months. The use of heat pumps in the form of MVR and TVR evaporators is well established in the dairy industry. For this process, which already incorporates a TVR evaporator, no additional cost effective opportunities for utilizing heat pumps were identified. It is felt that the results obtained in this study are applicable to other cheese/whey powder manufacturing sits. This study, and others, indicate that reductions in thermal energy consumption of 10--15% can be expected. Also the use of MVR and TVR evaporators is appropriate. 10 figs., 1 tab.

  11. PRODUCING ENERGY AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Segre, E.; Kennedy, J.W.; Seaborg, G.T.

    1959-10-13

    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  12. Energy R and D in the Industrialized World: Retrenchment and Refocusing

    SciTech Connect

    JJ Dooley; PJ Runci; E Luiten

    1999-11-01

    This report presents preliminary findings from an ongoing research project examining trends in energy R&D investments in selected industrialized countries (The United States, Japan, Germany, the Netherlands, and the European Union). Its underlying purpose is to assess the adequacy of current energy R&D, in terms of investment levels and programmatic scope considering the likely energy technology demands associated with international efforts to address global climate change. It finds that, while overall levels of public and private investment in all forms of R&D have risen significantly across the countries studied, investments in energy R&D have declined in real terms. Causes of the observed decline might include the ongoing deregulation of the energy industries, the absence of acute energy crises, and shifts in domestic social and policy priorities in the post-Cold War period. In addition, it finds noteworthy shifts within industrialized countries' energy R&D investment portfolios. In most countries, nuclear R&D has declined (by more than 90% in key countries such as the U.S. and Germany) while the remaining R&D resources are shifting toward shorter-term projects, most notably in the energy efficiency area. Research on carbon sequestration, hydrogen production, and fuel cells is gaining in prominence public sector energy R&D, often displacing traditional fossil energy R&D projects. Future research associated with this project will include the preparation of reports on several additional industrialized countries, including the United Kingdom, France, Italy, Canada, and Switzerland. Collectively, the small set of countries addressed in this project account for over 95% of the world's energy R&D.

  13. Updates on industrial production of amino acids using Corynebacterium glutamicum.

    PubMed

    Wendisch, Volker F; Jorge, João M P; Pérez-García, Fernando; Sgobba, Elvira

    2016-06-01

    L-Amino acids find various applications in biotechnology. L-Glutamic acid and its salts are used as flavor enhancers. Other L-amino acids are used as food or feed additives, in parenteral nutrition or as building blocks for the chemical and pharmaceutical industries. L-amino acids are synthesized from precursors of central carbon metabolism. Based on the knowledge of the biochemical pathways microbial fermentation processes of food, feed and pharma amino acids have been developed. Production strains of Corynebacterium glutamicum, which has been used safely for more than 50 years in food biotechnology, and Escherichia coli are constantly improved using metabolic engineering approaches. Research towards new processes is ongoing. Fermentative production of L-amino acids in the million-ton-scale has shaped modern biotechnology and its markets continue to grow steadily. This review focusses on recent achievements in strain development for amino acid production including the use of CRISPRi/dCas9, genome-reduced strains, biosensors and synthetic pathways to enable utilization of alternative carbon sources. PMID:27116971

  14. Potential utilization of solar energy for industrial processes in Egypt

    SciTech Connect

    Abd El-Salam, E.M.

    1980-12-01

    During the last decade, people all over the world are using in alarming rates the costly supply of fossil and conventional fuels as the main source of energy. As the strategic reserves of these natural resources being quickly depleted, it appears as an urgent problem of special importance to mankind to search for alternative natural resources of energy which can replace the conventional fuels in the ever increasing applied fields, which cover every aspect of the activity of mankind. Solar energy, as the inexhaustible major clean source of energy is the only alternative. This investigation gives a survey of the possible utilization of solar energy in various industrial processes. The main objectives of the study is: Characterization of the requirements in each process; The choice of the suitable application of solar systems; Computations of the expected performance of solar systems of various designs that could be used; and Economic comparison of the different solar systems.

  15. HIP-clad products for the plastics industry

    NASA Astrophysics Data System (ADS)

    Bishop, Morley F.; Nickel, Clinton F.

    1999-07-01

    The production of plastics and plastics components requires equipment that can withstand severe wear and, in a high percentage of cases, wear and corrosion environments. There are two basic elements of plastic extrusion equipment: the barrels and the screws. Both must manifest similar properties, but since screw elements are less costly and easier to replace, they are usually designed to wear out first. Due to the high cost of wear/corrosion-resistance materials, the industry used clad (i.e., bimetallic) components. Barrel sections and screw segments are both produced as hot-isostatic press clad components using similar processes. There are any number of material combinations that are used and that are possible for the right application.

  16. Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate.

    PubMed

    Palma, M B; Pinto, A L; Gombert, A K; Seitz, K H; Kivatinitz, S C; Castilho, L R; Freire, D M

    2000-01-01

    Lipase, protease, and amylase production by Penicillium restrictum in solid-state fermentation was investigated. The basal medium was an industrial waste of babassu oil (Orbignya oleifera) production. It was enriched with peptone, olive oil, and Tween-80. The supplementation positively influenced both enzyme production and fungal growth. Media enriched with Tween-80 provided the highest protease activity (8.6 U/g), whereas those enriched with peptone and olive oil led to the highest lipase (27.8 U/g) and amylase (31.8 U/g) activities, respectively.

  17. Selection of Waste Water Equalization Systems for Multi Product Batch Production Facility: An Industrial Case Study

    NASA Astrophysics Data System (ADS)

    Bhatt, Vaidehi; Srinivasarao, Meka.; Dhanwani, Anand

    2010-10-01

    The generation rates of waste water from a batch plant causes significant variations in the flow rate as well as concentrations in the influent to effluent treatment plant. Flow equalization systems are used to reduce the shock loads. The present study deals with the suitability of two flow equalization schemes practiced in the industry with an objective of increasing production flexibility. The simulation study has conclusively established suitability of combined segregation tanks over distributed segregation tanks for a given production capacity. It is also shown that the production flexibility is more for combined scheme in comparison with the distributed scheme.

  18. System Assessment Standards: Defining the Market for Industrial Energy Assessments

    SciTech Connect

    Sheaffer, Paul; McKane, Aimee; Tutterow, Vestal; Crane, Ryan

    2009-08-01

    Improved efficiency of industrial systems (e.g., compressed air or steam) contributes to a manufacturing facility?s bottom line, improves reliability, and better utilizes assets. Despite these advantages, many industrial facilities continue to have unrealized system optimization potential. A barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services, creating problems for both service providers in establishing market value for their services and for consumers in determining the relative quality of these system assessment services. On August 19, 2008, the American Society of Mechanical Engineers (ASME) issued four new draft Standards for trial use that are designed to raise the bar and define the market for these services. These draft Standards set the requirements for conducting an energy assessment at an industrial facility for four different system types: compressed air, process heating, pumping, and steam. The Standards address topics such as organizing and conducting assessments; analyzing the data collected; and reporting and documentation. This paper addresses both the issues and challenges in developing the Standards and the accompanying Guidance Documents, as well as the result of field testing by industrial facilities, consultants, and utilities during the trial use period that ended in January, 2009. These Standards will be revised and released by ASME for public review, and subsequently submitted for approval as American National Standards for publication in late 2009. Plans for a related activity to establish a professional-level program to certify practitioners in the area of system assessments, opportunities to integrate the ASME Standards with related work on industrial energy efficiency, as well as plans to expand the system assessment Standard portfolio are also discussed.

