Science.gov

Sample records for inert gas dilution

  1. Automated measurement of respiratory gas exchange by an inert gas dilution technique

    NASA Technical Reports Server (NTRS)

    Sawin, C. F.; Rummel, J. A.; Michel, E. L.

    1974-01-01

    A respiratory gas analyzer (RGA) has been developed wherein a mass spectrometer is the sole transducer required for measurement of respiratory gas exchange. The mass spectrometer maintains all signals in absolute phase relationships, precluding the need to synchronize flow and gas composition as required in other systems. The RGA system was evaluated by comparison with the Douglas bag technique. The RGA system established the feasibility of the inert gas dilution method for measuring breath-by-breath respiratory gas exchange. This breath-by-breath analytical capability permits detailed study of transient respiratory responses to exercise.

  2. In Vivo Measurements Of Coronary Blood Volumi By Dye And Inert Gas Dilution Technic

    NASA Astrophysics Data System (ADS)

    Hoeft, A.; Korb, H.; Wolpers, H. G.

    1984-10-01

    The application of a double fiberoptic device for measurements of arterial and coronary venous dye dilution curves facilitates the determination of coronary mean transit times even under clinical conditions. Since the dye, indocyanine green, is an intravascular tracer, the calculation of tissue blood flow would be possible if the intracoronary blood volume per unit of muscular weight is known. This study was therefore designed to investigate the physiologic range and the influence of coronary vasodilation and different hemodynamic conditions on the amount of myocardial blood volume. All experiments were carried out on anaesthetized close chest mongrel dogs in heart catheterization technic. Myocardial preload, afterload and inotropism and coronary vascular tone were varied by induction of hypo-, normo- and hypervolemia as well as by intravenous application of catecholamines, 13-blocking agents and vasodilating drugs. The determination of coronary blood volume was based on arterial and coronary venous kinetics of the intravascular tracer indocyanine green and the freely diffusible tracers helium and argon. Simultaneous measurements of the dye and the inert gases were obtained by a double fiberoptic system and a twin mass spectrometer, respectively. The intravascular and the tissue mean transit times as well as the coronary blood volume per unit of tissue weight were computed from the impulse response functions obtained by numerical deconvolution of the arterial and coronary venous indicator dilution curves. In contrast to reports of other authors coronary blood volume did not increase to a major extend during coronary vasodilation or elevated afterload. These new results suggest that the variation of coronary blood volume described in the literature is mainly due to methodological errors resulting from monoexponential extrapolation and distortion of the dye signal by the sampling catheter. These systematic errors, which, in particular, lead to an overestimation of

  3. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters considered for space propulsion systems were investigated. Electron diffusion across a magnetic field was examined utilizing a basic model. The production of doubly charged ions was correlated using only overall performance parameters. The use of this correlation is therefore possible in the design stage of large gas thrusters, where detailed plasma properties are not available. Argon hollow cathode performance was investigated over a range of emission currents, with the positions of the inert, keeper, and anode varied. A general trend observed was that the maximum ratio of emission to flow rate increased at higher propellant flow rates. It was also found that an enclosed keeper enhances maximum cathode emission at high flow rates. The maximum cathode emission at a given flow rate was associated with a noisy high voltage mode. Although this mode has some similarities to the plume mode found at low flows and emissions, it is encountered by being initially in the spot mode and increasing emission. A detailed analysis of large, inert-gas thruster performance was carried out. For maximum thruster efficiency, the optimum beam diameter increases from less than a meter at under 2000 sec specific impulse to several meters at 10,000 sec. The corresponding range in input power ranges from several kilowatts to megawatts.

  4. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    Inert gases, particularly argon and xenon, are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. Hollow cathode data were obtained for a wide range of operating conditions. Some test conditions gave plasma coupling voltages at or below the sputtering threshold, hence should permit long operating lifetimes. All observations of hollow cathode operation were consistent with a single theory of operation, in which a significant amount of the total electron emission is from localized areas within the orifice. This mode of emission is also supported by scanning electron microscope photographs that indicate local temperatures at or near the melting temperature of the tungsten tip. Experimental hollow cathode performance was correlated for two orifice diameters, three inert gas propellants, and a range of flow rates for each propellant. The basic theory for the production of doubly ionized argon and xenon was completed. Experimental measurements of the doubly ionized fraction agree with theory within about plus or minus 20 percent. High voltage isolators were studied for the propellant feed line. The breakdown voltage per segment ranged from 300 to over 500 V with argon.

  5. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  6. Inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Inert gas performance with three types of 12 cm diameter magnetoelectrostatic containment (MESC) ion thrusters was tested. The types tested included: (1) a hemispherical shaped discharge chamber with platinum cobalt magnets; (2) three different lengths of the hemispherical chambers with samarium cobalt magnets; and (3) three lengths of the conical shaped chambers with aluminum nickel cobalt magnets. The best argon performance was produced by a 8.0 cm long conical chamber with alnico magnets. The best xenon high mass utilization performance was obtained with the same 8.0 cm long conical thruster. The hemispherical thruster obtained 75 to 87% mass utilization at 185 to 205 eV/ion of singly charged ion equivalent beam.

  7. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1978-01-01

    Inert gas thrusters have continued to be of interest for space propulsion applications. Xenon is of interest in that its physical characteristics are well suited to propulsion. High atomic weight and low tankage fraction were major factors in this choice. If a large amount of propellant was required, so that cryogenic storage was practical, argon is a more economical alternative. Argon was also the preferred propellant for ground applications of thruster technology, such as sputter etching and deposition. Additional magnetic field measurements are reported. These measurements should be of use in magnetic field design. The diffusion of electrons through the magnetic field above multipole anodes was studied in detail. The data were consistent with Bohm diffusion across a magnetic field. The theory based on Bohm diffusion was simple and easily used for diffusion calculations. Limited startup data were obtained for multipole discharge chambers. These data were obtained with refractory cathodes, but should be useful in predicting the upper limits for starting with hollow cathodes.

  8. INERT GAS SHIELD FOR WELDING

    DOEpatents

    Jones, S.O.; Daly, F.V.

    1958-10-14

    S>An inert gas shield is presented for arc-welding materials such as zirconium that tend to oxidize rapidly in air. The device comprises a rectangular metal box into which the welding electrode is introduced through a rubber diaphragm to provide flexibility. The front of the box is provided with a wlndow having a small hole through which flller metal is introduced. The box is supplied with an inert gas to exclude the atmosphere, and with cooling water to promote the solidification of the weld while in tbe inert atmosphere. A separate water-cooled copper backing bar is provided underneath the joint to be welded to contain the melt-through at the root of the joint, shielding the root of the joint with its own supply of inert gas and cooling the deposited weld metal. This device facilitates the welding of large workpieces of zirconium frequently encountered in reactor construction.

  9. Inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    Inert gases are of interest as possible alternatives to the usual electric thruster propellants of mercury and cesium. The multipole discharge chamber investigated was shown capable of low discharge chamber losses and flat ion beam profiles with a minimum of optimization. Minimum discharge losses were 200 to 250 eV/ion for xenon and 300 to 350 eV/ion for argon, while flatness parameters in the plane of the accelerator grid were 0.85 to 0.95. The design used employs low magnetic field strengths, which permits the use of sheet-metal parts. The corner problem of the discharge chamber was resolved with recessed corner anodes, which approximately equalized both the magnetic field above the anodes and the electron currents to these anodes. Argon hollow cathodes were investigated at currents up to about 5 amperes using internal thermionic emitters. Cathode chamber diameter optimized in the 1.0 to 2.5 cm range, while orifices diameter optimized in the 0.5 to 5 mm range. The use of a bias voltage for the internal emitter extended the operating range and facilitated starting. The masses of 15 and 30 cm flight type thrusters were estimated at about 4.2 and 10.8 kg.

  10. Welding Using Chilled-Inert-Gas Purging

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

  11. Mechanisms of inert gas narcosis

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Experiments describing the mechanism of inert gas narcosis are reported. A strain of mice, genetically altered to increase susceptibility to botulin poisoning (synaptic response) appears to increase metabolic rates while breathing argon; this infers a genetically altered synaptic response to both botulin toxin and narcotic gases. Studies of metabolic depression in human subjects breathing either air or a 30% mixture of nitrous oxide indicate that nitrous oxide narcosis does not produce pronounced metabolic depression. Tests on mice for relative susceptibilities to narcosis and oxygen poisoning as a function of fatty membrane composition show that alteration of the fatty acid composition of phospholipids increases resistance to metabolically depressant effects of argon but bas no effect on nitrous oxide narcosis. Another study suggests that acclimatization to low tension prior to high pressure oxygen treatment enhances susceptibility of mice to convulsions and death; developing biochemical lesions cause CNS metabolite reductions and pulmonary damage.

  12. Inert-gas thruster technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Trock, D. C.

    1981-01-01

    Attention is given to recent advances in component technology for inert-gas thrusters. It is noted that the maximum electron emission of a hollow cathode with Ar can be increased 60-70% by using an enclosed keeper configuration. Operation with Ar but without emissive oxide has also been attained. A 30-cm thruster operated with Ar at moderate discharge voltages is found to give double-ion measurements consistent with a double-ion correlation developed earlier on the basis of 15-cm thruster data. An attempt is made to reduce discharge losses by biasing anodes positive of the discharge plasma. The performance of a single-grid ion-optics configuration is assessed. The ion impingement on the single-grid accelerator is found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator is 2-3 times the aperture diameter.

  13. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... oxygen analyzers are used, the higher oxygen concentration reading controls the inerting or enriching... section. (f) Each oxygen or hydrocarbon analyzer required by this section must: (1) Be installed in... concentration continuously not more than 30 pipe diameters from the gas injection point. (g) Oxygen...

  14. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas system... the cargo area meeting paragraph (a) of this section; (c) Automatic and manual inert gas...

  15. Inert gas transport in blood and tissues.

    PubMed

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport.

  16. 46 CFR 153.501 - Requirement for dry inert gas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Requirement for dry inert gas. 153.501 Section 153.501... Requirements § 153.501 Requirement for dry inert gas. When Table 1 refers to this section, an inert gas system for the containment system must supply inert gas containing no more than 100 ppm water....

  17. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  18. Inert gas effects on embryonic development.

    NASA Technical Reports Server (NTRS)

    Weiss, H. S.; Grimard, M.

    1972-01-01

    It had been found in previous investigations that hatchability of fertile chicken eggs is reduced to 50% or less of controls if incubation takes place in a low nitrogen atmosphere containing He. Although these results suggest some role for nitrogen in embryogenesis, it is possible that a requirement exists for an inert molecule closer in physical characteristics to nitrogen than is He. An investigation is conducted involving incubation at ground level pressure in a gas mixture in which the 79% inert component was either neon or argon. The effect of varying combinations of nitrogen, helium, and oxygen was also studied.

  19. Portable spectrometer monitors inert gas shield in welding process

    NASA Technical Reports Server (NTRS)

    Grove, E. L.

    1967-01-01

    Portable spectrometer using photosensitive readouts, monitors the amount of oxygen and hydrogen in the inert gas shield of a tungsten-inert gas welding process. A fiber optic bundle transmits the light from the welding arc to the spectrometer.

  20. Plasma processes in inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    Inert gas thrusters, particularly with large diameters, have continued to be of interest for space propulsion applications. Two plasma processes are treated in this study: electron diffusion across magnetic fields and double ion production in inert-gas thrusters. A model is developed to describe electron diffusion across a magnetic field that is driven by both density and potential gradients, with Bohm diffusion used to predict the diffusion rate. This model has applications to conduction across magnetic fields inside a discharge chamber, as well as through a magnetic baffle region used to isolate a hollow cathode from the main chamber. A theory for double ion production is presented, which is not as complete as the electron diffusion theory described, but it should be a useful tool for predicting double ion sputter erosion. Correlations are developed that may be used, without experimental data, to predict double ion densities for the design of new and especially larger ion thrusters.

  1. Positron-inert gas differential elastic scattering

    NASA Technical Reports Server (NTRS)

    Kauppila, W. E.; Smith, Steven J.; Kwan, C. K.; Stein, T. S.

    1990-01-01

    Measurements are being made in a crossed beam experiment of the relative elastic differential cross section (DCS) for 5 to 300 eV positrons scattering from inert gas atoms (He, Ne, Ar, Kr, and Xe) in the angular range from 30 to 134 deg. Results obtained at energies around the positronium (Ps) formation threshold provide evidence that Ps formation and possibly other inelastic channels have an effect on the elastic scattering channel.

  2. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  3. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  4. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas piping: Location. 154.910 Section 154.910... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping...

  5. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  6. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dew point at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  7. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  8. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  9. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  10. 46 CFR 154.903 - Inert gas systems: General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Atmospheric Control in Cargo Containment Systems § 154.903 Inert gas systems: General. (a) Inert gas carried... tanks, hold and interbarrier spaces, and insulation. (b) The boiling point and dewpoint at atmospheric pressure of the inert gas must be below the temperature of any surface in those spaces or −45 °C (−49...

  11. 46 CFR 154.904 - Inert gas system: Controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas system: Controls. 154.904 Section 154.904... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.904 Inert gas system: Controls. The inert gas...

  12. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system must have a permanent inert gas system that: (a) Maintains the vapor space of the containment system in...

  13. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  14. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  15. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  16. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  17. 46 CFR 154.908 - Inert gas generator: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inert gas generator: Location. 154.908 Section 154.908... Atmospheric Control in Cargo Containment Systems § 154.908 Inert gas generator: Location. (a) Except as allowed in paragraph (b) of this section, an inert gas generator must be located in the main...

  18. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas generators. 154.906 Section 154.906 Shipping... Atmospheric Control in Cargo Containment Systems § 154.906 Inert gas generators. The inert gas generator must... sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in...

  19. A new understanding of inert gas narcosis

    NASA Astrophysics Data System (ADS)

    Meng, Zhang; Yi, Gao; Haiping, Fang

    2016-01-01

    Anesthetics are extremely important in modern surgery to greatly reduce the patient’s pain. The understanding of anesthesia at molecular level is the preliminary step for the application of anesthetics in clinic safely and effectively. Inert gases, with low chemical activity, have been found to cause anesthesia for centuries, but the mechanism is unclear yet. In this review, we first summarize the progress of theories about general anesthesia, especially for inert gas narcosis, and then propose a new hypothesis that the aggregated rather than the dispersed inert gas molecules are the key to trigger the narcosis to explain the steep dose-response relationship of anesthesia. Project supported by the Supercomputing Center of Chinese Academy of Sciences in Beijing, China, the Shanghai Supercomputer Center, China, the National Natural Science Foundation of China (Grant Nos. 21273268, 11290164, and 11175230), the Startup Funding from Shanghai Institute of Applied Physics, Chinese Academy of Sciences (Grant No. Y290011011), “Hundred People Project” from Chinese Academy of Sciences, and “Pu-jiang Rencai Project” from Science and Technology Commission of Shanghai Municipality, China (Grant No. 13PJ1410400).

  20. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  1. 33 CFR 154.2107 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... non-high flash point liquid cargoes. (a) Before receiving cargo vapor, a vapor control system (VCS... with at least two analyzers. The analyzers must be connected so that— (1) When two oxygen analyzers are used, the higher oxygen concentration reading controls the inerting or enriching system and...

  2. Performance of large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1981-01-01

    The performance of large inert-gas thrusters is predicted based on present knowledge of ion optics performance and discharge chamber operation. Calculated performance data are given for argon and xenon propellants. The effect of varying propellant utilization and thruster diameter is discussed and the optimum choice of beam diameter for very large systems is indicated for low, intermediate, and high specific impulses. Optimum discharge chamber depths are also specified. Although detailed design considerations may modify the predictions, the general trends indicated should still be useful for directing future technology efforts and evaluating mission studies involving large thrusters.

  3. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  4. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  5. 46 CFR 153.500 - Inert gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inert gas systems. 153.500 Section 153.500 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.500 Inert gas systems. When Table 1 refers to this section, a cargo containment system...

  6. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Use of inert gas system....

  7. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Use of inert gas system....

  8. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Use of inert gas system....

  9. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Use of inert gas system....

  10. 33 CFR 157.164 - Use of inert gas system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.164 Use of inert gas system. (a) The... following are maintained in each cargo tank being crude oil washed: (i) A gas or a mixture of gases with an... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Use of inert gas system....

  11. [Advances in research on neuroprotective effects of inert gas].

    PubMed

    Chen, Sheng; Guo, Song-xue; Hong, Yuan; Zhang, Jian-min

    2011-01-01

    Inert gas is a group of rare gases with very low activity, their application in medical field has increasingly drawn attentions. It is known that inert gases helium, xenon and argon have protective effects on nervous system and the mechanisms are related to eradicating free radicals, anti-inflammation, suppressing apoptosis, influencing ion channels and so on. Further study on the neuroprotective effect of inert gas will shed light on a new approach to treat neurological diseases.

  12. Inert gas bubbles in bcc Fe

    NASA Astrophysics Data System (ADS)

    Gai, Xiao; Smith, Roger; Kenny, S. D.

    2016-03-01

    The properties of inert gas bubbles in bcc Fe is examined using a combination of static energy minimisation, molecular dynamics and barrier searching methods with empirical potentials. Static energy minimisation techniques indicate that for small Ar and Xe bubbles, the preferred gas to vacancy ratio at 0 K is about 1:1 for Ar and varies between 0.5:1 and 0.9:1 for Xe. In contrast to interstitial He atoms and small He interstitial clusters, which are highly mobile in the lattice, Ar and Xe atoms prefer to occupy substitutional sites and any interstitials present in the lattice soon displace Fe atoms and become substitutional. If a pre-existing bubble is present then there is a capture radius around a bubble which extends up to the 6th neighbour position. Collision cascades can also enlarge an existing bubble by the capture of vacancies. Ar and Xe can diffuse through the lattice through vacancy driven mechanisms but with relatively high energy barriers of 1.8 and 2.0 eV respectively. This indicates that Ar and Xe bubbles are much harder to form than bubbles of He and that such gases produced in a nuclear reaction would more likely be dispersed at substitutional sites without the help of increased temperature or radiation-driven mechanisms.

  13. Hyperpolarized and inert gas MRI: the future.

    PubMed

    Couch, Marcus J; Blasiak, Barbara; Tomanek, Boguslaw; Ouriadov, Alexei V; Fox, Matthew S; Dowhos, Krista M; Albert, Mitchell S

    2015-04-01

    Magnetic resonance imaging (MRI) is a potentially ideal imaging modality for noninvasive, nonionizing, and longitudinal assessment of disease. Hyperpolarized (HP) agents have been developed in the past 20 years for MR imaging, and they have the potential to vastly improve MRI sensitivity for the diagnosis and management of various diseases. The polarization of nuclear magnetic resonance (NMR)-sensitive nuclei other than (1)H (e.g., (3)He, (129)Xe) can be enhanced by a factor of up to 100,000 times above thermal equilibrium levels, which enables direct detection of the HP agent with no background signal. In this review, a number of HP media applications in MR imaging are discussed, including HP (3)He and (129)Xe lung imaging, HP (129)Xe brain imaging, and HP (129)Xe biosensors. Inert fluorinated gas MRI, which is a new lung imaging technique that does not require hyperpolarization, is also briefly discussed. This technique will likely be an important future direction for the HP gas lung imaging community.

  14. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must not pass through or terminate in an accommodation, service, or control space....

  15. 46 CFR 154.910 - Inert gas piping: Location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Atmospheric Control in Cargo Containment Systems § 154.910 Inert gas piping: Location. Inert gas piping must not pass through or terminate in an accommodation, service, or control space....

  16. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume....

  17. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume....

  18. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume....

  19. 46 CFR 154.906 - Inert gas generators.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (a) Produce an inert gas containing less than 5% oxygen by volume; (b) Have a device to continuously sample the discharge of the generator for oxygen content; and (c) Have an audible and visual alarm in the cargo control station that alarms when the inert gas contains 5% or more oxygen by volume....

  20. Effect of Varying Inert Gas and Acetylene Concentration on the Synthesis of Carbon Nanotubes.

    PubMed

    Afrin, Rahat; Abbas, Syed Mustansar; Shah, Nazar Abbas; Mustafa, Muhammad Farooq; Ali, Zulfiqar; Ahmad, Nisar

    2016-03-01

    The multiwalled carbon nanotubes (MWCNTs) with small diameter and high purity were achieved by chemical vapor deposition technique using silicon substrate. The introduction of specific concentration of inert gas with hydrocarbon played a key role in controlling morphology and diameter of MWCNTs. Nickel mixed ferrite nanoparticles were used as a catalyst for the growth of MWCNTs. Growth parameters like concentration of hydrocarbon source and inert gas flow, composition of catalyst particles and growth temperature were studied. In this work smaller diameter and twisted MWCNTs were formed by dilution of acetylene with argon gas. Electrical properties suggest a semimetallic behavior of synthesized MWCNTs.

  1. Inert gas spraying device aids in repair of hazardous systems

    NASA Technical Reports Server (NTRS)

    Teleha, S.

    1965-01-01

    Inert gas spraying device aids in safely making mechanical repairs to a cryogenic fluid system without prior emptying of the system. This method can be applied to any natural or bottled gas system and with modifications to gasoline transports.

  2. Inert-Gas Diffuser For Plasma Or Arc Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Spencer, Carl N.; Hosking, Timothy J.

    1994-01-01

    Inert-gas diffuser provides protective gas cover for weld bead as it cools. Follows welding torch, maintaining continuous flow of argon over newly formed joint and prevents it from oxidizing. Helps to ensure welds of consistently high quality. Devised for plasma arc keyhole welding of plates of 0.25-in. or greater thickness, also used in tungsten/inert-gas and other plasma or arc welding processes.

  3. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  4. A sensitive image intensifier which uses inert gas

    NASA Technical Reports Server (NTRS)

    Kerns, Q. A.; Miller, H. M.

    1972-01-01

    High gain optical image intensifier utilizes inert gas cavity with copper electrodes to form electron avalanches without excessive pulse voltages. Estimated optical gain for device is two times 10 to the power of seven.

  5. The use of inert gas xenon for cryopreservation of leukocytes.

    PubMed

    Laptev, D S; Polezhaeva, T V; Zaitseva, O O; Khudyakov, A N; Solomina, O N; Utemov, S V

    2014-06-01

    We studied the possibility of cryopreservation of human blood nuclear cells under protection with inert gas xenon. A method for inducing clathrate anabiosis of leukocytes was developed that preserved the cells for practical use in biology and medicine.

  6. Nonchamber, Root-Side, Inert-Gas Purging During Welding

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved apparatus distributes inert gas to protect against oxidation on root side of weld during welding and after welding while joint remains hot. Simple and lightweight; readily moved along weld path in synchronism with torch. Because it concentrates inert gas where needed, consumes gas at relatively low rate, and not necessary to monitor oxygen content of protective atmosphere. Apparatus does not obscure view of root side of weld. Used for full-penetration plasma-arc welding of such reactive metals as aluminum/lithium alloys and titanium.

  7. Heaterless ignition of inert gas ion thruster hollow cathodes

    NASA Technical Reports Server (NTRS)

    Schatz, M. F.

    1985-01-01

    Heaterless inert gas ion thruster hollow cathodes were investigated with the aim of reducing ion thruster complexity and increasing ion thruster reliability. Cathodes heated by glow discharges are evaluated for power requirements, flowrate requirements, and life limiting mechanisms. An accelerated cyclic life test is presented.

  8. Inert fluorinated gas MRI: a new pulmonary imaging modality.

    PubMed

    Couch, Marcus J; Ball, Iain K; Li, Tao; Fox, Matthew S; Ouriadov, Alexei V; Biman, Birubi; Albert, Mitchell S

    2014-12-01

    Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.

  9. Development and interactions of two inert gas bubbles during decompression.

    PubMed

    Jiang, Y; Homer, L D; Thalmann, E D

    1996-09-01

    A mathematical model has been developed to simulate the evolution of two inert gas bubbles in tissue. This is useful for understanding the dynamics of bubbles that presumably arise during decompression. It is assumed that they are spherical and that the tissue volume surrounding them is infinite. The total pressure in each bubble is determined by the barometric and metabolic gas pressures as well as the pressure due to surface tension. Bipolar coordinates are employed to determine the inert gas pressure distribution. Two coupled governing equations for bubble radii are then derived and solved numerically. The results demonstrate how bubble evolution is affected by the distance between bubbles and the initial bubble radii. The existence time and bubble surface flux of two equal-sized bubbles are calculated and compared with those of a single gas bubble model. The results indicate that when two bubbles are very close, it takes 20% more time for two bubbles to dissolve than for a single one, and the total surface flux of two bubbles is nearly 20% less than twice of a single bubble. When the center-to-center distance is 10 times of bubble radius, the effect of bubble interaction on bubble existence time and surface flux are about 6 and 9% changes, respectively. We conclude that if bubbles are not too small, the interactions among bubbles should be included in inert gas bubble models predicting bubble evolution.

  10. Permeabilization of adhered cells using an inert gas jet.

    PubMed

    Cooper, Scott; Jonak, Paul; Chouinard-Pelletier, Guillaume; Coulombe, Sylvain; Jones, Elizabeth; Leask, Richard L

    2013-09-04

    Various cell transfection techniques exist and these can be broken down to three broad categories: viral, chemical and mechanical. This protocol describes a mechanical method to temporally permeabilize adherent cells using an inert gas jet that can facilitate the transfer of normally non-permeable macromolecules into cells. We believe this technique works by imparting shear forces on the plasma membrane of adherent cells, resulting in the temporary formation of micropores. Once these pores are created, the cells are then permeable to genetic material and other biomolecules. The mechanical forces involved do run the risk of permanently damaging or detaching cells from their substrate. There is, therefore, a narrow range of inert gas dynamics where the technique is effective. An inert gas jet has proven efficient at permeabilizing various adherent cell lines including HeLa, HEK293 and human abdominal aortic endothelial cells. This protocol is appropriate for the permeabilization of adherent cells both in vitro and, as we have demonstrated, in vivo, showing it may be used for research and potentially in future clinical applications. It also has the advantage of permeabilizing cells in a spatially restrictive manner, which could prove to be a valuable research tool.

  11. Plasma induced by resonance enhanced multiphoton ionization in inert gas

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2007-12-15

    We present a detailed model for the evolution of resonance enhanced multiphoton ionization (REMPI) produced plasma during and after the ionizing laser pulse in inert gas (argon, as an example) at arbitrary pressures. Our theory includes the complete process of the REMPI plasma generation and losses, together with the changing gas thermodynamic parameters. The model shows that the plasma expansion follows a classical ambipolar diffusion and that gas heating results in a weak shock or acoustic wave. The gas becomes involved in the motion not only from the pressure gradient due to the heating, but also from the momentum transfer from the charged particles to gas atoms. The time dependence of the total number of electrons computed in theory matches closely with the results of coherent microwave scattering experiments.

  12. Inert gas analysis of ventilation-perfusion matching during hemodialysis.

    PubMed Central

    Ralph, D D; Ott, S M; Sherrard, D J; Hlastala, M P

    1984-01-01

    The mechanism of hypoxemia during hemodialysis was investigated by the multiple inert gas elimination technique in anesthetized, paralyzed, mechanically ventilated dogs. Profound leukopenia occurred in the first hour of a 2-h hemodialysis with a cuprophan membrane and dialysate that contained acetate. Arterial partial pressure of O2 and CO2 and oxygen consumption remained unchanged during dialysis. Pulmonary carbon dioxide elimination and lung respiratory exchange ratio decreased with the initiation of dialysis, remained depressed throughout the duration of dialysis, and returned to predialysis levels after the cessation of dialysis. Cardiac output diminished during dialysis but did not return to base-line levels after dialysis. Multiple indices calculated from inert gas analysis revealed no ventilation-perfusion mismatching during dialysis. The shunt and perfusion to regions of low alveolar ventilation-to-perfusion ratio (VA/Q) were unchanged during dialysis. There was no change in the mean or standard deviation of the profile of the percentage of total perfusion to regions of the lung that had VA/Q near 1.0; nor was there any increase in the directly calculated arterial-alveolar partial pressure differences for the inert gases during dialysis. Dead space became mildly elevated during dialysis. These results show that during dialysis with controlled ventilation there is no ventilation-perfusion mismatching that leads to hypoxemia. During spontaneous ventilation any hypoxemia must occur due to hypoventilation secondary to the CO2 exchange by the dialyzer and subsequent reduction in pulmonary CO2 exchange. PMID:6715542

  13. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  14. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  15. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  16. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  17. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Static discharges from inert gas systems. 153.462... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert... create static arcing as the inert gas is injected into the tank....

  18. Moving in extreme environments: inert gas narcosis and underwater activities.

    PubMed

    Clark, James E

    2015-01-01

    Exposure to the underwater environment for pleasure or work poses many challenges on the human body including thermal stress, barotraumas, decompression sickness as well as the acute effects of breathing gases under pressure. With the popularity of recreational self-contained underwater breathing apparatus (SCUBA) diving on the increase and deep inland dive sites becoming more accessible, it is important that we understand the effects of breathing pressurised gas at depth can have on the body. One of the common consequences of hyperbaric gas is the narcotic effect of inert gas. Nitrogen (a major component of air) under pressure can impede mental function and physical performance at depths of as little as 10 m underwater. With increased depth, symptoms can worsen to include confusion, disturbed coordination, lack of concentration, hallucinations and unconsciousness. Narcosis has been shown to contribute directly to up to 6% of deaths in divers and is likely to be indirectly associated with other diving incidents at depth. This article explores inert gas narcosis, the effect on divers' movement and function underwater and the proposed physiological mechanisms. Also discussed are some of the factors that affect the susceptibility of divers to the condition. In conclusion, understanding the cause of this potentially debilitating problem is important to ensure that safe diving practices continue.

  19. Production of light oil by injection of hot inert gas

    NASA Astrophysics Data System (ADS)

    Ruidas, Bidhan C.; Ganguly, Somenath

    2016-05-01

    Hot inert gas, when injected into an oil reservoir is capable of generating a vaporization-condensation drive and as a consequence, a preferential movement of the lighter components to the production well. This form of displacement is an important unit mechanism in hot flue-gas injection, or in thermal recovery from a watered-out oil reservoir. This article presents the movement of heat front vis-à-vis the changes in the saturation profile, and the gas-phase composition. The plateau in the temperature profile due to the exchange of latent heat, and the formation of water bank at the downstream are elaborated. The broadening of the vaporization-condensation zone with continued progression is discussed. The effect of inert gas temperature on the cumulative production of oil is reviewed. The results provide insight to the vaporization-condensation drive as a stand-alone mechanism. The paper underscores the relative importance of this mechanism, when operated in tandem with other processes in improved oil recovery and CO2 sequestration.

  20. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  1. Development of a large inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    Steiner, G.

    1982-01-01

    A 30 cm inert gas electrostatic ion thruster has been developed, exhibiting excellent performance. In the development, the effective anode area was reduced by altering the magnetic field geometry to improve plasma containment, consistent with operational stability. The propellant introduction scheme has the effect of 'folding' the discharge chamber without the increased wall loss penalty associated with a longer chamber. These features contribute to a low discharge cost (eV/ion) versus mass utilization characteristic which remains relatively flat even to high mass utilizations.

  2. Closed-Loop System Removes Contaminants From Inert Gas

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.

    1995-01-01

    Concentration of oxygen in this closed-loop system kept low by use of heated catalytic sorbent bed in cartridge. Proposed to keep concentration of water vapor low by use of predried zeolite sorbent bed in another cartridge, and to remove particles smaller than 0.1 micrometer by use of porous metal filters. In specific application, chamber is one in which semiconducting materials processed. By virtue of closed-loop operation, limited supply of inert gas adequate to provide atmosphere for industrial processing of semiconductors.

  3. Inert gas sparge leads to alternate reaction pathway.

    PubMed

    Franchini, M K; Carstensen, J T

    2000-06-01

    The effect of sparging with an inert gas (argon) was evaluated during the investigation of the solution kinetics of an oxidation-prone amphiphilic drug containing a sulphide moiety. Samples stored with an air headspace in pH7 and 8 phosphate buffers at elevated temperatures and in the absence of light degraded to two main products, a sulphoxide and a cinnamic acid analogue. Initially, this appeared to be a sequential mechanism which could be blocked by removing oxygen. Instead, argon-sparge forced the direct degradation to the cinnamate, which was evidenced by the formation of a strong odour of sulphide. In addition, argon-sparged samples remained colourless, while those sparged with oxygen or stored with an air headspace turned yellow and had negligible odour. The half-lives for samples stored in pH 8 buffers at 93 degrees C at an initial drug concentration of 25 mg mL(-1) were 128 days (argon sparged), 86 days (air headspace), and 65 days (oxygen sparged). The results indicated that for the drug under study, sparging with an inert gas affected the mechanism as well as the rate of the reaction at elevated temperatures.

  4. A high-temperature inert gas fusion apparatus.

    PubMed

    Mosen, A W; Kelley, R E; Mitchell, H P

    1966-03-01

    A high-temperature inert gas fusion apparatus capable of operating at crucible temperatures as high as 3,100 degrees is described. While this apparatus has been used primarily for the determination of oxygen in pyrolytic carbon-coated uranium carbide particles, its usefulness is not limited to this type of material. It can be generally applied to the determination of oxygen and nitrogen in metals, alloys and other materials amenable to analysis by vacuum-fusion techniques. Analytical results obtained on steel and uranium carbide samples are presented. The apparatus, in its present form, has been in daily use for nearly 2 years. Down time during this period has been negligible. A total of 20 samples can be run in duplicate in an 8-hr shift.

  5. Development of advanced inert-gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1983-01-01

    Inert gas ion thruster technology offers the greatest potential for providing high specific impulse, low thrust, electric propulsion on large, Earth orbital spacecraft. The development of a thruster module that can be operated on xenon or argon propellant to produce 0.2 N of thrust at a specific impulse of 3000 sec with xenon propellant and at 6000 sec with argon propellant is described. The 30 cm diameter, laboratory model thruster is considered to be scalable to produce 0.5 N thrust. A high efficiency ring cusp discharge chamber was used to achieve an overall thruster efficiency of 77% with xenon propellant and 66% with argon propellant. Measurements were performed to identify ion production and loss processes and to define critical design criteria (at least on a preliminary basis).

  6. Recent neurochemical basis of inert gas narcosis and pressure effects.

    PubMed

    Rostain, J C; Balon, N

    2006-01-01

    Compressed air or a nitrogen-oxygen mixture produces from 0.3 MPa nitrogen narcosis. The traditional view was that anaesthesia or narcosis occurs when the volume of a hydrophobic site is caused to expand beyond a critical amount by the absorption of molecules of a narcotic gas. The observation of the pressure reversal effect on general anaesthesia has for a long time supported the lipid theory. However, recently, protein theories are in increasing consideration since results have been interpreted as evidence for a direct anaesthetic-protein interaction. The question is to know whether inert gases act by binding processes on proteins of neurotransmitter receptors. Compression with breathing mixtures where nitrogen is replaced by helium which has a low narcotic potency induces from 1 MPa, the high pressure nervous syndrome which is related to neurochemical disturbances including changes of the amino-acid and monoamine neurotransmissions. The use of narcotic gas (nitrogen or hydrogen) added to a helium-oxygen mixture, reduced some symptoms of the HPNS but also had some effects due to an additional effect of the narcotic potency of the gas. The researches performed at the level of basal ganglia of the rat brain and particularly the nigro-striatal pathway involved in the control of the motor, locomotor and cognitive functions, disrupted by narcosis or pressure, have indicated that GABAergic neurotransmission is implicated via GABAa receptors.

  7. Relating indices of inert gas washout to localised bronchoconstriction.

    PubMed

    Mitchell, Jennine H; Hoffman, Eric A; Tawhai, Merryn H

    2012-09-30

    Asthma is typically characterised by increased ventilation heterogeneity. This can be directly inferred from the visualisation of ventilation defects in imaging studies, or indirectly inferred from indices derived from the multiple-breath nitrogen washout (MBNW). The basis for the understanding of the MBNW indices and their implication for changes in structure and function at the largest and smallest scales in the lung has been facilitated by mathematical models for inert gas transport. A new model is presented that couples airway resistance and regional tissue compliance, for simulation of the effect of 'patchy' bronchoconstriction - as inferred from imaging studies - on the Scond index of ventilation heterogeneity. Patches of reduced washin gas concentration can emerge by constricting only the terminal bronchioles within localised regions, however this pattern of constriction is insufficient to affect Scond; Scond from this model is only sensitive to constriction that occurs within entire contiguous regions. Furthermore the model illustrates the possibility that the MBNW may not detect gas trapped in ventilation defects.

  8. Does the evoked response measure inert gas narcosis?

    PubMed

    Fowler, B; Ackles, K N

    1977-03-01

    The purpose of this review is to examine the validity of change in the cortical evoked response as a measure of inert gas narcosis in humans. Three criteria are defined which must all be met if a nonbehavioral measure is to be accepted as an indicator of narcosis. The evoked response is assessed in terms of these criteria. Two classes of experiments which have used the evoked response in hyperbaric ocnditions are identified. The first class allows the evoked response to be assessed against more than one of these criteria. The outcome of every experiment in this class supports the view that the evoked response is not a valid measure of narcosis. The second class of experiment assumed that the evoked response is a measure of narcosis and were not designed to assess validity appropriately. Arguments by Kinney and associates in support of the assumption of validity are shown to be unsound. Possible explanations for inability to demonstrate validity are discussed and it is suggested that factors other than narcotic potency of the breathing gas mixture determine or at least play a major role in determining amplitude of the evoked response.

  9. Inert-gas welding and brazing enclosure fabricated from sheet plastic

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Custom-fabricated plastic bag maintains an inert-gas atmosphere for welding and brazing certain metals. The bag fits over part of the workpieces and the welding and brazing tools. It is also used for metal brazing and fusion plating which require an inert-gas atmosphere.

  10. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  11. First principles study of inert-gas (helium, neon, and argon) interactions with hydrogen in tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Shan; Hou, Jie; Li, Xiang-Yan; Wu, Xuebang; Liu, C. S.; Chen, Jun-Ling; Luo, G.-N.

    2017-04-01

    We have systematically evaluated binding energies of hydrogen with inert-gas (helium, neon, and argon) defects, including interstitial clusters and vacancy-inert-gas complexes, and their stable configurations using first-principles calculations. Our calculations show that these inert-gas defects have large positive binding energies with hydrogen, 0.4-1.1 eV, 0.7-1.0 eV, and 0.6-0.8 eV for helium, neon, and argon, respectively. This indicates that these inert-gas defects can act as traps for hydrogen in tungsten, and impede or interrupt the diffusion of hydrogen in tungsten, which supports the discussion on the influence of inert-gas on hydrogen retention in recent experimental literature. The interaction between these inert-gas defects and hydrogen can be understood by the attractive interaction due to the distortion of the lattice structure induced by inert-gas defects, the intrinsic repulsive interaction between inert-gas atoms and hydrogen, and the hydrogen-hydrogen repelling in tungsten lattice.

  12. A review of recent neurochemical data on inert gas narcosis.

    PubMed

    Rostain, J C; Lavoute, C; Risso, J J; Vallée, N; Weiss, M

    2011-01-01

    Nitrogen narcosis occurs in humans at around 0.4 MPa (4 ATA). Hydrogen narcosis occurs between 2.6 and 3.0 MPa. In rats, nitrogen disturbances occur from 1 MPa and a loss of righting reflex around 4 MPa. Neurochemical studies in striatum of rats with nitrogen at 3 MPa (75% of anesthesia threshold) with differential pulse voltammetry have demonstrated a decrease in dopamine (DA) release by neurons originated from the substantia nigra pars compacta (SNc). Such a decrease is found also with compressed argon, which is more narcotic than nitrogen and with the anesthetic gas nitrous oxide. Inversely, compressed helium with its very low narcotic potency induces DA increase. Microdialysis studies in the striatum have indicated that nitrogen also induces a decrease of glutamate concentration. Nitrogen pressure did not modify NMDA glutamate receptor activities in SNc or striatum but enhanced GABAA receptors activities in SNc. Repetitive exposures to nitrogen narcosis suppressed the DA decrease and induced an increase. This fact and the lack of improvement of motor disturbances did not support the hypothesis of a physiological adaptation. The desensitization of the GABAA receptors on DA cells during recurrent exposures and the parallel long-lasting decrease of glutamate coupled to the increase in NMDA receptor sensitivity suggest a nitrogen neurotoxicity or addiction induced by recurrent exposures. The differential changes produced by inert gases indifferent neurotransmitter receptors would support the binding protein theory.

  13. Simplified power processing for inert gas ion thrusters

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.; Pinero, L. R.; Hamley, J. A.

    1993-01-01

    Significant simplifications to power processors for inert gas ion thrusters in the 1 to 5 kW range have been identified. They include elimination of all but three power supplies - one each for the neutralizer, main discharge, and beam. The neutralizer and discharge power supplies would provide both cathode heating and plasma generating functions. This dual-use power supply concept was validated via integration tests with a 30 cm diameter xenon ion thruster. The beam/accelerator power supply would have positive and negative outputs to allow a single power supply to provide both functions. The discharge and beam power supplies would incorporate full-bridge inverters similar to those proven for flight-ready arcjet propulsion systems. Operation of this simplified power processing scheme at an inverter frequency of 50 kHz results in a projected power processor design with low mass and high efficiency. A 2 kW reference point design has estimated values of specific mass of 5.4 kg/kW and an efficiency of 93 percent.

  14. Impact of airway gas exchange on the multiple inert gas elimination technique: theory.

    PubMed

    Anderson, Joseph C; Hlastala, Michael P

    2010-03-01

    The multiple inert gas elimination technique (MIGET) provides a method for estimating alveolar gas exchange efficiency. Six soluble inert gases are infused into a peripheral vein. Measurements of these gases in breath, arterial blood, and venous blood are interpreted using a mathematical model of alveolar gas exchange (MIGET model) that neglects airway gas exchange. A mathematical model describing airway and alveolar gas exchange predicts that two of these gases, ether and acetone, exchange primarily within the airways. To determine the effect of airway gas exchange on the MIGET, we selected two additional gases, toluene and m-dichlorobenzene, that have the same blood solubility as ether and acetone and minimize airway gas exchange via their low water solubility. The airway-alveolar gas exchange model simulated the exchange of toluene, m-dichlorobenzene, and the six MIGET gases under multiple conditions of alveolar ventilation-to-perfusion, VA/Q, heterogeneity. We increased the importance of airway gas exchange by changing bronchial blood flow, Qbr. From these simulations, we calculated the excretion and retention of the eight inert gases and divided the results into two groups: (1) the standard MIGET gases which included acetone and ether and (2) the modified MIGET gases which included toluene and m-dichlorobenzene. The MIGET mathematical model predicted distributions of ventilation and perfusion for each grouping of gases and multiple perturbations of VA/Q and Qbr. Using the modified MIGET gases, MIGET predicted a smaller dead space fraction, greater mean VA, greater log(SDVA), and more closely matched the imposed VA distribution than that using the standard MIGET gases. Perfusion distributions were relatively unaffected.

