Sample records for inelastic analysis acceptance

  1. Inelastic and Dynamic Fracture and Stress Analyses

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.

  2. First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nucleus Deep Inelastic Scattering at MINERvA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousseau, Joel A.

    2015-01-01

    Decades of research in electron-nucleus deep inelastic scattering (DIS) have provided a clear picture of nuclear physics at high momentum transfer. While these effects have been clearly demonstrated by experiment, the theoretical explanation of their origin in some kinematic regions has been lacking. Particularly, the effects in the intermediate regions of Bjorken-x, anti-shadowing and the EMC effect have no universally accepted quantum mechanical explanation. In addition, these effects have not been measured systematically with neutrino-nucleus deep inelastic scattering, due to experiments lacking multiple heavy targets.

  3. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1994-01-01

    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.

  4. Two-particle correlations in azimuthal angle and pseudorapidity in inelastic p + p interactions at the CERN Super Proton Synchrotron

    DOE PAGES

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.; ...

    2017-01-30

    Results on two-particle ΔηΔΦ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. Furthermore, the results are compared with the Epos and UrQMD models.

  5. Numerical nonlinear inelastic analysis of stiffened shells of revolution. Volume 1: Theory manual for STARS-2P digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.; Levine, H.

    1975-01-01

    The theoretical analysis background for the STARS-2P nonlinear inelastic program is discussed. The theory involved is amenable for the analysis of large deflection inelastic behavior in axisymmetric shells of revolution subjected to axisymmetric loadings. The analysis is capable of considering such effects as those involved in nonproportional and cyclic loading conditions. The following are also discussed: orthotropic nonlinear kinematic hardening theory; shell wall cross sections and discrete ring stiffeners; the coupled axisymmetric large deflection elasto-plastic torsion problem; and the provision for the inelastic treatment of smeared stiffeners, isogrid, and waffle wall constructions.

  6. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  7. Structural response of SSME turbine blade airfoils

    NASA Technical Reports Server (NTRS)

    Arya, V. K.; Abdul-Aziz, A.; Thompson, R. L.

    1988-01-01

    Reusable space propulsion hot gas-path components are required to operate under severe thermal and mechanical loading conditions. These operating conditions produce elevated temperature and thermal transients which results in significant thermally induced inelastic strains, particularly, in the turbopump turbine blades. An inelastic analysis for this component may therefore be necessary. Anisotropic alloys such as MAR M-247 or PWA-1480 are being considered to meet the safety and durability requirements of this component. An anisotropic inelastic structural analysis for an SSME fuel turbopump turbine blade was performed. The thermal loads used resulted from a transient heat transfer analysis of a turbine blade. A comparison of preliminary results from the elastic and inelastic analyses is presented.

  8. Comparative analysis of characteristic electron energy loss spectra and inelastic scattering cross-section spectra of Fe

    NASA Astrophysics Data System (ADS)

    Parshin, A. S.; Igumenov, A. Yu.; Mikhlin, Yu. L.; Pchelyakov, O. P.; Zhigalov, V. S.

    2016-05-01

    The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.

  9. Measurement of muon plus proton final states in ν μ interactions on hydrocarbon at < E ν > = 4.2 GeV

    DOE PAGES

    Walton, T.

    2015-04-01

    A study of charged-current muon neutrino scattering on hydrocarbon in which the final state includes a muon, at least one proton, and no pions is presented. Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from quasielastic and inelastic processes where pions are absorbed in the nucleus. The analysis accepts events with muon production angles up to 70° and proton kinetic energies greater than 110 MeV. The cross section, when based completely on hadronic kinematics, is well described by a relativistic Fermi gas nuclear model including the neutrino event generator modeling formore » inelastic processes and particle transportation through the nucleus. This is in contrast to the quasielastic cross section based on muon kinematics, which is best described by an extended model that incorporates multinucleon correlations. As a result, this measurement guides the formulation of a complete description of neutrino-nucleus interactions that encompasses the hadronic as well as the leptonic aspects of this process.« less

  10. Impact of the HERA I+II combined data on the CT14 QCD global analysis

    NASA Astrophysics Data System (ADS)

    Dulat, S.; Hou, T.-J.; Gao, J.; Guzzi, M.; Huston, J.; Nadolsky, P.; Pumplin, J.; Schmidt, C.; Stump, D.; Yuan, C.-P.

    2016-11-01

    A brief description of the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs is given. The new CT14HERA2 PDFs at NLO and NNLO are illustrated. They employ the same parametrization used in the CT14 analysis, but with an additional shape parameter for describing the strange quark PDF. The HERA I+II data are reasonably well described by both CT14 and CT14HERA2 PDFs, and differences are smaller than the PDF uncertainties of the standard CT14 analysis. Both sets are acceptable when the error estimates are calculated in the CTEQ-TEA (CT) methodology and the standard CT14 PDFs are recommended to be continuously used for the analysis of LHC measurements.

  11. Refractive effects and Airy structure in inelastic 16O+12C rainbow scattering

    NASA Astrophysics Data System (ADS)

    Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.; Gloukhov, Yu. A.; Dem'yanova, A. S.; Trzaska, W. H.

    2014-12-01

    Inelastic 16O+12C rainbow scattering to the 2+ (4.44 MeV) state of 12C was measured at the incident energies, EL = 170, 181, 200, 260, and 281 MeV. A systematic analysis of the experimental angular distributions was performed using the coupled-channels method with an extended double folding potential derived from realistic wave functions for 12C and 16O calculated with a microscopic α cluster model and a finite-range density-dependent nucleon-nucleon force. The coupled-channels analysis of the measured inelastic-scattering data shows consistently some Airy-like structure in the inelastic-scattering cross sections for the first 2+ state of 12C, which is somewhat obscured and still not clearly visible in the measured data. The Airy minimum was identified from the analysis and the systematic energy evolution of the Airy structure was studied. The Airy minimum in inelastic scattering is found to be shifted backward compared with that in elastic scattering.

  12. Transverse momentum and its compensation in current and target jets in deep inelastic muon-proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Beaufays, J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Callebaut, D.; Carr, J.; Chima, J. S.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dahlgren, S.; Davies, J. K.; Dengler, F.; Derado, I.; Dosselli, U.; Dreyer, T.; Drees, J.; Dumont, J. J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Gössling, C.; Grafström, P.; Grard, F.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Manz, A.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Paul, L.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Schlagböhmer, A.; Schmitz, N.; Schneegans, M.; Schröder, T.; Schultze, K.; Shiers, J.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wahlen, H.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Wolf, G.

    1984-12-01

    Results are presented on the transverse momentum distributions of charged hadrons in 280 GeV muon-proton deep inelastic interactions. The transverse momenta are defined relative to the accurately measured virtual photon direction and the experiment has almost complete angular acceptance for the final state hadrons. Significantly larger values of the average transverse momentum squared are found for the forward going hadrons than for the target remnants. This result, combined with a study of the rapidity region over which the transverse momentum is compensated, can be explained by a significant contribution from soft gluon radiation, but not by a large value of the primordial transverse momentum of the struck quark.

  13. Comparison of energy flows in deep inelastic scattering events with and without a large rapidity gap

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Schlereth, J.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schneider, J.-L.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. J.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Böttcher, S.; Coldewey, C.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Göttlicher, P.; Gutjahr, B.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Kröger, W.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Pelfer, P.; Anzivino, G.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Stavrianakou, M.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Fürtjes, A.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Terron, J.; Zetsche, F.; Bacon, T. C.; Beuselinck, R.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Kim, C. O.; Kim, T. Y.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; del Peso, J.; Puga, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; O'Dell, V.; Tenner, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; McFall, J.; Nath, C.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Iori, M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Dubbs, T.; Heusch, C.; Van Hook, M.; Hubbard, B.; Lockman, W.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nagira, T.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. S.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchuła, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Tsurugai, T.; Bhadra, S.; Frisken, W. R.; Furutani, K. M.; ZEUS Collaboration

    1994-11-01

    Energy flows in deep inelastic electron-proton scattering are investigated at a centre-of-mass energy of 269 GeV for the range Q2 ≥ 10 GeV 2 using the ZEUS detector. A comparison is made between events with and without a large rapidity gap between the hadronic system and the proton direction. The energy flows, corrected for detector acceptance and resolution, are shown for these two classes of events in both the HERA laboratory frame and the Breit frame. From the differences in the shapes of these energy flows we conclude that QCD radiation is suppressed in the large-rapidity-gap eents compared to the events without a large rapidity gap.

  14. Elasticity and dislocation inelasticity of crystals

    NASA Astrophysics Data System (ADS)

    Nikanorov, S. P.; Kardashev, B. K.

    The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.

  15. Earthquake response analysis of 11-story RC building that suffered damage in 2011 East Japan Earthquake

    NASA Astrophysics Data System (ADS)

    Shibata, Akenori; Masuno, Hidemasa

    2017-10-01

    An eleven-story RC apartment building suffered medium damage in the 2011 East Japan earthquake and was retrofitted for re-use. Strong motion records were obtained near the building. This paper discusses the inelastic earthquake response analysis of the building using the equivalent single-degree-of-freedom (1-DOF) system to account for the features of damage. The method of converting the building frame into 1-DOF system with tri-linear reducing-stiffness restoring force characteristics was given. The inelastic response analysis of the building against the earthquake using the inelastic 1-DOF equivalent system could interpret well the level of actual damage.

  16. Materials constitutive models for nonlinear analysis of thermally cycled structures

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.

  17. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  18. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  19. Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.

    1990-01-01

    Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.

  20. In-situ soil carbon analysis using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  1. Three-dimensional Stress Analysis Using the Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1984-01-01

    The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.

  2. Search for WIMP inelastic scattering off xenon nuclei with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Mora, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Xenon Collaboration

    2017-07-01

    We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 ×103 kg .days . XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe 129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe 129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 ×10-38 cm2 at 100 GeV /c2 . This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.

  3. Measurement of the inelastic cross section in proton-lead collisions at √{sNN} = 5.02TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Toriashvili, T.; Bagaturia, I.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Boletti, A.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Trapani, P. P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Khein, L.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Lukina, O.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Du Pree, T.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Thomas, L.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-Palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; McGinn, C.; Mironov, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-08-01

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. The data sample, corresponding to an integrated luminosity of L = 12.6 ± 0.4 nb-1, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or - 5 < η < - 3, corrected for photon-induced contributions, experimental acceptance, and other instrumental effects. The inelastic cross section is measured to be σinel (pPb) = 2061 ± 3 (stat) ± 34 (syst) ± 72 (lumi) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. The value of σinel (pPb) is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.

  4. Measurement of the inelastic cross section in proton–lead collisions at s NN = 5.02 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-06-16

    The inelastic hadronic cross section in proton-lead collisions at a centre-of-mass energy per nucleon pair of 5.02 TeV is measured with the CMS detector at the LHC. Our data sample, corresponding to an integrated luminosity of L = 12.6 ± 0.4 nb -1, has been collected with an unbiased trigger for inclusive particle production. The cross section is obtained from the measured number of proton-lead collisions with hadronic activity produced in the pseudorapidity ranges 3 < η < 5 and/or -5 < η < -3, corrected for photon-induced contributions, experimental acceptance, and other instrumental effects. The inelastic cross section ismore » measured to be σ inel(pPb) = 2061 ± 3 (stat) ± 34 (syst) ± 72 (lumi) mb. Various Monte Carlo generators, commonly used in heavy ion and cosmic ray physics, are found to reproduce the data within uncertainties. Furthermore, the value of σ inel(pPb) is compatible with that expected from the proton-proton cross section at 5.02 TeV scaled up within a simple Glauber approach to account for multiple scatterings in the lead nucleus, indicating that further net nuclear corrections are small.« less

  5. QCD analysis of neutrino charged current structure function F2 in deep inelastic scattering

    NASA Technical Reports Server (NTRS)

    Saleem, M.; Aleem, F.

    1985-01-01

    An analytic expression for the neutrino charged current structure function F sub 2 (x, Q sup 2) in deep inelastic scattering, consistent with quantum chromodynamics, is proposed. The calculated results are in good agreement with experiment.

  6. Analytical simulation of weld effects in creep range

    NASA Technical Reports Server (NTRS)

    Dhalla, A. K.

    1985-01-01

    The inelastic analysis procedure used to investigate the effect of welding on the creep rupture strength of a typical Liquid Metal Fast Breeder Reactor (LMFBR) nozzle is discussed. The current study is part of an overall experimental and analytical investigation to verify the inelastic analysis procedure now being used to design LMFBR structural components operating at elevated temperatures. Two important weld effects included in the numerical analysis are: (1) the residual stress introduced in the fabrication process; and (2) the time-independent and the time-dependent material property variations. Finite element inelastic analysis was performed on a CRAY-1S computer using the ABAQUS program with the constitutive equations developed for the design of LMFBR structural components. The predicted peak weld residual stresses relax by as much as 40% during elevated temperature operation, and their effect on creep-rupture cracking of the nozzle is considered of secondary importance.

  7. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Jing; Herman, M.; Ge, Zhigang

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  8. The evaluation of experimental data in fast range for n + 56Fe(n,inl)

    DOE PAGES

    Qian, Jing; Herman, M.; Ge, Zhigang; ...

    2017-09-13

    Iron is one of the five materials selected for evaluation within the pilot international evaluation project CIELO. Analysis of experimental data for n+ 56Fe reaction is the basis for constraining theoretical calculations and eventual creation of the evaluated file. The detail analysis was performed for inelastic cross sections of neutron induced reactions with 56Fe in the fast range up to 20 MeV where there are significant differences among the main evaluated libraries, mainly caused by the different inelastic scattering cross section measurements. Gamma-ray production cross sections provide a way to gain experimental information about the inelastic cross section. Large discrepanciesmore » between experimental data for the 847-keV gamma ray produced in the 56Fe(n,n 1'γ) reaction were analyzed. In addition, experimental data for elastic scattering cross section between 9.41~11 MeV were used to deduce the inelastic cross section from the unitarity constrain.« less

  9. Impact of roughness on the instability of a free-cooling granular gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Santos, Andrés; Kremer, Gilberto M.

    2018-05-01

    A linear stability analysis of the hydrodynamic equations with respect to the homogeneous cooling state is carried out to identify the conditions for stability of a granular gas of rough hard spheres. The description is based on the results for the transport coefficients derived from the Boltzmann equation for inelastic rough hard spheres [Phys. Rev. E 90, 022205 (2014), 10.1103/PhysRevE.90.022205], which take into account the complete nonlinear dependence of the transport coefficients and the cooling rate on the coefficients of normal and tangential restitution. As expected, linear stability analysis shows that a doubly degenerate transversal (shear) mode and a longitudinal ("heat") mode are unstable with respect to long enough wavelength excitations. The instability is driven by the shear mode above a certain inelasticity threshold; at larger inelasticity, however, the instability is driven by the heat mode for an inelasticity-dependent range of medium roughness. Comparison with the case of a granular gas of inelastic smooth spheres confirms previous simulation results about the dual role played by surface friction: while small and large levels of roughness make the system less unstable than the frictionless system, the opposite happens at medium roughness. On the other hand, such an intermediate window of roughness values shrinks as inelasticity increases and eventually disappears at a certain value, beyond which the rough-sphere gas is always less unstable than the smooth-sphere gas. A comparison with some preliminary simulation results shows a very good agreement for conditions of practical interest.

  10. The new Heavy-ion MCP-based Ancillary Detector DANTE for the CLARA-PRISMA Setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiente-Dobon, J. J.; Gadea, A.; Corradi, L.

    2006-08-14

    The CLARA-PRISMA setup is a powerful tool for spectroscopic studies of neutron-rich nuclei produced in multi-nucleon transfer and deep-inelastic reactions. It combines the large acceptance spectrometer PRISMA with the {gamma}-ray array CLARA. At present, the ancillary heavy-ion detector DANTE, based on Micro-Channel Plates to be installed at the CLARA-PRISMA setup, is being constructed at LNL. DANTE will open the possibility of measuring {gamma}-{gamma} Doppler-corrected coincidences for the events outside the acceptance of PRISMA. In this presentation, it is described the heavy-ion detector DANTE, as well as the performances of the first prototype.

  11. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.

    Results on two-particle ΔηΔΦ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. Furthermore, the results are compared with the Epos and UrQMD models.

  13. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    USDA-ARS?s Scientific Manuscript database

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  14. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  15. 3-D inelastic analysis methods for hot section components (base program). [turbine blades, turbine vanes, and combustor liners

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1984-01-01

    A 3-D inelastic analysis methods program consists of a series of computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of combustor liners, turbine blades, and turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain) and global (dynamics, buckling) structural behavior of the three selected components. These models are used to solve 3-D inelastic problems using linear approximations in the sense that stresses/strains and temperatures in generic modeling regions are linear functions of the spatial coordinates, and solution increments for load, temperature and/or time are extrapolated linearly from previous information. Three linear formulation computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (MARC-Hot Section Technology), and BEST (Boundary Element Stress Technology), were developed and are described.

  16. A method to describe inelastic gamma field distribution in neutron gamma density logging.

    PubMed

    Zhang, Feng; Zhang, Quanying; Liu, Juntao; Wang, Xinguang; Wu, He; Jia, Wenbao; Ti, Yongzhou; Qiu, Fei; Zhang, Xiaoyang

    2017-11-01

    Pulsed neutron gamma density logging (NGD) is of great significance for radioprotection and density measurement in LWD, however, the current methods have difficulty in quantitative calculation and single factor analysis for the inelastic gamma field distribution. In order to clarify the NGD mechanism, a new method is developed to describe the inelastic gamma field distribution. Based on the fast-neutron scattering and gamma attenuation, the inelastic gamma field distribution is characterized by the inelastic scattering cross section, fast-neutron scattering free path, formation density and other parameters. And the contribution of formation parameters on the field distribution is quantitatively analyzed. The results shows the contribution of density attenuation is opposite to that of inelastic scattering cross section and fast-neutron scattering free path. And as the detector-spacing increases, the density attenuation gradually plays a dominant role in the gamma field distribution, which means large detector-spacing is more favorable for the density measurement. Besides, the relationship of density sensitivity and detector spacing was studied according to this gamma field distribution, therefore, the spacing of near and far gamma ray detector is determined. The research provides theoretical guidance for the tool parameter design and density determination of pulsed neutron gamma density logging technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CT14QED parton distribution functions from isolated photon production in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Schmidt, Carl; Pumplin, Jon; Stump, Daniel; Yuan, C.-P.

    2016-06-01

    We describe the implementation of quantum electrodynamic (QED) evolution at leading order (LO) along with quantum chromodynamic (QCD) evolution at next-to-leading order (NLO) in the CTEQ-TEA global analysis package. The inelastic contribution to the photon parton distribution function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters to be equal allows us to completely specify the inelastic photon PDF in terms of the inelastic momentum fraction carried by the photon, p0γ, at the initial scale Q0=1.295 GeV . We obtain constraints on the photon PDF by comparing with ZEUS data [S. Chekanov et al. (ZEUS Collaboration), Phys. Lett. B 687, 16 (2010)] on the production of isolated photons in deep inelastic scattering, e p →e γ +X . For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of p0γ≲0.14 % for the inelastic photon PDF at the initial scale of Q0=1.295 GeV in the one-parameter radiative ansatz. The resulting inelastic CT14QED PDFs will be made available to the public. In addition, we also provide CT14QEDinc PDFs, in which the inclusive photon PDF at the scale Q0 is defined by the sum of the inelastic photon PDF and the elastic photon distribution obtained from the equivalent photon approximation.

  18. RICH Detector for Jefferson Labs CLAS12

    NASA Astrophysics Data System (ADS)

    Trotta, Richard; Torisky, Ben; Benmokhtar, Fatiha

    2015-10-01

    Jefferson Lab (Jlab) is performing a large-scale upgrade to its Continuous Electron Beam Accelerator Facility (CEBAF) up to 12GeV beams. The Large Acceptance Spectrometer (CLAS12) in Hall B is being upgraded and a new hybrid Ring Imaging Cherenkov (RICH) detector is being developed to provide better kaon - pion separation throughout the 3 to 8 GeV/c momentum range. This detector will be used for a variety of Semi-Inclusive Deep Inelastic Scattering experiments. Cherenkov light can be accurately detected by a large array of sophisticated Multi-Anode Photomultiplier Tubes (MA-PMT) and heavier particles, like kaons, will span the inner radii. We are presenting our work on the creation of the RICH's geometry within the CLAS12 java framework. This development is crucial for future calibration, reconstructions and analysis of the detector.

  19. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.

  20. Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  1. Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Arnold, Steven M.; Iyer, Saiganesh K.

    1998-01-01

    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements.

  2. Neutron Scattering Differential Cross Sections for 12C

    NASA Astrophysics Data System (ADS)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  3. Precision Measurements of $$A_1^n$$ in the Deep Inelastic Regime

    DOE PAGES

    Parno, Diana; Flay, David; Posik, Matthew; ...

    2015-04-07

    We have performed precision measurements of the double-spin virtual-photon asymmetry A₁ on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ³He target. Our data cover a wide kinematic range 0.277 ≤ x ≤ 0.5480 at an average Q² value of 3.078 (GeV/c)², doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Ourmore » data are consistent with a previous observation of an View the MathML source A 1 n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in (Δd+Δd¯)/(d+d¯) up to x=0.548.« less

  4. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be established that depends on uncertainties in the physics models and methodology employed to produce the DOS. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(alpha, beta) covariance matrix may be generated. In this work, density functional theory and lattice dynamics in the harmonic approximation are used to calculate the phonon DOS for hexagonal crystalline graphite. This form of graphite is used as an example material for the purpose of demonstrating procedures for analyzing, calculating and processing thermal neutron inelastic scattering uncertainty information. Several sources of uncertainty in thermal neutron inelastic scattering calculations are examined, including sources which cannot be directly characterized through a description of the phonon DOS uncertainty, and their impacts are evaluated. Covariances for hexagonal crystalline graphite S(alpha, beta) data are quantified by coupling the standard methodology of LEAPR with a Monte Carlo sampling process. The mechanics of efficiently representing and processing this covariance information is also examined. Finally, with appropriate sensitivity information, it is shown that an S(alpha, beta) covariance matrix can be propagated to generate covariance data for integrated cross sections, secondary energy distributions, and coupled energy-angle distributions. This approach enables a complete description of thermal neutron inelastic scattering cross section uncertainties which may be employed to improve the simulation of nuclear systems.

  5. The MHOST finite element program: 3-D inelastic analysis methods for hot section components. Volume 3: Systems' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    The internal structure is discussed of the MHOST finite element program designed for 3-D inelastic analysis of gas turbine hot section components. The computer code is the first implementation of the mixed iterative solution strategy for improved efficiency and accuracy over the conventional finite element method. The control structure of the program is covered along with the data storage scheme and the memory allocation procedure and the file handling facilities including the read and/or write sequences.

  6. Plastic Behavior of Engineering Materials. Part 1. Axial Tension and Bending Interaction Curves For Members Loaded Inelastically

    DTIC Science & Technology

    1952-08-01

    presented. The problem of combined bending and axial compressive loads is discussed and research based on the methods of analysis developed in this...since P fodA is zero for this stress distribution. Similarly, the ordinate of B is found by determining M from the integral M -f oydA in which the stress...values of M and P that correspond to 1/2 depth of the section being inelastically strained, and hence the results of the analysis in this report do not

  7. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  8. Advanced development of the boundary element method for elastic and inelastic thermal stress analysis. Ph.D. Thesis, 1987 Final Report

    NASA Technical Reports Server (NTRS)

    Henry, Donald P., Jr.

    1991-01-01

    The focus of this dissertation is on advanced development of the boundary element method for elastic and inelastic thermal stress analysis. New formulations for the treatment of body forces and nonlinear effects are derived. These formulations, which are based on particular integral theory, eliminate the need for volume integrals or extra surface integrals to account for these effects. The formulations are presented for axisymmetric, two and three dimensional analysis. Also in this dissertation, two dimensional and axisymmetric formulations for elastic and inelastic, inhomogeneous stress analysis are introduced. The derivatives account for inhomogeneities due to spatially dependent material parameters, and thermally induced inhomogeneities. The nonlinear formulation of the present work are based on an incremental initial stress approach. Two inelastic solutions algorithms are implemented: an iterative; and a variable stiffness type approach. The Von Mises yield criterion with variable hardening and the associated flow rules are adopted in these algorithms. All formulations are implemented in a general purpose, multi-region computer code with the capability of local definition of boundary conditions. Quadratic, isoparametric shape functions are used to model the geometry and field variables of the boundary (and domain) of the problem. The multi-region implementation permits a body to be modeled in substructured parts, thus dramatically reducing the cost of analysis. Furthermore, it allows a body consisting of regions of different (homogeneous) material to be studied. To test the program, results obtained for simple test cases are checked against their analytic solutions. Thereafter, a range of problems of practical interest are analyzed. In addition to displacement and traction loads, problems with body forces due to self-weight, centrifugal, and thermal loads are considered.

  9. Experimental and analytical studies on the seismic behavior of conventional and hybrid braced frames

    NASA Astrophysics Data System (ADS)

    Lai, Jiun-Wei

    This dissertation summarizes both experimental and analytical studies on the seismic response of conventional steel concentrically braced frame systems of the type widely used in North America, and preliminary studies of an innovative hybrid braced frame system: the Strong-Back System. The research work is part of NEES small group project entitled "International Hybrid Simulation of Tomorrow's Braced Frames." In the experimental phase, a total of four full-scale, one-bay, two-story conventional braced frame specimens with different bracing member section shapes and gusset plate-to-beam connection details were designed and tested at the NEES Berkeley Laboratory. Three braced frame specimens were tested quasi-statically using the same predefined loading protocol to investigate the inelastic cyclic behavior of code-compliant braced frames at both the global and local level. The last braced frame specimen was nearly identical to one of those tested quasi-statically. However, it was tested using hybrid simulation techniques to examine the sensitivity of inelastic behavior on loading sequence and to relate the behavior observed to different levels of seismic hazard. Computer models of the test specimens were developed using two different computer software programs. In the software framework OpenSees fiber-based line elements were used to simulate global buckling of members and yielding and low-cycle fatigue failure at sections. The LS-DYNA analysis program was also used to model individual struts and the test specimens using shell elements with adaptive meshing and element erosion features. This program provided enhanced ability to simulate section local buckling, strain concentrations and crack development. The numerical results were compared with test results to assess and refine and the ability of the models to predict braced frame behavior. A series of OpenSees numerical cyclic component simulations were then conducted using the validated modeling approach. Two hundred and forty pin-ended struts with square hollow structural section shape were simulated under cyclic loading to examine the effect of width-to-thickness ratios and member slenderness ratios on the deformation capacity and energy dissipation characteristics of brace members. The concept of a hybrid system, consisting of a vertical elastic truss or strong-back, and a braced frame that responds inelastically, is proposed herein to mitigate the tendency of weak-story mechanisms to form in conventional steel braced frames. A simple design strategy about member sizing of the proposed Strong-Back System is provided in this study. To assess the ability of the new Strong-Back System to perform well under seismic loading, a series of inelastic analyses were performed considering three six-story hybrid braced frames having different bracing elements, and three six-story conventional brace frames having different brace configurations. Monotonic and cyclic quasi-static inelastic analyses and inelastic time history analyses were carried out. The braced frame system behavior, bracing member force-displacement hysteresis loops, and system residual drifts were the primary response quantities examined. These indicated that the new hybrid system was able to achieve its design goals. Experimental results show for the same loading history that the braced frame specimen using round hollow structural sections as brace members has the largest deformation capacity among the three types of bracing elements studied. Beams connected to gusset plates at the column formed plastic hinges adjacent to the gusset plate. The gusset plates tend to amplify the rotation demands at these locations and stress concentrations tended to result in early fractures of the plastic hinges that form. To remedy this problem, pinned connection details used in the last two specimens; these proved to prevent failures at these locations under both quasi-static and pseudo-dynamic tests. Failure modes observed near the column to base plate connections in all of the specimens suggest the need for further study. Both OpenSees and LS-DYNA models developed in this study predict the global braced frame behavior with acceptable accuracy. In both models, low-cycle fatigue damage models were needed to achieve an acceptable level of fidelity. Shell element models were able to predict local behavior and the mode of failures with greater but not perfect confidence. OpenSees analysis results show that the proposed hybrid braced frames would perform better than conventional braced frames and that the story deformations are more uniform. Finally, future research targets are briefly discussed at the end of this dissertation.

  10. Bond-orientational analysis of hard-disk and hard-sphere structures.

    PubMed

    Senthil Kumar, V; Kumaran, V

    2006-05-28

    We report the bond-orientational analysis results for the thermodynamic, random, and homogeneously sheared inelastic structures of hard-disks and hard-spheres. The thermodynamic structures show a sharp rise in the order across the freezing transition. The random structures show the absence of crystallization. The homogeneously sheared structures get ordered at a packing fraction higher than the thermodynamic freezing packing fraction, due to the suppression of crystal nucleation. On shear ordering, strings of close-packed hard-disks in two dimensions and close-packed layers of hard-spheres in three dimensions, oriented along the velocity direction, slide past each other. Such a flow creates a considerable amount of fourfold order in two dimensions and body-centered-tetragonal (bct) structure in three dimensions. These transitions are the flow analogs of the martensitic transformations occurring in metals due to the stresses induced by a rapid quench. In hard-disk structures, using the bond-orientational analysis we show the presence of fourfold order. In sheared inelastic hard-sphere structures, even though the global bond-orientational analysis shows that the system is highly ordered, a third-order rotational invariant analysis shows that only about 40% of the spheres have face-centered-cubic (fcc) order, even in the dense and near-elastic limits, clearly indicating the coexistence of multiple crystalline orders. When layers of close-packed spheres slide past each other, in addition to the bct structure, the hexagonal-close-packed (hcp) structure is formed due to the random stacking faults. Using the Honeycutt-Andersen pair analysis and an analysis based on the 14-faceted polyhedra having six quadrilateral and eight hexagonal faces, we show the presence of bct and hcp signatures in shear ordered inelastic hard-spheres. Thus, our analysis shows that the dense sheared inelastic hard-spheres have a mixture of fcc, bct, and hcp structures.

  11. Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering

    DOE PAGES

    Wang, D.; Pan, K.; Subedi, R.; ...

    2015-04-01

    The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less

  12. Extraction of partonic transverse momentum distributions from semi-inclusive deep inelastic scattering and Drell-Yan data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Cristian; Bacchetta, Alessandro; Delcarro, Filippo

    We present a first attempt at a global fit of unpolarized quark transverse momentum dependent distribution and fragmentation functions from available data on semi-inclusive deep-inelastic scattering, Drell-Yan and $Z$ boson production processes. This analysis is performed in the low transverse momentum region, at leading order in perturbative QCD and with the inclusion of energy scale evolution effects at the next-to-leading logarithmic accuracy.

  13. Spin, twist and hadron structure in deep inelastic processes

    NASA Astrophysics Data System (ADS)

    Jaffe, R. L.; Meyer, H.; Piller, G.

    These notes provide an introduction to polarization effects in deep inelastic processes in QCD. We emphasize recent work on transverse asymmetries, subdominant effects, and the role of polarization in fragmentation and in purely hadronic processes. After a review of kinematics and some basic tools of short distance analysis, we study the twist, helicity, chirality and transversity dependence of a variety of high energy processes sensitive to the quark and gluon substructure of hadrons.

  14. Evolution and stability of shock waves in dissipative gases characterized by activated inelastic collisions.

    PubMed

    Sirmas, N; Radulescu, M I

    2015-02-01

    Previous experiments have revealed that shock waves driven through dissipative gases may become unstable, for example, in granular gases and in molecular gases undergoing strong relaxation effects. The mechanisms controlling these instabilities are not well understood. We successfully isolated and investigated this instability in the canonical problem of piston-driven shock waves propagating into a medium characterized by inelastic collision processes. We treat the standard model of granular gases, where particle collisions are taken as inelastic, with a constant coefficient of restitution. The inelasticity is activated for sufficiently strong collisions. Molecular dynamic simulations were performed for 30,000 particles. We find that all shock waves investigated become unstable, with density nonuniformities forming in the relaxation region. The wavelength of these fingers is found to be comparable to the characteristic relaxation thickness. Shock Hugoniot curves for both elastic and inelastic collisions were obtained analytically and numerically. Analysis of these curves indicates that the instability is not of the Bethe-Zeldovich-Thompson or D'yakov-Kontorovich type. Analysis of the shock relaxation rates and rates for clustering in a convected fluid element with the same thermodynamic history ruled out the clustering instability of a homogeneous granular gas. Instead, wave reconstruction of the early transient evolution indicates that the onset of instability occurs during repressurization of the gas following the initial relaxation of the medium behind the lead shock. This repressurization gives rise to internal pressure waves in the presence of strong density gradients. This indicates that the mechanism of instability is more likely of the vorticity-generating Richtmyer-Meshkov type, relying on the action of the inner pressure wave development during the transient relaxation.

  15. (International seminar on the inelastic behavior of solids: Models and utilization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, M.B.

    The traveler attended the International Seminar on the Inelastic Behavior of Solids: Models and Utilization, and presented an invited paper. Development and validation of constitutive models for complex loading and environmental conditions was the principal subject of the seminar. Session 1. Constitutive Models: Theoretical Development, Analysis and Comparison, and Session 2. Constitutive Models: Experimental Identification and Use, were of particular interest to the ORNL constitutive equations development effort. The traveler also visited the Applied Mechanics Laboratory at the University of Franche-Comte in Besancon and the Laboratory of Mechanics and Technology at the ENSET/Paris University 6 in Cachan. In both laboratoriesmore » the traveler held discussions regarding inelastic material behavior at room and elevated temperatures, exploratory testing and modeling, and materials testing equipment and techniques.« less

  16. Bessel Weighted Asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Gamberg, Leonard; Rossi, Patrizia

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized partonmore » model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  17. Interplay of threshold resummation and hadron mass corrections in deep inelastic processes

    DOE PAGES

    Accardi, Alberto; Anderle, Daniele P.; Ringer, Felix

    2015-02-01

    We discuss hadron mass corrections and threshold resummation for deep-inelastic scattering lN-->l'X and semi-inclusive annihilation e +e - → hX processes, and provide a prescription how to consistently combine these two corrections respecting all kinematic thresholds. We find an interesting interplay between threshold resummation and target mass corrections for deep-inelastic scattering at large values of Bjorken x B. In semi-inclusive annihilation, on the contrary, the two considered corrections are relevant in different kinematic regions and do not affect each other. A detailed analysis is nonetheless of interest in the light of recent high precision data from BaBar and Belle onmore » pion and kaon production, with which we compare our calculations. For both deep inelastic scattering and single inclusive annihilation, the size of the combined corrections compared to the precision of world data is shown to be large. Therefore, we conclude that these theoretical corrections are relevant for global QCD fits in order to extract precise parton distributions at large Bjorken x B, and fragmentation functions over the whole kinematic range.« less

  18. 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Chen, P. C.; Hartle, M. S.; Huang, H. T.

    1985-01-01

    The objective is to develop analytical tools capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. Three models were developed. A simple model performs time dependent inelastic analysis using the power law creep equation. The second model is the classical model of Professors Walter Haisler and David Allen of Texas A and M University. The third model is the unified model of Bodner, Partom, et al. All models were customized for linear variation of loads and temperatures with all material properties and constitutive models being temperature dependent.

  19. 3-D inelastic analysis methods for hot section components. Volume 2: Advanced special functions models

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Sections Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of computer codes that permit more accurate and efficient three-dimensional analyses of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components.

  20. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    This annual status report presents the results of work performed during the fourth year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes permitting more accurate and efficient 3-D analysis of selected hot section components, i.e., combustor liners, turbine blades and turbine vanes. The computer codes embody a progression of math models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. Volume 1 of this report discusses the special finite element models developed during the fourth year of the contract.

  1. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon.

    PubMed

    Kim, D S; Hellman, O; Herriman, J; Smith, H L; Lin, J Y Y; Shulumba, N; Niedziela, J L; Li, C W; Abernathy, D L; Fultz, B

    2018-02-27

    Despite the widespread use of silicon in modern technology, its peculiar thermal expansion is not well understood. Adapting harmonic phonons to the specific volume at temperature, the quasiharmonic approximation, has become accepted for simulating the thermal expansion, but has given ambiguous interpretations for microscopic mechanisms. To test atomistic mechanisms, we performed inelastic neutron scattering experiments from 100 K to 1,500 K on a single crystal of silicon to measure the changes in phonon frequencies. Our state-of-the-art ab initio calculations, which fully account for phonon anharmonicity and nuclear quantum effects, reproduced the measured shifts of individual phonons with temperature, whereas quasiharmonic shifts were mostly of the wrong sign. Surprisingly, the accepted quasiharmonic model was found to predict the thermal expansion owing to a large cancellation of contributions from individual phonons.

  2. Rotationally inelastic collisions of H2+ ions with He buffer gas: Computing cross sections and rates

    NASA Astrophysics Data System (ADS)

    Hernández Vera, Mario; Gianturco, F. A.; Wester, R.; da Silva, H.; Dulieu, O.; Schiller, S.

    2017-03-01

    We present quantum calculations for the inelastic collisions between H2+ molecules, in rotationally excited internal states, and He atoms. This work is motivated by the possibility of experiments in which the molecular ions are stored and translationally cooled in an ion trap and a He buffer gas is added for deactivation of the internal rotational population, in particular at low (cryogenic) translational temperatures. We carry out an accurate representation of the forces at play from an ab initio description of the relevant potential energy surface, with the molecular ion in its ground vibrational state, and obtain the cross sections for state-changing rotationally inelastic collisions by solving the coupled channel quantum scattering equations. The presence of hyperfine and fine structure effects in both ortho- and para-H2+ molecules is investigated and compared to the results where such a contribution is disregarded. An analysis of possible propensity rules that may predict the relative probabilities of inelastic events involving rotational state-changing is also carried out, together with the corresponding elastic cross sections from several initial rotational states. Temperature-dependent rotationally inelastic rates are then computed and discussed in terms of relative state-changing collisional efficiency under trap conditions. The results provide the essential input data for modeling different aspects of the experimental setups which can finally produce internally cold molecular ions interacting with a buffer gas.

  3. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  4. Double folding analysis of 3He elastic and inelastic scattering to low lying states on 90Zr, 116Sn and 208Pb at 270 MeV

    NASA Astrophysics Data System (ADS)

    Marwa, N. El-Hammamy

    2015-03-01

    The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.

  5. 9Be+120Sn scattering at near-barrier energies within a four-body model

    NASA Astrophysics Data System (ADS)

    Arazi, A.; Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Lichtenthäler Filho, R.; Abriola, D.; Capurro, O. A.; Cardona, M. A.; Carnelli, P. F. F.; de Barbará, E.; Fernández Niello, J.; Figueira, J. M.; Fimiani, L.; Hojman, D.; Martí, G. V.; Martínez Heimman, D.; Pacheco, A. J.

    2018-04-01

    Cross sections for elastic and inelastic scattering of the weakly bound 9Be nucleus on a 120Sn target have been measured at seven bombarding energies around and above the Coulomb barrier. The elastic angular distributions are analyzed with a four-body continuum-discretized coupled-channels (CDCC) calculation, which considers 9Be as a three-body projectile (α +α +n ). An optical model analysis using the São Paulo potential is also shown for comparison. The CDCC analysis shows that the coupling to the continuum part of the spectrum is important for the agreement with experimental data even at energies around the Coulomb barrier, suggesting that breakup is an important process at low energies. At the highest incident energies, two inelastic peaks are observed at 1.19(5) and 2.41(5) MeV. Coupled-channels (CC) calculations using a rotational model confirm that the first inelastic peak corresponds to the excitation of the 21+ state in 120Sn, while the second one likely corresponds to the excitation of the 31- state.

  6. TANGRA - an experimental setup for basic and applied nuclear research by means of 14.1 MeV neutrons

    NASA Astrophysics Data System (ADS)

    Ruskov, Ivan; Kopatch, Yury; Bystritsky, Vyacheslav; Skoy, Vadim; Shvetsov, Valery; Hambsch, Franz-Josef; Oberstedt, Stephan; Noy, Roberto Capote; Grozdanov, Dimitar; Zontikov, Artem; Rogov, Yury; Zamyatin, Nikolay; Sapozhnikov, Mikhail; Slepnev, Vyacheslav; Bogolyubov, Evgeny; Sadovsky, Andrey; Barmakov, Yury; Ryzhkov, Valentin; Yurkov, Dimitry; Valković, Vladivoj; Obhođaš, Jasmina; Aliyev, Fuad

    2017-09-01

    For investigation of the basic characteristics of 14.1 MeV neutron induced nuclear reactions on a number of important isotopes for nuclear science and engineering, a new experimental setup TANGRA has been constructed at the Frank Laboratory of Neutron Physics of the Joint Institute for Nuclear Research in Dubna. For testing its performance, the angular distribution of γ-rays (and neutrons) from the inelastic scattering of 14.1 MeV neutrons on high-purity carbon was measured and the angular anisotropy of γ-rays from the reaction 12C(n, n'γ)12C was determined. This reaction is important from fundamental (differential cross-sections) and practical (non-destructive elemental analysis of materials containing carbon) point of view. The preliminary results for the anisotropy of the γ-ray emission from the inelastic scattering of 14.1- MeV neutrons on carbon are compared with already published literature data. A detailed data analysis for determining the correlations between inelastic scattered neutron and γ-ray emission will be published elsewhere.

  7. On 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.

    1986-01-01

    Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  8. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  9. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE PAGES

    Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...

    2015-03-01

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  10. Studies of transverse momentum dependent parton distributions and Bessel weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghasyan, M.; Avakian, H.; De Sanctis, E.

    In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less

  11. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  12. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  13. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  14. Proton scattering on 40S

    NASA Astrophysics Data System (ADS)

    Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Fauerbach, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Steiner, M.

    1998-12-01

    We have recently studied the structure of the neutron rich sulfur isotope 40S by using elastic and inelastic proton scattering in inverse kinematics. Optical potential and folding model calculations are compared with the elastic and inelastic angular distributions. Using coupled-channel calculations, the β2 value for the 21+ excited state is determined to be 0.35±0.05. The extracted value of Mn/Mp ratio indicates a small isovector contribution to the 21+ state of 40S. The microscopic analysis of the data is compatible with the presence of a neutron skin for this nucleus.