  19. Impact of information technology on productivity and efficiency in Iranian manufacturing industries

    NASA Astrophysics Data System (ADS)

    Abri, Amir Gholam; Mahmoudzadeh, Mahmoud

    2015-12-01

    The aim of this paper is to assess the impact of information technology (IT) on the productivity and efficiency of manufacturing industries in Iran. So, the data will be collected from 23 Iranian manufacturing industries during "2002-2006" and the methods such as DEA and panel data used to study the subject. Results obtained by the above two methods represent that IT has a positive and statistically significant effect on the productivity of manufacturing industries. It will be more in high IT-intensive industries than the other industries. But, there is no significant difference between the growth of labor productivity in IT-producing and IT-using industries.

  20. The Department of Energy`s Solar Industrial Program: 1995 review

    SciTech Connect

    1996-04-01

    During 1995, the Department of Energy`s Solar Industrial (SI) Program worked to bring the benefits of solar energy to America`s industrial sector. Scientists and engineers within the program continued the basic research, applied engineering, and economic analyses that have been at the heart of the Program`s success since its inception in 1989. In 1995, all three of the SI Program`s primary areas of research and development--solar detoxification, advanced solar processes, and solar process heat--succeeded in increasing the contribution made by renewable and energy-efficient technologies to American industry`s sustainable energy future. The Solar Detoxification Program develops solar-based pollution control technologies for destroying hazardous environmental contaminants. The Advanced Solar Processes Program investigates industrial uses of highly concentrated solar energy. The Solar Process Heat Program conducts the investigations and analyses that help energy planners determine when solar heating technologies--like those that produce industrial-scale quantities of hot water, hot air, and steam--can be applied cost effectively. The remainder of this report highlights the research and development conducted within in each of these subprograms during 1995.

  1. Industrial Arts 7-9. Power/Energy: Electricity/Electronics, Power Mechanics, Power/Energy.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This guide for industrial arts grades 7-9 provides teachers with a curriculum for the subject cluster of power/energy. An "Overview" section presents the rationale, discusses how the content of the program is related to the developmental stages of the adolescent, describes the structure of the industrial arts program, and lists program goals and…

  2. Energy Productivity: Key to Environmental Protection and Economic Progress. Worldwatch Paper 63.

    ERIC Educational Resources Information Center

    Chandler, William U.

    This report examines various topics and issues related to worldwide energy productivity and energy conservation. Following an introduction, these issues are considered in 6 sections focusing on: (1) energy demand projections (with data on 1982 energy consumption in selected countries); (2) continued industrial efficiency gains (including data on…

  3. Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?

    ERIC Educational Resources Information Center

    Ghassib, Hisham B.

    2010-01-01

    The basic premise of this paper is the fact that science has become a major industry: the knowledge industry. The paper throws some light on the reasons for the transformation of science from a limited, constrained and marginal craft into a major industry. It, then, presents a productivist industrial model of knowledge production, which shows its…

  4. Industrial steam systems and the energy-water nexus.

    PubMed

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  5. Promoting greater Federal energy productivity [Final report

    SciTech Connect

    Hopkins, Mark; Dudich, Luther

    2003-03-05

    This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

  6. Assessment of industrial activity in the utilization of biomass for energy

    SciTech Connect

    Not Available

    1980-09-01

    The objective of this report is to help focus the federal programs in biomass energy, by identifying the status and objectives of private sector activity in the biomass field as of mid-1979. In addition, the industry's perceptions of government activities are characterized. Findings and conclusions are based principally on confidential interviews with executives in 95 companies. These included forest products companies, agricultural products companies, equipment manufacturers, electric and gas utilities petroleum refiners and distributors, research and engineering firms, and trade organizations, as listed in Exhibit 1. Interview findings have been supplemented by research of recent literature. The study focused on four key questions: (1) what is the composition of the biomass industry; (2) what are the companies doing; (3) what are their objectives and strategies; and (4) what are the implications for government policy. This executive summary provides highlights of the key findings and conclusions. The summary discussion is presented in seven parts: (1) overview of the biomass field; (2) structure of the biomass industry today; (3) corporate activities in biomass-related areas; (4) motivations for these activities; (5) industry's outlook on the future for energy-from-biomass; (6) industry's view of government activities; and (7) implications for Federal policy.

  7. Devising an integrated methodology for analyzing energy use and CO2 emissions from Taiwan's petrochemical industries.

    PubMed

    Lee, C F; Lin, S J; Lewis, C

    2001-12-01

    Input-output modeling and multiplier analysis are used to assess Taiwan's five petrochemical industries, based upon their economic contribution and potential impacts on energy consumption and CO2 emission. In addition, a consolidated index system was developed for evaluating energy and economic efficiencies as well as targets for CO2 reduction. Results indicate that petrochemical materials (PM) make a major contribution to economic development, with lesser contributions from plastic materials (PL) and artificial fibres (AF). PM has the highest energy multiplier while PL has the largest induced potential for energy consumption. Plastic and rubber products (PP, RP) are relatively insignificant energy consumers. AF has the highest CO2 multiplier, and its induced potential for CO2 emission is the most significant. The consolidated index shows that the upstream petrochemical industries perform rather poorly in an integrated view of economic, energy, and CO2 emission, and should be seen as the primary targets for CO2 reduction. Investment of the petrochemical industries in Taiwan should be adjusted to improve energy efficiency, economic bases, and lower CO2 emissions.

  8. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a... Prison Industries, Inc., shall be accorded priority over products offered for sale by the workshops...

  9. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a... Prison Industries, Inc., shall be accorded priority over products offered for sale by the workshops...

  10. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a... Prison Industries, Inc., shall be accorded priority over products offered for sale by the workshops...

  11. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a... Prison Industries, Inc., shall be accorded priority over products offered for sale by the workshops...

  12. 41 CFR 101-26.702 - Purchase of products manufactured by the Federal Prison Industries, Inc.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... manufactured by the Federal Prison Industries, Inc. 101-26.702 Section 101-26.702 Public Contracts and Property... Defense § 101-26.702 Purchase of products manufactured by the Federal Prison Industries, Inc. (a... Prison Industries, Inc., shall be accorded priority over products offered for sale by the workshops...

  13. Fossil energy R and D for a competitive power industry

    SciTech Connect

    Bajura, R.A.

    1996-12-31

    This paper discusses the vision for Morgantown Energy Technology Center`s (METC`s) advanced power generation program. It covers the following four topics: the status of the electric industry as it deregulates, particularly those aspects of deregulation that impact advanced power generation technologies; a snapshot of the environmental trends that influence the program; how research, and development, and demonstration (RD&D) program is being restructured in response to these trends; and the status of METC`s merger with its sister center, the Pittsburgh Energy Technology Center.