  15. Effect of inert gas switching at depth on decompression outcome in rats.

    PubMed

    Lillo, R S; MacCallum, M E

    1989-10-01

    The present investigation was performed to determine whether inert gas sequencing at depth would affect decompression outcome in rats via the phenomenon of counterdiffusion. Unanesthetized rats (Rattus norvegicus) were subjected to simulated dives in either air, 79% He-21% O2, or 79% Ar-21% O2; depths ranged from 125 to 175 feet of seawater (4.8-6.3 atmospheres absolute). After 1 h at depth, the dive chamber was vented (with depth held constant) over a 5-min period with the same gas as in the chamber (controls) or one of the other two inert gas-O2 mixtures. After the gas switch, a 5- to 35-min period was allowed for gas exchange between the animals and chamber atmosphere before rapid decompression to the surface. Substantial changes in the risk of decompression sickness (DCS) were observed after the gas switch because of differences in potencies (He less than N2 less than Ar) for causing DCS and gas exchange rates (He greater than Ar greater than N2) among the three gases. Based on the predicted gas exchange rates, transient increases or decreases in total inert gas pressure would be expected to occur during these experimental conditions. Because of differences in gas potencies, DCS risk may not directly follow the changes in total inert gas pressure. In fact, a decline in predicted DCS risk may occur even as total inert gas pressure in increasing.

  16. Oxygen carrier for gas chromatographic analysis of inert gases in propellants

    NASA Technical Reports Server (NTRS)

    Cannon, W. A.

    1972-01-01

    Gas chromatographic determination of small quantities of inert gases in reactive propellants is discussed. Operating conditions used for specific analyses of helium in diborane and nitrogen in oxygen difluoride are presented in tabular form.

  17. Oxidation Processes in Blowing Steel With Inert Gas into the Ladle

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Valuev, D. V.; Trifonov, V. A.; Valueva, A. V.; Serikbol, A.

    2015-09-01

    This work reports the possible development of oxidative processes in a metal when treating the melt in the ladle under intensive stirring with an inert gas. The industrial data have been received, confirming the possibility of reducing the concentration of silicon and aluminum in the metal, as well as changing the slag chemical composition with the bath blowing with the inert gas through the top submerged lance.

  18. Operation of the J-series thruster using inert gas

    NASA Technical Reports Server (NTRS)

    Rawlin, V. K.

    1982-01-01

    Electron bombardment ion thrusters using inert gases are candidates for large space systems. The J-Series 30 cm diameter thruster, designed for operation up to 3 k-W with mercury, is at a state of technology readiness. The characteristics of operation with xenon, krypton, and argon propellants in a J-Series thruster with that obtained with mercury are compared. The performance of the discharge chamber, ion optics, and neutralizer and the overall efficiency as functions of input power and specific impulse and thruster lifetime were evaluated. As expected, the discharge chamber performance with inert gases decreased with decreasing atomic mass. Aspects of the J-Series thruster design which would require modification to provide operation at high power with insert gases were identified.

  19. Correlation of inert gas hollow cathode performance. [for electric propulsion

    NASA Technical Reports Server (NTRS)

    Rehn, L.; Kaufman, H. R.

    1978-01-01

    A use of the inert gases argon and xenon as possible alternatives to mercury and cesium is being considered for electrical propulsion applications. Operation up to 200 hours has been demonstrated for hollow cathodes employing argon as propellant. A description is presented of an investigation which has been conducted to obtain basic information for an improvement of hollow cathode performance with inert gases. Neutralizer tests were conducted in a 1.2-m diameter vacuum tank, with a 15-cm multipole thruster. Progress was achieved towards the goal of a generalized description of hollow cathode performance. Extrapolation of the erosion based upon a 200-hour endurance test predicts an ultimate lifetime of 1400 to 10,000 hours.

  20. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture

    PubMed Central

    Karthikeya Sharma, T.

    2014-01-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine’s performance within the range studied. PMID:26644918

  1. Performance and emission characteristics of the thermal barrier coated SI engine by adding argon inert gas to intake mixture.

    PubMed

    Karthikeya Sharma, T

    2015-11-01

    Dilution of the intake air of the SI engine with the inert gases is one of the emission control techniques like exhaust gas recirculation, water injection into combustion chamber and cyclic variability, without scarifying power output and/or thermal efficiency (TE). This paper investigates the effects of using argon (Ar) gas to mitigate the spark ignition engine intake air to enhance the performance and cut down the emissions mainly nitrogen oxides. The input variables of this study include the compression ratio, stroke length, and engine speed and argon concentration. Output parameters like TE, volumetric efficiency, heat release rates, brake power, exhaust gas temperature and emissions of NOx, CO2 and CO were studied in a thermal barrier coated SI engine, under variable argon concentrations. Results of this study showed that the inclusion of Argon to the input air of the thermal barrier coated SI engine has significantly improved the emission characteristics and engine's performance within the range studied.

  2. Effect of intrapulmonary hematocrit maldistribution on O2, CO2, and inert gas exchange.

    PubMed

    Young, I H; Wagner, P D

    1979-02-01

    The potential effect of intrapulmonary variations in hematocrit on gas exchange has been studied in theoretical models of the lung containing maldistribution of both hematocrit (Hct) and ventilation-perfusion (VA/Q) ratio. Hematocrit inequality enhanced gas exchange when units of low VA/Q were given a low Hct, arterial PO2 rising by as much as 14 Torr and PCO2 falling by up to 2 Torr depending on the particular distributions of Hct and VA/Q, whereas gas exchange was depressed when units of low VA/Q had a high Hct. After measuring inert gas solubilities in both dog and human blood of different Hct, the effect of Hct inequality on inert gas exchange was similarly assessed. Solubility was found to increase with HCT for less soluble gases. Because of this, conditions for enhancement of inert and O2 exchange by HCt inequality coincided, and it was found that in general the effects on O2 and inert gas transfer were quantitatively internally consistent. Even when Hct inequality was extreme, the resulting perturbation of inert gas concentrations was sufficiently small that the main features of the recovered VA/Q distributions were unaltered.

  3. Dilution and stoichiometry effects on gas reburning: An experimental study

    SciTech Connect

    Bilbao, R.; Alzueta, M.U.; Millera, A.; Prada, L.

    1997-06-01

    Gas reburning is a NO{sub x} reduction technique that can be applied to different combustion systems. The influence of stoichiometry and dilution effects on the efficiency of the gas reburning process has been studied from an experimental point of view at a temperature of 1,100 C. Methane, ethane, and natural gas have been used as reburning fuels. The results obtained show that both stoichiometry and dilution level are very important parameters for the performance of the process.

  4. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies

    PubMed Central

    Katz, Ira; Palgen, Marc; Murdock, Jacqueline; Martin, Andrew R.; Farjot, Géraldine; Caillibotte, Georges

    2016-01-01

    New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell. PMID:27826419

  5. Gas transport during in vitro and in vivo preclinical testing of inert gas therapies.

    PubMed

    Katz, Ira; Palgen, Marc; Murdock, Jacqueline; Martin, Andrew R; Farjot, Géraldine; Caillibotte, Georges

    2016-03-01

    New gas therapies using inert gases such as xenon and argon are being studied, which require in vitro and in vivo preclinical experiments. Examples of the kinetics of gas transport during such experiments are analyzed in this paper. Using analytical and numerical models, we analyze an in vitro experiment for gas transport to a 96 cell well plate and an in vivo delivery to a small animal chamber, where the key processes considered are the wash-in of test gas into an apparatus dead volume, the diffusion of test gas through the liquid media in a well of a cell test plate, and the pharmacokinetics in a rat. In the case of small animals in a chamber, the key variable controlling the kinetics is the chamber wash-in time constant that is a function of the chamber volume and the gas flow rate. For cells covered by a liquid media the diffusion of gas through the liquid media is the dominant mechanism, such that liquid depth and the gas diffusion constant are the key parameters. The key message from these analyses is that the transport of gas during preclinical experiments can be important in determining the true dose as experienced at the site of action in an animal or to a cell.

  6. Passive Fuel Tank Inerting Systems for Ground Combat Vehicles

    DTIC Science & Technology

    1988-09-01

    operating principle is to supply an inert gas , usually nitrogen (N2 ) or carbon dioxide (CO), into the ullage or dry bay. The inert gas dilutes ?he available...logistics and economics tend to favor N2 . The source of the inert gas can be either a liquid (cryogenic) supply or an onboard generator. Liquid supplies have...Agencies . . . . . . . . . . . . 311 5.1.3. Damage Nodes . . . . . . . . . . . . . . . . . 12 5.2. Current Fuel SIstem Descriptions . . . . . . . 14 5.2.1

  7. Carbothermic Reduction of Chromite Ore Under Different Flow Rates of Inert Gas

    NASA Astrophysics Data System (ADS)

    Chakraborty, Dolly; Ranganathan, S.; Sinha, S. N.

    2010-02-01

    The reduction of chromite ore with carbon has been studied extensively in many laboratories. Inert gases have been used in these investigations to control the experimental conditions. However, little information is available in the literature on the influence of the gas flow rate on the rate of reduction. Experiments were carried out to study the influence of the flow rate of inert gas on the reducibility of chromite ore. The experiments showed that the rate of reduction increased with the increasing flow rate of argon up to an optimum flow rate. At higher flow rates, the rate of reduction decreased. The influence of the proportion of reductant on the extent of reduction depended on the rate of flow rate of inert gas. The experimental results are interpreted on the basis of a model that postulates that the mechanism of reduction changes with the flow rate of argon.

  8. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    SciTech Connect

    McCormick, S.H.; Pigott, W.R.

    1998-04-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

  9. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, S.H.; Pigott, W.R.

    1997-12-30

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

  10. Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas

    DOEpatents

    McCormick, Steve H.; Pigott, William R.

    1997-01-01

    A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

  11. Vacuum rated flow controllers for inert gas ion engines

    NASA Technical Reports Server (NTRS)

    Pless, L. C.

    1987-01-01

    Electrical propulsion systems which use a gas as a propellant require a gas flowmeter/controller which is capable of operating in a vacuum environment. The presently available instruments in the required flow ranges are designed and calibrated for use at ambient pressure. These instruments operate by heating a small diameter tube through which the gas is flowing and then sensing the change in temperature along the length of the tube. This temperature change is a function of the flow rate and the gas heat capacity. When installed in a vacuum, the change in the external thermal characteristics cause the tube to overheat and the temperature sensors are then operating outside their calibrated range. In addition, the variation in heat capacity with temperature limit the accuracy obtainable. These problems and the work in progress to solve them are discussed.

  12. Inert gas rejection device for zinc-halogen battery systems

    DOEpatents

    Hammond, Michael J.; Arendell, Mark W.

    1981-01-01

    An electrolytic cell for separating chlorine gas from other (foreign) gases, having an anode, a cathode assembly, an aqueous electrolyte, a housing, and a constant voltage power supply. The cathode assembly is generally comprised of a dense graphite electrode having a winding channel formed in the face opposing the anode, a gas impermeable (but liquid permeable) membrane sealed into the side of the cathode electrode over the channel, and a packing of graphite particles contained in the channel of the cathode electrode. The housing separates and parallelly aligns the anode and cathode assembly, and provides a hermetic seal for the cell. In operation, a stream of chlorine and foreign gases enters the cell at the beginning of the cathode electrode channel. The chlorine gas is dissolved into the electrolyte and electrochemically reduced into chloride ions. The chloride ions disfuse through the gas impermeable membrane, and are electrochemically oxidized at the anode into purified chlorine gas. The foreign gases do not participate in the above electrochemical reactions, and are vented from the cell at the end of the cathode electrode channel.

  13. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  14. Inert gas clearance from tissue by co-currently and counter-currently arranged microvessels.

    PubMed

    Lu, Y; Michel, C C; Wang, W

    2012-08-01

    To elucidate the clearance of dissolved inert gas from tissues, we have developed numerical models of gas transport in a cylindrical block of tissue supplied by one or two capillaries. With two capillaries, attention is given to the effects of co-current and counter-current flow on tissue gas clearance. Clearance by counter-current flow is compared with clearance by a single capillary or by two co-currently arranged capillaries. Effects of the blood velocity, solubility, and diffusivity of the gas in the tissue are investigated using parameters with physiological values. It is found that under the conditions investigated, almost identical clearances are achieved by a single capillary as by a co-current pair when the total flow per tissue volume in each unit is the same (i.e., flow velocity in the single capillary is twice that in each co-current vessel). For both co-current and counter-current arrangements, approximate linear relations exist between the tissue gas clearance rate and tissue blood perfusion rate. However, the counter-current arrangement of capillaries results in less-efficient clearance of the inert gas from tissues. Furthermore, this difference in efficiency increases at higher blood flow rates. At a given blood flow, the simple conduction-capacitance model, which has been used to estimate tissue blood perfusion rate from inert gas clearance, underestimates gas clearance rates predicted by the numerical models for single vessel or for two vessels with co-current flow. This difference is accounted for in discussion, which also considers the choice of parameters and possible effects of microvascular architecture on the interpretation of tissue inert gas clearance.

  15. Gas dilution system results and application to acid rain utilities

    SciTech Connect

    Jolley-Souders, K.; Geib, R.; Dunn, C.

    1997-12-31

    In 1997, the United States EPA will remove restrictions preventing acid rain utilities from using gas dilution systems for calibration or linearity studies for continuous emissions monitoring, Test Method 205 in 40CFR51 requires that a gas dilution system must produce calibration gases whose measured values are within {+-}2% of predicted values. This paper presents the evaluation of the Environics/CalMat 2020 Dilution System for use in calibration studies. Internal studies show that concentrations generated by this unit are within {+-}0.5% of predicted values. Studies are being conducted by several acid rain utilities to evaluate the Environics/CalMat system using single minor component calibration standards. In addition, an internally generated study is being performed to demonstrate the system`s accuracy using a multi-component gas mixture. Data from these tests will be presented in the final version of the paper.

  16. Evaluation of two gas-dilution methods for instrument calibration

    NASA Technical Reports Server (NTRS)

    Evans, A., Jr.

    1977-01-01

    Two gas dilution methods were evaluated for use in the calibration of analytical instruments used in air pollution studies. A dual isotope fluorescence carbon monoxide analyzer was used as the transfer standard. The methods are not new but some modifications are described. The rotary injection gas dilution method was found to be more accurate than the closed loop method. Results by the two methods differed by 5 percent. This could not be accounted for by the random errors in the measurements. The methods avoid the problems associated with pressurized cylinders. Both methods have merit and have found a place in instrument calibration work.

  17. Molecular dynamics simulations of cluster nucleation during inert gas condensation.

    PubMed

    Krasnochtchekov, Pavel; Averback, R S

    2005-01-22

    Molecular dynamics simulations of vapor-phase nucleation of germanium in an argon atmosphere were performed and a unexpected channel of nucleation was observed. This channel, vapor-induced cluster splitting, is important for more refractory materials since the critical nucleus size can fall below the size of a dimer. As opposed to conventional direct vapor nucleation of the dimer, which occurs by three-body collisions, cluster-splitting nucleation is a second-order reaction. The most important cluster-splitting reaction is the collision of a vapor atom and a trimer that leads to the formation of two dimers. The importance of the cluster-splitting nucleation channel relative to the direct vapor nucleation channel is observed to increase with decreasing vapor density and increasing ratio of vapor to carrier gas atoms.

  18. Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.

    2007-01-01

    Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.

  19. The two faces of Eve: gaseous anaesthesia and inert gas narcosis.

    PubMed

    Smith, Cameron R; Spiess, Bruce D

    2010-06-01

    Gaseous anaesthesia has been a great boon for medicine. These drugs form a foundation from which modern surgery has sprung, yet their mechanism(s) of actions remains poorly understood. Inert gas narcosis is a limitation of deep sea diving, and its mechanisms also remain poorly understood. In this review article we summarise what is known about the mechanisms of both gaseous anaesthesia and inert gas narcosis, including both lipid-based biophysical models and protein-based biochemical models, as well as explore some striking similarities between the two. These two phenomena may, in reality, be gradations of the same underlying mechanism. Recent findings include biochemical evidence suggesting that both gaseous anaesthesia and inert gas narcosis may be mediated by the occupation of minute spaces within the structure of many biologically important proteins, impairing their ability to undergo conformational changes and biological actions. This is exemplified by exploring the effects of the noble gas xenon, which can behave as either a narcotic gas or gaseous anaesthetic, depending on the partial pressure in which it is present.

  20. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 1; Aircraft System Requirements

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Bailey, Delbert B.; Lewinski, Daniel F.; Roseburg, Conrad M.; Palaszewski, Bryan (Technical Monitor)

    2001-01-01

    The purpose of this technology assessment is to define a multiphase research study program investigating Onboard Inert Gas Generation Systems (OBIGGS) and Onboard Oxygen Generation Systems (OBOGS) that would identify current airplane systems design and certification requirements (Subtask 1); explore state-of-the-art technology (Subtask 2); develop systems specifications (Subtask 3); and develop an initial system design (Subtask 4). If feasible, consideration may be given to the development of a prototype laboratory test system that could potentially be used in commercial transport aircraft (Subtask 5). These systems should be capable of providing inert nitrogen gas for improved fire cargo compartment fire suppression and fuel tank inerting and emergency oxygen for crew and passenger use. Subtask I of this research study, presented herein, defines current production aircraft certification requirements and design objectives necessary to meet mandatory FAA certification requirements and Boeing design and performance specifications. These requirements will be utilized for baseline comparisons for subsequent OBIGGS/OBOGS application evaluations and assessments.

  1. [Study on drawing aseptic gas in diluting drugs].

    PubMed

    Fan, Z C; Yu, F Y; Zou, F S

    1996-07-01

    In this study, the gas was drawn from sealed aseptic bottles, the blue flame of an alcohol lamp, and the air of the same treatment room. And the gas was put into aseptic solutions of 10% glucose separately and dripped. Then the samples were taken for bacteriaculture at appointed time-points. Meanwhile, the gases were drawn and put into aseptic solutions of 10% glucose separately. Then deactived penicillines were diluted with the solutions separately. Finally, the penicillines were mixed with 10% glucose and dripped. The samples were taken for bacteria-culture in the same way. The results showed that there was no colony existed in the gas from the sealed aseptic bottles and the flame of the alcohol lamp. However, colonies existed in the samples from the air of the treatment room. It is suggested that sealed aseptic gas should be drawn and kept for use in diluting drugs.

  2. Green spherules from Apollo 15 - Inferences about their origin from inert gas measurements.

    NASA Technical Reports Server (NTRS)

    Lakatos, S.; Yaniv, A.; Heymann, D.

    1973-01-01

    Green spherules from the 'clod' 15426 and from fines 15421 contain about 100 times less trapped inert gases than normal bulk fines from Apollo 15. These spherules have apparently never been directly exposed to the solar wind. Spherules from other fines contain about 10 times more trapped gas than those from the 'clod.' The gas in the former is surface correlated. However, spherules from fines 15401 are exceptionally gas-poor. The trapped gases can be of solar-wind origin, but this origin requires a two-stage model for the spherules from the clods. Another possibility is that the gases were absorbed from an ambient gas phase. The trapped gases may also be assumed to represent primordial lunar gas. The composition of this gas is then similar to the 'solar' or 'unfractionated' component of gas-rich meteorites, but unlike that in most of the carbonaceous chondrites.

  3. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  4. Probing Toluene and Ethylbenzene Stable Glass Formation using Inert Gas Permeation

    SciTech Connect

    Smith, R. Scott; May, Robert A.; Kay, Bruce D.

    2015-09-01

    Inert gas permeation is used to investigate the formation of stable glasses of toluene and ethylbenzene. The effect of deposition temperature (Tdep) on the kinetic stability of the vapor deposited glasses is determined using Kr desorption spectra from within sandwich layers of either toluene or ethylbenzene. The results for toluene show that the most stable glass is formed at Tdep = 0.92 Tg, although glasses with a kinetic stability within 50% of the most stable glass were found with deposition temperatures from 0.85 to 0.95 Tg. Similar results were found for ethylbenzene, which formed its most stable glass at 0.91 Tg and formed stable glasses from 0.81 to 0.96 Tg. These results are consistent with recent calorimetric studies and demonstrate that the inert gas permeation technique provides a direct method to observe the onset of molecular translation motion that accompanies the glass to supercooled liquid transition.

  5. Continuous crafting of uniform colloidal nanocrystals using an inert-gas-driven microflow reactor.

    PubMed

    Tang, Hailong; He, Yanjie; Li, Bo; Jung, Jaehan; Zhang, Chuchu; Liu, Xiaobo; Lin, Zhiqun

    2015-06-07

    Recent research has witnessed rapid advances in synthesis of nanocrystals, which has led to the development of a large variety of approaches for producing nanocrystals with controlled dimensions. However, most of these techniques lack the high-throughput production. Herein, we report on a viable and robust strategy based on an inert-gas-driven microflow reactor for continuous crafting of high-quality colloidal nanocrystals. With the judicious introduction of the inert-gas driven capability, the microflow reactor provides an attractive platform for continuous production of colloidal nanocrystals in large quantities, including easily-oxidized nanocrystals. The as-synthesized nanocrystals possessed a uniform size and shape. Intriguingly, the size of nanocrystals can be effectively tailored by varying the flow rate and the precursor concentration. We envision that the microflow reactor strategy is general and offers easy access to a wide range of scalable nanocrystals for potential applications in sensors, optics, optoelectronics, solar energy conversion, batteries, photocatalysis, and electronic devices.

  6. Determination of oxygen content in magnesium and its alloys by inert gas fusion-infrared absorptiometry.

    PubMed

    Tsuge, Akira; Achiwa, Hatsumi; Morikawa, Hisashi; Uemoto, Michihisa; Kanematsu, Wataru

    2011-01-01

    A method for the determination of the oxygen content in magnesium and magnesium alloys has been developed. Inert gas fusion-infrared absorptiometry was modified by introducing a multistep heating process; a sample containing oxygen is fused with tin to form an eutectic mixture at 900°C in a graphite crucible, followed by a subsequent gradual temperature increase of up to 2000°C, which enables the evaporation of magnesium from the mixture, and subsequent solidification at the rim of the crucible. Residual tin including magnesium oxide remained at the bottom of the crucible. The oxygen in the tin is measured by a conventional inert gas fusion (IGF) method. From a comparison with the results of charged particle activation analysis, the IGF method is considered to be an attractive candidate for measuring the oxygen content in Mg and its alloys.

  7. Annealing-induced property improvements in 2-14-1 powders produced by inert gas atomization

    SciTech Connect

    Lewis, L.H.; Sellers, C.H.; Panchanathan, V.

    1996-04-01

    The effects of vacuum annealing on the phase constitution and magnetic properties of various size fractions of 3 alloy compositions produced by Inert-gas atomization (IGA) are examined. Annealing results in the oxidation of properitectic {alpha}-Fe formed during cooling of the melt, producing considerable improvement in the hard magnetic properties of the powders largely via the removal of lower-anisotropy magnetic reversal regions.

  8. Commandant’s International Technical Series. Volume 7. Regulations and Guidelines for Inert Gas Systems

    DTIC Science & Technology

    1980-04-01

    come into force on 25 May 1Q80, NOTING ALSO that the Maritime Safety Committee at its forty-first session approved a revised text of Regulation 62 for...related to individual scrubber designs and materials. MSC/Circ. 282 Page 25 .2 The water level in the scrubber shall be monitored by a high water...19 Inert Gas Distribution System 19 Chapter 6 - BLOWERS 21 Blower Service 21 Blower Type 22 Blower Component Requirements 22 Chapter 7 - VALVES 25

  9. A device for vacuum drying, inert gas backfilling and solder sealing of hermetic implant packages.

    PubMed

    Schuettler, Martin; Huegle, Matthias; Ordonez, Juan S; Wilde, Juergen; Stieglitz, Thomas

    2010-01-01

    Modern implanted devices utilize microelectronics that have to be protected from the body fluids in order to maintain their functionality over decades. Moisture protection of implants is addressed by enclosing the electronic circuits into gas-tight packages. In this paper we describe a device that allows custom-built hermetic implant packages to be vacuum-dried (removing residual moisture from inside the package), backfilled with an inert gas at adjustable pressure and hermetically sealed employing a solder seal. A typical operation procedure of the device is presented.

  10. Effect of variables in inert gas condensation processing on nanoparticle trajectory simulated by finite volume method.

    PubMed

    Lee, Kwang-Min; Juhng, Woo-Nam; Choi, Bo-Young

    2006-11-01

    The finite volume method was applied to the determination of the three-dimensional convection current during inert gas condensation (IGC) processing by using the commercially available software, "Fluent". The lower velocity of the convection current at higher evaporation temperature resulted from the lower value of the coefficient of thermal expansion. The velocity of the convection current increased with increasing chamber pressure, because the driving force of the buoyancy was directly proportional to the gas density. 13% and 17.3% of the particles were trapped during the first period of circulation in the case of the single and double heaters, respectively.

  11. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography.

    PubMed

    Kretzschmar, Moritz; Schilling, Thomas; Vogt, Andreas; Rothen, Hans Ulrich; Borges, João Batista; Hachenberg, Thomas; Larsson, Anders; Baumgardner, James E; Hedenstierna, Göran

    2013-10-15

    The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

  12. TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING

    NASA Technical Reports Server (NTRS)

    1963-01-01

    TIG WELDER LOCATED IN THE CLEAN ROOM OF THE TECHNICAL SERVICES BUILDING TSB - THE INERT GAS WELDING FACILITY IS USED FOR WELDING REFRACTORY METALS IN CONNECTION WITH THE COLUMBIUM LIQUID SODIUM LOOP PROJECT

  13. Angular momentum relaxation in atom-diatom dilute gas mixtures

    NASA Astrophysics Data System (ADS)

    Evans, Glenn T.

    1987-04-01

    The angular momentum relaxation cross sections for a diatomic molecule in a dilute atomic gas are estimated subject to the assumption that the intermolecular torque is dominated by the hard, impulsive contribution (evaluated using Boltzmann kinetic theory for nonspherical molecules). For carbon monoxide in a variety of gases, the kinetic theory derived contribution to the angular momentum cross section is in qualitative agreement with the experimental results of Jameson, Jameson, and Buchi.

  14. Ultraviolet absorption spectra of metalorganic molecules diluted in hydrogen gas

    NASA Astrophysics Data System (ADS)

    Itoh, Hideo; Watanabe, Masanobu; Mukai, Seiji; Yajima, Hiroyoshi

    1988-12-01

    Ultraviolet absorption spectra of trimethyl gallium, triethyl gallium, and trimethyl aluminum diluted in hydrogen gas were measured as a function of the wavelength (185-350 nm) and the concentration of the molecules (4.8×10 -6 -1.6×10 -4 mol/liter). Their absorbances changed linearly with the concentration of the molecules, which allowed us to calculate the molar absorption coefficients of the molecules on the basis of the Beer-Lambert law.

  15. Inert gas washout: theoretical background and clinical utility in respiratory disease.

    PubMed

    Robinson, Paul D; Goldman, Michael D; Gustafsson, Per M

    2009-01-01

    Inert gas washout was first described more than 60 years ago and 2 principal tests have been developed from it: the single breath and multiple breath washout (MBW) techniques. The invention of fast responding gas analysers almost 60 years ago and small computers 30 years later have facilitated breath-by-breath analysis and the development of sophisticated analysis techniques. It is now possible to detect not only the degree of pulmonary ventilation inhomogeneity, but also to gain important insight into the location of the underlying disease process. While single breath washout requires a full vital capacity effort, tidal breathing during the multiple breath test requires minimal co-operation and co-ordination, and is feasible in subjects of all ages. Available MBW normative data from parameters, such as the lung clearance index, appears to vary minimally with age, making MBW particularly useful to follow children longitudinally. Multiple breath inert gas washout has demonstrated improved sensitivity, in comparison to spirometry, in the early detection of a number of important disease processes, including cystic fibrosis. Despite this, these important techniques remain under-utilised in the clinical setting and there is a lack of commercially available devices currently available. The recent resurgence of research in this area has produced a large number of important studies and a pronounced international interest has developed in these techniques. This review article will provide an overview of the theoretical background of inert gas washout and analysis indices, review important physiological and clinical insights gained from research to date (as well as from our own experience) to illustrate its utility, and outline the challenges that lie ahead in incorporating these techniques into the mainstream clinical setting.

  16. Noninvasive cardiac output determination for children by the inert gas-rebreathing method.

    PubMed

    Wiegand, Gesa; Kerst, Gunter; Baden, Winfried; Hofbeck, Michael

    2010-11-01

    Standard methods for determination of cardiac output (CO) are either invasive or technically demanding. Measurement of CO by the inert gas-rebreathing (IGR) method, applied successfully in adults, uses a low-concentration mixture of an inert and a blood-soluble gas, respectively. This study tested the feasibility of this method for determining CO during exercise for pediatric patients with complete congenital atrioventricular block (CCAVB) stimulated with a VVI pacemaker. In this study, 5 CCAVB patients (age 9.2-17.4 years) were compared with 10 healthy age-matched boys and girls. Testing was performed with the Innocor system. The patients were instructed to breathe the test gas from a closed system. Pulmonary blood flow was calculated according to the washout of the soluble gas component. During standardized treadmill testing, CO was determined at three defined levels. The CO measurements were successful for all the study participants. The patients reached a lower peak CO than the control subjects (5.9 l/min/m(2) vs 7.3 [boys] and 7.2 [girls]). The stroke volume increase under exercise also was reduced in the patients compared with the control subjects. The feasibility of the IGR method for exercise CO testing in children was documented. Application of the IGR method for children requires careful instruction of the patients and appears restricted to subjects older than 8 years. The method offers new insights into mechanisms of cardiovascular adaptation in children with congenital heart disease.

  17. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  18. Polishing of Optical Media by Dielectric Barrier Discharge Inert Gas Plasma at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Gerhard, C.; Weihs, T.; Luca, A.; Wieneke, S.; Viöl, W.

    2013-12-01

    In this paper, surface smoothing of optical glasses, glass ceramic and sapphire using a low-power dielectric barrier discharge inert gas plasma at atmospheric pressure is presented. For this low temperature treatment method, no vacuum devices or chemicals are required. It is shown that by such plasma treatment the micro roughness and waviness of the investigated polished surfaces were significantly decreased, resulting in a decrease in surface scattering. Further, plasma polishing of lapped fused silica is introduced. Based on simulation results, a plasma physical process is suggested to be the underlying mechanism for initialising the observed smoothing effect.

  19. Trapping of He clusters by inert-gas impurities in tungsten: First-principles predictions and experimental validation

    NASA Astrophysics Data System (ADS)

    Nguyen-Manh, Duc; Dudarev, S. L.

    2015-06-01

    Properties of point defects resulting from the incorporation of inert-gas atoms in bcc tungsten are investigated systematically using first-principles density functional theory (DFT) calculations. The most stable configuration for the interstitial neon, argon, krypton and xenon atoms is the tetrahedral site, similarly to what was found earlier for helium in W. The calculated formation energies for single inert-gas atoms at interstitial sites as well as at substitutional sites are much larger for Ne, Ar, Kr and Xe than for He. While the variation of the energy of insertion of inert-gas defects into interstitial configurations can be explained by a strong effect of their large atomic size, the trend exhibited by their substitutional energies is more likely related to the covalent interaction between the noble gas impurity atoms and the tungsten atoms. There is a remarkable variation exhibited by the energy of interaction between inert-gas impurities and vacancies, where a pronounced size effect is observed when going from He to Ne, Ar, Kr, Xe. The origin of this trend is explained by electronic structure calculations showing that p-orbitals play an important part in the formation of chemical bonds between a vacancy and an atom of any of the four inert-gas elements in comparison with helium, where the latter contains only 1s2 electrons in the outer shell. The binding energies of a helium atom trapped by five different defects (He-v, Ne-v, Ar-v, Kr-v, Xe-v, where v denotes a vacancy in bcc-W) are all in excellent agreement with experimental data derived from thermal desorption spectroscopy. Attachment of He clusters to inert gas impurity atom traps in tungsten is analysed as a function of the number of successive trapping helium atoms. Variation of the Young modulus due to inert-gas impurities is analysed on the basis of data derived from DFT calculations.

  20. Quantitative analysis of trace bulk oxygen in silicon wafers using an inert gas fusion method.

    PubMed

    Uchihara, Hiroshi; Ikeda, Masahiko; Nakahara, Taketoshi

    2003-11-01

    This paper describes a method for removing oxide film from the surface of silicon wafers using an inert gas fusion impulse furnace and precise determination of bulk oxygen within the wafer. A silicon wafer was cut to about 0.35 g (6 x 13 x 2 mm) and dropped into a graphite crucible. The sample was then heated for 40 s at 1300 degrees C. The wafer's oxide film was reduced by carbon and removed as carbon monoxide. The treated silicon sample was taken out of the graphite crucible and maintained again with the holder of the oxygen analyzer. The graphite crucible was then heated to 2100 degrees C. The treated silicon sample was dropped into the heated graphite crucible and the trace bulk oxygen in the wafer was measured using the inert gas fusion infrared absorption method. The relative standard deviations of the oxygen in silicon wafer samples with the removed surface oxide film were determined to be 0.8% for 9.8 x 10(17) atoms/cm3, and 2.7% for 13.0 x 10(17) atoms/cm3.

  1. Probing Toluene and Ethylbenzene Stable Glass Formation Using Inert Gas Permeation.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2015-09-17

    Inert gas permeation is used to investigate the formation of stable glasses of toluene and ethylbenzene. The effect of deposition temperature (T(dep)) on the kinetic stability of the vapor deposited glasses is determined using Kr desorption spectra from within sandwich layers of either toluene or ethylbenzene. The results for toluene show that the most stable glass is formed at T(dep) = 0.92 T(g), although glasses with a kinetic stability within 50% of the most stable glass were found with deposition temperatures from 0.85 to 0.95 T(g). Similar results were found for ethylbenzene, which formed its most stable glass at 0.91 T(g) and formed stable glasses from 0.81 to 0.96 T(g). These results are consistent with recent calorimetric studies and demonstrate that the inert gas permeation technique provides a direct method to observe the onset of molecular translation motion that accompanies the glass to supercooled liquid transition.

  2. Silver and Gold:Palladium nanoparticles produced by Inert gas condensation

    NASA Astrophysics Data System (ADS)

    Perez-Tijerina, Eduardo; Gracia-Pinilla, Miguel A.; Mejia-Rosales, Sergio; de La Cruz Hernandez, Wencel; Jose-Yacaman, Miguel

    2007-03-01

    We report the synthesis of (AuPd and Ag) metallic nanoparticles (NPs) deposited on silicon and sapphire wafers and TEM grids. The NPs are formed by an inert gas condensation technique, based on dc-magnetron sputtering followed by condensation in high pressure zone. The size of the NPs was controlled through the variation of gas flow (Ar and He) inside the condensation zone, magnetron power, and condensation zone length. The NPs are negatively charged and may therefore be mass selected by a quadrupole mass filter, obtaining the size-distribution of NPs. We performed morphological, structural and composition studies of the NPs by mass spectroscopy, AES, XPS, AFM, UV-Visible spectroscopy, TEM, and HRTEM. Our procedure allows both a remarkable control over average size of the nanoparticles on the sample, and deviations below 5% around this average size.

  3. Stepwise Internal Energy Control for Protonated Methanol Clusters by Using the Inert Gas Tagging

    NASA Astrophysics Data System (ADS)

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-06-01

    Preferred isomer structures of hydrogen-bonded clusters should depend on their temperature because of the entropy term in the free energy. To observe such temperature dependence, we propose a new approach to control the internal energy (vibrational temperature) of protonated clusters in the gas phase. We performed IR spectroscopy of protonated methanol clusters, H+ (CH{_3}OH) {_n}, n= 5 and 7, with the tagging by various inert gas species (Ar, CO{_2}, CO, CS{_2}, C{_2}H{_2}, and C{_6}H{_6}). We found that vibrational temperature of the tagged clusters raises with increase of the interaction energy with the tag species, and the observed cluster structures follow the theoretical prediction of the temperature dependence of the isomer population.

  4. Multiple inert gas elimination technique for determining ventilation/perfusion distributions in rat during normoxia, hypoxia and hyperoxia.

    PubMed

    Alfaro, V; Roca-Acín, J; Palacios, L; Guitart, R

    2001-01-01

    1. The use of the multiple inert gas elimination technique (MIGET) in quantifying ventilation/perfusion distributions (V*A/Q*) in small animals, such as the rat, may cause results to be biased due to haemodilution produced by the large volume of liquid infused intravenously. 2. We tested two methods of administering inert gases in rats using the MIGET: (i) standard continuous intravenous administration of inert gases (method A); and (ii) a new method based on the physicochemical properties of each inert gas (method B). This method included acute simultaneous inert gas administration using three pathways: inhalation, intravenous infusion and rectal infusion. Both MIGET methods were applied to obtain data while breathing three different inspiratory fractions of oxygen (FIO2): normoxia, hypoxia and hyperoxia. 3. Inert gas levels obtained from blood or expired air samples were sufficient for chromatographic measurement, at least during a 2 h period. The V*A/Q* distributions reported using both methods were acceptable for all the physiological conditions studied; therefore, the alternative method used here may be useful in further MIGET studies in rats because haemodilution resulting from continuous intravenous infusion of less-soluble gases can be avoided. 4. Normoxic rats showed lower mean values of the V*A/Q* ratio of ventilation distribution and higher mean values of the V*A/Q* ratio of perfusion distribution with the usual method of inert gas administration (method A). These non-significant differences were observed under almost all physiological conditions studied and they could be caused by haemodilution. Nevertheless, the effect of interindividual differences cannot be discarded. An additional effect of the low haematocrit on cardiovascular changes due to low FIO2, such as pulmonary vasoconstriction or increased cardiac output, may explain the lower dispersion of perfusion distributions found in group A during hypoxia.

  5. Effect of ethanol, temperature, and gas flow rate on volatile release from aqueous solutions under dynamic headspace dilution conditions.

    PubMed

    Tsachaki, Maroussa; Gady, Anne-Laure; Kalopesas, Michalis; Linforth, Robert S T; Athès, Violaine; Marin, Michele; Taylor, Andrew J

    2008-07-09

    On the basis of a mechanistic model, the overall and liquid mass transfer coefficients of aroma compounds were estimated during aroma release when an inert gas diluted the static headspace over simple ethanol/water solutions (ethanol concentration = 120 mL x L(-1)). Studied for a range of 17 compounds, they were both increased in the ethanol/water solution compared to the water solution, showing a better mass transfer due to the presence of ethanol, additively to partition coefficient variation. Thermal imaging results showed differences in convection of the two systems (water and ethanol/water) arguing for ethanol convection enhancement inside the liquid. The effect of ethanol in the solution on mass transfer coefficients at different temperatures was minor. On the contrary, at different headspace dilution rates, the effect of ethanol in the solution helped to maintain the volatile headspace concentration close to equilibrium concentration, when the headspace was replenished 1-3 times per minute.

  6. Heat Flux for a Relativistic Dilute Bidimensional Gas

    NASA Astrophysics Data System (ADS)

    García-Perciante, A. L.; Méndez, A. R.; Escobar-Aguilar, E.

    2017-04-01

    Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman-Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.

  7. Heat Flux for a Relativistic Dilute Bidimensional Gas

    NASA Astrophysics Data System (ADS)

    García-Perciante, A. L.; Méndez, A. R.; Escobar-Aguilar, E.

    2017-02-01

    Relativistic kinetic theory predicts substantial modifications to the dissipation mechanisms of a dilute gas. For the heat flux, these include (in the absence of external forces) a correction to the thermal conductivity and the appearance of a new, purely relativistic, term proportional to the density gradient. In this work we obtain such constitutive equation for the particular case of a bidimensional gas. The calculation is based on the Chapman-Enskog solution to the relativistic Boltzmann equation and yields analytical expressions for the corresponding transport coefficients, which are evaluated for the particular case of hard disks. These results will be useful for numerical simulations and may be applied to bidimensional non-dense materials.

  8. Assessment of multiphoton absorption in inert gases for the measurement of gas temperatures.

    PubMed

    Bednar, Natalie J; Walewski, Joachim W; Sanders, Scott T

    2006-03-01

    A spatially resolved optical technique to measure gas temperature was assessed. The technique relies on multiphoton absorption in inert gases. In contrast to laser-induced fluorescence, absorption is insensitive to collisional deactivation, and, in contrast to one-photon absorption, multiphoton absorption only occurs around the focus point of a typical laser beam. Multiphoton absorption features both the merits of being insensitive to quenching and of being a spatially resolved technique. In a case study we assessed two-photon absorption in xenon upon exciting the 5p6 1S0-->5p56p[5/2]2 transition in xenon at a wavelength of 256 nm. The amount of light absorbed by xenon is related to the number density of the gas, and if the gas pressure is known then the gas temperature can be inferred from the number density. Two-photon absorbance was measured as a function of xenon number density and was used to validate a theoretical model of the absorption process. We discuss the circumnavigation of experimental challenges in applying this technique and analyze its precision in terms of the inferred gas temperature.

  9. Neurochemistry of Pressure-Induced Nitrogen and Metabolically Inert Gas Narcosis in the Central Nervous System.

    PubMed

    Rostain, Jean-Claude; Lavoute, Cécile

    2016-06-13

    Gases that are not metabolized by the organism are thus chemically inactive under normal conditions. Such gases include the "noble gases" of the Periodic Table as well as hydrogen and nitrogen. At increasing pressure, nitrogen induces narcosis at 4 absolute atmospheres (ATAs) and more in humans and at 11 ATA and more in rats. Electrophysiological and neuropharmacological studies suggest that the striatum is a target of nitrogen narcosis. Glutamate and dopamine release from the striatum in rats are decreased by exposure to nitrogen at a pressure of 31 ATA (75% of the anesthetic threshold). Striatal dopamine levels decrease during exposure to compressed argon, an inert gas more narcotic than nitrogen, or to nitrous oxide, an anesthetic gas. Inversely, striatal dopamine levels increase during exposure to compressed helium, an inert gas with a very low narcotic potency. Exposure to nitrogen at high pressure does not change N-methyl-d-aspartate (NMDA) glutamate receptor activities in Substantia Nigra compacta and striatum but enhances gama amino butyric acidA (GABAA) receptor activities in Substantia Nigra compacta. The decrease in striatal dopamine levels in response to hyperbaric nitrogen exposure is suppressed by recurrent exposure to nitrogen narcosis, and dopamine levels increase after four or five exposures. This change, the lack of improvement of motor disturbances, the desensitization of GABAA receptors on dopamine cells during recurrent exposures and the long-lasting decrease of glutamate coupled with the higher sensitivity of NMDA receptors, suggest a nitrogen toxicity induced by repetitive exposures to narcosis. These differential changes in different neurotransmitter receptors would support the binding protein theory. © 2016 American Physiological Society. Compr Physiol 6:1579-1590, 2016.