  15. A comparative study of inelastic scattering models at energy levels ranging from 0.5 keV to 10 keV

    NASA Astrophysics Data System (ADS)

    Hu, Chia-Yu; Lin, Chun-Hung

    2017-03-01

    Six models, including a single-scattering model, four hybrid models, and one dielectric function model, were evaluated using Monte Carlo simulations for aluminum and copper at incident beam energies ranging from 0.5 keV to 10 keV. The inelastic mean free path, mean energy loss per unit path length, and backscattering coefficients obtained by these models are compared and discussed to understand the merits of the various models. ANOVA (analysis of variance) statistical models were used to quantify the effects of inelastic cross section and energy loss models on the basis of the simulated results deviation from the experimental data for the inelastic mean free path, the mean energy loss per unit path length, and the backscattering coefficient, as well as their correlations. This work in this study is believed to be the first application of ANOVA models towards evaluating inelastic electron beam scattering models. This approach is an improvement over the traditional approach which involves only visual estimation of the difference between the experimental data and simulated results. The data suggests that the optimization of the effective electron number per atom, binding energy, and cut-off energy of an inelastic model for different materials at different beam energies is more important than the selection of inelastic models for Monte Carlo electron scattering simulation. During the simulations, parameters in the equations should be tuned according to different materials for different beam energies rather than merely employing default parameters for an arbitrary material. Energy loss models and cross-section formulas are not the main factors influencing energy loss. Comparison of the deviation of the simulated results from the experimental data shows a significant correlation (p < 0.05) between the backscattering coefficient and energy loss per unit path length. The inclusion of backscattering electrons generated by both primary and secondary electrons for backscattering coefficient simulation is recommended for elements with high atomic numbers. In hybrid models, introducing the inner shell ionization model improves the accuracy of simulated results.

  16. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenborn, B P

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  17. An inelastic analysis of a welded aluminum joint

    NASA Astrophysics Data System (ADS)

    Vaughan, Robert E.; Schonberg, William P.

    1995-02-01

    Butt weld joints are most commonly designed into pressure vessels by using weld material properties that are determined from a tensile test. These properties are provided to the stress analyst in the form of a stress vs strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of multiple pass aluminum 2219-T87 butt welds. The weld specimens are analyzed using classical plasticity theory to provide a basis for modeling the inelastic properties in a finite element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of currently available numerical prediction methods.

  18. On 3-D inelastic analysis methods for hot section components. Volume 1: Special finite element models

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1987-01-01

    This Annual Status Report presents the results of work performed during the third year of the 3-D Inelastic Analysis Methods for Hot Section Components program (NASA Contract NAS3-23697). The objective of the program is to produce a series of new computer codes that permit more accurate and efficient three-dimensional analysis of selected hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The computer codes embody a progression of mathematical models and are streamlined to take advantage of geometrical features, loading conditions, and forms of material response that distinguish each group of selected components. This report is presented in two volumes. Volume 1 describes effort performed under Task 4B, Special Finite Element Special Function Models, while Volume 2 concentrates on Task 4C, Advanced Special Functions Models.

  19. Combination and QCD analysis of charm and beauty production cross-section measurements in deep inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Aggarwal, R.; Andreev, V.; Antonelli, S.; Aushev, V.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrens, U.; Belousov, A.; Bertolin, A.; Bloch, I.; Bolz, A.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P. J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A. J.; Avila, K. B. Cantun; Capua, M.; Catterall, C. D.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J. G.; Cooper-Sarkar, A. M.; Corradi, M.; Cvach, J.; Dainton, J. B.; Daum, K.; Dementiev, R. K.; Devenish, R. C. E.; Diaconu, C.; Dobre, M.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haidt, D.; Henderson, R. C. W.; Hladkỳ, J.; Hlushchenko, O.; Hochman, D.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z. A.; Iga, Y.; Jacquet, M.; Janssen, X.; Jomhari, N. Z.; Jung, A. W.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Katzy, J.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Korzhavina, I. A.; Kostka, P.; Kotański, A.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Krücker, D.; Krüger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B. B.; Levonian, S.; Levy, A.; Libov, V.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinski, B.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lukina, O. Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.-U.; Masciocchi, S.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F. Mohamad; Mohammad Nasir, N.; Morozov, A.; Müller, K.; Myronenko, V.; Nagano, K.; Nam, J. D.; Naumann, Th.; Newman, P. R.; Nicassio, M.; Niebuhr, C.; Nowak, G.; Olsson, J. E.; Onderwaater, J.; Onishchuk, Yu.; Ozerov, D.; Pascaud, C.; Patel, G. D.; Paul, E.; Perez, E.; Perlański, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokrovskiy, N. S.; Polifka, R.; Polini, A.; Przybycień, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruspa, M.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Saxon, D. H.; Schioppa, M.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schöning, A.; Schörner-Sadenius, T.; Sefkow, F.; Selyuzhenkov, I.; Shcheglova, L. M.; Shushkevich, S.; Shyrma, Yu.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Surrow, B.; Sykora, T.; Sztuk-Dambietz, J.; Tassi, E.; Thompson, P. D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Abdullah, W. A. T. Wan; Wegener, D.; Wichmann, K.; Wing, M.; Wünsch, E.; Yamada, S.; Yamazaki, Y.; Žáček, J.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B. O.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2018-06-01

    Measurements of open charm and beauty production cross sections in deep inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections are obtained in the kinematic range of negative four-momentum transfer squared of the photon 2.5 GeV^2≤Q^2 ≤2000 GeV^2 and Bjorken scaling variable 3 \\cdot 10^{-5} ≤ x_Bj ≤ 5 \\cdot 10^{-2}. The combination method accounts for the correlations of the statistical and systematic uncertainties among the different datasets. Perturbative QCD calculations are compared to the combined data. A next-to-leading order QCD analysis is performed using these data together with the combined inclusive deep inelastic scattering cross sections from HERA. The running charm- and beauty-quark masses are determined as m_c(m_c) = 1.290^{+0.046}_{-0.041} (exp/fit) {}^{+0.062}_{-0.014} (model) {}^{+0.003}_{-0.031} (parameterisation) GeV and m_b(m_b) = 4.049^{+0.104}_{-0.109} (exp/fit) {}^{+0.090}_{-0.032} (model) {}^{+0.001}_{-0.031} (parameterisation) GeV.

  20. Solitons, Bäcklund transformation and Lax pair for a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation in the fluid/plasma mechanics

    NASA Astrophysics Data System (ADS)

    Lan, Zhong-Zhou; Gao, Yi-Tian; Yang, Jin-Wei; Su, Chuan-Qi; Wang, Qi-Min

    2016-09-01

    Under investigation in this paper is a (2+1)-dimensional B-type Kadomtsev-Petviashvili equation for the shallow water wave in a fluid or electrostatic wave potential in a plasma. Bilinear form, Bäcklund transformation and Lax pair are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota’s method. Propagation and interaction of the solitons are illustrated graphically: (i) Through the asymptotic analysis, elastic and inelastic interactions between the two solitons are discussed analytically and graphically, respectively. The elastic interaction, amplitudes, velocities and shapes of the two solitons remain unchanged except for a phase shift. However, in the area of the inelastic interaction, amplitudes of the two solitons have a linear superposition. (ii) Elastic interactions among the three solitons indicate that the properties of the elastic interactions among the three solitons are similar to those between the two solitons. Moreover, oblique and overtaking interactions between the two solitons are displayed. Oblique interactions among the three solitons and interactions among the two parallel solitons and a single one are presented as well. (iii) Inelastic-elastic interactions imply that the interaction between the inelastic region and another one is elastic.

  1. Seismic performance of the typical RC beam-column joint subjected to repeated earthquakes

    NASA Astrophysics Data System (ADS)

    Hassanshahi, Omid; Majid, Taksiah A.; Lau, Tze Liang; Yousefi, Ali; Tahara, R. M. K.

    2017-10-01

    It is common that a building experience repeated earthquakes throughout its lifetime. Such earthquake is capable of creating severe damage in primary elements of the building due to accumulation of inelastic displacement from repetition. The present study focuses on the influence of repeated earthquakes on a typical Reinforced Concrete (RC) beam-column joint, especially on the maximum inelastic displacement demand and maximum residual displacement. For this purpose, the capability of nonlinear modelling in simulating the hysteretic behaviour of the prototype experimental specimen is first determined using RUAUMOKO. A nonlinear Incremental Dynamic Analysis (IDA) on the verified model is then carried out in order to estimate with maximum accuracy the ultimate load bearing capacity to progressive collapse of the RC joint under investigation. Twenty ground motions are selected, and single (C1), double (C2), and triple (C3) event of synthetic repeated earthquakes are then considered. The results show that the repeated earthquakes significantly increase the inelastic demand of the RC joint. On average, relative increment of maximum inelastic displacement demand is experienced about 28.9% and 39.4% when C2 and C3 events of repeated earthquakes are induced, respectively. Residual displacements for repeated earthquakes are also significantly higher than that for single earthquakes.

  2. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  3. Thermo-elastoviscoplastic snapthrough behavior of cylindrical panels

    NASA Technical Reports Server (NTRS)

    Song, Y.; Simitses, G. J.

    1992-01-01

    The thermo-elastoviscoplastic snapthrough behavior of simply supported cylindrical panels is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations which include both Bodner-Partom's and Walker's material models. A finite element approach is employed to predict the inelastic buckling behavior. Numerical examples are given to demonstrate the effects of several parameters which include the temperature, thickness and flatness of the panel. Comparisons of buckling responses between Bodner-Partom's model and Walker's model are given. The creep buckling behavior, as an example of time-dependent inelastic deformation, is also presented.

  4. Precise measurements of beam spin asymmetries in semi-inclusive π0 production

    NASA Astrophysics Data System (ADS)

    Aghasyan, M.; Avakian, H.; Rossi, P.; De Sanctis, E.; Hasch, D.; Mirazita, M.; Adikaram, D.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; Deur, A.; Dey, B.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Garçon, M.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hanretty, C.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jawalkar, S. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Kuznetsov, V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McAndrew, J.; McKinnon, B.; Meyer, C. A.; Micherdzinska, A. M.; Mokeev, V.; Moreno, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Pereira, S. Anefalos; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strakovsky, I.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  5. Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π 0 production

    DOE PAGES

    Aghasyan, M.; Avakian, H.; Rossi, P.; ...

    2011-10-01

    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sin Φ h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle Φ h of the produced neutral pion. The dependence of this amplitude on Bjorken x and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.

  6. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    PubMed

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  7. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  8. Event shape analysis of deep inelastic scattering events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    ZEUS Collaboration; Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; McFall, J. D.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Klimek, K.; Przybycień , M. B.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Bukowy, M.; Jeleń , K.; Kisielewska, D.; Kowalski, T.; Przybycień , M.; Rulikowska-Zarȩ Bska, E.; Suszycki, L.; Zaja C, J.; Duliń Ski, Z.; Kotań Ski, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mań Czak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zsolararnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; MacDonald, N.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Waugh, R.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Walker, R.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamauchi, K.; Yamazaki, Y.; Hong, S. J.; Lee, S. B.; Nam, S. W.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Koffeman, E.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Große-Knetter, J.; Harnew, N.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Oh, B. Y.; Okrasiń Ski, J. R.; Toothacker, W. S.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Wichmann, R.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Fagerstroem, C.-P.; Galea, R.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sabetfakhri, A.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Lane, J. B.; Saunders, R. L.; Sutton, M. R.; Wing, M.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Deshpande, A.; Dhawan, S.; Hughes, V. W.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1998-03-01

    A global event shape analysis of the multihadronic final states observed in neutral current deep inelastic scattering events with a large rapidity gap with respect to the proton direction is presented. The analysis is performed in the range 5<=Q2<=185 GeV2 and 160<=W<=250 GeV, where Q2 is the virtuality of the photon and W is the virtual-photon proton centre of mass energy. Particular emphasis is placed on the dependence of the shape variables, measured in the γ*-pomeron rest frame, on the mass of the hadronic final state, MX. With increasing MX the multihadronic final state becomes more collimated and planar. The experimental results are compared with several models which attempt to describe diffractive events. The broadening effects exhibited by the data require in these models a significant gluon component of the pomeron.

  9. Leptoquarks and compositeness scales from a contact interaction analysis of deep inelastic e±p scattering at HERA

    NASA Astrophysics Data System (ADS)

    Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Lehner, F.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, A.; Meyer, C. A.; Meyer, H.; Meyer, J.; Migliori, A.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sciacca, G.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; zurNedden, M.; H1 Collaboration

    1995-02-01

    A contact interaction analysis is presented to search for new phenomena beyond the Standard Model in deep inelastic e±p → e±hadrons scattering. The data are collected with the H1 detector at HERA and correspond to integrated luminosities of 0.909 pb -1 and 2.947 pb -1 for electron and positron beams, respectively. The differential cross sections dσ/d Q2 are measured in the Q2 range between 160 GeV 2 and 20 000 GeV 2. The absence of any significant deviation from the Standard Model prediction is used to constrain the couplings and masses of new leptoquarks and to set limits on electron-quark compositeness scales and on the radius of light quarks.

  10. Implementation of Fiber Substructuring Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2001-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.

  11. Inelastic seismic response of precast concrete frames with constructed plastic hinges

    NASA Astrophysics Data System (ADS)

    Sucuoglu, H.

    1995-07-01

    A modified seismic design concept is introduced for precast concrete frames in which beam plastic hinges with reduced yield capacities are constructed away from the precast beam-column connections arranged at the column faces. Plastic hinge location and yield capacity are employed as the basic parameters of an analytical survey in which the inelastic dynamic responses of a conventional precast frame and its modified counterparts are calculated and compared under two earthquake excitations by using a general purpose computer program for dynamic analysis of inelastic frames (left bracket) 1, 2 (right bracket). An optimum design is obtained by providing plastic hinges on precast beams located at one depth away from the beam ends, in which primary (negative) bending moment yield capacities are reduced between one-third and one-quarter of the beam design end moments. With such plastic hinge configurations, precast beam-column connections at the column faces can be designed to remain elastic under strong earthquake excitations.

  12. Selectivity in the inelastic rotational scattering of D2 and HD molecules from graphite: Similarities and differences respect to the H2 case

    NASA Astrophysics Data System (ADS)

    Rutigliano, Maria; Pirani, Fernando

    2018-03-01

    The inelastic scattering of D2 and HD molecules impinging on a graphite surface in well-defined initial roto-vibrational states has been studied by using the computational setup recently developed to characterize important selectivities in the molecular dynamics occurring at the gas-surface interface. In order to make an immediate comparison of determined elastic and inelastic scattering probabilities, we considered for D2 and HD molecules the same initial states, as well as the same collision energy range, previously selected for the investigation of H2 behaviour. The analysis of the back-scattered molecules shows that, while low-lying initial vibrational states are preserved, the medium-high initial ones give rise to final states covering the complete ladder of vibrational levels, although with different probability for the various cases investigated. Moreover, propensities in the formation of the final rotational states are found to depend strongly on the initial ones, on the collision energy, and on the isotopologue species.

  13. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  14. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  15. Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction

    NASA Astrophysics Data System (ADS)

    Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.

    2018-03-01

    The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.

  16. A comprehensive study on the influence of strength and stiffness eccentricities to the on-plan rotation of asymmetric structure

    NASA Astrophysics Data System (ADS)

    Rashidi, Azida; Majid, Taksiah A.; Fadzli, M. N.; Faisal, Ade; Noor, Suhaila M.

    2017-10-01

    All buildings are subjected to some degree of torsion which in turn changes the member torsional demands from that of translation only. Torsional effects on buildings subjected to earthquakes are not found directly in structural analysis unless full three-dimensional inelastic dynamic time history analysis is conducted. Since design is often conducted using two-dimensional analysis, these effects are not directly considered. There is currently an understanding on how different factors may influence torsion, however, the degree to which these factors influence torsion is relatively unknown. Slab rotation effect is considered a major response parameter to represent the severity of the torsional response of eccentric systems; hence, it is considered in this study. The centre of strength (CR) and centre of stiffness (CS) are the two main factors under considerations. A comprehensive analysis on eighty different CR and CS conditions are applied to a three-dimensional, asymmetric building and their influences to slab rotation are observed. The CR/CS conditions are applied by varying strength eccentricities (er) and stiffness eccentricities (es) using two condition models. Then, earthquake ground motions are applied in z-direction under elastic and inelastic conditions. The results interpreted using a simple approach shows important slab rotation behaviour that forms interesting findings from this study. The slab rotation demand is found to reduce as strength eccentricity moves away from the Centre of Mass (CoM) but is independent of the stiffness eccentricity. The study also confirms finding of previous works which states that stiffness eccentricity plays a minor role when assessing the torsional behaviour of a ductile systems. Results from inelastic analysis shows slab rotation demand increases as strength eccentricity is closer to the CoM but it remains constant for elastic analysis.

  17. Inelastic off-fault response and three-dimensional dynamics of earthquake rupture on a strike-slip fault

    USGS Publications Warehouse

    Andrews, D.J.; Ma, Shuo

    2010-01-01

    Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.

  18. How Many Peripheral Solder Joints in a Surface Mounted Design Experience Inelastic Strains?

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.; Ghaffarian, R.

    2017-03-01

    It has been established that it is the peripheral solder joints that are the most vulnerable in the ball-grid-array (BGA) and column-grid-array (CGA) designs and most often fail. As far as the long-term reliability of a soldered microelectronics assembly as a whole is concerned, it makes a difference, if just one or more peripheral joints experience inelastic strains. It is clear that the low cycle fatigue lifetime of the solder system is inversely proportional to the number of joints that simultaneously experience inelastic strains. A simple and physically meaningful analytical expression (formula) is obtained for the prediction, at the design stage, of the number of such joints, if any, for the given effective thermal expansion (contraction) mismatch of the package and PCB; materials and geometrical characteristics of the package/PCB assembly; package size; and, of course, the level of the yield stress in the solder material. The suggested formula can be used to determine if the inelastic strains in the solder material could be avoided by the proper selection of the above characteristics and, if not, how many peripheral joints are expected to simultaneously experience inelastic strains. The general concept is illustrated by a numerical example carried out for a typical BGA package. The suggested analytical model (formula) is applicable to any soldered microelectronics assembly. The roles of other important factors, such as, e.g., solder material anisotropy, grain size, and their random orientation within a joint, are viewed in this analysis as less important factors than the level of the interfacial stress. The roles of these factors will be accounted for in future work and considered, in addition to the location of the joint, in a more complicated, more sophisticated, and more comprehensive reliability/fatigue model.

  19. Electron Inelastic-Mean-Free-Path Database

    National Institute of Standards and Technology Data Gateway

    SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge)   This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.

  20. Measurements of soil carbon by neutron-gamma analysis in static and scanning modes

    USDA-ARS?s Scientific Manuscript database

    The herein described application of the inelastic neutron scattering (INS) method for soil carbon analysis is based on the registration and analysis of gamma rays created when neutrons interact with soil elements. The main parts of the INS system are a pulsed neutron generator, NaI(Tl) gamma detecto...

  1. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  2. Study of inelastic e-Cd and e-Zn collisions

    NASA Astrophysics Data System (ADS)

    Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw

    2016-09-01

    Electron-photon coincidence experiments are well known for providing more detailed information about electron-atom collision than any other technique. The Electron Impact Coherence Parameters (EICP) values obtained in such studies deliver the most complete characterization of the inelastic collision and allow for a verification of proposed theoretical models. We present the results of Stokes and EICP parameters characterising electronic excitation of the lowest singlet P-state of cadmium and zinc atoms for various collision energies. The experiments were performed using electron-photon coincidence technique in the coherence analysis version. The obtained data are presented and compared with existing CCC and RDWA theoretical predictions.

  3. MHOST: An efficient finite element program for inelastic analysis of solids and structures

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.

    1988-01-01

    An efficient finite element program for 3-D inelastic analysis of gas turbine hot section components was constructed and validated. A novel mixed iterative solution strategy is derived from the augmented Hu-Washizu variational principle in order to nodally interpolate coordinates, displacements, deformation, strains, stresses and material properties. A series of increasingly sophisticated material models incorporated in MHOST include elasticity, secant plasticity, infinitesimal and finite deformation plasticity, creep and unified viscoplastic constitutive model proposed by Walker. A library of high performance elements is built into this computer program utilizing the concepts of selective reduced integrations and independent strain interpolations. A family of efficient solution algorithms is implemented in MHOST for linear and nonlinear equation solution including the classical Newton-Raphson, modified, quasi and secant Newton methods with optional line search and the conjugate gradient method.

  4. Behavioral economic analysis of drug preference using multiple choice procedure data.

    PubMed

    Greenwald, Mark K

    2008-01-11

    The multiple choice procedure has been used to evaluate preference for psychoactive drugs, relative to money amounts (price), in human subjects. The present re-analysis shows that MCP data are compatible with behavioral economic analysis of drug choices. Demand curves were constructed from studies with intravenous fentanyl, intramuscular hydromorphone and oral methadone in opioid-dependent individuals; oral d-amphetamine, oral MDMA alone and during fluoxetine treatment, and smoked marijuana alone or following naltrexone pretreatment in recreational drug users. For each participant and dose, the MCP crossover point was converted into unit price (UP) by dividing the money value ($) by the drug dose (mg/70kg). At the crossover value, the dose ceases to function as a reinforcer, so "0" was entered for this and higher UPs to reflect lack of drug choice. At lower UPs, the dose functions as a reinforcer and "1" was entered to reflect drug choice. Data for UP vs. average percent choice were plotted in log-log space to generate demand functions. Rank of order of opioid inelasticity (slope of non-linear regression) was: fentanyl>hydromorphone (continuing heroin users)>methadone>hydromorphone (heroin abstainers). Rank order of psychostimulant inelasticity was d-amphetamine>MDMA>MDMA+fluoxetine. Smoked marijuana was more inelastic with high-dose naltrexone. These findings show this method translates individuals' drug preferences into estimates of population demand, which has the potential to yield insights into pharmacotherapy efficacy, abuse liability assessment, and individual differences in susceptibility to drug abuse.

  5. Behavioral Economic Analysis of Drug Preference Using Multiple Choice Procedure Data

    PubMed Central

    Greenwald, Mark K.

    2008-01-01

    The Multiple Choice Procedure has been used to evaluate preference for psychoactive drugs, relative to money amounts (price), in human subjects. The present re-analysis shows that MCP data are compatible with behavioral economic analysis of drug choices. Demand curves were constructed from studies with intravenous fentanyl, intramuscular hydromorphone and oral methadone in opioid-dependent individuals; oral d-amphetamine, oral MDMA alone and during fluoxetine treatment, and smoked marijuana alone or following naltrexone pretreatment in recreational drug users. For each participant and dose, the MCP crossover point was converted into unit price (UP) by dividing the money value ($) by the drug dose (mg/70 kg). At the crossover value, the dose ceases to function as a reinforcer, so “0” was entered for this and higher UPs to reflect lack of drug choice. At lower UPs, the dose functions as a reinforcer and “1” was entered to reflect drug choice. Data for UP vs. average percent choice were plotted in log-log space to generate demand functions. Rank of order of opioid inelasticity (slope of non-linear regression) was: fentanyl > hydromorphone (continuing heroin users) > methadone > hydromorphone (heroin abstainers). Rank order of psychostimulant inelasticity was d-amphetamine > MDMA > MDMA + fluoxetine. Smoked marijuana was more inelastic with high-dose naltrexone. These findings show this method translates individuals’ drug preferences into estimates of population demand, which has the potential to yield insights into pharmacotherapy efficacy, abuse liability assessment, and individual differences in susceptibility to drug abuse. PMID:17949924

  6. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1980-01-01

    Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.

  7. The Top-of-Instrument corrections for nuclei with AMS on the Space Station

    NASA Astrophysics Data System (ADS)

    Ferris, N. G.; Heil, M.

    2018-05-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance, high precision magnetic spectrometer on the International Space Station (ISS). The top-of-instrument correction for nuclei flux measurements with AMS accounts for backgrounds due to the fragmentation of nuclei with higher charge. Upon entry in the detector, nuclei may interact with AMS materials and split into fragments of lower charge based on their cross-section. The redundancy of charge measurements along the particle trajectory with AMS allows for the determination of inelastic interactions and for the selection of high purity nuclei samples with small uncertainties. The top-of-instrument corrections for nuclei with 2 < Z ≤ 6 are presented.

  8. Measurement of the proton structure function F2 and σγ*ptot at low Q2 and very low x at HERA

    NASA Astrophysics Data System (ADS)

    Breitweg, J.; Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Yoshida, R.; Zhang, H.; Mattingly, M. C. K.; Anselmo, F.; Antonioli, P.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Romeo, G. Cara; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; de Pasquale, S.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Pesci, A.; Polini, A.; Ricci, F.; Sartorelli, G.; Garcia, Y. Zamora; Zichichi, A.; Amelung, C.; Bornheim, A.; Brock, I.; Coböken, K.; Crittenden, J.; Deffner, R.; Eckert, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Kerger, R.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Stamm, J.; Wedemeyer, R.; Wieber, H.; Bailey, D. S.; Campbell-Robson, S.; Cottingham, W. N.; Foster, B.; Hall-Wilton, R.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Kim, J. Y.; Lee, J. H.; Lim, I. T.; Pac, M. Y.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Mellado, B.; Parsons, J. A.; Ritz, S.; Sampson, S.; Sciulli, F.; Straub, P. B.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, J.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajac, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Fricke, U.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Johnson, K. F.; Kasemann, M.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Lindemann, L.; Löhr, B.; Löwe, M.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Park, I. H.; Pellegrino, A.; Pelucchi, F.; Piotrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Ryan, J. J.; Savin, A. A.; Schneekloth, U.; Selonke, F.; Surrow, B.; Tassi, E.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Żarnecki, A. F.; Zeuner, W.; Burow, B. D.; Grabosch, H. J.; Meyer, A.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Markun, P.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Strickland, E.; Utley, M. L.; Waugh, R.; Wilson, A. S.; Bohnet, I.; Gendner, N.; Holm, U.; Meyer-Larsen, A.; Salehi, H.; Wick, K.; Gladilin, L. K.; Horstmann, D.; Kçira, D.; Klanner, R.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Cole, J. E.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; Fleck, J. I.; Ishii, T.; Kuze, M.; Nakao, M.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; An, S. H.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Barreiro, F.; Fernández, J. P.; García, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martínez, M.; del Peso, J.; Puga, J.; Terrón, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Murray, W. N.; Ochs, A.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Yu. A.; Khein, L. A.; Korotkova, N. A.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Solomin, A. N.; Zotkin, S. A.; Bokel, C.; Botje, M.; Brümmer, N.; Chlebana, F.; Engelen, J.; Kooijman, P.; van Sighem, A.; Tiecke, H.; Tuning, N.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Ginsburg, C. M.; Kim, C. L.; Ling, T. Y.; Nylander, P.; Romanowski, T. A.; Blaikley, H. E.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Edmonds, J. K.; Harnew, N.; Lancaster, M.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Ruske, O.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Bertolin, A.; Brugnera, R.; Carlin, R.; dal Corso, F.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Okrasiński, J. R.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Raso, M.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Epperson, D.; Heusch, C.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Schwarzer, O.; Walenta, A. H.; Abramowicz, H.; Briskin, G.; Dagan, S.; Doeker, T.; Kananov, S.; Levy, A.; Abe, T.; Fusayasu, T.; Inuzuka, M.; Nagano, K.; Suzuki, I.; Umemori, K.; Yamashita, T.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Monaco, V.; Peroni, C.; Petrucci, M. C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Ciborowski, J.; Grzelak, G.; Kasprzak, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Pawlak, R.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Badgett, W. F.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Frisken, W. R.; Khakzad, M.; Schmidke, W. B.

    1997-02-01

    A small electromagnetic sampling calorimeter, installed in the ZEUS experiment in 1995, significantly enhanced the acceptance for very low x and low Q2 inelastic neutral current scattering, e+p -> e+X, at HERA. A measurement of the proton structure function F2 and the total virtual photon-proton (γ*p) cross-section is presented for 0.11 <= Q2 <= 0.65 GeV2 and 2 × 10-6 <= x <= 6 × 10-5, corresponding to a range in the γ*p c.m. energy of 100 <= W <= 230 GeV. Comparisons with various models are also presented.

  9. Fully nonlocal inelastic scattering computations for spectroscopical transmission electron microscopy methods

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Lubk, Axel; Spiegelberg, Jakob; Tyutyunnikov, Dmitry

    2017-12-01

    The complex interplay of elastic and inelastic scattering amenable to different levels of approximation constitutes the major challenge for the computation and hence interpretation of TEM-based spectroscopical methods. The two major approaches to calculate inelastic scattering cross sections of fast electrons on crystals—Yoshioka-equations-based forward propagation and the reciprocal wave method—are founded in two conceptually differing schemes—a numerical forward integration of each inelastically scattered wave function, yielding the exit density matrix, and a computation of inelastic scattering matrix elements using elastically scattered initial and final states (double channeling). Here, we compare both approaches and show that the latter is computationally competitive to the former by exploiting analytical integration schemes over multiple excited states. Moreover, we show how to include full nonlocality of the inelastic scattering event, neglected in the forward propagation approaches, at no additional computing costs in the reciprocal wave method. Detailed simulations show in some cases significant errors due to the z -locality approximation and hence pitfalls in the interpretation of spectroscopical TEM results.

  10. Astronautic structures manual

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Three-volume reference work serves as catalog of analysis techniques for elastic and inelastic stress ranges and as source on background and development of methods. Information is condensation of published journal articles, industry and university publications, textbooks, and government documents.

  11. Prospects for dark matter detection with inelastic transitions of xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Christopher

    2016-05-16

    Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon detectors in which dark matter inelastically scatters off the {sup 129}Xe or {sup 131}Xe isotope. We do this by implementing a realistic simulationmore » of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrimination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the {sup 129}Xe or {sup 131}Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting an inelastic signal from the axial-vector interaction will be almost entirely excluded.« less

  12. Modal-pushover-based ground-motion scaling procedure

    USGS Publications Warehouse

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  13. Eigendeformation-Based Homogenization of Concrete

    DTIC Science & Technology

    2009-03-26

    The inelastic behavior of concrete is modeled using three types of eigenstrains . The eigenstrains in the mortar phase include pore compaction (or...lock-in), rate-dependent damage and plasticity eigenstrains , whereas the inelastic behavior of aggregates is assumed to be governed by plasticity...3  3. Microscale Inelastic Properties of Concrete: Eigenstrain

  14. Uniform semiclassical sudden approximation for rotationally inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, H.J.; Schinke, R.

    1980-08-01

    The infinite-order-sudden (IOS) approximation is investigated in the semiclassical limit. A simplified IOS formula for rotationally inelastic differential cross sections is derived involving a uniform stationary phase approximation for two-dimensional oscillatory integrals with two stationary points. The semiclassical analysis provides a quantitative description of the rotational rainbow structure in the differential cross section. The numerical calculation of semiclassical IOS cross sections is extremely fast compared to numerically exact IOS methods, especially if high ..delta..j transitions are involved. Rigid rotor results for He--Na/sub 2/ collisions with ..delta..j< or approx. =26 and for K--CO collisions with ..delta..j< or approx. =70 show satisfactorymore » agreement with quantal IOS calculations.« less

  15. Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production

    DOE PAGES

    Bacchetta, Alessandro; Delcarro, Filippo; Pisano, Cristian; ...

    2017-06-15

    We present an extraction of unpolarized partonic transverse momentum distributions (TMDs) from a simultaneous fit of available data measured in semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson production. To connect data at different scales, we use TMD evolution at next-to-leading logarithmic accuracy. The analysis is restricted to the low-transverse-momentum region, with no matching to fixed-order calculations at high transverse momentum. We introduce specific choices to deal with TMD evolution at low scales, of the order of 1 GeV 2. Furthermore, this could be considered as a first attempt at a global fit of TMDs.

  16. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  17. Energy-loss- and thickness-dependent contrast in atomic-scale electron energy-loss spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Haiyan; Zhu, Ye; Dwyer, Christian

    2014-12-31

    Atomic-scale elemental maps of materials acquired by core-loss inelastic electron scattering often exhibit an undesirable sensitivity to the unavoidable elastic scattering, making the maps counter-intuitive to interpret. Here, we present a systematic study that scrutinizes the energy-loss and sample-thickness dependence of atomic-scale elemental maps acquired using 100 keV incident electrons in a scanning transmission electron microscope. For single-crystal silicon, the balance between elastic and inelastic scattering means that maps generated from the near-threshold Si-L signal (energy loss of 99 eV) show no discernible contrast for a thickness of 0.5λ (λ is the electron mean-free path, here approximately 110 nm). Atmore » greater thicknesses we observe a counter-intuitive “negative” contrast. Only at much higher energy losses is an intuitive “positive” contrast gradually restored. Our quantitative analysis shows that the energy-loss at which a positive contrast is restored depends linearly on the sample thickness. This behavior is in very good agreement with our double-channeling inelastic scattering calculations. We test a recently-proposed experimental method to correct the core-loss inelastic scattering and restore an intuitive “positive” chemical contrast. The method is demonstrated to be reliable over a large range of energy losses and sample thicknesses. The corrected contrast for near-threshold maps is demonstrated to be (desirably) inversely proportional to sample thickness. As a result, implications for the interpretation of atomic-scale elemental maps are discussed.« less

  18. HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHAPIRO,S.M.; ZALIZNYAK,I.A.

    2002-12-30

    This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is an integral part, with a platform for ground-breaking investigations of the low-energy atomic-scale dynamical properties of crystalline solids. It is also planned that the proposed instrument will be equipped with a polarization analysis capability, therefore becoming the first polarized beammore » inelastic spectrometer in the SNS instrument suite, and the first successful polarized beam inelastic instrument at a pulsed spallation source worldwide. The proposed instrument is designed primarily for inelastic and elastic neutron spectroscopy of single crystals. In fact, the most informative neutron scattering studies of the dynamical properties of solids nearly always require single crystal samples, and they are almost invariably flux-limited. In addition, in measurements with polarization analysis the available flux is reduced through selection of the particular neutron polarization, which puts even more stringent limits on the feasibility of a particular experiment. To date, these investigations have mostly been carried out on crystal spectrometers at high-flux reactors, which usually employ focusing Bragg optics to concentrate the neutron beam on a typically small sample. Construction at Oak Ridge of the high-luminosity spallation neutron source, which will provide intense pulsed neutron beams with time-averaged fluxes equal to those at medium-flux reactors, opens entirely new opportunities for single crystal neutron spectroscopy. Drawing upon experience acquired during decades of studies with both crystal and time-of-flight (TOF) spectrometers, the IDT has developed a conceptual design for a focused-beam, hybrid time-of-flight instrument with a crystal monochromator for the SNS called HYSPEC (an acronym for hybrid spectrometer). The proposed instrument has a potential to collect data more than an order of magnitude faster than existing steady-source spectrometers over a wide range of energy transfer ({h_bar}{omega}) and momentum transfer (Q) space, and will transform the way that data in elastic and inelastic single-crystal spectroscopy are collected. HYSPEC is optimized to provide the highest neutron flux on sample in the thermal and epithermal neutron energy ranges at a good-to-moderate energy resolution. By providing a flux on sample several times higher than other inelastic instruments currently planned for the SNS, the proposed instrument will indeed allow unique ground-breaking measurements, and will ultimately make polarized beam studies at a pulsed spallation source a realistic possibility.« less

  19. Probabilistic structural analysis methods for space propulsion system components

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1986-01-01

    The development of a three-dimensional inelastic analysis methodology for the Space Shuttle main engine (SSME) structural components is described. The methodology is composed of: (1) composite load spectra, (2) probabilistic structural analysis methods, (3) the probabilistic finite element theory, and (4) probabilistic structural analysis. The methodology has led to significant technical progress in several important aspects of probabilistic structural analysis. The program and accomplishments to date are summarized.

  20. SU-E-T-663: Radiation Properties of a Water-Equivalent Material Formulated Using the Stoichiometric Analysis Method in Heavy Charged Particle Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yohannes, I; Vasiliniuc, S; Hild, S

    2015-06-15

    Purpose: A material has been designed to be employed as water-equivalent in particle therapy using a previously established stoichiometric analysis method (SAM). After manufacturing, experimental verification of the material’s water-equivalent path length (WEPL) and analysis of its total inelastic nuclear interaction cross sections for proton beams were performed. Methods: Using the SAM, we optimized the material composed of three base materials, i.e., polyurethane, calcium carbonate and microspheres. From the elemental composition of the compound, electron density, linear attenuation coefficients, particle stopping powers and inelastic nuclear cross sections for protons using data from ICRU 63 were calculated. The calculations were thenmore » compared to Hounsfield units (HUs) measured with 350 mAs at 80, 100, 120 and 140 kV and the WEPLs measured with three different ions: proton (106.8 MeV/u), helium (107.93 MeV/u) and carbon (200.3 MeV/u). Results: The material’s measured HUs (0.7±3.0 to 2.6±6.2 HU) as well as its calculated relative electron density (1.0001) are in close agreement with water as reference. The WEPLs measured on a 20.00 mm thick target were 20.16±0.12, 20.29±0.12 and 20.38±0.12 mmH2O for proton, helium and carbon ions, respectively. Within measurement uncertainties, these values verified the calculated WEPLs of 20.28 mmH2O (proton), 20.28 mmH2O (helium) and 20.26 mmH2O (carbon). Moreover, the calculated proton inelastic cross sections of the material differed only by 0.89% (100 MeV/u) and 0.01% (200 MeV/u) when compared to water. Conclusion: The SAM is capable of optimizing material with defined properties, e.g., HU, electron density, WEPL and inelastic nuclear interaction cross section for particle therapy. Such material will have a wide range of applications amongst others absolute dosimetry. This work was supported by grant ZIM KF2137107AK4 from the German Federal Ministry for Economic Affairs and Energy.« less

  1. Inelastic effects in molecular transport junctions: The probe technique at high bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgour, Michael; Segal, Dvira, E-mail: dsegal@chem.utoronto.ca

    2016-03-28

    We extend the Landauer-Büttiker probe formalism for conductances to the high bias regime and study the effects of environmentally induced elastic and inelastic scattering on charge current in single molecule junctions, focusing on high-bias effects. The probe technique phenomenologically incorporates incoherent elastic and inelastic effects to the fully coherent case, mimicking a rich physical environment at trivial cost. We further identify environmentally induced mechanisms which generate an asymmetry in the current, manifested as a weak diode behavior. This rectifying behavior, found in two types of molecular junction models, is absent in the coherent-elastic limit and is only active in themore » case with incoherent-inelastic scattering. Our work illustrates that in the low bias-linear response regime, the commonly used “dephasing probe” (mimicking only elastic decoherence effects) operates nearly indistinguishably from a “voltage probe” (admitting inelastic-dissipative effects). However, these probes realize fundamentally distinct I-V characteristics at high biases, reflecting the central roles of dissipation and inelastic scattering processes on molecular electronic transport far-from-equilibrium.« less

  2. The effect of kinematic parameters on inelastic scattering of glyoxal.

    PubMed

    Duca, Mariana D

    2004-10-08

    The effect of kinematic parameters (relative velocity v(rel), relative momentum p(rel), and relative energy E(rel)) on the rotational and rovibrational inelastic scatterings of 0(0)K(0)S(1) trans-glyoxal has been investigated by colliding glyoxal seeded in He or Ar with target gases D2, He, or Ne at different scattering angles in crossed supersonic beams. The inelastic spectra for target gases He and D2 acquired with two different sets of kinematic parameters revealed no significant differences. This result shows that kinematic factors have the major influence in the inelastic scattering channel competition whereas the intermolecular potential energy surface plays only a secondary role. The well-defined exponential dependence of relative cross sections on exchanged angular momentum identifies angular momentum as the dominant kinematic factor in collision-induced rotationally and rovibrationally inelastic scatterings. This is supported by the behavior of the relative inelastic cross sections data in a "slope-p(rel)" representation. In this form, the data show a trend nearly independent of the target gas identity. Representations involving E(rel) and v(rel) show trends specific to the target gas.

  3. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  4. Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering

    NASA Astrophysics Data System (ADS)

    Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.

    2008-11-01

    We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).

  5. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    NASA Astrophysics Data System (ADS)

    Scopel, Stefano; Yoon, Kook-Hyun

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  6. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scopel, Stefano; Yoon, Kook-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive tomore » the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.« less

  7. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE PAGES

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  8. Strength and deformation of shocked diamond single crystals: Orientation dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less

  9. Strength and deformation of shocked diamond single crystals: Orientation dependence

    NASA Astrophysics Data System (ADS)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.

  10. Measurement of beam-spin asymmetries for π+ electroproduction above the baryon resonance region

    NASA Astrophysics Data System (ADS)

    Avakian, H.; Burkert, V. D.; Elouadrhiri, L.; Bianchi, N.; Adams, G.; Afanasev, A.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Armstrong, D. S.; Asavapibhop, B.; Audit, G.; Auger, T.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I. O.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Kellie, J.; Khandaker, M.; Kim, D. H.; Kim, K. Y.; Kim, K.; Kim, M. S.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Livingston, K.; Li, Ji; Longhi, A.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.

    2004-06-01

    We report the first evidence for a nonzero beam-spin azimuthal asymmetry in the electroproduction of positive pions in the deep-inelastic kinematic region. Data for the reaction ep→e'π+X have been obtained using a polarized electron beam of 4.3 GeV with the CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Accelerator Facility. The amplitude of the sin φ modulation increases with the momentum of the pion relative to the virtual photon, z. In the range z=0.5 0.8 the average amplitude is 0.038±0.005±0.003 for a missing mass MX>1.1 GeV and 0.037±0.007±0.004 for MX>1.4 GeV.

  11. Strangeness production in deep inelastic muon nucleon scattering at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckhardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmifz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.

    1987-09-01

    The production of strange particles has been studied in a 280 GeV muon nucleon scattering experiment with acceptance and particle identification over a large kinematical range. The data show that at large values of x Bj the interactions take place mostly on a u valence quark in agreement with the basic quarkparton model predictions. This feature results in a strong forward-backward asymmetry in the distribution of strangeness along the rapidity axis. The data are compatible with a strange to non-strange quark suppression factor of ≈0.3 and with a strong suppression of strange diquarks. The distributions of K + K - pairs show that the two kaons are preferentially produced at neighbouring values of rapidity.