  14. 78 FR 43974 - Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... new range for instantaneous electric water heaters based on data submitted by industry. \\10\\ 77 FR... CFR Part 305 Energy and Water Use Labeling for Consumer Products Under the Energy Policy and Conservation Act (Energy Labeling Rule) AGENCY: Federal Trade Commission (``FTC'' or ``Commission'')....

  15. Production of High Value Fluorine Gases for the Semiconductor Industry

    SciTech Connect

    Bulko, J. B.

    2003-10-23

    The chemistry to manufacture high purity GeF{sub 4} and WF{sub 6} for use in the semiconductor industry using Starmet's new fluorine extraction technology has been developed. Production of GeF{sub 4} was established using a tube-style reactor system where conversion yields as high as 98.1% were attained for the reaction between and GeO{sub 2}. Collection of the fluoride gas improved to 97.7% when the reactor sweep gas contained a small fraction of dry air (10-12 vol%) along with helium. The lab-synthesized product was shown to contain the least amount of infrared active and elemental impurities when compared with a reference material certified at 99.99% purity. Analysis of the ''as-produced'' gas using ICP-MS showed that uranium could not be detected at a detection limit of 0.019ppm-wt. A process to make WF{sub 6} from WO{sub 2}, and UF{sub 4}, produced a WOF{sub 4} intermediate, which proved difficult to convert to tungsten hexafluoride using titanium fluoride as a fluorinating agent.

  16. Switchgrass: Production, Economics, and Net Energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The critical questions for a biomass bioenergy production system are: • What are the economics? • Is energy from biomass net energy positive? • Is production system information available and verified? • Is the system sustainable? To address these questions, ten farmers in the mid-continental USA w...

  17. Field survey analysis of the public's cognition on the new energy industry in China

    NASA Astrophysics Data System (ADS)

    Guo, Q. F.; Song, Y.

    2016-08-01

    The public enjoy an important role in the development of China's new energy industry. However, the role has not attracted sufficient attention. By the way of field investigation, the paper acquired the first hand data of the public cognition on the China's new energy industry. Survey data showed that the public enjoyed awareness of China's new energy industry to some extent. And the public had optimistic expectations on the future development of new energy industry. Moreover, there were obvious differences in the degree of public's familiarity with different new energy varieties. The education level and age of the individual public had a significant impact on his awareness of China's new energy industry. To raise public participation in China's new energy industry, it entailed highlighting the status of the public in China's new energy industry, increasing the publicity of the new energy industry with different measures for different types of public group.

  18. Mathematical Modeling of Pottery Production in Different Industrial Furnaces

    NASA Astrophysics Data System (ADS)

    Ramírez Argáez, Marco Aurelio; Huacúz, Salvador Lucas; Trápaga, Gerardo

    2008-10-01

    The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of villages in Michoacán, Mexico. The model describes radiative heat transfer and fluid flow promoted by natural convection, phenomena that determine the operation of these furnaces. An advanced radiation model called the “Discrete Ordinates Model” was implemented within a commercial computational fluid dynamics software. Process analysis was performed to determine the effect of the design variables on the quality of the pottery pieces and on energy efficiency. The variables explored were: (a) Geometric aspect ratio between diameter and height of the furnace ( D/H) and (b) Refractory thickness ( L). The model was validated using experimental temperature measurements from furnaces located in Santa Fe and Capula, Mexico. Good agreement was obtained between experimental and numerically calculated thermal histories. It was found that furnaces with high aspect ratio D/H and with thick refractory bricks promote thermal uniformity and energy savings. In general, any parameter that increases the conductive thermal resistance of the wall furnace isolates better, and helps energy savings. Operating conditions that provide the smallest thermal gradients and lowest energy consumption are given.

  19. Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production.

    PubMed

    Chen, Xianzhong; Zhou, Li; Tian, Kangming; Kumar, Ashwani; Singh, Suren; Prior, Bernard A; Wang, Zhengxiang

    2013-12-01

    In order to decrease carbon emissions and negative environmental impacts of various pollutants, more bulk and/or fine chemicals are produced by bioprocesses, replacing the traditional energy and fossil based intensive route. The Gram-negative rod-shaped bacterium, Escherichia coli has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Furthermore, metabolic engineering of E. coli for the enhanced biochemical production has been significantly promoted by the integrated use of recent developments in systems biology, synthetic biology and evolutionary engineering. In this review, we focus on recent efforts devoted to the use of genetically engineered E. coli as a sustainable platform for the production of industrially important biochemicals such as biofuels, organic acids, amino acids, sugar alcohols and biopolymers. In addition, representative secondary metabolites produced by E. coli will be systematically discussed and the successful strategies for strain improvements will be highlighted. Moreover, this review presents guidelines for future developments in the bio-based chemical production using E. coli as an industrial platform.

  20. Improved product energy intensity benchmarking metrics for thermally concentrated food products.

    PubMed

    Walker, Michael E; Arnold, Craig S; Lettieri, David J; Hutchins, Margot J; Masanet, Eric

    2014-10-21

    Product energy intensity (PEI) metrics allow industry and policymakers to quantify manufacturing energy requirements on a product-output basis. However, complexities can arise for benchmarking of thermally concentrated products, particularly in the food processing industry, due to differences in outlet composition, feed material composition, and processing technology. This study analyzes tomato paste as a typical, high-volume concentrated product using a thermodynamics-based model. Results show that PEI for tomato pastes and purees varies from 1200 to 9700 kJ/kg over the range of 8%-40% outlet solids concentration for a 3-effect evaporator, and 980-7000 kJ/kg for a 5-effect evaporator. Further, the PEI for producing paste at 31% outlet solids concentration in a 3-effect evaporator varies from 13,000 kJ/kg at 3% feed solids concentration to 5900 kJ/kg at 6%; for a 5-effect evaporator, the variation is from 9200 kJ/kg at 3%, to 4300 kJ/kg at 6%. Methods to compare the PEI of different product concentrations on a standard basis are evaluated. This paper also presents methods to develop PEI benchmark values for multiple plants. These results focus on the case of a tomato paste processing facility, but can be extended to other products and industries that utilize thermal concentration.

  1. 78 FR 32667 - Draft Guidance for Industry on Rheumatoid Arthritis: Developing Drug Products for Treatment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Rheumatoid Arthritis... guidance for industry entitled ``Rheumatoid Arthritis: Developing Drug Products for Treatment.''...

  2. 76 FR 10067 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ...--Industrial Macromolecular Crystallography Association Correction In notice document 2011--2412 appearing on... and Production Act of 1993--Industrial Nacromolecular Crystallography Association'' should read... Macromolecular Crystallography Association''. 2. On the same page, in the second column, in the fourth line...

  3. Energy conservation and savings in the food industry (citations from Food Science and Technology Abstracts). Report for Jan 1972-Nov 1979

    SciTech Connect

    Hippler, R.R.