  10. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. I. Kinetic model and scaling methods.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-11-07

    We describe in detail a diffusion model used to simulate inert gas transport through supercooled liquid overlayers. In recent work, the transport of the inert gas has been shown to be an effective probe of the diffusivity of supercooled liquid methanol in the experimentally challenging regime near the glass transition temperature. The model simulations accurately and quantitatively describe the inert gas permeation desorption spectra. The simulation results are used to validate universal scaling relationships between the diffusivity, overlayer thickness, and the temperature ramp rate for isothermal and temperature programmed desorption. From these scaling relationships we derive simple equations from which the diffusivity can be obtained using the peak desorption time or temperature for an isothermal or set of TPD experiments, respectively, without numerical simulation. The results presented here demonstrate that the permeation of gases through amorphous overlayers has the potential to be a powerful technique to obtain diffusivity data in deeply supercooled liquids.

  11. Comparison of inert-gas-fusion and modified Kjeldahl techniques for determination of nitrogen in niobium alloys

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Graab, J. W.; Davis, W. F.

    1974-01-01

    This report compares results obtained for the determination of nitrogen in a selected group of niobium-base alloys by the inert-gas-fusion and the Kjeldahl procedures. In the inert-gas-fusion procedure the sample is heated to approximately 2700 C in a helium atmosphere in a single-use graphite crucible. A platinum flux is used to facilitate melting of the sample. The Kjeldahl method consisted of a rapid decomposition with a mixture of hydrofluoric acid, phosphoric acid, and potassium chromate; distillation in the presence of sodium hydroxide; and highly sensitive spectrophotometry with nitroprusside-catalyzed indophenol. In the 30- to 80-ppm range, the relative standard deviation was 5 to 7 percent for the inert-gas-fusion procedure and 2 to 8 percent for the Kjeldahl procedure. The agreement of the nitrogen results obtained by the two techniques is considered satisfactory.

  12. Gap states in pentacene thin film induced by inert gas exposure.

    PubMed

    Bussolotti, Fabio; Kera, Satoshi; Kudo, Kazuhiro; Kahn, Antoine; Ueno, Nobuo

    2013-06-28

    We studied gas-exposure effects on pentacene (Pn) films on SiO2 and Au(111) substrates by ultrahigh sensitivity photoelectron spectroscopy, which can detect the density of states of ∼10(16) states eV-1 cm-3 comparable to electrical measurements. The results show the striking effects for Pn/SiO2: exposure to inert gas (N2 and Ar) produces a sharp rise in gap states from ∼10(16) to ∼10(18) states eV-1 cm-3 and pushes the Fermi level closer to the valence band (0.15-0.17 eV), as does exposure to O2 (0.20 eV), while no such gas-exposure effect is observed for Pn/Au(111). The results demonstrate that these gap states originate from small imperfections in the Pn packing structure, which are induced by gas penetration into the film through the crystal grain boundaries.

  13. Stepwise Internal Energy Change of Protonated Methanol Clusters By Using the Inert Gas Tagging.

    PubMed

    Shimamori, Takuto; Kuo, Jer-Lai; Fujii, Asuka

    2016-11-23

    Structural isomer population of a hydrogen-bonded cluster generally depends on temperature. Therefore, determination of an isomer population profile in a wide temperature range is important to understand the nature of hydrogen bond networks of the cluster. To explore an isomer population profile, stepwise changes of internal vibrational energy of a protonated hydrogen-bonded cluster are performed by inert gas tagging. We observe infrared spectra of the protonated methanol pentamer with various tag species. The bare protonated methanol pentamer practically has only two possible isomer types. With the tagging, the relative population of the two isomer types changes according to the binding energy with the tag species. The observed relative population follows its theoretically predicted temperature dependence.

  14. Synthesis of Cu nanoparticles with self-assembled monolayers via inert-gas condensation.

    PubMed

    Kang, Min-Kyu; Kim, Jong-Woong; Kwak, Min-Gi; Yoon, Ho-Gyu; Kim, Young-Seok

    2011-07-01

    Cu nanoparticles with vaporized self-assembled monolayers (SAMs) for the prevention of oxidation were synthesized via inert-gas condensation (IGC). When processing the nanoparticles, the convection in the vacuum chamber was controlled using carrier gases such as Ar and He. Cu shots (2-8 mm) were used as raw materials and were evaporated via resistance heating. Octanethiol (CH3(CH2)7SH) was used for the SAMs and was introduced with the carrier gases during the process. The prepared samples were examined via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to determine the particle sizes, the coating thicknesses of the SAMs, and the particle distribution states. The ingredients were confirmed via X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). The particle size and morphology were controlled by introducing various combinations of carrier gases, such as He, Ar and H2. Finally, stabilized Cu nanoparticles stably coated with octanethiol were successfully fabricated.

  15. Note: development of fast heating inert gas annealing apparatus operated at atmospheric pressure.

    PubMed

    Das, S C; Majumdar, A; Shripathi, T; Hippler, R

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCN(x)) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  16. Argon: systematic review on neuro- and organoprotective properties of an "inert" gas.

    PubMed

    Höllig, Anke; Schug, Anita; Fahlenkamp, Astrid V; Rossaint, Rolf; Coburn, Mark

    2014-10-10

    Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon's neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon.

  17. Note: Development of fast heating inert gas annealing apparatus operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Das, S. C.; Majumdar, A.; Shripathi, T.; Hippler, R.

    2012-04-01

    Here, we report the development of a simple, small, fast heating, and portable, homemade, inert gas (Ar) atmospheric annealing setup. Instead of using a conventional heating element, a commercial soldering rod having an encapsulated fast heating heater is used here. The sample holder is made of a block of stainless steel. It takes 200 s to reach 700 °C, and 10 min to cool down. The probability of oxidation or surface contamination has been examined by means of x ray photoelectron spectroscopy of virgin Cu sample after annealing at 600 °C. In addition, we compare the annealing of a hydrogenated carbon nitride film (HCNx) in both a conventional vacuum and our newly developed ambient Ar atmosphere setup.

  18. Characterization of Pb24Te76 quantum dot thin film synthesized by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Mahdy, Manal A.; Mahdy, Iman A.; El Zawawi, I. K.

    2015-01-01

    Air-stable and thermal-stable lead telluride quantum dot was successfully prepared on glass substrate by inert gas condensation (IGC) method. Argon (Ar) is the inert gas used during deposition process with a constant flow rate of 3 × 10-3 Torr. The effect of heat-treatment process at different times was studies for structure, optical and electrical properties for nanocrystalline thin films. The structures of the as deposited and heat-treated films were investigated using grazing incident in-plane X-ray diffraction (GIIXD). The GIIXD pattern showed nanostructure face centered cubic structure of PbTe thin films. The energy dispersive X-ray analysis (EDX) of as deposited PbTe thin film was carried out and showed that the atomic ratio of Pb/Te was 24/76. The particle size of the as deposited PbTe film and after stored it in an unhumid atmosphere are 6.8 ± 0.3 nm and 7.2 ± 0.3 nm respectively as estimated form TEM image (i.e. in the same level of particle size). However, the particle size was changed to be 11.8 ± 0.3 nm after heat-treated for 5 h at 473 K. These particle size values of PbTe thin film are smaller than its Bohr radius. The estimated value of optical band gap Eg decreased from 1.71 eV for the as deposited film to 1.62 eV for film heat-treated (5 h at 473 K). The dc electrical conductivity is increased with raising temperature in the range (303-473 K) for all thin films under investigation. The deduced activation energy decreased from 0.222 eV for as deposited sample to 0.125 eV after heat-treated at 473 K for 5 h.

  19. Characterization of Pb₂₄Te₇₆ quantum dot thin film synthesized by inert gas condensation.

    PubMed

    Mahdy, Manal A; Mahdy, Iman A; El Zawawi, I K

    2015-01-05

    Air-stable and thermal-stable lead telluride quantum dot was successfully prepared on glass substrate by inert gas condensation (IGC) method. Argon (Ar) is the inert gas used during deposition process with a constant flow rate of 3 × 10(-3)Torr. The effect of heat-treatment process at different times was studies for structure, optical and electrical properties for nanocrystalline thin films. The structures of the as deposited and heat-treated films were investigated using grazing incident in-plane X-ray diffraction (GIIXD). The GIIXD pattern showed nanostructure face centered cubic structure of PbTe thin films. The energy dispersive X-ray analysis (EDX) of as deposited PbTe thin film was carried out and showed that the atomic ratio of Pb/Te was 24/76. The particle size of the as deposited PbTe film and after stored it in an unhumid atmosphere are 6.8 ± 0.3 nm and 7.2 ± 0.3 nm respectively as estimated form TEM image (i.e. in the same level of particle size). However, the particle size was changed to be 11.8 ± 0.3 nm after heat-treated for 5h at 473K. These particle size values of PbTe thin film are smaller than its Bohr radius. The estimated value of optical band gap Eg decreased from 1.71 eV for the as deposited film to 1.62 eV for film heat-treated (5 h at 473K). The dc electrical conductivity is increased with raising temperature in the range (303-473K) for all thin films under investigation. The deduced activation energy decreased from 0.222 eV for as deposited sample to 0.125 eV after heat-treated at 473K for 5 h.

  20. Plane shock wave structure in a dilute granular gas

    NASA Astrophysics Data System (ADS)

    Reddy, M. H. Lakshminarayana; Alam, Meheboob

    2016-11-01

    We analyse the early time evolution of the Riemann problem of planar shock wave structures for a dilute granular gas by solving Navier-Stokes equations numerically. The one-dimensional reduced Navier-Stokes equations for plane shock wave problem are solved numerically using a relaxation-type numerical scheme. The results on the shock structures in granular gases are presented for different Mach numbers and restitution coefficients. Based on our analysis on early time shock dynamics we conclude that the density and temperature profiles are "asymmetric"; the density maximum and the temperature maximum occur within the shock layer; the absolute magnitudes of longitudinal stress and heat flux which are initially zero at both end states attain maxima in a very short time and thereafter decrease with time.

  1. 3D-Printing inside the Glovebox: A Versatile Tool for Inert-Gas Chemistry Combined with Spectroscopy.

    PubMed

    Lederle, Felix; Kaldun, Christian; Namyslo, Jan C; Hübner, Eike G

    2016-04-01

    3D-Printing with the well-established 'Fused Deposition Modeling' technology was used to print totally gas-tight reaction vessels, combined with printed cuvettes, inside the inert-gas atmosphere of a glovebox. During pauses of the print, the reaction flasks out of acrylonitrile butadiene styrene were filled with various reactants. After the basic test reactions to proof the oxygen tightness and investigations of the influence of printing within an inert-gas atmosphere, scope and limitations of the method are presented by syntheses of new compounds with highly reactive reagents, such as trimethylaluminium, and reaction monitoring via UV/VIS, IR, and NMR spectroscopy. The applicable temperature range, the choice of solvents, the reaction times, and the analytical methods have been investigated in detail. A set of reaction flasks is presented, which allow routine inert-gas syntheses and combined spectroscopy without modifications of the glovebox, the 3D-printer, or the spectrometers. Overall, this demonstrates the potential of 3D-printed reaction cuvettes to become a complementary standard method in inert-gas chemistry.

  2. Controlling the Neutron Yield from a Small Dense Plasma Focus using Deuterium-Inert Gas Mixtures

    SciTech Connect

    Bures, B. L.; Krishnan, M.; Eshaq, Y.

    2009-01-21

    The dense plasma focus (DPF) is a well known source of neutrons when operating with deuterium. The DPF is demonstrated to scale from 10{sup 4} n/pulse at 40 kA to >10{sup 12} n/pulse at 2 MA by non-linear current scaling as described in [1], which is itself based on the simple yet elegant model developed by Lee [2]. In addition to the peak current, the gas pressure controls the neutron yield. Recent published results suggest that mixing 1-5% mass fractions of Krypton increase the neutron yield per pulse by more than 10x. In this paper we present results obtained by mixing deuterium with Helium, Neon and Argon in a 500 J dense plasma focus operating at 140 kA with a 600 ns rise time. The mass density was held constant in these experiments at the optimum (pure) deuterium mass density for producing neutrons. A typical neutron yield for a pure deuterium gas charge is 2x10{sup 6}{+-}15% n/pulse. Neutron yields in excess of 10{sup 7}{+-}10% n/pulse were observed with low mass fractions of inert gas. Time integrated optical images of the pinch, soft x-ray measurements and optical emission spectroscopy where used to examine the pinch in addition to the neutron yield monitor and the fast scintillation detector. Work supported by Domestic Nuclear Detection Office under contract HSHQDC-08-C-00020.

  3. Inert Gas Enhanced Laser-Assisted Purification of Platinum Electron-Beam-Induced Deposits.

    PubMed

    Stanford, Michael G; Lewis, Brett B; Noh, Joo Hyon; Fowlkes, Jason D; Rack, Philip D

    2015-09-09

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar-H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. A sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  4. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Rack, Philip D.

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some loss of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.

  5. Inert gas enhanced laser-assisted purification of platinum electron-beam-induced deposits

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; ...

    2015-06-30

    Electron-beam-induced deposition patterns, with composition of PtC5, were purified using a pulsed laser-induced purification reaction to erode the amorphous carbon matrix and form pure platinum deposits. Enhanced mobility of residual H2O molecules via a localized injection of inert Ar–H2 (4%) is attributed to be the reactive gas species for purification of the deposits. Surface purification of deposits was realized at laser exposure times as low as 0.1 s. The ex situ purification reaction in the deposit interior was shown to be rate-limited by reactive gas diffusion into the deposit, and deposit contraction associated with the purification process caused some lossmore » of shape retention. To circumvent the intrinsic flaws of the ex situ anneal process, in situ deposition and purification techniques were explored that resemble a direct write atomic layer deposition (ALD) process. First, we explored a laser-assisted electron-beam-induced deposition (LAEBID) process augmented with reactive gas that resulted in a 75% carbon reduction compared to standard EBID. Lastly, a sequential deposition plus purification process was also developed and resulted in deposition of pure platinum deposits with high fidelity and shape retention.« less

  6. Effects of inert gas narcosis on behavior--a critical review.

    PubMed

    Fowler, B; Ackles, K N; Porlier, G

    1985-12-01

    The effects of inert gas narcosis on behavior before unconsciousness are reviewed with particular attention to four issues. The first is whether the qualitative behavioral effects of all inert gases are identical. Evidence is limited but does not contradict an affirmative answer. This is consistent with the unitary hypothesis of narcosis at the physicochemical level. The second issue concerns the relative merits of four approaches to narcosis; (a) the descriptive model, (b) the hierarchical organization hypothesis, (c) the operant paradigm, and (d) the slowed processing model. It is concluded that the latter two are showing some promise. In particular, operant techniques allow more sophisticated measures of narcosis in animals than behavioral end points, such as loss of the righting reflex. The slowed processing model claims that the majority of performance deficits in humans are caused by a single fundamental deficit, slowing of information processing due to decreased arousal. This slowing is usually accompanied by alterations in task strategy. These alterations, in combination with cumulative slowing in working memory, are said to account for the various manifestations of narcosis on complex tasks. The third issue concerns adaptation to narcosis. There is some evidence that adaptation can occur but it is unclear whether the cause is learning specific to narcosis or development of a physiological tolerance. However, adaptation has not always been found and the variables controlling its presence or absence have yet to be identified. The fourth issue concerns the modifying effects of various factors, such as carbon dioxide and anxiety, on narcosis. Methodological and conceptual problems hinder interpretation of the evidence in this area but, contrary to some current views, there appears to be no conclusive evidence that any factor other than ethanol potentiates narcosis. Some implications of these conclusions for diving operations are discussed.

  7. Determination of micro amounts of oxygen in silicon by inert-gas fusion.

    PubMed

    Huannan, H; Yuezhen, L; Guandi, Z; Ronghua, Y; Qingren, L; Mingwei, Q

    1983-10-01

    A chromatographic inert-gas fusion method using an Ni-Sn fusion bath and helium as carrier gas has been developed for determining micro amounts of oxygen in silicon. With the Ni-Sn bath, the oxygen determination can be done at lower temperatures (1650-1700 degrees ) in a heated graphite crucible than in an empty crucible (with no molten metal bath) in which the sample is directly in contact with the carbon. Four samples can be analysed in succession in a single crucible with a relatively short time for oxygen extraction (5 min). Careful control of experimental conditions, and the use of a water-cooled quartz tube and a small unshielded graphite crucible have resulted in a lower blank (0.1 mug of oxygen), and better reproducibility, enabling oxygen in silicon to be determined down to 1 ppm. A calibration curve for determining oxygen in single crystals of silicon by measuring the infrared absorption at 9 mum has been constructed and gives results agreeing with those obtained by alpha-particle activation analysis.

  8. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    PubMed Central

    2010-01-01

    Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications. PMID:20652132

  9. Requirements for long-life operation of inert gas hollow cathodes - Preliminary results

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10 (exp -3) sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  10. Requirements for long-life operation of inert gas hollow cathodes: Preliminary report

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Macrae, Gregory S.

    1990-01-01

    An experimental investigation was initiated to establish conditioning procedures for reliable hollow cathode operation via the characterization of critical parameters in a representative cathode test facility. From vacuum pumpdown rates, it was found that approximately 1.5 hours were required to achieve pressure levels within 5 percent of the lowest attainable pressure for this facility, depending on the purge conditions. The facility atmosphere was determined by a residual gas analyzer to be composed of primarily air and water vapor. The effects of vacuum pumping and inert gas purging were evaluated. A maximum effective leakage rate of 2.0 x 10(exp -3)sccm was observed and its probable causes were examined. An extended test of a 0.64 cm diameter Mo-Re hollow cathode was successfully completed. This test ran for 504 hours at an emission current of 23.0 amperes and a xenon flow rate of 6.1 sccm. Discharge voltage rose continuously from 15 to 21 volts over the course of the test. The temperature of the cathode body during the test was relatively stable at 1160 C. Post-test examination revealed ion-bombardment texturing of the orifice plate to be the only detectable sign of wear on the hollow cathode.

  11. Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation

    NASA Astrophysics Data System (ADS)

    Gracia-Pinilla, M.; Martínez, E.; Vidaurri, G. Silva; Pérez-Tijerina, E.

    2010-11-01

    Nanometer size-selected Cu clusters in the size range of 1-5 nm have been produced by a plasma-gas-condensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic applications.

  12. Bénard instabilities in a binary-liquid layer evaporating into an inert gas.

    PubMed

    Machrafi, H; Rednikov, A; Colinet, P; Dauby, P C

    2010-09-01

    A linear stability analysis is performed for a horizontal layer of a binary liquid of which solely the solute evaporates into an inert gas, the latter being assumed to be insoluble in the liquid. In particular, a water-ethanol system in contact with air is considered, with the evaporation of water being neglected (which can be justified for a certain humidity of the air). External constraints on the system are introduced by imposing fixed "ambient" mass fraction and temperature values at a certain effective distance above the free liquid-gas interface. The temperature is the same as at the bottom of the liquid layer, where, besides, a fixed mass fraction of the solute is presumed to be maintained. Proceeding from a (quasi-)stationary reference solution, neutral (monotonic) stability curves are calculated in terms of solutal/thermal Marangoni/Rayleigh numbers as functions of the wavenumber for different values of the ratio of the gas and liquid layer thicknesses. The results are also presented in terms of the critical values of the liquid layer thickness as a function of the thickness of the gas layer. The solutal and thermal Rayleigh and Marangoni effects are compared to one another. For a water-ethanol mixture of 10wt.% ethanol, it appears that the solutal Marangoni effect is by far the most important instability mechanism. Furthermore, its global action can be described within a Pearson-like model, with an appropriately defined Biot number depending on the wavenumber. On the other hand, it is also shown that, if taken into account, water evaporation has only minor quantitative consequences upon the results for this predominant, solutal Marangoni mechanism.

  13. Core/shell structured magnetic nanoparticles synthesized by inert gas condensation

    NASA Astrophysics Data System (ADS)

    Ceylan, Abdullah

    In this work, it is our goal to investigate the structural and magnetic properties of core/shell magnetic nanoparticles synthesized by inert gas condensation technique. For that purpose, Fe/FeO, Fe/FeO/PMMA, Ni/NiO/CoO, and NiFe 2O4 have been chosen to study exchange bias phenomenon that is observed in these systems. Two sets (small and large) of Fe/FeO nanoparticles with different particle sizes, (6.0/1.5nm and 9.0/3.0nm) have been prepared and the magnetic properties in terms of temperature dependencies of exchange bias field (H EB, horizontal shift of the hysteresis loops) and magnetic viscosity were investigated. Small particles have shown superparamagnetic behavior above Blocking Temperature, TB and exhibited 1574+/-25Oe exchange bias whereas the large particles had 277+/-25Oe. It has been observed that HEB is inversely proportional with the particle size and exponentially decreases and vanishes as the temperature increases up to TB. Along with the horizontal shift, vertical shift of the hysteresis loops due to pinned interface spins has also been realized. Dispersion of 14nm Fe/FeO particles in a non-magnetic polymer PMMA in order to study interparticle interactions has revealed that the magnetic response is in general nonmonotonic as a function of particle concentration in the polymer. The nonmonotonic behavior is linked to the competition between the exchange and dipolar interactions one of which being dominant above/below a threshold concentration. In order to synthesize core/shell nanoparticles composed of different metal and metal oxides rather than metal and its native oxide forming the core/shell, two techniques, resistive evaporation and laser ablation, have been combined in our inert gas condensation system. Condensation of evaporated Ni and laser ablated CoO allowed us to prepare core/shell particles. Structural analyses have revealed that Ni/CoO nanoparticles with a thin (˜1nm) NiO intermediate layer in the form of Ni/NiO/CoO can only be formed

  14. Dilution

    PubMed Central

    Lavie, Nilli; Torralbo, Ana

    2010-01-01

    Load theory of attention proposes that distractor processing is reduced in tasks with high perceptual load that exhaust attentional capacity within task-relevant processing. In contrast, tasks of low perceptual load leave spare capacity that spills over, resulting in the perception of task-irrelevant, potentially distracting stimuli. Tsal and Benoni (2010) find that distractor response competition effects can be reduced under conditions with a high search set size but low perceptual load (due to a singleton color target). They claim that the usual effect of search set size on distractor processing is not due to attentional load but instead attribute this to lower level visual interference. Here, we propose an account for their findings within load theory. We argue that in tasks of low perceptual load but high set size, an irrelevant distractor competes with the search nontargets for remaining capacity. Thus, distractor processing is reduced under conditions in which the search nontargets receive the spillover of capacity instead of the irrelevant distractor. We report a new experiment testing this prediction. Our new results demonstrate that, when peripheral distractor processing is reduced, it is the search nontargets nearest to the target that are perceived instead. Our findings provide new evidence for the spare capacity spillover hypothesis made by load theory and rule out accounts in terms of lower level visual interference (or mere “dilution”) for cases of reduced distractor processing under low load in displays of high set size. We also discuss additional evidence that discounts the viability of Tsal and Benoni's dilution account as an alternative to perceptual load. PMID:21133554

  15. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  16. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  17. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  18. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  19. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  20. Quantum hydrodynamics in dilute-gas Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Engels, Peter

    2012-10-01

    The peculiar dynamics of superfluids are a fascinating research topic. Since the first generation of a dilute gas Bose-Einstein condensate (BEC) in 1995, quantum degenerate atomic gases have taken the investigation of quantum hydrodynamics to a new level. The atomic physics toolbox has grown tremendously and now provides unique and powerful ways to explore nonlinear quantum systems. As an example, pioneering results have recently revealed that the counterflow between two superfluids can be used as a well controlled tool to access the rich dynamics of vector systems. New structures, such as beating dark-dark solitons which only exist in multicomponent systems and have never been observed before, can now be realized in the lab for the first time. Furthermore, the field of nonlinear quantum hydrodynamics is entering new regimes by exploiting Raman dressing as a tool to directly modify the dispersion relation. This leads to the generation of spin-orbit coupled BECs, artificial gauge fields, etc. that are currently receiving tremendous interest due to their parallels to complex condensed-matter systems. Studies of quantum hydrodynamics help to develop a profound understanding of nonlinear quantum dynamics, which is not only of fundamental interest but also of eminent importance for future technological applications, e.g. in telecommunication applications using optical solitons in fibers. This talk will showcase some ``classic'' hallmark results and highlight recent advances from the forefront of the field.

  1. Coercivity of Nd(Dy) - Fe - B bonded magnets made from the inert-gas-atomized powders

    NASA Astrophysics Data System (ADS)

    Hu, Jifan; Pan, Ching-Yan; Wang, Yi-Zhong; Lai, Wu-Yan; Hu, Bo-Ping; Wang, Zhenxi; Sellers, C. H.

    1996-07-01

    The coercivity behaviour of bonded magnets made from sieved inert-gas-atomized Nd(Dy) - Fe - B powders has been investigated. For magnets with particle sizes 0953-8984/8/27/019/img10, the coercivity is controlled by a nucleation mechanism as in the sintered magnet. For the magnet with particle sizes of 0953-8984/8/27/019/img11, the hardening mechanism is mainly controlled by nucleation as in the sintered magnet but the hardening mechanism of domain wall pinning or the nucleation of a single domain, which usually appears in melt-spun materials, may also be involved. The coercivity behaviour of bonded magnets made from gas-atomized powders seems to be between those of the sintered and melt-spun magnets depending on the particle size. Meanwhile it has been found that the demagnetizing field of bonded magnets made from the inert-gas-atomized powders is very small.

  2. Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: functional behavior

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Barbosa, D.; Braz Fernandes, F. M.; Miranda, R. M.

    2016-03-01

    It is often reported that, to successfully join NiTi shape memory alloys, fusion-based processes with reduced thermal affected regions (as in laser welding) are required. This paper describes an experimental study performed on the tungsten inert gas (TIG) welding of 1.5 mm thick plates of Ni-rich NiTi. The functional behavior of the joints was assessed. The superelasticity was analyzed by cycling tests at maximum imposed strains of 4, 8 and 12% and for a total of 600 cycles, without rupture. The superelastic plateau was observed, in the stress-strain curves, 30 MPa below that of the base material. Shape-memory effect was evidenced by bending tests with full recovery of the initial shape of the welded joints. In parallel, uniaxial tensile tests of the joints showed a tensile strength of 700 MPa and an elongation to rupture of 20%. The elongation is the highest reported for fusion-welding of NiTi, including laser welding. These results can be of great interest for the wide-spread inclusion of NiTi in complex shaped components requiring welding, since TIG is not an expensive process and is simple to operate and implement in industrial environments.

  3. Energy balance in disk and CO2 laser beam inert gas fusion cutting

    NASA Astrophysics Data System (ADS)

    Scintilla, Leonardo Daniele; Tricarico, Luigi; Wetzig, Andreas; Beyer, Eckhard

    2012-03-01

    Experimental, numerical and analytical investigations were performed to give a possible explanation of the differences in cutting quality detected for inert gas laser beam cutting process performed with disk and CO2 laser sources. Cutting experiments were carried out at maximum cutting speed on cold work steel test specimens with different sheet thicknesses. The particular feature of the applied experimental setup was the similar geometry of both the CO2 and the disk laser beam with comparable values of the focus diameter and the Rayleigh length. The thermodynamic analysis was based on experimentally primary losses evaluation by means of polymethylmethacrylate (PMMA) blocks, on numerical computation of conductive power losses and analytical calculation of the remaining terms of energy balance. Energy balance allowed the evaluation of secondary losses and proportion of vaporized kerf volume used for justifying the lower quality of disk laser cuts. The lower proportion of vaporized kerf volume detected for disk laser cuts results in an increased process temperature, thus an increase of viscosity of molten material and the subsequent more difficult ejection of the melted material from the cut kerf.

  4. Detection of water molecules in inert gas based plasma by the ratios of atomic spectral lines

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.

    2017-01-01

    A new approach is considered to detect the water leaks in inert plasma-forming gas present in the reactor chamber. It is made up of the intensity ratio of D α and H α spectral lines in combination with O, Ar and Xe lines intensity. The concentrations of H2O, O, H and D particles have been measured with high sensitivity. At the D2 admixture pressure {{p}{{\\text{D}\\text{2}}}}   =  0.025 mbar, we used the acquisition time of 10 s to measure the rate of water molecules injected from the outside, Γ0  =  1.4 · 10-9 mbar · m3 · s-1, and the incoming water molecules to plasma, Γ  =  5 ·10-11 mbar · m3 · s-1. The scaling proves that at small D2 admixtures (10-4 mbar), the leaks with the rates Γ0  ≈  6 · 10-12 mbar · m3 · s-1 and Γ  ≈  2 · 10-13 mbar · m3 · s-1 can be detected and measured. The difference between Γ0 and Γ values is due to the high degree of H2O dissociation, which can be up to 97-98%.

  5. Highly size-controlled synthesis of Au/Pd nanoparticles by inert-gas condensation.

    PubMed

    Pérez-Tijerina, E; Pinilla, M Gracia; Mejía-Rosales, S; Ortiz-Méndez, U; Torres, A; José-Yacamán, M

    2008-01-01

    Gold/Palladium nanoparticles were fabricated by inert-gas condensation on a sputtering reactor. With this method, by controlling both the atmosphere on the condensation chamber and the magnetron power, it was possible to produce nanoparticles with a high degree of monodispersity in size. The structure and size of the Au/Pd nanoparticles were determined by mass spectroscopy, and confirmed by atomic force microscopy and electron transmission microscopy measurements. The chemical composition was analyzed by X-ray microanalysis. From these measurements we confirmed that with the sputtering technique we are able to produce particles of 1, 3, and 5 nm on size, depending on the choice of the synthesis conditions. From TEM measurements made both in the regular HREM, as well as in STEM-HAADF mode, we found that the particles are icosahedral in shape, and the micrographs show no evidence of a core-shell structure, in contrast to what is observed in the case of nanoparticles prepared by chemical synthesis.

  6. Multiproperty empirical isotropic interatomic potentials for CH4-inert gas mixtures.

    PubMed

    El-Kader, M S A

    2013-11-01

    An approximate empirical isotropic interatomic potentials for CH4-inert gas mixtures are developed by simultaneously fitting the Exponential-Spline-Morse-Spline-van der Waals (ESMSV) potential form to viscosity, thermal conductivity, thermal diffusion factors, diffusion coefficient, interaction second pressure virial coefficient and scattering cross-section data. Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for CH4-He and at T = 87 K for CH4-Ar are computed using theoretical values for overlap, octopole and hexadecapole mechanisms and interaction potential as input. Also, the quantum mechanical lineshapes of collision-induced light scattering (CILS) for the mixtures CH4-Ar and CH4-Xe at room temperature are calculated. The spectra of scattering consist essentially of an intense, purely translational component which includes scattering due to free pairs and bound dimers, and the other is due to the induced rotational scattering. These spectra have been interpreted by means of pair-polarizability terms, which arise from a long-range dipole-induced-dipole (DID) with small dispersion corrections and a short-range interaction mechanism involving higher-order dipole-quadrupole A and dipole-octopole E multipole polarizabilities. Good agreement between computed and experimental lineshapes of both absorption and scattering is obtained when the models of potential, interaction-induced dipole and polarizability components are used.

  7. Consensus statement for inert gas washout measurement using multiple- and single- breath tests.

    PubMed

    Robinson, Paul D; Latzin, Philipp; Verbanck, Sylvia; Hall, Graham L; Horsley, Alexander; Gappa, Monika; Thamrin, Cindy; Arets, Hubertus G M; Aurora, Paul; Fuchs, Susanne I; King, Gregory G; Lum, Sooky; Macleod, Kenneth; Paiva, Manuel; Pillow, Jane J; Ranganathan, Sarath; Ranganathan, Sarah; Ratjen, Felix; Singer, Florian; Sonnappa, Samatha; Stocks, Janet; Subbarao, Padmaja; Thompson, Bruce R; Gustafsson, Per M

    2013-03-01

    Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

  8. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  9. Modelling responses of the inert-gas washout and MRI to bronchoconstriction.

    PubMed

    Foy, Brody H; Kay, David; Bordas, Rafel

    2017-01-01

    Many lung diseases lead to an increase in ventilation heterogeneity (VH). Two clinical practices for the measurement of patient VH are in vivo imaging, and the inert gas multiple breath washout (MBW). In this study computational modelling was used to compare the responses of MBW indices LCI and scond and MRI measured global and local ventilation indices, σr and σlocal, to constriction of airways in the conducting zone of the lungs. The simulations show that scond, LCI and σr behave quite similarly to each other, all being sensitive to increases in the severity of constriction, while exhibiting little sensitivity to the depth at which constriction occurs. In contrast, the local MRI index σlocal shows strong sensitivity to depth of constriction, but lowered sensitivity to constriction severity. We finish with an analysis of the sensitivity of MRI indices to grid sizes, showing that results should be interpreted with reference to the image resolution. Overall we conclude that the application of both local and global VH measures may help to classify different types of bronchoconstriction.

  10. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation.

    PubMed

    Zhao, Junlei; Baibuz, Ekaterina; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Jansson, Ville; Nagel, Morten; Steinhauer, Stephan; Sowwan, Mukhles; Kuronen, Antti; Nordlund, Kai; Djurabekova, Flyura

    2016-04-26

    In this work, we study the formation mechanisms of iron nanoparticles (Fe NPs) grown by magnetron sputtering inert gas condensation and emphasize the decisive kinetics effects that give rise specifically to cubic morphologies. Our experimental results, as well as computer simulations carried out by two different methods, indicate that the cubic shape of Fe NPs is explained by basic differences in the kinetic growth modes of {100} and {110} surfaces rather than surface formation energetics. Both our experimental and theoretical investigations show that the final shape is defined by the combination of the condensation temperature and the rate of atomic deposition onto the growing nanocluster. We, thus, construct a comprehensive deposition rate-temperature diagram of Fe NP shapes and develop an analytical model that predicts the temporal evolution of these properties. Combining the shape diagram and the analytical model, morphological control of Fe NPs during formation is feasible; as such, our method proposes a roadmap for experimentalists to engineer NPs of desired shapes for targeted applications.

  11. Inert Gas Buffered Milling and Particle Size Separation of μm-Scale Superconducting Precursor Powders

    SciTech Connect

    Seshadri, S.; McIntyre, P.

    2008-06-20

    The project developed an aerosol system for the met milling and particle size separation of the precursor powders used in fabrication of powder-in-tube superconductors. The work builds upon the results of a previous SBIR-funded development that proved the basic principles of the virtual impactor (VI) technology and its efficacy for the powders of interest. The new project extended that work in three respects: it integrated provisions for recirculating the aerosol flow using inert gas to avoid contamination from O2, CO2 and water in ambient air; a quad configuration of VI subassemblies to support kg/hr throughput; and it incorporated design features that eliminate error trajectories which would introduce trace contamination of larger particles into the separated flow. The project demonstrated the technical effectiveness of the process and established its economic feasibility by achieving kg/hr throughput within a cost profile that would be profitable within the range of competitive toll fees. The project is beneficial to the public through its potential to improve the performance of superconducting materials for research and for biomedicine. It also conveys potential benefits for powders used in high-performance ceramics (for example for engines for automobiles and for aircraft) and for high-performance electrical insulators for telecommunications circuitry.

  12. Effect of Inert Cover Gas on Performance of Radioisotope Stirling Space Power System

    SciTech Connect

    Carpenter, Robert; Kumar, V; Ore, C; Schock, Alfred

    2001-01-01

    This paper describes an updated Orbital design of a radioisotope Stirling power system and its predicted performance at the beginning and end of a six-year mission to the Jovian moon Europa. The design is based on General Purpose Heat Source (GPHS) modules identical to those previously developed and safety-qualified by the Department of Energy (DOE) which were successfully launched to Jupiter and Saturn by the Jet Propulsion Laboratory (JPL). In each generator, the heat produced by the decay of the Pu-238 isotope is converted to electric power by two free-piston Stirling engines and linear alternators developed by Stirling Technology Company (STC), and their rejected waste heat is transported to radiators by heat pipes. The principal difference between the proposed system design and previous Orbital designs (Or et al. 2000) is the thermal insulation between the heat source and the generator's housing. Previous designs had employed multifoil insulation, whereas the design described here employs Min-K-1800 thermal insulation. Such insulation had been successfully used by Teledyne and GE in earlier RTGs (Radioisotope Thermoelectric Generators). Although Min-K is a much poorer insulator than multifoil in vacuum and requires a substantially greater thickness for equivalent performance, it offers compensating advantages. Specifically it makes it possible to adjust the generator's BOM temperatures by filling its interior volume with inert cover gas. This makes it possible to meet the generator's BOM and EOM performance goals without exceeding its allowable temperature at the beginning of the mission.

  13. Preparation of tunable-sized iron nanoparticles based on magnetic manipulation in inert gas condensation (IGC)

    NASA Astrophysics Data System (ADS)

    Xing, Lijuan; ten Brink, Gert H.; Kooi, Bart J.; Palasantzas, George

    2017-01-01

    Iron nanoparticles (NPs) prepared by inert gas condensation were studied using high resolution transmission electron microscopy and Wulff construction shape analysis. The NP size and shape show strong dependence on the magnetic field above the target surface. The effect of the magnetic field could be tuned by adjusting the thickness of the protective backing plate positioned in-between the target and the magnetron head. With increasing backing plate thickness, the particle size decreases and the NP morphologies evolve from faceted to close-to-spherical polyhedral shapes. Moreover, with changes in size and shape, the particle structure also varies so that the NPs exhibit: (i) a core-shell structure for the faceted NPs with size ˜15-24 nm; (ii) a core-shell structure for the close-to-spherical NPs with size ˜8-15 nm; and (iii) a fully oxidized uniform structure for NPs with sizes less than ˜8 nm having a void in the center due to the Kirkendall effect. The decrease of NP size with the increasing backing plate thickness can be attributed to a reduced magnetic field strength above the iron target surface combined with a reduced magnetic field confinement. These results pave the way to drastically control the NP size and shape in a simple manner without any other adjustment of the aggregation volume within the deposition system.

  14. [Hydrogen and oxidative stress injury--from an inert gas to a medical gas].

    PubMed

    Zhang, Qiao-li; Du, Jun-bao; Tang, Chao-shu

    2011-04-18

    Oxidative stress is intensive cellular oxidation caused by redundant reactive oxygen species (ROS) or free radicals. Redundant ROS causes DNA fracture, lipid peroxidation and protein inactivation, thus leading to severe cell damage. Recent studies have shown that hydrogen is a good anti-oxidant. It selectively reduces the hydroxyl radical, the most cytotoxic of ROS; however, it does not react with other ROS, which play physiological roles. As a result, it could protect tissues against oxidative stress injuries, such as ischemia/reperfusion injury of the heart, liver and intestine, cisplatin nephrotoxicity, sepsis and colon inflammation. As a medical gas, hydrogen may have a prospect for far-reaching clinical application.

  15. Electron-beam generation in a wide-aperture open gas discharge: A comparative study for different inert gases

    SciTech Connect

    Bokhan, P. A.; Zakrevsky, Dm. E.

    2010-08-30

    In the present study, electron-beam generation by open discharges was examined. The study was performed at gas pressures up to 20 Torr, and covered all inert gases. At voltages up to 8 kV, electron-beam currents up to 1600 A with current density {approx}130 A/cm{sup 2} and a beam generation efficiency in excess of 93% were obtained. The production of electrons from cold cathode was concluded to be of photoemissive nature, enabling the production of high-intensity electron beams in any noble gas or in a mixture of a noble gas with molecular gases irrespective of cathode material.

  16. Comparison of methods for separating small quantities of hydrogen isotopes from an inert gas

    SciTech Connect

    Willms, R.S.; Tuggle, D.; Birdsell, S.; Parkinson, J.; Price, B.; Lohmeir, D.

    1998-03-01

    It is frequent within tritium processing systems that a small amount of hydrogen isotopes (Q{sub 2}) must be separated from an inert gas such as He, Ar and N{sub 2}. Thus, a study of presently available technologies for effecting such a separation was performed. A base case and seven technology alternatives were identified and a simple design of each was prepared. These technologies included oxidation-adsorption-metal bed reduction, oxidation-adsorption-palladium membrane reactor, cryogenic adsorption, cryogenic trapping, cryogenic distillation, hollow fiber membranes, gettering and permeators. It was found that all but the last two methods were unattractive for recovering Q{sub 2} from N{sub 2}. Reasons for technology rejection included (1) the method unnecessarily turns the hydrogen isotopes into water, resulting in a cumbersome and more hazardous operation, (2) the method would not work without further processing, and (3) while the method would work, it would only do so in an impractical way. On the other hand, getters and permeators were found to be attractive methods for this application. Both of these methods would perform the separation in a straightforward, essentially zero-waste, single step operation. The only drawback for permeators was that limited low-partial Q{sub 2} pressure data is available. The drawbacks for getters are their susceptibility to irreversible and exothermic reaction with common species such as oxygen and water, and the lack of long-term operation of such beds. More research is envisioned for both of these methods to mature these attractive technologies.

  17. Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out

    PubMed Central

    O'Neill, Katherine; Downey, Damian G.; Elborn, J. Stuart; Bell, Nicholas J.; Smith, Jaclyn; Owers-Bradley, John

    2016-01-01

    Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in–wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe–wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit. PMID:27730167

  18. How can an inert gas counterbalance a NMDA-induced glutamate release?

    PubMed

    Vallee, Nicolas; Rostain, Jean-Claude; Risso, Jean-Jacques

    2009-12-01

    Previous neurochemical studies performed in rats have revealed a decrease of striatal dopamine and glutamate induced by inert gas narcosis. We sought to establish the hypothetical role of glutamate and its main receptor, the N-methyl-d-aspartate (NMDA) receptor, in this syndrome. We aimed to counteract the nitrogen narcosis-induced glutamate and dopamine decreases by stimulating the NMDA receptor in the striatum. We used bilateral retrodialysis on awake rats, submitted to nitrogen under pressure (3 MPa). Continuous infusion of 2 mM of NMDA under normobaric conditions (0.01 MPa) (n = 8) significantly increased extracellular average levels of glutamate, aspartate, glutamine, and asparagine by 241.8%, 292.5%, 108.3%, and 195.3%, respectively. The same infusion conducted under nitrogen at 3 MPa (n = 6) revealed significant lower levels of these amino acids (n = 8/6, P > 0.001). In opposition, the NMDA-induced effects on dopamine, dihydrophenylacetic acid (DOPAC), and homovanillic acid (HVA) levels were statistically not affected by the nitrogen at 3 MPa exposure (n = 8/6, P > 0.05). Dopamine was increased by >240% on average. HVA was decreased (down to 40%), and there was no change in DOPAC levels, in both conditions. Results highlight that the NMDA receptor is not directly affected by nitrogen under pressure as indicated by the elevation in NMDA-induced dopamine release under hyperbaric nitrogen. On the other hand, the NMDA-evoked glutamate increase is counteracted by nitrogen narcosis. No improvement in motor and locomotor disturbances was observed with high striatal concentration in dopamine. Further experiments have to be done to specify why the striatal glutamate pathways, in association with the inhibition of its metabolism, only are affected by nitrogen narcosis in this study.