  12. Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,

    Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocitymore » of (9200 {+-} 600) m/s.« less

  13. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  14. Inelastic Single Pion Signal Study in T2K νe Appearance using Modified Decay Electron Cut

    NASA Astrophysics Data System (ADS)

    Iwamoto, Konosuke; T2K Collaboration

    2015-04-01

    The T2K long-baseline neutrino experiment uses sophisticated selection criteria to identify the neutrino oscillation signals among the events reconstructed in the Super-Kamiokande (SK) detector for νe and νμ appearance and disappearance analyses. In current analyses, charged-current quasi-elastic (CCQE) events are used as the signal reaction in the SK detector because the energy can be precisely reconstructed. This talk presents an approach to increase the statistics of the oscillation analysis by including non-CCQE events with one Michel electron and reconstruct them as the inelastic single pion productions. The increase in statistics, backgrounds to this new process and energy reconstruction implications will be presented with this increased event sample.

  15. Quasi elastic and inelastic neutron scattering study of vitamin C aqueous solutions

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Branca, C.; Magazù, S.; Migliardo, P.; Coppolino, S.; Villari, A.; Micali, N.

    2002-02-01

    In this paper, new results obtained by quasi elastic and inelastic neutron scattering experiments performed on vitamin C ( L-ascorbic acid)/H 2O mixtures are reported. The data analysis of the QENS measurements, by a separation of the diffusive dynamics of hydrated L-ascorbic acid from that of water, furnishes quantitative evidences of a random jump diffusion motion of vitamin C and shows that the water dynamics is strongly affected by the presence of L-ascorbic acid. Concerning the INS experiment, we are able, through the behaviour of neutron spectra across the glass transition temperature ( T g≈233 K for the vitamin C/water system), to collocate the investigated system in the Angell “strong-fragile” scheme.

  16. Excitation of levels in Li6 by inelastic electron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bishop, G. R.

    1963-07-01

    Inelastic scattering of electrons from metallic targets of Li 6 was studied as part of a program to establish the validity of the Born approximation calculation of the cross section. This calculation predicts the separation of the inelastic form factor into two contributions corresponding to the absorption of longitudinal and transverse virtual photons by the bombarded system. (R.E.U.)

  17. Inclusive inelastic scattering of heavy ions and nuclear correlations

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.

    1990-01-01

    Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.

  18. Resonant inelastic scattering by use of geometrical optics.

    PubMed

    Schulte, Jörg; Schweiger, Gustav

    2003-02-01

    We investigate the inelastic scattering on spherical particles that contain one concentric inclusion in the case of input and output resonances, using a geometrical optics method. The excitation of resonances is included in geometrical optics by use of the concept of tunneled rays. To get a quantitative description of optical tunneling on spherical surfaces, we derive appropriate Fresnel-type reflection and transmission coefficients for the tunneled rays. We calculate the inelastic scattering cross section in the case of input and output resonances and investigate the influence of the distribution of the active material in the particle as well as the influence of the inclusion on inelastic scattering.

  19. Inelastic collapse and near-wall localization of randomly accelerated particles.

    PubMed

    Belan, S; Chernykh, A; Lebedev, V; Falkovich, G

    2016-05-01

    Inelastic collapse of stochastic trajectories of a randomly accelerated particle moving in half-space z>0 has been discovered by McKean [J. Math. Kyoto Univ. 2, 227 (1963)] and then independently rediscovered by Cornell et al. [Phys. Rev. Lett. 81, 1142 (1998)PRLTAO0031-900710.1103/PhysRevLett.81.1142]. The essence of this phenomenon is that the particle arrives at the wall at z=0 with zero velocity after an infinite number of inelastic collisions if the restitution coefficient β of particle velocity is smaller than the critical value β_{c}=exp(-π/sqrt[3]). We demonstrate that inelastic collapse takes place also in a wide class of models with spatially inhomogeneous random forcing and, what is more, that the critical value β_{c} is universal. That class includes an important case of inertial particles in wall-bounded random flows. To establish how inelastic collapse influences the particle distribution, we derive the exact equilibrium probability density function ρ(z,v) for the particle position and velocity. The equilibrium distribution exists only at β<β_{c} and indicates that inelastic collapse does not necessarily imply near-wall localization.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungho; Shi, Xianbo; Casa, Diego

    Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the IrL 3-edge stands at ~25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-anglemore » acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the IrL 3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.« less

  1. Inelastic Compaction in High-Porosity Limestone Monitored Using Acoustic Emissions

    NASA Astrophysics Data System (ADS)

    Baud, Patrick; Schubnel, Alexandre; Heap, Michael; Rolland, Alexandra

    2017-12-01

    We performed a systematic investigation of mechanical compaction and strain localization in Saint-Maximin limestone, a quartz-rich, high-porosity (37%) limestone from France. Our new data show that the presence of a significant proportion of secondary mineral (i.e., quartz) did not impact the mechanical strength of the limestone in both the brittle faulting and cataclastic flow regimes, but that the presence of water exerted a significant weakening effect. In contrast to previously published studies on deformation in limestones, inelastic compaction in Saint-Maximin limestone was accompanied by abundant acoustic emission (AE) activity. The location of AE hypocenters during triaxial experiments revealed the presence of compaction localization. Two failure modes were identified in agreement with microstructural analysis and X-ray computed tomography imaging: compactive shear bands developed at low confinement and complex diffuse compaction bands formed at higher confinement. Microstructural observations on deformed samples suggest that the recorded AE activity associated with inelastic compaction, unusual for a porous limestone, could have been due to microcracking at the quartz grain interfaces. Similar to published data on high-porosity macroporous limestones, the crushing of calcite grains was the dominant micromechanism of inelastic compaction in Saint-Maximin limestone. New P wave velocity data show that the effect of microcracking was dominant near the yield point and resulted in a decrease in P wave velocity, while porosity reduction resulted in a significant increase in P wave velocity beyond a few percent of plastic volumetric strain. These new data highlight the complex interplay between mineralogy, rock microstructure, and strain localization in porous rocks.

  2. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation.

    PubMed

    Mohammadi, Hamid; Arora, Pamma D; Simmons, Craig A; Janmey, Paul A; McCulloch, Christopher A

    2015-01-06

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell-matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min(-1), similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell-matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml(-1) attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell-matrix interactions and mechanosensation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    PubMed Central

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  4. Intramuscular pressures beneath elastic and inelastic leggings

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Ballard, R. E.; Breit, G. A.; Watenpaugh, D. E.; Hargens, A. R.

    1994-01-01

    Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).

  5. Elastic and Inelastic Scattering of Neutrons using a CLYC array

    NASA Astrophysics Data System (ADS)

    Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.

    2015-10-01

    CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  6. Equations of motion of slung load systems with results for dual lift

    NASA Technical Reports Server (NTRS)

    Cicolani, Luigi S.; Kanning, Gerd

    1990-01-01

    General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.

  7. Systematic analysis of inelastic α scattering off self-conjugate A =4 n nuclei

    NASA Astrophysics Data System (ADS)

    Adachi, S.; Kawabata, T.; Minomo, K.; Kadoya, T.; Yokota, N.; Akimune, H.; Baba, T.; Fujimura, H.; Fujiwara, M.; Funaki, Y.; Furuno, T.; Hashimoto, T.; Hatanaka, K.; Inaba, K.; Ishii, Y.; Itoh, M.; Iwamoto, C.; Kawase, K.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Matsuno, H.; Morimoto, T.; Morita, H.; Murata, M.; Nanamura, T.; Ou, I.; Sakaguchi, S.; Sasamoto, Y.; Sawada, R.; Shimizu, Y.; Suda, K.; Tamii, A.; Tameshige, Y.; Tsumura, M.; Uchida, M.; Uesaka, T.; Yoshida, H. P.; Yoshida, S.

    2018-01-01

    We systematically measured the differential cross sections of inelastic α scattering off self-conjugate A =4 n nuclei at two incident energies Eα=130 MeV and 386 MeV at Research Center for Nuclear Physics, Osaka University. The measured cross sections were analyzed by the distorted-wave Born-approximation (DWBA) calculation using the single-folding potentials, which are obtained by folding macroscopic transition densities with the phenomenological α N interaction. The DWBA calculation with the density-dependent α N interaction systematically overestimates the cross sections for the Δ L =0 transitions. However, the DWBA calculation using the density-independent α N interaction reasonably well describes all the transitions with Δ L =0 -4. We examined uncertainties in the present DWBA calculation stemming from the macroscopic transition densities, distorting potentials, phenomenological α N interaction, and coupled channel effects in 12C. It was found that the DWBA calculation is not sensitive to details of the transition densities nor the distorting potentials, and the phenomenological density-independent α N interaction gives reasonable results. The coupled-channel effects are negligibly small for the 21+ and 31- states in 12C, but not for the 02+ state. However, the DWBA calculation using the density-independent interaction at Eα=386 MeV is still reasonable even for the 02+ state. We concluded that the macroscopic DWBA calculations using the density-independent interaction are reliably applicable to the analysis of inelastic α scattering at Eα˜100 MeV /u .

  8. Impact of Truck Loading on Design and Analysis of Asphaltic Pavement Structures : Phase III

    DOT National Transportation Integrated Search

    2012-03-01

    This study investigated the impact of the realistic constitutive material behavior of asphalt layer (both nonlinear inelastic : and fracture) for the prediction of pavement performance. To this end, this study utilized a cohesive zone model to consid...

  9. Neutron Scattering Software

    Science.gov Websites

    Array Manipulation Program (LAMP): IDL-based data analysis and visualization Open Genie: interactive -ray powder data ORTEP: Oak Ridge Thermal Ellipsoid Plot program for crystal structure illustrations structure VRML generator aClimax: modeling of inelastic neutron spectroscopy using Density Functional Theory

  10. A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples

    NASA Astrophysics Data System (ADS)

    Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis

    2017-01-01

    A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.

  11. On the Collision Nature of Two Coronal Mass Ejections: A Review

    NASA Astrophysics Data System (ADS)

    Shen, Fang; Wang, Yuming; Shen, Chenglong; Feng, Xueshang

    2017-08-01

    Observational and numerical studies have shown that the kinematic characteristics of two or more coronal mass ejections (CMEs) may change significantly after a CME collision. The collision of CMEs can have a different nature, i.e. inelastic, elastic, and superelastic processes, depending on their initial kinematic characteristics. In this article, we first review the existing definitions of collision types including Newton's classical definition, the energy definition, Poisson's definition, and Stronge's definition, of which the first two were used in the studies of CME-CME collisions. Then, we review the recent research progresses on the nature of CME-CME collisions with the focus on which CME kinematic properties affect the collision nature. It is shown that observational analysis and numerical simulations can both yield an inelastic, perfectly inelastic, merging-like collision, or a high possibility of a superelastic collision. Meanwhile, previous studies based on a 3D collision picture suggested that a low approaching speed of two CMEs is favorable for a superelastic nature. Since CMEs are an expanding magnetized plasma structure, the CME collision process is quite complex, and we discuss this complexity. Moreover, the models used in both observational and numerical studies contain many limitations. All of the previous studies on collisions have not shown the separation of two colliding CMEs after a collision. Therefore the collision between CMEs cannot be considered as an ideal process in the context of a classical Newtonian definition. In addition, many factors are not considered in either observational analysis or numerical studies, e.g. CME-driven shocks and magnetic reconnections. Owing to the complexity of the CME collision process, a more detailed and in-depth observational analysis and simulation work are needed to fully understand the CME collision process.

  12. FY17 Status Report on the Initial Development of a Constitutive Model for Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Phan, V. -T.; Sham, T. -L.

    Grade 91 is a candidate structural material for high temperature advanced reactor applications. Existing ASME Section III, Subsection HB, Subpart B simplified design rules based on elastic analysis are setup as conservative screening tools with the intent to supplement these screening rules with full inelastic analysis when required. The Code provides general guidelines for suitable inelastic models but does not provide constitutive model implementations. This report describes the development of an inelastic constitutive model for Gr. 91 steel aimed at fulfilling the ASME Code requirements and being included into a new Section III Code appendix, HBB-Z. A large database ofmore » over 300 experiments on Gr. 91 was collected and converted to a standard XML form. Five families of Gr. 91 material models were identified in the literature. Of these five, two are potentially suitable for use in the ASME code. These two models were implemented and evaluated against the experimental database. Both models have deficiencies so the report develops a framework for developing and calibrating an improved model. This required creating a new modeling method for representing changes in material rate sensitivity across the full ASME allowable temperature range for Gr. 91 structural components: room temperature to 650° C. On top of this framework for rate sensitivity the report describes calibrating a model for work hardening and softening in the material using genetic algorithm optimization. Future work will focus on improving this trial model by including tension/compression asymmetry observed in experiments and necessary to capture material ratcheting under zero mean stress and by improving the optimization and analysis framework.« less

  13. A crystallographic model for the tensile and fatigue response for Rene N4 at 982 C

    NASA Technical Reports Server (NTRS)

    Sheh, M. Y.; Stouffer, D. C.

    1990-01-01

    An anisotropic constitutive model based on crystallographic slip theory was formulated for nickel-base single-crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the existence of back stress in single crystals. The results showed that the back stress effect of reverse inelastic flow on the unloading stress is orientation-dependent, and a back stress state variable in the inelastic flow equation is necessary for predicting inelastic behavior. Model correlations and predictions of experimental data are presented for the single crystal superalloy Rene N4 at 982 C.

  14. Practical guidelines to select and scale earthquake records for nonlinear response history analysis of structures

    USGS Publications Warehouse

    Kalkan, Erol; Chopra, Anil K.

    2010-01-01

    Earthquake engineering practice is increasingly using nonlinear response history analysis (RHA) to demonstrate performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. Presented herein is a modal-pushover-based scaling (MPS) method to scale ground motions for use in nonlinear RHA of buildings and bridges. In the MPS method, the ground motions are scaled to match (to a specified tolerance) a target value of the inelastic deformation of the first-'mode' inelastic single-degree-of-freedom (SDF) system whose properties are determined by first-'mode' pushover analysis. Appropriate for first-?mode? dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-'mode' SDF system in selecting a subset of the scaled ground motions. Based on results presented for two bridges, covering single- and multi-span 'ordinary standard' bridge types, and six buildings, covering low-, mid-, and tall building types in California, the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  15. Focusing polycapillary to reduce parasitic scattering for inelastic x-ray measurements at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, P., E-mail: pchow@carnegiescience.edu; Xiao, Y. M.; Rod, E.

    2015-07-15

    The double-differential scattering cross-section for the inelastic scattering of x-ray photons from electrons is typically orders of magnitude smaller than that of elastic scattering. With samples 10-100 μm size in a diamond anvil cell at high pressure, the inelastic x-ray scattering signals from samples are obscured by scattering from the cell gasket and diamonds. One major experimental challenge is to measure a clean inelastic signal from the sample in a diamond anvil cell. Among the many strategies for doing this, we have used a focusing polycapillary as a post-sample optic, which allows essentially only scattered photons within its input fieldmore » of view to be refocused and transmitted to the backscattering energy analyzer of the spectrometer. We describe the modified inelastic x-ray spectrometer and its alignment. With a focused incident beam which matches the sample size and the field of view of polycapillary, at relatively large scattering angles, the polycapillary effectively reduces parasitic scattering from the diamond anvil cell gasket and diamonds. Raw data collected from the helium exciton measured by x-ray inelastic scattering at high pressure using the polycapillary method are compared with those using conventional post-sample slit collimation.« less

  16. Experimental and analytical study of ceramic-coated turbine-tip shroud seals for small turbine engines

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Mcdonald, G. E.; Hendricks, R. C.; Little, J. K.; Robinson, R. A.; Klann, G. A.; Lassow, E. S.

    1985-01-01

    The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects.

  17. Nuclear PDF for neutrino and charged lepton data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovarik, K.

    2011-10-06

    Neutrino Deep Inelastic Scattering (DIS) on nuclei is an essential process to constrain the strange quark parton distribution functions (PDF) in the proton. The critical component on the way to using the neutrino DIS data in a proton PDF analysis is understanding the nuclear effects in parton distribution functions. We parametrize these effects by nuclear parton distribution functions (NPDF). Here we compare results from two analysis of NPDF both done at next-to-leading order in QCD. The first uses neutral current charged-lepton (l{sup {+-}A}) Deeply Inelastic Scattering (DIS) and Drell-Yan data for several nuclear targets and the second uses neutrino-nucleon DISmore » data. We compare the nuclear corrections factors (F{sub 2}{sup Fe}/F{sub 2}{sup D}) for the charged-lepton data with other results from the literature. In particular, we compare and contrast fits based upon the charged-lepton DIS data with those using neutrino-nucleon DIS data.« less

  18. Comparative study of inelastic squared form factors of the vibronic states of B 1Σu+ , C 1Πu , and E F 1Σg+ for molecular hydrogen: Inelastic x-ray and electron scattering

    NASA Astrophysics Data System (ADS)

    Xu, Long-Quan; Kang, Xu; Peng, Yi-Geng; Xu, Xin; Liu, Ya-Wei; Wu, Yong; Yang, Ke; Hiraoka, Nozomu; Tsuei, Ku-Ding; Wang, Jian-Guo; Zhu, Lin-Fan

    2018-03-01

    A joint experimental and theoretical investigation of the valence-shell excitations of hydrogen has been performed by the high-resolution inelastic x-ray scattering and electron scattering as well as the multireference single- and double-excitation configuration-interaction method. Momentum-transfer-dependent inelastic squared form factors for the vibronic series belonging to the B 1Σu+ ,C 1Πu , and E F 1Σg+ electronic states of molecular hydrogen have been derived from the inelastic x-ray scattering method at an impact photon energy around 10 keV, and the electron energy-loss spectra measured at an incident electron energy of 1500 eV. It is found that both the present and the previous calculations cannot satisfactorily reproduce the inelastic squared form-factor profiles for the higher vibronic transitions of the B 1Σu+ state of molecular hydrogen, which may be due to the electronic-vibrational coupling for the higher vibronic states. For the C 1Πu state and some vibronic excitations of E F 1Σg+ state, the present experimental results are in good agreement with the present and previous calculations, while the slight differences between the inelastic x-ray scattering and electron energy-loss spectroscopy results in the larger squared momentum-transfer region may be attributed to the increasing role of the higher-order Born terms in the electron-scattering process.

  19. Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.

  20. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE PAGES

    Zenaiev, O.; Geiser, A.; Lipka, K.; ...

    2015-08-01

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  1. Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenaiev, O.; Geiser, A.; Lipka, K.

    The impact of recent measurements of heavy-flavour production in deep inelastic ep scattering and in pp collisions on parton distribution functions is studied in a QCD analysis in the fixed-flavour number scheme at next-to-leading order. Differential cross sections of charm- and beauty-hadron production measured by LHCb are used together with inclusive and heavy-flavour production cross sections in deep inelastic scattering at HERA. The heavy-flavour data of the LHCb experiment impose additional constraints on the gluon and the sea-quark distributions at low partonic fractions x of the proton momentum, down to x~5×10 -6. This kinematic range is currently not covered bymore » other experimental data in perturbative QCD fits.« less

  2. Inelastic electron tunneling spectroscopy of difurylethene-based photochromic single-molecule junctions

    PubMed Central

    Sysoiev, Dmytro; Huhn, Thomas; Pauly, Fabian

    2017-01-01

    Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of electrical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechanically controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used to identify different isomeric molecular states by transport experiments. PMID:29259875

  3. Analysis of crack propagation as an energy absorption mechanism in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Murphy, D. P.

    1981-01-01

    The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.

  4. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    DTIC Science & Technology

    2015-03-01

    HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING by Philip R. Rusiecki...HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING 6. AUTHOR(S) Philip R. Rusiecki 7...ABSTRACT (maximum 200 words) Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of

  5. Inelastic tunnel diodes

    NASA Technical Reports Server (NTRS)

    Anderson, L. M. (Inventor)

    1984-01-01

    Power is extracted from plasmons, photons, or other guided electromagnetic waves at infrared to midultraviolet frequencies by inelastic tunneling in metal-insulator-semiconductor-metal diodes. Inelastic tunneling produces power by absorbing plasmons to pump electrons to higher potential. Specifically, an electron from a semiconductor layer absorbs a plasmon and simultaneously tunnels across an insulator into metal layer which is at higher potential. The diode voltage determines the fraction of energy extracted from the plasmons; any excess is lost to heat.

  6. Gate-controlled current and inelastic electron tunneling spectrum of benzene: a self-consistent study.

    PubMed

    Liang, Y Y; Chen, H; Mizuseki, H; Kawazoe, Y

    2011-04-14

    We use density functional theory based nonequilibrium Green's function to self-consistently study the current through the 1,4-benzenedithiol (BDT). The elastic and inelastic tunneling properties through this Au-BDT-Au molecular junction are simulated, respectively. For the elastic tunneling case, it is found that the current through the tilted molecule can be modulated effectively by the external gate field, which is perpendicular to the phenyl ring. The gate voltage amplification comes from the modulation of the interaction between the electrodes and the molecules in the junctions. For the inelastic case, the electron tunneling scattered by the molecular vibrational modes is considered within the self-consistent Born approximation scheme, and the inelastic electron tunneling spectrum is calculated.

  7. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  8. Finite element analysis of deep wide-flanged pre-stressed girders to understand and control end cracking : [work plan].

    DOT National Transportation Integrated Search

    2011-01-01

    Project -- Work Approach: The first phase will examine the critical problem of controlling cracking in the 82W : girders. This complex problem is controlled by effects of concentrated stresses, force : transfer from pre-tensioning strand, inelastic b...

  9. Absence of a long-range ordered magnetic ground state in Pr3Rh4Sn13 studied through specific heat and inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Ogunbunmi, Michael O.; Ghosh, S. K.; Adroja, D. T.; Koza, M. M.; Guidi, T.; Strydom, A. M.

    2018-04-01

    Signatures of absence of a long-range ordered magnetic ground state down to 0.36 K are observed in magnetic susceptibility, specific heat, thermal/electrical transport and inelastic neutron scattering data of the quasi-skutterudite compound Pr3Rh4Sn13 which crystallizes in the Yb3Rh4Sn13-type structure with a cage-like network of Sn atoms. In this structure, Pr3+ occupies a lattice site with D 2d point symmetry having a ninefold degeneracy corresponding to J  =  4. The magnetic susceptibility of Pr3Rh4Sn13 shows only a weak temperature dependence below 10 K otherwise remaining paramagnetic-like in the range, 10 K-300 K. From the inelastic neutron scattering intensity of Pr3Rh4Sn13 recorded at different temperatures, we identify excitations at 4.5(7) K, 5.42(6) K, 10.77(5) K, 27.27(5) K, 192.28(4) K and 308.33(3) K through a careful peak analysis. However, no signatures of long-range magnetic order are observed in the neutron data down to 1.5 K, which is also confirmed by the specific heat data down to 0.36 K. A broad Schottky-like peak is recovered for the magnetic part of the specific heat, C 4f, which suggests the role of crystal electric fields of Pr3+ . A crystalline electric field model consisting of 7 levels was applied to C 4f which leads to the estimation of energy levels at 4.48(2) K, 6.94(4) K, 11.23(8) K, 27.01(5) K, 193.12(6) K and 367.30(2) K. The CEF energy levels estimated from the heat capacity analysis are in close agreement with the excitation energies seen in the neutron data. The Sommerfeld coefficient estimated from the analysis of magnetic specific heat is γ = 761(6) mJ K-2 mol-Pr which suggests the formation of heavy itinerant quasi-particles in Pr3Rh4Sn13. Combining inelastic neutron scattering results, analysis of the specific heat data down to 0.36 K, magnetic susceptibility and, electrical and thermal transport, we establish the absence of long-range ordered magnetic ground state in Pr3Rh4Sn13.

  10. Elastic, inelastic, and 1-nucleon transfer channels in the 7Li+120Sn system

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-03-01

    Background: Simultaneous description of major outgoing channels for a nuclear reaction by coupled-channels calculations using the same set of potential and coupling parameters is one of the difficult tasks to accomplish in nuclear reaction studies. Purpose: To measure the elastic, inelastic, and transfer cross sections for as many channels as possible in 7Li+120Sn system at different beam energies and simultaneously describe them by a single set of model calculations using fresco. Methods: Projectile-like fragments were detected using six sets of Si-detector telescopes to measure the cross sections for elastic, inelastic, and 1-nucleon transfer channels at two beam energies of 28 and 30 MeV. Optical model analysis of elastic data and coupled-reaction-channels (CRC) calculations that include around 30 reaction channels coupled directly to the entrance channel, with respective structural parameters, were performed to understand the measured cross sections. Results: Structure information available in the literature for some of the identified states did not reproduce the present data. Cross sections obtained from CRC calculations using a modified but single set of potential and coupling parameters were able to describe simultaneously the measured data for all the channels at both the measured energies as well as the existing data for elastic and inelastic cross sections at 44 MeV. Conclusions: Non-reproduction of some of the cross sections using the structure information available in the literature which are extracted from reactions involving different projectiles indicates that such measurements are probe dependent. New structural parameters were assigned for such states as well as for several new transfer states whose spectroscopic factors were not known.

  11. Poor impulse control predicts inelastic demand for nicotine but not alcohol in rats.

    PubMed

    Diergaarde, Leontien; van Mourik, Yvar; Pattij, Tommy; Schoffelmeer, Anton N M; De Vries, Taco J

    2012-05-01

    Tobacco and alcohol dependence are characterized by continued use despite deleterious health, social and occupational consequences, implying that addicted individuals pay a high price for their use. In behavioral economic terms, such persistent consumption despite increased costs can be conceptualized as inelastic demand. Recent animal studies demonstrated that high-impulsive individuals are more willing to work for nicotine or cocaine infusions than their low-impulsive counterparts, indicating that this trait might be causally related to inelastic drug demand. By employing progressive ratio schedules of reinforcement combined with a behavioral economics approach of analysis, we determined whether trait impulsivity is associated with an insensitivity of nicotine or alcohol consumption to price increments. Rats were trained on a delayed discounting task, measuring impulsive choice. Hereafter, high- and low-impulsive rats were selected and trained to nose poke for intravenous nicotine or oral alcohol. Upon stable self-administration on a continuous reinforcement schedule, the price (i.e. response requirement) was increased. Demand curves, depicting the relationship between price and consumption, were produced using Hursh's exponential demand equation. Similar to human observations, nicotine and alcohol consumption in rats fitted this equation, thereby demonstrating the validity of our model. Moreover, high-impulsive rats displayed inelastic nicotine demand, as their nicotine consumption was less sensitive to price increments as compared with that in low-impulsive rats. Impulsive choice was not related to differences in alcohol demand elasticity. Our model seems well suited for studying nicotine and alcohol demand in rats and, as such, might contribute to our understanding of tobacco and alcohol dependence. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  12. Integrated Raman and angular scattering of single biological cells

    NASA Astrophysics Data System (ADS)

    Smith, Zachary J.

    2009-12-01

    Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the epi- and trans-illumination modalities are also discussed. In addition, transilluminated Raman and elastic-scattering spectra were obtained from several biological test-cases, including Streptococcus pneumoniae, baker's yeast, and single human immune cells. Both the Raman and elastic-scattering channels extract information from these samples that are well in line with their known characteristics from the literature. Finally, we report on an experiment in which CD8+ T lymphocytes were stimulated by exposure to the antigens staphylococcal enterotoxin B and phorbol myristate acetate. Clear chemical and morphological differences were observed between the activated and unactivated cells, with the results correlating well to analysis performed on parallel samples using fluorescent stains and a flow cytometer.

  13. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  14. Inelastic compaction, dilation and hysteresis of sandstones under hydrostatic conditions

    NASA Astrophysics Data System (ADS)

    Shalev, Eyal; Lyakhovsky, Vladimir; Ougier-Simonin, Audrey; Hamiel, Yariv; Zhu, Wenlu

    2014-05-01

    Sandstones display non-linear and inelastic behaviour such as hysteresis when subjected to cyclic loading. We present three hydrostatic compaction experiments with multiple loading-unloading cycles on Berea and Darley Dale sandstones and explain their hysteretic behaviour using non-linear inelastic compaction and dilation. Each experiment included eight to nine loading-unloading cycles with increasing maximum pressure in each subsequent cycle. Different pressure-volumetric strain relations during loading and unloading were observed. During the first cycles, under relatively low pressures, not all of the volumetric strain is recovered at the end of each cycle whereas at the last cycles, under relatively high pressures, the strain is recovered and the pressure-volumetric strain hysteresis loops are closed. The observed pressure-volumetric strain relations are non-linear and the effective bulk modulus of the sandstones changes between cycles. Observations are modelled with two inelastic deformation processes: irreversible compaction caused by changes in grain packing and recoverable compaction associated with grain contact adhesion, frictional sliding on grains or frictional sliding on cracks. The irreversible compaction is suggested to reflect rearrangement of grains into a more compact mode as the maximum pressure increases. Our model describes the `inelastic compaction envelope' in which sandstone sample will follow during hydrostatic loading. Irreversible compaction occurs when pressure is greater than a threshold value defined by the `inelastic compaction envelope'.

  15. High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials is presented which admits inelastic behavior of the constituent phases. The extended theory is capable of accurately estimating both the effective inelastic response of a periodic multiphase composite and the local stress and strain fields in the individual phases. The model is presently limited to materials characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within the repeating unit cell which characterizes the material's periodic microstructure. The model's analytical framework is based on the homogenization technique for periodic media, but the method of solution for the local displacement and stress fields borrows concepts previously employed by the authors in constructing the higher-order theory for functionally graded materials, in contrast with the standard finite-element solution method typically used in conjunction with the homogenization technique. The present approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material valid for both uniaxial and multiaxial loading. The model's predictive accuracy in generating both the effective inelastic stress-strain response and the local stress said inelastic strain fields is demonstrated by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear response of a unidirectional composite based on the concentric cylinder model, and with finite-element results for transverse loading.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senesi, Roberto; Flammini, Davide; Kolesnikov, Alexander I.

    The OH stretching vibrational spectrum of water was measured in a wide range of temperatures across the triple point, 269 K < T < 296 K, using Inelastic Neutron Scattering (INS). The hydrogen projected density of states and the proton mean kinetic energy, _OH, were determined for the first time within the framework of a harmonic description of the proton dynamics. We found that in the liquid the value of _OH is nearly constant as a function of T, indicating that quantum effects on the OH stretching frequency are weakly dependent on temperature. In the case of ice, ab initiomore » electronic structure calculations, using non-local van der Waals functionals, provided _OH values in agreement with INS experiments. We also found that the ratio of the stretching (_OH) to the total (_exp) kinetic energy, obtained from the present measurements, increases in going from ice, where hydrogen bonding is the strongest, to the liquid at ambient conditions and then to the vapour phase, where hydrogen bonding is the weakest. The same ratio was also derived from the combination of previous deep inelastic neutron scattering data, which does not rely upon the harmonic approximation, and the present measurements. We found that the ratio of stretching to the total kinetic energy shows a minimum in the metastable liquid phase. This finding suggests that the strength of intermolecular interactions increases in the supercooled phase, with respect to that in ice, contrary to the accepted view that supercooled water exhibits weaker hydrogen bonding than ice.« less

  17. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-01-01

    We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.

  18. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  19. γ production and neutron inelastic scattering cross sections for 76Ge

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  20. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    NASA Astrophysics Data System (ADS)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  1. Applying Monte-Carlo simulations to optimize an inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    Computer Monte-Carlo (MC) simulations (Geant4) of neutron propagation and acquisition of gamma response from soil samples was applied to evaluate INS system performance characteristic [sensitivity, minimal detectable level (MDL)] for soil carbon measurement. The INS system model with best performanc...

  2. Field testing a mobile inelastic neutron scattering system to measure soil carbon

    USDA-ARS?s Scientific Manuscript database

    Cropping history in conjunction with soil management practices can have a major impact on the amount of organic carbon (C) stored in soil. Current methods of assessing soil C based on soil coring and subsequent processing procedures prior to laboratory analysis are labor intensive and time consuming...

  3. Finite Strain Analysis of Shock Compression of Brittle Solids Applied to Titanium Diboride

    DTIC Science & Technology

    2014-07-01

    dislocation motion [18,19] may take place at high pressures. Multiple investigations have discovered that tita - nium diboride demonstrates a rather unique...mean stress under shock compression. It has been suggested [5] that pore collapse may be an important source of inelasticity in tita - nium diboride

  4. Monte-Carlo gamma response simulation of fast/thermal neutron interactions with soil elements

    USDA-ARS?s Scientific Manuscript database

    Soil elemental analysis using characteristic gamma rays induced by neutrons is an effective method of in situ soil content determination. The nuclei of soil elements irradiated by neutrons issue characteristic gamma rays due to both inelastic neutron scattering (e.g., Si, C) and thermal neutron capt...

  5. Measurement of event shape variables in deep inelastic e p scattering

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Botterweck, F.; Boudry, V.; Bourov, S.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; İşsever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Rick, H.; Reiss, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vandenplas, D.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wollatz, H.; Wünsch, E.; ŽáČek, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1997-02-01

    Deep inelastic e p scattering data, taken with the H1 detector at HERA, are used to study the event shape variables thrust, jet broadening and jet mass in the current hemisphere of the Breit frame over a large range of momentum transfers Q between 7 GeV and 100 GeV. The data are compared with results from e+e- experiments. Using second order QCD calculations and an approach to relate hadronisation effects to power corrections an analysis of the Q dependences of the means of the event shape parameters is presented, from which both the power corrections and the strong coupling constant are determined without any assumption on fragmentation models. The power corrections of all event shape variables investigated follow a 1/Q behaviour and can be described by a common parameter α0.

  6. Pygmy dipole resonance in 140Ce via inelastic scattering of 17O

    NASA Astrophysics Data System (ADS)

    Krzysiek, M.; Kmiecik, M.; Maj, A.; Bednarczyk, P.; Bracco, A.; Crespi, F. C. L.; Lanza, E. G.; Litvinova, E.; Paar, N.; Avigo, R.; Bazzacco, D.; Benzoni, G.; Birkenbach, B.; Blasi, N.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Ciemała, M.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; Isocarte, R.; Jungclaus, A.; Leoni, S.; Ljungvall, J.; Lunardi, S.; Mazurek, K.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Milion, B.; Morales, A. I.; Napoli, D. R.; Nicolini, R.; Pellegri, L.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Salsac, M. D.; Siebeck, B.; Siem, S.; Söderström, P.-A.; Ur, C.; Valiente-Dobon, J. J.; Wieland, O.; Ziebliński, M.

    2016-04-01

    The γ decay from the high-lying states of 140Ce excited via inelastic scattering of 17O at a bombarding energy of 340 MeV was measured using the high-resolution AGATA-demonstrator array in coincidence with scattered ions detected in two segmented Δ E -E silicon detectors. Angular distributions of scattered ions and emitted γ rays were measured, as well as their differential cross sections. The excitation of 1- states below the neutron separation energy is similar to the one obtained in reactions with the α isoscalar probe. The comparison between the experimental differential cross sections and the corresponding predictions using the distorted-wave Born approximation allowed us to extract the isoscalar component of identified 1- pygmy states. For this analysis the form factor obtained by folding microscopically calculated transition densities and optical potentials was used.

  7. Incorporation of Mean Stress Effects into the Micromechanical Analysis of the High Strain Rate Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Gilat, Amos

    2002-01-01

    The results presented here are part of an ongoing research program, to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. A micromechanics approach is employed in this work, in which state variable constitutive equations originally developed for metals have been modified to model the deformation of the polymer matrix, and a strength of materials based micromechanics method is used to predict the effective response of the composite. In the analysis of the inelastic deformation of the polymer matrix, the definitions of the effective stress and effective inelastic strain have been modified in order to account for the effect of hydrostatic stresses, which are significant in polymers. Two representative polymers, a toughened epoxy and a brittle epoxy, are characterized through the use of data from tensile and shear tests across a variety of strain rates. Results computed by using the developed constitutive equations correlate well with data generated via experiments. The procedure used to incorporate the constitutive equations within a micromechanics method is presented, and sample calculations of the deformation response of a composite for various fiber orientations and strain rates are discussed.

  8. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  9. Transrectal real-time elastography of the prostate: Normal patterns

    PubMed Central

    Goddi, A.; Sacchi, A.; Magistretti, G.; Almolla, J.

    2011-01-01

    Introduction Given the growing importance in clinical practice of transrectal real-time sonoelastography of the prostate, it is important to define normal patterns correlated to volume growth and reconsider the technical problems. Materials and methods We selected a sample of 100 men aged 30 to 87 with prostate volumes ranging from 20 to 100 cc. Strain images were obtained using an end-fire convex probe. The elasticity patterns of the various anatomical zones of the prostate were compared with the volume. Results The peripheral zone showed intermediate elasticity in 100% of cases regardless of the volume. We found some rare small areas of more limited elasticity in 23% of cases, among patients over 40. The posterior side of the central zone exhibited intermediate elasticity, and relative inelasticity was observed on the lateral side and at the base in 79% of cases. The entire central zone appeared compliant in 15% of cases and inelastic in 6%. The transition zone findings were stratified according to gland volume. When the volume was less than 45 cc, the transition zone was elastic in 67% of cases, inhomogeneously inelastic in 22%, and uniformly inelastic in 11%. In glands larger than 45 cc, the appearance was mainly elastic in 31% of cases, inhomogeneously inelastic in 57%, and uniformly inelastic in 12%. Conclusions Real-time elastography can distinguish the elastic properties of the prostate and define the normal patterns associated with increases in gland volume. PMID:23396618

  10. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    NASA Astrophysics Data System (ADS)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  11. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-05-01

    We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.

  12. Inelastic dark matter in light of DAMA/LIBRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Spencer; Weiner, Neal; Kribs, Graham D.

    2009-02-15

    Inelastic dark matter, in which weakly interacting massive particle (WIMP)-nucleus scatterings occur through a transition to an excited WIMP state {approx}100 keV above the ground state, provides a compelling explanation of the DAMA annual modulation signal. We demonstrate that the relative sensitivities of various dark matter direct detection experiments are modified such that the DAMA annual modulation signal can be reconciled with the absence of a reported signal at CDMS-Soudan, XENON10, ZEPLIN, CRESST, and KIMS for inelastic WIMPs with masses O(100 GeV). We review the status of these experiments, and make predictions for upcoming ones. In particular, we note thatmore » inelastic dark matter leads to highly suppressed signals at low energy, with most events typically occurring between 20 and 45 keV (unquenched) at xenon and iodine experiments, and generally no events at low ({approx}10 keV) energies. Suppressing the background in this high-energy region is essential to testing this scenario. The recent CRESST data suggest seven observed tungsten events, which is consistent with expectations from this model. If the tungsten signal persists at future CRESST runs, it would provide compelling evidence for inelastic dark matter, while its absence should exclude it.« less

  13. Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Agostinelli, A; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S A; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaráz Aviña, E; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldini Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bose, S; Bossú, F; Botje, M; Botta, E; Boyer, B; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Busch, O; Buthelezi, Z; Caballero Orduna, D; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chawla, I; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Colamaria, F; Colella, D; Conesa Balbastre, G; Conesa Del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cuautle, E; Cunqueiro, L; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, K; Das, I; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; Demanov, V; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domínguez, I; Dönigus, B; Dordic, O; Driga, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, M R; Dutta Majumdar, A K; Elia, D; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Feldkamp, L; Felea, D; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Ferretti, R; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, M; Gheata, A; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez, R; Ferreiro, E G; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Grabski, V; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harmanová-Tóthová, Z; Harris, J W; Hartig, M; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jang, H J; Janik, R; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jirden, L; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kakoyan, V; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, P; Khan, S A; Khan, M M; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, S; Kim, B; Kim, T; Kim, D J; Kim, D W; Kim, J H; Kim, J S; Kim, M; Kim, M; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Koch, K; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Korneev, A; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kraus, I; Krawutschke, T; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, V; Kushpil, S; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Le Bornec, Y; Lechman, M; Lee, S C; Lee, G R; Lee, K S; Lefèvre, F; Lehnert, J; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; León Vargas, H; Lévai, P; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loggins, V R; Loginov, V; Lohn, S; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, M V D; Malzacher, P; Mamonov, A; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Marin Tobon, C A; Markert, C; Marquard, M; Martashvili, I; Martinengo, P; Martínez, M I; Martínez Davalos, A; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matthews, Z L; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Naumov, N P; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Pastirčák, B; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perez Lezama, E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puchagin, S; Puddu, G; Pulvirenti, A; Punin, V; Putiš, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Räihä, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramírez Reyes, A; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Real, J S; Redlich, K; Reichelt, P; Reicher, M; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodrigues Fernandes Rabacal, B; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, P; Roy, C; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Rohni, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Son, H; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strabykin, K; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szostak, A; Szymański, M; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urbán, J; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, Y; Vinogradov, A; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vranic, D; Øvrebekk, G; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, V; Wagner, B; Wan, R; Wang, M; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yu, W; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, X; Zhang, H; Zhou, D; Zhou, Y; Zhou, F; Zhu, J; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    Measurements of cross sections of inelastic and diffractive processes in proton-proton collisions at LHC energies were carried out with the ALICE detector. The fractions of diffractive processes in inelastic collisions were determined from a study of gaps in charged particle pseudorapidity distributions: for single diffraction (diffractive mass M X <200 GeV/ c 2 ) [Formula: see text], and [Formula: see text], respectively at centre-of-mass energies [Formula: see text]; for double diffraction (for a pseudorapidity gap Δ η >3) σ DD / σ INEL =0.11±0.03,0.12±0.05, and [Formula: see text], respectively at [Formula: see text]. To measure the inelastic cross section, beam properties were determined with van der Meer scans, and, using a simulation of diffraction adjusted to data, the following values were obtained: [Formula: see text] mb at [Formula: see text] and [Formula: see text] at [Formula: see text]. The single- and double-diffractive cross sections were calculated combining relative rates of diffraction with inelastic cross sections. The results are compared to previous measurements at proton-antiproton and proton-proton colliders at lower energies, to measurements by other experiments at the LHC, and to theoretical models.

  14. Neutron inelastic scattering by amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  15. Numerical nonlinear inelastic analysis of stiffened shells of revolution. Volume 4: Satellite-1P program for STARS-2P digital computer program

    NASA Technical Reports Server (NTRS)

    Svalbonas, V.; Ogilvie, P.

    1975-01-01

    A special data debugging package called SAT-1P created for the STARS-2P computer program is described. The program was written exclusively in FORTRAN 4 for the IBM 370-165 computer, and then converted to the UNIVAC 1108.

  16. Shot noise in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Matveeva, P. G.; Aristov, D. N.; Meidan, D.; Gutman, D. B.