    1980-02-01

    The citations cover world-wide literature on conservation and savings in energy use for the food industry. Industries covered are dairies (including milk, cheese, cream, ice cream), breweries, meat industry, food processing plants, food warehouses, bakeries, and sugar factories. Energy savings aspects are alternate energy forms, solar drying and dehydration (including for grains and fruits), energy recycling (waste energy usage), and use of by-products for energy, such as biogas. The articles cover techniques equipment, and design for energy conservation. (Contains 95 abstracts)

  4. Greenhouse gas and carbon profile of the u.s. Forest products industry value chain.

    PubMed

    Heath, Linda S; Maltby, Van; Miner, Reid; Skog, Kenneth E; Smith, James E; Unwin, Jay; Upton, Brad

    2010-05-15

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO(2) and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO(2)-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions.

  5. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  6. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  7. Report: future industrial solid waste management in pars Special Economic Energy Zone (PSEEZ), Iran.

    PubMed

    Mokhtarani, Babak; Moghaddam, Mohammad Reza Alavi; Mokhtarani, Nader; Khaledi, Hossein Jomeh

    2006-06-01

    The Pars Special Economic Energy Zone (PSEEZ) is located in the south of Iran, on the northern coastline of the Persian Gulf. This area was established in 1998 for the utilization of south Pars field oil and gas resources. This field is one of the largest gas resources in the world and contains about 6% of the total fossil fuels known. Petrochemical industries, gas refineries and downstream industries are being constructed in this area. At present there are three gas refineries in operation and five more gas refineries are under construction. In this study, different types of solid waste including municipal solid waste (MSW) and industrial wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the environmental impact. In the first stage, the types and amounts of industrial waste in PSEEZ were evaluated by an inventory. The main types of industrial waste are oil products (fuel oil, light oil, lubricating oil), spent catalysts, adsorbents, resins, coke, wax and packaging materials. The waste management of PSEEZ is quite complex because of the different types of industry and the diversity of industrial residues. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. Recently a design has been prepared for a disposal site in PSEEZ for the industrial waste that cannot be reused or recycled. The total surface area of this disposal site where the industrial waste should be tipped for the next 20 years was estimated to be about 42 000 m2.

  8. Report: future industrial solid waste management in pars Special Economic Energy Zone (PSEEZ), Iran.

    PubMed

    Mokhtarani, Babak; Moghaddam, Mohammad Reza Alavi; Mokhtarani, Nader; Khaledi, Hossein Jomeh

    2006-06-01

    The Pars Special Economic Energy Zone (PSEEZ) is located in the south of Iran, on the northern coastline of the Persian Gulf. This area was established in 1998 for the utilization of south Pars field oil and gas resources. This field is one of the largest gas resources in the world and contains about 6% of the total fossil fuels known. Petrochemical industries, gas refineries and downstream industries are being constructed in this area. At present there are three gas refineries in operation and five more gas refineries are under construction. In this study, different types of solid waste including municipal solid waste (MSW) and industrial wastes were investigated separately. The aim of the study was to focus on the management of the industrial wastes in order to minimize the environmental impact. In the first stage, the types and amounts of industrial waste in PSEEZ were evaluated by an inventory. The main types of industrial waste are oil products (fuel oil, light oil, lubricating oil), spent catalysts, adsorbents, resins, coke, wax and packaging materials. The waste management of PSEEZ is quite complex because of the different types of industry and the diversity of industrial residues. In some cases recycling/reuse of waste is the best option, but treatment and disposal are also necessary tools. Recently a design has been prepared for a disposal site in PSEEZ for the industrial waste that cannot be reused or recycled. The total surface area of this disposal site where the industrial waste should be tipped for the next 20 years was estimated to be about 42 000 m2. PMID:16784172

  9. Potential for steel industry energy intensity improvements: Electricity use in minimills

    SciTech Connect

    Boyd, G.; Neifer, M.; Karlson, S. |; Ross, M. |

    1992-09-01

    US steel manufacturing has experienced an extended episode of creative destruction in the past twenty years. The creative destruction has been the closure of over fifty million tons worth of annual capacity in iron-ore based steel plants concurrent with the construction of nearly thirty million tons of productive capacity in scrap-based steel plants. Our focus is on the effects of the creative destruction in steel on the use of electricity in steel manufacture. This paper utilizes the plant level data at the Center for Economic Studies at the Census to analyze the energy and technical efficiency of minimills from 1972 to 1988. We examine the potential for improvements in energy (electricity) use within the minimills segment of the industry. Since the role of this segment of the industry has changed so dramatically in the last 20 years we examine in detail the role that the plant age and vintage plays in determining energy and technical efficiency.

  10. Potential for steel industry energy intensity improvements: Electricity use in minimills

    SciTech Connect

    Boyd, G.; Neifer, M. ); Karlson, S. . Dept. of Economics Argonne National Lab., IL ); Ross, M. . Dept. of Physics Argonne National Lab., IL )

    1992-01-01

    US steel manufacturing has experienced an extended episode of creative destruction in the past twenty years. The creative destruction has been the closure of over fifty million tons worth of annual capacity in iron-ore based steel plants concurrent with the construction of nearly thirty million tons of productive capacity in scrap-based steel plants. Our focus is on the effects of the creative destruction in steel on the use of electricity in steel manufacture. This paper utilizes the plant level data at the Center for Economic Studies at the Census to analyze the energy and technical efficiency of minimills from 1972 to 1988. We examine the potential for improvements in energy (electricity) use within the minimills segment of the industry. Since the role of this segment of the industry has changed so dramatically in the last 20 years we examine in detail the role that the plant age and vintage plays in determining energy and technical efficiency.

  11. Current Energy Requirements in the Copper Producing Industries

    NASA Astrophysics Data System (ADS)

    Pitt, Charles H.; Wadsworth, Milton E.

    1981-06-01

    An analysis of energy usage in the production of refined cathode copper was made from mining ore to cathode copper. In mining copper ore the greatest energy consumers are ore hauling and blasting. Another important factor is the "recovery efficiency" of the metallurgical processes used to extract the copper. The mining and mineral concentrating energies are directly proportional to the "recovery efficiency," with a typical mining operation requiring about 20 million Btu/ton of cathode copper produced. Mineral concentrating was also found to be a large energy consumer, requiring about 43 million Btu/ton of cathode copper. Some possibilities for energy savings in the mineral processing area include use of autogenous grinding and computer control for optimizing grinding operations, improved classifier efficiency, and optimizing the entire concentrator plant performance by interrelating all plant operations. In acid plants, optimization of input SO2 concentration can make the plant a net producer rather than a net user of energy. The conventional smelting process utilizes very little of the energy from the combustion of sulfides in the charge. Several of the newer copper pyrometallurgical processes which utilize more of the combustion energy of the sulfides as heat show a significant improvement over conventional smelting. Generally, increased use of oxygen decreases Level 1 energies but proportionately increases Level 2 energies. Hydrometallurgical processes are, in general, more energy intensive than smelting processes, mainly because of the inability to utilize the heat of reaction of the sulfides. Electrowinning used in most hydrometallurgy processes is also energy intensive, and research in these areas could produce significant energy savings. Combination pyrometallurgical processes are generally less energy intensive than entirely hydrometallurgical processes. Significant improvements may be made in energy use in hydrometallurgical processes by more effective

  12. Research and development in sensor technology: The DOE industrial energy conservation program

    SciTech Connect

    Not Available

    1987-04-01

    Sensor technology is an important component of modern day process technologies. It lends itself to further research and development with the potential for increased energy efficiency and productivity. Sensors are used by industry in practically every aspect of the production process. The utilization of automatic control systems and the anticipation of increased future applications of computers in production processes have highlighted the importance of research in this area. Recognizing this need, IP has funded a series of targeted projects to develop process-specific sensors as well as sensors for generic applications. This brochure describes, in summary form, the Office of Industrial Programs' research and development (R and D) efforts in the advancement of sensor technology.