  19. Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation.

    PubMed

    Pandya, Sneha G; Kordesch, Martin E

    2015-12-01

    Nanoparticles (NPs) of indium antimonide (InSb) were synthesized using a vapor phase synthesis technique known as inert gas condensation (IGC). NPs were directly deposited, at room temperature and under high vacuum, on glass cover slides, TEM grids and (111) p-type silicon wafers. TEM studies showed a bimodal distribution in the size of the NPs with average particle size of 13.70 nm and 33.20 nm. The Raman spectra of InSb NPs exhibited a peak centered at 184.27 cm(-1), which corresponds to the longitudinal optical (LO) modes of phonon vibration in InSb. A 1:1 In-to-Sb composition ratio was confirmed by energy dispersive X-ray (EDX). X-ray diffractometer (XRD) and high-resolution transmission electron microscopy (HRTEM) studies revealed polycrystalline behavior of these NPs with lattice spacing around 0.37 and 0.23 nm corresponding to the growth directions of (111) and (220), respectively. The average crystallite size of the NPs obtained using XRD peak broadening results and the Debye-Scherrer formula was 25.62 nm, and the value of strain in NPs was found to be 0.0015. NP's band gap obtained using spectroscopy and Fourier transform infrared (FTIR) spectroscopy was around 0.43-0.52 eV at 300 K, which is a blue shift of 0.26-0.35 eV. The effects of increased particle density resulting into aggregation of NPs are also discussed in this paper.

  20. Closed circuit rebreathing to achieve inert gas wash-in for multiple breath wash-out.

    PubMed

    Horsley, Alex R; O'Neill, Katherine; Downey, Damian G; Elborn, J Stuart; Bell, Nicholas J; Smith, Jaclyn; Owers-Bradley, John

    2016-01-01

    Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in-wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe-wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit.

  1. Inert gas narcosis disrupts encoding but not retrieval of long term memory.

    PubMed

    Hobbs, Malcolm; Kneller, Wendy

    2015-05-15

    Exposure to increased ambient pressure causes inert gas narcosis of which one symptom is long-term memory (LTM) impairment. Narcosis is posited to impair LTM by disrupting information encoding, retrieval (self-guided search), or both. The effect of narcosis on the encoding and retrieval of LTM was investigated by testing the effect of learning-recall pressure and levels of processing (LoP) on the free-recall of word lists in divers underwater. All participants (n=60) took part in four conditions in which words were learnt and then recalled at either low pressure (1.4-1.9atm/4-9msw) or high pressure (4.4-5.0atm/34-40msw), as manipulated by changes in depth underwater: low-low (LL), low-high(LH), high-high (HH), and high-low (HL). In addition, participants were assigned to either a deep or shallow processing condition, using LoP methodology. Free-recall memory ability was significantly impaired only when words were initially learned at high pressure (HH & HL conditions). When words were learned at low pressure and then recalled at low pressure (LL condition) or high pressure (LH condition) free-recall was not impaired. Although numerically superior in several conditions, deeper processing failed to significantly improve free-recall ability in any of the learning-recall conditions. This pattern of results support the hypothesis that narcosis disrupts encoding of information into LTM, while retrieval appears to be unaffected. These findings are discussed in relation to similar effects reported by some memory impairing drugs and the practical implications for workers in pressurised environments.

  2. Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Kordesch, Martin E.

    2015-06-01

    Nanoparticles (NPs) of indium antimonide (InSb) were synthesized using a vapor phase synthesis technique known as inert gas condensation (IGC). NPs were directly deposited, at room temperature and under high vacuum, on glass cover slides, TEM grids and (111) p-type silicon wafers. TEM studies showed a bimodal distribution in the size of the NPs with average particle size of 13.70 nm and 33.20 nm. The Raman spectra of InSb NPs exhibited a peak centered at 184.27 cm-1, which corresponds to the longitudinal optical (LO) modes of phonon vibration in InSb. A 1:1 In-to-Sb composition ratio was confirmed by energy dispersive X-ray (EDX). X-ray diffractometer (XRD) and high-resolution transmission electron microscopy (HRTEM) studies revealed polycrystalline behavior of these NPs with lattice spacing around 0.37 and 0.23 nm corresponding to the growth directions of (111) and (220), respectively. The average crystallite size of the NPs obtained using XRD peak broadening results and the Debye-Scherrer formula was 25.62 nm, and the value of strain in NPs was found to be 0.0015. NP's band gap obtained using spectroscopy and Fourier transform infrared (FTIR) spectroscopy was around 0.43-0.52 eV at 300 K, which is a blue shift of 0.26-0.35 eV. The effects of increased particle density resulting into aggregation of NPs are also discussed in this paper.

  3. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    PubMed Central

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  4. Inert gas narcosis has no influence on thermo-tactile sensation.

    PubMed

    Jakovljević, Miroljub; Vidmar, Gaj; Mekjavic, Igor B

    2012-05-01

    Contribution of skin thermal sensors under inert gas narcosis to the raising hypothermia is not known. Such information is vital for understanding the impact of narcosis on behavioural thermoregulation, diver safety and judgment of thermal (dis)comfort in the hyperbaric environment. So this study aimed at establishing the effects of normoxic concentration of 30% nitrous oxide (N(2)O) on thermo-tactile threshold sensation by studying 16 subjects [eight females and eight males; eight sensitive (S) and eight non-sensitive (NS) to N(2)O]. Their mean (SD) age was 22.1 (1.8) years, weight 72.8 (15.3) kg, height 1.75 (0.10) m and body mass index 23.8 (3.8) kg m(-2). Quantitative thermo-tactile sensory testing was performed on forearm, upper arm and thigh under two experimental conditions: breathing air (air trial) and breathing normoxic mixture of 30% N(2)O (N(2)O trial) in the mixed sequence. Difference in thermo-tactile sensitivity thresholds between two groups of subjects in two experimental conditions was analysed by 3-way mixed-model analysis of covariance. There were no statistically significant differences in thermo-tactile thresholds either between the Air and N(2)O trials, or between S and NS groups, or between females and males, or with respect to body mass index. Some clinically insignificant lowering of thermo-tactile thresholds occurred only for warm thermo-tactile thresholds on upper arm and thigh. The results indicated that normoxic mixture of 30% N(2)O had no influence on thermo-tactile sensation in normothermia.

  5. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    PubMed

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training.

  6. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  7. Preparing ultrafine PbS powders from the scrap lead-acid battery by sulfurization and inert gas condensation

    NASA Astrophysics Data System (ADS)

    Xia, Huipeng; Zhan, Lu; Xie, Bing

    2017-02-01

    A novel method for preparing ultrafine PbS powders involving sulfurization combined with inert gas condensation is developed in this paper, which is applicable to recycle Pb from lead paste of spent lead-acid batteries. Initially, the effects of the evaporation and condensation temperature, the inert gas pressure, the condensation distance and substrate on the morphology of as-obtained PbS ultrafine particles are intensively investigated using sulfur powders and lead particles as reagents. Highly dispersed and homogeneous PbS nanoparticles can be prepared under the optimized conditions which are 1223 K heating temperature, 573 K condensation temperature, 100 Pa inert gas pressure and 60 cm condensation distance. Furthermore, this method is successfully applied to recycle Pb from the lead paste of spent lead acid battery to prepare PbS ultrafine powders. This work does not only provide the theoretical fundamental for PbS preparation, but also provides a novel and efficient method for recycling spent lead-acid battery with high added-value products.

  8. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  9. Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2017-02-01

    The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.

  10. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    SciTech Connect

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  11. Effect of inert species in gas phase on oscillatory dynamics of oxidation system of CO on Pt(100).

    PubMed

    Hua, Da-yin; Zhang, Feng; Ma, Yu-qiang

    2003-05-01

    We present a Monte Carlo simulation for the global oscillation of the CO catalytic oxidation system in the presence of inert species in gas phase, which can adsorb and desorb on the catalytic surface but cannot react with other species. It is found that the impurity has a dramatic effect on the oscillatory dynamics, although it does not involve in the reaction of CO oxidation. The simulation results show that with an increase in the fraction of impurity in gas phase, the periodic oscillation may change into an irregular oscillation and even can be inhibited completely. However, as the desorption rate of the impurity is increased, the regular oscillation will be recovered again.

  12. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) Study. Part 2; Gas Separation Technology--State of the Art

    NASA Technical Reports Server (NTRS)

    Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.

    2001-01-01

    This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.

  13. Evidence for inert gas narcosis mechanisms in the occurrence of psychotic-like episodes at pressure environment.

    PubMed

    Abraini, J H

    1995-11-27

    Psychotic-like episodes in divers exposed to high pressure have been attributed to either the high-pressure neurological syndrome, confinement in pressure chamber, the subject's personality, or the addition of nitrogen or hydrogen to the basic helium-oxygen breathing mixture used for deep diving. Alternatively, it is suggested that these disorders are in fact paroxysmal narcotic symptoms that result from the sum of the individual narcotic potencies of each inert gas in the breathing mixture. This hypothesis is tested against a variety of lipid solubility theories of narcosis. The results clearly support the hypothesis and provide new information about the cellular interactions between inert gases at raised pressure and pressure itself.

  14. Temperature variability of the last 1000 years in Antarctica from inert gas isotopes

    NASA Astrophysics Data System (ADS)

    Orsi, Anais; Landais, Amaelle; Severinghaus, Jeffrey P.

    2015-04-01

    A large effort has been made to document the climate history of the last two thousand years, but there are still substantial gaps in the Southern Hemisphere, especially at high latitudes, where the changes in the climate are the largest. These gaps limit our understanding of the most fundamental driving mechanisms of the climate. In particular, the impact of solar minima on surface temperature is not fully understood. Here, we investigate the spatial structure of multi decadal climate variability in Antarctica, assess the significance of the Little Ice Age minimum documented elsewhere. We present a 1000 year temperature record at two sites in Antarctica: WAIS Divide (79°S, 112°W, 1766 m a.s.l), and Talos Dome (72°S, 159°E, 2315 m a.s.l), reconstructed from the combination of inert gas isotopes from the ice core and borehole temperature measurements. Borehole temperature provides an absolute estimate of long-term trends, while noble gases track decadal to centennial scale changes. This method provides a temperature reconstruction that is independent of water isotopes, and allows us to improve our understanding of water isotopes as a temperature proxy, and use them to track circulation changes. We find that there is a pronounced cooling trend over the last millennium at both sites, but it is stronger in East Antarctica (Talos Dome) than West Antarctica (WAIS-D). At WAIS Divide, we find that "Little Ice Age" cold period of 1400-1800 was 0.52°C colder than the last century, and that the recent warming trend (0.23°C/decade since 1960) has past analogs about every 200 years. At Talos Dome, the pronounced cooling trend over the whole record is not visible in the water isotope record, which suggests that there is a compensation of several sources of fractionation. Overall, both records are consistent with the idea that the solar minima and persistent volcanic activity of the Little Ice Age (1400-1850 A.D.) had a significant impact on the surface temperature in

  15. Noninvasive cardiac output measurement by inert gas rebreathing in suspected pulmonary hypertension.

    PubMed

    Farina, Stefania; Teruzzi, Giovanni; Cattadori, Gaia; Ferrari, Cristina; De Martini, Stefano; Bussotti, Maurizio; Calligaris, Giuseppe; Bartorelli, Antonio; Agostoni, Piergiuseppe

    2014-02-01

    The objective of this study was to evaluate inert gas rebreathing (IGR) reliability in cardiac output (CO) measurement compared with Fick method and thermodilution. IGR is a noninvasive method for CO measurement; CO by IGR is calculated as pulmonary blood flow plus intrapulmonary shunt. IGR may be ideal for follow-up of patients with pulmonary hypertension (PH), sparing the need of repeated invasive right-sided cardiac catheterization. Right-sided cardiac catheterization with CO measurement by thermodilution, Fick method, and IGR was performed in 125 patients with possible PH by echocardiography. Patients were grouped according to right-sided cardiac catheterization-measured mean pulmonary and wedge pressures: normal pulmonary arterial pressure (n = 20, mean pulmonary arterial pressure = 18 ± 3 mm Hg, pulmonary capillary wedge pressure = 11 ± 5 mm Hg), PH and normal pulmonary capillary wedge pressure (PH-NW, n = 37 mean pulmonary arterial pressure = 42 ± 13 mm Hg, pulmonary capillary wedge pressure = 11 ± 6 mm Hg), and PH and high pulmonary capillary wedge pressure (PH-HW, n = 68, mean pulmonary arterial pressure = 37 ± 9 mm Hg, pulmonary capillary wedge pressure = 24 ± 6 mm Hg). Thermodilution and Fick measurements were comparable. Fick and IGR agreement was observed in normal pulmonary arterial pressure (CO = 4.10 ± 1.14 and 4.08 ± 0.97 L/min, respectively), whereas IGR overestimated Fick in patients with PH-NW and those with PH-HW because of intrapulmonary shunting overestimation in hypoxemic patients. When patients with arterial oxygen saturation (SO2) ≤90% were excluded, IGR and Fick agreement improved in PH-NW (CO = 4.90 ± 1.70 and 4.76 ± 1.35 L/min, respectively) and PH-HW (CO = 4.05 ± 1.04 and 4.10 ± 1.17 L/min, respectively). In hypoxemic patients, we estimated pulmonary shunt as Fick - pulmonary blood flow and calculated shunt as: -0.2423 × arterial SO2 + 21.373 L/min. In conclusion, IGR is reliable for CO measurement in patients with PH

  16. Gas dilution system using critical flow Venturi nozzles for generating primary trace-moisture standards in multiple gas species

    NASA Astrophysics Data System (ADS)

    Amano, Minami; Abe, Hisashi

    2017-02-01

    Gas dilution systems are commonly used to generate calibration gas mixtures for secondary gas standards. However, if a gas dilution system is used to generate gas mixtures for primary trace-moisture standards in multiple gas species, difficulty arises; flow control with relative stability of better than 0.009% is required although the relative uncertainty of the best gas flow meter to date is around 0.3%. In this study, we developed a novel gas dilution system using critical flow Venturi nozzles to address this problem. The developed dilution system can measure and control the flow rates of gases in the range of approximately 0.05 l min-1 to 7 l min-1 (when converted to those measured at 101 325 Pa and 273.15 K) with relative stability of better than 0.007%. Using the dilution system, we developed a magnetic suspension balance/diffusion-tube humidity generator capable of generating trace moisture in N2 in the range of approximately 10 nmol mol-1 to 5 µmol mol-1 in amount fraction. The accuracy of the generated trace-moisture standard was verified by measurement with cavity ring-down spectroscopy.

  17. Rare Gas Metastable Atom Density in Diluted O2 RF Plasmas

    NASA Astrophysics Data System (ADS)

    Kitajima, Takeshi; Takahashi, Kei; Nakano, Toshiki; Makabe, Toshiaki

    Rare gas diluted O2 plasmas are gaining interests for application to high quality SiO2 film formation. The density of rare gas metastable atoms and O atom in rare gas diluted O2 radio frequency (RF) capacitively coupled plasma (CCP) was measured by optical absorption spectroscopy (OAS). Decreases of rare gas metastable densities due to addition of O2 indicate efficient O atom production by rare gas metastables via collisional quenching. Krypton metastable had highest density among four rare gas species for fixed RF power. The decrease of Ar metastable density due to O2 addition showed quantitative agreement with reported quenching rate coefficient. Detailed discussion on different gas pressures illustrates reduced O2 fraction is the key for selective production of O atoms through rare gas metastables.

  18. 46 CFR 153.923 - Inerting systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Cargo Operational Requirements § 153.923 Inerting systems. The master shall ensure that the inert gas systems for any cargo...

  19. 46 CFR 154.1848 - Inerting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... flammable vapors are purged from the tank by inert gas before air is admitted; and (4) When gas free cargo tanks are to be filled with a flammable cargo, air is purged from the tank by inert gas until the...

  20. Inert gas influence on the laminar burning velocity of methane-air mixtures.

    PubMed

    Mitu, Maria; Giurcan, Venera; Razus, Domnina; Oancea, Dumitru

    2017-01-05

    Flame propagation was studied in methane-air-inert (He, Ar, N2 or CO2) mixtures with various initial pressures and compositions using pressure-time records obtained in a spherical vessel with central ignition. The laminar burning velocities of CH4-air and CH4-air-inert mixtures obtained from experimental p(t) records of the early stage of combustion were compared with literature data and with those obtained from numerical modeling of 1D flames. The overall reaction orders of methane oxidation were determined from the baric coefficients of the laminar burning velocities determined from power-law equations. For all mixtures, the adiabatic flames temperatures were computed, assuming that the chemical equilibrium is reached in the flame front. The overall activation energy for the propagation stage of the combustion process was determined from the temperature dependence of the laminar burning velocity.

  1. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, Mark W.; Yoshida, Tatsuro

    1997-01-01

    Method using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4.degree. C. storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4.degree. C. for prolonged periods of time is achieved by removing oxygen therefrom at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate.

  2. Method for extending the useful shelf-life of refrigerated red blood cells by flushing with inert gas

    DOEpatents

    Bitensky, M.W.; Yoshida, Tatsuro

    1997-04-29

    A method is disclosed using oxygen removal for extending the useful shelf-life of refrigerated red blood cells. A cost-effective, 4 C storage procedure that preserves red cell quality and prolongs post-transfusion in vivo survival is described. Preservation of adenosine triphosphate levels and reduction in hemolysis and in membrane vesicle production of red blood cells stored at 4 C for prolonged periods of time is achieved by removing oxygen from the red blood cells at the time of storage; in particular, by flushing with an inert gas. Adenosine triphosphate levels of the stored red blood cells are boosted in some samples by addition of ammonium phosphate. 4 figs.

  3. Inert-Gas Condensed Co-W Nanoclusters: Formation, Structure and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Golkar-Fard, Farhad Reza

    Rare-earth permanent magnets are used extensively in numerous technical applications, e.g. wind turbines, audio speakers, and hybrid/electric vehicles. The demand and production of rare-earth permanent magnets in the world has in the past decades increased significantly. However, the decrease in export of rare-earth elements from China in recent time has led to a renewed interest in developing rare-earth free permanent magnets. Elements such as Fe and Co have potential, due to their high magnetization, to be used as hosts in rare-earth free permanent magnets but a major challenge is to increase their magnetocrystalline anisotropy constant, K1, which largely drives the coercivity. Theoretical calculations indicate that dissolving the 5d transition metal W in Fe or Co increases the magnetocrystalline anisotropy. The challenge, though, is in creating a solid solution in hcp Co or bcc Fe, which under equilibrium conditions have negligible solubility. In this dissertation, the formation, structure, and magnetic properties of sub-10 nm Co-W clusters with W content ranging from 4 to 24 atomic percent were studied. Co-W alloy clusters with extended solubility of W in hcp Co were produced by inert gas condensation. The different processing conditions such as the cooling scheme and sputtering power were found to control the structural state of the as-deposited Co-W clusters. For clusters formed in the water-cooled formation chamber, the mean size and the fraction crystalline clusters increased with increasing power, while the fraction of crystalline clusters formed in the liquid nitrogen-cooled formation chamber was not as affected by the sputtering power. For the low W content clusters, the structural characterization revealed clusters predominantly single crystalline hcp Co(W) structure, a significant extension of W solubility when compared to the equilibrium solubility, but fcc Co(W) and Co3W structures were observed in very small and large clusters, respectively. At high

  4. Exact statistical mechanical lattice model and classical Lindemann theory of melting of inert gas solids

    NASA Astrophysics Data System (ADS)

    Dunne, Lawrence J.; Murrell, John N.; Manos, George

    2008-05-01

    A modified form of Lindemann's model shows that the melting points of the heavy inert gases and other effectively spherical molecular species are proportional to the depths of their diatomic potential wells. The success of the model when compared with experiment seems to rely on the almost constant value of the ratio of the fractional volume and entropy changes during fusion. The Lindemann proposal can be incorporated into an exactly treated statistical mechanical lattice model utilising expandable clusters which reproduces the solid-liquid melting phenomenon for argon with a realistic volume change and melting line.

  5. The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste

    SciTech Connect

    Bredt, P.R.; Tingey, S.M.

    1996-01-01

    Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.

  6. Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Kochetov, I. V.

    2016-10-01

    A new version of optical actinometry (OA) is used to determine the concentrations of water molecules and their fragments in hollow cathode discharge plasma in moist inert gases. Use is made of two actinometer particles, namely, the atoms Xe and Ar, for concurrent measurements of the concentrations of the H2O molecule and its fragments O, H, and OH. A self-consistent method is suggested for the determination of particle concentrations with due regard for the quenching of the emitting states. The temporal behavior of particles during discharge glow is studied. Noted are fast variations (lasting from a few to a few tens of s) in the concentrations of all the particles, followed by their stabilization (within a few to a few tens of mins). The scheme of the processes responsible for the observed dynamics of the plasma composition is discussed.

  7. Heat transfer coefficients of dilute flowing gas-solids suspensions

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Heat transfer coefficients of air-glass, argon-glass, and argon-aluminum suspensions were measured in horizontal and vertical tubes. The glass, 21.6 and 36.0 micron diameter particles, was suspended at gas Reynolds numbers between 11,000 and 21,000 and loading ratios between 0 and 2.5. The presence of particles generally reduced the heat transfer coefficient. The circulation of aluminum powder in the 0.870 inch diameter closed loop system produced tenacious deposits on protuberances into the stream. In the vertical test section, the Nusselt number reduction was attributed to viscous sublayer thickening; in the horizontal test section to particle deposition.

  8. Examination of laser-triggered discharge using a virtual gas model and the similarity of its Paschen curve with those of inert gases

    SciTech Connect

    Hoshi, Y.; Yoshida, H.

    2009-09-15

    We examined laser-triggered discharge (LTD) under asymmetric electric fields in air. Upon introducing a virtual gas with npd (n=2.8-3) instead of pd in Paschen's law [Ann. Phys. Chem. 37, 69 (1889)], the results of LTD in air coincided with the Paschen curve. A Paschen curve similar to those of inert gases, i.e., Ne and He, can be obtained even in air. This implies that in LTD, the number of gas molecules between electrodes appears to be n times higher than that in air. In LTD in air, the gamma effect is presumed to be significant, similar to in inert gases.

  9. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by Inert Gas Condensation technique

    NASA Astrophysics Data System (ADS)

    Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K.

    2016-09-01

    Sn and Cu oxide nanoparticles were deposited by Inert Gas Condensation (IGC) technique combined with dc magnetron sputtering onto nanoflower TiO2 3D substrates obtained in the oxidation process of Ti-foil in 30% H2O2. Sputtering parameters such as insertion length and Ar/He flow rates were optimized taking into account the nanostructure morphology. Comparative studies with hydrothermal method were carried out. Surface properties of the synthesized nanomaterials were studied by Scanning Electron Microscopy, SEM, Atomic Force Microscopy, AFM, and X-ray Photoelectron Spectroscopy, XPS. X-ray diffraction, XRD and Raman spectroscopy were performed in order to determine phase composition. Impedance spectroscopy demonstrated the influence of nanoparticles on the electrical conductivity.

  10. Computation of decompression schedules for single inert gas-oxygen dives using a hand-held programmable calculator.

    PubMed

    Ranade, A; Peterson, R E

    1980-08-01

    An algorithm for on-site computation with a hand-held programmable calculator (TI-59, Texas Instruments) of single inert-gas decompression schedules is described. This program is based on Workman's 'M-value' method. It can compute decompression schedules with changes in the oxygen content of the breathing mixture and extension of stay at any decompression stop. The features of the program that enable calculation of atypical dive profiles, along with the portability of small calculators, would make such an algorithm suitable for on-site applications. However, since dive profiles generated by the program have not yet been tested, divers are warned not to generate schedules until their safety has been established by field tests.

  11. A van der Waals Equation of State for a Dilute Boson Gas

    ERIC Educational Resources Information Center

    Deeney, F. A.; O'Leary, J. P.

    2012-01-01

    An equation of state of a system is a relationship that connects the thermodynamic variables of the system such as pressure and temperature. Such equations are well known for classical gases but less so for quantum systems. In this paper we develop a van der Waals equation of state for a dilute boson gas that may be used to explain the occurrence…

  12. Spectroscopy of Cosmic Carbon Analogs in Inert-Gas Matrices and in the Gas-Phase: Comparative Results and Perspectives for Astrophysics

    NASA Technical Reports Server (NTRS)

    Salama, Farid; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Recent studies of the spectroscopy of large (up to approx. 50 carbon atoms) neutral and Ionized polycyclic aromatic hydrocarbons (PAHs) and Fullerenes isolated in inert gas matrices will be presented. The advantages and the limitations of matrix isolation spectroscopy for the study of the molecular spectroscopy of interstellar dust analogs will be discussed. The laboratory data will be compared to the astronomical spectra (the interstellar extinction, the diffuse interstellar bands). Finally, the spectra of PAH ions isolated in neon/argon matrices will be compared to the spectra obtained for PAH ion seeded in a supersonic expansion. The astrophysical implications and future perspectives will be discussed.

  13. Parametric Studies Of Weld Quality Of Tungsten Inert Gas Arc Welding Of Stainless Steel

    SciTech Connect

    Kumar Pal, Pradip; Nandi, Goutam; Ghosh, Nabendu

    2011-01-17

    Effect of current and gas flow rate on quality of weld in tungsten inter gas arc welding of austenitic stainless steel has been studied in the present work through experiments and analyses. Butt welded joints have been made by using several levels of current and gas flow rate. The quality of the weld has been evaluated in terms of ultimate and breaking strengths of the welded specimens. The observed data have been interpreted, discussed and analyzed by using Grey--Taguchi methodology. Optimum parametric setting has been predicted and validated as well.

  14. Reaction of trace mercury in natural gas with dilute polysulfide solutions in a packed column

    SciTech Connect

    Not Available

    1991-12-01

    This paper reports that the natural gas produced around the world can contain traces of mercury which have to be removed. It is difficult to purify gas to desired mercury levels using conventional techniques. By scrubbing with dilute polysulfide solution, the residual mercury in the gas can be removed from about 0.1 to below 0.01 ppb, a reduction of 90%. In this system, the gas is passed through a packed tower wetted with a solution containing 3 ppm of polysulfide salt. Stainless steel packings are effective for this application. In addition to promoting gas-liquid contact, the stainless steel packings adsorb and concentrate polysulfides which react with Hg in the gas to form insoluble HgS, and thus remove Hg from the gas.

  15. Effects of inert species in the gas phase in a model for the catalytic oxidation of CO

    NASA Astrophysics Data System (ADS)

    Buendía, G. M.; Rikvold, P. A.

    2012-03-01

    We study by kinetic Monte Carlo simulations the catalytic oxidation of carbon monoxide on a surface in the presence of contaminants in the gas phase. The process is simulated by a Ziff-Gulari-Barshad (ZGB) model that has been modified to include the effect of the contaminants and to eliminate an unphysical oxygen poisoned phase at very low CO partial pressures. The impurities can adsorb and desorb on the surface but otherwise remain inert. We find that if the impurities cannot desorb, no matter how small their proportion in the gas mixture, the reactive window and discontinuous transition to a CO poisoned phase at high CO pressures that characterize the original ZGB model disappear. The coverages become continuous, and once the surface has reached a steady state there is no production of CO2. This is quite different from the behavior of systems in which the surface presents a fixed percentage of impurities. When the contaminants are allowed to desorb, the reactive phase appears again for CO pressures below a value that depends on the proportion of contaminants in the gas and on their desorption rate.

  16. Effects of inert species in the gas phase in a model for the catalytic oxidation of CO.

    PubMed

    Buendía, G M; Rikvold, P A

    2012-03-01

    We study by kinetic Monte Carlo simulations the catalytic oxidation of carbon monoxide on a surface in the presence of contaminants in the gas phase. The process is simulated by a Ziff-Gulari-Barshad (ZGB) model that has been modified to include the effect of the contaminants and to eliminate an unphysical oxygen poisoned phase at very low CO partial pressures. The impurities can adsorb and desorb on the surface but otherwise remain inert. We find that if the impurities cannot desorb, no matter how small their proportion in the gas mixture, the reactive window and discontinuous transition to a CO poisoned phase at high CO pressures that characterize the original ZGB model disappear. The coverages become continuous, and once the surface has reached a steady state there is no production of CO(2). This is quite different from the behavior of systems in which the surface presents a fixed percentage of impurities. When the contaminants are allowed to desorb, the reactive phase appears again for CO pressures below a value that depends on the proportion of contaminants in the gas and on their desorption rate.

  17. Inert gas stratigraphy of Apollo 15 drill core sections 15001 and 15003

    NASA Technical Reports Server (NTRS)

    Huebner, W.; Kirsten, T.; Heymann, D.

    1973-01-01

    Rare gase contents were studied in Apollo 15 drill core sections corresponding to 207 to 238 and 125 to 161-cm depths, with respect to layering of the core, turnover on a centimeter scale, and cosmic proton bombardment history. Trapped gas abundance was established in all samples, the mean grain size being a major factor influencing the absolute rare gas contents. Analysis of the results suggests that the regolith materials were exposed to galactic and solar cosmic rays long before their deposition.

  18. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  19. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis.

    PubMed

    Couch, Marcus J; Fox, Matthew S; Viel, Chris; Gajawada, Gowtham; Li, Tao; Ouriadov, Alexei V; Albert, Mitchell S

    2016-05-01

    The purpose of this study was to extend established methods for fractional ventilation mapping using (19) F MRI of inert fluorinated gases to rat models of pulmonary inflammation and fibrosis. In this study, five rats were instilled with lipopolysaccharide (LPS) in the lungs two days prior to imaging, six rats were instilled with bleomycin in the lungs two weeks prior to imaging and an additional four rats were used as controls. (19) F MR lung imaging was performed at 3 T with rats continuously breathing a mixture of sulfur hexafluoride and O2 . Fractional ventilation maps were obtained using a wash-out approach, by switching the breathing mixture to pure O2 , and acquiring images following each successive wash-out breath. The mean fractional ventilation (r) was 0.29 ± 0.05 for control rats, 0.23 ± 0.10 for LPS-instilled rats and 0.19 ± 0.03 for bleomycin-instilled rats. Bleomycin-instilled rats had a significantly decreased mean r value compared with controls (P = 0.010). Although LPS-instilled rats had a slightly reduced mean r value, this trend was not statistically significant (P = 0.556). Fractional ventilation gradients were calculated in the anterior/posterior (A/P) direction, and the mean A/P gradient was -0.005 ± 0.008 cm(-1) for control rats, 0.013 ± 0.005 cm(-1) for LPS-instilled rats and 0.009 ± 0.018 cm(-1) for bleomycin-instilled rats. Fractional ventilation gradients were significantly different for control rats compared with LPS-instilled rats only (P = 0.016). The ventilation gradients calculated from control rats showed the expected gravitational relationship, while ventilation gradients calculated from LPS- and bleomycin-instilled rats showed the opposite trend. Histology confirmed that LPS-instilled rats had a significantly elevated alveolar wall thickness, while bleomycin-instilled rats showed signs of substantial fibrosis. Overall, (19)F MRI may be able to detect the effects of pulmonary

  20. Numerical investigation of enhanced dilution zone mixing in a reverse flow gas turbine combustor

    NASA Astrophysics Data System (ADS)

    Crocker, D. S.; Smith, C. E.

    1995-04-01

    An advanced method for dilution zone mixing in a reverse flow gas turbine combustor was numerically investigated. For long mixing lengths associated with reverse flow combustors (X/H greater than 2.0), pattern factor was found to be mainly driven by nozzle-to-nozzle fuel flow and/or circumferential airflow variations; conventional radially injected dilution jets could not effectively mix out circumferential nonuniformities. To enhance circumferential mixing, dilution jets were angled to produce a high circumferential (swirl) velocity component. The jets on the outer liner were angled in one direction while the jets on the inner liner were angled in the opposite direction, thus enhancing turbulent shear at the expense of jet penetration. Three-dimensional CFD calculations were performed on a three-nozzle (90 deg) sector, with different fuel flow from each nozzle (90, 100, and 110% of design fuel flow). The computations showed that the optimum configuration of angled jets reduced the pattern factor by 60% compared to an existing conventional dilution hole configuration. The radial average temperature profile was adequately controlled by the inner-to-outer liner dilution flow split.

  1. Mixing and Residence Time Distribution in an Inert Gas-Shrouded Tundish

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Asad, Amjad; Kratzsch, Christoph; Schwarze, Rüdiger; Chattopadhyay, Kinnor

    2017-02-01

    Tracer dispersion experiments were carried out in a multi-strand tundish by injecting 1 (N) NaCl solution into water. The variation of dimensionless concentration-time curves known as C-curves and mixing times with different gas flow rates were studied. The proportions of dead, mixed, and dispersed plug volumes were calculated using the `modified mixed model.' The observations were explained by analyzing the behavior of the bubble plume, incoming jet velocity, and turbulent kinetic energy within the tundish.

  2. A tidal breathing model of the inert gas sinewave technique for inhomogeneous lungs.

    PubMed

    Whiteley, J P; Gavaghan, D J; Hahn, C E

    2001-01-01

    The tidal breathing model conservation of mass equations for the sinewave technique have been described for a homogeneous alveolar compartment by Gavaghan and Hahn, 1996 [Gavaghan, D.J., Hahn, C.E.W., 1996. A tidal breathing model of the forced inspired gas sinewave technique. Respir. Physiol. 106, 209-221]. We develop these equations first to a multi-discrete alveolar compartment lung model and then to a lung model with a continuous distribution of volume, ventilation and perfusion. The effect on the output parameters of a multi-compartment model is discussed, and the results are compared to those derived from the conventional continuous-ventilation model. Using the barely soluble gas argon as the tracer gas, an empirical index of alveolar inhomogeneity is presented which uses the end-expired and mixed-expired partial pressures on each breath. This index distinguishes between a narrow unimodal distribution of ventilation-volume, a wide unimodal distribution of ventilation-volume and a bimodal distribution of ventilation-volume. By using Monte Carlo simulations, this index is shown to be stable to experimental error of realistic magnitude.

  3. Comparison of water-based foam and inert-gas mass emergency depopulation methods.

    PubMed

    Alphin, R L; Rankin, M K; Johnson, K J; Benson, E R

    2010-03-01

    Current control strategies for avian influenza (AI) and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. Selection of the best method of emergency mass depopulation involves maximizing human health and safety while minimizing disease spread and animal welfare concerns. Proper selection must ensure that the method is compatible with the species, age, housing type, and disposal options. No one single method is appropriate for all situations. Gassing is one of the accepted methods for euthanatizing poultry. Whole-house, partial-house, or containerized gassing procedures are currently used. The use of water-based foam was developed for emergency mass depopulation and was conditionally approved by the United States Department of Agriculture in 2006. Research has been done comparing these different methods; parameters such as time to brain death, consistency of time to brain death, and pretreatment and posttreatment corticosterone stress levels were considered. In Europe, the use of foam with carbon dioxide is preferred over conventional water-based foam. A recent experiment comparing CO2 gas, foam with CO2 gas, and foam without CO2 gas depopulation methods was conducted with the use of electroencephalometry results. Foam was as consistent as CO2 gassing and more consistent than argon-CO2 gassing. There were no statistically significant differences between foam methods.

  4. INVESTIGATING THE POTENTIAL DILUTION OF THE METAL CONTENT OF HOT GAS IN EARLY-TYPE GALAXIES BY ACCRETED COLD GAS

    SciTech Connect

    Su, Yuanyuan; Irwin, Jimmy A.

    2013-03-20

    The measured emission-weighted metal abundance of the hot gas in early-type galaxies has been known to be lower than theoretical expectations for 20 years. In addition, both X-ray luminosity and metal abundance vary significantly among galaxies of similar optical luminosities. This suggests some missing factors in the galaxy evolution process, especially the metal enrichment process. With Chandra and XMM-Newton, we studied 32 early-type galaxies (kT {approx}< 1 keV) covering a span of two orders of L{sub X,gas}/L{sub K} to investigate these missing factors. Contrary to previous studies that X-ray faint galaxies show extremely low Fe abundance ({approx}0.1 Z{sub Sun }), nearly all galaxies in our sample show an Fe abundance at least 0.3 Z{sub Sun }, although the measured Fe abundance difference between X-ray faint and X-ray bright galaxies remains remarkable. We investigated whether this dichotomy of hot gas Fe abundances can be related to the dilution of hot gas by mixing with cold gas. With a subset of 24 galaxies in this sample, we find that there is virtually no correlation between hot gas Fe abundances and their atomic gas content, which disproves the scenario that the low metal abundance of X-ray faint galaxies might be a result of the dilution of the remaining hot gas by pristine atomic gas. In contrast, we demonstrate a negative correlation between the measured hot gas Fe abundance and the ratio of molecular gas mass to hot gas mass, although it is unclear what is responsible for this apparent anti-correlation. We discuss several possibilities including that externally originated molecular gas might be able to dilute the hot gas metal content. Alternatively, the measured hot gas Fe abundance may be underestimated due to more complex temperature and abundance structures and even a two-temperature model might be insufficient to reflect the true value of the emission weighted mean Fe abundance.

  5. Determination of free nitrogen in carbon steels by inert gas fusion method

    NASA Astrophysics Data System (ADS)

    Tabakov, Ya. I.; Grigorovich, K. V.; Mansurova, E. R.

    2016-07-01

    The possibility to use hot extraction (thermal extraction in a carrier-gas flow) for fractional analysis of nitrogen in carbon steels is shown for cord and reinforcing-bar steels. A rapid procedure is developed for an analysis of free nitrogen in carbon steels. The validity of the analytical procedure is confirmed by high-temperature hydrogen extraction. The data obtained by the two methods correlate well with each other. A sample preparation procedure is developed for the determination of the content of dissolved nitrogen.

  6. The Multiple Inert Gas Elimination Technique: Current Methodology at the US Army Institute of Surgical Research

    DTIC Science & Technology

    2007-11-02

    observed by one of us in the lab of Dr. Wagner. The study involved a human vigorously exercising on a bicycle. The subject salivated excessively and...hematocrit, oxygen consumption, CO2 production, 99000 for tolerance, FIO2, FICO2, P50, PaO2, PaCO2 and pH from the blood gas machine data. IMPORTANT: the...program requires entry of the VO2 and VCO2 once again 62 62 here after the pH value. Each data value should be followed by pressing the Enter key. We

  7. Flammability limits of lithium-ion battery thermal runaway vent gas in air and the inerting effects of halon 1301

    NASA Astrophysics Data System (ADS)

    Karp, Matthew Eugene

    Lithium-ion (rechargeable) and lithium-metal (non-rechargeable) battery cells put aircraft at risk of igniting and fueling fires. Lithium batteries can be packed in bulk and shipped in the cargo holds of freighter aircraft; currently lithium batteries are banned from bulk shipment on passenger aircraft [1]. The federally regulated Class C cargo compartment extinguishing system's utilization of a 5 %vol Halon 1301 knockdown concentration and a sustained 3 %vol Halon 1301 may not be sufficient at inerting lithium-ion battery vent gas and air mixtures [2]. At 5 %vol Halon 1301 the flammability limits of lithium-ion premixed battery vent gas (Li-Ion pBVG) in air range from 13.80 %vol to 26.07 %vol Li-Ion pBVG. Testing suggests that 8.59 %vol Halon 1301 is required to render all ratios of the Li-Ion pBVG in air inert. The lower flammability limit (LFL) and upper flammability limit (UFL) of hydrogen and air mixtures are 4.95 %vol and 76.52 %vol hydrogen, respectively. With the addition of 10 %vol and 20 %vol Halon 1301 the LFL is 9.02 %vol and 11.55 %vol hydrogen, respectively, and the UFL is 45.70 %vol and 28.39 %vol hydrogen, respectively. The minimum inerting concentration (MIC) of Halon 1301 in hydrogen and air mixtures is 26.72 %vol Halon 1301 at 16.2 %vol hydrogen. The LFL and UFL of Li-Ion pBVG and air mixtures are 7.88 %vol and 37.14 %vol Li-Ion pBVG, respectively. With the addition of 5 %vol, 7 %vol, and 8 %vol Halon 1301 the LFL is 13.80 %vol, 16.15 %vol, and 17.62 % vol Li-Ion pBVG, respectively, and the UFL is 26.07 %vol, 23.31 %vol, and 21.84 %vol Li- Ion pBVG, respectively. The MIC of Halon 1301 in Li-Ion pBVG and air mixtures is 8.59 %vol Halon 1301 at 19.52 %vol Li-Ion pBVG. Le Chatelier's mixing rule has been shown to be an effective measure for estimating the flammability limits of Li-Ion pBVGes. The LFL has a 1.79 % difference while the UFL has a 4.53 % difference. The state of charge (SOC) affects the flammability limits in an apparent parabolic

  8. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  9. Tundish Open Eye Formation in Inert Gas-Shrouded Tundishes: A Macroscopic Model from First Principles

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Chattopadhyay, Kinnor

    2016-10-01

    Open eye formation in tundishes can result in reoxidation of liquid steel leading to the formation of harmful inclusions. Moreover, it is also a site for heat loss, gas absorption, and slag emulsification. All these factors make it necessary to understand the fundamentals of open eye formation, which in turn will allow us to prevent or control its harmful effects. In the present study, the bubble plume regions in a ladle and tundish were compared, and it was observed that there are significant differences between the two. Moreover, a simplistic model for predicting the open eye area in tundishes for `thin slag' practices was derived using the principles of conservation of mass and momentum. The proposed model was able to predict open eye areas in tundish reasonably well and was compared with other models, and experimental results.

  10. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Xu Nan; Shen Jun; Xie Weidong; Wang Linzhi; Wang Dan; Min Dong

    2010-07-15

    In this study, the effects of heat input on the distribution of microhardness of tungsten inert gas (TIG) arc welded hot-extruded AZ61 magnesium alloy joints were investigated. The results show that with an increase of heat input, the distributions of microhardness at the top and bottom of the welded joints are different because they are determined by both the effect of grain coarsening and the effect of dispersion strengthening. With an increase of the heat input, the microhardness of the heat-affected zone (HAZ) at the top and bottom of welded joints and the fusion zone (FZ) at the bottom of welded joints decreased gradually, while the microhardness of the FZ at the top of welded joints decreased initially and then increased sharply. The reason for the abnormal distribution of microhardness of the FZ at the top of the welded joints is that this area is close to the heat source during welding and then large numbers of hard {beta}-Mg{sub 17}(Al,Zn){sub 12} particles are precipitated. Hence, in this case, the effect of dispersion strengthening dominated the microhardness.