    2017-10-01

    We study the effect of inelastic processes on the magnetotransport of a quasi-one-dimensional Weyl semimetal, using a modified Boltzmann-Langevin approach. The magnetic field drives a crossover to a ballistic regime in which the propagation along the wire is dominated by the chiral anomaly, and the role of fluctuations inside the sample is exponentially suppressed. We show that inelastic collisions modify the parametric dependence of the current fluctuations on the magnetic field. By measuring shot noise as a function of a magnetic field, for different applied voltage, one can estimate the electron-electron inelastic length lee.

  17. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  18. Synergy of inelastic and elastic energy loss. Temperature effects and electronic stopping power dependence

    DOE PAGES

    Zarkadoula, Eva; Xue, Haizhou; Zhang, Yanwen; ...

    2015-06-16

    A combination of an inelastic thermal spike model suitable for insulators and molecular dynamics simulations is used to study the effects of temperature and electronic energy loss on ion track formation, size and morphology in SrTiO 3 systems with pre-existing disorder. We find temperature dependence of the ion track size. In addition, we find a threshold in the electronic energy loss for a given pre-existing defect concentration, which indicates a threshold in the synergy between the inelastic and elastic energy loss.

  19. Longitudinal target-spin asymmetries for deeply virtual compton scattering.

    PubMed

    Seder, E; Biselli, A; Pisano, S; Niccolai, S; Smith, G D; Joo, K; Adhikari, K; Amaryan, M J; Anderson, M D; Anefalos Pereira, S; Avakian, H; Battaglieri, M; Bedlinskiy, I; Bono, J; Boiarinov, S; Bosted, P; Briscoe, W; Brock, J; Brooks, W K; Bültmann, S; Burkert, V D; Carman, D S; Carlin, C; Celentano, A; Chandavar, S; Charles, G; Colaneri, L; Cole, P L; Contalbrigo, M; Crabb, D; Crede, V; D'Angelo, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Filippi, A; Fleming, J A; Fradi, A; Garillon, B; Garçon, M; Gevorgyan, N; Ghandilyan, Y; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gothe, R W; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Harrison, N; Hattawy, M; Hirlinger Saylor, N; Holtrop, M; Hughes, S M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joosten, S; Keith, C D; Keller, D; Khachatryan, G; Khandaker, M; Kim, A; Kim, W; Klein, A; Klein, F J; Koirala, S; Kubarovsky, V; Kuhn, S E; Lenisa, P; Livingston, K; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Meekins, D G; Mineeva, T; Mirazita, M; Mokeev, V; Montgomery, R; Moody, C I; Moutarde, H; Movsisyan, A; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paolone, M; Pappalardo, L L; Park, K; Park, S; Pasyuk, E; Peng, P; Phelps, W; Pogorelko, O; Price, J W; Prok, Y; Protopopescu, D; Puckett, A J R; Ripani, M; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatié, F; Salgado, C; Schott, D; Schumacher, R A; Senderovich, I; Simonyan, A; Skorodumina, I; Sokhan, D; Sparveris, N; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Sytnik, V; Taiuti, M; Tang, W; Tian, Y; Ungaro, M; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Wei, X; Weinstein, L B; Wood, M H; Zachariou, N; Zana, L; Zhang, J; Zonta, I

    2015-01-23

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep→e^{'}p^{'}γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q^{2}, x_{B}, t, and ϕ, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  20. Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    NASA Astrophysics Data System (ADS)

    Seder, E.; Biselli, A.; Pisano, S.; Niccolai, S.; Smith, G. D.; Joo, K.; Adhikari, K.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Battaglieri, M.; Bedlinskiy, I.; Bono, J.; Boiarinov, S.; Bosted, P.; Briscoe, W.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Carlin, C.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garillon, B.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hirlinger Saylor, N.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L. L.; Park, K.; Park, S.; Pasyuk, E.; Peng, P.; Phelps, W.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Senderovich, I.; Simonyan, A.; Skorodumina, I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tian, Y.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2015-01-01

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for e p →e'p'γ events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q2 , xB, t , and ϕ , for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions.

  1. Magnon and phonon thermometry with inelastic light scattering

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; An, Kyongmo; Li, Xiaoqin

    2018-04-01

    Spin caloritronics investigates the interplay between the transport of spin and heat. In the spin Seebeck effect, a thermal gradient across a magnetic material generates a spin current. A temperature difference between the energy carriers of the spin and lattice subsystems, namely the magnons and phonons, is necessary for such thermal nonequilibrium generation of spin current. Inelastic light scattering is a powerful method that can resolve the individual temperatures of magnons and phonons. In this review, we discuss the thermometry capabilities of inelastic light scattering for measuring optical and acoustic phonons, as well as magnons. A scattering spectrum offers three temperature sensitive parameters: frequency shift, linewidth, and integrated intensity. We discuss the temperatures measured via each of these parameters for both phonon and magnons. Finally, we discuss inelastic light scattering experiments that have examined the magnon and phonon temperatures in thermal nonequilibrium which are particularly relevant to spin caloritronic phenomena.

  2. Structure of 8B from elastic and inelastic 7Be+p scattering

    NASA Astrophysics Data System (ADS)

    Mitchell, J. P.; Rogachev, G. V.; Johnson, E. D.; Baby, L. T.; Kemper, K. W.; Moro, A. M.; Peplowski, P.; Volya, A. S.; Wiedenhöver, I.

    2013-05-01

    Background: Detailed experimental knowledge of the level structure of light weakly bound nuclei is necessary to guide the development of new theoretical approaches that combine nuclear structure with reaction dynamics.Purpose: The resonant structure of 8B is studied in this work.Method: Excitation functions for elastic and inelastic 7Be+p scattering were measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6 and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions was performed.Results: New low-lying resonances at 1.9, 2.54, and 3.3 MeV in 8B are reported with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the time-dependent continuum shell (TDCSM) model and ab initio no-core shell model/resonating-group method (NCSM/RGM) calculations is performed. This work is a more detailed analysis of the data first published as a Rapid Communication. J. P. Mitchell, G. V. Rogachev, E. D. Johnson, L. T. Baby, K. W. Kemper , [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.82.011601 82, 011601(R) (2010)].Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by some models at relatively low energy but never observed experimentally is an important step toward understanding the structure of 8B. Their identification was aided by having both elastic and inelastic scattering data. Direct comparison of the cross sections and phase shifts predicted by the TDCSM and ab initio no-core shell model coupled with the resonating group method is of particular interest and provides a good test for these theoretical approaches.

  3. Inelastic deformation demands of regular steel frames subjected to pulse-like near-fault ground shakings

    NASA Astrophysics Data System (ADS)

    Siahpolo, Navid; Gerami, Mohsen; Vahdani, Reza

    2016-09-01

    Evaluating the capability of elastic Load Patterns (LPs) including seismic codes and modified LPs such as Method of Modal Combination (MMC) and Upper Bound Pushover Analysis (UBPA) in estimating inelastic demands of non deteriorating steel moment frames is the main objective of this study. The Static Nonlinear Procedure (NSP) is implemented and the results of NSP are compared with Nonlinear Time History Analysis (NTHA). The focus is on the effects of near-fault pulselike ground motions. The primary demands of interest are the maximum floor displacement, the maximum story drift angle over the height, the maximum global ductility, the maximum inter-story ductility and the capacity curves. Five types of LPs are selected and the inelastic demands are calculated under four levels of inter-story target ductility ( μ t) using OpenSees software. The results show that the increase in μ t coincides with the migration of the peak demands over the height from the top to the bottom stories. Therefore, all LPs estimate the story lateral displacement accurately at the lower stories. The results are almost independent of the number of stories. While, the inter-story drift angle (IDR) obtained from MMC method has the most appropriate accuracy among the other LPs. Although, the accuracy of this method decreases with increasing μ t so that with increasing number of stories, IDR is smaller or greater than the values resulted from NTHA depending on the position of captured results. In addition, increasing μ t decreases the accuracy of all LPs in determination of critical story position. In this case, the MMC method has the best coincidence with distribution of inter-story ductility over the height.

  4. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE PAGES

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...

    2016-06-02

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  5. Insights on dramatic radial fluctuations in track formation by energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Lang, Maik; Trautmann, Christina

    We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less

  6. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  7. Soliton interactions, Bäcklund transformations, Lax pair for a variable-coefficient generalized dispersive water-wave system

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Liu, De-Yin; Xie, Xi-Yang

    2018-04-01

    Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.

  8. Evidence of an enhanced nuclear radius of the α -halo state via α +12C inelastic scattering

    NASA Astrophysics Data System (ADS)

    Ito, Makoto

    2018-04-01

    Evidence of the enhanced nuclear radius in the Hoyle rotational state, 22+, is derived from the differential cross sections in α +12C inelastic scattering. The prominent shrinkage is observed in the differential cross section of the 22+ state in comparison to the yrast 21+ state, and this shrinkage is the first evidence of the enhanced nuclear radius which originates from the 3 α structure in the 22+ state. A diffraction formula, that is, Blair's phase rule, is applied to the differential cross sections, and the present analysis predicts an enhancement of 0.6 to 1.0 fm in the nuclear radius of the 22+ state in comparison to the radius of the yrast 21+, which is considered to have a normal nuclear radius. Constraint on the recent ab initio calculation for 3 α states in 12C is also discussed.

  9. Strength reduction factors for seismic analyses of buildings exposed to near-fault ground motions

    NASA Astrophysics Data System (ADS)

    Qu, Honglue; Zhang, Jianjing; Zhao, J. X.

    2011-06-01

    To estimate the near-fault inelastic response spectra, the accuracy of six existing strength reduction factors ( R) proposed by different investigators were evaluated by using a suite of near-fault earthquake records with directivity-induced pulses. In the evaluation, the force-deformation relationship is modelled by elastic-perfectly plastic, bilinear and stiffness degrading models, and two site conditions, rock and soil, are considered. The R-value ratio (ratio of the R value obtained from the existing R-expressions (or the R-µ- T relationships) to that from inelastic analyses) is used as a measurement parameter. Results show that the R-expressions proposed by Ordaz & Perez-Rocha are the most suitable for near-fault ground motions, followed by the Newmark & Hall and the Berrill et al. relationships. Based on an analysis using the near-fault ground motion dataset, new expressions of R that consider the effects of site conditions are presented and verified.

  10. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  11. A new method to derive electronegativity from resonant inelastic x-ray scattering.

    PubMed

    Carniato, S; Journel, L; Guillemin, R; Piancastelli, M N; Stolte, W C; Lindle, D W; Simon, M

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p(-1)LUMO(1) electronic states reached after Cl 1s → LUMO core excitation and subsequent KL radiative decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p(z) atomic orbital contributing to the Cl 2p(3/2) molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.

  12. Unified constitutive material models for nonlinear finite-element structural analysis. [gas turbine engine blades and vanes

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Laflen, J. H.; Lindholm, U. S.

    1985-01-01

    Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine components with particular application to isotropic materials used for high-pressure stage turbine blades and vanes. Forms or combinations of models independently proposed by Bodner and Walker were considered. These theories combine time-dependent and time-independent aspects of inelasticity into a continuous spectrum of behavior. This is in sharp contrast to previous classical approaches that partition inelastic strain into uncoupled plastic and creep components. Predicted stress-strain responses from these models were evaluated against monotonic and cyclic test results for uniaxial specimens of two cast nickel-base alloys, B1900+Hf and Rene' 80. Previously obtained tension-torsion test results for Hastelloy X alloy were used to evaluate multiaxial stress-strain cycle predictions. The unified models, as well as appropriate algorithms for integrating the constitutive equations, were implemented in finite-element computer codes.

  13. Effect of repeated earthquake on inelastic moment resisting concrete frame

    NASA Astrophysics Data System (ADS)

    Tahara, R. M. K.; Majid, T. A.; Zaini, S. S.; Faisal, A.

    2017-10-01

    This paper investigates the response of inelastic moment resisting concrete building under repeated earthquakes. 2D models consist of 3-storey, 6-storey and 9-storey representing low to medium rise building frame were designed using seismic load and ductility class medium (DCM) according to the requirements set by Euro Code 8. Behaviour factor and stiffness degradation were also taken into consideration. Seven sets of real repeated earthquakes as opposed to artificial earthquakes data were used. The response of the frame was measured in terms of the inter-storey drift and maximum displacement. By adopting repeated earthquake, the recorded mean IDR increased in the range of 3% - 21%. Similarly, in the case of maximum displacement, the values also increased from 20 mm to 40 mm. The findings concluded that the effect of using repeated earthquake in seismic analysis considerably influenced the inter-storey drift and the maximum displacement.

  14. A crystallographic model for nickel base single crystal alloys

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1988-01-01

    The purpose of this research is to develop a tool for the mechanical analysis of nickel-base single-crystal superalloys, specifically Rene N4, used in gas turbine engine components. This objective is achieved by developing a rate-dependent anisotropic constitutive model and implementing it in a nonlinear three-dimensional finite-element code. The constitutive model is developed from metallurgical concepts utilizing a crystallographic approach. An extension of Schmid's law is combined with the Bodner-Partom equations to model the inelastic tension/compression asymmetry and orientation-dependence in octahedral slip. Schmid's law is used to approximate the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response and strain-rate sensitivity of the single-crystal superalloys. Methods for deriving the material constants from standard tests are also discussed. The model is implemented in a finite-element code, and the computed and experimental results are compared for several orientations and loading conditions.

  15. Jet production and fragmentation properties in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Drobnitzki, M.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Ftàčnik, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pietrzyk, U.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlabböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; Ziemons, K.

    1987-12-01

    Results are presented from a study of deep inelastic 280 GeV muon-nucleon interactions on the transverse momenta and jet properties of the final state hadrons. The results are analysed in a way which attempts to separate the contributions of hard and soft QCD effects from those that arise from the fragmentation process. The fragmentation models with which the data are compared are the Lund string model, the independent jet model, the QCD parton shower model including soft gluon interference effects, and the firestring model. The discrimination between these models is discussed. Various methods of analysis of the data in terms of hard QCD processes are presented. From a study of the properties of the jet profiles a value of α s , to leading order, is determined using the Lund string model, namely α s =0.29±0.01 (stat.) ±0.02 (syst.), for Q 2˜20 GeV2.

  16. Comparison of direct DNA strand breaks induced by low energy electrons with different inelastic cross sections

    NASA Astrophysics Data System (ADS)

    Li, Jun-Li; Li, Chun-Yan; Qiu, Rui; Yan, Cong-Chong; Xie, Wen-Zhang; Zeng, Zhi; Tung, Chuan-Jong

    2013-09-01

    In order to study the influence of inelastic cross sections on the simulation of direct DNA strand breaks induced by low energy electrons, six different sets of inelastic cross section data were calculated and loaded into the Geant4-DNA code to calculate the DNA strand break yields under the same conditions. The six sets of the inelastic cross sections were calculated by applying the dielectric function method of Emfietzoglou's optical-data treatments, with two different optical datasets and three different dispersion models, using the same Born corrections. Results show that the inelastic cross sections have a notable influence on the direct DNA strand break yields. The yields simulated with the inelastic cross sections based on Hayashi's optical data are greater than those based on Heller's optical data. The discrepancies are about 30-45% for the single strand break yields and 45-80% for the double strand break yields. Among the yields simulated with cross sections of the three different dispersion models, generally the greatest are those of the extended-Drude dispersion model, the second are those of the extended-oscillator-Drude dispersion model, and the last are those of the Ashley's δ-oscillator dispersion model. For the single strand break yields, the differences between the first two are very little and the differences between the last two are about 6-57%. For the double strand break yields, the biggest difference between the first two can be about 90% and the differences between the last two are about 17-70%.

  17. Inelastic deformation of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Herakovich, C. T.; Pindera, M-J.

    1993-01-01

    A theoretical model capable of predicting the thermomechanical response of continuously reinforced metal matrix composite laminates subjected to multiaxial loading was developed. A micromechanical model is used in conjunction with nonlinear lamination theory to determine inelastic laminae response. Matrix viscoplasticity, residual stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the model. The representative cell of the micromechanical model is considered to be in a state of generalized plane strain, enabling a quasi two-dimensional analysis to be performed. Constant strain finite elements are formulated with elastic-viscoplastic constitutive equations. Interfacial debonding is incorporated into the model through interface elements based on the interfacial debonding theory originally presented by Needleman, and modified by Tvergaard. Nonlinear interfacial constitutive equations relate interfacial tractions to displacement discontinuities at the interface. Theoretical predictions are compared with the results of an experimental program conducted on silicon carbide/titanium (SiC/Ti) unidirectional, (O4), and angle-ply, (+34)(sub s), tubular specimens. Multiaxial loading included increments of axial tension, compression, torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic deformation due to damage from matrix plasticity and separate time-dependent effects from time-independent effects. Results show that fiber/matrix debonding is nonuniform throughout the composite and is a major factor in the effective response. Also, significant creep behavior occurs at relatively low applied stress levels at room temperature.

  18. Quartz-based flat-crystal resonant inelastic x-ray scattering spectrometer with sub-10 meV energy resolution

    DOE PAGES

    Kim, Jungho; Casa, D.; Said, Ayman; ...

    2018-01-31

    Continued improvement of the energy resolution of resonant inelastic x-ray scattering (RIXS) spectrometers is crucial for fulfilling the potential of this technique in the study of electron dynamics in materials of fundamental and technological importance. In particular, RIXS is the only alternative tool to inelastic neutron scattering capable of providing fully momentum resolved information on dynamic spin structures of magnetic materials, but is limited to systems whose magnetic excitation energy scales are comparable to the energy resolution. The state-of-the-art spherical diced crystal analyzer optics provides energy resolution as good as 25 meV but has already reached its theoretical limit. Formore » this study, we demonstrate a novel sub-10 meV RIXS spectrometer based on flat-crystal optics at the Ir-L3 absorption edge (11.215 keV) that achieves an analyzer energy resolution of 3.9 meV, very close to the theoretical value of 3.7 meV. In addition, the new spectrometer allows efficient polarization analysis without loss of energy resolution. The performance of the instrument is emonstrated using longitudinal acoustical and optical phonons in diamond, and magnon in Sr 3Ir 2O 7. The novel sub-10 meV RIXS spectrometer thus provides a window into magnetic materials with small energy scales.« less

  19. Quartz-based flat-crystal resonant inelastic x-ray scattering spectrometer with sub-10 meV energy resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungho; Casa, D.; Said, Ayman

    Continued improvement of the energy resolution of resonant inelastic x-ray scattering (RIXS) spectrometers is crucial for fulfilling the potential of this technique in the study of electron dynamics in materials of fundamental and technological importance. In particular, RIXS is the only alternative tool to inelastic neutron scattering capable of providing fully momentum resolved information on dynamic spin structures of magnetic materials, but is limited to systems whose magnetic excitation energy scales are comparable to the energy resolution. The state-of-the-art spherical diced crystal analyzer optics provides energy resolution as good as 25 meV but has already reached its theoretical limit. Formore » this study, we demonstrate a novel sub-10 meV RIXS spectrometer based on flat-crystal optics at the Ir-L3 absorption edge (11.215 keV) that achieves an analyzer energy resolution of 3.9 meV, very close to the theoretical value of 3.7 meV. In addition, the new spectrometer allows efficient polarization analysis without loss of energy resolution. The performance of the instrument is emonstrated using longitudinal acoustical and optical phonons in diamond, and magnon in Sr 3Ir 2O 7. The novel sub-10 meV RIXS spectrometer thus provides a window into magnetic materials with small energy scales.« less

  20. Primordial 4He constraints on inelastic macro dark matter revisited

    NASA Astrophysics Data System (ADS)

    Jacobs, David M.; Allwright, Gwyneth; Mafune, Mpho; Manikumar, Samyukta; Weltman, Amanda

    2016-11-01

    At present, the best model for the evolution of the cosmos requires that dark matter make up approximately 25% of the energy content of the Universe. Most approaches to explain the microscopic nature of dark matter, to date, have assumed its composition to be of intrinsically weakly interacting particles; however, this need not be the case to have consistency with all extant observations. Given decades of inconclusive evidence to support any dark matter candidate, there is strong motivation to consider alternatives to the standard particle scenario. One such example is macro dark matter, a class of candidates (macros) that could interact strongly with the particles of the Standard Model, have large masses and physical sizes, and yet behave as dark matter. Macros that scatter completely inelastically could have altered the primordial production of the elements, and macro charge-dependent constraints have been obtained previously. Here we reconsider the phenomenology of inelastically interacting macros on the abundance of primordially produced 4He and revise previous constraints by also taking into account improved measurements of the primordial 4He abundance. The constraints derived here are limited in applicability to only leptophobic macros that have a surface potential V (RX)≳0.5 MeV . However, an important conclusion from our analysis is that even neutral macros would likely affect the abundance of the light elements. Therefore, constraints on that scenario are possible and are currently an open question.

  1. The subtle interplay of elastic and inelastic collisions in the thermalization of the quark–gluon plasma

    DOE PAGES

    Blaizot, Jean-Paul; Liao, Jinfeng; Mehtar-Tani, Yacine

    2016-12-01

    We analyze the interplay of elastic and inelastic collisions in the thermalization of the quark-gluon plasma, using kinetic theory. Our main focus is the dynamics and equilibration of long wavelength modes.

  2. Reemission spectra and inelastic processes at interaction of attosecond and shorter duration electromagnetic pulses with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2017-01-01

    Inelastic processes and the reemission of attosecond and shorter electromagnetic pulses by atoms have been considered within the analytical solution of the Schrödinger equation in the sudden perturbation approximation. A method of calculations with the exact inclusion of spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in the reemission processes has been developed. The probabilities of inelastic processes and spectra of reemission of ultrashort electromagnetic pulses by one- and many-electron atoms have been calculated. The results have been presented in the form of analytical formulas.

  3. Deep inelastic neutron scattering on 207Pb and NaHF 2 as a test of a detectors array on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  4. Higher Order Heavy Quark Corrections to Deep-Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Blümlein, Johannes; DeFreitas, Abilio; Schneider, Carsten

    2015-04-01

    The 3-loop heavy flavor corrections to deep-inelastic scattering are essential for consistent next-to-next-to-leading order QCD analyses. We report on the present status of the calculation of these corrections at large virtualities Q2. We also describe a series of mathematical, computer-algebraic and combinatorial methods and special function spaces, needed to perform these calculations. Finally, we briefly discuss the status of measuring αs (MZ), the charm quark mass mc, and the parton distribution functions at next-to-next-to-leading order from the world precision data on deep-inelastic scattering.

  5. Findings in Ps-H scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, Hasi

    2006-06-15

    The best three-channel projectile-inelastic close-coupling approximation (CCA) is used to study the resonances in positronium (Ps) and hydrogen (H) scattering at the energy region below the inelastic threshold. The s-wave elastic phase shifts and s-wave elastic cross sections are studied using the static-exchange, two- and three-channel projectile-inelastic CCA for both the singlet (+) and triplet (-) channels. The singlet resonances detected using different CCA schemes confirm previous predictions [Drachman and Houston, Phys. Rev. A 12, 885 (1975); Page, J. Phys. B. 9, 1111 (1976)]. We report a resonance in the triplet channel too using the present three-channel CCA scheme.

  6. Inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Petit, Sylvain

    2017-10-01

    The goal of the JDN22 school was to propose a progressive teaching eager to improve the expertise of students in neutron diffraction. Neutron-based techniques have indeed proved for decades to be essential tools in the investigation of condensed matter. This lecture is however concerned with inelastic neutron scattering and is thus somehow apart. In the context of this school, it should then only be considered as a brief introduction. We give simple examples along with the basics of the spectrometers, and finally useful formula for the inelastic cross sections in different situations. We strongly encourage interested readers to refer to the bibliography for more detailed information.

  7. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    NASA Astrophysics Data System (ADS)

    Bahl, C. R. H.; Lefmann, K.; Abrahamsen, A. B.; Rønnow, H. M.; Saxild, F.; Jensen, T. B. S.; Udby, L.; Andersen, N. H.; Christensen, N. B.; Jakobsen, H. S.; Larsen, T.; Häfliger, P. S.; Streule, S.; Niedermayer, Ch.

    2006-05-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  8. First measurement of the deep-inelastic structure of proton diffraction

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Hudgson, V. L.; Huet, Ph.; Hütte, M.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kole, F.; Kolva, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Link, J.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lohmander, H.; Lomas, J.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Ozerov, D.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rabbertz, K.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Rick, H.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Rizvi, E.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Solochenko, V.; Soloviev, Y.; Spiekermann, J.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Stolze, K.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1995-02-01

    A measurement is presented, using data taken with the H1 detector at HERA, of the contribution of diffractive interactions to deep-inelastic electron-proton ( ep) scattering in the kinematic range 8.5 < Q2 < 50GeV 2, 2.4 × 10 -4 < Bjorken- x < 0.0133, and 3.7 × 10 -4 < χp < 0.043. The diffractive contribution to the proton structure function F2( x, Q2) is evaluated as a function of the appropriate deep-inelastic scattering variables χp, Q2, β (= {χ}/{χ p}) using a class of deep-inelastic ep scattering events with no hadronic energy flow in an interval of pseudo-rapidity adjacent to the proton beam direction. the dependence of this contribution on χp is measured to be χp- n with n = 1.19 ± 0.06 (stat.) ± 0.07 (syst.) independent of β and Q2, which is consistent with both a diffractive interpretation and a factorisable ep diffractive cross section. A first measurement of the deep-inelastic structure of the pomeron in the form of the Q2 and β dependences of a factorised structure function is presented. For all measured β, this structure function is observed to be consistent with scale invariance.

  9. A Measurement of the proton-proton inelastic scattering cross-section at center off mass energy = 7 TeV with the ATLAS detector at the LHC

    NASA Astrophysics Data System (ADS)

    Tompkins, Lauren Alexandra

    The first measurement of the inelastic cross-section for proton-proton collisions at a center of mass energy of 7 TeV using the ATLAS detector at the Large Hadron Collider is presented. From a dataset corresponding to an integrated luminosity of 20 inverse microbarns, events are selected by requiring activity in scintillation counters mounted in the forward region of the ATLAS detector. An inelastic cross-section of 60.1 +/- 2.1 millibarns is measured for the subset of events visible to the scintillation counters. The uncertainty includes the statistical and systematic uncertainty on the measurement. The visible events satisfy xi > 5 x 10 -6, where xi=MX 2/s is calculated from the invariant mass, MX, of hadrons selected using the largest rapidity gap in the event. For diffractive events this corresponds to requiring at least one of the dissociation masses to be larger than 15.7~GeV. Using an extrapolation dependent on the model for the differential diffractive mass distribution, an inelastic cross-section of 69.1 +/- 2.4 (exp) +/- 6.9 (extr) millibarns is determined, where (exp) indicates the experimental uncertainties and (extr) indicates the uncertainty due to the extrapolation from the limited xi-range to the full inelastic cross-section.

  10. A realistic analysis of the phonon growth characteristics in a degenerate semiconductor using a simplified model of Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Basu, A.; Das, B.; Middya, T. R.; Bhattacharya, D. P.

    2017-01-01

    The phonon growth characteristic in a degenerate semiconductor has been calculated under the condition of low temperature. If the lattice temperature is high, the energy of the intravalley acoustic phonon is negligibly small compared to the average thermal energy of the electrons. Hence one can traditionally assume the electron-phonon collisions to be elastic and approximate the Bose-Einstein (B.E.) distribution for the phonons by the simple equipartition law. However, in the present analysis at the low lattice temperatures, the interaction of the non equilibrium electrons with the acoustic phonons becomes inelastic and the simple equipartition law for the phonon distribution is not valid. Hence the analysis is made taking into account the inelastic collisions and the complete form of the B.E. distribution. The high-field distribution function of the carriers given by Fermi-Dirac (F.D.) function at the field dependent carrier temperature, has been approximated by a well tested model that apparently overcomes the intrinsic problem of correct evaluation of the integrals involving the product and powers of the Fermi function. Hence the results thus obtained are more reliable compared to the rough estimation that one may obtain from using the exact F.D. function, but taking recourse to some over simplified approximations.

  11. Pushover Analysis Methodologies: A Tool For Limited Damage Based Design Of Structure For Seismic Vibration

    NASA Astrophysics Data System (ADS)

    Dutta, Sekhar Chandra; Chakroborty, Suvonkar; Raychaudhuri, Anusrita

    Vibration transmitted to the structure during earthquake may vary in magnitude over a wide range. Design methodology should, therefore, enumerates steps so that structures are able to survive in the event of even severe ground motion. However, on account of economic reason, the strengths can be provided to the structures in such a way that the structure remains in elastic range in low to moderate range earthquake and is allowed to undergo inelastic deformation in severe earthquake without collapse. To implement this design philosophy a rigorous nonlinear dynamic analysis is needed to be performed to estimate the inelastic demands. Furthermore, the same is time consuming and requires expertise to judge the results obtained from the same. In this context, the present paper discusses and demonstrates an alternative simple method known as Pushover method, which can be easily used by practicing engineers bypassing intricate nonlinear dynamic analysis and can be thought of as a substitute of the latter. This method is in the process of development and is increasingly becoming popular for its simplicity. The objective of this paper is to emphasize and demonstrate the basic concept, strength and ease of this state of the art methodology for regular use in design offices in performance based seismic design of structures.

  12. An inelastic analysis of a welded aluminum joint

    NASA Astrophysics Data System (ADS)

    Vaughan, R. E.

    1994-09-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  13. An inelastic analysis of a welded aluminum joint

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    1994-01-01

    Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.

  14. Experimental validation of finite element model analysis of a steel frame in simulated post-earthquake fire environments

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Bevans, W. J.; Xiao, Hai; Zhou, Zhi; Chen, Genda

    2012-04-01

    During or after an earthquake event, building system often experiences large strains due to shaking effects as observed during recent earthquakes, causing permanent inelastic deformation. In addition to the inelastic deformation induced by the earthquake effect, the post-earthquake fires associated with short fuse of electrical systems and leakage of gas devices can further strain the already damaged structures during the earthquakes, potentially leading to a progressive collapse of buildings. Under these harsh environments, measurements on the involved building by various sensors could only provide limited structural health information. Finite element model analysis, on the other hand, if validated by predesigned experiments, can provide detail structural behavior information of the entire structures. In this paper, a temperature dependent nonlinear 3-D finite element model (FEM) of a one-story steel frame is set up by ABAQUS based on the cited material property of steel from EN 1993-1.2 and AISC manuals. The FEM is validated by testing the modeled steel frame in simulated post-earthquake environments. Comparisons between the FEM analysis and the experimental results show that the FEM predicts the structural behavior of the steel frame in post-earthquake fire conditions reasonably. With experimental validations, the FEM analysis of critical structures could be continuously predicted for structures in these harsh environments for a better assistant to fire fighters in their rescue efforts and save fire victims.

  15. Inhomogeneous quasistationary state of dense fluids of inelastic hard spheres

    NASA Astrophysics Data System (ADS)

    Fouxon, Itzhak

    2014-05-01

    We study closed dense collections of freely cooling hard spheres that collide inelastically with constant coefficient of normal restitution. We find inhomogeneous states (ISs) where the density profile is spatially nonuniform but constant in time. The states are exact solutions of nonlinear partial differential equations that describe the coupled distributions of density and temperature valid when inelastic losses of energy per collision are small. The derivation is performed without modeling the equations' coefficients that are unknown in the dense limit (such as the equation of state) using only their scaling form specific for hard spheres. Thus the IS is the exact state of this dense many-body system. It captures a fundamental property of inelastic collections of particles: the possibility of preserving nonuniform temperature via the interplay of inelastic cooling and heat conduction that generalizes previous results. We perform numerical simulations to demonstrate that arbitrary initial state evolves to the IS in the limit of long times where the container has the geometry of the channel. The evolution is like a gas-liquid transition. The liquid condenses in a vanishing part of the total volume but takes most of the mass of the system. However, the gaseous phase, which mass grows only logarithmically with the system size, is relevant because its fast particles carry most of the energy of the system. Remarkably, the system self-organizes to dissipate no energy: The inelastic decay of energy is a power law [1+t/tc]-2, where tc diverges in the thermodynamic limit. This is reinforced by observing that for supercritical systems the IS coincide in most of the space with the steady states of granular systems heated at one of the walls. We discuss the relation of our results to the recently proposed finite-time singularity in other container's geometries.

  16. Lorentz violation and deep inelastic scattering

    DOE PAGES

    Kostelecký, V. Alan; Lunghi, E.; Vieira, A. R.

    2017-03-28

    We study the effects of quark-sector Lorentz violation on deep inelastic electron–proton scattering. Here, we show that existing data can be used to establish first constraints on numerous coefficients for Lorentz violation in the quark sector at an estimated sensitivity of parts in a million.

  17. Crystal electric field excitations in the quasicrystal approximant TbCd 6 studied by inelastic neutron scattering

    DOE PAGES

    Das, Pinaki; Lory, P. -F.; Flint, R.; ...

    2017-02-07

    Here, we have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd 6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramag- netic phase diverges as T N ~ 22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, Bmore » $$0\\atop{2}$$O$$0\\atop{2}$$, of the crystalline electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [1] indicating that the Tb moment is directed primarily along the unique local pseudo-five-fold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb 0.05Y 0.95Cd 6 sample and that calculated using the CEF level scheme determined from the neutron measurements.« less

  18. Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Lory, P.-F.; Flint, R.; Kong, T.; Hiroto, T.; Bud'ko, S. L.; Canfield, P. C.; de Boissieu, M.; Kreyssig, A.; Goldman, A. I.

    2017-02-01

    We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as TN˜22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, B20O20 , of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016), 10.1103/PhysRevB.93.054208] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements.

  19. Inelastic fingerprints of hydrogen contamination in atomic gold wire systems

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads

    2007-03-01

    We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.

  20. Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity

    NASA Astrophysics Data System (ADS)

    Rubin, M. B.; Cardiff, P.

    2017-11-01

    Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.

  1. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  2. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  3. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves

    NASA Astrophysics Data System (ADS)

    Erofeev, V. I.

    2015-09-01

    The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. A maximally informative version of inelastic scattering of electromagnetic waves by Langmuir waves in a weakly turbulent inhomogeneous plasma is developed with consideration of possible changes in wave polarization. In addition, a new formula for wave drift in spatial positions and wave vectors is derived. New scenarios of the respective wave drift and inelastic scattering are compared with the previous visions. The results indicate the need for further revision of the traditional understanding of nonlinear plasma phenomena.

  4. Inelastic Tunneling Spectroscopy of Alkanethiol Molecules: High-Resolution Spectroscopy and Theoretical Simulations

    NASA Astrophysics Data System (ADS)

    Okabayashi, Norio; Paulsson, Magnus; Ueba, Hiromu; Konda, Youhei; Komeda, Tadahiro

    2010-02-01

    We investigate inelastic electron tunneling spectroscopy (IETS) for alkanethiol self-assembled monolayers (SAM) with a scanning tunneling microscope and compare it to first-principles calculations. Using a combination of partial deuteration of the molecule and high-resolution measurements, we identify and differentiate between methyl (CH3) and methylene (CH2) groups and their symmetric and asymmetric C-H stretch modes. The calculations agree quantitatively with the measured IETS in producing the weight of the symmetric and asymmetric C-H stretch modes while the methylene stretch mode is largely underestimated. We further show that inelastic intermolecular scattering is important in the SAM by plotting the theoretical current densities.

  5. Large longitudinal spin alignment generated in inelastic nuclear reactions

    NASA Astrophysics Data System (ADS)

    Hoff, D. E. M.; Potel, G.; Brown, K. W.; Charity, R. J.; Pruitt, C. D.; Sobotka, L. G.; Webb, T. B.; Roeder, B.; Saastamoinen, A.

    2018-05-01

    Large longitudinal spin alignment of E /A =24 MeV 7Li projectiles inelastically excited by Be, C, and Al targets was observed when the latter remain in their ground state. This alignment is a consequence of an angular-momentum-excitation-energy mismatch, which is well described by a DWBA cluster-model (α +t ). The longitudinal alignment of several other systems is also well described by DWBA calculations, including one where a cluster model is inappropriate, demonstrating that the alignment mechanism is a more general phenomenon. Predictions are made for inelastic excitation of 12C for beam energies above and below the mismatch threshold.

  6. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  7. A theory of viscoplasticity accounting for internal damage

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Robinson, D. N.

    1988-01-01

    A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation.

  8. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGES

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; ...

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  9. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high-performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total-inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  10. Static test induced loads verification beyond elastic limit

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1996-01-01

    Increasing demands for reliable and least-cost high performance aerostructures are pressing design analyses, materials, and manufacturing processes to new and narrowly experienced performance and verification technologies. This study assessed the adequacy of current experimental verification of the traditional binding ultimate safety factor which covers rare events in which no statistical design data exist. Because large, high-performance structures are inherently very flexible, boundary rotations and deflections under externally applied loads approaching fracture may distort their transmission and unknowingly accept submarginal structures or prematurely fracturing reliable ones. A technique was developed, using measured strains from back-to-back surface mounted gauges, to analyze, define, and monitor induced moments and plane forces through progressive material changes from total-elastic to total inelastic zones within the structural element cross section. Deviations from specified test loads are identified by the consecutively changing ratios of moment-to-axial load.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut; Pisano, Silvia

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong in- teractions. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first stud- ies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides ac- cess to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure.more » Large acceptance of the CLAS detector at Jef- ferson Lab, allowing detection of two hadrons, produced back-to-back (b2b) in the current and target fragmentation regions, provides a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions« less

  12. Longitudinal target-spin asymmetries for deeply virtual Compton scattering

    DOE PAGES

    Seder, E.; Biselli, A.; Pisano, S.; ...

    2015-01-22

    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6-GeV electron beam, a longitudinally polarized proton target and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep → e'p'y events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q 2, x B, t and Φ, for 166 four-dimensional bins. In the framework of Generalized Parton Distributions (GPDs), at leading twist the t dependence of these asymmetries provides insight on the spatial distribution ofmore » the axial charge of the proton, which appears to be concentrated in its center. In conclusion, these results bring important and necessary constraints for the existing parametrizations of chiral-even GPDs.« less

  13. A search for higher twist effects in the hadronic distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1986-03-01

    The hadronic distributions in Q 2, y, z, p T and ϕ in deep inelastic muon proton scattering have been studied to search for higher twist effects in the hadronic final state. The expected effects are not observed.

  14. Deep inelastic scattering as a probe of entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharzeev, Dmitri E.; Levin, Eugene M.

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  15. Sport socks do not enhance calf muscle pump function but inelastic wraps do.

    PubMed

    Partsch, H; Mosti, G

    2014-12-01

    Aim of the study was to measure the effect of elastic and inelastic compression on calf muscle pump function in healthy male athletes. This was an experimental study which included 21 healthy male athletes. The ejection fraction (EF) of the venous calf pump was measured comparing the effects of a variety of compression materials: 1) sport compression stockings; 2) light zinc paste bandages; 3) sport compression stockings with additional Velcro® wraps over the calf. The influence of sport stocking and wraps on the venous calibre at the largest calf circumference in the lying and standing position was investigated using MRI. Inelastic compression exerting a median pressure in the standing position of 37.5 mmHg (zinc paste) and 48 mmHg (loosely applied straps over a sport stocking) achieved a significant increase of EF up to 100%. Sport stockings alone with a standing pressure of 19-24 mmHg did not show a significant change of EF. MRI demonstrated some venous narrowing in the lying but not in the standing position. By wrapping inelastic straps over the stocking an emptying of the veins in the lying and a considerable narrowing in the standing position could be observed. Venous calf pump function in athletes is not influenced by elastic sport stockings, but inelastic wraps either alone or applied over sport stockings lead to a significant enhancement.

  16. Deep inelastic scattering as a probe of entanglement

    DOE PAGES

    Kharzeev, Dmitri E.; Levin, Eugene M.

    2017-06-03

    Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less

  17. Nonlinear modeling of truss-plate joints

    Treesearch

    Leslie H. Groom; Anton Polensek

    1992-01-01

    A theoretical model is developed for predicting mechanisms of load transfer between a wood member and a metal die-punched truss plate. The model, which treats a truss-plate tooth as a beam on an inelastic foundation of wood and applies Runae-Kutta numerical analysis to solve the governing differentia1 equations, predicts the load-disp1acement trace and ultimate load of...

  18. Inelastic neutron scattering spectrum of cyclotrimethylenetrinitramine: a comparison with solid-state electronic structure calculations.

    PubMed

    Ciezak, Jennifer A; Trevino, S F

    2006-04-20

    Solid-state geometry optimizations and corresponding normal-mode analysis of the widely used energetic material cyclotrimethylenetrinitramine (RDX) were performed using density functional theory with both the generalized gradient approximation (BLYP and BP functionals) and the local density approximation (PWC and VWN functionals). The structural results were found to be in good agreement with experimental neutron diffraction data and previously reported calculations based on the isolated-molecule approximation. The vibrational inelastic neutron scattering (INS) spectrum of polycrystalline RDX was measured and compared with simulated INS constructed from the solid-state calculations. The vibrational frequencies calculated from the solid-state methods had average deviations of 10 cm(-1) or less, whereas previously published frequencies based on an isolated-molecule approximation had deviations of 65 cm(-1) or less, illustrating the importance of including crystalline forces. On the basis of the calculations and analysis, it was possible to assign the normal modes and symmetries, which agree well with previous assignments. Four possible "doorway modes" were found in the energy range defined by the lattice modes, which were all found to contain fundamental contributions from rotation of the nitro groups.

  19. A static predictor of seismic demand on frames based on a post-elastic deflected shape

    USGS Publications Warehouse

    Mori, Y.; Yamanaka, T.; Luco, N.; Cornell, C.A.

    2006-01-01

    Predictors of seismic structural demands (such as inter-storey drift angles) that are less time-consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square-root-of-sum-of-squares (SRSS) rule by taking a first-mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post-elastic first-mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single-degree-of-freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third-mode response for long-period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright ?? 2006 John Wiley & Sons, Ltd.

  20. Problems encountered in the use of neutron methods for elemental analysis on planetary surfaces

    USGS Publications Warehouse

    Senftle, F.; Philbin, P.; Moxham, R.; Boynton, G.; Trombka, J.