  13. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    SciTech Connect

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  14. Industrial application of geothermal energy in Southeast Idaho

    SciTech Connect

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  15. Constraining Energy Consumption of China's Largest IndustrialEnterprises Through the Top-1000 Energy-Consuming EnterpriseProgram

    SciTech Connect

    Price, Lynn; Wang, Xuejun

    2007-06-01

    Between 1980 and 2000, China's energy efficiency policiesresulted in a decoupling of the traditionally linked relationship betweenenergy use and gross domestic product (GDP) growth, realizing a four-foldincrease in GDP with only a doubling of energy use. However, during Chinas transition to a market-based economy in the 1990s, many of thecountry's energy efficiency programs were dismantled and between 2001 and2005 China's energy use increased significantly, growing at about thesame rate as GDP. Continuation of this one-to-one ratio of energyconsumption to GDP given China's stated goal of again quadrupling GDPbetween 2000 and 2020 will lead to significant demand for energy, most ofwhich is coal-based. The resulting local, national, and globalenvironmental impacts could be substantial.In 2005, realizing thesignificance of this situation, the Chinese government announced anambitious goal of reducing energy consumption per unit of GDP by 20percent between 2005 and 2010. One of the key initiatives for realizingthis goal is the Top-1000 Energy-Consuming Enterprises program. Thecomprehensive energy consumption of these 1000 enterprises accounted for33 percent of national and 47 percent of industrial energy usage in 2004.Under the Top-1000 program, 2010 energy consumption targets wereannounced for each enterprise. Activities to be undertaken includebenchmarking, energy audits, development of energy saving action plans,information and training workshops, and annual reporting of energyconsumption. This paper will describe the program in detail, includingthe types of enterprises included and the program activities, and willprovide an analysis of the progress and lessons learned todate.

  16. Modeling plant-level industrial energy demand with the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD)

    SciTech Connect

    Boyd, G.A.; Neifer, M.J.; Ross, M.H.

    1992-08-01

    This report discusses Phase 1 of a project to help the US Department of Energy determine the applicability of the Manufacturing Energy Consumption Survey (MECS) database and the Longitudinal Research Database (LRD) for industrial modeling and analysis. Research was conducted at the US Bureau of the Census; disclosure of the MECS/LRD data used as a basis for this report was subject to the Bureau`s confidentiality restriction. The project is designed to examine the plant-level energy behavior of energy-intensive industries. In Phase 1, six industries at the four-digit standard industrial classification (SIC) level were studied. The utility of analyzing four-digit SIC samples at the plant level is mixed, but the plant-level structure of the MECS/LRD makes analyzing samples disaggregated below the four-digit level feasible, particularly when the MECS/LRD data are combined with trade association or other external data. When external data are used, the validity of using value of shipments as a measure of output for analyzing energy use can also be examined. Phase 1 results indicate that technical efficiency and the distribution of energy intensities vary significantly at the plant level. They also show that the six industries exhibit monopsony-like behavior; that is, energy prices vary significantly at the plant level, with lower prices being correlated with a higher level of energy consumption. Finally, they show to what degree selected energy-intensive products are manufactured outside their primary industry.

  17. The Importance and Weaknesses of the Productivist Industrial Model of Knowledge Production

    ERIC Educational Resources Information Center

    Persson, Roland S.

    2010-01-01

    To view contemporary Science as an industry is a very apt and timely stance. Ghassib's (2010) historical analysis of knowledge production, which he terms "A Productivist Industrial Model of Knowledge Production," is an interesting one. It is important, however, to observe that the outline of this model is based entirely on the production of…

  18. 76 FR 9028 - Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... Industry: Potency Tests for Cellular and Gene Therapy Products'' dated January 2011. The guidance document provides manufacturers of cellular and gene therapy (CGT) products with recommendations for developing... document entitled ``Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products''...

  19. 78 FR 19181 - Notice of Request for a New Information Collection: Egg Products Industry Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... Food Safety and Inspection Service Notice of Request for a New Information Collection: Egg Products... information collection for a survey of the egg products industry. DATES: Comments on this notice must be.... SUPPLEMENTARY INFORMATION: Title: Egg Products Industry Survey. Type of Request: New information...

  20. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. PMID:26496844

  1. Soluble phosphate fertilizer production using acid effluent from metallurgical industry.

    PubMed

    Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B

    2016-01-15

    Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse.

  2. Energy Recovery Linacs for Commercial Radioisotope Production

    SciTech Connect

    Sy, Amy; Krafft, Geoffrey A.; Johnson, Rolland; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  3. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  4. 76 FR 25622 - Energy Conservation Program for Certain Industrial Equipment: Energy Conservation Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Method III. Analysis of Potential Energy Savings A. Annual Energy Use 1. Water-Cooled Air Conditioners 2... Conservation Standards for Commercial Heating, Air-Conditioning, and Water-Heating Equipment AGENCY: Office of... commercial and industrial equipment, including commercial heating, air-conditioning, and water-...

  5. Comparison of conventional and solar-water-heating products and industries report

    SciTech Connect

    Noreen, D; LeChevalier, R; Choi, M; Morehouse, J

    1980-07-11

    President Carter established a goal that would require installation of at least one million solar water heaters by 1985 and 20 million water-heating systems by the year 2000. The goals established require that the solar industry be sufficiently mature to provide cost-effective, reliable designs in the immediate future. The objective of this study was to provide the Department of Energy with quantified data that can be used to assess and redirect, if necessary, the program plans to assure compliance with the President's goals. Results deal with the product, the industry, the market, and the consumer. All issues are examined in the framework of the conventional-hot-water industry. Based on the results of this solar hot water assessment study, there is documented proof that the solar industry is blessed with over 20 good solar hot water systems. A total of eight generic types are currently being produced, but a majority of the systems being sold are included in only five generic types. The good systems are well-packaged for quality, performance and installation ease. These leading systems are sized and designed to fit the requirements of the consumer in every respect. This delivery end also suffers from a lack of understanding of the best methods for selling the product. At the supplier end, there are problems also, including: some design deficiencies, improper materials selection and, occasionally, the improper selection of components and subsystems. These, in total, are not serious problems in the better systems and will be resolved as this industry matures.