  11. Non-invasive assessment of cardiac output during mechanical ventilation - a novel approach using an inert gas rebreathing method.

    PubMed

    Nickl, Werner; Bugaj, Till; Mondritzki, Thomas; Kuhlebrock, Kathrin; Dinh, Winfried; Krahn, Thomas; Sohler, Florian; Truebel, Hubert

    2011-06-01

    Measurement of cardiac output (CO) is of importance in the diagnostic of critically ill patients. The invasive approach of thermodilution (TD) via pulmonary artery catheter is clinically widely used. A new non-invasive technique of inert gas rebreathing (IGR) shows a good correlation with TD measurements in spontaneously breathing individuals. For the first time, we investigated whether IGR can also be applied to sedated and mechanically ventilated subjects with a clinical point of care device. CO data from IGR were compared with TD in six healthy mongrel dogs. Data sampling was repeated under baseline conditions (rest) and under stress challenge by applying 10 μg/kg/min of dobutamine intravenously. Switching from mechanical ventilation to IGR, as well as the rebreathing procedures, were carried out manually. Cardiac output data from IGR and TD correlated with a coefficient of r=0.90 (95% confidence interval [0.81; 0.95]). The Bland-Altman analysis showed a bias of 0.46 l/min for the IGR CO measurements. Ninety-five percent of all differences fall in the interval [-1.03; 1.95], being the limit of the ± 1.96 standard deviation lines. IGR is a new approach for non-invasive cardiac output measurement in mechanically ventilated individuals, but requires further investigation for clinical use.

  12. An analysis of the correlation energy contribution to the interaction energy of inert gas dimers.

    PubMed

    Snook, Ian; Per, Manolo C; Russo, Salvy P

    2008-10-28

    An accurate description of electron correlation is essential for the calculation of interaction energies in cases where dispersion energy is a major component, for example, for the rare gas atoms, physisorption on graphite, and graphene-graphene interactions. Such calculations are computationally demanding using supermolecule methods and the energies calculated lack a simple, physical interpretation. Alternatively density functional theories (DFTs) may be used to give an approximate estimate of the correlation energy. However, the physical nature of this DFT estimate of electron correlation energy is not well understood and, in fact, most current DFT methods do not describe dispersion energy at all. Hence, an analysis of the correlation energy contribution to interaction energies where dispersion energy is important is needed. In order to do this we provide an analysis of the correlation energy contribution to the potential energy curves of He(2), Ne(2), and Ar(2) in terms of the Hartree-Fock (HF) interaction term DeltaE(int) (HF), a dispersion energy term E(disp) and an electron correlation term DeltaE(int) (C). DeltaE(int) (C) includes all other correlation energy effects besides E(disp) and is shown to be repulsive, of a similar short range character to, but of smaller magnitude than DeltaE(int) (HF). This analysis was used to develop a theoretical model which gives a very good estimate of the potential energy wells for He(2), Ne(2), Ar(2), HeNe, HeAr, and NeAr.

  13. Plasma-weld pool interaction in tungsten inert-gas configuration

    NASA Astrophysics Data System (ADS)

    Mougenot, J.; Gonzalez, J.-J.; Freton, P.; Masquère, M.

    2013-04-01

    A three-dimensional (3D) transient model of a transferred argon arc in interaction with an anode material is presented and the results discussed. The model based on a finite volume method is developed using the open software @Saturne distributed by Electricité de France. The 3D model includes the characterization of the plasma gas and of the work piece with a current continuity resolution in the whole domain. Transport and thermodynamic properties are dependent on the local temperature and on the vapours emitted by the eroded material due to the heat flux transferred by the plasma. Drag force, Marangoni force, Laplace and gravity forces are taken into account on the weld pool description. The plasma and the weld pool characteristics are presented and compared with experimental and theoretical results from the literature. For a distance between the two electrodes of d = 5 mm and an applied current intensity of I = 200 A, the vapour concentration is weak. The influence of the parameters used in the Marangoni formulation is highlighted. Finally, in agreement with some authors, we show with this global transient 3D model that it is not necessary to include the voltage drop in the energy balance.

  14. Simulation and demonstration of magnetohydrodynamic energy conversion in a high-temperature inert gas

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2009-03-15

    The present paper describes high-density magnetohydrodynamic (MHD) energy conversion in a high-temperature seed-free argon plasma, for which a quasi-three-dimensional numerical simulation and a single-pulse shock-tunnel-based demonstration are conducted. The numerical model simulates the two-dimensional profiles of both the electron and the heavy-particle system of the supersonic argon plasma flow, of which the total inflow temperature is 8000 K. The MHD power-generating experiment clarifies the relationship between the plasma quality and the energy conversion efficiency as functions of the total inflow temperature (7600-9600 K) and the applied magnetic flux density (up to 4.0 T). The increase in the total inflow temperature from 7600 to 9400 K and the application of magnetic flux with density of 0.5-1.2 T change the plasma state; unstable behavior accompanied by an inhomogeneous structure is transformed to a homogeneous and stable state, which results in the significant improvement of the power generation performance. Even in low-density magnetic flux, the attained generator performance is comparable or superior to previous results obtained using a conventional low-temperature seeded gas.

  15. Inert gas cutting of titanium sheet with pulsed mode CO 2 laser

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Kaul, Rakesh; Tiwari, Pragya; Nath, A. K.

    2005-12-01

    The present work aimed at studying the dynamic behavior of melt ejection in laser cutting of 1 mm thick titanium sheet and to obtain dross-free cuts with minimum heat affected zone (HAZ). CO 2 laser cutting of titanium sheet was carried out with continuous wave (CW) and pulsed mode laser operation with different shear gases namely argon, helium and nitrogen. Laser cutting with high frequency and low-duty cycle pulse mode operation produced dross-free cuts with no noticeable HAZ. Helium, because of its high heat convection and ability to generate high shear stress, produced laser-cuts with narrow HAZ and low dross, as compared to those produced with argon as the shear gas. Microscopic features of laser cut surfaces were analyzed and correlated with dynamic mechanism involved in laser cutting process. Process parameters for laser piercing, required for the initiation of fusion cut within the sheet, were also studied. Laser piercing requires either CW or high-duty cycle (>80%) pulse mode operation.

  16. Alternative inert gas washout outcomes in patients with primary ciliary dyskinesia.

    PubMed

    Nyilas, Sylvia; Schlegtendal, Anne; Singer, Florian; Goutaki, Myrofora; Kuehni, Claudia E; Casaulta, Carmen; Latzin, Philipp; Koerner-Rettberg, Cordula

    2017-01-01

    The lung clearance index (LCI) derived from a nitrogen multiple breath washout test (N2-MBW) is a promising tool to assess small airways disease in primary ciliary dyskinesia, but it is difficult to apply in routine clinical settings because of its long measuring time. In this study, we aimed to assess alternative indices derived from shorter washout protocols.49 patients with primary ciliary dyskinesia (mean age 14.7±6.6 years) and 37 controls (mean age 14.3±1.4 years) performed N2-MBW and double-tracer gas (DTG) single-breath washout tests. Global (LCI and moment ratio (M2/M0)), conductive (Scond) and acinar ventilation inhomogeneity (DTG Slope III (SIII-DTG)) were determined for each individual. The main outcomes were 1) the ability to detect abnormal lung function from washout indices (>1.64 z-scores) and 2) measurement duration.The prevalence of abnormal values for LCI2.5% was 37 out of 47 (79%), for LCI5% was 34 out of 47 (72%), for M2/M0 was 34 out of 47 (72%), for Scond was 36 out of 46 (78%) and for SIII-DTG was 12 out of 35 (34%). Mean±sd duration of measurement was 19.8±11.2 min for LCI2.5%, 10.8±4.6 min for LCI5% and 8.6±2.3 min for ScondCompared to standard LCI2.5%, ventilation inhomogeneity was detected by LCI5%, moment ratio and Scond with comparable sensitivity while measurement duration was significantly shorter. Longitudinal studies will show which outcome is most suitable and practical in terms of sensitivity, duration and variability within the course of primary ciliary dyskinesia lung disease.

  17. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders.

    PubMed

    Szmyt, Wojciech; Guerra, Carlos; Utke, Ivo

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  18. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    PubMed Central

    Guerra, Carlos

    2017-01-01

    In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires) as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i) the gas diffusion coefficient inside such arrays, (ii) the time between collisions of molecules with the nanocylinder walls (mean time of flight), (iii) the surface impingement rate, and (iv) the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes. PMID:28144565

  19. Techniques for optimizing inerting in electron processors

    NASA Astrophysics Data System (ADS)

    Rangwalla, I. J.; Korn, D. J.; Nablo, S. V.

    1993-07-01

    The design of an "inert gas" distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are <0.1 ppm, good control techniques are required involving either recombination of the O 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. In this case, the competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions can be determined for production quality control purposes. These techniques are described for an ink:coating system on paperboard, where a broad range of process parameters have been studied (D, Ġ, O 2. It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2) nitrogen gas for inerting, in combination with lower purity (2-20, 000 ppm O 2) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators.

  20. Richtmyer-Meshkov instability in dilute gas-particle mixtures with re-shock

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2013-11-01

    The Richtmyer-Meshkov instability (RMI) is investigated in a dilute gas-particle mixture using three-dimensional numerical simulations. This work extends an earlier two-dimensional study [S. Ukai, K. Balakrishnan, and S. Menon, "On Richtmyer-Meshkov instability in dilute gas-particle mixtures," Phys. Fluids 22, 104103 (2010)] to a larger parameter space consisting of variations in the mass loading and the particle size as well as considering both single-mode and multi-mode interface initializations. In addition, the effect of the presence of particles on re-shock RMI is also investigated. Single-phase numerical predictions of the mixing layer growth-rate are shown to compare well to both experimental and theoretical results. In a dilute gas-particle mixture, the initial growth-rate of RMI shows similar trends compared to previous work; however, the current numerical predictions show that there is an observable increase, not previously predicted, in the growth of the mixing layer at higher mass loadings. For the range of cases considered, an increase as much as 56% is observed. This increase is attributed to additional vorticity production in the mixing layer resulting from inter-phase momentum coupling. Moreover, the presence of particles introduces a continuous drag on the gas-phase resulting in a delay in the time at which re-shock occurs. This delay, which is observed to be as much as 6%, is largest for higher initial mass loadings and smaller particle radii and has a corresponding effect on both the growth-rate of the mixing-layer after re-shock and the final width of the mixing layer. A new semi-analytical correlation is developed and verified against the numerical data to predict the re-shocked RMI growth-rate in dilute gas-particle flows. The correlation shows that the re-shock RMI growth-rate is linearly proportional to the velocity jump at re-shock, the molecular mixing fraction, and the multi-phase Atwood number. Depending on the initial mass loading and

  1. Chemical alteration of poly(tetrafluoroethylene) TFE teflon induced by exposure to electrons and inert-gas ions.

    PubMed

    Everett, Michael L; Hoflund, Gar B

    2005-09-08

    In this study the chemical alterations of poly(tetrafluoroethylene) (TFE Teflon) by approximately 1.0-keV electrons and 1.0-keV He and Ar ions have been examined using X-ray photoelectron spectroscopy (XPS). The initial F/C atom ratio of 1.99 decreases to a steady-state value of 1.48 after 48 h of electron exposure. Exposure to either He+ or Ar+ decreases the initial F/C atom ratio from approximately 2 to a steady-state value of 1.12. The high-resolution XPS C 1s data indicate that new chemical states of carbon form as the F is removed and that the relative amounts of these states depend on the F content of the near-surface region. These states are most likely due to C bonded only to one F atom, C bonded only to other C atoms and C that have lost a pair of electrons through emission of F-. Exposures of the electron-damaged and He+- or Ar+-damaged surfaces to research-grade O2 result in chemisorption of very small amounts of O indicating that large quantities of reactive sites are not formed during the chemical erosion. Further exposure to the electron or ion fluxes quickly removes this chemisorbed oxygen. Exposure of the He+-damaged surface to air at room temperature results in the chemisorption of a larger amount of O than the O2 exposure but no N is adsorbed. The chemical alterations due to electrons and ions are compared with those caused by hyperthermal (approximately 5 eV) atomic oxygen (AO) and vacuum ultraviolet (VUV) radiation. The largest amount of damage is caused by AO followed by VUV, inert-gas ions, and then electrons.

  2. Isobaric Inert Gas Counterdiffusion,

    DTIC Science & Technology

    1982-11-01

    20 minutes. A second group of animals pretreated with 10 milligrams of valium, intramuscularly, showed a time lag of 248 minutes with an SE of 24...low z 20 - T x Pf Is. Cc) tPo L Q" TIME - 15- . N 200 w X N= a30 _. Dr O N=aIO " H 1 0 z1 0-- , / a- . 0 05 1- 20 CRUSHING PRESSURE PCRUSH Pm-Po

  3. Kinetic approach to the Gaussian thermostat in a dilute sheared gas in the thermodynamic limit.

    PubMed

    van Zon, R

    1999-10-01

    A dilute gas of particles with short range interactions is considered in a shearing stationary state. A Gaussian thermostat keeps the total kinetic energy constant. For infinitely many particles it is shown that the thermostat becomes a friction force with constant friction coefficient. For finite number of particles N, the fluctuations around this constant are of order 1/squareroot[N], and distributed approximately Gaussian with deviations for large fluctuations. These deviations prohibit a derivation of fluctuation-dissipation relations far from equilibrium, based on the fluctuation theorem.

  4. The effective surface energy of heterogeneous solids measured by inverse gas chromatography at infinite dilution.

    PubMed

    Sun, Chenhang; Berg, John C

    2003-04-15

    Inverse gas chromatography (IGC) at infinite dilution has been widely used to access the nonspecific surface free energy of solid materials. Since most practical surfaces are heterogeneous, the effective surface energy given by IGC at infinite dilution is somehow averaged over the whole sample surface, but the rule of averaging has thus far not been established. To address this problem, infinite dilution IGC analysis was carried out on mixtures of known heterogeneity. These materials are obtained by mixing two types of solid particles with significantly different surface energies as characterized individually with IGC, and results are obtained for binary combinations in varying proportions. It is found that when all surface components have the same accessibility by probe molecules, the effective surface energy of such a heterogeneous surface is related to the surface energy distribution by a square root linear relationship, square root sigma(eff)(LW)= summation operator (i)phi(i) square root sigma(i)(LW), where sigma(i)(LW) refers to the nonspecific (Lifshitz-van der Waals) surface energy of patches i, and phi(i) to their area fraction.

  5. Characteristics of dilute gas-solids suspensions in drag reducing flow

    NASA Technical Reports Server (NTRS)

    Kane, R. S.; Pfeffer, R.

    1973-01-01

    Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.

  6. Gravimetric dilution of calibration gas mixtures (CO2, CO, and CH4 in He balance): Toward their uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Budiman, Harry; Mulyana, Muhammad Rizky; Zuas, Oman

    2017-01-01

    Uncertainty estimation for the gravimetric dilution of four calibration gas mixtures [carbon dioxide (CO2), carbon monoxide (CO), and methane (CH4) in helium (He) Balance] have been carried out according to the International Organization for Standardization (ISO) of "Guide to the Expression of Uncertainty in Measurement". The uncertainty of the composition of gas mixtures was evaluated to measure the quality, reliability, and comparability of the prepared calibration gas mixtures. The analytical process for the uncertainty estimation is comprised of four main stages such as specification of measurand, identification, quantification of the relevant uncertainty sources, and combination of the individual uncertainty sources. In this study, important uncertainty sources including weighing, gas cylinder, component gas, certified calibration gas mixture (CCGM) added, and purity of the He balance were examined to estimate the final uncertainty of composition of diluted calibration gas mixtures. The results shows that the uncertainties of gravimetric dilution of the four calibration gas mixtures (CO2, CO, and CH4 in He Balance) were found in the range of 5.974% - 7.256% that were expressed as %relative of expanded uncertainty at 95% of confidence level (k=2). The major contribution of sources uncertainty to the final uncertainty arose from the uncertainty related to the certified calibration gas mixture (CCGM) which was the uncertainty value stated in the CCGM certificate. The verification of calibration gas mixtures composition shows that the gravimetric values of calibration gas mixtures were consistent with the results of measurement using gas chromatography flame ionization detector equipped by methanizer.

  7. Combined measurement of pulmonary inert gas washout and regional ventilation heterogeneity by MR of a single dose of hyperpolarized 3He.

    PubMed

    Deppe, Martin H; Parra-Robles, Juan; Ajraoui, Salma; Wild, Jim M

    2011-04-01

    Washout of inert gases is a measure of pulmonary function well-known in lung physiology. This work presents a method combining inert gas washout and spatially resolved imaging using hyperpolarized (3) He, thus providing complementary information on lung function and physiology. The nuclear magnetic resonance signal of intrapulmonary hyperpolarized (3) He is used to track the total amount of gas present within the lungs during multiple-breath washout via tidal breathing. Before the washout phase, 3D ventilation images are acquired using (3) He magnetic resonance imaging from the same dose of inhaled gas. The measured washout signal is corrected for T(1) relaxation and radiofrequency depletion, converting it into a quantity proportional to the apparent amount of gas within the lungs. The use of a pneumotachograph for acquisition of breathing volumes during washout, together with lung volumes derived from the magnetic resonance imaging data, permits assessment of the washout curves against physiological model predictions for healthy lungs. The shape of the resulting washout curves obtained from healthy volunteers matches the predictions, demonstrating the utility of the technique for the quantitative assessment of lung function. The proposed method can be readily integrated with a standard breath-hold (3) He ventilation imaging sequence, thus providing additional information from a single dose of gas.

  8. Headspace solid phase microextraction and gas chromatography-olfactometry dilution analysis of young and aged Chinese "Yanghe Daqu" liquors.

    PubMed

    Fan, Wenlai; Qian, Michael C

    2005-10-05

    The aroma compounds of young and aged Chinese "Yanghe Daqu" liquor samples were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography (GC)-olfactometry dilution analysis. The original liquor samples were diluted with deionized water to give a final alcohol content of 14% (v/v). The samples were stepwise diluted (1:1) with 14% (by volume) ethanol-water solution and then extracted by headspace SPME. The samples were preequilibrated at 50 degrees C for 15 min and extracted with stirring at the same temperature for 30 min prior to injection into GC. The aroma compounds were identified by both GC-MS and GC-olfactometry using DB-Wax and DB-5 columns. The results suggested that esters were the major contributors to Yanghe Daqu liquor aroma. Ethyl hexanoate, ethyl butanoate, and ethyl pentanoate had very high flavor dilution values in both young and aged liquors (FD > 8192). Methyl hexanoate, ethyl heptanoate, ethyl benzoate, and butyl hexanoate could also be very important because of their high flavor dilution values (FD > or = 256). Moreover, two acetals, 1,1-diethoxyethane and 1,1-diethoxy-3-methylbutane, also were shown high flavor dilution values in Yanghe Daqu liquors (FD > or = 256). Other aroma compounds having moderate flavor dilution values included acetaldehyde, 3-methylbutanol, and 2-pentanol (FD > or = 32). Comparing young and aged liquors, the aroma profiles were similar, but the aroma compounds in the aged sample had higher flavor dilution values than in the young ones.

  9. Fluid-dynamical and poro-elastic coupling of gas permeability of inert and sorbing gases on an Australian sub-bituminous coal

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Krooss, B. M.

    2013-12-01

    The interaction and the coupling of slip-flow, a fluid dynamic phenomenon, and the cleat volume compressibility which is a poroelastic phenomenon has been investigated on two samples from the Taroom coal measure, Surat Basin, Queensland Australia. Measurements were performed using inert (helium and argon) and sorbing gases (nitrogen, methane and carbon dioxide) at controlled effective stress. We observed the following regular sequence of permeability coefficients for the different gases: Helium >> argon => nitrogen > methane >> CO2 Even after slip-flow correction, different intrinsic permeability coefficients are obtained for the same sample if different gases are used in the tests. The permeability values determined with helium are largest while those measured with CO2 are lowest. Inert gases like helium and argon show higher apparent- and even slip flow-corrected permeability coefficients than sorbing gases like methane or carbon dioxide. This observation is contrary to the prediction that the slip-flow corrected permeability have to be the same for all gases. The cleat volume compressibility cf was evaluated using the 'matchstick approach' [1, 2]. The cleat volume compressibility coefficients cf are almost identical for the two samples taken from the same well. However, for one sample a strong dependence of the cf with the mean pore pressure was observed. This is attributed to a strong slip-flow effect caused by a narrow cleat system as compared to the sister sample. The cleat volume compressibility coefficient cf is almost the same for inert and sorbing gases. We conclude that the occurrence of slip-flow in coals is able to compensate the permeability reduction resulting from increasing effective stress. This should lead to a much higher productivity of coal bed methane reservoirs in the third production phase (pseudo-steady state phase; [3]). This conclusion appears to be also valid for shale gas and tight gas reservoirs, where the gas transport takes place in

  10. Dilute-gas properties of some systems containing CO/sub 2/

    SciTech Connect

    Ameling, W.; Lucas, K.

    1987-05-01

    The SSR-MPA potential model is used to correlate and extrapolate the dilute-gas properties of some systems containing CO/sub 2/. With parameters determined from a consistent set of second virial and Joule-Thomson data, the third virial coefficient of CO/sub 2/ as well as the second virial coefficients of various mixtures containing CO/sub 2/ can be predicted very well. The Mason-Monchik approximation fails for a complicated molecule such as CO/sub 2/, although at least a viscosity prediction of technical accuracy is obtained. If parameters fitted to the CO/sub 2/ viscosity are used, excellent predictions can be made for the viscosity of gaseous mixtures containing CO/sub 2/.

  11. Optimization in multidimensional gas chromatography applying quantitative analysis via a stable isotope dilution assay.

    PubMed

    Schmarr, Hans-Georg; Slabizki, Petra; Legrum, Charlotte

    2013-08-01

    Trace level analyses in complex matrices benefit from heart-cut multidimensional gas chromatographic (MDGC) separations and quantification via a stable isotope dilution assay. Minimization of the potential transfer of co-eluting matrix compounds from the first dimension ((1)D) separation into the second dimension separation requests narrow cut-windows. Knowledge about the nature of the isotope effect in the separation of labeled and unlabeled compounds allows choosing conditions resulting in at best a co-elution situation in the (1)D separation. Since the isotope effect strongly depends on the interactions of the analytes with the stationary phase, an appropriate separation column polarity is mandatory for an isotopic co-elution. With 3-alkyl-2-methoxypyrazines and an ionic liquid stationary phase as an example, optimization of the MDGC method is demonstrated and critical aspects of narrow cut-window definition are discussed.

  12. Itinerant ferromagnetism in a Fermi gas with contact interaction: Magnetic properties in a dilute Hubbard model

    SciTech Connect

    Chang Chiachen; Zhang Shiwei; Ceperley, David M.

    2010-12-15

    Ground-state properties of the repulsive Hubbard model on a cubic lattice are investigated by means of the auxiliary-field quantum Monte Carlo method. We focus on low-density systems with varying on-site interaction U/t, as a model relevant to recent experiments on itinerant ferromagnetism in a dilute Fermi gas with contact interaction. Twist-average boundary conditions are used to eliminate open-shell effects and large lattice sizes are studied to reduce finite-size effects. The sign problem is controlled by a generalized constrained path approximation. We find no ferromagnetic phase transition in this model. The ground-state correlations are consistent with those of a paramagnetic Fermi liquid.

  13. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  14. An Evaluation of the International Maritime Organization’s Gaseous Agents Test Protocol with Halocarbon Agents and an Inert Gas, 180 Deg Nozzles, and Low Temperature Conditioned Cylinders

    DTIC Science & Technology

    1998-12-01

    halocarbons and one inert gas) were included in this evaluation. These agents include heptafluoropropane C3HF7 (FM-200), perfluoropropane C3F8 (CEA-308...CEA-308 FM-200 NAF-SIII* Inergen** Chemical Formula CF3Br C3F8 C3HF7 82%CHClF2(R-22), 9.5% C2HCIF4 (R-124), 4.75% C2HCI2F3 (R-123), and 3.75...Product Wave Numbers Agent / Compound Wave Number (cm") FM-200 (C3HF7) 2034 CEA-308 ( C3F8 ) 2040 Hydrogen Fluoride (HF) 4003,4041, and 4077 The HF

  15. Bose-Einstein Condensation in a Dilute Gas:. the First 70 Years and Some Recent Experiments

    NASA Astrophysics Data System (ADS)

    Cornell, E. A.; Wieman, C. E.

    2003-04-01

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of "How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?" We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging.

  16. Isotope dilution gas chromatography/mass spectrometry method for determination of pyrethroids in apple juice.

    PubMed

    Wong, Siu-kay; Yu, Kwok-chiu; Lam, Chi-ho

    2010-03-01

    This paper presents the development of a highly precise and accurate analytical method for the determination of three matrix-bound pyrethroids, namely, cypermethrin, permethrin, and bifenthrin, using an isotope dilution gas chromatography/mass spectrometry technique. Identification of the analytes was confirmed under selective ion monitoring mode by the presence of two dominant ion fragments within specific time windows and matching of relative ion intensities of the ions concerned in samples and calibration standards. Quantitation was based on the measurement of concentration ratios of the natural and isotope analogues in the sample and calibration blends. Intraday and interday repeatabilities of replicate analyses of the pyethroids in an apple juice sample were below 0.5%. The expanded relative uncertainty ranged from 3 to 6%, which was significantly lower than the range obtained using internal or external calibration methods. As a labeled analogue is not available for bifenthrin, bifenthrin was determined using labeled cis-permethrin as the internal standard. The results were counterchecked by a gas chromatography-electron capture detection technique using PCB 209 as the internal standard. The method developed was applied to a recent pilot study organized by CCQM and the results were consistent with those of other participants.

  17. Lattice Boltzmann accelerated direct simulation Monte Carlo for dilute gas flow simulations

    NASA Astrophysics Data System (ADS)

    Di Staso, G.; Clercx, H. J. H.; Succi, S.; Toschi, F.

    2016-11-01

    Hybrid particle-continuum computational frameworks permit the simulation of gas flows by locally adjusting the resolution to the degree of non-equilibrium displayed by the flow in different regions of space and time. In this work, we present a new scheme that couples the direct simulation Monte Carlo (DSMC) with the lattice Boltzmann (LB) method in the limit of isothermal flows. The former handles strong non-equilibrium effects, as they typically occur in the vicinity of solid boundaries, whereas the latter is in charge of the bulk flow, where non-equilibrium can be dealt with perturbatively, i.e. according to Navier-Stokes hydrodynamics. The proposed concurrent multiscale method is applied to the dilute gas Couette flow, showing major computational gains when compared with the full DSMC scenarios. In addition, it is shown that the coupling with LB in the bulk flow can speed up the DSMC treatment of the Knudsen layer with respect to the full DSMC case. In other words, LB acts as a DSMC accelerator. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  18. [Effect of inert gas xenon on the functional state of nucleated cells of peripheral blood during freezing].

    PubMed

    Laptev, D S; Polezhaeva, T V; Zaitseva, O O; Khudyakov, A N; Utemov, S V; Knyazev, M G; Kostyaev, A A

    2015-01-01

    A new method of preservation of nucleated cells in the electric refrigerator with xenon. After slow freezing and storage is even one day at -80 °C persists for more than 60% leukocytes. Cell membranes are resistant to the vital dye. In 85% of granulocytes stored baseline lysosomal-cationic protein, reduced lipid peroxidation and antioxidant activity. Cryopreservation of biological objects in inert gases is a promising direction in the practice of medicine and can be an alternative to the traditional method using liquid nitrogen.

  19. Correlation of leak rates of various fluids with the leak rate of an inert gas in the same configuration

    NASA Technical Reports Server (NTRS)

    Schleier, Howard

    1990-01-01

    NASA is interested in field testing for possible leakage in their fueling systems; however, many fuels are hazardous to the extent that personnel cannot be on hand when the system is being monitored. It is proposed that an inert material such as helium be used on the field test, and that those results be calibrated to simulate the actual process. A technique such as this would allow personnel to be on site during the testing and use techniques to determine the behavior of the system that could not be used otherwise. This endeavor attempts to develop such a correlation. The results show promise, but more refinement and data are needed.

  20. Modeling of reflection of detonation and shock waves from a rigid wall in mixtures of a reactive gas and chemically inert particles

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Fomin, P. A.; Tropin, D. A.; Chen, J.-R.

    2012-05-01

    An algorithm of approximate calculation of the reflection of detonation waves in mixtures of a reactive gas and chemically inert microparticles has been proposed. Consideration has been given to the case where the gas behind the wave front is in chemical equilibrium (D → D reflection). It has been shown that the presence of the condensed phase can substantially decrease the parameters of the reflected wave (its velocity, pressure, and temperature). Within the framework of a one-dimensional nonstationary approach and with allowance for the detailed kinetics of chemical reactions, the evolution of the shock wave in a stoichiometric hydrogen-oxygen mixture with sand particles in its reflection from a rigid wall has been calculated. The limiting particle concentration below which the reflected wave is of the detonation type and above which it is of the shock type has been found.

  1. The evaluation of the pyrochemistry for the treatment of Gen IV nuclear fuels Inert matrix chlorination studies in the gas phase or molten chloride salts

    NASA Astrophysics Data System (ADS)

    Bourg, S.; Péron, F.; Lacquement, J.

    2007-01-01

    The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).

  2. Inelastic gas: An experimental study of vibro-fluidized dilute granular media

    NASA Astrophysics Data System (ADS)

    Feitosa, Klebert Bezerra

    We conduct an experimental study of a two dimensional vibro-fluidized dilute granular medium. The system is composed of spherical beads confined to move in a vertical plane and excited by intense vertical vibrations. We perform full-field tracking of positions and orientations of the spheres by high speed photography. In steady-state, the motion of the grains resembles that of a molecular gas, thus the name granular gas. We study the distribution of linear velocities in the granular gas. The investigation shows that the distributions are non-gaussian, best fitted by the function P(v) ˜ exp(-beta| v|/sigma)1.5), and insensitive to number density, driving parameters and particle inelasticity. The distribution is a one parameter distribution, parameterized by the mean square velocity; which defines a granular temperature. T = ½ . We study binary mixtures of the granular media. We find that, in general, the granular temperature is not equal for the two types of spheres. However, the temperature ratio is constant in the bulk. The ratio depends strongly on the mass ratio of the spheres, but not on their inelasticity. The ratio is also insensitive to compositional parameters of the mixture such as number fraction and number density. We also investigate the statistics of the power flux into a subsystem of the granular gas. The power shows large fluctuations, including frequent large negative fluctuations. The relative probabilities of positive and negative fluctuations in the power flux are in close accord with the Fluctuation Theorem of Gallavotti and Cohen (Gallavotti & Cohen, 1995b). We also compare the effective temperature that emerges from this analysis to the kinetic granular temperature. Finally, we study the rotational dynamics of the granular gas. We find that the granular temperature is not equipartitioned between translational and rotational degrees of freedom. We also demonstrate that the ratio of rotational to translational energy is independent of the

  3. Bose-Einstein Condensation in a Dilute Gas; the First 70 Years and Some Recent Experiments

    NASA Astrophysics Data System (ADS)

    Cornell, E. A.; Wieman, C. E.

    Bose-Einstein condensation, or BEC, has a long and rich history dating from the early 1920s. In this article we will trace briefly over this history and some of the developments in physics that made possible our successful pursuit of BEC in a gas. We will then discuss what was involved in this quest. In this discussion we will go beyond the usual technical description to try and address certain questions that we now hear frequently, but are not covered in our past research papers. These are questions along the lines of ``How did you get the idea and decide to pursue it? Did you know it was going to work? How long did it take you and why?'' We will review some of our favorites from among the experiments we have carried out with BEC. There will then be a brief encore on why we are optimistic that BEC can be created with nearly any species of magnetically trappable atom. Throughout this article we will try to explain what makes BEC in a dilute gas so interesting, unique, and experimentally challenging. This article is our ``Nobel Lecture'' and as such takes a relatively personal approach to the story of the development of experimental Bose-Einstein condensation. For a somewhat more scholarly treatment of the history, the interested reader is referred to E. A. Cornell, J. R. Ensher and C. E. Wieman, ``Experiments in dilute atomic Bose-Einstein condensation in Bose-Einstein Condensation in Atomic Gases, Proceedings of the International School of Physics ``Enrico Fermi'' Course CXL'' (M. Inguscio, S. Stringari and C. E. Wieman, Eds., Italian Physical Society, 1999), pp. 15-66, which is also available as cond-mat/9903109. For a reasonably complete technical review of the three years of explosive progress that immediately followed the first observation of BEC, we recommend reading the above article in combination with the corresponding review from Ketterle, cond-mat/9904034.

  4. Nitrogen dilution effect on the flammability limits for hydrocarbons.

    PubMed

    Chen, Chan-Cheng; Wang, Tzu-Chi; Liaw, Horng-Jang; Chen, Hui-Chu

    2009-07-30

    Theoretical models to predict the upper/lower flammability limits of hydrocarbons diluted with inert nitrogen gas are proposed in this study. It is found that there are linear relations between the reciprocal of the upper/lower flammability limits and the reciprocal of the molar fraction of hydrocarbon in the hydrocarbon/inert nitrogen mixture. Such linearity is examined by experimental data reported in the literature, which include the cases of methane, propane, ethylene and propylene. The R-squared values (R(2)) of the regression lines of the cases explored are all greater than 0.989 for upper flammability limit (UFL). The theoretical slope of the predictive line for lower flammability limit (LFL) is found to be very close to zero for all explored cases; and this result successfully explains the experimental fact that adding inert nitrogen to a flammable material has very limited effect on LFL. Because limit oxygen concentration (LOC) could be taken as the intersectional point of the UFL curve and LFL curve, a LOC-based method is proposed to predict the slope of the UFL curve when experimental data of UFL are not available. This LOC-based method predicts the UFL with average error ranging from 2.17% to 5.84% and maximum error ranging from 8.58% to 12.18% for the cases explored. The predictive models for inert gas of nitrogen are also extended to the case of inert gas other than nitrogen. Through the extended models, it was found that the inert ability of an inert gas depends on its mean molar heat capacity at the adiabatic flame temperature. Theoretical calculation shows that the inert abilities of carbon dioxide, steam, nitrogen and helium are in the following order: carbon dioxide>steam>nitrogen>helium; and this sequence conforms to the existing experimental data reported in the literature.

  5. Density functional theory of gas-liquid phase separation in dilute binary mixtures

    NASA Astrophysics Data System (ADS)

    Okamoto, Ryuichi; Onuki, Akira

    2016-06-01

    We examine statics and dynamics of phase-separated states of dilute binary mixtures using density functional theory. In our systems, the difference of the solvation chemical potential between liquid and gas Δ {μ\\text{s}} (the Gibbs energy of transfer) is considerably larger than the thermal energy {{k}\\text{B}}T for each solute particle and the attractive interaction among the solute particles is weaker than that among the solvent particles. In these conditions, the saturated vapor pressure increases by {{k}\\text{B}}Tn2\\ell\\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right) , where n2\\ell is the solute density added in liquid. For \\exp ≤ft(Δ {μ\\text{s}}/{{k}\\text{B}}T\\right)\\gg 1 , phase separation is induced at low solute densities in liquid and the new phase remains in gaseous states, even when the liquid pressure is outside the coexistence curve of the solvent. This explains the widely observed formation of stable nanobubbles in ambient water with a dissolved gas. We calculate the density and stress profiles across planar and spherical interfaces, where the surface tension decreases with increasing interfacial solute adsorption. We realize stable solute-rich bubbles with radius about 30 nm, which minimize the free energy functional. We then study dynamics around such a bubble after a decompression of the surrounding liquid, where the bubble undergoes a damped oscillation. In addition, we present some exact and approximate expressions for the surface tension and the interfacial stress tensor.

  6. Oxidative and inert pyrolysis on-line coupled to gas chromatography with mass spectrometric detection: On the pyrolysis products of tobacco additives.

    PubMed

    Paschke, Meike; Hutzler, Christoph; Henkler, Frank; Luch, Andreas

    2016-11-01

    According to European legislation, tobacco additives may not increase the toxicity or the addictive potency of the product, but there is an ongoing debate on how to reliably characterize and measure such properties. Further, too little is known on pyrolysis patterns of tobacco additives to assume that no additional toxicological risks need to be suspected. An on-line pyrolysis technique was used and coupled to gas chromatography-mass spectrometry (GC/MS) to identify the pattern of chemical species formed upon thermal decomposition of 19 different tobacco additives like raw cane sugar, licorice or cocoa. To simulate the combustion of a cigarette it was necessary to perform pyrolysis at inert conditions as well as under oxygen supply. All individual additives were pyrolyzed under inert or oxidative conditions at 350, 700 and 1000°C, respectively, and the formation of different toxicants was monitored. We observed the generation of vinyl acrylate, fumaronitrile, methacrylic anhydride, isobutyric anhydride and 3-buten-2-ol exclusively during pyrolysis of tobacco additives. According to the literature, these toxicants so far remained undetectable in tobacco or tobacco smoke. Further, the formation of 20 selected polycyclic aromatic hydrocarbons (PAHs) with molecular weights of up to 278Da was monitored during pyrolysis of cocoa in a semi-quantitative approach. It was shown that the adding of cocoa to tobacco had no influence on the relative amounts of the PAHs formed.

  7. Glass transition of adsorbed stereoregular PPMA by inverse gas chromatography at infinite dilution

    NASA Astrophysics Data System (ADS)

    Hamieh, T.; Rezzaki, M.; Grohens, Y.; Schultz, J.

    1998-10-01

    In this paper, we used inverse gas chromatography (IGC) at infinite dilution that proved to be a powerful technique to determine glass transition and other transitions of PMMA adsorbed on α-alumina. We highlighted the glass transition temperature of the system PMMA/α-Al2O3 with defined polymer tacticity at various covered surface fractions. Thus, the Tg of the adsorbed isotactic PMMA increases strongly as compared to the bulk value. The study of the physical chemical properties of PMMA/α-alumina revealed an important difference in the acidic and basic behaviour, in Lewis terms, of aluminium oxide covered by various concentrations of PMMA. It appears that there is a stabilisation of the physical chemical properties of PMMA/α-Al2O3 for a surface coverage above 50%. This study also highlighted an important effect of the tacticity of the polymer on the acid-base character of the system PMMA/Al2O3. Dans cet article, nous montrons que la chromatographie gazeuse inverse (CGI) à dilution infinie se révèle être une technique très intéressante pour la détermination de la transition vitreuse de polymères stéréoréguliers adsorbés sur des substrats solides tels que l'alumine. Nous avons mis en évidence des transitions attribuées aux phénomènes de relaxation béta, transition vitreuse et autres transitions des systèmes PMMA/Al2O3 de tacticité définie à différents taux de recouvrement. Ainsi, la Tg du PMMA isotactique adsorbé augmente de façon significative par rapport a celle du polymère massique. L'étude des propriétés physico-chimiques du système PMMA/Al2O3, révèle une différence importante dans le comportement acido-basique, au sens de Lewis, de l'alumine pour de taux de recouvrement en PMMA variables. Il apparaît qu'il y a stabilisation des propriétés physico-chimiques de PMMA/Al2O3 pour un taux de recouvrement en PMMA supérieur à 50 %. Cette étude a montré également une influence importante de la tacticité du polymère sur le

  8. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  9. Role of inert gas additive on dry etch patterning of InGaP in planar inductively coupled BCl 3 plasmas

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Lim, W. T.; Baek, I. K.; Yoo, S. R.; Jeon, M. H.; Cho, G. S.; Pearton, S. J.; Abernathy, C. R.

    2004-01-01

    The dry etch characteristics of InGaP in BCl 3 planar inductively coupled plasmas (ICP) with additions of Ar or Ne were determined. The inert gas additive provided enhanced etch rates relative to pure BCl 3 and Ne addition in particular produced much higher etch rates at low ratios of BCl 3 in the mixture. The etched features tended to have sloped sidewalls and much rougher surfaces than for GaAs and AlGaAs etched under the same conditions. The practical effect of the Ar or Ne addition was the ability to operate the ICP source over a somewhat broader range of pressures and still maintain practical etch rates. The use of room temperature BCl 3-based etching in a planar ICP appears feasible for base and emitter mesa applications in InGaP/GaAs heterojunction bipolar transistors.

  10. Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part 1. GaAs and GaSb

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hahn, Y.B.; Hays, D.C.; Jung, K.B.; Pearton, S.J.; Shul, R.J.

    1998-12-23

    The role of the inert gas additive (He, Ar, Xe) to C12 Inductively Coupled Plasmas for dry etching of GaAs and GaSb was examined through the effect on etch rate, surface roughness and near-surface stoichiometry. The etch rates for both materials go through a maximum with Clz 0/0 in each type of discharge (C12/'He, C12/Ar, C12/Xc), reflecting the need to have efficient ion-assisted resorption of the etch products. Etch yields initially increase strongly with source power as the chlorine neutral density increases, but decrease again at high powers as the etching becomes reactant-limited. The etched surfaces are generally smoother with Ax or Xe addition, and maintain their stoichiometry.

  11. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  12. Effect of Alternate Supply of Shielding Gases of Tungsten Inert Gas Welding on Mechanical Properties of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shinde, Neelam Vilas; Telsang, Martand Tamanacharya

    2016-07-01

    In the present study, an attempt is made to study the effect of alternate supply of the shielding gas in comparison with the conventional method of TIG welding with pure argon gas. The two sets of combination are used as 10-10 and 40-20 s for alternate supply of the Argon and Helium shielding gas respectively. The effect of alternate supply of shielding gas is studied on the mechanical properties like bend test, tensile test and impact test. The full factorial experimental design is applied for three set of combinations. The ANOVA is used to find significant parameters for the process and regression analysis used to develop the mathematical model. The result shows that the alternate supply of the shielding gas for 10-10 s provides better result for the bend, tensile and impact test as compared with the conventional argon gas and the alternate supply of 40-20 s argon and helium gas respectively. Welding speed can be increased for alternate supply of the shielding gas that can reduce the total welding cost.

  13. 46 CFR 154.1848 - Inerting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF... that: (1) Hold and interbarrier spaces on a vessel with full secondary barriers are inerted so that the... interbarrier spaces contain only dry air or inert gas on: (i) A vessel with partial secondary barriers; (ii)...

  14. Development of traceable precision dynamic dilution method to generate dimethyl sulphide gas mixtures at sub-nanomole per mole levels for ambient measurement.