    1974-01-01

    From experimental studies of gamma rays from fast and thermal neutron reactions in hydrogeneous and non-hydrogeneous, semi-infinite samples and from Monte Carlo calculations on soil of a composition which might typically be encountered on planetary surfaces, it is found that gamma rays from fast or inelastic scattering reactions would dominate the observed spectra. With the exception of gamma rays formed by inelastically scattered neutrons on oxygen, useful spectra would be limited to energies below 3 MeV. Other experiments were performed which show that if a gamma-ray detector were placed within 6 m of an isotopic neutron source in a spacecraft, it would be rendered useless for gamma-ray spectrometry below 3 MeV because of internal activation produced by neutron exposure during space travel. Adequate shielding is not practicable because of the size and weight constraints for planetary missions. Thus, it is required that the source be turned off or removed to a safe distance during non-measurement periods. In view of these results an accelerator or an off-on isotopic source would be desirable for practical gamma-ray spectral analysis on planetary surfaces containing but minor amounts of hydrogen. ?? 1974.

  1. PELAN applications and recent field tests

    NASA Astrophysics Data System (ADS)

    Martinez, Juan J.; Holslin, Daniel T.

    2004-10-01

    When neutrons interact with particular nuclei, the resulting energy of the interaction can be released in the form of gamma rays, which are characteristic of the nucleus involved in the reaction. The PELAN (Pulsed Elemental Analysis with Neutrons) system uses a pulsed neutron generator and an integral thermalizing shield that induce reactions that cover most of the entire gamma ray energy spectra1. The neutron generator uses a D-T reaction, which releases fast 14MeV neutrons responsible for providing information on those nuclei that mostly respond to inelastic scattering. During the time period between pulses, the fast neutrons undergo multiple inelastic interactions that lower their energy making them easier to be captured by certain nuclei; this energy spectrum of gamma rays induced by these interactions are designated as the gamma ray thermal spectra. The PELAN system has been used for a number of applications where non-intrusive, non-destructive interrogation is needed. Although Pulsed Fast Thermal Neutron Analysis (PFTNA) has been around for approximately 30 years, the technology has never been successfully commercialized for practical applications. The following report illustrates examples of the performance of on a number of applications of interrogation of Unexploded Ordnance (UXO), mine confirmation, large vehicle bombs inspection and illicit drug smuggling detection.

  2. Current Issues and Challenges in Global Analysis of Parton Distributions

    NASA Astrophysics Data System (ADS)

    Tung, Wu-Ki

    2007-01-01

    A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed.

  3. MHOST version 4.2. Volume 1: Users' manual

    NASA Technical Reports Server (NTRS)

    Nakazawa, Shohei

    1989-01-01

    This manual describes the user options available for running the MHOST finite element analysis package. MHOST is a solid and structural analysis program based on mixed finite element technology, and is specifically designed for three-dimensional inelastic analysis. A family of two- and three-dimensional continuum elements along with beam and shell structural elements can be utilized. Many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. An overview of the algorithms, a general description of the input data formats, and a discussion of input data for selecting solution algorithms are given.

  4. Benchmarking the inelastic neutron scattering soil carbon method

    USDA-ARS?s Scientific Manuscript database

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  5. Collinear Collision Chemistry: 1. A Simple Model for Inelastic and Reactive Collision Dynamics

    ERIC Educational Resources Information Center

    Mahan, Bruce H.

    1974-01-01

    Discusses a model for the collinear collision of an atom with a diatomic molecule on a simple potential surface. Indicates that the model can provide a framework for thinking about molecular collisions and reveal many factors which affect the dynamics of reactive and inelastic collisions. (CC)

  6. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  7. The LivePhoto Physics videos and video analysis site

    NASA Astrophysics Data System (ADS)

    Abbott, David

    2009-09-01

    The LivePhoto site is similar to an archive of short films for video analysis. Some videos have Flash tools for analyzing the video embedded in the movie. Most of the videos address mechanics topics with titles like Rolling Pencil (check this one out for pedagogy and content knowledge—nicely done!), Juggler, Yo-yo, Puck and Bar (this one is an inelastic collision with rotation), but there are a few titles in other areas (E&M, waves, thermo, etc.).

  8. Development of a composite repair and the associated inspection intervals for the F-111C stiffener runout region

    NASA Technical Reports Server (NTRS)

    Jones, R.; Molent, L.; Paul, J.; Saunders, T.; Chiu, W. K.

    1994-01-01

    This paper presents an overview of the structural aspects of the design and development of a local reinforcement designed to lower the stresses in a region of the F-111C wing fitting which is prone to cracking. The stress analysis, with particular emphasis on the use of a unified constitutive model for the cyclic inelastic response of the structure, representative specimen testing, thermal analysis and full scale static testing of this design are summarized.

  9. The effects of price and perceived quality on the behavioural economics of alcohol, amphetamine, cannabis, cocaine, and ecstasy purchases.

    PubMed

    Goudie, Andrew J; Sumnall, Harry R; Field, Matt; Clayton, Hannah; Cole, Jon C

    2007-07-10

    Behavioural economic models of substance use describe the relationship between changes in unit price and consumption. However, these models rarely take account of the perceived quality (i.e. potency) of controlled drugs. Therefore we investigated the effects of both price and quality on the decision to purchase controlled drugs by polysubstance misusers. Forty current polysubstance misusers (29 males, 11 females; mean age 23.8) were recruited into the study. Participants were asked to hypothetically purchase drugs from a price list of alcohol, amphetamine, cannabis, cocaine and ecstasy at different levels of quality and price (i.e. better quality drugs cost more money). The disposable income available for those purchases was systematically varied in order to determine the impact of income on the decision to purchase drugs. Demand for both normal and strong alcohol was income inelastic. Demand for both poor and average quality cannabis and ecstasy was income inelastic, but demand for good quality cannabis and ecstasy was income elastic. The demand for poor quality cocaine was income inelastic, with the demand for both average and good quality cocaine being income elastic. Participants reported too few purchases of amphetamine, which precluded behavioural economic analysis. These results suggest that, like other goods, controlled drugs are purchased based upon the consumer's interpretations of their relative value. Therefore, it is probable that the purchase and subsequent use of controlled drugs by polysubstance misusers will be heavily influenced by the economic environment.

  10. Shear viscosity of an ultrarelativistic Boltzmann gas with isotropic inelastic scattering processes

    NASA Astrophysics Data System (ADS)

    El, A.; Lauciello, F.; Wesp, C.; Bouras, I.; Xu, Z.; Greiner, C.

    2014-05-01

    We derive an analytic expression for the shear viscosity of an ultra-relativistic gas in presence of both elastic 2→2 and inelastic 2↔3 processes with isotropic differential cross sections. The derivation is based on the entropy principle and Grad's approximation for the off-equilibrium distribution function. The obtained formula relates the shear viscosity coefficient η to the total cross sections σ22 and σ23 of the elastic resp. inelastic processes. The values of shear viscosity extracted using the Green-Kubo formula from kinetic transport calculations are shown to be in excellent agreement with the analytic results which demonstrates the validity of the derived formula.

  11. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  12. Gamma decay of pygmy states in 90,94Zr from inelastic scattering of light ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Tamii, A.; Blasi, N.; Camera, F.; Wieland, O.; Aoi, N.; Balabanski, D.; Bassauer, S.; Brown, A. S.; Carpenter, M. P.; Carroll, J. J.; Ciemala, M.; Czeszumska, A.; Davies, P. J.; Donaldson, L.; Fang, Y.; Fujita, H.; Gey, G.; Hoang, T. H.; Ichige, N.; Ideguchi, E.; Inoue, A.; Isaak, J.; Iwamoto, C.; Jenkins, D. G.; Jin, O. H.; Klaus, T.; Kobayashi, N.; Koike, T.; Krzysiek, M.; Raju, M. Kumar; Liu, M.; Maj, A.; Montanari, D.; Morris, L.; Noji, S.; Pickstone, S. G.; Savran, D.; Spieker, M.; Steinhilber, G.; Sullivan, C.; Wasilewska, B.; Werner, V.; Yamamoto, T.; Yamamoto, Y.; Zhou, X.; Zhu, S.

    2018-05-01

    We performed experiments to study the low-energy part of the E1 response (Pygmy Dipole Resonance) in 90,94Zr nuclei, by measuring the (p,p’γ) and (α,α’γ) inelastic scattering reactions at energies Ebeam,p = 80 MeV and Ebeam,α = 130 MeV respectively. The inelastically scattered particles were measured by employing the high-resolution spectrometer Grand Raiden. The gamma-rays emitted following the de-excitation of the Zr target nuclei were detected using both the clover type HPGe detectors of the CAGRA array and the large volume LaBr3:Ce scintillation detectors from the HECTOR+ array. Some preliminary results are presented here.

  13. Asymptotic quantum inelastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2007-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.

  14. Inelastic Boosted Dark Matter at direct detection experiments

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  15. Accessing the nucleon transverse structure in inclusive deep inelastic scattering

    DOE PAGES

    Accardi, Alberto; Bacchetta, Alessandro

    2017-09-06

    Here, we revisit the standard analysis of inclusive Deep Inelastic Scattering off nucleons taking into account the fact that on-shell quarks cannot be present in the final state, but they rather decay into hadrons - a process that can be described in terms of suitable "jet" correlators. As a consequence, a spin-flip term associated with the invariant mass of the produced hadrons is generated non perturbatively and couples to the target's transversity distribution function. In inclusive cross sections, this provides an hitherto neglected and large contribution to the twist-3 part of the g 2 structure function, that can explain themore » discrepancy between recent calculations and fits of this quantity. It also provides an extension of the Burkhardt-Cottingham sum rule, putting constraints on the small-x behavior of the transversity function, as well as an extension of the Efremov-Teryaev-Leader sum rule, suggesting a novel way to measure the tensor charge of the proton.« less

  16. Important role of projectile excitation in 16O+60Ni and 16O+27Al scattering at intermediate energies

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Cappuzzello, F.; Lubian, J.; Cavallaro, M.; Linares, R.; Carbone, D.; Agodi, C.; Foti, A.; Tudisco, S.; Wang, J. S.; Oliveira, J. R. B.; Hussein, M. S.

    2018-05-01

    The elastic scattering angular distribution of the 16O+60Ni system at 260 MeV was measured in the range of the Rutherford cross section down to seven orders of magnitude. The cross sections of the lowest 2+ and 3- inelastic states of the target were also measured over several orders of magnitude. Coupled-channel (CC) calculations were performed and are shown to be compatible with the whole set of data only when including the excitation of the projectile and when the deformations of the imaginary part of the nuclear optical potential are taken into account. Similar results were obtained when the procedure is applied to the existing data on 16O+27Al elastic and inelastic scattering at 100 and 280 MeV. An analysis in terms of dynamical polarization potentials (DPP) indicates the major role of coupled-channel effects in the overlapping surface region of the colliding nuclei.

  17. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    DOE PAGES

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less

  18. Determination of Hund's coupling in 5 d oxides using resonant inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bo; Clancy, J. P.; Cook, A. M.

    2017-06-01

    We report resonant inelastic x-ray scattering (RIXS) measurements on ordered double-perovskite samples containing Re5+ and Ir5+ with 5d(2) and 5d(4) electronic configurations, respectively. In particular, the observedRIXS spectra of Ba2YReO6 and Sr2MIrO6 (M = Y, Gd) show sharp intra-t(2g) transitions, which can be quantitatively understood using a minimal "atomic" Hamiltonian incorporating spin-orbit coupling. and Hund's coupling J(H). Our analysis yields lambda = 0.38(2) eV with J(H) = 0.26(2) eV for Re5+ and lambda = 0.42(2) eV with J(H) = 0.25(4) eV for Ir5+. Our results provide sharp estimates for Hund's coupling in 5d oxides and suggest that it should bemore » treated on equal footing with spin-orbit interaction in multiorbital 5d transition-metal compounds.« less

  19. The application of inelastic neutron scattering to explore the significance of a magnetic transition in an iron based Fischer-Tropsch catalyst that is active for the hydrogenation of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warringham, Robbie; McFarlane, Andrew R.; Lennon, David, E-mail: David.Lennon@Glasgow.ac.uk

    2015-11-07

    An iron based Fischer-Tropsch synthesis catalyst is evaluated using CO hydrogenation at ambient pressure as a test reaction and is characterised by a combination of inelastic neutron scattering (INS), powder X-ray diffraction, temperature-programmed oxidation, Raman scattering, and transmission electron microscopy. The INS spectrum of the as-prepared bulk iron oxide pre-catalyst (hematite, α-Fe{sub 2}O{sub 3}) is distinguished by a relatively intense band at 810 cm{sup −1}, which has previously been tentatively assigned as a magnon (spinon) feature. An analysis of the neutron scattering intensity of this band as a function of momentum transfer unambiguously confirms this assignment. Post-reaction, the spinon featuremore » disappears and the INS spectrum is characterised by the presence of a hydrocarbonaceous overlayer. A role for the application of INS in magnetic characterisation of iron based FTS catalysts is briefly considered.« less

  20. A new method to derive electronegativity from resonant inelastic x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carniato, S.; Journel, L.; Guillemin, R.

    2012-10-14

    Electronegativity is a well-known property of atoms and substituent groups. Because there is no direct way to measure it, establishing a useful scale for electronegativity often entails correlating it to another chemical parameter; a wide variety of methods have been proposed over the past 80 years to do just that. This work reports a new approach that connects electronegativity to a spectroscopic parameter derived from resonant inelastic x-ray scattering. The new method is demonstrated using a series of chlorine-containing compounds, focusing on the Cl 2p{sup -1}LUMO{sup 1} electronic states reached after Cl 1s{yields} LUMO core excitation and subsequent KL radiativemore » decay. Based on an electron-density analysis of the LUMOs, the relative weights of the Cl 2p{sub z} atomic orbital contributing to the Cl 2p{sub 3/2} molecular spin-orbit components are shown to yield a linear electronegativity scale consistent with previous approaches.« less

  1. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  2. Nonlinear damage analysis: Postulate and evaluation

    NASA Technical Reports Server (NTRS)

    Leis, B. N.; Forte, T. P.

    1983-01-01

    The objective of this program is to assess the viability of a damage postulate which asserts that the fatigue resistance curve of a metal is history dependent due to inelastic action. The study focusses on OFE copper because this simple model material accentuates the inelastic action central to the damage postulate. Data relevant to damage evolution and crack initiation are developed via a study of surface topography. The effects of surface layer residual stresses are explored via comparative testing as were the effects in initial prestraining. The results of the study very clearly show the deformation history dependence of the fatigue resistance of OFE copper. Furthermore the concept of deformation history dependence is shown to qualitatively explain the fatigue resistance of all histories considered. Likewise quantitative predictions for block cycle histories are found to accurately track the observed results. In this respect the assertion that damage per cycle for a given level of the damage parameter is deformation history dependent appears to be physically justified.

  3. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  4. A measurement of multi-jet rates in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-03-01

    Multi-jet production is observed in deep-inelastic electron proton scattering with the H1 detector at HERA. Jet rates for momentum transfers squared up to 500 GeV2 are determined using the JADE jet clustering algorithm. They are found to be in agreement with predictions from QCD based models.

  5. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  6. Mechanical Energy Changes in Perfectly Inelastic Collisions

    ERIC Educational Resources Information Center

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  7. Elastic and Inelastic Collisions

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    There have been two articles in this journal that described a pair of collision carts used to demonstrate vividly the difference between elastic and inelastic collisions. One cart had a series of washers that were mounted rigidly on a rigid wooden framework, the other had washers mounted on rubber bands stretched across a framework. The rigidly…

  8. Deep inelastic scattering events with a large rapidity gap at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heaterington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; west, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration

    1994-11-01

    Evidence is presented using data taken with the H1 detector at HERA for a class of deep inelastic electron-proton scattering (DIS) events (5 < Q2 < 120 GeV 2) at low Bjorken- x (10 -4 < x < 10 -2) which have almost no hadronic energy flow in a large interval of pseudo-rapidity around the proton remnant direction and which cannot be attributed to our present understanding of DIS and fluctuations in final state hadronic fragmentation. From an integrated luminosity of 273 nb -1, 734 events, that is about 5% of the total DIS sample, have no energy deposition greater than 400 MeV forward of laboratory pseudo-rapidity ηmax = 1.8 up to the largest measurable pseudo-rapidity of about 3.65. Evidence that about 10% of observed rapidity gap events are exclusive vector meson electroproduction is presented. Good descriptions of the data are obtained using models based either on a vector meson dominance like picture, which includes a large fraction of inelastic virtual photon dissociation, or on deep inelastic electron-pomeron scattering in which the partonic sub-structure of the latter is resolved.

  9. Measurement of the Inelastic Proton-Proton Cross Section at √{s }=13 TeV with the ATLAS Detector at the LHC

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2016-10-01

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 μb -1 of p p collisions at a center-of-mass energy √{s } of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 <|η |<3.86 ) of the detector. A cross section of 68.1 ±1.4 mb is measured in the fiducial region ξ =MX2/s >10-6, where MX is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with MX>13 GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 ±2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  10. Probing mesoscopic crystals with electrons: One-step simultaneous inelastic and elastic scattering theory

    NASA Astrophysics Data System (ADS)

    Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.

    2017-12-01

    Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.

  11. Fracture and damage; Winter Annual Meeting of the American Society of Mechanical Engineers, Anaheim, CA, Nov. 8-13, 1992

    NASA Technical Reports Server (NTRS)

    Nagar, Arvind (Editor)

    1992-01-01

    The latest developments in the area of fracture and damage at high temperatures are discussed, in particular: modeling; analysis and experimental techniques for interface damage in composites including the effects of residual stresses and temperatures; and crack growth, inelastic deformation and fracture parameters for isotropic materials. Also included are damage modeling and experiments at elevated temperatures.

  12. Self-Organizing Maps and Parton Distribution Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Holcomb, Simonetta Liuti, D. Z. Perry

    2011-05-01

    We present a new method to extract parton distribution functions from high energy experimental data based on a specific type of neural networks, the Self-Organizing Maps. We illustrate the features of our new procedure that are particularly useful for an anaysis directed at extracting generalized parton distributions from data. We show quantitative results of our initial analysis of the parton distribution functions from inclusive deep inelastic scattering.

  13. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    DOE PAGES

    Zaliznyak, Igor A.; Savici, Andrei T.; Ovidiu Garlea, V.; ...

    2017-06-20

    Here, we describe some of the first polarized neutron scattering measurements performed at HYSPEC [1-4] spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. Furthermore, we discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.

  14. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    PubMed

    Mani, Arjun; Benjamin, Colin

    2016-04-13

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible--the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  15. Local vibrations in disordered solids studied via single-molecule spectroscopy: Comparison with neutron, nuclear, Raman scattering, and photon echo data

    NASA Astrophysics Data System (ADS)

    Vainer, Yu. G.; Naumov, A. V.; Kador, L.

    2008-06-01

    The energy spectrum of low-frequency vibrational modes (LFMs) in three disordered organic solids—amorphous polyisobutylene (PIB), toluene and deuterated toluene glasses, weakly doped with fluorescent chromophore molecules of tetra-tert-butylterrylene (TBT) has been measured via single-molecule (SM) spectroscopy. Analysis of the individual temperature dependences of linewidths of single TBT molecules allowed us to determine the values of the vibrational mode frequencies and the SM-LFM coupling constants for vibrations in the local environment of the molecules. The measured LFM spectra were compared with the “Boson peak” as measured in pure PIB by inelastic neutron scattering, in pure toluene glass by low-frequency Raman scattering, in doped toluene glass by nuclear inelastic scattering, and with photon echo data. The comparative analysis revealed close agreement between the spectra of the local vibrations as measured in the present study and the literature data of the Boson peak in PIB and toluene. The analysis has also the important result that weak doping of the disordered matrices with nonpolar probe molecules whose chemical composition is similar to that of the matrix molecules does not influence the observed vibrational dynamics markedly. The experimental data displaying temporal stability on the time scale of a few hours of vibrational excitation parameters in local surroundings was obtained for the first time both for polymer and molecular glass.

  16. Three-Dimensional parton structure of light nuclei

    NASA Astrophysics Data System (ADS)

    Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2018-03-01

    Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.

  17. Analysis of a thin-walled pressurized torus in contact with a plane. [aircraft tires study

    NASA Technical Reports Server (NTRS)

    Mack, M. J., Jr.; Gassman, P. M.; Baumgarten, J. R.

    1983-01-01

    Finite element analysis is applied to study the large deflection of a standing torus loaded by a plane. The internally pressurized thin-walled structure is found to have an elliptical footprint area. Considerable bulge occurs in the sidewall in the region of the load plane. Stress distributions throughout the torus are shown for various load levels and for various modeling strategies at a given load level. In large load ranges finite element calculations show compressive circumferential stress and negative curvature in the footprint region. Results are compared with inelastic wall analysis.

  18. Extraction of hadron interactions above inelastic threshold in lattice QCD.

    PubMed

    Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu-Bethe-Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed.

  19. Heterodyne x-ray diffuse scattering from coherent phonons

    DOE PAGES

    Kozina, M.; Trigo, M.; Chollet, M.; ...

    2017-08-10

    Here in this paper, we report Fourier-transform inelastic x-ray scattering measurements of photoexcited GaAs with embedded ErAs nanoparticles. We observe temporal oscillations in the x-ray scattering intensity, which we attribute to inelastic scattering from coherent acoustic phonons. Unlike in thermal equilibrium, where inelastic x-ray scattering is proportional to the phonon occupation, we show that the scattering is proportional to the phonon amplitude for coherent states. The wavevectors of the observed phonons extend beyond the excitation wavevector. The nanoparticles break the discrete translational symmetry of the lattice, enabling the generation of large wavevector coherent phonons. Elastic scattering of x-ray photons frommore » the nanoparticles provides a reference for heterodyne mixing, yielding signals proportional to the phonon amplitude.« less

  20. Experimental studies of fundamental aspects of Auger emission process in Cu(100) and Ag(100)

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad Vivek

    Auger spectra at the low energies are accompanied by large contributions unrelated to the Auger transition. The Auger unrelated contributions can obscure the Auger peak and affect the quantitative analysis of the materials under investigation. In this dissertation we present a methodology to measure experimentally the Auger unrelated contributions and eliminate it from the Auger spectrum for obtaining an Auger spectrum inherent to the Auger transition. We used Auger Photoelectron Coincidence Spectroscopy (APECS) to obtain the Auger spectrum. APECS measures the Auger spectrum in coincidence with the core energy level and thus discriminating the contributions arising from secondary electrons and electrons arising from the non-Auger transition. Although APECS removes most of the Auger unrelated contributions, it cannot distinguish the contribution which is measured in coincidence with the inelastically scattered valence band electrons emitted at the core energy. To measure this inelastically scattered valence band contribution we did a series of measurements on Ag(100) to study NVV Auger spectrum in coincidence with 4p energy level and Cu(100) to study MVV Auger spectrum in coincidence with 3p energy level. The coincidence detection of the core and Auger-valence electrons was achieved by the two cylindrical mirror analyzers (CMAs). One CMA was fixed over a range of energies in between VB and core energy level while other CMA scanned corresponding low energy electrons from 0 to70eV. The spectrums measured were fit to a parameterized function which was extrapolated to get an estimate of inelastically scattered valence band electrons. The estimated contribution was subtracted for the Ag and Cu APECS spectrum to obtain a spectrum solely due to Auger transition with inelastically scattered Auger electron and multi Auger decay contributions associated with the transition. In the latter part of this dissertation, we propose a theoretical model based on the spectral intensity contributions arising from elastically scattered electrons from the atomic layers and relate it with the data obtained from our experiments to estimate the Auger related contribution.

  1. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  2. Calibration of a Land Subsidence Model Using InSAR Data via the Ensemble Kalman Filter.

    PubMed

    Li, Liangping; Zhang, Meijing; Katzenstein, Kurt

    2017-11-01

    The application of interferometric synthetic aperture radar (InSAR) has been increasingly used to improve capabilities to model land subsidence in hydrogeologic studies. A number of investigations over the last decade show how spatially detailed time-lapse images of ground displacements could be utilized to advance our understanding for better predictions. In this work, we use simulated land subsidences as observed measurements, mimicking InSAR data to inversely infer inelastic specific storage in a stochastic framework. The inelastic specific storage is assumed as a random variable and modeled using a geostatistical method such that the detailed variations in space could be represented and also that the uncertainties of both characterization of specific storage and prediction of land subsidence can be assessed. The ensemble Kalman filter (EnKF), a real-time data assimilation algorithm, is used to inversely calibrate a land subsidence model by matching simulated subsidences with InSAR data. The performance of the EnKF is demonstrated in a synthetic example in which simulated surface deformations using a reference field are assumed as InSAR data for inverse modeling. The results indicate: (1) the EnKF can be used successfully to calibrate a land subsidence model with InSAR data; the estimation of inelastic specific storage is improved, and uncertainty of prediction is reduced, when all the data are accounted for; and (2) if the same ensemble is used to estimate Kalman gain, the analysis errors could cause filter divergence; thus, it is essential to include localization in the EnKF for InSAR data assimilation. © 2017, National Ground Water Association.

  3. Novel type of neutron polarization analysis using the multianalyzer-equipment of the three-axes spectrometer PUMA

    NASA Astrophysics Data System (ADS)

    Schwesig, Steffen; Maity, Avishek; Sobolev, Oleg; Ziegler, Fabian; Eckold, Götz

    2018-01-01

    The combination of polarization analysis and multianalyzer system available at the three axes spectrometer PUMA@FRM II allows the simultaneous determination of both spin states of the scattered neutrons and the absolute value of the polarization. The present paper describes the technical details along with the basic formalism used for the precise calibration. Moreover, the performance of this method is illustrated by several test experiments including first polarized inelastic studies of the magnetic excitations of CuO in the multiferroic and the uniaxial antiferromagnetic phases.

  4. Verification of Experimental Techniques for Flow Surface Determination

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.; Lerch, Bradley A.; Ellis, John R.; Robinson, David N.

    1996-01-01

    The concept of a yield surface is central to the mathematical formulation of a classical plasticity theory. However, at elevated temperatures, material response can be highly time-dependent, which is beyond the realm of classical plasticity. Viscoplastic theories have been developed for just such conditions. In viscoplastic theories, the flow law is given in terms of inelastic strain rate rather than the inelastic strain increment used in time-independent plasticity. Thus, surfaces of constant inelastic strain rate or flow surfaces are to viscoplastic theories what yield surfaces are to classical plasticity. The purpose of the work reported herein was to validate experimental procedures for determining flow surfaces at elevated temperatures. Since experimental procedures for determining yield surfaces in axial/torsional stress space are well established, they were employed -- except inelastic strain rates were used rather than total inelastic strains. In yield-surface determinations, the use of small-offset definitions of yield minimizes the change of material state and allows multiple loadings to be applied to a single specimen. The key to the experiments reported here was precise, decoupled measurement of axial and torsional strain. With this requirement in mind, the performance of a high-temperature multi-axial extensometer was evaluated by comparing its results with strain gauge results at room temperature. Both the extensometer and strain gauges gave nearly identical yield surfaces (both initial and subsequent) for type 316 stainless steel (316 SS). The extensometer also successfully determined flow surfaces for 316 SS at 650 C. Furthermore, to judge the applicability of the technique for composite materials, yield surfaces were determined for unidirectional tungsten/Kanthal (Fe-Cr-Al).

  5. Mixed quantum/classical theory for inelastic scattering of asymmetric-top-rotor + atom in the body-fixed reference frame and application to the H₂O + He system.

    PubMed

    Semenov, Alexander; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-09-21

    The mixed quantum/classical theory (MQCT) for inelastic molecule-atom scattering developed recently [A. Semenov and D. Babikov, J. Chem. Phys. 139, 174108 (2013)] is extended to treat a general case of an asymmetric-top-rotor molecule in the body-fixed reference frame. This complements a similar theory formulated in the space-fixed reference-frame [M. Ivanov, M.-L. Dubernet, and D. Babikov, J. Chem. Phys. 140, 134301 (2014)]. Here, the goal was to develop an approximate computationally affordable treatment of the rotationally inelastic scattering and apply it to H2O + He. We found that MQCT is somewhat less accurate at lower scattering energies. For example, below E = 1000 cm(-1) the typical errors in the values of inelastic scattering cross sections are on the order of 10%. However, at higher scattering energies MQCT method appears to be rather accurate. Thus, at scattering energies above 2000 cm(-1) the errors are consistently in the range of 1%-2%, which is basically our convergence criterion with respect to the number of trajectories. At these conditions our MQCT method remains computationally affordable. We found that computational cost of the fully-coupled MQCT calculations scales as n(2), where n is the number of channels. This is more favorable than the full-quantum inelastic scattering calculations that scale as n(3). Our conclusion is that for complex systems (heavy collision partners with many internal states) and at higher scattering energies MQCT may offer significant computational advantages.

  6. High-Resolution Mapping of Yield Curve Shape and Evolution for Porous Rock: The Effect of Inelastic Compaction on Porous Bassanite

    NASA Astrophysics Data System (ADS)

    Bedford, John D.; Faulkner, Daniel R.; Leclère, Henri; Wheeler, John

    2018-02-01

    Porous rock deformation has important implications for fluid flow in a range of crustal settings as compaction can increase fluid pressure and alter permeability. The onset of inelastic strain for porous materials is typically defined by a yield curve plotted in differential stress (Q) versus effective mean stress (P) space. Empirical studies have shown that these curves are broadly elliptical in shape. Here conventional triaxial experiments are first performed to document (a) the yield curve of porous bassanite (porosity ≈ 27-28%), a material formed from the dehydration of gypsum, and (b) the postyield behavior, assuming that P and Q track along the yield surface as inelastic deformation accumulates. The data reveal that after initial yield, the yield surface cannot be perfectly elliptical and must evolve significantly as inelastic strain is accumulated. To investigate this further, a novel stress-probing methodology is developed to map precisely the yield curve shape and subsequent evolution for a single sample. These measurements confirm that the high-pressure side of the curve is partly composed of a near-vertical limb. Yield curve evolution is shown to be dependent on the nature of the loading path. Bassanite compacted under differential stress develops a heterogeneous microstructure and has a yield curve with a peak that is almost double that of an equal porosity sample that has been compacted hydrostatically. The dramatic effect of different loading histories on the strength of porous bassanite highlights the importance of understanding the associated microstructural controls on the nature of inelastic deformation in porous rock.

  7. Unified description of H-atom-induced chemicurrents and inelastic scattering.

    PubMed

    Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver

    2018-01-23

    The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.

  8. Monte Carlo solution of Boltzmann equation for a simple model of highly nonequilibrium diatomic gases: Translational rotational energy relaxation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.

    1978-01-01

    The semiclassical transition probability was incorporated in the simulation for energy exchange between rotational and translational energy. The results provide details on the fundamental mechanisms of gas kinetics where analytical methods were impractical. The validity of the local Maxwellian assumption and relaxation time, rotational-translational energy transition, and a velocity analysis of the inelastic collision were discussed in detail.

  9. Nonlinear Phase Field Theory for Fracture and Twinning with Analysis of Simple Shear

    DTIC Science & Technology

    2015-09-01

    elasticity; crystal; shear deformation 1. Introduction Cleavage fracture and deformation twinning are two fundamental inelastic deformation mechanisms that...stress [2,3]. Both of these anisotropic mechanisms involve deformation on specific planes (the cleavage plane for fracture or the habit plane for...be the first phase field theory accounting for both fracture and deformation twinning wherein each mechanism is repre- sented by a distinct-order

  10. Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya

    2015-06-01

    The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.

  11. Final-state interactions in semi-inclusive deep inelastic scattering off the Deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wim Cosyn, Misak Sargsian

    2011-07-01

    Semi-inclusive deep inelastic scattering off the Deuteron with production of a slow nucleon in recoil kinematics is studied in the virtual nucleon approximation, in which the final state interaction (FSI) is calculated within general eikonal approximation. The cross section is derived in a factorized approach, with a factor describing the virtual photon interaction with the off-shell nucleon and a distorted spectral function accounting for the final-state interactions. One of the main goals of the study is to understand how much the general features of the diffractive high energy soft rescattering accounts for the observed features of FSI in deep inelasticmore » scattering (DIS). Comparison with the Jefferson Lab data shows good agreement in the covered range of kinematics. Most importantly, our calculation correctly reproduces the rise of the FSI in the forward direction of the slow nucleon production angle. By fitting our calculation to the data we extracted the W and Q{sup 2} dependences of the total cross section and slope factor of the interaction of DIS products, X, off the spectator nucleon. This analysis shows the XN scattering cross section rising with W and decreasing with an increase of Q{sup 2}. Finally, our analysis points at a largely suppressed off-shell part of the rescattering amplitude.« less

  12. Bilinearization of the generalized coupled nonlinear Schrödinger equation with variable coefficients and gain and dark-bright pair soliton solutions.

    PubMed

    Chakraborty, Sushmita; Nandy, Sudipta; Barthakur, Abhijit

    2015-02-01

    We investigate coupled nonlinear Schrödinger equations (NLSEs) with variable coefficients and gain. The coupled NLSE is a model equation for optical soliton propagation and their interaction in a multimode fiber medium or in a fiber array. By using Hirota's bilinear method, we obtain the bright-bright, dark-bright combinations of a one-soliton solution (1SS) and two-soliton solutions (2SS) for an n-coupled NLSE with variable coefficients and gain. Crucial properties of two-soliton (dark-bright pair) interactions, such as elastic and inelastic interactions and the dynamics of soliton bound states, are studied using asymptotic analysis and graphical analysis. We show that a bright 2-soliton, in addition to elastic interactions, also exhibits multiple inelastic interactions. A dark 2-soliton, on the other hand, exhibits only elastic interactions. We also observe a breatherlike structure of a bright 2-soliton, a feature that become prominent with gain and disappears as the amplitude acquires a minimum value, and after that the solitons remain parallel. The dark 2-soliton, however, remains parallel irrespective of the gain. The results found by us might be useful for applications in soliton control, a fiber amplifier, all optical switching, and optical computing.

  13. Separation of Pygmy Dipole and M1 Resonances in Zr90 by a High-Resolution Inelastic Proton Scattering Near 0°

    NASA Astrophysics Data System (ADS)

    Iwamoto, C.; Utsunomiya, H.; Tamii, A.; Akimune, H.; Nakada, H.; Shima, T.; Yamagata, T.; Kawabata, T.; Fujita, Y.; Matsubara, H.; Shimbara, Y.; Nagashima, M.; Suzuki, T.; Fujita, H.; Sakuda, M.; Mori, T.; Izumi, T.; Okamoto, A.; Kondo, T.; Bilgier, B.; Kozer, H. C.; Lui, Y.-W.; Hatanaka, K.

    2012-06-01

    A high-resolution measurement of inelastic proton scattering off Zr90 near 0° was performed at 295 MeV with a focus on a pronounced strength previously reported in the low-energy tail of giant dipole resonance. A forest of fine structure was observed in the excitation energy region 7-12 MeV. A multipole decomposition analysis of the angular distribution for the forest was carried out using the ECIS95 distorted-wave Born approximation code with the Hartree-Fock plus random-phase approximation model of E1 and M1 transition densities and inclusion of E1 Coulomb excitation. The analysis separated pygmy dipole and M1 resonances in the forest at EPDR=9.15±0.18MeV with ΓPDR=2.91±0.64MeV and at EM1=9.53±0.06MeV with ΓM1=2.70±0.17MeV in the Lorentzian function, respectively. The B(E1)↑ value for pygmy dipole resonance over 7-11 MeV is 0.75±0.08e2fm2, which corresponds to 2.1±0.2% of the Thomas-Reiche-Kuhn sum rule.

  14. Extraction of hadron interactions above inelastic threshold in lattice QCD

    PubMed Central

    AOKI, Sinya; ISHII, Noriyoshi; DOI, Takumi; HATSUDA, Tetsuo; IKEDA, Yoichi; INOUE, Takashi; MURANO, Keiko; NEMURA, Hidekatsu; SASAKI, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu–Bethe–Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed. PMID:21986314

  15. [12th International workshop on Inelastic Ion-Surface Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabalais, J.W.; Nordlander, P.

    1999-10-15

    The twelfth international workshop on inelastic ion surface collisions was held at the Bahia Mar Resort and Conference Center on South Padre Island, Texas (USA) from January 24-29, 1999. The workshop brought together most of the leading researchers from around the world to focus on both the theoretical and experimental aspects of particle - surface interactions and related topics.

  16. Measurement of the Inelastic Proton-Proton Cross Section at sqrt[s]=13  TeV with the ATLAS Detector at the LHC.

    PubMed

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Alvarez Gonzalez, B; Álvarez Piqueras, D; Alviggi, M G; Amadio, B T; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Aperio Bella, L; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barranco Navarro, L; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethani, A; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; Bilbao De Mendizabal, J; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bisanz, T; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Bossio Sola, J D; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Breaden Madden, W D; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Cabrera Urbán, S; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Calvente Lopez, S; Calvet, D; Calvet, S; Calvet, T P; Camacho Toro, R; Camarda, S; Camarri, P; Cameron, D; Caminal Armadans, R; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Castillo Gimenez, V; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerda Alberich, L; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Chavez Barajas, C A; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudder, A Chr; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Faucci Giannelli, M; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Fernandez Martinez, P; Fernandez Perez, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Garay Walls, F M; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gascon Bravo, A; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, G; Gonella, L; Gongadze, A; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanisch, S; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Herget, V; Hernández Jiménez, Y; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Iturbe Ponce, J M; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Jimenez Pena, J; Jin, S; Jinaru, A; Jinnouchi, O; Jivan, H; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Juste Rozas, A; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kentaro, K; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koehler, N M; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; La Rosa, A; La Rosa Navarro, J L; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Lasagni Manghi, F; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Le Dortz, O; Le Guirriec, E; Le Quilleuc, E P; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, C; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lopez Solis, A; Lorenz, J; Lorenzo Martinez, N; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Machado Miguens, J; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Manhaes de Andrade Filho, L; Manjarres Ramos, J; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, M; Martinez Outschoorn, V I; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Mc Fadden, N C; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Mellado Garcia, B R; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer Zu Theenhausen, H; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Munoz Sanchez, F J; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Naranjo Garcia, R F; Narayan, R; Narrias Villar, D I; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nguyen Manh, T; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Oleiro Seabra, L F; Olivares Pino, S A; Oliveira Damazio, D; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Pacheco Rodriguez, L; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Panduro Vazquez, J G; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Perez Codina, E; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pozo Astigarraga, M E; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Rodriguez Perez, A; Rodriguez Rodriguez, D; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Romano Saez, S M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Salazar Loyola, J E; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, L; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Solans Sanchez, C A; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; St Denis, R D; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Tapia Araya, S; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Ten Kate, H; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Ticse Torres, R E; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Valdes Santurio, E; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zwalinski, L

    2016-10-28

    This Letter presents a measurement of the inelastic proton-proton cross section using 60  μb^{-1} of pp collisions at a center-of-mass energy sqrt[s] of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07<|η|<3.86) of the detector. A cross section of 68.1±1.4  mb is measured in the fiducial region ξ=M_{X}^{2}/s>10^{-6}, where M_{X} is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M_{X}>13  GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9  mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.

  17. Measurement of the Inelastic Proton-Proton Cross Section at s = 13 TeV with the ATLAS Detector at the LHC

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-10-26

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 μb-1 of pp collisions at a center-of-mass energy s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region (2.07 < |η| < 3.86) of the detector. A cross section of 68.1±1.4 mb is measured in the fiducial region ξ=MX2/s > 10-6, where MX is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractivemore » events this corresponds to cases where at least one proton dissociates to a system with MX > 13 GeV. The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1±2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.« less

  18. Insights into Solid-State Electron Transport through Proteins from Inelastic Tunneling Spectroscopy: The Case of Azurin.

    PubMed

    Yu, Xi; Lovrincic, Robert; Sepunaru, Lior; Li, Wenjie; Vilan, Ayelet; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2015-10-27

    Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.

  19. Peculiar atomic dynamics in liquid GeTe with asymmetrical bonding: Observation by inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Inui, M.; Koura, A.; Kajihara, Y.; Hosokawa, S.; Chiba, A.; Kimura, K.; Shimojo, F.; Tsutsui, S.; Baron, A. Q. R.

    2018-05-01

    Collective dynamics in liquid GeTe was investigated by inelastic x-ray scattering at 2 ≤Q ≤31 nm-1 . The dynamic structure factor shows clear inelastic excitations. The excitation energies at low Q disperse with increasing Q , consistent with the behavior of a longitudinal-acoustic excitation. The dispersion curve has a flat-topped region around the pseudo-Brillouin-zone boundary, similar to what is observed in liquid Bi [Inui et al., Phys. Rev. B 92, 054206 (2015), 10.1103/PhysRevB.92.054206]. The dynamic structure factor shows a low-frequency excitation, and its coupling with the longitudinal-acoustic mode plays an important role for a flat-topped dispersion. From these results, it is inferred that atomic dynamics in liquid GeTe is strongly affected by a Peierls distortion similar to liquid Bi. By comparing the momentum transfer dependence of the excitation energy and quasielastic linewidth to partial structure factors obtained by our own ab initio molecular dynamics simulation for liquid GeTe, the quasielastic and inelastic components were found to be correlated with Te-Te and Ge-(Ge,Te) partial structure factors, respectively.

  20. Neutron Detection Efficiency Optimization Studies of the Neutron Polarimeter for the C-GEN Electric Form Factor at Jefferson National Laboratory

    NASA Astrophysics Data System (ADS)

    Adzima, Ashley; Tireman, William; C-Gen Collaboration

    The electric form factor is an important quantity to further the understanding of the atom and its constituent parts. The C-GEN collaboration at Jefferson National Laboratory plans to measure this fundamental quantity using recoil polarimetry. An efficient neutron polarimeter is essential for the collection of precise data and involves maximizing the ratio of elastic to inelastic events identified. The determination of the elastic to inelastic ratio of neutron events was simulated using GEANT-4 on 5 cm, 10 cm, and 15 cm thick detectors. Specific requirements were set in place by C-GEN to determine what marks an elastic event. Plots of neutron scattering events versus detector thickness were analyzed, and the ratio of elastic to inelastic events was extracted for each section per vertical slice, as well as an average ratio. The average ratio of elastic to inelastic events were 0.2206, 0.1706, and 0.1507 for the 5 cm, 10 cm, and 15 cm detectors, respectfully. The impact of these ratios on the statistics and costs of altering the polarimeter's original 10 cm detector design will be further discussed. U.S. Department of Education - TRIO McNair Scholars Program.