  6. The lead-acid battery industry in China: outlook for production and recycling.

    PubMed

    Tian, Xi; Wu, Yufeng; Gong, Yu; Zuo, Tieyong

    2015-11-01

    In 2013, more than four million (metric) tons (MT) of refined lead went into batteries in China, and 1.5 MT of scrap lead recycled from these batteries was reused in other secondary materials. The use of start-light-ignition (SLI), traction and energy storage batteries has spread in China in recent decades, with their proportions being 25.6%, 47.2% and 27.2%, respectively, in 2012. The total production of these batteries increased from 296,000 kVAh in 2001 to 205.23 MkVAh in 2013, with manufacturing located mainly in the middle and eastern provinces of the country. In this paper, we find that the market share of SLI batteries will decrease slightly, the share of traction batteries will continuously increase with the emergence of clean energy vehicles, and that of energy storage batteries will increase with the development of the wind energy and photovoltaic industries. Accounting for lead consumption in the main application industries, and the total social possession, it is calculated that used lead batteries could generate 2.4 MT of scrap lead in 2014, which is much higher than the 1.5 MT that was recycled in 2013. Thus, the current recycling rate is too low. It is suggested that while building large-scale recycling plants, small-scale plants should be banned or merged. PMID:26341636

  7. The lead-acid battery industry in China: outlook for production and recycling.

    PubMed

    Tian, Xi; Wu, Yufeng; Gong, Yu; Zuo, Tieyong

    2015-11-01

    In 2013, more than four million (metric) tons (MT) of refined lead went into batteries in China, and 1.5 MT of scrap lead recycled from these batteries was reused in other secondary materials. The use of start-light-ignition (SLI), traction and energy storage batteries has spread in China in recent decades, with their proportions being 25.6%, 47.2% and 27.2%, respectively, in 2012. The total production of these batteries increased from 296,000 kVAh in 2001 to 205.23 MkVAh in 2013, with manufacturing located mainly in the middle and eastern provinces of the country. In this paper, we find that the market share of SLI batteries will decrease slightly, the share of traction batteries will continuously increase with the emergence of clean energy vehicles, and that of energy storage batteries will increase with the development of the wind energy and photovoltaic industries. Accounting for lead consumption in the main application industries, and the total social possession, it is calculated that used lead batteries could generate 2.4 MT of scrap lead in 2014, which is much higher than the 1.5 MT that was recycled in 2013. Thus, the current recycling rate is too low. It is suggested that while building large-scale recycling plants, small-scale plants should be banned or merged.

  8. Automatic control algorithm effects on energy production

    NASA Technical Reports Server (NTRS)

    Mcnerney, G. M.

    1981-01-01

    A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.

  9. Production of a raw material for energy production in agriculture

    NASA Astrophysics Data System (ADS)

    Hellstroem, G.

    1980-04-01

    The total amount of energy in products produced by Swedish agriculture was estimated to 80 TWH: 30 TWh for cereals, 15 TWh for grass and leguminosae, and 35 TWh for straw and other agricultural wastes. Of this production a large part will be used as food even in the future. New plants that would produce more energy than the ones traditionally grown in Sweden are discussed. Also other types of energy from agriculture are discussed such as methane from manure, methanol from gasification processes, and ethanol from fermentative processes. Costs were estimated from different alternatives.

  10. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways. PMID:21662987

  11. Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel.

    PubMed

    Brentner, Laura B; Eckelman, Matthew J; Zimmerman, Julie B

    2011-08-15

    The use of algae as a feedstock for biodiesel production is a rapidly growing industry, in the United States and globally. A life cycle assessment (LCA) is presented that compares various methods, either proposed or under development, for algal biodiesel to inform the most promising pathways for sustainable full-scale production. For this analysis, the system is divided into five distinct process steps: (1) microalgae cultivation, (2) harvesting and/or dewatering, (3) lipid extraction, (4) conversion (transesterification) into biodiesel, and (5) byproduct management. A number of technology options are considered for each process step and various technology combinations are assessed for their life cycle environmental impacts. The optimal option for each process step is selected yielding a best case scenario, comprised of a flat panel enclosed photobioreactor and direct transesterification of algal cells with supercritical methanol. For a functional unit of 10 GJ biodiesel, the best case production system yields a cumulative energy demand savings of more than 65 GJ, reduces water consumption by 585 m(3) and decreases greenhouse gas emissions by 86% compared to a base case scenario typical of early industrial practices, highlighting the importance of technological innovation in algae processing and providing guidance on promising production pathways.

  12. OTEC energy via methanol production

    SciTech Connect

    Avery, W.H.; Richards, D.; Niemeyer, W.G.; Shoemaker, J.D.

    1983-01-01

    The conceptual design of an 160 MW/sub e/ OTEC plantship has been documented; it is designed to produce 1000 tonne/day of fuel-grade methanol from coal slurry shipped to the plantship, using oxygen and hydrogen from the on-board electrolysis of water. Data and components are used that were derived by Brown and Root Development, Inc. (BARDI) in designing a barge-mounted plant to make methanol from natural gas for Litton Industries and in the design and construction of a coal-to-ammonia demonstration plant in operation at Muscle Shoals, Alabama, for the Tennessee Valley Authority (TVA). The OTEC-methanol plant design is based on the use of the Texaco gasifier and Lurgi synthesis units. The sale price of OTEC methanol delivered to port from this first-of-a-kind plant is estimated to be marginally competitive with methanol from other sources at current market prices.

  13. Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy

    SciTech Connect

    Zhiwei Zhou

    2006-07-01

    Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are

  14. [Method for grading industrial sectors in energy consumption and its application].

    PubMed

    Mao, Jian-Su; Ma, Lan

    2013-04-01

    Energy is mainly consumed by the urban industry system, thus grading industrial sectors for their energy consumption may help to identify the concerned industrial sectors and provide necessary information for industrial energy management in China's industrialization and urbanization. In present article, based on a review of the fundamental relationships between energy consumption and industrial sectors, the contribution rates and energy efficiency of industrial sectors are chosen as typical parameters for energy consumption. The concept of distance index of industrial sectors for energy consumption is defined through China's average level as a reference base. The grade of industrial sectors in energy consumption is classed into 9 types from extreme advantage to extreme disadvantage according to the scope of distance index values, and the types of industrial sectors that need to be more concerned are pointed out. Taking Chongqing as a case study, the application for grading industrial sectors for their energy consumption was exhibited, by which, the main industrial sectors are grated and the industrial sectors that should be special concerned in energy management are determined.

  15. Utilization of industrial dairy waste as microalgae cultivation medium : a potential study for sustainable energy resources

    NASA Astrophysics Data System (ADS)

    Nurmayani, S.; Sugiarti, Y.; Putra, R. H.