    PubMed

    Kim, Mi Eon; Kim, Yong Doo; Kang, Ji Hwan; Heo, Gwi Suk; Lee, Dong Soo; Lee, Sangil

    2016-04-01

    Dimethyl sulphide (DMS) is an important compound in global atmospheric chemistry and climate change. Traceable international standards are essential for measuring accurately the long-term global trend in ambient DMS. However, developing accurate gas standards for sub-nanomole per mole (nmol/mol) mole fractions of DMS in a cylinder is challenging, because DMS is reactive and unstable. In this study, a dynamic dilution method that is traceable and precise was developed to generate sub-nmol/mol DMS gas mixtures with a dynamic dilution system based on sonic nozzles and a long-term (>5 years) stable 10 μmol/mol parent DMS primary standard gas mixtures (PSMs). The dynamic dilution system was calibrated with traceable methane PSMs, and its estimated dilution factors were used to calculate the mole fractions of the dynamically generated DMS gas mixtures. A dynamically generated DMS gas mixture and a 6 nmol/mol DMS PSM were analysed against each other by gas chromatography with flame-ionisation detection (GC/FID) to evaluate the dilution system. The mole fractions of the dynamically generated DMS gas mixture determined against a DMS PSM and calculated with the dilution factor agreed within 1% at 6 nmol/mol. In addition, the dynamically generated DMS gas mixtures at various mole fractions between 0.4 and 11.7 nmol/mol were analysed by GC/FID and evaluated for their linearity. The analytically determined mole fractions showed good linearity with the mole fractions calculated with the dilution factors. Results showed that the dynamic dilution method generates DMS gas mixtures ranging between 0.4 nmol/mol and 12 nmol/mol with relative expanded uncertainties of less than 2%. Therefore, the newly developed dynamic dilution method is a promising reference method for generating sub-nmol/mol DMS gas standards for accurate ambient measurements.

  15. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  16. Continuous measurement of multiple inert and respiratory gas exchange in an anaesthetic breathing system by continuous indirect calorimetry.

    PubMed

    Stuart-Andrews, Christopher; Peyton, Philip; Humphries, Craig; Robinson, Gavin; Lithgow, Brian

    2009-02-01

    A method was tested which permits continuous monitoring from a breathing system of the rate of uptake of multiple gas species, such as occurs in patients during inhalational anaesthesia. The method is an indirect calorimetry technique which uses fresh gas rotameters for control, regulation and measurement of the gas flows into the system, with continuous sampling of mixed exhaust gas, and frequent automated recalibration to maintain accuracy. Its accuracy was tested in 16 patients undergoing pre-cardiopulmonary bypass coronary artery surgery, breathing mixtures of oxygen/air and sevoflurane with/without nitrous oxide, by comparison with the reverse Fick method. Overall mean bias [95% confidence interval (CI)] of rate of uptake was 17.9 [7.3 to 28.5] ml min(-1) for oxygen, 0.04 [-0.42 to 0.50] ml min(-1) for sevoflurane, 10.9 [-16.1 to 37.8] for CO(2), and 8.8 [-14.8 to 32.4] ml min(-1) for nitrous oxide where present. The method proved to be accurate and precise, and allows continuous monitoring of exchange of multiple gases using standard gas analysis devices.

  17. The relationship between inert gas wash-out and radioactive tracer microspheres in measurement of bone blood flow: effect of decreased arterial supply and venous congestion on bone blood flow in an animal model.

    PubMed

    Kiaer, T; Dahl, B; Lausten, G S

    1993-01-01

    Several methods have been employed in the study of bone perfusion. We used a method of determining inert gas wash-out by mass spectrometry in the study of blood flow rates in pigs. The method was validated by comparison of the result obtained with inert gas wash-out to that with measurement by microspheres. Furthermore, the effect of decreased inlet flow and venous congestion on the bone perfusion data was tested. The undisturbed bone blood flow was not significantly different when measured with wash-out of inert gas (7 +/- 0.7 ml/min/100 g) or with microspheres (9 +/- 2.9 ml/min/100 g), and the methods were correlated. Perfusion was reduced significantly, to 20% of the original value, after arterial occlusion. The changes in wash-out curves and accumulation of radioactive tracer provided substantial evidence for impaired intraosseous circulation following venous obstruction also. In conclusion, the study showed that this method of determining inert gas wash-out is feasible for studies of local perfusion rates in bone. The flow rates obtained by wash-out correlated well with the results of microsphere studies. In this animal model, both methods detected a fivefold reduction in flow rate after clamping of the arterial inflow. Obstruction of the venous outflow also impaired blood flow and lowered the cellular supply.

  18. Partial discharge and breakdown mechanisms in ultra-dilute SF6 and PFC gases mixed with N2 gas

    NASA Astrophysics Data System (ADS)

    Okubo, H.; Yamada, T.; Hatta, K.; Hayakawa, N.; Yuasa, S.; Okabe, S.

    2002-11-01

    Because of the high global warming potential of SF6 gas, research on alternative gases for electrical insulation with a lower environmental impact is essential. Gas mixtures composed of electronegative gases and N2 gas have the advantage of the reduction of the amount of SF6 gas and of utilizing the synergistic effect in electrical insulation performance. We investigated the partial discharge (PD) and breakdown (BD) characteristics of SF6/N2 and PFC (C3F8/N2 and C2F6/N2) gas mixtures under non-uniform electric field conditions, by changing the dilute content of electronegative gases. As a result, the synergistic effect in SF6/N2 gas mixtures was verified to be higher than that in PFC/N2 gas mixtures. The physical mechanism from PD inception to BD was discussed with consideration of the difference in electronegativity of SF6 and PFC gases. Furthermore, we found that PD inception and PD-to-BD mechanisms changed at a content of 10 ppm for SF6 due to the electron attachment activity of SF6 gas. The change in the PD and BD mechanisms in C3F8/N2 and C2F6/N2 gas mixtures appeared at 0.1% content for C3F8 and at 1% content for C2F6.

  19. Intraspecific variation in tracheal volume in the American locust, Schistocerca americana, measured by a new inert gas method.

    PubMed

    Lease, Hilary M; Wolf, Blair O; Harrison, Jon F

    2006-09-01

    The volume of a tracheal system influences breath-holding capacity and provides an index of an insect's investment in its respiratory system. Here, we describe a new, generally applicable method to measure tracheal volume that enables repeatable determinations on live animals. Animals are isolated in a closed chamber of a known volume and equilibrated with a helium:oxygen gas mixture. The chamber is then rapidly flushed with a nitrogen:oxygen gas mixture to eliminate the helium surrounding the animal, and sealed. After a period of time sufficient to allow equilibration of helium between tracheal system and chamber air, a gas sample is taken from the chamber, and tracheal volumes are calculated from the helium content of the sample, using a gas chromatograph. We show that relative investment in the tracheal system increases with age/size in the grasshopper; tracheal volume scales with mass to the power 1.3. This increased proportional investment in the tracheal system provides a mechanistic basis for the enhanced respiratory capacity of older grasshoppers. Tracheal volumes decrease strongly as grasshoppers grow within an instar stage, explaining reduced safety margins for oxygen delivery. Finally, tracheal volumes are smaller in gravid females than males, probably due to compression of air sacs by eggs.

  20. Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging.

    PubMed

    Li, Ying-Cheng; Hamashima, Toru; Yamazaki, Ryoko; Kobayashi, Tomohiro; Suzuki, Yuta; Mizuse, Kenta; Fujii, Asuka; Kuo, Jer-Lai

    2015-09-14

    The preferential hydrogen bond (H-bond) structures of protonated methanol clusters, H(+)(MeOH)n, in the size range of n = 4-8, were studied by size-selective infrared (IR) spectroscopy in conjunction with density functional theory calculations. The IR spectra of bare clusters were compared with those with the inert gas tagging by Ar, Ne, and N2, and remarkable changes in the isomer distribution with the tagging were found for clusters with n≥ 5. The temperature dependence of the isomer distribution of the clusters was calculated by the quantum harmonic superposition approach. The observed spectral changes with the tagging were well interpreted by the fall of the cluster temperature with the tagging, which causes the transfer of the isomer distribution from the open and flexible H-bond network types to the closed and rigid ones. Anomalous isomer distribution with the tagging, which has been recently found for protonated water clusters, was also found for H(+)(MeOH)5. The origin of the anomaly was examined by the experiments on its carrier gas dependence.

  1. Visualization of inert gas wash-out during high-frequency oscillatory ventilation using fluorine-19 MRI.

    PubMed

    Wolf, Ursula; Scholz, Alexander; Terekhov, Maxim; Koebrich, Rainer; David, Matthias; Schreiber, Laura Maria

    2010-11-01

    High-frequency oscillatory ventilation is looked upon as a lung-protective ventilation strategy. For a further clarification of the physical processes promoting gas transport, a visualization of gas flow and the distribution of ventilation are of considerable interest. Therefore, fluorine-19 magnetic resonance imaging of the imaging gas octafluorocyclobutane (C(4) F(8) ) during high-frequency oscillatory ventilation was performed in five healthy pigs. For that, a mutually compatible ventilation-imaging system was set up and transverse images were acquired every 5 sec using FLASH sequences on a 1.5 T scanner. Despite a drop in signal-to-noise ratio after the onset of high-frequency oscillatory ventilation, for each pig, the four experiments could be analyzed. A mean wash-out time (τ) at 5 Hz of 52.7 ± 18 sec and 125.9 ± 39 sec at 10 Hz, respectively, were found for regions of interest including the whole lung. This is in agreement with the clinical findings, in that wash-out of respiratory gases is significantly prolonged for increased high-frequency oscillatory ventilation frequencies. Our study could be a good starting-point for a further optimization of high-frequency oscillatory ventilation.

  2. Activity coefficients at infinite dilution of organic compounds in 1-(meth)acryloyloxyalkyl-3-methylimidazolium bromide using inverse gas chromatography.

    PubMed

    Mutelet, Fabrice; Jaubert, Jean-Noël; Rogalski, Marek; Harmand, Julie; Sindt, Michèle; Mieloszynski, Jean-Luc

    2008-03-27

    Activity coefficients at infinite dilution, gammainfinity, of organic compounds in two new room-temperature ionic liquids (n-methacryloyloxyhexyl-N-methylimidazolium bromide (C10H17O2MIM)(Br) at 313.15 and 323.15 K and n-acryloyloxypropyl-N-methylimidazolium bromide(C6H11O2MIM)(Br)) were determined using inverse gas chromatography. Phase loading studies of the net retention volume per gram of packing as a function of the percent phase loading were used to estimate the influence of concurrent retention mechanisms on the accuracy of activity coefficients at infinite dilution of solutes in both ionic liquids. It was found that most of the solutes were retained largely by partition with a small contribution from adsorption and that n-alkanes were retained predominantly by interfacial adsorption on ionic liquids studied in this work. The solvation characteristics of the two ionic liquids were evaluated using the Abraham solvation parameter model.

  3. Impact of growing environment on chickasaw blackberry (Rubus L.) aroma evaluated by gas chromatography olfactometry dilution analysis.

    PubMed

    Wang, Yuanyuan; Finn, Chad; Qian, Michael C

    2005-05-04

    The aroma extract of Chickasaw blackberry (Rubus L.) was separated with silica gel normal phase chromatography into six fractions. Gas chromatography-olfactometry (GCO) was performed on each fraction to identify aroma active compounds. Aroma extraction dilution analysis (AEDA) was employed to characterize the aroma profile of Chickasaw blackberries from two growing regions of the United States: Oregon and Arkansas. Comparative AEDA analysis showed that the berries grown in the two regions had similar aroma compositions; however, those odorants had various aroma impacts in each region. The compounds with high flavor dilution factors in Oregon's Chickasaw were ethyl butanoate, linalool, methional, trans,cis-2,6-nonadienal, cis-1,5-octadien-3-one, and 2,5-dimethyl-4-hydroxy-3(2H)-furanone, whereas in the Chickasaw grown in Arkansas, they were ethyl butanoate, linalool, methional, ethyl 2-methylbutanoate, beta-damascenone, and geraniol.

  4. Screening for key odorants in Moroccan green olives by gas chromatography-olfactometry/aroma extract dilution analysis.

    PubMed

    Iraqi, Rafika; Vermeulen, Catherine; Benzekri, Amale; Bouseta, Amina; Collin, Sonia

    2005-02-23

    "Spanish style" Moroccan green table olives were screened for potent odorants by gas chromatography-olfactometry/aroma extraction dilution analysis of a representative Likens-Nickerson extract. (Z)-3-Hexenal [flavor dilution factor (FD) = 256], (E,E)-2,4-decadienal (FD = 128), and (E,Z)-2,4-decadienal (FD = 64) were revealed to confer green and coriander/paraffin oil odors to both fruit and oil extracts, whereas guaiacol (FD = 128) imparted a bad olive, phenolic note. Methional (3-methylthiopropionaldehyde, FD = 128) and several terpenes (FD

  5. Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets

    NASA Astrophysics Data System (ADS)

    Scintilla, L. D.; Tricarico, L.

    2013-03-01

    The influence of processing parameters and laser source type on cutting edge quality of AZ31 magnesium alloy sheets and differences in cutting efficiency between fiber and CO2 lasers were studied. A first part of the cutting experiments compared a fiber and CO2 laser source when cutting 1 mm thick sheets in continuous wave mode and using Argon as an assist gas. The effects of cutting speed and assist gas pressure were investigated and optimal conditions were identified. In the second part of the experimental investigation, 3.3 mm thick sheets were cut using fiber laser. Focal position and cutting speed were varied in order to detect the optimal combination of processing parameters to obtain the best edge quality. For both sheet thicknesses investigated, surface roughness, dross height, and striation pattern inclination were measured. Cutting quality assessment and classification was carried out according to UNI EN ISO 9013 standard. Results showed that productivity, process efficiency and cutting edges quality obtained using fiber lasers outperform CO2 laser performances and therefore are considered suitable for application like sheet metal trimming.

  6. 10 cm x 10 cm Single Gas Electron Multiplier (GEM) X-ray Fluorescence Detector for Dilute Elements

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Seifu, D.

    2014-03-01

    We have built and tested a 10 cm × 10 cm single Gas Electron Multiplier (GEM) X-ray detector to probe dilute amounts of Fe in a prepared sample. The detector uses Argon/Carbon Dioxide (75/25) gas mixture flowing at a slow rate through a leak proof Plexi-glass enclosure held together by O-rings and screws. The Fluorescence X-ray emitted by the element under test is directed through a Mylar window into the drift region of the detector where abundant gas is flowing. The ionized electrons are separated, drifted into the high electric field of the GEM, and multiplied by impact ionization. The amplified negatively charged electrons are collected and further amplified by a Keithley amplifier to probe the absorption edge of the element under test using X-ray absorption spectroscopy technique. The results show that the GEM detector provided good results with less noise as compared with a Silicon drift detector (SDD).

  7. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance

    PubMed Central

    Wareham, Lauren K.; Begg, Ronald; Jesse, Helen E.; van Beilen, Johan W.A.; Ali, Salar; Svistunenko, Dimitri; McLean, Samantha; Hellingwerf, Klaas J.; Sanguinetti, Guido

    2016-01-01

    Abstract Aims: Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. Results: We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA—the response regulator—is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. Innovation: This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. Conclusion: This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013–1028. PMID:26907100

  8. Glottal jet inertance

    NASA Astrophysics Data System (ADS)

    Mphail, Michael; Krane, Michael

    2016-11-01

    Estimates of an inertive contribution of the glottal jet to glottal aerodynamic resistance is presented. Given that inertance of the flow in a constriction can be expressed in terms of the kinetic energy of the flow, and that a jet is a maximum kinetic energy flow pattern, it is argued that the glottal jet possesses its own inertance which is at least as large as that of the vocal tract. These arguments are supported by estimates of inertance obtained from simulations of an unsteady flow through an axisymmetric orifice, and of a compliant constriction with the approximate shape and mechanical properties of the vocal folds. It is further shown that the inertive effect of the glottal jet depends on the jet path and jet mixing, with a slowly diffusing, symmetric jet showing higher inertance than an asymmetric jet which rapidly mixes with supraglottal air. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  9. Inert electrode connection

    SciTech Connect

    Weyand, John D.; Woods, Robert W.; DeYoung, David H.; Ray, Siba P.

    1985-01-01

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000-20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1200.degree.-1500.degree. C.

  10. Inert electrode connection

    DOEpatents

    Weyand, J.D.; Woods, R.W.; DeYoung, D.H.; Ray, S.P.

    1985-02-19

    An inert electrode connection is disclosed wherein a layer of inert electrode material is bonded to a layer of conductive material by providing at least one intermediate layer of material therebetween comprising a predetermined ratio of inert material to conductive material. In a preferred embodiment, the connection is formed by placing in a die a layer of powdered inert material, at least one layer of a mixture of powdered inert material and conductive material, and a layer of powdered conductive material. The connection is then formed by pressing the material at 15,000--20,000 psi to form a powder compact and then densifying the powder compact in an inert or reducing atmosphere at a temperature of 1,200--1,500 C. 5 figs.

  11. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    NASA Astrophysics Data System (ADS)

    Matějíček, J.; Kavka, T.; Bertolissi, G.; Ctibor, P.; Vilémová, M.; Mušálek, R.; Nevrlá, B.

    2013-06-01

    Tungsten-based coatings have potential application in the plasma-facing components in future nuclear fusion reactors. By the combination of refractory tungsten with highly thermal conducting copper, or steel as a construction material, functionally graded coatings can be easily obtained by plasma spraying, and may result in the development of a material with favorable properties. During plasma spraying of these materials in the open atmosphere, oxidation is an important issue, which could have adverse effects on their properties. Among the means to control it is the application of inert gas shrouding, which forms the subject of this study and represents a lower-cost alternative to vacuum or low-pressure plasma spraying, potentially applicable also for spraying of large surfaces or spacious components. It is a continuation of recent studies focused on the effects of various parameters of the hybrid water-argon torch on the in-flight behavior of copper and tungsten powders and the resultant coatings. In the current study, argon shrouding with various configurations of the shroud was applied. The effects of torch parameters, such as power and argon flow rate, and powder morphology were also investigated. Their influence on the particle in-flight behavior as well as the structure, composition and properties of the coatings were quantified. With the help of auxiliary calculations, the mass changes of the powder particles, associated with oxidation and evaporation, were assessed.

  12. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates

    SciTech Connect

    Min Dong; Shen Jun; Lai Shiqiang; Chen Jie

    2009-12-15

    In this paper, the effects of heat input on the microstructures and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates were investigated by microstructural observations, microhardness tests and tensile tests. The results show that with an increase of the heat input, the grains both in the fusion zone and the heat-affected zone coarsen and the width of the heat-affected zone increased. Moreover, an increase of the heat input resulted in a decrease of the continuous {beta}-Mg{sub 17}Al{sub 12} phase and an increase of the granular {beta}-Mg{sub 17}Al{sub 12} phase in both the fusion zone and the heat-affected zone. The ultimate tensile strength of the welded joint increased with an increase of the heat input, while, too high a heat input resulted in a decrease of the ultimate tensile strength of the welded joint. In addition, the average microhardness of the heat-affected zone and fusion zone decreased sharply with an increase of the heat input and then decreased slowly at a relatively high heat input.

  13. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  14. Tungsten Inert Gas and Friction Stir Welding Characteristics of 4-mm-Thick 2219-T87 Plates at Room Temperature and -196 °C

    NASA Astrophysics Data System (ADS)

    Lei, Xuefeng; Deng, Ying; Yin, Zhimin; Xu, Guofu

    2014-06-01

    2219-T87 aluminum alloy is widely used for fabricating liquid rocket propellant storage tank, due to its admirable cryogenic property. Welding is the dominant joining method in the manufacturing process of aerospace components. In this study, the tungsten inert gas welding and friction stir welding (FSW) characteristics of 4-mm-thick 2219-T87 alloy plate at room temperature (25 °C) and deep cryogenic temperature (-196 °C) were investigated by property measurements and microscopy methods. The studied 2219 base alloy exhibits a low strength plane anisotropy and excellent room temperature and cryogenic mechanical properties. The ultimate tensile strength values of TIG and FSW welding joints can reach 265 and 353 MPa at room temperature, and 342 and 438 MPa at -196 °C, respectively. The base metal consists of elongated deformed grains and many nano-scaled θ (Al2Cu) aging precipitates. Fusion zone and heat-affected zone (HAZ) of the TIG joint are characterized by coarsening dendritic grains and equiaxed recrystallized grains, respectively. The FSW-welded joint consists of the weld nugget zone, thermo-mechanically affected zone (TMAZ), and HAZ. In the weld nugget zone, a micro-scaled sub-grain structure is the main microstructure characteristic. The TMAZ and HAZ are both characterized by coarsened aging precipitates and elongated deformed grains. The excellent FSW welding properties are attributed to the preservation of the working structures and homogenous chemical compositions.

  15. Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Asimellis, George; Hamilton, Stephen; Giannoudakos, Aggelos; Kompitsas, Michael

    2005-08-01

    Efficient quantitative detection for halogens is necessary in a wide range of applications, ranging from pharmaceutical products to air polluting hazardous gases or organic compounds used as chemical weapons. Detection of the non-metallic elements such as fluorine (F) and chlorine (Cl) presents particular difficulty, because strong emission lines originating from their resonance states lie in the VUV spectral range (110-190 nm). In the present work we detect F and Cl in the upper visible and in the near IR (650-850 nm) under controlled inert gas ambient atmosphere. Investigation of the controlled atmosphere effects suggests that there exists an optimum pressure range that optimizes signal strength and quality. Ablation and ionization were achieved with a UV laser at 355 nm, and a gated GaAs photocathode-based detector was used for detection with quantum efficiency in the range of 20% in the wavelengths of interest. Our results indicate that our approach provides quantitative detection with linearity over at least two orders of magnitude that is achieved without the need for Internal Standardization Method, and improved limits of detection. In particular, fluorine has been detected for concentration values down to 0.03 wt.% Definite spectral assignment revealing all major emission lines centered around 837 nm for F and 687 nm for Cl has been obtained for the first time in Laser-induced breakdown spectroscopy application.

  16. Structural characterization and X-ray analysis by Williamson-Hall method for Erbium doped Aluminum Nitride nanoparticles, synthesized using inert gas condensation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Sneha G.; Corbett, Joseph P.; Jadwisienczak, Wojciech M.; Kordesch, Martin E.

    2016-05-01

    We have synthesized AlN nanoparticles (NPs) doped in-situ with Er (AlN:Er) using inert gas condensation technique. Using x-ray diffraction (XRD) peak broadening analysis with the Williamson-Hall (W-H) Uniform Deformation Model (UDM) the crystallite size of the NPs and the strain in NPs were found to be 80±38 nm and 3.07×10-3±0.9×10-3 respectively. In comparison, using the Debye-Scherrer's (DS) formula, we have inferred that the crystallite size of the NPs was 23±6 nm and the average strain was 4.3×10-3±0.4×10-3. The scanning electron microscopy images show that the NPs are spherical and have an average diameter of ∼300 nm. The crystallite size is smaller than the size of the NPs revealing their polycrystalline behavior. In addition, the NPs strain, stress and energy density were also calculated using W-H analysis combined with the Uniform Deformation Stress Model (UDSM) and the Uniform Deformation Energy Density Model (UDEDM). Suggested by the spherical geometry and polycrystalline nature of the AlN NPs, the strain computed from UDM, UDSM and UDEDM were in agreement confirming an isotropic mechanical nature of the particle. Luminescence measurements revealed the temperature dependence of the optical emission of the Er3+ ions, confirming the use of AlN:Er NPs for nano-scale temperature sensing.

  17. Ab initio potential energy surface for the carbon dioxide molecule pair and thermophysical properties of dilute carbon dioxide gas

    NASA Astrophysics Data System (ADS)

    Hellmann, Robert

    2014-10-01

    A four-dimensional intermolecular potential energy surface (PES) for two rigid carbon dioxide molecules was determined from quantum-chemical ab initio calculations. Interaction energies for 1229 CO2-CO2 configurations were computed at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. An analytical site-site potential function with seven sites per CO2 molecule was fitted to the interaction energies. The PES was validated by calculating the second virial coefficient as well as viscosity and thermal conductivity in the dilute-gas limit.

  18. Quantitation of organophosphorus nerve agent metabolites in human urine using isotope dilution gas chromatography-tandem mass spectrometry.

    PubMed

    Driskell, W Jack; Shih, Ming; Needham, Larry L; Barr, Dana B

    2002-01-01

    An isotope dilution gas chromatography-tandem mass spectrometric (GC-MS-MS) method was developed for quantitating the urinary metabolites of the organophosphorus nerve agents sarin, soman, tabun (GA), VX, and GF. Urine samples were concentrated by codistillation with acetonitrile, derivatized by methylation with diazomethane, and analyzed by GC-MS-MS. The limits of detection were less than 4 microg/L for all the analytes except for the GA metabolite, which had a limit of detection of less than 20 microg/L.

  19. Gas chromatographic measurements of activity coefficients at infinite dilution for refrigerants with a polyol ester oil as a stationary phase

    SciTech Connect

    Stryjek, R.; Bobbo, S.; Camporese, R.; Zilio, C.

    1999-05-01

    Activity coefficients at infinite dilution have been measured by gas chromatography for 14 refrigerants (R12, R22, R32, R124, R125, R134a, R142b, R143a, RE170, R236ea, R290, R600, R600a, and R236fa) as solutes, using a polyol ester oil (POE), EMKARATE by ICI, as a stationary phase (solvent). Instrumental analysis (NMR, IR) showed that the main components of the oil are pentaerithritol esters of carboxylic acids, and electrospray ionization spectrometry revealed an average molecular mass of the POE of 618 g/mol. The measurements were performed within a temperature range of 244 K to 313 K, but a specific temperature range for each refrigerant was adopted depending on its retention data. The experimental findings are well-represented by the equation: ln {gamma}{sub i}{sup {infinity}} = a{sub i} {minus} b{sub i}/T. Some refrigerants, i.e., R22, R124, R125, R236ea, and R236fa, show quite a considerable positive temperature dependence of their activity coefficients at infinite dilution, which can be attributed to hydrogen bonding with the POE, unlike other refrigerants that show a small, either positive or negative temperature dependence. To the authors` knowledge, there are no data in the literature on activity coefficients at infinite dilution for refrigerant and oil (lubricant) systems, and details on the solubility of refrigerants in oils are also extremely scarce.

  20. Measurement of Pyrethroid, Organophosphorus, and Carbamate Insecticides in Human Plasma using Isotope Dilution Gas Chromatography-High Resolution Mass Spectrometry

    PubMed Central

    Pérez, José J.; Williams, Megan K.; Weerasekera, Gayanga; Smith, Kimberly; Whyatt, Robin M.; Needham, Larry L.; Barr, Dana Boyd

    2010-01-01

    We have developed a gas chromatography-high resolution mass spectrometry method for measuring pyrethroid, organophosphorus, carbamate and fipronil pesticides and the synergist piperonyl butoxide in human plasma. Plasma samples were extracted using solid phase extraction and were then concentrated for injection and analysis using isotope dilution gas chromatography-high resolution mass spectrometry. The limits of detection ranged from 10 to 158 pg/mL with relative recoveries at concentrations near the LODs (e.g., 25 or 250 pg/mL) ranging from 87% to 156% (9 of the 16 compounds were withing ± 15% of 100%). The extraction recoveries ranged from 20% to 98% and the overall method relative standard deviations were typically less than 20% with some exceptions. Analytical characteristics were determined at 25, 250, and 1000 pg/mL. PMID:20434413

  1. Thermodynamics and renormalized quasiparticles in the vicinity of the dilute Bose gas quantum critical point in two dimensions

    NASA Astrophysics Data System (ADS)

    Krieg, Jan; Strassel, Dominik; Streib, Simon; Eggert, Sebastian; Kopietz, Peter

    2017-01-01

    We use the functional renormalization group (FRG) to derive analytical expressions for thermodynamic observables (density, pressure, entropy, and compressibility) as well as for single-particle properties (wave-function renormalization and effective mass) of interacting bosons in two dimensions as a function of temperature T and chemical potential μ . We focus on the quantum disordered and the quantum critical regime close to the dilute Bose gas quantum critical point. Our approach is based on a truncated vertex expansion of the hierarchy of FRG flow equations and the decoupling of the two-body contact interaction in the particle-particle channel using a suitable Hubbard-Stratonovich transformation. Our analytic FRG results extend previous analytical renormalization-group calculations for thermodynamic observables at μ =0 to finite values of μ . To confirm the validity of our FRG approach, we have also performed quantum Monte Carlo simulations to obtain the magnetization, susceptibility, and correlation length of the two-dimensional spin-1 /2 quantum X Y model with coupling J in a regime where its quantum critical behavior is controlled by the dilute Bose gas quantum critical point. We find that our analytical results describe the Monte Carlo data for μ ≤0 rather accurately up to relatively high temperatures T ≲0.1 J .

  2. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising.

  3. Efficient gas-separation process to upgrade dilute methane stream for use as fuel

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Lin, Haiqing [Mountain View, CA; Thompson, Scott [Brecksville, OH; Daniels, Ramin [San Jose, CA

    2012-03-06

    A membrane-based gas separation process for treating gas streams that contain methane in low concentrations. The invention involves flowing the stream to be treated across the feed side of a membrane and flowing a sweep gas stream, usually air, across the permeate side. Carbon dioxide permeates the membrane preferentially and is picked up in the sweep air stream on the permeate side; oxygen permeates in the other direction and is picked up in the methane-containing stream. The resulting residue stream is enriched in methane as well as oxygen and has an EMC value enabling it to be either flared or combusted by mixing with ordinary air.

  4. Inert gas ion thruster development

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1980-01-01

    Two 12 cm magneto-electrostatic containment (MESC) ion thrusters were performance mapped with argon and xenon. The first, hexagonal, thruster produced optimized performance of 48.5to 79 percent argon mass utilization efficiencies at discharge energies of 240 to 425 eV/ion, respectively, Xenon mass utilization efficiencies of 78 to 95 percent were observed at discharge energies of 220 to 290 eV/ion with the same optimized hexagonal thruster. Changes to the cathode baffle reduced the discharge anode potential during xenon operation from approximately 40 volts to about 30 volts. Preliminary tests conducted with the second, hemispherical, MESC thruster showed a nonuniform anode magnetic field adversely affected thruster performance. This performance degradation was partially overcome by changes in the boundary anode placement. Conclusions drawn the hemispherical thruster tests gave insights into the plasma processes in the MESC discharge that will aid in the design of future thrusters.

  5. Large inert-gas thrusters

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    Using present technology as a starting point, performance predictions were made for large thrusters. The optimum beam diameter for maximum thruster efficiency was determined for a range of specific impulse. This optimum beam diameter varied greatly with specific impulse, from about 0.6 m at 3000 seconds (and below) to about 4 m at 10,000 seconds with argon, and from about 0.6 m at 2,000 seconds (and below) to about 12 m at 10,000 seconds with Xe. These beams sizes would require much larger thrusters than those presently available, but would offer substantial complexity and cost reductions for large electric propulsion systems.

  6. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  7. Stable isotope dilution gas chromatography-mass spectrometry for quantification of thymoquinone in black cumin seed oil.

    PubMed

    Johnson-Ajinwo, Okiemute Rosa; Li, Wen-Wu

    2014-06-18

    Black cumin seed (Nigella sativa L.) is a widely used spice and herb, where thymoquinone (2-isopropyl-5-methyl-1,4-benzoquinone) is the major bioactive compound. Here, a stable isotope dilution (SID) gas chromatography-mass spectrometry (GC-MS) technique was developed for the quantification of thymoquinone. A doubly deuterated thymoquinone ([(2)H2]-thymoquinone) was synthesized for the first time with more than 93% deuteration degree shown by mass spectrometry and proton nuclear magnetic resonance ((1)H NMR). This compound was used as an internal standard for the quantification of thymoquinone using a SID GC-MS method. The validation experiment showed a recovery rate of 99.1 ± 1.1% relative standard deviation (RSD). Standard addition and external calibration methods have also been used to quantify thymoquinone, which cross-validated the developed stable isotope dilution assay (SIDA). In comparison to external calibration and standard addition methods, the SIDA method is robust and accurate. The concentration of thymoquinone in five marketed black cumin seed oils ranged between 3.34 and 10.8 mg/mL by use of SID GC-MS.

  8. Determination of benzene in soft drinks and other beverages by isotope dilution headspace gas chromatography/mass spectrometry.

    PubMed

    Cao, Xu-Liang; Casey, Valerie; Seaman, Steve; Tague, Brett; Becalski, Adam

    2007-01-01

    An automated, simple, and reproducible method was developed for the determination of benzene in soft drinks, based on isotope dilution headspace gas chromatography/mass spectrometry in the selected-ion monitoring mode. The method was used to assess benzene levels in samples of 124 soft drinks and beverages. Benzene was not detected in 60% of the 124 products. The average benzene levels in 6 products exceeded the Canadian maximum acceptable concentration of 5 microg/L for benzene in drinking water, and 2 of the 6 products had benzene levels above the World Health Organization guideline of 10 microg/L. The highest level of benzene, 23 microg/L, was found in a soft drink product specifically marketed to children.

  9. Simultaneous determination of alachlor, metolachlor, atrazine, and simazine in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Huang, L.Q.

    1989-03-01

    A multiresidue method was developed for the simultaneous determination of low parts per billion (ppb) concentrations of the herbicides alachlor, metolachlor, atrazine, and simazine in water and soil using isotope dilution gas chromatography/mass spectrometry (GC/MS). Known amounts of /sup 15/N,/sup 13/C-alachlor and /sup 2/H/sub 5/-atrazine were added to each sample as internal standards. The samples were then prepared by a solid phase extraction with no further cleanup. A high resolution GC/low resolution MS system with data acquisition in selected ion monitoring mode was used to quantitate herbicides in the extract. The limit of detection was 0.05 ppb for water and 0.5 ppb for soil. Accuracy greater than 80% and precision better than 4% was demonstrated with spiked samples.

  10. Hot nanoindentation in inert environments

    NASA Astrophysics Data System (ADS)

    Trenkle, Jonathan C.; Packard, Corinne E.; Schuh, Christopher A.

    2010-07-01

    An instrument capable of performing nanoindentation at temperatures up to 500 °C in inert atmospheres, including partial vacuum and gas near atmospheric pressures, is described. Technical issues associated with the technique (such as drift and noise) and the instrument (such as tip erosion and radiative heating of the transducer) are identified and addressed. Based on these considerations, preferred operation conditions are identified for testing on various materials. As a proof-of-concept demonstration, the hardness and elastic modulus of three materials are measured: fused silica (nonoxidizing), aluminum, and copper (both oxidizing). In all cases, the properties match reasonably well with published data acquired by more conventional test methods.

  11. Electron clusters in inert gases.

    PubMed

    Nazin, S; Shikin, V

    2008-10-17

    This Letter addresses the counterintuitive behavior of electrons injected into dense cryogenic media with negative scattering length L. Instead of strongly reduced mobility at all but the lowest densities due to the polaronic effect involving the formation of density enhancement clusters (expected in the theory with a simple gas-electron interaction successfully applied earlier to electrons in helium where L>0) which should substantially decrease the electron mobility, an opposite picture is observed: with increasing |L| (the trend taking place for inert gases with the growth of atomic number) and the gas density, the electrons remain practically free. An explanation of this behavior is provided based on consistent accounting for the nonlinearity of the electron interaction with the gaseous medium in the gas atom number density.

  12. Emergence of an excitonic collective mode in the dilute electron gas

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami

    2016-12-01

    By comparing two expressions for the polarization function Π (q ,i ω ) given in terms of two different local-field factors, G+(q ,i ω ) and Gs(q ,i ω ) , we have derived the kinetic-energy-fluctuation (or sixth-power) sum rule for the momentum distribution function n (p ) in the three-dimensional electron gas. With use of this sum rule, together with the total-number (or second-power) and the kinetic-energy (or fourth-power) sum rules, we have obtained n (p ) in the low-density electron gas at negative compressibility (namely, rs>5.25 with rs being the conventional density parameter) up to rs≈22 by improving on the interpolation scheme due to Gori-Giorge and Ziesche proposed in 2002. The obtained results for n (p ) combined with the improved form for Gs(q ,ω +i 0+) are employed to calculate the dynamical structure factor S (q ,ω ) to reveal that a giant peak, even bigger than the plasmon peak, originating from an excitonic collective mode made of electron-hole pair excitations, emerges in the low-ω region at |q | near 2 pF (pF: the Fermi wave number). Connected with this mode, we have discovered a singular point in the retarded dielectric function at ω =0 and |q | ≈2 pF .

  13. Contribution of Liquid/Gas Mass-Transfer Limitations to Dissolved Methane Oversaturation in Anaerobic Treatment of Dilute Wastewater.

    PubMed

    Yeo, Hyeongu; An, Junyeong; Reid, Robertson; Rittmann, Bruce E; Lee, Hyung-Sool

    2015-09-01

    The mechanisms controlling the accumulation of dissolved methane in anaerobic membrane bioreactors (AnMBRs) treating a synthetic dilute wastewater (a glucose medium) were assessed experimentally and theoretically. The AnMBR was maintained at a temperature of 24-26 °C as the organic loading rate increased from 0.39 to 1.1 kg COD/m(3)-d. The measured concentration of dissolved methane was consistently 2.2- to 2.5-fold larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH4 partial pressure, and the fraction of dissolved methane was as high as 76% of the total methane produced. The low gas production rate in the AnMBR significantly slowed the mass transport of dissolved methane to the gas phase. Although the production rate of total methane increased linearly with the COD loading rate, the concentration of dissolved methane only slightly increased with an increasing organic loading rate, because the mass-transfer rate increased by almost 5-fold as the COD loading increased from 0.39 to 1.1 kg COD/m(3)-d. Thus, slow mass transport kinetics exacerbated the situation in which dissolved methane accounted for a substantial fraction of the total methane generated from the AnMBR.

  14. Methanol Droplet Combustion in Oxygen-Inert Environments in Microgravity

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Hicks, Michael C.; Williams, Forman A.

    2013-01-01

    The Flame Extinguishment (FLEX) experiment that is currently underway in the Combustion Integrated Rack facility onboard the International Space Station is aimed at understanding the effects of inert diluents on the flammability of condensed phase fuels. To this end, droplets of various fuels, including alkanes and alcohols, are burned in a quiescent microgravity environment with varying amounts of oxygen and inert diluents to determine the limiting oxygen index (LOI) for these fuels. In this study we report experimental observations of methanol droplets burning in oxygen-nitrogen-carbon dioxide and oxygen-nitrogen-helium gas mixtures at 0.7 and 1 atmospheric pressures. The initial droplet size varied between approximately 1.5 mm and 4 mm to capture both diffusive extinction brought about by insufficient residence time at the flame and radiative extinction caused by excessive heat loss from the flame zone. The ambient oxygen concentration varied from a high value of 30% by volume to as low as 12%, approaching the limiting oxygen index for the fuel. The inert dilution by carbon dioxide and helium varied over a range of 0% to 70% by volume. In these experiments, both freely floated and tethered droplets were ignited using symmetrically opposed hot-wire igniters and the burning histories were recorded onboard using digital cameras, downlinked later to the ground for analysis. The digital images yielded droplet and flame diameters as functions of time and subsequently droplet burning rate, flame standoff ratio, and initial and extinction droplet diameters. Simplified theoretical models correlate the measured burning rate constant and the flame standoff ratio reasonably well. An activation energy asymptotic theory accounting for time-dependent water dissolution or evaporation from the droplet is shown to predict the measured diffusive extinction conditions well. The experiments also show that the limiting oxygen index for methanol in these diluent gases is around 12% to

  15. Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography.

    PubMed

    Kozłowska, Marta Karolina; Domańska, Urszula; Lempert, Małgorzata; Rogalski, Marek

    2005-03-18

    The partial molar volumes, V1(M), and the molar volume of isotactic crystalline low-molecular-weight poly(1-butene), iPBu-1, V1, have been calculated from the measured density of {iPBu-1 + solvent (n-hexane, n-heptane, n-nonane, n-decane, p-xylene, cyclohexane and chloroform)} systems. Some of the thermodynamic quantities were also obtained for the iPBu-1 with eight hydrocarbons (n-octane, n-decane, n-undecane, n-dodecane, n-tridecane, o-xylene, m-xylene, p-xylene) by the method of inverse gas chromatography at various temperatures. The weight fraction activity coefficients of the solvent at infinite dilution, omega2(infinity) and the Flory-Huggins thermodynamic interaction parameters, chi21(infinity), between polymer and solvents were determined. The partial molar free energy, deltaG2(infinity), the partial molar heat of mixing, deltaH2(infinity), at infinite dilution and the polymer solubility parameter, delta1, were calculated. Additionally, the (solid + liquid) binary mixtures equilibria, SLE, of iPBu-1 with three hydrocarbons (n-octane, n-decane and m-xylene) were studied by a dynamic method. By performing these experiments over a large concentration range, the T-x phase diagrams of the polymer-solvent systems were constructed. The excess Gibbs energy models were used to describe the nonideal behaviour of the liquid phase. The omega2(infinity) were determined from the solubility measurements and were predicted by using the UNIFAC FV model.

  16. Density fluctuation dynamics in a dissipative self-gravitating dilute gas revisited

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; García-Perciante, A. L.

    2016-11-01

    The analysis of the behavior of density fluctuations in a dissipative self gravitating gas in the linear regime is revisited. A factorization for the dispersion relation given by approximate roots is proposed, which is analogous to the one introduced in the case without gravitational field. The threshold for the onset of a gravitational instability, namely Jeans wavenumber, is found to be unaltered by the presence of thermal and viscous dissipation. However, the behavior of damped modes does not correspond to the usual Rayleigh-Brillouin spectrum when the gravitational field is taken into account. Additional to the usual central Rayleigh peak and Brillouin doublet, both corrected due to the presence of the field, non-Lorentizan terms are included in the structure factor. These terms are larger in the presence of the gravitational field and may lead in principle to relevant differences in the general properties of the spectrum. The possible mathematical origin of these modifications is briefly discussed.

  17. Activity Coefficients at Infinite Dilution of Organic Compounds in Trihexyl(tetradecyl)phophonium Bis(trifluoromethylsulfonyl)imide Using Inverse Gas Chromatography

    SciTech Connect

    Revelli, Anne-Laure; Sprunger, Laura; Gibbs, Jennifer; Acree, William; Baker, Gary A; Mutelet, Fabrice

    2009-01-01

    Activity coefficients at infinite dilution of organic compounds in the ionic liquid (IL) trihexyl(tetradecyl) phosphonium bis(trifluoromethylsulfonyl)imide were determined using inverse gas chromatography at three temperatures, T ) (302.45, 322.35, and 342.45) K. Linear free energy relationship (LFER) correlations have been obtained for describing the gas-to-IL and water-to-IL partition coefficients.

  18. Ultra-cold dilute gas Bose-Fermi mixture with ^87Rb and ^40K

    NASA Astrophysics Data System (ADS)

    Goldwin, J.; Olsen, M. L.; Inouye, S.; Jin, D. S.