  1. Rotationally inelastic scattering of ND3 with H2 as a probe of the intermolecular potential energy surface

    NASA Astrophysics Data System (ADS)

    Tkáč, Ondřej; Saha, Ashim K.; Loreau, Jérôme; Ma, Qianli; Dagdigian, Paul J.; Parker, David H.; van der Avoird, Ad; Orr-Ewing, Andrew J.

    2015-12-01

    Differential cross sections (DCSs) are reported for rotationally inelastic scattering of ND3 with H2, measured using a crossed molecular beam apparatus with velocity map imaging (VMI). ND3 molecules were quantum-state selected in the ground electronic and vibrational levels and, optionally, in the j±k = 11- rotation-inversion level prior to collisions. Inelastic scattering of state-selected ND3 with H2 was measured at the mean collision energy of 580 cm-1 by resonance-enhanced multiphoton ionisation spectroscopy and VMI of ND3 in selected single final j'±k' levels. Comparison of experimental DCSs with close-coupling quantum-mechanical scattering calculations serves as a test of a recently reported ab initio potential energy surface. Calculated integral cross sections reveal the propensities for scattering into various final j'±k' levels of ND3 and differences between scattering by ortho and para H2. Integral and differential cross sections are also computed at a mean collision energy of 430 cm-1 and compared to our recent results for inelastic scattering of state-selected ND3 with He.

  2. Measurement of the Inelastic Proton-Proton Cross Section at s = 13 TeV with the ATLAS Detector at the LHC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaboud, M.; Aad, G.; Abbott, B.

    2016-10-26

    This Letter presents a measurement of the inelastic proton-proton cross section using 60 μ b -1 of p p collisions at a center-of-mass energy √ s of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using rings of plastic scintillators in the forward region ( 2.07 < | η | < 3.86 ) of the detector. A cross section of 68.1 ± 1.4 mb is measured in the fiducial region ξ = Mmore » $$2\\atop{X}$$ / s > 10 - 6 , where M X is the larger invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. In this ξ range the scintillators are highly efficient. For diffractive events this corresponds to cases where at least one proton dissociates to a system with M X > 13 GeV . The measured cross section is compared with a range of theoretical predictions. When extrapolated to the full phase space, a cross section of 78.1 ± 2.9 mb is measured, consistent with the inelastic cross section increasing with center-of-mass energy.« less

  3. Hadron production in diffractive deep-inelastic scattering

    NASA Astrophysics Data System (ADS)

    H1 Collaboration; Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arkadov, V.; Arndt, C.; Ayyaz, I.; Babaev, A.; Bähr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Bassler, U.; Bate, P.; Beck, M.; Beglarian, A.; Behrend, H.-J.; Beier, C.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Borras, K.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brown, D. P.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Calvet, D.; Campbell, A. J.; Carli, T.; Chabert, E.; Charlet, M.; Clarke, D.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; de Roeck, A.; de Wolf, E. A.; Delcourt, B.; Diaconu, C.; Dirkmann, M.; Dixon, P.; Dlugosz, W.; Donovan, K. T.; Dowell, J. D.; Droutskoi, A.; Ebert, J.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Enzenberger, M.; Erdmann, M.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haustein, V.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herynek, I.; Hewitt, K.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Isolarş Sever, Ç.; Itterbeck, H.; Jacquet, M.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kander, M.; Kant, D.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küpper, A.; Küster, H.; Kuhlen, M.; Kurča, T.; Laforge, B.; Lahmann, R.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehmann, M.; Lehner, F.; Lemaitre, V.; Levonian, S.; Lindstroem, M.; Lipinski, J.; List, B.; Lobo, G.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Krüger, H.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; McMahon, S. J.; McMahon, T. R.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Mohr, R.; Mohrdieck, S.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nix, O.; Nowak, G.; Nunnemann, T.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Passaggio, S.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pöschl, R.; Pope, G.; Povh, B.; Rabbertz, K.; Reimer, P.; Reisert, B.; Rick, H.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Scheins, J.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwab, B.; Sefkow, F.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Sloan, T.; Smirnov, P.; Smith, M.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Swart, M.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thompson, G.; Thompson, P. D.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; van Esch, P.; van Mechelen, P.; Vazdik, Y.; Villet, G.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wiesand, S.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wittmann, E.; Wobisch, M.; Wollatz, H.; Wünsch, E.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zurnedden, M.

    1998-05-01

    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (xF) variable for charged particles, the squared transverse momentum of charged particles (pT*2), and the mean pT*2 as a function of xF. These distributions are compared with results in the γ*p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q2 by hard gluons.

  4. Proposed measurement of tagged deep inelastic scattering in Hall A of Jefferson lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Rachel; Annand, John; Dutta, Dipangkar

    2017-03-01

    A tagged deep inelastic scattering (TDIS) experiment is planned for Hall A of Jefferson Lab, which will probe the mesonic content of the nucleon directly. Low momentum recoiling (and spectator) protons will be measured in coincidence with electrons scattered in a deep inelastic regime from hydrogen (and deuterium) targets, covering kinematics of 8 < W2 < 18 GeV2, 1 < Q2 < 3 (GeV/c)2 and 0:05 < x < 0:2. The tagging technique will help identify scattering from partons in the meson cloud and provide access to the pion structure function via the Sullivan process. The experiment will yield themore » first TDIS results in the valence regime, for both proton and neutron targets. We present here an overview of the experiment.« less

  5. Inelastic behavior of structural components

    NASA Technical Reports Server (NTRS)

    Hussain, N.; Khozeimeh, K.; Toridis, T. G.

    1980-01-01

    A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.

  6. Observation of two-jet production in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; Del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Arneodo, M.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Chwastowski, J.; Dwuraźny, A.; Eskreys, A.; Jakubowski, Z.; Niziom̵, B.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Bednarek, B.; Borzemski, P.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Gläser, R.; Göttlicher, P.; Haas, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Krüger, J.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nickel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Roldán, J.; Ros, E.; Schneekloth, U.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlenstedt, S.; Barbagli, G.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; De Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerlocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Fürtjes, A.; Kröger, W.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Seidman, A.; Schott, W.; Terron, J.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Meijer Drees, R.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Botje, M.; Dake, A.; Engelen, J.; de Jong, P.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'Dell, V.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Butterworth, J. M.; Bulmahn, J.; Field, G.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; Lockman, W.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchum̵a, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stopczyński, A.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Foudas, C.; Fordham, C.; Loveless, R. J.; Goussiou, A.; Ali, I.; Behrens, B.; Dasu, S.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.; ZEUS Collaboration

    1993-05-01

    A sample of events with two distinct jets, in addition to the proton remnant, has been identified in deep inelastic, neutral current ep interactions recorded at HERA by the ZEUS experiment. For these events, the mass of the hadronic system ranges from 40 to 260 GeV. The salient features of the observed jet production agree with the predictions of higher order QCD.

  7. A Hybrid Model for Multiscale Laser Plasma Simulations with Detailed Collisional Physics

    DTIC Science & Technology

    2017-06-23

    the effects of inelastic collisions on the Multi-Fluid description of plasmas. 15. SUBJECT TERMS Electric propulsion; plasma; collisional...modeling as well as the effects of inelastic collisions on the Multi-Fluid description of plasmas. This work has been recognized in two workshop...encountered during simulation was to define when breakdown occurred during the simulation and correlating the results to the experimentally determined

  8. Measurement of the hadronic final state in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G. A.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; De Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Flower, P. S.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Haries, J.; Hartz, P.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Jabiol, M. A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jöhnsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurça, T.; Kurzhöfer, J.; Kuznik, B.; Lander, R.; London, M. P. J.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levin, D.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Morton, J. M.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newton, D.; Nguyen, H. K.; Niebergall, F.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prosi, R.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Ribarics, P.; Riech, V.; Riedlberger, J.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Ryseck, E.; Sacton, J.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schröder, V.; Schulz, M.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Seman, M.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Steiner, H.; Stella, B.; Stephens, K.; Stier, J.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Thompson, G.; Thompson, R. J.; Tichomirov, I.; Trenkel, C.; Truöl, P.; Tchernyshov, V.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Ząçek, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.; H1 Collaboration

    1993-01-01

    We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission.

  9. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an approximately weak scale cross section. Here, future data from PICO and CRESST can test this speculation, while xenon experiments could verify or refute this upon analyzing their higher energy recoil data.« less

  10. MAC/GMC 4.0 User's Manual: Keywords Manual. Volume 2

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    This document is the second volume in the three volume set of User's Manuals for the Micromechanics Analysis Code with Generalized Method of Cells Version 4.0 (MAC/GMC 4.0). Volume 1 is the Theory Manual, this document is the Keywords Manual, and Volume 3 is the Example Problem Manual. MAC/GMC 4.0 is a composite material and laminate analysis software program developed at the NASA Glenn Research Center. It is based on the generalized method of cells (GMC) micromechanics theory, which provides access to the local stress and strain fields in the composite material. This access grants GMC the ability to accommodate arbitrary local models for inelastic material behavior and various types of damage and failure analysis. MAC/GMC 4.0 has been built around GMC to provide the theory with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, applications of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material have been automated in MAC/GMC 4.0. Finally, classical lamination theory has been implemented within MAC/GMC 4.0 wherein GMC is used to model the composite material response of each ply. Consequently, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. This volume describes the basic information required to use the MAC/GMC 4.0 software, including a 'Getting Started' section, and an in-depth description of each of the 22 keywords used in the input file to control the execution of the code.

  11. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  12. First Extraction of Transversity from a Global Analysis of Electron-Proton and Proton-Proton Data

    NASA Astrophysics Data System (ADS)

    Radici, Marco; Bacchetta, Alessandro

    2018-05-01

    We present the first extraction of the transversity distribution in the framework of collinear factorization based on the global analysis of pion-pair production in deep-inelastic scattering and in proton-proton collisions with a transversely polarized proton. The extraction relies on the knowledge of dihadron fragmentation functions, which are taken from the analysis of electron-positron annihilation data. For the first time, the transversity is extracted from a global analysis similar to what is usually done for the spin-averaged and helicity distributions. The knowledge of transversity is important for, among other things, detecting possible signals of new physics in high-precision low-energy experiments.

  13. Piping Inelastic Fracture Mechanics Analysis.

    DTIC Science & Technology

    1980-06-30

    LOCATIONd THERM4AL SLEEVE REPAIR WELD TYPE 310 STAINLESS TEL C FVICt AREA SPO PCE Fig. 3.1-Duane Arnold recirculation-inlet-nozzle safe end configuration...Environment The most commonly used materials in the LWR piping system are Types 304 and 316 austenitic stainless steel ( cast /wrought). However, for various...seismic and water hammering), the contribu- tion of the residual stress due to the welding plays a very important role in initiation and propagation

  14. Uncertainty of Polarized Parton Distributions

    NASA Astrophysics Data System (ADS)

    Hirai, M.; Goto, Y.; Horaguchi, T.; Kobayashi, H.; Kumano, S.; Miyama, M.; Saito, N.; Shibata, T.-A.

    Polarized parton distribution functions are determined by a χ2 analysis of polarized deep inelastic experimental data. In this paper, uncertainty of obtained distribution functions is investigated by a Hessian method. We find that the uncertainty of the polarized gluon distribution is fairly large. Then, we estimate the gluon uncertainty by including the fake data which are generated from prompt photon process at RHIC. We observed that the uncertainty could be reduced with these data.

  15. The effects of confining pressure and stress difference on static fatigue of granite

    NASA Technical Reports Server (NTRS)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  16. Bullet Retarding Forces in Ballistic Gelatin by Analysis of High Speed Video

    DTIC Science & Technology

    2012-12-28

    tends to be close to the projectile path through tissue. The permanent cavity may be enlarged if the tissue is stretched beyond the elastic limit...inertia, weight, and elasticity causes it to spring back into place. Inelastic tissues such as liver, spleen, and brain stretch much less than... elastic tissues such as 1 Distribution A. Approved for public release. Distribution unlimited. The views expressed in this paper are those of the

  17. Bullet Retarding Forces in Ballistic Gelatin by Analysis of High Speed Video

    DTIC Science & Technology

    2012-12-28

    through tissue. The permanent cavity may be enlarged if the tissue is stretched beyond the elastic limit by the temporary cavity. The temporary...cavity arises because the retarding force accelerates tissue which then stretches until the combination of inertia, weight, and elasticity causes it to...spring back into place. Inelastic tissues such as liver, spleen, and brain stretch much less than elastic tissues such as 1 Distribution A

  18. A determination of the fragmentation functions of u-quarks into charged pions

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration (EMC)

    1985-10-01

    The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.

  19. Studies of the nucleon structure in back-to-back SIDIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avakian, Harut

    2016-03-01

    The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong interactions, which was a major focus in last decades. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first studies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides access to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue tomore » study the complex nucleon structure. Large acceptance of the Electron Ion Collider, allowing detection of two hadrons, produced back-to-back in the current and target fragmentation regions, combined with clear separation of two regions, would provide a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions.« less

  20. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  1. Luminosity determination in pp collisions at $$\\sqrt{s} = 7$$ TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-04-27

    Measurements of luminosity obtained using the ATLAS detector during early running of the Large Hadron Collider (LHC) at √s = 7 TeV are presented. The luminosity is independently determined using several detectors and multiple algorithms, each having different acceptances, systematic uncertainties and sensitivity to background. The ratios of the luminosities obtained from these methods are monitored as a function of time and of μ, the average number of inelastic interactions per bunch crossing. Residual time- and μ-dependence between the methods is less than 2% for 0 < μ < 2.5. Absolute luminosity calibrations, performed using beam separation scans, have amore » common systematic uncertainty of ±11%, dominated by the measurement of the LHC beam currents. After calibration, the luminosities obtained from the different methods differ by at most ±2%. The visible cross sections measured using the beam scans are compared to predictions obtained with the PYTHIA and PHOJET event generators and the ATLAS detector simulation.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, A.; Avakian, H.; Burkert, V.

    The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and Φ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs)more » provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, A.; Avakian, H.; Burkert, V.

    The target and double spin asymmetries of the exclusive pseudoscalar channelmore » $$\\vec e\\vec p\\to ep\\pi^0$$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $$x_B$$, $-t$ and $$\\phi$$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $$\\tilde{H}_T$$ and $$E_T$$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $$H_T$$ and $$\\bar E_T$$. Finally, these data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.« less

  4. Measurements of $$\\pi ^\\pm $$ π ± , K $$^\\pm $$ ± , p and $${\\bar{\\text {p}}}$$ p ¯ spectra in proton-proton interactions at 20, 31, 40, 80 and 158  $$\\text{ GeV }/c$$ GeV / c with the NA61/SHINE spectrometer at the CERN SPS: The NA61/SHINE Collaboration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aduszkiewicz, A.; Ali, Y.; Andronov, E.

    Measurements of inclusive spectra and mean multiplicities ofmore » $$\\pi^\\pm$$, K$$^\\pm$$, p and $$\\bar{\\textrm{p}}$$ produced in inelastic p+p interactions at incident projectile momenta of 20, 31, 40, 80 and 158 GeV/c ($$\\sqrt{s} = $$ 6.3, 7.7, 8.8, 12.3 and 17.3 GeV, respectively) were performed at the CERN Super Proton Synchrotron using the large acceptance NA61/SHINE hadron spectrometer. Spectra are presented as function of rapidity and transverse momentum and are compared to predictions of current models. The measurements serve as the baseline in the NA61/SHINE study of the properties of the onset of deconfinement and search for the critical point of strongly interacting matter.« less

  5. X-ray diffraction, inelastic neutron scattering (INS) and infrared (IR) studies on 2:1 hexamethylbenzene (HMB) tetracyanoethylene (TCNE) complex

    NASA Astrophysics Data System (ADS)

    Pawlukojć, A.; Sawka-Dobrowolska, W.; Bator, G.; Sobczyk, L.; Grech, E.; Nowicka-Scheibe, J.

    2006-09-01

    The structure of the 2:1 hexamethylbenzene (HMB)-tetracyanoethylene (TCNE) complex was determined at 100 K. In the crystalline lattice the molecules of HMB (D) and TCNE (A) are arranged in DDADDADD stacks along the b-axis. Based on the red shift of the ν(C tbnd N) IR frequencies the charge transfer (CT) degree ( Z) was estimated to be equal to 0.14. It is markedly higher than that for the complex of HMB with tetracyanoquinodimethane (TCNQ) for which Z = 0.06. The analysis of vibrational modes connected with torsional motion in the low frequency region was performed based on the inelastic neutron scattering (INS) experiments and DFT theoretical calculations. The correlation between νexp/ νcalc and νcalc shows a deviation of experimental values from calculated ones. It is the higher the lower is the frequency of the analysed mode. The comparison of correlations for neat HMB and its complexes with TCNQ and TCNE suggests that some role in decreasing the barrier to rotation can be played by the charge transfer between D and A molecules.

  6. Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation

    NASA Astrophysics Data System (ADS)

    Perreault, William E.; Mukherjee, Nandini; Zare, Richard N.

    2018-05-01

    Molecular interactions are best probed by scattering experiments. Interpretation of these studies has been limited by lack of control over the quantum states of the incoming collision partners. We report here the rotationally inelastic collisions of quantum-state prepared deuterium hydride (HD) with H2 and D2 using a method that provides an improved control over the input states. HD was coexpanded with its partner in a single supersonic beam, which reduced the collision temperature to 0-5 K, and thereby restricted the involved incoming partial waves to s and p. By preparing HD with its bond axis preferentially aligned parallel and perpendicular to the relative velocity of the colliding partners, we observed that the rotational relaxation of HD depends strongly on the initial bond-axis orientation. We developed a partial-wave analysis that conclusively demonstrates that the scattering mechanism involves the exchange of internal angular momentum between the colliding partners. The striking differences between H2/HD and D2/HD scattering suggest the presence of anisotropically sensitive resonances.

  7. Temperature scaling in a dense vibrofluidized granular material.

    PubMed

    Sunthar, P; Kumaran, V

    1999-08-01

    The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, are in error.

  8. SAXS investigations of the morphology of swift heavy ion tracks in α-quartz.

    PubMed

    Afra, B; Rodriguez, M D; Trautmann, C; Pakarinen, O H; Djurabekova, F; Nordlund, K; Bierschenk, T; Giulian, R; Ridgway, M C; Rizza, G; Kirby, N; Toulemonde, M; Kluth, P

    2013-01-30

    The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.

  9. Halo-induced large enhancement of soft dipole excitation of 11Li observed via proton inelastic scattering

    NASA Astrophysics Data System (ADS)

    Tanaka, J.; Kanungo, R.; Alcorta, M.; Aoi, N.; Bidaman, H.; Burbadge, C.; Christian, G.; Cruz, S.; Davids, B.; Diaz Varela, A.; Even, J.; Hackman, G.; Harakeh, M. N.; Henderson, J.; Ishimoto, S.; Kaur, S.; Keefe, M.; Krücken, R.; Leach, K. G.; Lighthall, J.; Padilla Rodal, E.; Randhawa, J. S.; Ruotsalainen, P.; Sanetullaev, A.; Smith, J. K.; Workman, O.; Tanihata, I.

    2017-11-01

    Proton inelastic scattering off a neutron halo nucleus, 11Li, has been studied in inverse kinematics at the IRIS facility at TRIUMF. The aim was to establish a soft dipole resonance and to obtain its dipole strength. Using a high quality 66 MeV 11Li beam, a strongly populated excited state in 11Li was observed at Ex = 0.80 ± 0.02 MeV with a width of Γ = 1.15 ± 0.06 MeV. A DWBA (distorted-wave Born approximation) analysis of the measured differential cross section with isoscalar macroscopic form factors leads us to conclude that this observed state is excited in an electric dipole (E1) transition. Under the assumption of isoscalar E1 transitions, the strength is evaluated to be extremely large amounting to 30 ∼ 296 Weisskopf units, exhausting 2.2% ∼ 21% of the isoscalar E1 energy-weighted sum rule (EWSR) value. The large observed strength originates from the halo and is consistent with the simple di-neutron model of 11Li halo.

  10. Inelastic deformation and damage at high temperature

    NASA Astrophysics Data System (ADS)

    Krempl, E.

    1992-06-01

    Combined experimental and theoretical investigations into the inelastic deformation and damage behavior of engineering alloys at elevated temperatures are being pursued. The analysis of previously performed strain rate change and relaxation tests on modified 9Cr-1Mo steel showed the need for inclusion of a recovery of state term in the growth laws for the state variables of the viscoplasticity theory based on overstress (VBO). Recovery of state terms were introduced and the experimental results were satisfactorily simulated. The finite deformation theory of VBO has been developed further to include a convected derivative rationale for the choice of the objective stress rate. The reversing direct current voltage drop measurements during low cycle fatigue at elevated temperature were improved. A passive filter bank and new positioning devices for the coils were installed. Tests at 650 C and lasting several days showed excessive, uncontrollable temperature changes. It was decided to drop the test temperature to 538 C which is close to the operating temperature of type 304 stainless steel. The temperature fluctuations in torsion tests were within +/- 3 C which was considered satisfactory.

  11. Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides

    PubMed Central

    2017-01-01

    We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster–Kronig induced) nonresonant X-ray emission is a measure of ligand covalency. PMID:29170686

  12. Dehydrogenation of aromatic molecules under a scanning tunneling microscope: pathways and inelastic spectroscopy simulations.

    PubMed

    Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas

    2007-04-11

    We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.

  13. Molecular description of steady supersonic free jets

    NASA Astrophysics Data System (ADS)

    Montero, S.

    2017-09-01

    A detailed analysis of the non-local thermal equilibrium (n-LTE) problem in the paraxial zone of silence of supersonic free jets is reported. The study is based on a hybrid approach that combines Navier-Stokes equations with a kinetic equation derived from the generalized Boltzmann (Waldmann-Snider) equation. The resulting system is solved for those flow quantities not easily amenable to experimental measure (translational temperature, flow velocity, and entropy) in terms of the quantities that can be measured accurately (distance, number density, population of rotational states, and their gradients). The reported solutions are essentially exact and are formulated in terms of macroscopic quantities, as well as in terms of elementary collision processes. Emphasis is made on the influence of dissipative effects onto the flow (viscous and diabatic) and of the breakdown of thermal equilibrium onto the evolution of entropy and translational temperature. The influence of inelastic collisions onto these effects is analysed in depth. The reported equations are aimed at optimizing the experimental knowledge of the n-LTE problem and its quantitative interpretation in terms of state-to-state rates for inelastic collisions.

  14. Extraction of quark transversity distribution and Collins fragmentation functions with QCD evolution

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Prokudin, Alexei; Sun, Peng; Yuan, Feng

    2016-01-01

    We study the transverse-momentum-dependent (TMD) evolution of the Collins azimuthal asymmetries in e+e- annihilations and semi-inclusive hadron production in deep inelastic scattering processes. All the relevant coefficients are calculated up to the next-to-leading-logarithmic-order accuracy. By applying the TMD evolution at the approximate next-to-leading-logarithmic order in the Collins-Soper-Sterman formalism, we extract transversity distributions for u and d quarks and Collins fragmentation functions from current experimental data by a global analysis of the Collins asymmetries in back-to-back dihadron productions in e+e- annihilations measured by BELLE and BABAR collaborations and semi-inclusive hadron production in deep inelastic scattering data from HERMES, COMPASS, and JLab HALL A experiments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed. We further discuss the TMD interpretation for our results and illustrate the unpolarized quark distribution, transversity distribution, unpolarized quark fragmentation, and Collins fragmentation functions depending on the transverse momentum and the hard momentum scale. We make detailed predictions for future experiments and discuss their impact.

  15. Nuclear Structure Relevant to Double-beta Decay: Studies of 76Ge and 76Se using Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Crider, Benjamin P.

    While neutrino oscillations indicate that neutrino flavors mix and that neutrinos have mass, they do not supply information on the absolute mass scale of the three flavors of neutrinos. Currently, the only viable way to determine this mass scale is through the observation of the theoretically predicted process of neutrinoless double-beta decay (0nubetabeta). This yet-to-be-observed decay process is speculated to occur in a handful of nuclei and has predicted half-lives greater than 1025 years. Observation of 0nubetabeta is the goal of several large-scale, multinational efforts and consists of detecting a sharp peak in the summed energies at the Q-value of the reaction. An exceptional candidate for the observation of 0nubetabeta is 76Ge, which offers an excellent combination of capabilities and sensitivities, and two such collaborations, MAJORANA and GERDA, propose tonne-scale experiments that have already begun initial phases using a fraction of the material. The absolute scale of the neutrino masses hinges on a matrix element, which depends on the ground-state wave functions for both the parent (76Ge) and daughter (76Se) nuclei in the 0nubetabeta decay and can only be calculated from nuclear structure models. Efforts to provide information on the applicability of these models have been undertaken at the University of Kentucky Accelerator Laboratory using gamma-ray spectroscopy following inelastic scattering reactions with monoenergetic, accelerator-produced fast neutrons. Information on new energy levels and transitions, spin and parity assignments, lifetimes, multipole mixing ratios, and transition probabilities have been determined for 76Se, the daughter of 76Ge 0nubetabeta, up to 3.0 MeV. Additionally, inaccuracies in the accepted level schemes have been addressed. Observation of 0nubetabeta requires precise knowledge of potential contributors to background within the region of interest, i.e., approximately 2039 keV for 76Ge. In addition to backgrounds resulting from surrounding materials in the experimental setup, 76Ge has a previously observed 3952-keV level with a de-exciting 2040-keV gamma ray. This ray constitutes a potential background for 0nubetabeta searches, if this level is excited. The cross sections for this level and, subsequently, for the 2040-keV gamma ray has been determined in the range from 4 to 5 MeV. KEYWORDS: nuclear structure, inelastic neutron scattering, neutrinoless double-beta decay, shape coexistence.

  16. Search for magnetic inelastic dark matter with XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.

    2017-10-01

    We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c2 and 122.7 GeV/c2 are excluded at 3.3 σ and 9.3 σ, respectively.

  17. Investigation of neutron interactions with Ge detectors

    NASA Astrophysics Data System (ADS)

    Baginova, Miloslava; Vojtyla, Pavol; Povinec, Pavel P.

    2018-07-01

    Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70Ge, 72Ge, 73Ge, 74Ge and 76Ge were well visible in the γ-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high γ-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source.

  18. Effect of causal and acausal filters on elastic and inelastic response spectra

    USGS Publications Warehouse

    Boore, D.M.; Akkar, Sinan

    2003-01-01

    With increasing interest in displacement spectra and long-period motions, it is important to check the sensitivity of both elastic and inelastic response spectra to the filtering that is often necessary to remove long period artifacts, even from many modern digital recordings. Using two records of very different character from the M=7.1, 1999 Hector Mine, California, earthquake, we find that the response spectra can be sensitive to the corner periods used in causal filtering, even for oscillator periods much less than the filter corner periods. The effect is most pronounced for inelastic response spectra, where the ratio of response spectra computed from accelerations filtered at 25 and 200 sec can be close to a factor of 2 for oscillator periods less than 5 sec. Published in 2003 by John Wiley and Sons, Ltd.

  19. Parameterization of the Van Hove dynamic self-scattering law Ss(Q,omega)

    NASA Astrophysics Data System (ADS)

    Zetterstrom, P.

    In this paper we present a model of the Van Hove dynamic scattering law SME(Q, omega) based on the maximum entropy principle which is developed for the first time. The model is aimed to be used in the calculation of inelastic corrections to neutron diffraction data. The model is constrained by the first and second frequency moments and detailed balance, but can be expanded to an arbitrary number of frequency moments. The second moment can be varied by an effective temperature to account for the kinetic energy of the atoms. The results are compared with a diffusion model of the scattering law. Finally some calculations of the inelastic self-scattering for a time-of-flight diffractometer are presented. From this we show that the inelastic self-scattering is very sensitive to the details of the dynamic scattering law.

  20. On the Paramagnetic Inelastic Scattering of Neutrons due to Ions in the Anisotropic Crystalline Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yasusada

    1960-03-15

    The paramagnetic inelastic scattering of neutrons due to ions of3d transition elements in the anisotropic crystalline field was considered. When the orbital momentum of the paramagnetic tons is not quenched, the spin states are no longer degenerate but split into discrete levels. The transition between these levels can occur by mugnetic dipole interaction of ions with neutrons. In the special case of FeCl/sub 2/, an antiferromagnetic crystal whose Neel temperature is 24 deg K, the calculation of the forward scuttering cross-sections of neutrons at various temperatures and wave lengths was carried out which showed that it is possible, under ordinarymore » conditions, to observe the inelastically scattered neutrons and hence to obtain information about the energy level scheme of the atomic spin in the cry stal. (auth)« less

  1. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  2. Inelastic hyperspectral lidar for aquatic ecosystems monitoring and landscape plant scanning test

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Malmqvist, Elin; Rydhmer, Klas; Strand, Alfred; Bianco, Giuseppe; Hansson, Lars-Anders; Svanberg, Sune; Brydegaard, Mikkel

    2018-04-01

    We have developed an aquatic inelastic hyperspectral lidar with unrestricted focal-depth and enough sensitivity and spatio-temporal resolution to detect and resolve position and behavior of individual sub-millimeter aquatic organisms. We demonstrate ranging with monitoring of elastic echoes, water Raman signals and fluorescence from chlorophyllbearing phytoplankton and dye tagged organisms. The system is based on a blue CW diode laser and a Scheimpflug optical arrangement.

  3. Higher-order quantum-chromodynamic corrections to the longitudinal coefficient function in deep-inelastic scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, G.A.

    1982-01-01

    A calculation of nonsinglet longitudinal coefficient function of deep-inelastic scattering through order-g/sup 4/ is presented, using the operator-product expansion and the renormalization group. Both ultraviolet and infrared divergences are regulated with dimensional regularization. The renormalization scheme dependence of the result is discussed along with its phenomenological application in the determination of R = sigma/sub L//sigma/sub T/.

  4. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering

    DOE PAGES

    Casco, M. E.; Cheng, Y. Q.; Daemen, L. L.; ...

    2016-01-28

    In order to understand the behavior of industrial molecular separations, the gate-opening phenomenon in ZIFs are of paramount importance. We show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH 3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N 2 pressure.

  5. Pion Inelastic Scattering to the First Three Excited States of Lithium-6.

    DTIC Science & Technology

    1984-12-01

    and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross sections were measured for n+ inelastic scattering to the...Professor: C. Fred Moore Using the Energetic Pion Channel and Spectrometer system at the Clinton P. Anderson Meson Physics Facility, differential cross...due to the construction and subsequent operation of three meson production facilities: the Los Alamos Meson Physics Facility (LAMPF) in the United

  6. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  7. Completely inelastic ball.

    PubMed

    Gilet, T; Vandewalle, N; Dorbolo, S

    2009-05-01

    This Rapid Communication presents an analytical study of the bouncing of a completely inelastic ball on a vertically vibrated plate. The interplay of saddle-node and period-doubling bifurcations leads to an intricate structure of the bifurcation diagram with uncommon properties, such as an infinity of bifurcation cascades in a finite range of the control parameter Gamma. A pseudochaotic behavior, consisting in arbitrarily long and complex periodic sequences, is observed through this generic system.

  8. Completely inelastic ball

    NASA Astrophysics Data System (ADS)

    Gilet, T.; Vandewalle, N.; Dorbolo, S.

    2009-05-01

    This Rapid Communication presents an analytical study of the bouncing of a completely inelastic ball on a vertically vibrated plate. The interplay of saddle-node and period-doubling bifurcations leads to an intricate structure of the bifurcation diagram with uncommon properties, such as an infinity of bifurcation cascades in a finite range of the control parameter Γ . A pseudochaotic behavior, consisting in arbitrarily long and complex periodic sequences, is observed through this generic system.

  9. Proton-nucleus total inelastic cross sections - An empirical formula for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Letaw, J. R.; Silberberg, R.; Tsao, C. H.

    1983-01-01

    An empirical formula for the total inelastic cross section of protons on nuclei with charge greater than 1 is presented. The formula is valid with a varying degree of accuracy down to proton energies of 10 MeV. At high energies (equal to or greater than 2 GeV) the formula reproduces experimental data to within reported errors (about 2%).

  10. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  11. The optical potential on the lattice

    DOE PAGES

    Agadjanov, Dimitri; Doring, Michael; Mai, Maxim; ...

    2016-06-08

    The extraction of hadron-hadron scattering parameters from lattice data by using the Luscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel Luscher formalism. Furthermore, this method is applicable without modifications if some inelastic channels contain three or more particles.

  12. D0 production in deep inelastic muon scattering on hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1986-01-01

    Inclusive D0(D0) production in deep inelastic scattering of 280 GeV and 240 GeV muons on hydrogen and deuterium targets has been measured; differential cross sections are given and the total cross sections extrapolated to Q2 = 0. They are compared with the results of photoproduction experiments and with measurements of the muoproduction of charm detected indirectly by multimuon events.

  13. A time-of-flight spectrometer for measuring inelastic to elastic differential cross-section ratios for electron-gas scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeClair, L.R.; Trajmar, S.; Khakoo, M.A.

    1996-05-01

    We describe a crossed electron beam-atomic beam apparatus which utilizes a pulsed electron gun and field free drift tube to obtain time-of-flight (TOF) spectra of electrons scattered from atoms and molecules. This apparatus was constructed for the purpose of obtaining inelastic-to-elastic differential cross-section (DCS) ratios in the energy range extending from threshold to several eV above the threshold of the inelastic channel. The TOF approach eliminates the need for complicated calibration procedures required when using conventional electrostatic electron energy-loss spectroscopy (EELS) at these low energies. The characteristics of the apparatus will be given, along with representative TOF spectra from carbonmore » monoxide. From those spectra we obtained DCS ratios at 90{degree} scattering angle for excitation of the {ital a}{sup 3}{Pi} state of CO, in the impact energy range of 6{endash}15 eV. These ratios were measured with uncertainties as small as {plus_minus}4{percent}, which represents a substantial improvement over previous measurements in this energy range. This demonstrates the feasibility of using the TOF technique to measure DCS ratios which in turn can serve as secondary standards to normalize other inelastic DCSs obtained from measurements with EELS. {copyright} {ital 1996 American Institute of Physics.}« less

  14. Elastic and inelastic electrons in the double-slit experiment: A variant of Feynman's which-way set-up.

    PubMed

    Frabboni, Stefano; Gazzadi, Gian Carlo; Grillo, Vincenzo; Pozzi, Giulio

    2015-07-01

    Modern nanotechnology tools allowed us to prepare slits of 90 nm width and 450 nm spacing in a screen almost completely opaque to 200 keV electrons. Then by covering both slits with a layer of amorphous material and carrying out the experiment in a conventional transmission electron microscope equipped with an energy filter we can demonstrate that the diffraction pattern, taken by selecting the elastically scattered electrons, shows the presence of interference fringes, but with a bimodal envelope which can be accounted for by taking into account the non-constant thickness of the deposited layer. However, the intensity of the inelastically scattered electrons in the diffraction plane is very broad and at the limit of detectability. Therefore the experiment was repeated using an aluminum film and a microscope also equipped with a Schottky field emission gun. It was thus possible to observe also the image due to the inelastically scattered electron, which does not show interference phenomena both in the Fraunhofer or Fresnel regimes. If we assume that inelastic scattering through the thin layer covering the slits provides the dissipative process of interaction responsible for the localization mechanism, then these experiments can be considered a variant of the Feynman which-way thought experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.

    PubMed

    Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A

    2010-03-01

    The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.

  16. Study of electron impact inelastic scattering of chlorine molecule (Cl2)

    NASA Astrophysics Data System (ADS)

    Yadav, Hitesh; Vinodkumar, Minaxi; Limbachiya, Chetan; Vinodkumar, P. C.

    2018-02-01

    A theoretical study is carried out for electron interactions with the chlorine molecule (Cl2) for incident energies ranging from 0.01 to 5000 eV. This wide range of energy has allowed us to investigate a variety of processes and report data on symmetric excitation energies, dissociative electron attachment (DEA), total excitation cross sections, and ionization cross section (Q ion) along with total inelastic cross sections (Q inel). The present study is important since Cl2 is a prominent gas for plasma etching and its anionic atoms are important in the etching of semiconductor wafers. In order to compute the total inelastic cross sections, we have employed the ab initio R-matrix method (0.01 to 15 eV) together with the spherical complex optical potential method (∼15 to 5000 eV). The R-matrix calculations are performed using a close coupling method, and we have used DEA estimator via Quantemol-N to calculate the DEA fragmentation and cross sections. The present study finds overall good agreement with the available experimental data. Total excitation and inelastic cross sections of e-{{{Cl}}}2 scattering for a wide energy range (0.01 to 5 keV) are reported for the first time, to the best of our knowledge.

  17. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  18. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model

    USGS Publications Warehouse

    Leake, S.A.; Prudic, David E.

    1988-01-01

    The process of permanent compaction is not routinely included in simulations of groundwater flow. To simulate storage changes from both elastic and inelastic compaction, a computer program was written for use with the U. S. Geological Survey modular finite-difference groundwater flow model. The new program is called the Interbed-Storage Package. In the Interbed-Storage Package, elastic compaction or expansion is assumed to be proportional to change in head. The constant of proportionality is the product of skeletal component of elastic specific storage and thickness of the sediments. Similarly, inelastic compaction is assumed to be proportional to decline in head. The constant of proportionality is the product of the skeletal component of inelastic specific storage and the thickness of the sediments. Storage changes are incorporated into the groundwater flow model by adding an additional term to the flow equation. Within a model time step, the package appropriately apportions storage changes between elastic and inelastic components on the basis of the relation of simulated head to the previous minimum head. Another package that allows for a time-varying specified-head boundary is also documented. This package was written to reduce the data requirements for test simulations of the Interbed-Storage Package. (USGS)

  19. Time Series Analysis of Subsidence and Water-Level Data for Aquifer System Characterization

    NASA Astrophysics Data System (ADS)

    Burbey, T. J.

    2012-12-01

    The accessibility of high resolution surface displacement data in the form of InSAR, PS-InSAR, GPS, and extensometer data in heavily pumped basins provides diagnostic information that can be used in powerful ways to characterize the hydraulic properties of both confining units and aquifers that water-level data alone cannot accomplish. Land surface deformation signals reflect the elastic and inelastic properties of the heterogeneous aquifer system. These deformation signals can be quite complex and coupled with water level data often exhibit temporal signals at daily, seasonal, and decadal scales resulting from accompanying cyclical pumping patterns. In Las Vegas Valley, for example, cyclical seasonal and daily water-level fluctuations are superimposed on long-term water-level declines. The resulting changes in effective stress have resulted in decades of inelastic land surface lowering with superimposed seasonal elastic deformation signals. In this investigation signal processing of both water level and deformation data was done to filter separate signals at daily, seasonal, and decadal time scales that can be individually evaluated to more accurately estimate the hydraulic properties of the principle aquifer system in the valley that consists of multiple aquifers and confining units. Both elastic and inelastic skeletal specific storage, the horizontal hydraulic conductivity of the aquifers, and the vertical hydraulic conductivity of the confining units can be readily evaluated in this manner. The results compare favorably with the parameters calculated from a complex one-dimensional numerical compaction model. The advantage of the time series approach is that a more thorough description of the system can be made and the analytical approach is far simpler than constructing and calibrating a numerical model.

  20. The Time-Dependency of Deformation in Porous Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Kibikas, W. M.; Lisabeth, H. P.; Zhu, W.

    2016-12-01

    Porous carbonate rocks are natural reservoirs for freshwater and hydrocarbons. More recently, due to their potential for geothermal energy generation as well as carbon sequestration, there are renewed interests in better understanding of the deformation behavior of carbonate rocks. We conducted a series of deformation experiments to investigate the effects of strain rate and pore fluid chemistry on rock strength and transport properties of porous limestones. Indiana limestone samples with initial porosity of 16% are deformed at 25 °C under effective pressures of 10, 30, and 50 MPa. Under nominally dry conditions, the limestone samples are deformed under 3 different strain rates, 1.5 x 10-4 s-1, 1.5 x 10-5 s-1 and 1.5 x 10-6 s-1 respectively. The experimental results indicate that the mechanical behavior is both rate- and pressure-dependent. At low confining pressures, post-yielding deformation changes from predominantly strain softening to strain hardening as strain rate decreases. At high confining pressures, while all samples exhibit shear-enhanced compaction, decreasing strain rate leads to an increase in compaction. Slower strain rates enhance compaction at all confining pressure conditions. The rate-dependence of deformation behaviors of porous carbonate rocks at dry conditions indicates there is a strong visco-elastic coupling for the degradation of elastic modulus with increasing plastic deformation. In fluid saturated samples, inelastic strain of limestone is partitioned among low temperature plasticity, cataclasis and solution transport. Comparison of inelastic behaviors of samples deformed with distilled water and CO2-saturated aqueous solution as pore fluids provide experimental constraints on the relative activities of the various mechanisms. Detailed microstructural analysis is conducted to take into account the links between stress, microstructure and the inelastic behavior and failure mechanisms.

  1. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    NASA Astrophysics Data System (ADS)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.; Kempner, L. Jr.; Mueller, W. III

    The concept of an Expert System is not new. It has been around since the days of the early computers when scientists had dreams of robot automation to do everything from washing windows to automobile design. This paper discusses an application of an expert system and addresses software development issues and various levels of expert system development form a structural engineering viewpoint. An expert system designed to aid the structural engineer in first order inelastic analysis of latticed steel transmission powers is presented. The utilization of expert systems with large numerical analysis programs is discussed along with the software developmentmore » of such a system.« less

  3. A first determination of the unpolarized quark TMDs from a global analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacchetta, Alessandro; Delcarro, Filippo; Pisano, Cristian

    Transverse momentum dependent distribution and fragmentation functions of unpolarized quarks inside unpolarized protons are extracted, for the first time, through a simultaneous analysis of semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson hadroproduction processes. This study is performed at leading order in perturbative QCD, with energy scale evolution at the next-to-leading logarithmic accuracy. Moreover, some specific choices are made to deal with low scale evolution around 1 GeV2. Since only data in the low transverse momentum region are considered, no matching to fixed-order calculations at high transverse momentum is needed.

  4. A constitutive material model for nonlinear finite element structural analysis using an iterative matrix approach

    NASA Technical Reports Server (NTRS)

    Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard

    1988-01-01

    A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.