    2016-04-01

    Microalgae is one of biodiesel resources and call as third generation biofuel. Biodiesel is one alternative energy that being developed. So study about resource of biodiesel need a development, for the example is development the basic material such as microalgae. In this paper we explain the potential use of dairy waste from industry as a cultivation medium of microalgae for biodiesel production. Dairy waste from dairy industry contains 34.98% protein, 4.42% lactose, 9.77% fiber, 11.04% fat, 2.33% calcium, 1.05% phosfor, and 0.4 % magnesium, meaning that the dairy waste from dairy industry has a relatively high nutrient content and complete from a source of carbon, nitrogen and phosphorus as macro nutrients. The method in this paper is literature review to resulting a new conclusion about the potency of waste water from dairy industry as microalgae cultivation medium. Based on the study, the dairy waste from dairy industry has potency to be used as cultivation medium of Botryococcus braunii in the production of biodiesel, replacing the conventional cultivation medium.

  16. Multiple-energy Techniques in Industrial Computerized Tomography

    DOE R&D Accomplishments Database

    Schneberk, D.; Martz, H.; Azevedo, S.

    1990-08-01

    Considerable effort is being applied to develop multiple-energy industrial CT techniques for materials characterization. Multiple-energy CT can provide reliable estimates of effective Z (Z{sub eff}), weight fraction, and rigorous calculations of absolute density, all at the spatial resolution of the scanner. Currently, a wide variety of techniques exist for CT scanners, but each has certain problems and limitations. Ultimately, the best multi-energy CT technique would combine the qualities of accuracy, reliability, and wide range of application, and would require the smallest number of additional measurements. We have developed techniques for calculating material properties of industrial objects that differ somewhat from currently used methods. In this paper, we present our methods for calculating Z{sub eff}, weight fraction, and density. We begin with the simplest case -- methods for multiple-energy CT using isotopic sources -- and proceed to multiple-energy work with x-ray machine sources. The methods discussed here are illustrated on CT scans of PBX-9502 high explosives, a lexan-aluminum phantom, and a cylinder of glass beads used in a preliminary study to determine if CT can resolve three phases: air, water, and a high-Z oil. In the CT project at LLNL, we have constructed several CT scanners of varying scanning geometries using {gamma}- and x-ray sources. In our research, we employed two of these scanners: pencil-beam CAT for CT data using isotopic sources and video-CAT equipped with an IRT micro-focal x-ray machine source.

  17. Kojic Acid Production from Agro-Industrial By-Products Using Fungi

    PubMed Central

    El-Kady, Ismael A.; Zohri, Abdel Naser A.; Hamed, Shimaa R.

    2014-01-01

    A total of 278 different isolates of filamentous fungi were screened using synthetic medium for respective ability to produce kojic acid. Nineteen, six, and five isolates proved to be low, moderate, and high kojic acid producers, respectively. Levels of kojic acid produced were generally increased when shaking cultivation was used rather than those obtained using static cultivation. A trial for the utilization of 15 agro-industrial wastes or by-products for kojic acid production by the five selected higher kojic acid producer isolates was made. The best by-product medium recorded was molasses for kojic acid. A. flavus numbers 7 and 24 were able to grow and produce kojic acid on only 12 out of 15 wastes or by-products media. The best medium used for kojic acid production by A. flavus number 7 was rice fragments followed by molasses, while the best medium used for kojic acid production by A. flavus number 24 was the molasses followed by orange, pea, and rice fragments. An attempt for production of kojic acid using a 1.5 L laboratory fermentor has been made. Aspergillus flavus number 7 was used and grown on molasses medium; maximum level (53.5 g/L) of kojic acid was obtained after eight days of incubation. PMID:24778881

  18. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Aden, Nathaniel; Chunxia, Zhang; Xiuping, Li; Fangqin, Shangguan

    2011-06-15

    Production of iron and steel is an energy-intensive manufacturing process. In 2006, the iron and steel industry accounted for 13.6% and 1.4% of primary energy consumption in China and the U.S., respectively (U.S. DOE/EIA, 2010a; Zhang et al., 2010). The energy efficiency of steel production has a direct impact on overall energy consumption and related carbon dioxide (CO2) emissions. The goal of this study is to develop a methodology for making an accurate comparison of the energy intensity (energy use per unit of steel produced) of steel production. The methodology is applied to the steel industry in China and the U.S. The methodology addresses issues related to boundary definitions, conversion factors, and indicators in order to develop a common framework for comparing steel industry energy use. This study uses a bottom-up, physical-based method to compare the energy intensity of China and U.S. crude steel production in 2006. This year was chosen in order to maximize the availability of comparable steel-sector data. However, data published in China and the U.S. are not always consistent in terms of analytical scope, conversion factors, and information on adoption of energy-saving technologies. This study is primarily based on published annual data from the China Iron & Steel Association and National Bureau of Statistics in China and the Energy Information Agency in the U.S. This report found that the energy intensity of steel production is lower in the United States than China primarily due to structural differences in the steel industry in these two countries. In order to understand the differences in energy intensity of steel production in both countries, this report identified key determinants of sector energy use in both countries. Five determinants analyzed in this report include: share of electric arc furnaces in total steel production, sector penetration of energy-efficiency technologies, scale of production equipment, fuel shares in the iron and steel

  19. Assessment of the industrial energy-conservation program. Final report of the Committee on Assessment of the Industrial Energy Conservation Program

    SciTech Connect

    1982-01-01

    Industrial operations in the United States account for some 37% of the nation's consumptions of energy. It has been estimated that this figure will increase to 50% by 1990 unless appropriate industrial energy conservation measures are adopted. However, such measures are difficult to implement in spite of the potential of various existing, emerging, and advanced technologies that can be applied to the problem. Specifically, the application of many industrial energy conservation measures entails high economic, technological, and institutional risks and uncertainties that constrain industries from adopting such measures. Accordingly, in 1975 the federal government started a program designed to mitigate these risks and uncertainties via government-industry partnership arrangements in the interests of national energy conservation. An important element of this program is the Industrial Energy Conservation Program in the Federal Department of Energy (DOE). In June 1980, DOE asked the National Materials Advisory Board, a unit of the National Academy of Sciences-National Research Council, to form a study committee to assess the effectiveness of the Industrial Energy Conservation Program. The committee concluded that federal support embodied in the DOE program, present and planned, is important to conserving additional industrial energy. However, the committee also concluded that the program needs various improvements in project selection and management and in transfer of results to industry. The committee's findings and recommendations and the results of the deliberation of the committee's three panels, a special report on heat and power, and a report on the visit by four members of the committee to Japan are presented.

  20. Study of domestic social and economic impacts of ocean thermal energy conversion (OTEC) commercial development. Volume II. Industry profiles

    SciTech Connect

    1981-12-22

    Econoimc profiles of the industries most affected by the construction, deployment, and operation of Ocean Thermal Energy Conversion (OTEC) powerplants are presented. Six industries which will contribute materials and/or components to the construction of OTEC plants have been identified and are profiled here. These industries are: steel industry, concrete industry, titanium metal industry, fabricated structural metals industry, fiber glass-reinforced plastics industry, and electrical transmission cable industry. The economic profiles for these industries detail the industry's history, its financial and economic characteristics, its technological and production traits, resource constraints that might impede its operation, and its relation to OTEC. Some of the historical data collected and described in the profile include output, value of shipments, number of firms, prices, employment, imports and exports, and supply-demand forecasts. For most of the profiled industries, data from 1958 through 1980 were examined. In addition, profiles are included on the sectors of the economy which will actualy construct, deploy, and supply the OTEC platforms.