    2003-05-01

    Sympathetic cooling experiments with Bose-Fermi mixtures offer a way to cool Fermi gases to quantum degeneracy with relatively little loss in atom number, as well as offering interesting new systems for study with the control and precision typical of atomic physics experiments. Here we report on the sympathetic cooling of fermionic ^40K with bosonic ^87Rb. We first trap and cool ^87Rb atoms in a two-species MOT together with ^40K. After loading into a purely magnetic quadrupole configuration trap, the gas is transferred mechanically nearly a meter to a Ioffe-Pritchard type magnetic trap in an ultra-high vacuum cell. radio-frequency induced evaporation of the ^87Rb atoms results in pure Bose-Einstein condensates of ˜ 2× 10^5 atoms. In the process ^40K atoms are cooled by virtue of thermal contact with the ^87Rb reservoir resulting in cooling of ^40K, with ˜ 1 × 10^4 atoms at temperatures below 100 nK. We present results from the experiment demonstrating the efficiency of the cooling, and describe ongoing investigations into the limits of the cooling and the strong inter-species interactions in the mixture. Finally, future directions for the experiment are discussed.

  19. Molecular simulation study of the surface barrier effect. Dilute gas limit

    SciTech Connect

    Ford, D.M.; Glandt, E.D.

    1995-07-20

    The mass transfer resistance associated with penetrating the mouth of a very small pore is evaluated using classical molecular dynamics simulation techniques. The effects of temperature, pore size, and thermal motion of the adsorbent atoms are studied for a slit pore mouth model. Adsorption followed by surface diffusion to the pore mouth makes a significant contribution to the mass transfer when the temperature is low or, equivalently, when the adsorptive potential is strong. Thermal vibrations of the adsorbent atoms have little effect on the adsorption/surface diffusion mechanisms but cause fluctuations in the effective pore mouth area which can significantly affect transport rates. Perhaps the most important observation is that when the pore size approaches the kinetic diameter of the gas molecules, changes of a few percent in the pore size cause order-of-magnitude changes in the resistance. Therefore, it is possible that the surface barrier effect observed in zeolites and carbon molecular sieves is governed by highly localized (single atomic layer) structural details. 19 refs., 7 figs., 1 tab.

  20. 46 CFR 154.1848 - Inerting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... oxygen concentration is 8 percent or less by volume when flammable cargoes are carried; (2) Hold and... tanks are to be filled with a flammable cargo, air is purged from the tank by inert gas until the oxygen concentration in the tank is 8 percent or less by volume before cargo liquid or vapor is introduced. (b)...

  1. 46 CFR 154.1848 - Inerting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... oxygen concentration is 8 percent or less by volume when flammable cargoes are carried; (2) Hold and... tanks are to be filled with a flammable cargo, air is purged from the tank by inert gas until the oxygen concentration in the tank is 8 percent or less by volume before cargo liquid or vapor is introduced. (b)...

  2. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the amount of propellant which can be brought from earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in situ resource. CO2, N2 and Ar are constituents of the Martian atmosphere which are available at every point on the Martian surface and could be produced by a very simple processing technique, consisting essentially of compressing the atmosphere. The effect of inert gas injection on rocket engine performance was analyzed with a numerical code calculating chemical equilibrium in the engine, for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in LEO could be decreased using inert propellant injection.

  3. Effect of inert propellant injection on Mars ascent vehicle performance

    NASA Technical Reports Server (NTRS)

    Colvin, James E.; Landis, Geoffrey A.

    1992-01-01

    A Mars ascent vehicle is limited in performance by the propellant which can be brought from Earth. In some cases the vehicle performance can be improved by injecting inert gas into the engine, if the inert gas is available as an in-situ resource and does not have to be brought from Earth. Carbon dioxide, nitrogen, and argon are constituents of the Martian atmosphere which could be separated by compressing the atmosphere, without any chemical processing step. The effect of inert gas injection on rocket engine performance was analyzed with a numerical combustion code that calculated chemical equilibrium for engines of varying combustion chamber pressure, expansion ratio, oxidizer/fuel ratio, and inert injection fraction. Results of this analysis were applied to several candidate missions to determine how the required mass of return propellant needed in low Earth orbit could be decreased using inert propellant injection.

  4. Inert Anode Report

    SciTech Connect

    none,

    1999-07-01

    This ASME report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issues associated with these technologies from a technical, environmental, and economic viewpoint.

  5. Dilution and permeation standards for the generation of NO, NO2 and SO2 calibration gas mixtures

    NASA Astrophysics Data System (ADS)

    Haerri, H.-P.; Macé, T.; Waldén, J.; Pascale, C.; Niederhauser, B.; Wirtz, K.; Stovcik, V.; Sutour, C.; Couette, J.; Waldén, T.

    2017-03-01

    The evaluation results of the metrological performance of a dilution and a permeation standard for generating SI-traceable calibration gas mixtures of NO, SO2 and NO2 for ambient air measurements are presented. The composition of the in situ produced reference gas mixtures is calculated from the instantaneous values of the input quantities of the generating standards. In a measurement comparison, the calibration and measurement capabilities of five laboratories were evaluated for the three analytes at limiting amount of substance fractions in ambient air between 20 and 150 nmol mol-1. For the upper generated reference values the target relative uncertainties of  ⩽2% (for NO and SO2) and  ⩽3% (for NO2) for evaluating the laboratory results were fulfilled in 12 out of 13 cases. For the analytical results seven out of nine laboratories met the criteria for the upper values for NO and NO2, for SO2 it was one out of four. From the negative degrees of equivalence of all NO2 comparison results it was supposed that the permeation rate of NO2 through the FEP polymer membrane of the permeator was different in air and N2. Subsequent precision permeation measurements with various carrier gases revealed that the permeation rate of NO2 was  ≈0.8% lower in synthetic air compared to N2. With the corrected NO2 reference values for air the degrees of equivalence of the laboratory results were improved and closer to be symmetrically distributed.

  6. A new apparatus for studies of quantized vortex dynamics in dilute-gas Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Newman, Zachary L.

    The presence of quantized vortices and a high level of control over trap geometries and other system parameters make dilute-gas Bose-Einstein condensates (BECs) a natural environment for studies of vortex dynamics and quantum turbulence in superfluids, primary interests of the BEC group at the University of Arizona. Such research may lead to deeper understanding of the nature of quantum fluid dynamics and far-from-equilbrium phenomena. Despite the importance of quantized vortex dynamics in the fields of superfluidity, superconductivity and quantum turbulence, direct imaging of vortices in trapped BECs remains a significant technical challenge. This is primarily due to the small size of the vortex core in a trapped gas, which is typically a few hundred nanometers in diameter. In this dissertation I present the design and construction of a new 87Rb BEC apparatus with the goal of studying vortex dynamics in trapped BECs. The heart of the apparatus is a compact vacuum chamber with a custom, all-glass science cell designed to accommodate the use of commercial high-numerical-aperture microscope objectives for in situ imaging of vortices. The designs for the new system are, in part, based on prior work in our group on in situ imaging of vortices. Here I review aspects of our prior work and discuss some of the successes and limitations that are relevant to the new apparatus. The bulk of the thesis is used to described the major subsystems of the new apparatus which include the vacuum chamber, the laser systems, the magnetic transfer system and the final magnetic trap for the atoms. Finally, I demonstrate the creation of a BEC of ˜ 2 x 106 87Rb atoms in our new system and show that the BEC can be transferred into a weak, spherical, magnetic trap with a well defined magnetic field axis that may be useful for future vortex imaging studies.

  7. Method of producing hydrogen, and rendering a contaminated biomass inert

    DOEpatents

    Bingham, Dennis N [Idaho Falls, ID; Klingler, Kerry M [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID

    2010-02-23

    A method for rendering a contaminated biomass inert includes providing a first composition, providing a second composition, reacting the first and second compositions together to form an alkaline hydroxide, providing a contaminated biomass feedstock and reacting the alkaline hydroxide with the contaminated biomass feedstock to render the contaminated biomass feedstock inert and further producing hydrogen gas, and a byproduct that includes the first composition.

  8. Inert Ingredients Overview and Guidance

    EPA Pesticide Factsheets

    This Web page provides information on inert ingredients approved for use in pesticide products and the guidance documents that are available to assist in obtaining approval for a new inert ingredient.

  9. Inert gases in Sea of Fertility regolith

    NASA Technical Reports Server (NTRS)

    Vinogradov, A. P.; Zadorozhnyy, I. K.

    1974-01-01

    The content and isotopic composition were studied of inert gases -- He, Ne, Ar, Kr, and Xe -- in samples of lunar regolith returned by the Luna 16 automatic station. The samples were taken from depths of about 12 and 30 cm. The high concentrations of inert gases exceed by several orders their concentrations observed in ordinary stony meteorites. The gases in lunar regolith were a complex mixture of gases of different origins: Solar, cosmogenic, radiogenic, and so on. Solar wind gases predominated, distributed in the thin surficial layer of the regolith grains. The concentrations of these gases in the surficial layer is several cubic centimeters per gram. The isotopic composition of the inert gases of solar origin approaches their composition measured in gas-rich meteorites.

  10. Diagnosis of inborn errors of metabolism using filter paper urine, urease treatment, isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Kuhara, T

    2001-07-05

    This review will be concerned primarily with a practical yet comprehensive diagnostic procedure for the diagnosis or even mass screening of a variety of metabolic disorders. This rapid, highly sensitive procedure offers possibilities for clinical chemistry laboratories to extend their diagnostic capacity to new areas of metabolic disorders. The diagnostic procedure consists of the use of urine or filter paper urine, preincubation of urine with urease, stable isotope dilution, and gas chromatography-mass spectrometry. Sample preparation from urine or filter paper urine, creatinine determination, stable isotope-labeled compounds used, and GC-MS measurement conditions are described. Not only organic acids or polar ones but also amino acids, sugars, polyols, purines, pyrimidines and other compounds are simultaneously analyzed and quantified. In this review, a pilot study for screening of 22 target diseases in newborns we are conducting in Japan is described. A neonate with presymptomatic propionic acidemia was detected among 10,000 neonates in the pilot study. The metabolic profiles of patients with ornithine carbamoyl transferase deficiency, fructose-1,6-bisphosphatase deficiency or succinic semialdehyde dehydrogenase deficiency obtained by this method are presented as examples. They were compared to those obtained by the conventional solvent extraction methods or by the tandem mass spectrometric method currently done with dried filter blood spots. The highly sensitive, specific and comprehensive features of our procedure are also demonstrated by its use in establishing the chemical diagnosis of pyrimidine degradation defects in order to prevent side effects of pyrimidine analogs such as 5-flurouracil, and the differential diagnosis of three types of homocystinuria, orotic aciduria, uraciluria and other urea cycle disorders. Evaluation of the effects of liver transplantation or nutritional conditions such as folate deficiency in patients with inborn errors of

  11. Validation of a gas chromatography-mass spectrometry isotope dilution method for the determination of 2-butoxyethanol and other common glycol ethers in consumer products.

    PubMed

    Tokarczyk, Ryszard; Jiang, Ying; Poole, Gary; Turle, Richard

    2010-10-29

    A gas chromatography-mass spectrometry isotope dilution (GC-MS ID) method was developed and tested for the determination of 14 common glycol ethers in consumer products. Stable isotope labelled standards, 2-methoxyethanol-D(7) and 2-butoxyethanol-(13)C(2) (CDN isotopes) were employed to enhance the accuracy and precision of the glycol ethers determination. A 1000-fold sample dilution with methanol was applied to avoid column overload and contamination. At this dilution matrix effects were in most cases negligible and did not interfere with the analysis. The instrument detection limit (IDL) for analysed compounds varied from 0.01 to 1 μg/mL; while the estimated limit of quantification (LoQ) varied between different glycol ethers from 0.02 to 3.4 μg/mL. Calibration was tested in the range of 0.1-200 μg/mL and showed that the linear fit is upheld from 0.1 to 10 μg/mL, and extends beyond this range for some of the analytes. Recoveries of glycol ethers from products with different matrices were similar. The recoveries varied from 87% to 116% between the analysed compounds, while measurements precision varied between 2% and 14%. The method is applicable to products with glycol ether concentrations above 0.002-0.2% (w/w). The concentration range can be extended below the specified limits by decreasing the dilution factor; however, with lower dilution the sample matrix effect is expected to be stronger. Products with very high concentrations of glycol ether (>20%) may need to be further diluted prior to injection to avoid column overload. The method can be used for testing liquid and aerosol products designed for household use, such as cleaners, paints, solvents and paint stripers, for compliance and enforcement of regulations which limit glycol ethers content.

  12. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this section; (2) When hydrocarbon analyzers are used, the lower hydrocarbon concentration reading... (i) or (k)(1) of this section; and (3) When hydrocarbon analyzers are used, the higher hydrocarbon... section. (f) Each oxygen or hydrocarbon analyzer required by this section must: (1) Be installed...

  13. 33 CFR 154.824 - Inerting, enriching, and diluting systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section; (2) When hydrocarbon analyzers are used, the lower hydrocarbon concentration reading... (i) or (k)(1) of this section; and (3) When hydrocarbon analyzers are used, the higher hydrocarbon... section. (f) Each oxygen or hydrocarbon analyzer required by this section must: (1) Be installed...

  14. Odorant Screening and Quantitation of Thiols in Carmenere Red Wine by Gas Chromatography-Olfactometry and Stable Isotope Dilution Assays.

    PubMed

    Pavez, Carolina; Agosin, Eduardo; Steinhaus, Martin

    2016-05-04

    The sensory impact of thiols in Vitis vinifera 'Carmenere' red wines was evaluated. For this purpose, aroma extract dilution analysis was applied to the thiols isolated from a Carmenere red wine by affinity chromatography with a mercurated agarose gel. Results revealed the presence of four odorants, identified as 2-furanylmethanethiol, 3-sulfanylhexyl acetate, 3-sulfanyl-1-hexanol, and 2-methyl-3-sulfanyl-1-butanol, with the latter being described here for the first time in Carmenere red wines. Quantitation of the four thiols in the Carmenere wine screened by aroma extract dilution analysis and in three additional Carmenere wines by stable isotope dilution assays resulted in concentrations above the respective orthonasal odor detection threshold values. Triangle tests applied to wine model solutions with and without the addition of the four thiols showed significant differences, thus suggesting that the compounds do have the potential to influence the overall aroma of red wine.

  15. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure

    SciTech Connect

    Nguyen, Ngoc N.; Nguyen, Anh V.; Nguyen, Khoi T.; Rintoul, Llew; Dang, Liem X.

    2016-12-01

    Gas hydrates formed under moderated conditions open up novel approaches to tackling issues related to energy supply, gas separation, and CO2 sequestration. Several additives like tetra-n-butylammonium bromide (TBAB) have been empirically developed and used to promote gas hydrate formation. Here we report unexpected experimental results which show that TBAB inhibits CO2 gas hydrate formation when used at minuscule concentration. We also used spectroscopic techniques and molecular dynamics simulation to gain further insights and explain the experimental results. They have revealed the critical role of water alignment at the gas-water interface induced by surface adsorption of tetra-n-butylammonium cation (TBA+) which gives rise to the unexpected inhibition of dilute TBAB solution. The water perturbation by TBA+ in the bulk is attributed to the promotion effect of high TBAB concentration on gas hydrate formation. We explain our finding using the concept of activation energy of gas hydrate formation. Our results provide a step toward to mastering the control of gas hydrate formation.

  16. Aroma quality assessment of Korean fermented red pepper paste (gochujang) by aroma extract dilution analysis and headspace solid-phase microextraction-gas chromatography-olfactometry.

    PubMed

    Kang, Kyung-Mo; Baek, Hyung-Hee

    2014-02-15

    The objective of this study was to assess aroma quality of gochujang using purge and trap, simultaneous steam distillation and solvent extraction (SDE), and headspace solid-phase microextraction (HS-SPME), followed by gas chromatography-olfactometry (GC-O). Nineteen and 28 aroma-active compounds were detected by aroma extract dilution analysis of purge and trap and SDE, respectively. Diallyl disulfide and 3-isobutyl-2-methoxypyrazine played a significant role in the aroma quality of gochujang. Twelve aroma-active compounds were detected by HS-SPME-GC-O based on sample dilution analysis. Methional, diallyl disulfide, and 3-isobutyl-2-methoxypyrazine were the most intense aroma-active compounds. 3-Isobutyl-2-methoxypyrazine was identified for the first time in gochujang.

  17. Dilute Nitride GaNP Wide Bandgap Solar Cells Grown by Gas-Source Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Sukrittanon, Supanee

    Integration of III-V semiconductors and Si is a very attractive means to achieve low-cost high-efficiency solar cells. A promising configuration is to utilize a dual-junction solar cell, in which Si is employed as the bottom junction and a wide-bandgap III-V semiconductor as the top junction. The use of a III-V semiconductor as a top junction offers the potential to achieve higher efficiencies than today's best Si solar cell. Dilute nitride GaNP is a promising candidate for the top cell in dual-junction solar cells because it possesses several extremely important attributes: a direct-bandgap that is also tunable as well as easily-attained lattice-match with Si. As a first step towards integration of GaNP solar cells onto Si, the goal of this dissertation is to optimize and demonstrate GaNP solar cells grown by gas-source molecular beam epitaxy (GSMBE) on GaP (001) substrate. The dissertation is divided into three major parts. In the first part, we demonstrate ˜ 2.05 eV ([N]˜ 1.8%) dilute nitride GaNP thin film solar cells, in which the GaNP is closely lattice-matched to Si, on GaP substrates. From transmission electron microscopy (TEM), the device exhibits defects only at the GaNP/GaP interface, and no threading dislocations in an active layer are observed. Our best GaNP solar cell achieved an efficiency of 7.9% with anti-reflection (AR) coating and no window layer. This GaNP solar cell's efficiency is higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance using GaNP are demonstrated. In the second part, we demonstrate the successful fabrication of GaP/GaNP core/shell microwires utilizing a novel technique: top-down reactive-ion etching (RIE) to create the cores and MBE to create the shells. Systematic studies have been

  18. Quantitation of metabolites of the nerve agents sarin, soman, cyclohexylsarin, VX, and Russian VX in human urine using isotope-dilution gas chromatography-tandem mass spectrometry.

    PubMed

    Barr, John R; Driskell, W J; Aston, Linda S; Martinez, Rodolfo A

    2004-01-01

    Organophosphorus nerve agents are among the most toxic organic compounds known and continue to be a threat for both military and terrorist use. We have developed an isotope-dilution gas chromatography-tandem mass spectrometric (GC-MS-MS) method for quantitating the urinary metabolites of the organophosphorus nerve agents sarin (GB), soman (GD), VX, Russian VX (RVX), and cyclohexylsarin (GF). Urine samples were acidified, extracted into ether-acetonitrile, derivatized by methylation with diazomethane, and analyzed by GC-MS-MS. The limits of detection were less than 1 micro g/L for all analytes.

  19. Hybrid Molecular Dynamics-Monte Carlo Simulations for the properties of a dense and dilute hard-sphere gas in a microchannel

    NASA Astrophysics Data System (ADS)

    Nedea, S. V.; Frijns, A. J. H.; van Steenhoven, A. A.; Markvoort, A. J.; Hilbers, P. A. J.

    2005-05-01

    We present a hybrid method to study the properties of hard-sphere gas molecules confined between two hard walls of a microchannel. The coupling between Molecular Dynamics(MD) and Monte Carlo(MC) simulations is introduced in order to combine the advantages of the MD and MC simulations, by performing MD near the boundaries for the accuracy of the interactions with the wall, and MC in the bulk because of the low computational cost. The effect of different gas densities, starting from a rarefied gas (reduced density η=πna3/6=0.001, where n=number density, a=molecular diameter) to a dense hard-sphere gas (η=0.25), is investigated. We characterize the influence of different η's and size of molecules on the equilibrium properties of the gas in a microchannel. The effect of the particle size on the simulation results, which is very small in case of a dilute gas, is increasing with η. Comparisons between MD, MC and hybrid MD-MC simulation results are done, and comparisons between MD, MC, and hybrid MD-MC computational costs are outlined.

  20. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time".

  1. Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines.

    PubMed

    Ferreira, V; Aznar, M; López, R; Cacho, J

    2001-10-01

    Four Spanish aged red wines made in different wine-making areas have been extracted, and the extracts and their 1:5, 1:50, and 1:500 dilutions have been analyzed by a gas chromatography-olfactometry (GC-O) approach in which three judges evaluated odor intensity on a four-point scale. Sixty-nine different odor regions were detected in the GC-O profiles of wines, 63 of which could be identified. GC-O data have been processed to calculate averaged flavor dilution factors (FD). Different ANOVA strategies have been further applied on FD and on intensity data to check for significant differences among wines and to assess the effects of dilution and the judge. Data show that FD and the average intensity of the odorants are strongly correlated (r(2) = 0.892). However, the measurement of intensity represents a quantitative advantage in terms of detecting differences. For some odorants, dilution exerts a critical role in the detection of differences. Significant differences among wines have been found in 30 of the 69 odorants detected in the experiment. Most of these differences are introduced by grape compounds such as methyl benzoate and terpenols, by compounds released by the wood, such as furfural, (Z)-whiskey lactone, Furaneol, 4-propylguaiacol, eugenol, 4-ethylphenol, 2,6-dimethoxyphenol, isoeugenol, and ethyl vanillate, by compounds formed by lactic acid bacteria, such as 2,3-butanedione and acetoine, or by compounds formed during the oxidative storage of wines, such as methional, sotolon, o-aminoacetophenone, and phenylacetic acid. The most important differences from a quantitative point of view are due to 2-methyl-3-mercaptofuran, 4-propylguaiacol, 2,6-dimethoxyphenol, and isoeugenol.

  2. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.

    PubMed

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the

  3. Cross-correlation focus method with an electrostatic sensor array for local particle velocity measurement in dilute gas-solid two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhang, Jingyu; Gao, Wenbin; Ding, Hongbing; Wu, Weiping

    2015-11-01

    The gas-solid two-phase flow has been widely applied in the power, chemical and metallurgical industries. It is of great significance in the research of gas-solid two-phase flow to measure particle velocity at different locations in the pipeline. Thus, an electrostatic sensor array comprising eight arc-shaped electrodes was designed. The relationship between the cross-correlation (CC) velocity and the distribution of particle velocity, charge density and electrode spatial sensitivity was analysed. Then the CC sensitivity and its calculation method were proposed. According to the distribution of CC sensitivity, it was found that, between different electrode pairs, it had different focus areas. The CC focus method was proposed for particle velocity measurement at different locations and validated by a belt-style electrostatic induction experiment facility. Finally, the particle velocities at different locations with different flow conditions were measured to research the particle velocity distribution in a dilute horizontal pneumatic conveying pipeline.

  4. Quantum mechanics as a classical theory-application to the interaction of light with an extremely diluted gas: redshifts and black matter in astrophysics.

    NASA Astrophysics Data System (ADS)

    Moret-Bailly, J.

    In the study of experiments of laser spectroscopy, there appears a convergence of the methods of quantum electrodynamics and classical optics: for instance stochastic electrodynamics used for the study of "squeezed states" is common to both theories, and the quantum coherent states are almost classical states. The author shows that this convergence allows to explain the paradoxes of quantum mechanics. The interaction of ultrashort laser pulses with ordinary matter is equivalent to the interaction of incoherent light with extremely dilute gases. Thus, the interaction of light from stars with cosmic gas produces a redshift similar to the Doppler redshift. In a very low pressure gas, the absorption of incoherent light disappears completely, so that the "black matter" could be simply H2 and its products of decomposition by high-frequency radiation.

  5. A Novel Low-Power, High-Performance, Zero-Maintenance Closed-Path Trace Gas Eddy Covariance System with No Water Vapor Dilution or Spectroscopic Corrections

    NASA Astrophysics Data System (ADS)

    Sargent, S.; Somers, J. M.

    2015-12-01

    Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.

  6. Effects of inert gases on fatigue crack growth and their transportation into subsurface regions in titanium

    SciTech Connect

    Shimojo, M.; Higo, Y.; Oya-Seimiya, Y.

    2000-05-01

    To clarify the effects of inert gases on the fatigue behavior of titanium, fatigue crack growth tests were carried out in pure inert gases and in vacuum. Fatigue crack growth rates increased, and the fracture surface appearance was changed in inert gases, as compared to those in vacuum. The transportation of inert gases into subsurface regions of fracture surfaces was confirmed using Auger electron spectroscopy. This transportation is considered to be due to the reverse slip of slip planes on which inert gas atoms have adsorbed.

  7. Absolute density of precursor SiH3 radicals and H atoms in H2-diluted SiH4 gas plasma for deposition of microcrystalline silicon films

    NASA Astrophysics Data System (ADS)

    Abe, Yusuke; Ishikawa, Kenji; Takeda, Keigo; Tsutsumi, Takayoshi; Fukushima, Atsushi; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2017-01-01

    Microcrystalline hydrogenated silicon films were produced at a high deposition rate of about 2 nm/s by using a capacitively coupled plasma under a practical pressure of around 1 kPa. The SiH4 source gas was almost fully dissociated when highly diluted with H2 gas, and the dominant species in the gas phase were found to be SiH3 radicals, which are film-growth precursors, and H atoms. The absolute density of these species was measured as the partial pressure of SiH4 gas was varied. With the increasing SiH4 gas flow rate, the SiH3 radical density, which was on the order of 1012 cm-3, increased linearly, while the H-atom density remained constant at about 1012 cm-3. The film growth mechanism was described in terms of precursors, based on the measured flux of SiH3 radicals and H atoms, and the relative fraction of higher-order radicals.

  8. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques.

    PubMed

    Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D

    2014-05-01

    The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.

  9. Compressing the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Kozaczuk, Jonathan; Morrissey, David E.; de la Puente, Alejandro

    2016-02-16

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. We found that this stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. In conclusion, we derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  10. Inert gases in closed crystal growth systems

    NASA Astrophysics Data System (ADS)

    Palosz, Witold

    1997-07-01

    The effect of desorption from, and diffusion through the wall on inert gas pressure in sealed fused silica ampoules was investigated. It is shown, that desorption from the surface and the bulk of silica may lead to an accumulation of residual gas on the order of a few Torr or more upon annealing. A prior outgassing of the ampoules under vacuum at high temperature reduces the amount of gas released from the glass by at least one order of magnitude. Presence of oxide and other impurities in the source material was found to increase the residual gas pressure, affect its composition, and reduce the vapor transport rate in PVT systems. It is shown, that light gases (hydrogen, helium, and neon) diffuse through silica wall and may change the pressure inside the sealed ampoule considerably even at moderate temperatures.

  11. A common single-site Pt(II)-O(OH)x- species stabilized by sodium on "active" and "inert" supports catalyzes the water-gas shift reaction.

    PubMed

    Yang, Ming; Liu, Jilei; Lee, Sungsik; Zugic, Branko; Huang, Jun; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2015-03-18

    While it has long been known that different types of support oxides have different capabilities to anchor metals and thus tailor the catalytic behavior, it is not always clear whether the support is a mere carrier of the active metal site, itself not participating directly in the reaction pathway. We report that catalytically similar single-atom-centric Pt sites are formed by binding to sodium ions through -O ligands, the ensemble being equally effective on supports as diverse as TiO2, L-zeolites, and mesoporous silica MCM-41. Loading of 0.5 wt % Pt on all of these supports preserves the Pt in atomic dispersion as Pt(II), and the Pt-O(OH)x- species catalyzes the water-gas shift reaction from ∼120 to 400 °C. Since the effect of the support is "indirect," these findings pave the way for the use of a variety of earth-abundant supports as carriers of atomically dispersed platinum for applications in catalytic fuel-gas processing.

  12. Perturbative treatment of quantum to classical transition in chiral molecules: dilute phase versus condensed phase

    NASA Astrophysics Data System (ADS)

    Taher Ghahramani, Farhad; Tirandaz, Arash

    2017-01-01

    We examine the dynamics of the chiral states of chiral molecules with high tunneling rates in dilute and condensed phases in the context of time-dependent perturbation theory. The chiral molecule is effectively described by an asymmetric double-well potential, whose asymmetry is a measure of chiral interactions. The dilute and condensed phases are conjointly described by a collection of harmonic oscillators but with temperature-dependent sub-ohmic and temperature-independent ohmic spectral densities, respectively. We examine our method quantitatively by applying the dynamics to an isotopic ammonia molecule, NHDT, in an inert background gas (as the dilute phase) and in water (as the condensed phase). As the different spectral densities imply, the extension of the dynamics from the dilute phase to the condensed phase is not trivial. While the dynamics in the dilute phase leads to racemization, the chiral interactions in the condensed phase induce the quantum Zeno effect. Moreover, contrary to the condensed phase, the short-time dynamics in the dilute phase is sensitive to the initial state of the chiral molecule and to the strength of the coupling between the molecule and the environment.

  13. Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture).

    PubMed

    Cornell, Eric A; Wieman, Carl E

    2002-06-17

    Bose-Einstein condensates of dilute gases offer a rich field to study fundamental quantum-mechanical processes, manipulation of the speed at which light propogates, observation of atomic pair-formation and superfluidity, or even simulating white dwarf stars. Still more radical applications are on the horizon. However, their initial creation was a masterpiece of experimental physics. After an initial process of laser cooling (which itself won its developers the 1997 Nobel Prize), atoms in a magnetic-optical trap must be safely transferred into a purely magnetic trap, where the condensation process begins at 170 nK and 20 nK a pure condensate of 2000 atoms could be created. More astonishingly, Wieman and Cornell showed these low temperatures could be achieved in "bench scale" equipment rather than the massive pieces normally demanded by cryoscience. For their 1995 discovery of this new state of matter, they were awarded the 2001 Nobel Prize in Physics.

  14. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

    NASA Astrophysics Data System (ADS)

    Kracker, Michael; Worsch, Christian; Rüssel, Christian

    2013-04-01

    Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 °C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.

  15. Self-Flammability of Gases Generated by Hanford Tank Waste and the Potential of Nitrogen Inerting to Eliminate Flammability Safety Concerns

    SciTech Connect

    Mahoney, Lenna A.

    2015-10-12

    Through radiolytic and thermolytic reactions, Hanford tank wastes generate and retain a variety of gases, including hydrogen, nitrous oxide, methane (and other hydrocarbons), ammonia, and nitrogen. This gas generation can be expected to continue during processing in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The generation rates in the WTP will change from those for the in-situ tank waste because of different process temperatures, different dose rates produced by in-process changes in the proportions of solid and liquid, and dilution of the waste liquid. The flammability of the generated gas that is continuously released, and of any retained gas that might be released into a vessel headspace in quantity due to a spontaneous release, depends on the concentrations not only of the fuel gases—primarily hydrogen (H2), methane, other hydrocarbons, and ammonia—but of the oxidizer nitrous oxide (N2O). As a result of high concentrations of N2O, some gas mixtures are “self-flammable” (i.e., ignition can occur when no air is present because N2O provides the only oxidizer needed). Self-flammability could potentially reduce the effectiveness of using a nitrogen (N2) purge in the headspace as a flammability control, if its effects are not accounted for. A given amount of inertant gas (N2) can accommodate only a certain amount of a generated self-flammable gas before the mixture with inertant gas becomes flammable.

  16. Tuning of the internal energy and isomer distribution in small protonated water clusters H(+)(H2O)(4-8): an application of the inert gas messenger technique.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2012-05-24

    Infrared spectroscopy of gas-phase hydrated clusters provides us much information on structures and dynamics of water networks. However, interpretation of spectra is often difficult because of high internal energy (vibrational temperature) of clusters and coexistence of many isomers. Here we report an approach to vary these factors by using the inert gas (so-called "messenger")-mediated cooling technique. Protonated water clusters with a messenger (M), H(+)(H(2)O)(4-8)·M (M = Ne, Ar, (H(2))(2)), are formed in a molecular beam and probed with infrared photodissociation spectroscopy in the OH stretch region. Observed spectra are compared with each other and with bare H(+)(H(2)O)(n). They show clear messenger dependence in their bandwidths and relative band intensities, reflecting different internal energy and isomer distribution, respectively. It is shown that the internal energy follows the order H(+)(H(2)O)(n) > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·Ne, while the isomer-selectivity, which changes the isomer distribution in the bare system, follows the order H(+)(H(2)O)(n)·Ar > H(+)(H(2)O)(n)·(H(2))(2) > H(+)(H(2)O)(n)·Ne ~ (H(+)(H(2)O)(n)). Although the origin of the isomer-selectivity is unclear, comparison among spectra measured with different messengers is very powerful in spectral analyses and makes it possible to easily assign spectral features of each isomer.

  17. Lead, cadmium, iron, zinc, copper, manganese, calcium and magnesium in SPF male rats exposed to a dilution of automotive exhaust gas throughout their lives.

    PubMed

    Stupfel, M; Valleron, A J; Radford, E

    1983-12-15

    Male pathogen free CFE albino Sprague Dawley rats were exposed 8 h per day, 5 days per week, for three years to a 1/1000 dilution of automotive exhaust gas, containing 58 ppm carbon monoxide, 0.37% carbon dioxide, 23 ppm nitrogen oxides, 2 ppm aldehydes, less than 5 mg/l hydrocarbons and 8.5 micrograms/m3 lead. Lead, cadmium, iron, zinc, calcium and magnesium were measured by atomic absorption in the femurs and tibias of the rats which died during the experiment. A comparison with two control groups revealed that the only significant difference in the elements measured in the bones was a 500% increase in lead concentration. The calculations of the correlations between the percentages of the elements in bones, the ages and the body weights of the rats, as well as cluster analysis, did not show consistent variations of the water, calcium, magnesium concentrations nor of the other studied metals related to this increase in lead concentration. Moreover, longevity was the same in the 3 groups of rats, but the body weight was statistically smaller (4%) in the group exposed to the auto exhaust dilution.

  18. Determination of the alkylpyrazine composition of coffee using stable isotope dilution-gas chromatography-mass spectrometry (SIDA-GC-MS).

    PubMed

    Pickard, Stephanie; Becker, Irina; Merz, Karl-Heinz; Richling, Elke

    2013-07-03

    A stable isotope dilution analysis based on gas chromatography-mass spectrometry analysis (SIDA-GC-MS) was developed for the quantitative analysis of 12 alkylpyrazines found in commercially available coffee samples. These compounds contribute to coffee flavor. The accuracy of this method was tested by analyzing model mixtures of alkylpyrazines. Comparisons of alkylpyrazine-concentrations suggested that water as extraction solvent was superior to dichloromethane. The distribution patterns of alkylpyrazines in different roasted coffees were quite similar. The most abundant alkylpyrazine in each coffee sample was 2-methylpyrazine, followed by 2,6-dimethylpyrazine, 2,5-dimethylpyrazine, 2-ethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, and 2,3,5-trimethylpyrazine, respectively. Among the alkylpyrazines tested, 2,3-dimethylpyrazine, 2-ethyl-3-methylpyrazine, 2-ethyl-3,6-dimethylpyrazine, and 2-ethyl-3,5-dimethylpyrazine revealed the lowest concentrations in roasted coffee. By the use of isotope dilution analysis, the total concentrations of alkylpyrazines in commercially available ground coffee ranged between 82.1 and 211.6 mg/kg, respectively. Decaffeinated coffee samples were found to contain lower amounts of alkylpyrazines than regular coffee samples by a factor of 0.3-0.7, which might be a result of the decaffeination procedure.

  19. Dilution Confusion: Conventions for Defining a Dilution

    ERIC Educational Resources Information Center

    Fishel, Laurence A.

    2010-01-01

    Two conventions for preparing dilutions are used in clinical laboratories. The first convention defines an "a:b" dilution as "a" volumes of solution A plus "b" volumes of solution B. The second convention defines an "a:b" dilution as "a" volumes of solution A diluted into a final volume of "b". Use of the incorrect dilution convention could affect…

  20. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination.

    PubMed

    Xiao, Zuobing; Li, Jing; Niu, Yunwei; Liu, Qiang; Liu, Junhua

    2017-03-28

    Rose oil is much too expensive but very popular. It's well known that the flower oil's aroma profile hasn't been intensively investigated. In order to verify the aroma profile of rose oil, the synthetic blend of odorants was prepared and then compared with the original rose oil using electronic nose analysis (ENA) combined with quantitative descriptive analysis (QDA). The odorants from rose oils were screened out by Gas Chromatography-Olfactometry/aroma extract dilution analysis (GC-O/AEDA) combined with odour activity value (OAV). Both ENA and QDA indicated the recombination model derived from OAV and GC-O/AEDA closely resembled the original rose oil. The experiment results show that rose oxide, linalool, α-pinene, β-pinene, nonanal, heptanal citronellal, phenyl ethyl alcohol, benzyl alcohol, eugenol, methyl eugenol, β-citronellol, hexyl acetate, β-ionone, nerol, etc. are very important constituent to rose oil aroma profile.

  1. Analysis of nitroaromatic compounds in complex samples using solid-phase microextraction and isotope dilution quantification gas chromatography-electron-capture negative ionisation mass spectrometry.

    PubMed

    Jönsson, S; Gustavsson, L; van Bavel, B

    2007-09-14

    A solid-phase microextraction (SPME) method using gas chromatography-electron-capture negative ionisation mass spectrometry (GC-ECNI-MS) and isotope dilution quantification for the analysis of nitroaromatic compounds in complex, water based samples has been optimised. For ionisation, ECNI was the most sensitive and selective method. SPME was compared to solid-phase extraction (SPE) and found to be more sensitive for these small volume samples. LODs were in the range 0.02-38ngL(-1) for SPME and 6-184ngL(-1) for SPE, respectively. The SPME method was applied on samples in the ngL(-1) level from artificial reed beds treated with sludge containing residues from explosives and pharmaceuticals.

  2. Kaluza's kinetic theory description of the classical Hall effect in a single component dilute gas within the Chapman-Enskog approximation

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, A.; Garcia-Perciante, A. L.; Sagaceta-Mejia, A. R.

    2015-11-01

    Kinetic theory is used to establish the explicit form of the particle flux associated to the Hall effect for the case of a dilute single component charged gas, using the Chapman-Enskog method and the BGK approximation for the collision Kernel. It is shown that when the system evolves towards mechanical equilibrium, the standard treatment using the concept of external force fails to describe the Hall effect. It is also shown that the use of a five-dimensional curved space-time in the description of the dynamics of the charged particle in the kinetic treatment (Kaluza's theory) formally solves the problem. The implications of this result are briefly discussed. The authors acknowledge support from CONACyT (Mexico) through grant CB2011/167563.

  3. Modifications to the NIST reference measurement procedure (RMP) for the determination of serum glucose by isotope dilution gas chromatography/mass spectrometry.

    PubMed

    Prendergast, Jocelyn L; Sniegoski, Lorna T; Welch, Michael J; Phinney, Karen W

    2010-07-01

    The definitive method (DM), now known as the reference measurement procedure (RMP), for the analysis of glucose in serum was originally published in 1982 by the National Institute of Standards and Technology (NIST). Over the years the method has been subject to a number of modifications to adapt to newer technologies and simplify sample preparation. We discuss here an adaptation of the method associated with serum glucose measurements using a modified isotope dilution gas chromatography/mass spectrometry (ID-GC/MS) method. NIST has used this modified method to certify the concentrations of glucose in SRM 965b, Glucose in Frozen Human Serum, and SRM 1950, Metabolites in Human Plasma. Comparison of results from the revised method with certified values for existing Standard Reference Materials (SRMs) demonstrated that these modifications have not affected the quality of the measurements, giving both good precision and accuracy, while reducing the sample preparation time by a day and a half.

  4. Infrared reflectivity spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001)

    SciTech Connect

    Talwar, Devki N.; Yang, Tzuen-Rong; Hsiung Lin, Hao; Chuan Feng, Zhe

    2013-02-04

    Vibrational spectra of gas-source molecular beam epitaxy grown dilute InN{sub x}As{sub 1-x}/InP (001) alloys are obtained using a Fourier-transform infrared (IR) spectroscopy. A triply degenerate N{sub As} local vibrational mode of T{sub d}-symmetry is observed near 438 cm{sup -1} corresponding to the In-N bond energy. The analysis of composition dependent infrared reflectivity spectra in InNAs has predicted a two-phonon-mode behavior. In In(Ga)-rich GaInNAs alloys the observed splitting of the N{sub As} local mode into a doublet for the N{sub As}-Ga{sub 1}(In{sub 1})In{sub 3}(Ga{sub 3}) pair-defect of C{sub 3v}-symmetry is consistent with our simulated results based on a sophisticated Green's function theory.

  5. An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects

    SciTech Connect

    Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe

    2008-11-15

    In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are simulated by N{sub 2} and CO{sub 2}, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species CO, NO, and CH{sub 2}O are used. The initial concentration in the inlet mixture of CO and NO is varied between 0 and 170 ppm, while that of CH{sub 2}O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 C are maintained. The inlet temperature is held at 70 C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced the ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH{sub 2}O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (author)

  6. Dilution-based emissions sampling from stationary sources: part 2 - gas-fired combustors compared with other fuel-fired systems

    SciTech Connect

    England, G.C.; Watson, J.G.; Chow, J.C.; Zielinska, B.; Chang, M.C.O.; Loos, K.R.; Hidy. G.M.

    2007-01-15

    With the recent focus on fine particle matter (PM2.5), new, self- consistent data are needed to characterize emissions from combustion sources. Emissions data for gas-fired combustors are presented, using dilution sampling as the reference. The sampling and analysis of the collected particles in the presence of precursor gases, SO{sub 2}, nitrogen oxide, volatile organic compound, and NH{sub 3} is discussed; the results include data from eight gas fired units, including a dual- fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of {approximately}10{sup -4} lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with {approximately} 5 x 10{sup -3} lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of {approximately} 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas- fired combustor particles are low in concentration. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon is found on the particle collector and a backup filter. It is likely that measurement artifacts are positively biasing 'true' particulate carbon emissions results. 49 refs., 1 fig., 12 tabs.

  7. Analysis of hydrazine in drinking water by isotope dilution gas chromatography/tandem mass spectrometry with derivatization and liquid-liquid extraction.

    PubMed

    Davis, William E; Li, Yongtao

    2008-07-15

    A new isotope dilution gas chromatography/chemical ionization/tandem mass spectrometric method was developed for the analysis of carcinogenic hydrazine in drinking water. The sample preparation was performed by using the optimized derivatization and multiple liquid-liquid extraction techniques. Using the direct aqueous-phase derivatization with acetone, hydrazine and isotopically labeled hydrazine-(15)N2 used as the surrogate standard formed acetone azine and acetone azine-(15)N2, respectively. These derivatives were then extracted with dichloromethane. Prior to analysis using methanol as the chemical ionization reagent gas, the extract was dried with anhydrous sodium sulfate, concentrated through evaporation, and then fortified with isotopically labeled N-nitrosodimethylamine-d6 used as the internal standard to quantify the extracted acetone azine-(15)N2. The extracted acetone azine was quantified against the extracted acetone azine-(15)N2. The isotope dilution standard calibration curve resulted in a linear regression correlation coefficient (R) of 0.999. The obtained method detection limit was 0.70 ng/L for hydrazine in reagent water samples, fortified at a concentration of 1.0 ng/L. For reagent water samples fortified at a concentration of 20.0 ng/L, the mean recoveries were 102% with a relative standard deviation of 13.7% for hydrazine and 106% with a relative standard deviation of 12.5% for hydrazine-(15)N2. Hydrazine at 0.5-2.6 ng/L was detected in 7 out of 13 chloraminated drinking water samples but was not detected in the rest of the chloraminated drinking water samples and the studied chlorinated drinking water sample.