  5. [Hadroproduction of charmed and bottom mesons (Fermilab experiment E-653): Progress report, June 13, 1983--June 14, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1984-12-31

    (I)Results are given for photoproduction of the D{sup *} at 103 GeV. Clean signals are seen for the decay D{sup *{+-}} {yields} {pi}{sup {+-}}D{sup 0} with the D{sup 0} decaying into both K{sup {-+}}{pi}{sup {+-}} and K{sup {-+}}{pi}{sup {+-}}{pi}{sup 0}. Analysis of the Dalitz plot for the K{pi}{pi} mode gives branching fractions (BFs) for K{sup {minus}}{rho}{sup +}, K{sup *{minus}}{pi}{sup +}, and {anti K}{sup *0}{pi}{sup 0} final states. The BF for D{sup 0} {yields} K{sup {minus}}{rho}{sup +}, much lower than a previous result, is in approximate agreement with the value expected for an l=1/2 final state. (II)Inelastic and elastic J/{psi} photoproductionmore » on H is investigated at 103 GeV. The inelastic cross section with E{sub {psi}}/E{sub {gamma}} {lt} 0.9 is significantly lower than the corresponding result for muoproduction on Fe targets, but consistent with second-order perturbative QCD calculation. The mean p{sub +} of inelastic events is larger than that of elastic events. (III)Analysis of data from the CLEO experiment has yielded evidence for B{bar B} production from the 4S upsilon state. A preliminary cross section is shown. (IV)The SSD prototyping and testing program is described. The detectors performed as expected. (V)Three 24 x 36 mm{sup 2} Centronic detectors 300 microns thick were tested in 650-MeV/c proton and 600-MeV/c pion beams. Charge sharing was found to occur. (VI)Tests of attenuation lengths and light output were made on three types of scintillator: NE102A, PS12, and PS10. PS10 appears the most suitable. (VII)Charge-sharing SSDs of (V) were subject to analysis: checking of pulse heights of single stripes, hit pairs, and hit quads vs theoretical values; resolution of three-point proton/pion tracks, and characterization of devices by charge sum/difference plots of hit pairs. (VIII) Board fabrication and tests of a hadron calorimeter intended to be 91 x 91 sq.in. are discussed. (IX)Testing of an amplifier with LRS hybrid preamp is related.« less

  6. HOTCFGM-2D: A Coupled Higher-Order Theory for Cylindrical Structural Components with Bi-Directionally Components with Bi-Directionally Graded Microstructures

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Aboudi, Jacob

    2000-01-01

    The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal and inelastic properties of the individual phases can vary with temperature. The inelastic phases are presently modeled by the power-law creep model generalized to multi-directional loading (within fgmc3dq.cylindrical.f and fgmc3dq.cylindrical.transient.f for steady-state and transient thermal loading, respectively), and incremental plasticity and GVIPS unified viscoplasticity theories (within the steady-state loading versions fgmp3dq.cylindrical.f and fgmgvips3dq.cylindrical.f).

  7. Nuclear States with Abnormally Large Radii (size Isomers)

    NASA Astrophysics Data System (ADS)

    Ogloblin, A. A.; Demyanova, A. S.; Danilov, A. N.; Belyaeva, T. L.; Goncharov, S. A.

    2015-06-01

    Application of the methods of measuring the radii of the short-lived excited states (Modified diffraction model MDM, Inelastic nuclear rainbow scattering method INRS, Asymptotic normalization coefficients method ANC) to the analysis of some nuclear reactions provide evidence of existing in 9Be, 11B, 12C, 13C the excited states whose radii exceed those of the corresponding ground states by ~ 30%. Two types of structure of these "size isomers" were identified: neutron halo an α-clusters.

  8. Optical detection of glyphosate in water

    NASA Astrophysics Data System (ADS)

    de Góes, R. E.; Possetti, G. R. C.; Muller, M.; Fabris, J. L.

    2017-04-01

    This work shows preliminary results of the detection of Glyphosate in water by using optical fiber spectroscopy. A colloid with citrate-caped silver nanoparticles was employed as substrate for the measurements. A cross analysis between optical absorption and inelastic scattering evidenced a controlled aggregation of the sample constituents, leading to the possibility of quantitative detection of the analyte. The estimate limit of detection for Glyphosate in water for the proposed sensing scheme was about 1.7 mg/L.

  9. Micromechanics of metal matrix composites using the Generalized Method of Cells model (GMC) user's guide

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy

    1992-01-01

    A user's guide for the program gmc.f is presented. The program is based on the generalized method of cells model (GMC) which is capable via a micromechanical analysis, of predicting the overall, inelastic behavior of unidirectional, multi-phase composites from the knowledge of the properties of the viscoplastic constituents. In particular, the program is sufficiently general to predict the response of unidirectional composites having variable fiber shapes and arrays.

  10. A Unified Approach for Modeling Inelastic Behavior of Structural Metals under Complex Cyclic Loadings.

    DTIC Science & Technology

    1977-05-01

    this report are not to be used for advertising , publication, or promotional purposes. Citat ion of trade names does not constitute an off icial... Vs . Real Materials 3 PLASTIC HYSTERESIS PHENOMENA 12 Observed Transient Phenomena Analysis of Hysteresis Loops Observed Typical Yie ld Range...strain or stress amp litude). Fitr examp le , if varm m uus sited hyshet esis loops produced by the model a me super- Memory Modei Vs . Real Materials

  11. A novel method for resonant inelastic soft X-ray scattering via photoelectron spectroscopy detection

    DOE PAGES

    Dakovski, Georgi L.; Lin, Ming-Fu; Damiani, Daniel S.; ...

    2017-10-05

    A method for measuring resonant inelastic X-ray scattering based on the conversion of X-ray photons into photoelectrons is presented in this paper. The setup is compact, relies on commercially available detectors, and offers significant flexibility. Finally, this method is demonstrated at the Linac Coherent Light Source with ~0.5 eV resolution at the cobalt L 3-edge, with signal rates comparable with traditional grating spectrometers.

  12. Production of Ξ- in deep inelastic scattering with ZEUS detector at HERA

    NASA Astrophysics Data System (ADS)

    Nasir, N. Mohammad; Wan Abdullah, W. A. T.

    2016-01-01

    In this paper, we discussed about the possible mechanism on how strange baryon are being produced. The discovery of strange quarks in cosmic rays before the quarks model being proposed makes the searches become more interesting, as it has long lifetimes. The inclusive deep inelastic scattering of Ξ- has been studied in electron-proton collisions with ZEUS detector at HERA. We also studied HERA kinematics and phase space.

  13. Measurement of charged particle transverse momentum spectra in deep inelastic scattering

    NASA Astrophysics Data System (ADS)

    Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Beck, M.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. T.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Liike, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robmann, P.; Roloff, P. H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenovy, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorni, I. O.; Smirnov, F.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, F.; Steinberg, F.; Steiner, H.; Steinhart, J.; Stella, B.; Stellbergr, A.; Stier, P. J.; Stiewe, J.; Stöβlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Tagevˇský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wenger, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; Hl Collaboration

    1997-02-01

    Transverse momentum spectra of charged particles produced in deep inelastic scattering are measured as a function of the kinematic variables x and Q using the H1 detector at the epcollider HERA. The data are compared to different parton emission models, either with or without ordering of the emissions in transverse momentum. The data provide evidence for a relatively large amount of parton radiation between the current and the remnant systems.

  14. Inelastic Neutron Scattering Study of the Specific Features of the Phase Transitions in (NH4)2WO2F4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, Lev S; Kolesnikov, Alexander I; Flerov, I. N.

    2009-01-01

    Oxyfluoride (NH4)2WO2F4 has been studied by the inelastic neutron scattering method over a wide temperature range 10 300 K at two initial neutron energies of 15 and 60 meV. The role of tetrahedral ammonium groups in the mechanism of sequential phase transitions at T1 = 201 K and T2 = 160 K has been discussed.

  15. UB Matrix Implementation for Inelastic Neutron Scattering Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsden, Mark D; Robertson, Lee; Yethiraj, Mohana

    The UB matrix approach has been extended to handle inelastic neutron scattering experiments with differing k{sub i} and k{sub f}. We have considered the typical goniometer employed on triple-axis and time-of-flight spectrometers. Expressions are derived to allow for calculation of the UB matrix and for converting from observables to Q-energy space. In addition, we have developed appropriate modes for calculation of angles for a specified Q-energy position.

  16. Inelastic collisions of positrons with one-valence-electron targets

    NASA Technical Reports Server (NTRS)

    Abdel-Raouf, Mohamed Assad

    1990-01-01

    The total elastic and positronium formation cross sections of the inelastic collisions between positrons and various one-valence-electron atoms, (namely hydrogen, lithium, sodium, potassium and rubidium), and one-valence-electron ions, (namely hydrogen-like, lithium-like and alkaline-earth positive ions) are determined using an elaborate modified coupled-static approximation. Special attention is devoted to the behavior of the Ps cross sections at the energy regions lying above the Ps formation thresholds.

  17. New developments in fabrication of high-energy-resolution analyzers for inelastic x-ray spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Said, A. H.; Sinn, H.; Divan, R.

    2011-05-01

    In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.

  18. Polarization effects produced as a result of inelastic scattering of protons near 20 MeV with excitation of the different 2/sup +/, 4/sup +/ and 6/sup +/ states in /sup 90,92/Zr and /sup 92,94/Mo nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plavko, A.V.; Kudryashov, V.I.; Lombar, R.M.

    1979-11-20

    On the basis of experiments on inelastic scattering of polarized protons with energy of about 20 MeV, we show that the analyzing power of A(theta) is sensitive to the excited states in /sup 90,92/Zr and /sup 92,94/Mo nuclei.

  19. High Fidelity and Multiscale Algorithms for Collisional-radiative and Nonequilibrium Plasmas (Briefing Charts)

    DTIC Science & Technology

    2014-07-01

    of models for variable conditions: – Use implicit models to eliminate constraint of sequence of fast time scales: c, ve, – Price to pay: lack...collisions: – Elastic – Bragiinski terms – Inelastic – warning! Rates depend on both T and relative velocity – Multi-fluid CR model from...merge/split for particle management, efficient sampling, inelastic collisions … – Level grouping schemes of electronic states, for dynamical coarse

  20. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    PubMed

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  1. Evidence of a slight nuclear transparency in the alpha-nucleus systems

    DOE PAGES

    Chamon, L. C.; Gasques, L. R.; Nobre, G. P. A.; ...

    2015-02-19

    In earlier works, we proposed a model for the nuclear potential of the α + α and α + ¹²C systems. In addition, this theoretical model successfully described data related to the elastic and inelastic scattering processes as well as resonances that correspond to the capture reaction channel. In the present work, we extend the same model to obtain bare nuclear potentials for several α-nucleus systems. We adopt this parameter-free interaction to analyze fusion, elastic, and inelastic scattering data within the context of the coupled-channel formalism. Our results indicate that, for these systems, the absorption of flux of the elasticmore » channel at internal distances of interaction is not complete. In addition, we present new experimental angular distributions for the 2⁺ inelastic target excitation of α on ¹²⁰ ,¹³⁰Te.« less

  2. Elastic and inelastic scattering of /sup 58/Ni+/sup 208/Pb at bombarding energies from 598 to 1011 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckerman, M.; Auble, R.L.; Bertrand, F.E.

    1987-08-01

    High-resolution measurements have been made of elastic and inelastic scattering of /sup 58/Ni+ /sup 208/Pb at four bombarding energies from 10.3 to 17.4 MeV/nucleon. The considerable inelastic strength observed for excitation energies up to at least 7 MeV is dominated by Coulomb-driven quadrupole transitions. Analyses were done using both the distorted-wave Born approximation and coupled-channels models. At the highest bombarding energies the data can be described equally well by distorted-wave Born approximations and coupled channels analyses. We find that B(E2) = 0.062 e/sup 2/b/sup 2/ for the 1.454 MeV 2/sup +/ state in /sup 58/Ni and B(E2) = 0.34 e/supmore » 2/b/sup 2/ for the 4.09 MeV 2/sup +/ state in /sup 208/Pb.« less

  3. On the energy spectrum of cosmogenic neutrons

    NASA Astrophysics Data System (ADS)

    Malgin, A. S.

    2017-11-01

    The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.

  4. Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-01

    The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction 13C (17O ,18O )12C . Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17F ( p ,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17O , 18O and 16O projectiles is made.

  5. X-ray absorption spectroscopy to determine originating depth of electrons that form an inelastic background of Auger electron spectrum

    NASA Astrophysics Data System (ADS)

    Isomura, Noritake; Cui, Yi-Tao; Murai, Takaaki; Oji, Hiroshi; Kimoto, Yasuji

    2017-07-01

    In Auger electron spectroscopy (AES), the spectral background is mainly due to inelastic scattering of Auger electrons that lose their kinetic energy in a sample bulk. To investigate the spectral components within this background for SiO2(19.3 nm)/Si(100) with known layer thickness, X-ray absorption spectroscopy (XAS) was used in the partial-electron-yield (PEY) mode at several electron kinetic energies to probe the background of the Si KLL Auger peak. The Si K-edge PEY-XAS spectra constituted of both Si and SiO2 components at each kinetic energy, and their component fractions were approximately the same as those derived from the simulated AES background for the same sample structure. The contributions of Auger electrons originating from layers at different depths to the inelastic background could thus be identified experimentally.

  6. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

    NASA Astrophysics Data System (ADS)

    Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.

    2016-04-01

    Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.

  7. Non-resonant inelastic x-ray scattering spectra of lithiated titanium oxides for battery applications

    NASA Astrophysics Data System (ADS)

    Nagle, Kenneth; Balasubramanian, Mali; Johnson, Christopher; Seidler, Gerald; Belharouak, Ilias

    2008-03-01

    Although lithium-ion batteries now see widespread use, there remain considerable questions concerning the basic solid state chemistry of both electrodes. Improved understanding of the local electronic structure, particularly the mechanism of charge transfer upon insertion and removal of lithium, could lead to innovation in battery design and improved performance. We present non-resonant inelastic x-ray scattering (NRIXS) spectra from 2p initial states in titanium; these spectra are among the first recorded for such states in a transition metal. These spectra were obtained using the lower energy resolution inelastic x-ray scattering (LERIX) spectrometer, which is capable of making simultaneous measurements at nineteen values of momentum transfer. We demonstrate the ability to obtain soft x-ray absorption-like information using a bulk-sensitive, hard x-ray technique. In addition, at high momentum transfer NRIXS provides information about non-dipole transitions that are inaccessible by soft x-ray spectroscopic methods.

  8. Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core

    NASA Astrophysics Data System (ADS)

    Fernández-Soler, P.; Ruiz Arriola, E.

    2017-07-01

    The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.

  9. Ab Initio Calculation of Photoionization and Inelastic Photon Scattering Spectra of He below the N=2 Threshold in a dc Electric Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihelic, Andrej; Zitnik, Matjaz

    2007-06-15

    We study the Stark effect on doubly excited states of the helium atom below N=2. We present the ab initio photoionization and total inelastic photon scattering cross sections calculated with the method of complex scaling for field strengths F{<=}100 kV/cm. The calculations are compared to the measurements of the ion [Phys. Rev. Lett. 90, 133002 (2003)] and vacuum ultraviolet fluorescence yields [Phys. Rev. Lett. 96, 093001 (2006)]. For the case of photoionization and for incident photons with polarization vector P parallel to the electric field F, we confirm the propensity rule proposed by Tong and Lin [Phys. Rev. Lett. 92,more » 223003 (2004)]. Furthermore, the rule is also shown to apply for F perpendicular P and for the case of the inelastic scattering in both experimental geometries.« less

  10. Full counting statistics and shot noise of cotunneling in quantum dots and single-molecule transistors

    NASA Astrophysics Data System (ADS)

    Kaasbjerg, Kristen; Belzig, Wolfgang

    2015-06-01

    We develop a conceptually simple scheme based on a master-equation approach to evaluate the full-counting statistics (FCS) of elastic and inelastic off-resonant tunneling (cotunneling) in quantum dots (QDs) and molecules. We demonstrate the method by showing that it reproduces known results for the FCS and shot noise in the cotunneling regime. For a QD with an excited state, we obtain an analytic expression for the cumulant generating function (CGF) taking into account elastic and inelastic cotunneling. From the CGF we find that the shot noise above the inelastic threshold in the cotunneling regime is inherently super-Poissonian when external relaxation is weak. Furthermore, a complete picture of the shot noise across the different transport regimes is given. In the case where the excited state is a blocking state, strongly enhanced shot noise is predicted both in the resonant and cotunneling regimes.

  11. Nonrelativistic quantum theory of the contact inelastic scattering of an x-ray photon by an atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopersky, Alexey N.; Nadolinsky, Alexey M.

    The nonrelativistic analytical structure of the doubly differential cross section of the contact inelastic scattering of an x-ray photon by a free atom is determined by means of the irreducible tensor operator theory outside the frame of the impulse approximation. For the neon atom in the vicinity of the 1s shell ionization threshold our theory predicts the existence of the distinct fine structure of the cross section caused by transitions of the atomic core electrons into the excited discrete spectrum states. The results of our calculations with inclusion of the effects of radial relaxation, inelastic scattering through the intermediate states,more » and elastic Rayleigh scattering, are predictions, while at the 22 keV incident photons they compare well with the synchrotron experiment by Jung et al. [Phys. Rev. Lett. 81, 1596 (1998)].« less

  12. Clustering impact regime with shocks in freely evolving granular gas

    NASA Astrophysics Data System (ADS)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  13. Rotationally and vibrationally inelastic scattering in the rotational IOS approximation. Ultrasimple calculation of total (differential, integral, and transport) cross sections for nonspherical molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, G.A.; Pack, R.T

    1978-02-15

    A simple, direct derivation of the rotational infinite order sudden (IOS) approximation in molecular scattering theory is given. Connections between simple scattering amplitude formulas, choice of average partial wave parameter, and magnetic transitions are reviewed. Simple procedures for calculating cross sections for specific transitions are discussed and many older model formulas are given clear derivations. Total (summed over rotation) differential, integral, and transport cross sections, useful in the analysis of many experiments involving nonspherical molecules, are shown to be exceedingly simple: They are just averages over the potential angle of cross sections calculated using simple structureless spherical particle formulas andmore » programs. In the case of vibrationally inelastic scattering, the IOSA, without further approximation, provides a well-defined way to get fully three dimensional cross sections from calculations no more difficult than collinear calculations. Integral, differential, viscosity, and diffusion cross sections for He-CO/sub 2/ obtained from the IOSA and a realistic intermolecular potential are calculated as an example and compared with experiment. Agreement is good for the complete potential but poor when only its spherical part is used, so that one should never attempt to treat this system with a spherical model. The simplicity and accuracy of the IOSA make it a viable method for routine analysis of experiments involving collisions of nonspherical molecules.« less

  14. Center-to-limb variation of solar line profiles as a test of NLTE line formation calculations

    NASA Astrophysics Data System (ADS)

    Allende Prieto, C.; Asplund, M.; Fabiani Bendicho, P.

    2004-09-01

    We present new observations of the center-to-limb variation of spectral lines in the quiet Sun. Our long-slit spectra are corrected for scattered light, which amounts to 4-8% of the continuum intensity, by comparison with a Fourier transform spectrum of the disk center. Different spectral lines exhibit different behaviors, depending on their sensitivity to the physical conditions in the photosphere and the range of depths they probe as a function of the observing angle, providing a rich database to test models of the solar photosphere and line formation. We examine the effect of inelastic collisions with neutral hydrogen in NLTE line formation calculations of the oxygen infrared triplet, and the Na I λ6160.8 line. Adopting a classical one-dimensional theoretical model atmosphere, we find that the sodium transition, formed in higher layers, is more effectively thermalized by hydrogen collisions than the high-excitation oxygen lines. This result appears as a simple consequence of the decrease of the ratio NH/Ne with depth in the solar photosphere. The center-to-limb variation of the selected lines is studied both under LTE and NLTE conditions. In the NLTE analysis, inelastic collisions with hydrogen atoms are considered with a simple approximation or neglected, in an attempt to test the validity of such approximation. For the sodium line studied, the best agreement between theory and observation happens when NLTE is considered and inelastic collisions with hydrogen are neglected in the rate equations. The analysis of the oxygen triplet benefits from a very detailed calculation using an LTE three-dimensional model atmosphere and NLTE line formation. The χ2 statistics favors including hydrogen collisions with the approximation adopted, but the oxygen abundance derived in that case is significantly higher than the value derived from OH infrared transitions. GCT spectra are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/1109

  15. Elastic and Inelastic Scattering of 27.6 Mev Deuterons in Ni. Report No. 55; DISPERSION ELASTICA E INELASTICA DE DEUTERONES DE 27,6 Mev POR Ni. INFORME NO. 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, S.; Rosenblatt, J.

    1961-01-01

    Elastic and inelastic differential cross sections in Ni(d,d)Ni with 27.6 Mev deuterons were measured with the aid of scintillation technique. Charged particle spectra from the reaction were observed at laboratory angles of 15 up to 150 degrees, showing the presence of Q-positive stripping protons and elastic and inelastic deuteron groups. Due to isotopic mixture in natural Ni and the rather high level density above 2 Mev of excitation in most of those isotopes, only inelastic deuteron groups going to the first excited states in Ni/sup 58/ and Ni/ sup 60/ could be identified. Elastic angular distribution exhibits similarities to thatmore » obtained by Yntema at 21.6 Mev, showing the typical diffraction patterns. At backward angles, a slight growing in the crosssection was observed which was not observed at 21.6 Mev. By regarding the elastic scattering like a classical light diffraction by a black disk, an interaction radius of 6.8 plus or minus 0.8 f was derived. Inelastic angular distributions were fitted by semiclassical Butler et al. theory and Huby-Newns theory. Due to above-mentioned limitations level mixtures could not be avoided; however, a group of deuterons going to Ni/ sup 58/ 1.45 Mev, probably mixed with Ni/sup 60/ 1.33 Mev, could be identified as proceeding via direct interaction with l = 2 and interaction radius 6.7 f and 6.9 f, respectively. Another inelastic group identified as Ni/sup 58/ 2.46 Mev mixed with Ni/sup 60/ 2.50 Mev is well fitted by l = 2 plus l = 4 and interaction radius 8.9 f and 8.7 f respectively, showing direct interaction behavor. Contributions to the above processes from compound nucleus formation are small as can be seen from absolute cross sections above 50 degrees. Total cross section for the formation of compound nucleus is about 860 mbarn. According to selection rules for deuteron scattering, 2/sup +/ is assigned to levels 1.45 Mev and 2.46 Mev in Ni/sup 58/; however this assignment is not definitive due to background from levels in Ni/sup 58/ and Ni/sup 60/ present at those excitation energies. (auth)« less

  16. Toward the Reliability of Fault Representation Methods in Finite Difference Schemes for Simulation of Shear Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Day, S. M.

    2006-12-01

    Accuracy in finite difference (FD) solutions to spontaneous rupture problems is controlled principally by the scheme used to represent the fault discontinuity, and not by the grid geometry used to represent the continuum. We have numerically tested three fault representation methods, the Thick Fault (TF) proposed by Madariaga et al (1998), the Stress Glut (SG) described by Andrews (1999), and the Staggered-Grid Split-Node (SGSN) methods proposed by Dalguer and Day (2006), each implemented in a the fourth-order velocity-stress staggered-grid (VSSG) FD scheme. The TF and the SG methods approximate the discontinuity through inelastic increments to stress components ("inelastic-zone" schemes) at a set of stress grid points taken to lie on the fault plane. With this type of scheme, the fault surface is indistinguishable from an inelastic zone with a thickness given by a spatial step dx for the SG, and 2dx for the TF model. The SGSN method uses the traction-at-split-node (TSN) approach adapted to the VSSG FD. This method represents the fault discontinuity by explicitly incorporating discontinuity terms at velocity nodes in the grid, with interactions between the "split nodes" occurring exclusively through the tractions (frictional resistance) acting between them. These tractions in turn are controlled by the jump conditions and a friction law. Our 3D tests problem solutions show that the inelastic-zone TF and SG methods show much poorer performance than does the SGSN formulation. The SG inelastic-zone method achieved solutions that are qualitatively meaningful and quantitatively reliable to within a few percent. The TF inelastic-zone method did not achieve qualitatively agreement with the reference solutions to the 3D test problem, and proved to be sufficiently computationally inefficient that it was not feasible to explore convergence quantitatively. The SGSN method gives very accurate solutions, and is also very efficient. Reliable solution of the rupture time is reached with a median resolution of the cohesive zone of only ~2 grid points, and efficiency is competitive with the Boundary Integral (BI) method. The results presented here demonstrate that appropriate fault representation in a numerical scheme is crucial to reduce uncertainties in numerical simulations of earthquake source dynamics and ground motion, and therefore important to improving our understanding of earthquake physics in general.

  17. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis.

    PubMed

    Ethier, J J; Sato, N; Melnitchouk, W

    2017-09-29

    We perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive e^{+}e^{-} annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. The combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  18. First Simultaneous Extraction of Spin-Dependent Parton Distributions and Fragmentation Functions from a Global QCD Analysis

    DOE PAGES

    Ethier, Jacob J.; Sato, Nobuo; Melnitchouk, Wally

    2017-09-26

    In this paper, we perform the first global QCD analysis of polarized inclusive and semi-inclusive deep-inelastic scattering and single-inclusive $e^+e^-$ annihilation data, simultaneously fitting the parton distribution and fragmentation functions using the iterative Monte Carlo method. Without imposing SU(3) symmetry relations, we find the strange polarization to be very small, consistent with zero for both inclusive and semi-inclusive data, which provides a resolution to the strange quark polarization puzzle. Finally, the combined analysis also allows the direct extraction from data of the isovector and octet axial charges, and is consistent with a small SU(2) flavor asymmetry in the polarized sea.

  19. Iterative Monte Carlo analysis of spin-dependent parton distributions

    DOE PAGES

    Sato, Nobuo; Melnitchouk, Wally; Kuhn, Sebastian E.; ...

    2016-04-05

    We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at x ≳ 0.1. Furthermore, the study also provides the first determination of the flavor-separated twist-3 PDFsmore » and the d 2 moment of the nucleon within a global PDF analysis.« less

  20. Proton scattering by short lived sulfur isotopes

    NASA Astrophysics Data System (ADS)

    Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.

    1999-09-01

    Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.

  1. MAC/GMC 4.0 User's Manual: Example Problem Manual. Volume 3

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2002-01-01

    This document is the third volume in the three volume set of User's Manuals for the Micromechanics Analysis Code with Generalized Method of Cells Version 4.0 (MAC/GMC 4.0). Volume 1 is the Theory Manual, Volume 2 is the Keywords Manual, and this document is the Example Problems Manual. MAC/GMC 4.0 is a composite material and laminate analysis software program developed at the NASA Glenn Research Center. It is based on the generalized method of cells (GMC) micromechanics theory, which provides access to the local stress and strain fields in the composite material. This access grants GMC the ability to accommodate arbitrary local models for inelastic material behavior and various types of damage and failure analysis. MAC/GMC 4.0 has been built around GMC to provide the theory with a user-friendly framework, along with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-mechanical loading, generation of output results, and selection of architectures to represent the composite material, have been automated in MAC/GMC 4.0. Finally, classical lamination theory has been implemented within MAC/GMC 4.0 wherein GMC is used to model the composite material response of each ply. Consequently, the full range of GMC composite material capabilities is available for analysis of arbitrary laminate configurations as well. This volume provides in-depth descriptions of 43 example problems, which were specially designed to highlight many of the most important capabilities of the code. The actual input files associated with each example problem are distributed with the MAC/GMC 4.0 software; thus providing the user with a convenient starting point for their own specialized problems of interest.

  2. High-energy-resolution diced spherical quartz analyzers for resonant inelastic X-ray scattering

    DOE PAGES

    Said, Ayman H.; Gog, Thomas; Wieczorek, Michael; ...

    2018-02-15

    A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the IrL 3absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr 3Ir 2O 7sample is shown.

  3. STUDY OF THE INELASTIC SCATTERING OF ELECTRONS BY THE NUCLEI $sup 6$Li AND $sup 7$Li (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernheim, M.; Bishop, G.R.

    1963-11-01

    We have measured the form factors for transitions to the following excited states by the inelastic scattering of electrons: 2.189, 3.57, and 4.52 Mev of /sup 6/Li; and 0.478, 4.61, 5.76, and 6.8 Mev of /sup 7/Li. The dependence of the form factors on the momentum transfer indicates the principal components of the wave functions describing these states. (auth)

  4. IUTAM Symposium on Inelastic Deformation of Composite Materials Held in Troy, New York on 29 May - 1 June 1990

    DTIC Science & Technology

    1991-01-01

    bimodal theory . 1. Introduction Numerous analytical models have been proposed for prediction of the inelastic response of fibrous composites, an...necessity - especially at a higher c1 - to use the local-field theory . The shear creep strain of the composite is slightly larger in the transverse... gauge surface were also monitored. Theoretical Consideration Failure theories for anisotropic materials in plane stress conditions are in general

  5. Experimental electron energy-loss spectra and cross sections for the 4/2/S - 4/2/P transition in Zn II

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Newell, W. R.

    1982-01-01

    Electron energy-loss spectra and differential cross sections are reported for inelastic scattering from Zn II. Measurements were carried out in a crossed electron beam-ion beam apparatus, at incident electron energies of 30, 40, 50, 60, 75, 85, and 100 eV, and at a scattering angle of 14 deg. The present results are the first reported measurements of inelastic electron scattering from an ion.

  6. Deep inelastic scattering of leptons from nuclear targets and the BFKL Pomeron

    NASA Astrophysics Data System (ADS)

    Bialas, Andrzej; Czyz, Wieslaw; Florkowski, Wojciech

    1997-06-01

    We calculate shadowing in the process of deep inelastic interactions of leptons with nuclei in the perturbative regime of QCD. We find appreciable shadowing for heavy nuclei (e.g., Pb) in the region of a small Bjorken scaling variable 10-5<=x<=10-3. This shadowing depends weakly on Q2, but it may be strongly influenced, especially at x>=10-3, by the existence of real parts of the forward scattering amplitudes.

  7. Evidence for anomalous prompt photons in deep inelastic muon scattering at 200 GeV

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S. C.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Gregory, P.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Ingelman, G.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Muont, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.; European Muon Collaboration

    1989-02-01

    The inclusive yield of photons has been measured from deep inelastic interactions of 200 GeV muons on hydrogen. After subtracting the contributions from hadron electromagnetic decays and Bethe-Heitler muon bremsstrahlung, residual photons are observed at low pT and low z at a mean level of 0.15±0.06 per interaction. The quark Compton scattering process is unable to explain the data, thus indicating an anomalous photon production.

  8. Improving the neutrino mass hierarchy identification with inelasticity measurement in PINGU and ORCA

    NASA Astrophysics Data System (ADS)

    Ribordy, Mathieu; Smirnov, A. Yu.

    2013-06-01

    Multimegaton scale in under-ice and underwater detectors of atmospheric neutrinos with a few GeV energy threshold (PINGU, ORCA) open up new possibilities in the determination of neutrino properties, and in particular the neutrino mass hierarchy. With a dense array of optical modules it will be possible to determine the inelasticity, y, of the charged current νμ events in addition to the neutrino energy Eν and the muon zenith angle θμ. The discovery potential of the detectors will substantially increase with the measurement of y. It will enable (i) a partial separation of the neutrino and antineutrino signals, (ii) a better reconstruction of the neutrino direction, (iii) the reduction of the neutrino parameters degeneracy, (iv) a better control of systematic uncertainties, and (v) a better identification of the νμ events. It will improve the sensitivity to the CP-violation phase. The three-dimensional (Eν,θμ,y), νμ oscillograms with the kinematical as well as the experimental smearing are computed. We present the asymmetry distributions in the Eν-θμ plane for different intervals of y and study their properties. We show that the inelasticity information reduces the effect of degeneracy of parameters by 30%. With the inelasticity, the total significance of establishing mass hierarchy may increase by (20-50)%, thus effectively increasing the volume of the detector by a factor of 1.5-2.

  9. Elastic and inelastic scattering for the 10B+58Ni system at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Scarduelli, V.; Crema, E.; Guimarães, V.; Abriola, D.; Arazi, A.; de Barbará, E.; Capurro, O. A.; Cardona, M. A.; Gallardo, J.; Hojman, D.; Martí, G. V.; Pacheco, A. J.; Rodrígues, D.; Yang, Y. Y.; Deshmukh, N. N.; Paes, B.; Lubian, J.; Mendes Junior, D. R.; Morcelle, V.; Monteiro, D. S.

    2017-11-01

    Full angular distributions of the 10B elastically and inelastically scattered by 58Ni have been measured at different energies around the Coulomb barrier. The elastic and inelastic scattering of 10B on a medium mass target has been measured for the first time. The obtained angular distributions have been analyzed in terms of large-scale coupled reaction channel calculations, where several inelastic transitions of the projectile and the target, as well as the most relevant one- and two-step transfer reactions have been included in the coupling matrix. The roles of the spin reorientation, the spin-orbit interaction, and the large ground-state deformation of the 10B, in the reaction mechanism, were also investigated. The real part of the interaction potential between projectile and target was represented by a parameter-free double-folding potential, whereas no imaginary potential at the surface was considered. In this sense, the theoretical calculations were parameter free and their results were compared to experimental data to investigate the relative importance of the different reaction channels. A striking influence of the ground-state spin reorientation of the 10B nucleus was found, while all transfer reactions investigated had a minimum contribution to the dynamics of the system. Finally, the large static deformation of the 10B and the spin-orbit coupling can also play an important role in the system studied.

  10. A quasi-molecular dynamics simulation study on the effect of particles collisions in pulsed-laser desorption

    NASA Astrophysics Data System (ADS)

    Xinyu-Tan; Duanming-Zhang; Shengqin-Feng; Li, Zhi-hua; Li, Guan; Li, Li; Dan, Liu

    2006-05-01

    The dynamics characteristic and effect of atoms and particulates ejected from the surface generated by nanosecond pulsed-laser ablation are very important. In this work, based on the consideration of the inelasticity and non-uniformity of the plasma particles thermally desorbed from a plane surface into vacuum induced by nanosecond laser ablation, the one-dimensional particles flow is studied on the basis of a quasi-molecular dynamics (QMD) simulation. It is assumed that atoms and particulates ejected from the surface of a target have a Maxwell velocity distribution corresponding to the surface temperature. Particles collisions in the ablation plume. The particles mass is continuous and satisfies fractal theory distribution. Meanwhile, the particles are inelastic. Our results show that inelasticity and non-uniformity strongly affect the dynamics behavior of the particles flow. Along with the decrease of restitution coefficient e and increase of fractional dimension D, velocity distributions of plasma particles system all deviate from the initial Gaussian distribution. The increasing of dissipation energy ΔE leads to density distribution clusterized and closed up to the center mass. Predictions of the particles action based on the proposed fractal and inelasticity model are found to be in agreement with the experimental observation. This verifies the validity of the present model for the dynamics behavior of pulsed-laser-induced particles flow.

  11. Component-specific modeling

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1985-01-01

    Accomplishments are described for the second year effort of a 3-year program to develop methodology for component specific modeling of aircraft engine hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models; (2) geometry model generators; (3) remeshing; (4) specialty 3-D inelastic stuctural analysis; (5) computationally efficient solvers, (6) adaptive solution strategies; (7) engine performance parameters/component response variables decomposition and synthesis; (8) integrated software architecture and development, and (9) validation cases for software developed.

  12. Elastoviscoplastic snap-through behavior of shallow arches subjected to thermomechanical loads

    NASA Technical Reports Server (NTRS)

    Simitses, George J.; Song, Yuzhao; Sheinman, Izhak

    1991-01-01

    The problem of snap-through buckling of clamped shallow arches under thermomechanical loads is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations. A finite element approach is employed to predict the, in general, inelastic buckling behavior. The construction material is alloy B1900 + Hf, which is commonly utilized in high-temperature environments. The effect of several parameters is assessed. These parameters include the rise parameter and temperature. Comparison between elastic and elastoviscoplastic responses is also presented.

  13. Constraints on large- x parton distributions from new weak boson production and deep-inelastic scattering data

    DOE PAGES

    Accardi, A.; Brady, L. T.; Melnitchouk, W.; ...

    2016-06-20

    A new set of leading twist parton distribution functions, referred to as "CJ15", is presented, which take advantage of developments in the theoretical treatment of nuclear corrections as well as new data. The analysis includes for the first time data on the free neutron structure function from Jefferson Lab, and new high-precision charged lepton and W-boson asymmetry data from Fermilab, which significantly reduce the uncertainty on the d/u ratio at large values of x.

  14. Component-specific modeling. [jet engine hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    Accomplishments are described for a 3 year program to develop methodology for component-specific modeling of aircraft hot section components (turbine blades, turbine vanes, and burner liners). These accomplishments include: (1) engine thermodynamic and mission models, (2) geometry model generators, (3) remeshing, (4) specialty three-dimensional inelastic structural analysis, (5) computationally efficient solvers, (6) adaptive solution strategies, (7) engine performance parameters/component response variables decomposition and synthesis, (8) integrated software architecture and development, and (9) validation cases for software developed.

  15. Measurements of the u valence quark distribution function in the proton and u quark fragmentation functions

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; De la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.; European Muon Collaboration

    1989-07-01

    A new determination of the u valence quark distribution function in the proton is obtained from the analysis of identified charged pions, kaons, protons and antiprotons produced in muon-proton and muon-deuteron scattering. The comparison with results obtained in inclusive deep inelastic lepton-nucleon scattering provides a further test of the quark-parton model. The u quark fragmentation functions into positive and negative pions, kaons, protons and antiprotons are also measured.

  16. Extractions of polarized and unpolarized parton distribution functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Delgado, Pedro

    2014-01-01

    An overview of our ongoing extractions of parton distribution functions of the nucleon is given. First JAM results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering are presented first, and followed by a short report on the status of the JR unpolarized parton distributions. Different aspects of PDF analysis are briefly discussed, including effects of the nuclear structure of targets, target-mass corrections and higher twist contributions to the structure functions.

  17. What is the existing evidence supporting the efficacy of compression bandage systems containing both elastic and inelastic components (mixed-component systems)? A systematic review.

    PubMed

    Welsh, Lynn

    2017-05-01

    To analyse current evidence on the efficacy of bandage systems containing both elastic and inelastic components (mixed-component systems). International consensus on the efficacy of types of compression systems is difficult to achieve; however, mixed-component systems are being promoted as combining the best properties of both elastic and inelastic bandage systems and increasingly being used to treat venous leg ulcers in practice. A systematic literature review. Search terms such as venous leg ulcer, varicose ulcer, leg ulcer, compression, bandage, elastic, inelastic, short stretch, healing rate, interface pressure, mixed component, two-layer, four-layer and multi-layer were used in database and hand searches in several combinations. Limits were set for years 2005-March 2015 and English-language publications. A total of 475 studies were identified at initial search, and following elimination from abstract and title, this was reduced to 7. A further study was identified on Google Scholar, bringing the final number of studies fitting inclusion criteria to 8. The following subgroups relating to outcomes of efficacy were identified: ulcer healing, maintenance of interface pressure, slippage, ease of application and patient quality of life. Mixed-component systems were found to have comparable ulcer healing rates to alternative compression systems and be easy to apply; have similar abilities to maintain pressure as four-layer bandages and better abilities than short-stretch bandages; have less slippage than alternative systems; and to be significantly associated with several favourable quality of life outcomes. Clinician skill in bandage application was an uncontrolled variable in all eight papers included in the review, which may limit reliability of findings. This review synthesises existing evidence on the efficacy of mixed-component systems and encourages clinicians to regard them as an effective alternative to purely elastic or inelastic compression systems. Additionally, it highlights the importance of clinician skill in bandage application as a crucial determinant of effective compression. © 2016 John Wiley & Sons Ltd.

  18. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2017-12-09

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  19. Polarized-neutron investigation of magnetic ordering and spin dynamics in BaCo2(AsO4)2 frustrated honeycomb-lattice magnet.

    PubMed

    Regnault, L-P; Boullier, C; Lorenzo, J E

    2018-01-01

    The magnetic properties of the cobaltite BaCo 2 (AsO 4 ) 2 , a good realization of the quasi two-dimensional frustrated honeycomb-lattice system with strong planar anisotropy, have been reinvestigated by means of spherical neutron polarimetry with CRYOPAD. From accurate measurements of polarization matrices both on elastic and inelastic contributions as a function of the scattering vector Q , we have been able to determine the low-temperature magnetic structure of BaCo 2 (AsO 4 ) 2 and reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure (described by an incommensurate propagation vector [Formula: see text], with [Formula: see text] and [Formula: see text]) appears to be a quasi-collinear structure, and not a simple helix, as previously determined. In addition, our results have revealed the existence of a non-negligible out-of-plane moment component [Formula: see text]/Co 2+ , representing about 10% of the in-plane component, as demonstrated by the presence of finite off-diagonal elements [Formula: see text] and [Formula: see text] of the polarization matrix, both on elastic and inelastic magnetic contributions. Despite a clear evidence of the existence of a slightly inelastic contribution of structural origin superimposed to the magnetic excitations at the scattering vectors [Formula: see text] and [Formula: see text] (energy transfer [Formula: see text] meV), no strong inelastic nuclear-magnetic interference terms could be detected so far, meaning that the nuclear and magnetic degrees of freedom have very weak cross-correlations. The strong inelastic [Formula: see text] and [Formula: see text] matrix elements can be understood by assuming that the magnetic excitations in BaCo 2 (AsO 4 ) 2 are spin waves associated with trivial anisotropic precessions of the magnetic moments involved in the canted incommensurate structure.

  20. Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei

    NASA Astrophysics Data System (ADS)

    Dupuis, M.

    2017-05-01

    The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.

  1. Distribution of Linearly Polarized Gluons and Elliptic Azimuthal Anisotropy in Deep Inelastic Scattering Dijet Production at High Energy

    DOE PAGES

    Dumitru, Adrian; Lappi, Tuomas; Skokov, Vladimir

    2015-12-17

    In this study, we determine the distribution of linearly polarized gluons of a dense target at small x by solving the Balitsky–Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner rapidity evolution equations. From these solutions, we estimate the amplitude of cos2Φ azimuthal asymmetries in deep inelastic scattering dijet production at high energies. We find sizable long-range in rapidity azimuthal asymmetries with a magnitude in the range of v 2=~10%.