  1. Steam drying of industrial and agricultural products and wastes

    SciTech Connect

    Frame, G.B.; Galland, K.V.; Svensson, C.

    1983-03-01

    A new drying technique has been developed by MoDo-Chemetics and Chalmers of Technology in Sweden. Steam drying utilizes the drying capacity of superheated steam to remove moisture from porous material such as pulp or hog fuel. The first commercial dryer based on this technique was installed at Rockhammar Bruk in Sweden, where wood pulp is dried from 60% to 12% moisture content. Two commercial-size units are presently under construction, one for drying of hog fuel from 50% to 35% moisture content for on-the-grate firing in the power boiler and one for drying of sugar-beet pulp from 80% to 10% moisture content. This new technique can be applied in the drying of materials used in the production of waterboard, fiberboard, and hardboard, drying of peat, distillers grain residue, orange and pineapple pulp, grape and apple pomace, and cotton linters, for various end uses including cattlefeed and the use of residues as combustible material in small boilers. The energy-recovery aspects of the steam dryer are very important. Energy recovery in a useful form of more than 85% of the input to the dryer is feasible. 4 figures, 2 tables. (DP)

  2. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L.; Purcell, C.W.

    1992-10-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  3. Relighting for energy efficiency and productivity

    SciTech Connect

    Harris, L. ); Purcell, C.W. )

    1992-01-01

    This paper presents an overview of the process and approach of the Federal Relighting Initiative (FRI). It describes the major steps in relighting Federal buildings for energy efficiency and increased productivity.

  4. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel Morrison; Sharon Elder

    2006-01-24

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the sixth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) Organized and hosted two technology transfer meetings; (2) Collaborated with the Pennsylvania Oil and Gas Association (POGAM) to host a Natural Gas Outlook conference in Pittsburgh, PA; (3) Provided a SWC presentation at the Interstate Oil and Gas Compact Commission (IOGCC) meeting in Jackson Hole, WY; and (4) Completed and released a stripper well industry documentary entitled: ''Independent Oil: Rediscovering America's Forgotten Wells''.

  5. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  6. Developing software for energy conservation in the process industries: two case studies. Capsule report

    SciTech Connect

    None, None

    1980-02-01

    Increases in energy cost occurring simultaneously with greatly decreasing computer costs have opened opportunities for applications of computers for industrial energy conversation. The documentation of savings related to past projects is a useful first step in determining the most attractive future applications of computers. The use of computers in the control of a textile dyehouse and in the drying of citrus pulp and the resulting economic gains and energy conservation in these applications are discussed. The overall impact of the control system in the dyehouse was a 23% increase in production per unit of resource consumed, and a payback period for the control system of less than two years. In the drying operations process reliability and safety improved, fuel consumption decreased and production yield increased. (LCL)

  7. Case history studies of energy conservation improvements in the meat industry

    SciTech Connect

    Not Available

    1982-06-01

    Presented are case histories for ten energy-efficient technologies implemented by the meat industry. For each case is presented: the name and location of the plant, name of plant employee contact with address and telephone number, energy consumption and costs at the plant before and after implementation of energy-conserving technology, description of the investment decision process, and changes in production or product quality as a result of the new equipment. The measures presented are: continuous rendering, high-pressure return on the boiler, heat recovery from condensate return and flash steam, continuous whole blood processing, preheating of process water with recovered refrigeration waste heat, continuous rendering of poultry scraps, electrical stimulation of beef, preheating and storing process water with recovered refrigeration waste heat, microcomputer control system, and housekeeping improvements. (LEW)

  8. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect

    Joel L. Morrison; Sharon L. Elder

    2006-05-01

    The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) Organize and host the 2006 Spring Meeting in State College, PA to review and select projects for SWC co-funding; (2) Participation in the 2006 PA CleanEnergy Expo Energy Theater to air the DVD on ''Independent Oil: Rediscovering American's Forgotten Wells''; (3) New member additions; (4) Improving communications; and (5) Planning of the fall technology meetings.

  9. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  10. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  11. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  12. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  13. 48 CFR 52.234-1 - Industrial Resources Developed Under Defense Production Act Title III.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Industrial Resources... CLAUSES Text of Provisions and Clauses 52.234-1 Industrial Resources Developed Under Defense Production Act Title III. As prescribed at 34.104, insert the following clause: Industrial Resources...

  14. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    SciTech Connect

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  15. Steam systems in industry: Energy use and energy efficiency improvement potentials

    SciTech Connect

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-07-22

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO{sub 2} emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO{sub 2} emissions equivalent to 12-13 MtC.

  16. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  17. Could energy-intensive industries be powered by carbon-free electricity?

    PubMed

    MacKay, David J C

    2013-03-13

    While the main thrust of the Discussion Meeting Issue on 'Material efficiency: providing material services with less material production' was to explore ways in which society's net demand for materials could be reduced, this review examines the possibility of converting industrial energy demand to electricity, and switching to clean electricity sources. This review quantifies the scale of infrastructure required in the UK, focusing on wind and nuclear power as the clean electricity sources, and sets these requirements in the context of the decarbonization of the whole energy system using wind, biomass, solar power in deserts and nuclear options. The transition of industry to a clean low-carbon electricity supply, although technically possible with several different technologies, would have very significant infrastructure requirements. PMID:23359732

  18. Could energy-intensive industries be powered by carbon-free electricity?

    PubMed

    MacKay, David J C

    2013-03-13

    While the main thrust of the Discussion Meeting Issue on 'Material efficiency: providing material services with less material production' was to explore ways in which society's net demand for materials could be reduced, this review examines the possibility of converting industrial energy demand to electricity, and switching to clean electricity sources. This review quantifies the scale of infrastructure required in the UK, focusing on wind and nuclear power as the clean electricity sources, and sets these requirements in the context of the decarbonization of the whole energy system using wind, biomass, solar power in deserts and nuclear options. The transition of industry to a clean low-carbon electricity supply, although technically possible with several different technologies, would have very significant infrastructure requirements.

  19. Energy conservation: Industry. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning techniques and equipment, and program overviews regarding industrial energy conservation measures. Topics include case histories and energy audits in a variety of industries, financial and investment aspects, and descriptions of specific energy conservation projects undertaken in the United States and abroad. The food, metals, pulp and paper, wood, and textile industries are among the industries discussed. (Contains a minimum of 248 citations and includes a subject term index and title list.)

  20. Energy conservation: Industry measures. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1997-05-01

    The bibliography contains citations concerning techniques and equipment, and program overviews regarding industrial energy conservation measures. Topics include case histories and energy audits in a variety of industries, financial and investment aspects, and descriptions of specific energy conservation projects undertaken in the United States and abroad. The food, metals, pulp and paper, wood, and textile industries are among the industries discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)