  2. Initial study of deep inelastic scattering with ZEUS at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Musgrave, B.; Repond, J.; Repond, S.; Stanek, R.; Talaga, R. L.; Thron, J.; Arzarello, F.; Ayad, R.; Barbagli, G.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Ciralli, F.; Contin, A.; D'Auria, S.; del Papa, C.; Frasconi, F.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Lin, Q.; Lisowski, B.; Maccarrone, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, F.; Sartorelli, G.; Timellini, R.; Zamora Garcia, Y.; Zichichi, A.; Bargende, A.; Crittenden, J.; Dabbous, H.; Desch, K.; Diekmann, B.; Doeker, T.; Geerts, M.; Geitz, G.; Gutjahr, B.; Hartmann, H.; Hartmann, J.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Kramarczyk, S.; Kückes, M.; Mass, A.; Mengel, S.; Mollen, J.; Monaldi, D.; Müsch, H.; Paul, E.; Schattevoy, R.; Schneider, J.-L.; Wedemeyer, R.; Cassidy, A.; Cussans, D. G.; Dyce, N.; Fawcett, H. F.; Foster, B.; Gilmore, R.; Heath, G. P.; Lancaster, M.; Llewellyn, T. J.; Malos, J.; Morgado, C. J. S.; Tapper, R. J.; Wilson, S. S.; Rau, R. R.; Barillari, T.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Gialas, I.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Burkot, W.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Borzemski, P.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zerȩbska, E.; Suszycki, L.; Zajc, J.; Kȩdzierski, T.; Kotański, A.; Przybycień, M.; Bauerdick, L. A. T.; Behrens, U.; Bienlein, J. K.; Coldewey, C.; Dannemann, A.; Dierks, K.; Dorth, W.; Drews, G.; Erhard, P.; Flasiński, M.; Fleck, I.; Fürtjes, A.; Gläser, R.; Göttlicher, P.; Hass, T.; Hagge, L.; Hain, W.; Hasell, D.; Hultschig, H.; Jahnen, G.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Lüke, D.; Mainusch, J.; Manczak, O.; Momayezi, M.; Ng, J. S. T.; Nicel, S.; Notz, D.; Park, I. H.; Pösnecker, K.-U.; Rohde, M.; Ros, E.; Schneekloth, S.; Schroeder, J.; Schulz, W.; Selonke, F.; Stiliaris, E.; Tscheslog, E.; Tsurugai, T.; Turkot, F.; Vogel, W.; Woeniger, T.; Wolf, G.; Youngman, C.; Grabosch, H. J.; Leich, A.; Meyer, A.; Rethfeldt, C.; Schlensthdt, S.; Casalbuoni, R.; de Curtis, S.; Dominici, D.; Francescato, A.; Nuti, M.; Pelfer, P.; Anzivino, G.; Casaccia, R.; de Pasquale, S.; Qian, S.; Votano, L.; Bamberger, A.; Freidhof, A.; Poser, T.; Söldner-Rembold, S.; Theisen, G.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Forbes, J. R.; Jamieson, V. A.; Raine, C.; Saxon, D. H.; Brückmann, H.; Gloth, G.; Holm, U.; Kammerdocher, H.; Krebs, B.; Neumann, T.; Wick, K.; Hofmann, A.; Kröger, W.; Krüger, J.; Lohrmann, E.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Salomon, R.; Seidman, A.; Schott, W.; Wiik, B. H.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Markou, C.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Prinias, A.; Vorvolakos, A.; Bienz, T.; Kreutzmann, H.; Mallik, U.; McCliment, E.; Roco, M.; Wang, M. Z.; Cloth, P.; Filges, D.; Chen, L.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Barreiro, F.; Cases, G.; Hervás, L.; Labarga, L.; del Peso, J.; Roldán, J.; Terrón, J.; de Trocóniz, J. F.; Ikraiam, F.; Mayer, J. K.; Smith, G. R.; Corriveau, F.; Gilkinson, D. J.; Hanna, D. S.; Hung, L. W.; Mitchell, J. W.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Ullmann, R.; Bashindzhagyan, G. L.; Ermolov, P. F.; Golubkov, Y. A.; Kuzmin, V. A.; Kuznetsov, E. N.; Savin, A. A.; Voronin, A. G.; Zotov, N. P.; Bentvelsen, S.; Dake, A.; Engelen, J.; de Jong, P.; de Jong, S.; de Kamps, M.; Kooijman, P.; Kruse, A.; van der Lugt, H.; O'dell, V.; Straver, J.; Tenner, A.; Tiecke, H.; Uijterwaal, H.; Vermeulen, J.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Yoshida, R.; Bylsma, B.; Durkin, L. S.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, S. K.; Romanowski, T. A.; Seidlein, R.; Blair, G. A.; Butterworth, J. M.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Gingrich, D. M.; Hallam-Baker, P. M.; Harnew, N.; Khatri, T.; Long, K. R.; Luffman, P.; McArthur, I.; Morawitz, P.; Nash, J.; Smith, S. J. P.; Roocroft, N. C.; Wilson, F. F.; Abbiendi, G.; Brugnera, R.; Carlin, R.; dal Corso, F.; de Giorgi, M.; Dosselli, U.; Gasparini, F.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Field, G.; Lim, J. N.; Oh, B. Y.; Whitmore, J.; Contino, U.; D'Agostini, G.; Guida, M.; Iori, M.; Mari, S. M.; Marini, G.; Mattioli, M.; Nigro, A.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Short, T. L.; Barberis, E.; Cartiglia, N.; Heusch, C.; Hubbard, B.; Leslie, J.; O'Shaughnessy, K.; Sadrozinski, H. F.; Seiden, A.; Badura, E.; Biltzinger, J.; Chaves, H.; Rost, M.; Seifert, R. J.; Walenta, A. H.; Weihs, W.; Zech, G.; Dagan, S.; Levy, A.; Zer-Zion, D.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kasai, S.; Kuze, M.; Nagasawa, Y.; Nakao, M.; Okuno, H.; Tokushuku, K.; Watanabe, T.; Yamada, S.; Chiba, M.; Hamatsu, R.; Hirose, T.; Kitamura, S.; Nagayama, S.; Nakamitsu, Y.; Arneodo, M.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Bhadra, S.; Brkic, M.; Burow, B. D.; Chlebana, F. S.; Crombie, M. B.; Hartner, G. F.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Prentice, J. D.; Sampson, C. R.; Stairs, G. G.; Teuscher, R. J.; Yoon, T.-S.; Bullock, F. W.; Catterall, C. D.; Giddings, J. C.; Jones, T. W.; Khan, A. M.; Lane, J. B.; Makkar, P. L.; Shaw, D.; Shulman, J.; Blankenship, K.; Gibaut, D. B.; Kochocki, J.; Lu, B.; Mo, L. W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Stojda, K.; Stopczyński, A.; Szwed, R.; Tymieniecka, T.; Walczak, R.; Wróblewski, A. K.; Zakrzewski, J. A.; Zarnecki, A. F.; Adamus, M.; Abramowicz, H.; Eisenberg, Y.; Glasman, C.; Karshon, U.; Montag, A.; Revel, D.; Shapira, A.; Ali, I.; Behrens, B.; Camerini, U.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Lomperski, M.; Loveless, R. J.; Nylander, P.; Ptacek, M.; Reeder, D. D.; Smith, W. H.; Silverstein, S.; Frisken, W. R.; Furutani, K. M.; Iga, Y.

    1993-04-01

    Results are presented on neutral current, deep inelastic scattering measured in collisions of 26.7 GeV electrons and 820 GeV protons. The events typically populate a range in Q2 from 10 to 100 GeV2. The values of x extend down to x ~ 10-4 which is two orders of magnitude lower than previously measured at such Q2 values in fixed target experiments. The measured cross sections are in accord with the extrapolations of current parametrisations of parton distributions.

  3. The Processing and Mechanical Properties of High Temperature/High Performance Composites. Book 5. Processing and Miscellaneous Properties

    DTIC Science & Technology

    1993-04-01

    tensile fiber stress of 150-300 MPa, too little compared to measured fiber strengths of 3-4 GPa. A final possibility is that of nonuniform inelastic...flow of the matrix as a result of a spatially nonuniform distribution of porosity; this leads to a nonuniform distribution of forces along the fiber...the damage with the specific mechanism being fiber bending. The effects due to nonuniform inelastic flow (i.e., fiber bending) can be thought to occur

  4. Forward particle production in inelastic Ne-22 inteVractions in emulsion at 4.1 A Ge/c

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The collisions of high energy nuclei are likely to be the subject of intense experimental investigation in the near future. The results are presented on multiple meson production in forward cone in inelastic interactions of Ne-22 nuclei in emulsion at a primary momentum 4.1 GeV/c per nucleon. The detailed characteristics of particle production and the fragmentation processes in collisions of Ne-22 nuclei in emulsion are described.

  5. Mass spectra and fusion cross sections for /sup 20/Ne+/sup 24/Mg interaction at 55 and 85 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grotowski, K.; Belery, P.; Delbar, T.

    1981-06-01

    Inclusive ..gamma.. spectra from the /sup 20/Ne+/sup 24/Mg interaction have been measured using 55- and 85-MeV /sup 20/Ne ions. The identification of ..gamma.. lines allows the determination of mass spectra in the region 12< or =A< or =43. Experimental results are compared with statistical model calculations. The total reaction and fusion cross sections are extracted. Cross sections for inelastic scattering, few nucleon transfers, and deep inelastic scattering are estimated.

  6. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  7. Jet production in high Q 2 deep-inelastic ep scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Avad, R.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Romeo, G. Cara; Castellini, G.; Chiarini, M.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Nemoz, C.; Palmonari, E.; Polini, A.; Sartorelli, G.; Timellini, R.; Garcia, Y. Zamora; Zichichi, A.; Bargende, A.; Crittenden, J.; Desch, K.; Diekmann, B.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Geitz, G.; Grothe, M.; Haas, T.; Hartmann, H.; Haun, D.; Heinloth, K.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mari, S. M.; Mass, A.; Mengel, S.; Mollen, J.; Paul, E.; Rembser, Ch.; Schattevoy, R.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Dyce, N.; Foster, B.; George, S.; Gilmore, R.; Heath, G. P.; Heath, H. F.; Llewellyn, T. J.; Morgado, C. J. S.; Norman, D. J. P.; O'Mara, J. A.; Tapper, R. I.; Wilson, S. S.; Yoshida, R.; Rau, R. R.; Arneodo, M.; Iannotti, L.; Schioppa, M.; Susinno, G.; Bernstein, A.; Caldwell, A.; Parsons, J. A.; Ritz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Piotrzkowski, K.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Eskreys, K.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Rulikowska-Zarębska, E.; Suszycki, L.; Zając, J.; Kotański, A.; Przybycień, M.; Bauerdick, I. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Coldewey, C.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Gutjahr, B.; Hain, W.; Hasell, D.; Heßling, H.; Hultschig, H.; Iga, Y.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Köpke, L.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mańczak, O.; Ng, J. S. T.; Nickel, S.; Notz, D.; Ohrenberg, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Stiliaris, E.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Youngman, C.; Zhou, J. F.; Grabosch, H. J.; Kharchilava, A.; Leich, A.; Mattingly, M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Pelfer, P.; Anzivino, G.; Maccarrone, G.; de Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Freidhof, A.; Söldner-Rembold, S.; Schroeder, J.; Trefzger, T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Fleck, I.; Saxon, D. H.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Neumann, T.; Sinkus, R.; Wick, K.; Badura, E.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Mainusch, J.; Milewski, J.; Nakahata, M.; Pavel, N.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Butterworth, I.; Gallo, E.; Harris, V. L.; Hung, B. Y. H.; Long, K. R.; Miller, D. B.; Morawitz, P. P. O.; Prinias, A.; Sedgbeer, J. K.; Whitfield, A. F.; Mallik, U.; McCliment, E.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Zhang, Y.; Cloth, P.; Filges, D.; An, S. H.; Hong, S. M.; Nam, S. W.; Park, S. K.; Suh, M. H.; Yon, S. H.; Imlay, R.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Cases, G.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Smith, G. R.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Sinclair, L. E.; Stairs, D. G.; Laurent, M. St.; Ullmann, R.; Zacek, G.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Y. A.; Kobrin, V. D.; Kuzmin, V. A.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Dake, A.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; Tiecke, H.; Verkerke, W.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Honscheid, K.; Li, C.; Ling, T. Y.; McLean, K. W.; Murray, W. N.; Park, I. H.; Romanowski, T. A.; Seidlein, R.; Bailey, D. S.; Blair, G. A.; Byrne, A.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Daniels, D.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Luffman, P. E.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Uijterwaal, H.; Walczak, R.; Wilson, F. F.; Yip, T.; Abbiendi, G.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; de Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Bulmahn, J.; Butterworth, J. M.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Prytz, K.; Shah, T. P.; Short, T. L.; Barberis, L.; Cartiglia, N.; Dubbs, T.; Heusch, C.; van Hook, M.; Hubbard, B.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Biltzinger, J.; Seifert, R. J.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Hasegawa, T.; Hazumi, M.; Ishii, T.; Kuze, M.; Mine, S.; Nagasawa, Y.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Nakamitsu, Y.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Lamberti, L.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Bandyopadhyay, D.; Benard, F.; Brkic, M.; Crombie, M. B.; Gingrich, D. M.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Sampson, C. R.; Teuscher, R. J.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Blankenship, K.; Kochocki, J.; Lu, B.; Mo, L. W.; Bogusz, W.; Charchula, K.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Eisenberg, Y.; Karshon, U.; Revel, D.; Zer-Zion, D.; Ali, I.; Badgett, W. F.; Behrens, B.; Dasu, S.; Fordham, C.; Foudas, C.; Goussiou, A.; Loveless, R. J.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Tsurugai, T.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Schmidke, W. B.

    1995-03-01

    Two-jet production in deep-inelastic electron-proton scattering has been studied for 160< Q 2<1280 GeV2, 0.01< x<0.1 and 0.04< y<0.95 with the ZEUS detector at HERA. The kinematic properties of the jets and the jet production rates are presented. The partonic scaling variables of the two-jet system and the rate of two-jet production are compared to perturbative next-to-leading order QCD calculations.

  8. Measurement of “pretzelosity” asymmetry of charged pion production in semi-inclusive deep inelastic scattering on a polarized He 3 target

    DOE PAGES

    Zhang, Y.; Qian, X.; Allada, K.; ...

    2014-11-24

    An experiment to measure single-spin asymmetries in semi-inclusive production of charged pions in deep-inelastic scattering on a transversely polarized ³He target was performed at Jefferson Lab in the kinematic region of 0.16 < x < 0.35 and 1.4 < Q² < 2.7 GeV². Our results show that both π ± on 3He and on neutron pretzelosity asymmetries are consistent with zero within experimental uncertainties.

  9. Underwater seismic source. [for petroleum exploration

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1979-01-01

    Apparatus for generating a substantially oscillation-free seismic signal for use in underwater petroleum exploration, including a bag with walls that are flexible but substantially inelastic, and a pressured gas supply for rapidly expanding the bag to its fully expanded condition is described. The inelasticity of the bag permits the application of high pressure gas to rapidly expand it to full size, without requiring a venting mechanism to decrease the pressure as the bag approaches a predetermined size to avoid breaking of the bag.

  10. The strange sea density and charm production in deep inelastic charged current processes

    NASA Astrophysics Data System (ADS)

    Glück, M.; Kretzer, S.; Reya, E.

    1996-02-01

    Charm production as related to the determination of the strange sea density in deep inelastic charged current processes is studied predominantly in the framework of the overlineMS fixed flavor factorization scheme. Perturbative stability within this formalism is demonstrated. The compatibility of recent next-to-leading order strange quark distributions with the available dimuon and F2νN data is investigated. It is shown that final conclusions concerning these distributions afford further analyses of presently available and/or forthcoming neutrino data.

  11. Neutrino-Nucleon Deep Inelastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; Minerva Collaboration

    2015-04-01

    Neutrino-Nucleon Deep Inelastic Scattering (DIS) events provide a probe into the structure of the nucleus that cannot be accessed via charged lepton-nucleon interactions. The MINERvA experiment is stationed in the Neutrinos from the Main Injector (NuMI) beam line at Fermi National Accelerator Laboratory. The projected sensitivity of nuclear structure function analyses using MINERvA's suite of nuclear targets (C, CH, Fe and Pb) in the upgraded 6 GeV neutrino energy NuMI beam will be explored, and their impact discussed.

  12. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    DOE PAGES

    Gao, Xuan; Casa, Diego; Kim, Jungho; ...

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Moreover we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  13. Laser modified processes: bremsstrahlung and inelastic photon atom scattering

    NASA Astrophysics Data System (ADS)

    Budriga, Olimpia; Dondera, Mihai; Florescu, Viorica

    2007-08-01

    We consider the influence of a low-frequency monochromatic external electromagnetic field (the laser) on two basic atomic processes: electron Coulomb bremsstrahlung and inelastic photon scattering on an electron bound in the ground state of a hydrogenic atom. We briefly describe the approximations adopted and illustrate in figures how the laser parameters modify the shape of the differential cross-sections and extend the energy domain for emitted electrons, due to simultaneous absorption or emission of a large number (hundreds) of laser photons.

  14. International Symposium on Gas Kinetics (11th) Held in Assisi (Perugia), Italy on 2-7 September 1990. Book of Abstracts

    DTIC Science & Technology

    1990-09-07

    as traditional, themes in Gas Phase Kinetics. Highlighted topics include: A) Atmospheric Chemistry; B) Theory of Reactive, Inelastic, and...KINETICS AND SPECTROSCOPY OF EXCITED SPECIES OBTAINED VIA DETONATION OF LEAD AZIDE 0-20 C.Nyeland (Copenhagen, Denmark) COLLISION THEORY OF "FALL-OF...J.P.Burrows, and G.K.Moortgat (Mainz, W.Germany) POSSIBLE ABIOTIC SOURCES OF N2 0 B - THEORY OF REACTIVE, INELASTIC, AND PHODISSOCIATIVE PROCESSES B-i

  15. Internal energy fluctuations of a granular gas under steady uniform shear flow.

    PubMed

    Brey, J Javier; García de Soria, M I; Maynar, P

    2012-09-01

    The stochastic properties of the total internal energy of a dilute granular gas in the steady uniform shear flow state are investigated. A recent theory formulated for fluctuations about the homogeneous cooling state is extended by analogy with molecular systems. The theoretical predictions are compared with molecular dynamics simulation results. Good agreement is found in the limit of weak inelasticity, while systematic and relevant discrepancies are observed when the inelasticity increases. The origin of this behavior is discussed.

  16. Charm production in deep inelastic muon-iron interactions at 200 GeV/c

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S. C.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Declais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Maselli, S.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1987-03-01

    Dimuon and trimuon events have been studied in deep inelastic muon scattering on an iron target at an incident muon energy of 200 GeV. The events are shown to originate mainly from charm production. Comparison of the measured cross sections with data taken at higher muon energies shows that charm production originates predominantly from transverse virtual photons. Within the framework of the photon gluon fusion model this indicates that the parity of the gluon is odd.

  17. A search for free quarks in deep inelastic muon scattering

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; von Holtey, G.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thenard, J. M.; Thompson, J. C.; Urban, L.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Wimpenny, S. J.

    1983-12-01

    A search was made at the CERN SPS for long-lived fractionally charged particles produced in deep inelastic muon interactions on a Be target using the existing muon beam line as a spectrometer. No such particles were found, leading to upper limits for the production cross section of the order of 10-36 cm2 for 200 GeV incident muon momentum and quark masses below 9 GeV for the 2/3 charge and 15 GeV for 1/3 charge.

  18. The Bose-Einstein correlations in deep inelastic μ p interactions at 280 GeV

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Cliftt, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohi, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Osborne, L. S.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Sholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1986-03-01

    The Bose-Einstein correlation has been observed for pions in deep inelastic μ p interactions at 280 GeV. The importance of non-interference correlations in the sample of like charge pion pairs and in the sample used for reference is discussed. The pion emission region is found to be roughly spherical in the pair rest frame with a radius of 0.46 0.84 fm and the chaos factor λ is 0.60 1.08.

  19. Fingerprints of orbital physics in magnetic resonant inelastic X-ray scattering

    NASA Astrophysics Data System (ADS)

    Marra, Pasquale

    2012-09-01

    Orbital degrees of freedom play a major role in the physics of many strongly correlated transition metal compounds. However, they are still very difficult to access experimentally, in particular by neutron scattering. We propose here how to reveal orbital occupancies of the system ground state by magnetic resonant inelastic x-ray scattering (RIXS). This is possible because, unlike in neutron scattering, the intensity of the magnetic excitations in RIXS depends essentially on the symmetry of the orbitals where the spins are in.

  20. Fatigue-Arrestor Bolts

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W.; Gilster, Mark; Rodriguez, Sergio; Larson, John E.; Wickham, Mark D.; Schoonover, Kevin E.

    1995-01-01

    Bolts that arrest (or, more precisely, retard) onset of fatigue cracking caused by inelastic strains developed. Specifically developed to be installed in flange holes of unrestrained rocket engine nozzle. Fanges sometimes used to bolt nozzle to test stand; however, when rocket engine operated without this restraint, region around bolt holes experience severe inelastic strains causing fatigue cracking. Interference fits introduce compressive preloads that retard fatigue by reducing ranges of strains. Principle of these fatigue-arrestor bolts also applicable to holes in plates made of other materials and/or used for different purposes.

  1. Why don't people buy long-term-care insurance?

    PubMed

    Cramer, Anne Theisen; Jensen, Gail A

    2006-07-01

    The objective of this article was to assess the determinants of an individual's decision to purchase long-term-care (LTC) insurance. This article focuses on the decision to purchase a new policy as opposed to renewing an existing policy. This study gave special consideration to the role of policy price, the savings associated with buying a policy now as opposed to later, the purchaser's education, and the purchaser's income. Using data from the 2002 Health and Retirement Survey, we estimated logistic regressions to model consumer decisions to purchase LTC insurance. We explored several alternative measures of the price of a policy. Price was a significant determinant in decisions to purchase coverage. The demand for coverage, however, was price inelastic, with elasticities ranging from -0.23 to -0.87, depending on the specification of the model. The education level and income of the purchaser were also important. This analysis provides the first estimates of price elasticity of demand for LTC insurance. The finding that demand is very price inelastic suggests that state initiatives that effectively subsidize premiums as a way of stimulating purchases are likely to meet with very limited success in the present environment.

  2. FY17 Status Report on the Initial EPP Finite Element Analysis of Grade 91 Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messner, M. C.; Sham, T. -L.

    This report describes a modification to the elastic-perfectly plastic (EPP) strain limits design method to account for cyclic softening in Gr. 91 steel. The report demonstrates that the unmodified EPP strain limits method described in current ASME code case is not conservative for materials with substantial cyclic softening behavior like Gr. 91 steel. However, the EPP strain limits method can be modified to be conservative for softening materials by using softened isochronous stress-strain curves in place of the standard curves developed from unsoftened creep experiments. The report provides softened curves derived from inelastic material simulations and factors describing the transformationmore » of unsoftened curves to a softened state. Furthermore, the report outlines a method for deriving these factors directly from creep/fatigue tests. If the material softening saturates the proposed EPP strain limits method can be further simplified, providing a methodology based on temperature-dependent softening factors that could be implemented in an ASME code case allowing the use of the EPP strain limits method with Gr. 91. Finally, the report demonstrates the conservatism of the modified method when applied to inelastic simulation results and two bar experiments.« less

  3. Hot electron inelastic scattering and transmission across graphene surfaces

    NASA Astrophysics Data System (ADS)

    Kong, Byoung Don; Champlain, James G.; Boos, J. Brad

    2017-06-01

    Inelastic scattering and transmission of externally injected hot carriers across graphene layers are considered as a function of graphene carrier density, temperature, and surrounding dielectric media. A finite temperature dynamic dielectric function for graphene for an arbitrary momentum q and frequency ω is found under the random phase approximation and a generalized scattering lifetime formalism is used to calculate the scattering and transmission rates. Unusual trends in scattering are found, including declining rates as graphene carrier density increases and interband transition excitations, which highlights the difference with out-of-plane as compared to in-plane transport. The results also show strong temperature dependence with a drastic increase in scattering at room temperature. The calculated scattering rate at T = 300 K shows a wide variation from 0.2 to 10 fs-1 depending on graphene carrier density, incident carrier momentum, and surrounding dielectrics. The analysis suggests that a transmission rate greater than 0.9 for a carrier with kinetic energy over 1 eV is achievable by carefully controlling the graphene carrier density in conjunction with the use of high-κ dielectric materials. Potential applications to electronic and electro-optical devices are also discussed.

  4. Constraints on spin-dependent parton distributions at large x from global QCD analysis

    DOE PAGES

    Jimenez-Delgado, P.; Avakian, H.; Melnitchouk, W.

    2014-09-28

    This study investigate the behavior of spin-dependent parton distribution functions (PDFs) at large parton momentum fractions x in the context of global QCD analysis. We explore the constraints from existing deep-inelastic scattering data, and from theoretical expectations for the leading x → 1 behavior based on hard gluon exchange in perturbative QCD. Systematic uncertainties from the dependence of the PDFs on the choice of parametrization are studied by considering functional forms motivated by orbital angular momentum arguments. Finally, we quantify the reduction in the PDF uncertainties that may be expected from future high-x data from Jefferson Lab at 12 GeV.

  5. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE PAGES

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.; ...

    2015-09-28

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  6. QCD analysis of $W$- and $Z$-boson production at Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camarda, S.; Belov, P.; Cooper-Sarkar, A. M.

    Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied using the HERAFitter framework to assess their impact on the proton parton distribution functions (PDFs). Thus, the Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the d-valence quark distribution.

  7. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  8. Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Dupuis, M.; Lenzi, S. M.; Nowacki, F.; Obertelli, A.; Péru, S.; Pietralla, N.; Werner, V.; Wimmer, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Wu, J.; Xu, Z.

    2018-04-01

    Proton inelastic scattering of Ni,7472 and Zn,8076 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ -ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z =28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N =50 gap approaching 78Ni. These results are in agreement with QRPA and large-scale shell-model calculations.

  9. Pinning down inelastic dark matter in the Sun and in direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juhg@kth.se

    2016-04-01

    We study the solar capture rate of inelastic dark matter with endothermic and/or exothermic interactions. By assuming that an inelastic dark matter signal will be observed in next generation direct detection experiments we can set a lower bound on the capture rate that is independent of the local dark matter density, the velocity distribution, the galactic escape velocity as well as the scattering cross section. In combination with upper limits from neutrino observatories we can place upper bounds on the annihilation channels leading to neutrinos. We find that, while endothermic scattering limits are weak in the isospin-conserving case, strong boundsmore » may be set for exothermic interactions, in particular in the spin-dependent case. Furthermore, we study the implications of observing two direct detection signals, in which case one can halo-independently obtain the dark matter mass and the mass splitting, and disentangle the endothermic/exothermic nature of the scattering. Finally we discuss isospin violation.« less

  10. Assessment of seismic design response factors of concrete wall buildings

    NASA Astrophysics Data System (ADS)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  11. Primordial Particles; Collisions of Inelastic Particles

    NASA Astrophysics Data System (ADS)

    Sagi, George

    2011-03-01

    Three-dimensional matter is not defined by Euclidian or Cartesian geometries. Newton's and Einstein's laws are related to the motions of elastic masses. The study of collisions of inelastic particles opens up new vistas in physics. The present article reveals how such particles create clusters composed of various numbers of particles. The Probability of each formation, duplets, triplets, etc. can be calculated. The particles are held together by a binding force, and depending upon the angles of collisions they may also rotate around their center of geometry. Because of these unique properties such inelastic particles are referred to as primordial particles, Pp. When a given density of Pp per cubic space is given, then random collisions create a field. The calculation of the properties of such primordial field is very complex and beyond the present study. However, the angles of collisions are infinite in principle, but the probabilities of various cluster sizes are quantum dependent. Consequently, field calculations will require new complex mathematical methods to be discovered yet.

  12. Inelastic transport and low-bias rectification in a single-molecule diode.

    PubMed

    Hihath, Joshua; Bruot, Christopher; Nakamura, Hisao; Asai, Yoshihiro; Díez-Pérez, Ismael; Lee, Youngu; Yu, Luping; Tao, Nongjian

    2011-10-25

    Designing, controlling, and understanding rectification behavior in molecular-scale devices has been a goal of the molecular electronics community for many years. Here we study the transport behavior of a single molecule diode, and its nonrectifying, symmetric counterpart at low temperatures, and at both low and high biases to help elucidate the electron-phonon interactions and transport mechanisms in the rectifying system. We find that the onset of current rectification occurs at low biases, indicating a significant change in the elastic transport pathway. However, the peaks in the inelastic electron tunneling (IET) spectrum are antisymmetric about zero bias and show no significant changes in energy or intensity in the forward or reverse bias directions, indicating that despite the change in the elastic transmission probability there is little impact on the inelastic pathway. These results agree with first principles calculations performed to evaluate the IETS, which also allow us to identify which modes are active in the single molecule junction.

  13. Polarized deep inelastic scattering off the neutron from gauge/string duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100

    2010-05-01

    We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<

  14. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision

    NASA Astrophysics Data System (ADS)

    Yang, Dongzheng; Hu, Xixi; Zhang, Dong H.; Xie, Daiqian

    2018-02-01

    Solving the time-independent close coupling equations of a diatom-diatom inelastic collision system by using the rigorous close-coupling approach is numerically difficult because of its expensive matrix manipulation. The coupled-states approximation decouples the centrifugal matrix by neglecting the important Coriolis couplings completely. In this work, a new approximation method based on the coupled-states approximation is presented and applied to time-independent quantum dynamic calculations. This approach only considers the most important Coriolis coupling with the nearest neighbors and ignores weaker Coriolis couplings with farther K channels. As a result, it reduces the computational costs without a significant loss of accuracy. Numerical tests for para-H2+ortho-H2 and para-H2+HD inelastic collision were carried out and the results showed that the improved method dramatically reduces the errors due to the neglect of the Coriolis couplings in the coupled-states approximation. This strategy should be useful in quantum dynamics of other systems.

  15. Measurement of the inelastic proton-proton cross-section at √s=7 TeV with the ATLAS detector.

    PubMed

    2011-09-06

    The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, √s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, √s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic cross-section of 60.3 ± 2.1 mb is measured for ξ > 5×10⁻⁶, where ξ is calculated from the invariant mass, M(X), of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV.

  16. 54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.

    2018-04-01

    Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.

  17. Elastic and inelastic scattering of neutrons on 238U nucleus

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.

    2014-04-01

    Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.

  18. Incompressible inelasticity as an essential ingredient for the validity of the kinematic decomposition F =FeFi

    NASA Astrophysics Data System (ADS)

    Reina, Celia; Conti, Sergio

    2017-10-01

    The multiplicative decomposition of the total deformation F =FeFi between an elastic (Fe) and an inelastic component (Fi) is standard in the modeling of many irreversible processes such as plasticity, growth, thermoelasticity, viscoelasticty or phase transformations. The heuristic argument for such kinematic assumption is based on the chain rule for the compatible scenario (CurlFi = 0) where the individual deformation tensors are gradients of deformation mappings, i.e. F = D φ = D (φe ∘φi) = (Dφe) ∘φi (Dφi) =FeFi . Yet, the conditions for its validity in the general incompatible case (CurlFi ≠ 0) has so far remained uncertain. We show in this paper that detFi = 1 and CurlFi bounded are necessary and sufficient conditions for the validity of F =FeFi for a wide range of inelastic processes. In particular, in the context of crystal plasticity, we demonstrate via rigorous homogenization from discrete dislocations to the continuum level in two dimensions, that the volume preserving property of the mechanistics of dislocation glide, combined with a finite dislocation density, is sufficient to deliver F =FeFp at the continuum scale. We then generalize this result to general two-dimensional inelastic processes that may be described at a lower dimensional scale via a multiplicative decomposition while exhibiting a finite density of incompatibilities. The necessity of the conditions detFi = 1 and CurlFi bounded for such systems is demonstrated via suitable counterexamples.

  19. Estimating inelastic heavy-particle-hydrogen collision data. I. Simplified model and application to potassium-hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Belyaev, Andrey K.; Yakovleva, Svetlana A.

    2017-10-01

    Aims: We derive a simplified model for estimating atomic data on inelastic processes in low-energy collisions of heavy-particles with hydrogen, in particular for the inelastic processes with high and moderate rate coefficients. It is known that these processes are important for non-LTE modeling of cool stellar atmospheres. Methods: Rate coefficients are evaluated using a derived method, which is a simplified version of a recently proposed approach based on the asymptotic method for electronic structure calculations and the Landau-Zener model for nonadiabatic transition probability determination. Results: The rate coefficients are found to be expressed via statistical probabilities and reduced rate coefficients. It turns out that the reduced rate coefficients for mutual neutralization and ion-pair formation processes depend on single electronic bound energies of an atom, while the reduced rate coefficients for excitation and de-excitation processes depend on two electronic bound energies. The reduced rate coefficients are calculated and tabulated as functions of electronic bound energies. The derived model is applied to potassium-hydrogen collisions. For the first time, rate coefficients are evaluated for inelastic processes in K+H and K++H- collisions for all transitions from ground states up to and including ionic states. Tables with calculated data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A147

  20. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, C.W.

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelasticmore » spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.« less

  1. Studies of Mineral-Water Surfaces

    NASA Astrophysics Data System (ADS)

    Ross, Nancy L.; Spencer, Elinor C.; Levchenko, Andrey A.; Kolesnikov, Alexander I.; Wesolowski, David J.; Cole, David R.; Mamontov, Eugene; Vlcek, Lukas

    In this chapter we discuss the application of inelastic and quasielastic neutron scattering to the elucidation of the structure, energetics, and dynamics of water confined on the surfaces of mineral oxide nanoparticles. We begin by highlighting recent advancements in this active field of research before providing a brief review of the theory underpinning inelastic neutron scattering (INS) and quasielastic neutron scattering (QENS) techniques. We then discuss examples illustrating the use of neutron scattering methods for studying hydration layers that are an integral part of the nanoparticle structure. The first investigation of this kind, namely the INS analysis of hydrated ZrO2 nanoparticles, is described, as well as a later, complementary QENS study that allowed for the dynamics of diffusion of the water molecules within the hydration layer to be examined in detail. The diverse range of information available from INS experiments is illustrated by a recent study combining INS with calorimetric experiments that elucidated the thermodynamic properties of adsorbed water on anatase (TiO2) nanoparticles. To emphasize the importance of molecular dynamics (MD) simulations for deconvoluting complex QENS spectra, we describe both the MD and the QENS analysis of rutile (TiO2) and cassiterite (SnO2) nanoparticle systems and show that, when combined, data obtained by these two complementary methods can provide a complete description of the motion of the water molecules on the nanoparticle surface. We close with a glimpse into the future for this thriving field of research.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tougaard, Sven

    The author reports a systematic study of the range of validity of a previously developed algorithm for automated x-ray photoelectron spectroscopy analysis, which takes into account the variation in both peak intensity and the intensity in the background of inelastically scattered electrons. This test was done by first simulating spectra for the Au4d peak with gold atoms distributed in the form of a wide range of nanostructures, which includes overlayers with varying thickness, a 5 A layer of atoms buried at varying depths and a substrate covered with an overlayer of varying thickness. Next, the algorithm was applied to analyzemore » these spectra. The algorithm determines the number of atoms within the outermost 3 {lambda} of the surface. This amount of substance is denoted AOS{sub 3{lambda}} (where {lambda} is the electron inelastic mean free path). In general the determined AOS{sub 3{lambda}} is found to be accurate to within {approx}10-20% depending on the depth distribution of the atoms. The algorithm also determines a characteristic length L, which was found to give unambiguous information on the depth distribution of the atoms for practically all studied cases. A set of rules for this parameter, which relates the value of L to the depths where the atoms are distributed, was tested, and these rules were found to be generally valid with only a few exceptions. The results were found to be rather independent of the spectral energy range (from 20 to 40 eV below the peak energy) used in the analysis.« less

  3. Elasto-Plastic Analysis of Tee Joints Using HOT-SMAC

    NASA Technical Reports Server (NTRS)

    Arnold, Steve M. (Technical Monitor); Bednarcyk, Brett A.; Yarrington, Phillip W.

    2004-01-01

    The Higher Order Theory - Structural/Micro Analysis Code (HOT-SMAC) software package is applied to analyze the linearly elastic and elasto-plastic response of adhesively bonded tee joints. Joints of this type are finding an increasing number of applications with the increased use of composite materials within advanced aerospace vehicles, and improved tools for the design and analysis of these joints are needed. The linearly elastic results of the code are validated vs. finite element analysis results from the literature under different loading and boundary conditions, and new results are generated to investigate the inelastic behavior of the tee joint. The comparison with the finite element results indicates that HOT-SMAC is an efficient and accurate alternative to the finite element method and has a great deal of potential as an analysis tool for a wide range of bonded joints.

  4. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    NASA Astrophysics Data System (ADS)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  5. Development of an Input Suite for an Orthotropic Composite Material Model

    NASA Technical Reports Server (NTRS)

    Hoffarth, Canio; Shyamsunder, Loukham; Khaled, Bilal; Rajan, Subramaniam; Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Blankenhorn, Gunther

    2017-01-01

    An orthotropic three-dimensional material model suitable for use in modeling impact tests has been developed that has three major components elastic and inelastic deformations, damage and failure. The material model has been implemented as MAT213 into a special version of LS-DYNA and uses tabulated data obtained from experiments. The prominent features of the constitutive model are illustrated using a widely-used aerospace composite the T800S3900-2B[P2352W-19] BMS8-276 Rev-H-Unitape fiber resin unidirectional composite. The input for the deformation model consists of experimental data from 12 distinct experiments at a known temperature and strain rate: tension and compression along all three principal directions, shear in all three principal planes, and off axis tension or compression tests in all three principal planes, along with other material constants. There are additional input associated with the damage and failure models. The steps in using this model are illustrated composite characterization tests, verification tests and a validation test. The results show that the developed and implemented model is stable and yields acceptably accurate results.

  6. Electron beams in research and technology

    NASA Astrophysics Data System (ADS)

    Mehnert, R.

    1995-11-01

    Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.

  7. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    DOE PAGES

    Kim, A.; Avakian, H.; Burkert, V.; ...

    2017-02-22

    The target and double spin asymmetries of the exclusive pseudoscalar channelmore » $$\\vec e\\vec p\\to ep\\pi^0$$ were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of $Q^2$, $$x_B$$, $-t$ and $$\\phi$$. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs $$\\tilde{H}_T$$ and $$E_T$$, and complement previous measurements of unpolarized structure functions sensitive to the GPDs $$H_T$$ and $$\\bar E_T$$. Finally, these data provide necessary constraints for chiral-odd GPD parametrizations and will strongly influence existing theoretical handbag models.« less

  8. Characteristics of Electron Drift in an Ar-Hg Mixture

    NASA Astrophysics Data System (ADS)

    Golyatina, R. I.; Maiorov, S. A.

    2018-04-01

    The characteristics of electron drift in a mixture of argon with mercury vapor at reduced electric fields of E/ N = 1-100 Td are calculated and analyzed with allowance for inelastic collisions. It is shown that even a minor additive of mercury to argon at a level of a fraction of percent substantially affects the discharge parameters, in particular, the characteristics of inelastic processes. The influence of the concentration of mercury vapor in argon on the kinetic characteristics, such as the diffusion and mobility coefficients and ionization frequency, is investigated.

  9. Structure of ²⁰⁷Pb populated in ²⁰⁸Pb + ²⁰⁸Pb deep-inelastic collisions*

    DOE PAGES

    Shand, C. M.; Wilson, E.; Podolyák, Zs.; ...

    2015-01-01

    The yrast structure of 207Pb above the 13/2 + isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ~ 6 MeV, built using coincidence and γ-ray intensity analyses. In addition, the spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations.

  10. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE PAGES

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; ...

    2016-04-22

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  11. Transition probability functions for applications of inelastic electron scattering

    PubMed Central

    Löffler, Stefan; Schattschneider, Peter

    2012-01-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  12. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  13. Inelastic Scattering Of Electrons By Protons

    DOE R&D Accomplishments Database

    Cone, A. A.; Chen, K. W.; Dunning, J. R. Jr.; Hartwig, G.; Ramsey, N. F.; Walker, J. K.; Wilson, R.

    1966-12-01

    The inelastic scattering of electrons by protons has been measured at incident electron energies up to 5 BeV/c and momentum transfers q{sup 2}=4(BeV/c){sup 2}. Excitation of known nucleon resonances at M=1238, 1512, 1688 and possibly 1920 MeV have been observed. The calculations for the resonance at M=1238 MeV have been compared with calculations by Adler based on the dispersion theory of Chew, Goldberger, Low and Nambu. The agreement is good. Qualitative models are discussed for the other resonances.

  14. Pattern formation of microtubules and motors: inelastic interaction of polar rods.

    PubMed

    Aranson, Igor S; Tsimring, Lev S

    2005-05-01

    We derive a model describing spatiotemporal organization of an array of microtubules interacting via molecular motors. Starting from a stochastic model of inelastic polar rods with a generic anisotropic interaction kernel we obtain a set of equations for the local rods concentration and orientation. At large enough mean density of rods and concentration of motors, the model describes orientational instability. We demonstrate that the orientational instability leads to the formation of vortices and (for large density and/or kernel anisotropy) asters seen in recent experiments.

  15. Structure of ²⁰⁷Pb populated in ²⁰⁸Pb + ²⁰⁸Pb deep-inelastic collisions*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shand, C. M.; Wilson, E.; Podolyák, Zs.

    The yrast structure of 207Pb above the 13/2 + isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ~ 6 MeV, built using coincidence and γ-ray intensity analyses. In addition, the spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations.

  16. First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-04-01

    We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.

  17. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  18. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  19. Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Eckert, Sebastian; Norell, Jesper; Miedema, Piter S.; ...

    2017-04-04

    Here, the femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort timescale.

  20. Measurement of hadron azimuthal distributions in deep inelastic muon proton scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Conrad, J.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pavel, N.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Sandacz, A.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1987-09-01

    A study of the distribution of the azimuthal angle ϕ of charged hadrons in deep inelastic μ- p scattering is presented. The dependence of the moments of this distribution on the Feynman x variable and the momentum transverse to the virtual photon indicates that non-zero moments arise mainly from the effects of the intrinsic K T of the struck quark with < K {/T 2}>>≳(0.44 GeV)2, and to a lesser extent from QCD processes. No significant variation with Q 2 or W 2 is observed.

Top