  8. Determination of atrazine, lindane, pentachlorophenol, and diazinon in water and soil by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect

    Lopez-Avila, V.; Hirata, P.; Kraska, S.; Flanagan, M.; Taylor, J.H. Jr.; Hern, S.C.

    1985-12-01

    This paper describes an isotope dilution GC/MS technique for the analysis of low-parts-per-billion concentrations of atrazine, lindane, pentachlorophenol, and diazinon in water and soil. Known amounts of stable-labeled isotopes such as atrazine-d/sub 5/, lindane-d/sub 6/, pentachlorophenol-/sup 13/C/sub 6/, and diazinon-d/sub 10/ are spiked into each sample prior to extraction. Water samples are extracted with methylene chloride; soil samples are extracted with acetone/hexane. Analysis is performed by high-resolution GC/MS with the mass spectrometer operated in the selected ion monitoring mode. Accuracy greater than 86% and precision better than 8% were demonstrated by use of spiked samples. This technique has been used successfully in the analysis of over 300 water and 300 soil samples. Detection limits of 0.1-1.0 ppb were achieved for the test compounds by selected ion monitoring GC/MS. 8 references, 2 figures, 4 tables.

  9. METAL SPRAYER FOR USE IN VACUUM OR INERT ATMOSPHERE

    DOEpatents

    Monroe, R.E.

    1958-10-14

    A metal sprayer is described for use in a vacuum or inert atmosphere with a straight line wire feed and variable electrode contact angle. This apparatus comprises two wires which are fed through straight tubes of two mechanisms positioned on opposite sides of a central tube to which an inert gas is fed. The two mechanisms and the wires being fed constitute electrodes to which electrical current is supplied so that the wires are melted by the electric are formed at their contacting region and sprayed by the gas supplied by the central tube. This apparatus is designed specifically to apply a zirconium coating to uranium in an inert atmosphere and without the use of an oxidizing flame.

  10. Determination of ultratrace levels of tributyltin in waters by isotope dilution and gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Rodríguez-Cea, Andrés; Rodríguez-González, Pablo; Font Cardona, Nuria; Aranda Mares, José Luís; Ballester Nebot, Salomé; García Alonso, J Ignacio

    2015-12-18

    The current EU legislation lays down the Environmental Quality Standards (EQS) of 45 priority substances in surface water bodies. In particular, the concentration of tributyltin (TBT) must not exceed 0.2ngL(-1) and analytical methodologies with a Limit of Quantification (LOQ) equal or below 0.06ngL(-1) are urged to be developed. This work presents a procedure for the determination of ultratrace levels of TBT in water samples by Isotope Dilution and GC-MS/MS operating in Selected Reaction Monitoring (SRM) mode which meets current EU requirements. The method requires the monitorization of five consecutive transitions (287>175 to 291>179) for the sensitive and selective detection of TBT. The measured isotopic distribution of TBT fragment ions was in agreement with the theoretical values computed by a polynomial expansion algorithm. The combined use of Tandem Mass Spectrometry, a sample volume of 250mL, the preconcentration of 1mL of organic phase to 30μL and an injection volume of 25μL by Programmed Temperature Vaporization provided a LOQ of 0.0426ngL(-1) for TBT (calculated as ten times the standard deviation of nine independent blanks). The recovery for TBT calculated in Milli-Q water at the EQS level was 106.3±4%. A similar procedure was also developed for the quantification of dibutyltin (DBT) and monobutyltin (MBT) in water samples showing satisfactory results. The method was finally implemented in a routine testing laboratory to demonstrate its applicability to real samples obtaining quantitative recoveries for TBT at the EQS level in mineral water, river water and seawater.

  11. Identification of odorants in frankincense (Boswellia sacra Flueck.) by aroma extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry.

    PubMed

    Niebler, Johannes; Buettner, Andrea

    2015-01-01

    Frankincense has been known, traded and used throughout the ages for its exceptional aroma properties, and is still commonly used in both secular and religious settings to convey a pleasant odor. Surprisingly, the odoriferous principle(s) underlying its unique odor profile have never been published. In this study, resin samples of Boswellia sacra Flueck. from both Somalia and Oman were investigated by aroma extract dilution analysis. In a comprehensive, odor-activity guided approach both chemo-analytical and human-sensory parameters were used to identify odor active constituents of the volatile fraction of B. sacra. Among the key odorants found were α-pinene, β-myrcene, linalool, p-cresol and two unidentified sesquiterpenoids. Overall, a total of 23 odorants were detected and analyzed by gas chromatography-olfactometry and heart-cut two-dimensional gas chromatography-mass spectrometry/olfactometry. The majority of the identified odorant compounds were oxygenated monoterpenes, along with some relevant mono- and sesquiterpenes and only one diterpenoid substance. Several of these compounds were reported here for the first time as odorous constituents in B. sacra. Identifying bioactive compounds might support a better understanding with regard to the potential benefits of frankincense, for example in aromatherapy or ecclesial settings.

  12. Developing a scalable inert gas ion thruster

    NASA Technical Reports Server (NTRS)

    James, E.; Ramsey, W.; Steiner, G.

    1982-01-01

    Analytical studies to identify and then design a high performance scalable ion thruster operating with either argon or xenon for use in large space systems are presented. The magnetoelectrostatic containment concept is selected for its efficient ion generation capabilities. The iterative nature of the bounding magnetic fields allows the designer to scale both the diameter and length, so that the thruster can be adapted to spacecraft growth over time. Three different thruster assemblies (conical, hexagonal and hemispherical) are evaluated for a 12 cm diameter thruster and performance mapping of the various thruster configurations shows that conical discharge chambers produce the most efficient discharge operation, achieving argon efficiencies of 50-80% mass utilization at 240-310 eV/ion and xenon efficiencies of 60-97% at 240-280 eV/ion. Preliminary testing of the large 30 cm thruster, using argon propellant, indicates a 35% improvement over the 12 cm thruster in mass utilization efficiency. Since initial performance is found to be better than projected, a larger 50 cm thruster is already in the development stage.

  13. Adapting magnetoelectrostatic containment to inert gas thrusters

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.; James, E. L.

    1981-01-01

    Two different types of 12 cm magnetoelectrostatic containment (MESC) ion thrusters have been adapted to argon-xenon operation. Discharge chamber optimization produced excellent performance with both the hexagonal and hemispherical shaped thrusters. The hemispherical thruster design yielded the best performance, ionizing 75 to 96 percent of the xenon propellant with a discharge energy consumption rate of 185 to 320 eV/ion. Argon operation of the same thruster achieved 60 to 80 percent propellant ionization at 215 to 370 eV/ion.

  14. Quantification of carcinogenic 4- to 6-ring polycyclic aromatic hydrocarbons in human urine by solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Fustinoni, Silvia; Bertazzi, Pieralberto

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are pollutants found in living and working environments. The aim of this study was to develop a solid-phase microextraction (SPME) gas chromatography (GC)-isotope dilution mass spectrometry method for the quantification of 10 four- to six-ring PAHs in urine samples. Seven of the selected PAHs have been classified as carcinogenic. Under the final conditions, analytes were sampled with a 100-μm polydimethylsiloxane SPME fibre for 60 min at 80 °C and desorbed in the injection port of the GC at 270 °C. Fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene and benzo[ghi]perylene were separated using a highly arylene-modified phase capillary column and quantified by MS using eight deuterated PAHs as surrogate internal standards. Limits of quantification (LOQ) were in the 0.5- to 2.2-ng/L range. Validation showed linear dynamic ranges up to 340 ng/L, inter- and intra-run precisions <20%, and accuracies within 20% of spiked concentrations. Matrix effect evaluation and the use of control charts to monitor process performances showed that the isotope dilution approach allowed for the control of bias sources. Urinary PAHs were above or equal to LOQ, depending on different compounds, in 58-100% (min-max), 40-100% and 5-39% of samples from coke oven workers (n = 12), asphalt workers (n = 10) and individuals not occupationally exposed to PAHs (n = 18), respectively. Chrysene was the most abundant PAH determined with median levels of 62.6, 6.9 and <0.6 ng/L, respectively. These results show that the method is suitable for quantifying carcinogenic PAHs in specimens from individuals with different levels of PAH exposure.

  15. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    NASA Technical Reports Server (NTRS)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III

    1993-01-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  16. Effects of chronic exposure to diluted automotive exhaust gas on the CNS of normotensive and hypertensive rats.

    PubMed

    Roggendorf, W; Thron, N L; Ast, D; Köhler, P R

    1981-01-01

    Regarding the potential impact of traffic-born air pollutants on public health, attention during the last years has been increasingly focused on the possible effects in high-risk groups of the population. In order to evaluated this point further, the combined influence of both, chronic arterial hypertension and long-time exhaust gas exposure on the CNS has been studied. Both, normotensive Wistar) and spontaneously hypertensive rats (SHR) of either sex were exposed 5 X 8 hours per week for up to 18 months to atmospheres polluted by the emissions of an idling Otto engine with CO concentrations held constant at about 0,90 and 250 ppm, respectively. Biochemical data, body weight, and blood pressure were checked regularly. Characteristic histomorphological findings in the non-exposed SHR brains were hyalinosis and hyperplasia of intracerebral arterioles and -- in some cases -- small focal hemorrhages and infarcts. In the exposed SHR brains, large infarcts of the hemisphere and in the basal ganglia were found, which possibly corresponds to the increase of the mortality rate in SHR. We assume that the increase hematocrit plays an important role in the disturbance of microcirculation of the CNS.

  17. Quantitative analysis of menthol in human urine using solid phase microextraction and stable isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Huang, Wenlin; Blount, Benjamin C; Watson, Clifford H; Watson, Christina; Chambers, David M

    2017-02-15

    To accurately measure menthol levels in human urine, we developed a method using gas chromatography/electron ionization mass spectrometry with menthol-d4 stable isotope internal standardization. We used solid phase microextraction (SPME) headspace sampling for collection, preconcentration and automation. Conjugated forms of menthol were released using β-glucuronidase/sulfatase to allow for measuring total menthol. Additionally, we processed the specimens without using β-glucuronidase/sulfatase to quantify the levels of unconjugated (free) menthol in urine. This method was developed to verify mentholated cigarette smoking status to study the influence of menthol on smoking behaviour and exposure. This objective was accomplished with this method, which has no carryover or memory from the SPME fiber assembly, a method detection limit of 0.0017μg/mL, a broad linear range of 0.002-0.5μg/mL for free menthol and 0.01-10μg/mL for total menthol, a 7.6% precision and 88.5% accuracy, and an analysis runtime of 17min. We applied this method in analysis of urine specimens collected from cigarette smokers who smoke either mentholated or non-mentholated cigarettes. Among these smokers, the average total urinary menthol levels was three-fold higher (p<0.001) among mentholated cigarette smokers compared with non-mentholated cigarette smokers.

  18. Comparison of two tracer gas dilution methods for the determination of clothing ventilation and of vapour resistance.

    PubMed

    Havenith, George; Zhang, Ping; Hatcher, Kent; Daanen, Hein

    2010-04-01

    Clothing microclimate ventilation is an important parameter in climatic stress and in contaminated environments. The two main methods for its determination (Crockford et al. (CR) 1972 and Lotens and Havenith (LH) 1988) were, after further development, compared in terms of reproducibility, validity and usability. Both methods were shown to have a good sensitivity and reproducibility (with average coefficients of variation 1.5-2.3% for the method alone and up to 7% for method and clothing/movement effects combined). They produced values very close to calibration values in forced ventilation tests (r = 0.988). Weak points for the CR method were the limits in the time constant of the measurement apparatus, causing an upper limit to the ventilation that can be reliably measured (around 800 l/min) and the method of measuring clothing microclimate volume. The original 'vacuum oversuit' (CR) method was cumbersome and prone to large errors. Alternative methods of measuring clothing microclimate volume (whole body scanner or manual circumference measurements) were shown to produce good results. For the LH method, the distribution of the tracer gas over the whole skin surface became a problem factor at very high ventilations (above 1000 l/min). As all methods use tracer gases (O(2), Ar, CO(2), SF(6)) with diffusivities smaller than that of water vapour, this potentially creates a problem in the calculation of vapour resistance from the ventilation values in the region where the emphasis of vapour transfer moves from diffusion to convection. In most real-life situations, where body and air movement are present, a correction is not however required because the error remains below 10%. STATEMENT OF RELEVANCE: Clothing ventilation indicates heat loss potential as well as risk of pollutants entering the clothing. Two main methods for its determination are compared and validated, identifying a number of issues. An in-depth analysis is given of the advantages and disadvantages of

  19. Application of the carbon dioxide-barium hydroxide hydrate gas-solid reaction for the treatment of dilute carbon dioxide-bearing gas streams

    SciTech Connect

    Haag, G.L.

    1983-09-01

    The removal of trace components from gas streams via irreversible gas-solid reactions in an area of interest to the chemical engineering profession. This research effort addresses the use of fixed beds of Ba(OH)/sub 2/ hydrate flakes for the removal of an acid gas, CO/sub 2/, from air that contains approx. 330 ppM/sub v/ CO/sub 2/. Areas of investigation encompassed: (1) an extensive literature review of Ba(OH)/sub 2/ hydrate chemistry, (2) microscale studies on 0.150-g samples to develop a better understanding of the reaction, (3) process studies at the macroscale level with 10.2-cm-ID fixed-bed reactors, and (4) the development of a model for predicting fixed-bed performance. Experimental studies indicated fixed beds of commercial Ba(OH)/sub 2/.8H/sub 2/O flakes at ambient temperatures to be capable of high CO/sub 2/-removal efficiencies (effluent concentrations <100 ppB), high reactant utilization (>99%), and an acceptable pressure drop (1.8 kPa/m at a superficial gas velocity of 13 cm/s). Ba(OH)/sub 2/.8H/sub 2/O was determined to be more reactive toward CO/sub 2/ than either Ba(OH)/sub 2/.3H/sub 2/O or Ba(OH)/sub 2/.1H/sub 2/O. A key variable in the development of this fixed-bed process was relative humidity. Operation at conditions with effluent relative humidities >60% resulted in significant recrystallization and restructuring of the flake and subsequent pressure-drop problems.

  20. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  1. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter. [5 FR 31, Jan. 4, 1940]...

  2. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  3. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter....

  4. 7 CFR 201.19 - Inert matter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Inert matter. 201.19 Section 201.19 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.19 Inert matter. The label shall show the percentage by weight of inert matter. [5 FR 31, Jan. 4, 1940]...

  5. Development of an equilibrium headspace gas chromatographic method for the measurement of noncovalent association and partitioning of n-alkylbenzenes at infinite dilution in fulvic acid pseudophase.

    PubMed

    Eljack, Mahmoud D; Wilson, Rachael E; Hussam, Abul; Khan, Shahamat U

    2015-02-27

    Fulvic acid (FA), the most important water soluble fraction of humic substances in nature, is known to form aggregate pseudophase and complexes with organic and inorganic species. Here, we report a novel equilibrium headspace gas chromatography (eHSGC) and a two-step reaction model to measure n-alkylbenzene-FA association constant (K11) and n-alkylbenzene-pseudophase FAn association constant (Kn1) without solute concentration and response factor. The K11 and Kn1 values were 2-3 orders of magnitude higher than those for sodium dodecylsulfate. Changes in peak area were used to calculate the critical FA-aggregation concentration (cfc), mole fraction based partition coefficients (Kx), activity coefficients of solute inside the aggregate pseudophase (γm(∞)), and transfer free energies of alkyl CH2 at infinite dilution. The cfc was found to be 10±0.5μM. The Kx values are of the order of 10(7) in the FA-aggregate pseudophase. The data shows that benzene has the lowest (0.0002) and n-butylbenzene has the highest (0.01) γm(∞) values, which are seven orders of magnitude smaller than γw(∞) in water. The transfer free energy of association of a CH2 group, -155cal/mol, compared to that of benzene, -9722cal/mol, indicates that the FA-aggregate pseudophase is more polarizable benzene-like and less n-alkane aliphatic-like.

  6. Determination of nerve agent metabolites in human urine by isotope-dilution gas chromatography-tandem mass spectrometry after solid phase supported derivatization.

    PubMed

    Lin, Ying; Chen, Jia; Yan, Long; Guo, Lei; Wu, Bidong; Li, Chunzheng; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A simple and sensitive method has been developed and validated for determining ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA), isobutyl methylphosphonic acid (iBuMPA), and pinacolyl methylphosphonic acid (PMPA) in human urine using gas chromatography-tandem mass spectrometry (GC-MS/MS) coupled with solid phase derivatization (SPD). These four alkyl methylphosphonic acids (AMPAs) are specific hydrolysis products and biomarkers of exposure to classic organophosphorus (OP) nerve agents VX, sarin, RVX, and soman. The AMPAs in urine samples were directly derivatized with pentafluorobenzyl bromide on a solid support and then extracted by liquid-liquid extraction. The analytes were quantified with isotope-dilution by negative chemical ionization (NCI) GC-MS/MS in a selected reaction monitoring (SRM) mode. This method is highly sensitive, with the limits of detection of 0.02 ng/mL for each compound in a 0.2 mL sample of human urine, and an excellent linearity from 0.1 to 50 ng/mL. It is proven to be very suitable for the qualitative and quantitative analyses of degradation markers of OP nerve agents in biomedical samples.

  7. Quantification of 13 priority polycyclic aromatic hydrocarbons in human urine by headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry.

    PubMed

    Campo, Laura; Mercadante, Rosa; Rossella, Federica; Fustinoni, Silvia

    2009-01-12

    Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants in both living and working environments. The aim of this study was the development of a headspace solid-phase microextraction gas chromatography-isotope dilution mass spectrometry (HS-SPME/GC-IDMS) method for the simultaneous quantification of 13 PAHs in urine samples. Different parameters affecting PAHs extraction by HS-SPME were considered and optimized: type/thickness of fiber coatings, extraction temperature/time, desorption temperature/time, ionic strength and sample agitation. The stability of spiked PAHs solutions and of real urine samples stored up to 90 days in containers of different materials was evaluated. In the optimized method, analytes were absorbed for 60min at 80 degrees C in the sample headspace with a 100mum polydimethylsiloxane fiber. The method is very specific, with linear range from the limit of quantification to 8.67 x 10(3)ngL(-1), a within-run precision of <20% and a between-run precision of <20% for 2-, 3- and 4-ring compounds and of <30% for 5-ring compounds, trueness within 20% of the spiked concentration, and limit of quantification in the 2.28-2.28 x 10(1)ngL(-1) range. An application of the proposed method using 15 urine samples from subjects exposed to PAHs at different environmental levels is shown.

  8. Quantification of 2-acetyl-1-pyrroline in rice by stable isotope dilution assay through headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry.

    PubMed

    Maraval, Isabelle; Sen, Kemal; Agrebi, Abdelhamid; Menut, Chantal; Morere, Alain; Boulanger, Renaud; Gay, Frédéric; Mestres, Christian; Gunata, Ziya

    2010-08-24

    A new and convenient synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice, and its ring-deuterated analog, 2-acetyl-1-d(2)-pyrroline (2AP-d(2)), was reported. A stable isotope dilution assay (SIDA), involving headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-positive chemical ionization-ion trap-tandem mass spectrometry (GC-PCI-IT-MS-MS), was developed for 2AP quantification. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for HS-SPME procedure and parameters affecting analytes recovery, such as extraction time and temperature, pH and salt, were studied. The repeatability of the method (n=10) expressed as relative standard deviation (RSD) was 11.6%. A good linearity was observed from 5.9 to 779 ng of 2AP (r(2)=0.9989). Limits of detection (LOD) and quantification (LOQ) for 2AP were 0.1 and 0.4 ng g(-1) of rice, respectively. The recovery of spiked 2AP from rice matrix was almost complete. The developed method was applied to the quantification of 2AP in aerial parts and grains of scented and non-scented rice cultivars.

  9. Isotope dilution high-resolution gas chromatography/high-resolution mass spectrometry method for analysis of selected acidic herbicides in surface water.

    PubMed

    Woudneh, Million B; Sekela, Mark; Tuominen, Taina; Gledhill, Melissa

    2006-11-10

    In this work, an isotope dilution method for determination of selected acidic herbicides by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. Average percent recoveries of native analytes were observed to be between 70.8 and 93.5% and average recoveries of labeled quantification standards [(13)C(6)]2,4-D and [(13)C(6)]2,4,5-T were 85.5 and 101%, respectively. Using this method, detection limits of 0.05 ng/L for dicamba, MCPA, MCPP, and triclopyr, and 0.5 ng/L for 2,4-D were routinely achieved. The method was applied to measuring the concentration of these analytes in surface water samples collected from five sampling locations in the Lower Fraser Valley region of British Columbia, Canada. All of the herbicides monitored were detected at varying levels in the surface water samples collected. The highest concentrations detected for each analyte were 345 ng/L for 2,4-D, 317 ng/L for MCPA, 271 ng/L for MCPP, 15.7 ng/L for dicamba, and 2.18 ng/L for triclopyr. Average detection frequencies of the herbicides were 95% for MCPA, 80% for MCPP, 70% for dicamba, 65% for 2,4-D, and 46% for triclopyr. Seasonal variations of herbicide levels are also discussed.

  10. Isotope dilution gas chromatography with mass spectrometry for the analysis of 4-octyl phenol, 4-nonylphenol, and bisphenol A in vegetable oils.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Yang, Dajin; Zhang, Jing; Hu, Zhengyan; Wang, Liyuan; Ma, Bingjie

    2016-03-01

    By the combination of solid-phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine-disrupting chemicals including bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils was established. The application of a silica/N-(n-propyl)ethylenediamine mixed solid-phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4-octylphenol, and 4-nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5-110.3%, recovery of the added 4-octylphenol was 64.4-87.4%, and that of 4-nonylphenol was 68.2-89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected.

  11. Physicochemical characterization of D-mannitol polymorphs: the challenging surface energy determination by inverse gas chromatography in the infinite dilution region.

    PubMed

    Cares-Pacheco, M G; Vaca-Medina, G; Calvet, R; Espitalier, F; Letourneau, J-J; Rouilly, A; Rodier, E

    2014-11-20

    Nowadays, it is well known that surface interactions play a preponderant role in mechanical operations, which are fundamental in pharmaceutical processing and formulation. Nevertheless, it is difficult to correlate surface behaviour in processes to physical properties measurement. Indeed, most pharmaceutical solids have multiple surface energies because of varying forms, crystal faces and impurities contents or physical defects, among others. In this paper, D-mannitol polymorphs (α, β and δ) were studied through different characterization techniques highlighting bulk and surface behaviour differences. Due to the low adsorption behaviour of β and δ polymorphs, special emphasis has been paid to surface energy analysis by inverse gas chromatography, IGC. Surface energy behaviour has been studied in Henry's domain showing that, for some organic solids, the classical IGC infinite dilution zone is never reached. IGC studies highlighted, without precedent in literature, dispersive surface energy differences between α and β mannitol, with a most energetically active α form with a γ(s)(d) of 74.9 mJ·m⁻². Surface heterogeneity studies showed a highly heterogeneous α mannitol with a more homogeneous β (40.0 mJ·m⁻²) and δ mannitol (40.3 mJ·m⁻²). Moreover, these last two forms behaved similarly considering surface energy at different probe concentrations.

  12. Liquid paraffin as new dilution medium for the analysis of high boiling point residual solvents with static headspace-gas chromatography.

    PubMed

    D'Autry, Ward; Zheng, Chao; Bugalama, John; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Wang, Bochu; Van Schepdael, Ann

    2011-07-15

    Residual solvents are volatile organic compounds which can be present in pharmaceutical substances. A generic static headspace-gas chromatography analysis method for the identification and control of residual solvents is described in the European Pharmacopoeia. Although this method is proved to be suitable for the majority of samples and residual solvents, the method may lack sensitivity for high boiling point residual solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide and benzyl alcohol. In this study, liquid paraffin was investigated as new dilution medium for the analysis of these residual solvents. The headspace-gas chromatography method was developed and optimized taking the official Pharmacopoeia method as a starting point. The optimized method was validated according to ICH criteria. It was found that the detection limits were below 1μg/vial for each compound, indicating a drastically increased sensitivity compared to the Pharmacopoeia method, which failed to detect the compounds at their respective limit concentrations. Linearity was evaluated based on the R(2) values, which were above 0.997 for all compounds, and inspection of residual plots. Instrument and method precision were examined by calculating the relative standard deviations (RSD) of repeated analyses within the linearity and accuracy experiments, respectively. It was found that all RSD values were below 10%. Accuracy was checked by a recovery experiment at three different levels. Mean recovery values were all in the range 95-105%. Finally, the optimized method was applied to residual DMSO analysis in four different Kollicoat(®) sample batches.

  13. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  14. Nonlinear Pressure Shifts of Rubidium in Inert Gases

    NASA Astrophysics Data System (ADS)

    McGuyer, Bart; Jau, Yuan-Yu; Happer, William

    2009-05-01

    Vapor-cell atomic frequency standards are based on the hyperfine (microwave) magnetic-resonance frequencies of optically pumped alkali-metal atoms in inert buffer gas. Through the hyperfine-shift interaction, buffer gas induces pressure shift and broadening in these microwave resonances. Previous work uncovered nonlinear dependence in the pressure shifts of ^87Rb and Cs atoms to the pressure of buffer gases Ar and Kr, but not He or N2. The nonlinearity is thought to result from alteration to the hyperfine-shift interaction due to temporary van der Waals molecules formed between alkali-metal and buffer-gas atoms. We investigate nonlinear pressure shifts for both isotopes of Rb, ^87Rb and ^85Rb. This study will test the current model for nonlinear pressure shifts of alkali metals in inert gases.

  15. Inert doublet model and LEP II limits

    SciTech Connect

    Lundstroem, Erik; Gustafsson, Michael; Edsjoe, Joakim

    2009-02-01

    The inert doublet model is a minimal extension of the standard model introducing an additional SU(2) doublet with new scalar particles that could be produced at accelerators. While there exists no LEP II analysis dedicated for these inert scalars, the absence of a signal within searches for supersymmetric neutralinos can be used to constrain the inert doublet model. This translation however requires some care because of the different properties of the inert scalars and the neutralinos. We investigate what restrictions an existing DELPHI Collaboration study of neutralino pair production can put on the inert scalars and discuss the result in connection with dark matter. We find that although an important part of the inert doublet model parameter space can be excluded by the LEP II data, the lightest inert particle still constitutes a valid dark matter candidate.

  16. Simultaneous determination of amphetamine and methamphetamine enantiomers in urine by simultaneous liquid-liquid extraction and diastereomeric derivatization followed by gas chromatographic-isotope dilution mass spectrometry.

    PubMed

    Wang, Sheng-Meng; Wang, Ting-Cheng; Giang, Yun-Seng

    2005-02-25

    A simple, rapid, reliable, and economic analytical scheme starting with in situ liquid-liquid extraction and asymmetric (or diastereomeric) chemical derivatization (ChD) followed by gas chromatography (GC)-isotope dilution mass spectrometry (MS) is described for the simultaneous determination of D- and L-amphetamine (AP) and methamphetamine (MA) in urine which could have resulted from the administration of various forms of questioned amphetamines or amphetamines-generating drugs. By using L-N-trifluoroacetyl-1-prolyl chloride (L-TPC) as chiral derivatizing agent, resolutions of 2.2 and 2.0 were achieved for the separation of AP and MA enantiomeric pairs, respectively, on an ordinary HP-5MS capillary column. The GC-MS quantitation was carried out in the selected ion monitoring (SIM) mode using m/z 237 and 251 as the quantifier ions for the respective diastereomeric pairs of AP-L-TPC and MA-L-TPC. The calibration curves plotted for the two pairs of analytes stretch with good linearity down to 45 ng/mL, and the limits of detection and quantitation determined were as low as 40 and 45 ng/mL, respectively. Also, a comparative study using 10 real-case urine specimens previously screened as positive for MA administration showed mostly tolerable biases between the two sums (of concentration) of D- and L-MA obtained via an asymmetric L-TPC-ChD approach and via an ordinary pentafluoropropionylation (PFPA-ChD) approach, respectively, as well as between the two sums of D- and L-AP obtained thereupon, thus validating the proposed analytical scheme as a promising forensic protocol for the detailed analysis of enantiomeric amphetamines in urine.

  17. Application of the reference method isotope dilution gas chromatography mass spectrometry (ID/GC/MS) to establish metrological traceability for calibration and control of blood glucose test systems.

    PubMed

    Andreis, Elisabeth; Küllmer, Kai; Appel, Matthias

    2014-05-01

    Self-monitoring of blood glucose (BG) by means of handheld BG systems is a cornerstone in diabetes therapy. The aim of this article is to describe a procedure with proven traceability for calibration and evaluation of BG systems to guarantee reliable BG measurements. Isotope dilution gas chromatography mass spectrometry (ID/GC/MS) is a method that fulfills all requirements to be used in a higher-order reference measurement procedure. However, this method is not applicable for routine measurements because of the time-consuming sample preparation. A hexokinase method with perchloric acid (PCA) sample pretreatment is used in a measurement procedure for such purposes. This method is directly linked to the ID/GC/MS method by calibration with a glucose solution that has an ID/GC/MS-determined target value. BG systems are calibrated with whole blood samples. The glucose levels in such samples are analyzed by this ID/GC/MS-linked hexokinase method to establish traceability to higher-order reference material. For method comparison, the glucose concentrations in 577 whole blood samples were measured using the PCA-hexokinase method and the ID/GC/MS method; this resulted in a mean deviation of 0.1%. The mean deviation between BG levels measured in >500 valid whole blood samples with BG systems and the ID/GC/MS was 1.1%. BG systems allow a reliable glucose measurement if a true reference measurement procedure, with a noninterrupted traceability chain using ID/GC/MS linked hexokinase method for calibration of BG systems, is implemented. Systems should be calibrated by means of a traceable and defined measurement procedure to avoid bias.

  18. Thermodynamics of Dilute Solutions.

    ERIC Educational Resources Information Center

    Jancso, Gabor; Fenby, David V.

    1983-01-01

    Discusses principles and definitions related to the thermodynamics of dilute solutions. Topics considered include dilute solution, Gibbs-Duhem equation, reference systems (pure gases and gaseous mixtures, liquid mixtures, dilute solutions), real dilute solutions (focusing on solute and solvent), terminology, standard states, and reference systems.…

  19. Monitoring urinary metabolites resulting from sulfur mustard exposure in rabbits, using highly sensitive isotope-dilution gas chromatography-mass spectrometry.

    PubMed

    Nie, Zhiyong; Zhang, Yajiao; Chen, Jia; Lin, Ying; Wu, Bidong; Dong, Yuan; Feng, Jianlin; Liu, Qin; Xie, Jianwei

    2014-08-01

    A highly sensitive method for the determination of sulfur mustard (SM) metabolites thiodiglycol (TDG) and thiodiglycol sulfoxide (TDGO) in urine was established and validated using isotope-dilution negative-ion chemical ionization (NICI) gas chromatography-mass spectrometry (GC-MS). TDGO in the samples was reduced with TiCl3, and then determined together with TDG as a single analyte. The sample preparation procedures, including two solid-phase-extraction (SPE) clean-up steps, were optimized to improve the sensitivity of the method. The limits of detection (LOD) for both TDG and TDG plus TDGO (TDG + TDGO) were 0.1 ng mL(-1), and the limits of quantitation (LOQ) for both were 0.3 ng mL(-1). The method was used in a rabbit cutaneous SM exposure model. Domestic rabbits were exposed to neat liquid SM at three dosage levels (0.02, 0.05, and 0.15 LD50), and the urinary excretion of four species of hydrolysis metabolites, namely free TDG, free plus conjugated TDG (total TDG), free TDG + TDGO, and free plus conjugated TDG + TDGO (total TDG + TDGO), was evaluated to investigate the metabolic processes. The total urinary excretion profiles of the metabolites, including the peak time, time window, and dose-response and time-response relationships, were clarified. The results revealed that the concentrations of TDG and TDG + TDGO in the urine increased quickly and then decreased rapidly in the first two days after SM exposure. The cumulative amount of total TDG + TDGO excreted in urine during the first five days accounted for 0.5-1% of the applied dose of SM. It is also concluded that TDG and TDGO in urine existed mainly in free form, the levels of glucuronide and of sulfate conjugates of TDG or TDGO were very low, and most hydrolysis metabolites were present in the oxidized form (TDGO). The study indicates that the abnormal increase of TDG and TDGO excretion levels can be used as a diagnostic indicator and establishes a reference time-window for retrospective analysis and

  20. Discovery and microassay of a nitrite-dependent carbonic anhydrase activity by stable-isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Zinke, Maximilian; Hanff, Erik; Böhmer, Anke; Supuran, Claudiu T; Tsikas, Dimitrios

    2016-01-01

    The intrinsic activity of carbonic anhydrase (CA) is the hydration of CO2 to carbonic acid and its dehydration to CO2. CA may also function as esterase and phosphatase. Recently, we demonstrated that renal CA is mainly responsible for the reabsorption of nitrite (NO2(-)) which is the most abundant reservoir of the biologically highly potent nitric oxide (NO). By means of a stable-isotope dilution GC-MS method, we discovered a novel CA activity which strictly depends upon nitrite. We found that bovine erythrocytic CAII (beCAII) catalyses the incorporation of (18)O from H2 (18)O into nitrite at pH 7.4. After derivatization with pentafluorobenzyl bromide, gas chromatographic separation and mass spectrometric analysis, we detected ions at m/z 48 for singly (18)O-labelled nitrite ((16)O=N-(18)O(-)/(18)O=N-(16)O(-)) and at m/z 50 for doubly (18)O-labelled nitrite ((18)O=N-(18)O(-)) in addition to m/z 46 for unlabelled nitrite. Using (15)N-labelled nitrite ((15)NO2 (-), m/z 47) as an internal standard and selected-ion monitoring of m/z 46, m/z 48, m/z 50 and m/z 47, we developed a GC-MS microassay for the quantitative determination of the nitrite-dependent beCAII activity. The CA inhibitors acetazolamide and FC5 207A did not alter beCAII-catalysed formation of singly and doubly (18)O-labelled nitrite. Cysteine and the experimental CA inhibitor DIDS (a diisothiocyanate) increased several fold the beCAII-catalysed formation of the (18)O-labelled nitrite species. Cysteine, acetazolamide, FC5 207A, and DIDS by themselves had no effect on the incorporation of (18)O from H2 (18)O into nitrite. We conclude that erythrocytic CA possesses a nitrite-dependent activity which can only be detected when nitrite is used as the substrate and the reaction is performed in buffers of neutral pH values prepared in H2 (18)O. This novel CA activity, i.e., the nitrous acid anhydrase activity, represents a bioactivation of nitrite and may have both beneficial (via S-nitrosylation and subsequent

  1. Inert blanketing of a hydride bed using typical grade protium

    SciTech Connect

    Klein, J.E.

    2015-03-15

    This paper describes the impact of 500 ppm (0.05%) impurities in protium on the absorption rate of a 9.66 kg LaNi{sub 4.25}Al{sub 0.75} (LANA0.75) metal hydride bed. The presence of 500 ppm or less inerts (i.e. non-hydrogen isotopes) can significantly impact hydrogen bed absorption rates. The impact on reducing absorption rates is significantly greater than predicted assuming uniform temperature, pressure, and compositions throughout the bed. Possible explanations are discussed. One possibility considered was the feed gas contained impurity levels higher than 500 ppm. It was shown that a level of 5000 ppm of inerts would have been necessary to fit the experimental result so this possibility wa dismissed. Another possibility is that the impurities in the protium supply reacted with the hydride material and partially poisoned the hydride. If the hydride were poisoned with CO or another impurity, the removal of the over-pressure gas in the bed would not be expected to allow the hydride loading of the bed to continue as the experimental results showed, so this possibility was also dismissed. The last possibility questions the validity of the calculations. It is assumed in all the calculations that the gas phase composition, temperature, and pressure are uniform throughout the bed. These assumptions are less valid for large beds where there can be large temperature, pressure, and composition gradients throughout the bed. Eventually the impact of 0.05% inerts in protium on bed absorption rate is shown and explained in terms of an increase in inert partial pressure as the bed was loaded.

  2. Relativistic Quantum Chemistry of Heavy Elements: Interatomic potentials and Lines Shift for Systems 'Alkali Elements-Inert Gases'

    SciTech Connect

    Glushkov, A. V.; Khetselius, O.; Gurnitskaya, E.; Loboda, A.; Mischenko, E.

    2009-03-09

    New relativistic approach, based on the gauge-invariant perturbation theory (PT) with using the optimized wave functions basis's, is applied to calculating the inter atomic potentials, hyper fine structure (hfs) collision shift for alkali atoms in atmosphere of inert gases. Data for inter atomic potentials, collision shifts of the Rb and Cs atoms in atmosphere of the inert gas He are presented.

  3. Simultaneous determination of creatinine and creatine in human serum by double-spike isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Fernández-Fernández, Mario; Rodríguez-González, Pablo; Añón Álvarez, M Elena; Rodríguez, Felix; Menéndez, Francisco V Álvarez; García Alonso, J Ignacio

    2015-04-07

    This work describes the first multiple spiking isotope dilution procedure for organic compounds using (13)C labeling. A double-spiking isotope dilution method capable of correcting and quantifying the creatine-creatinine interconversion occurring during the analytical determination of both compounds in human serum is presented. The determination of serum creatinine may be affected by the interconversion between creatine and creatinine during sample preparation or by inefficient chemical separation of those compounds by solid phase extraction (SPE). The methodology is based on the use differently labeled (13)C analogues ((13)C1-creatinine and (13)C2-creatine), the measurement of the isotopic distribution of creatine and creatinine by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and the application of multiple linear regression. Five different lyophilized serum-based controls and two certified human serum reference materials (ERM-DA252a and ERM-DA253a) were analyzed to evaluate the accuracy and precision of the proposed double-spike LC-MS/MS method. The methodology was applied to study the creatine-creatinine interconversion during LC-MS/MS and gas chromatography-mass spectrometry (GC-MS) analyses and the separation efficiency of the SPE step required in the traditional gas chromatography-isotope dilution mass spectrometry (GC-IDMS) reference methods employed for the determination of serum creatinine. The analysis of real serum samples by GC-MS showed that creatine-creatinine separation by SPE can be a nonquantitative step that may induce creatinine overestimations up to 28% in samples containing high amounts of creatine. Also, a detectable conversion of creatine into creatinine was observed during sample preparation for LC-MS/MS. The developed double-spike LC-MS/MS improves the current state of the art for the determination of creatinine in human serum by isotope dilution mass spectrometry (IDMS), because corrections are made for all the possible errors

  4. Dilutions Made Easy.

    ERIC Educational Resources Information Center

    Kamin, Lawrence

    1996-01-01

    Presents problems appropriate for high school and college students that highlight dilution methods. Promotes an understanding of dilution methods in order to prevent the unnecessary waste of chemicals and glassware in biology laboratories. (JRH)

  5. Serial Dilution Simulation Lab

    ERIC Educational Resources Information Center

    Keler, Cynthia; Balutis, Tabitha; Bergen, Kim; Laudenslager, Bryanna; Rubino, Deanna

    2010-01-01

    Serial dilution is often a difficult concept for students to understand. In this short dry lab exercise, students perform serial dilutions using seed beads. This exercise helps students gain skill at performing dilutions without using reagents, bacterial cultures, or viral cultures, while being able to visualize the process.

  6. Dynamics of galloping detonations: inert hydrodynamics with pulsed energy release

    NASA Astrophysics Data System (ADS)

    Radulescu, Matei I.; Shepherd, Joseph E.

    2015-11-01

    Previous models for galloping and cellular detonations of Ulyanitski, Vasil'ev and Higgins assume that the unit shock decay or cell can be modeled by Taylor-Sedov blast waves. We revisit this concept for galloping detonations, which we model as purely inert hydrodynamics with periodically pulsed energy deposition. At periodic time intervals, the chemical energy of the non-reacted gas accumulating between the lead shock and the contact surface separating reacted and non reacted gas is released nearly instantaneously. In between these pulses, the gas evolves as an inert medium. The resulting response of the gas to the periodic forcing is a sudden gain in pressure followed by mechanical relaxation accompanied by strong shock waves driven both forward and backwards. It is shown that the decay of the lead shock in-between pulses follows an exponential decay, whose time constant is controlled by the frequency of the energy deposition. More-over, the average speed of the lead shock is found to agree within 2 percent to the ideal Chapman-Jouguet value, while the large scale dynamics of the wave follows closely the ideal wave form of a CJ wave trailed by a Taylor expansion. When friction and heat losses are accounted for, velocity deficits are predicted, consistent with experiment. Work performed while MIR was on sabbatical at Caltech.

  7. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  8. Axial grading of inert matrix fuels

    SciTech Connect

    Recktenwald, G. D.; Deinert, M. R.

    2012-07-01

    Burning actinides in an inert matrix fuel to 750 MWd/kg IHM results in a significant reduction in transuranic isotopes. However, achieving this level of burnup in a standard light water reactor would require residence times that are twice that of uranium dioxide fuels. The reactivity of an inert matrix assembly at the end of life is less than 1/3 of its beginning of life reactivity leading to undesirable radial and axial power peaking in the reactor core. Here we show that axial grading of the inert matrix fuel rods can reduce peaking significantly. Monte Carlo simulations are used to model the assembly level power distributions in both ungraded and graded fuel rods. The results show that an axial grading of uranium dioxide and inert matrix fuels with erbium can reduces power peaking by more than 50% in the axial direction. The reduction in power peaking enables the core to operate at significantly higher power. (authors)

  9. Microfluidic serial dilution ladder.

    PubMed

    Ahrar, Siavash; Hwang, Michelle; Duncan, Philip N; Hui, Elliot E

    2014-01-07

    Serial dilution is a fundamental procedure that is common to a large number of laboratory protocols. Automation of serial dilution is thus a valuable component for lab-on-a-chip systems. While a handful of different microfluidic strategies for serial dilution have been reported, approaches based on continuous flow mixing inherently consume larger amounts of sample volume and chip real estate. We employ valve-driven circulatory mixing to address these issues and also introduce a novel device structure to store each stage of the dilution process. The dilution strategy is based on sequentially mixing the rungs of a ladder structure. We demonstrate a 7-stage series of 1 : 1 dilutions with R(2) equal to 0.995 in an active device area of 1 cm(2).

  10. The mathematics of dilution.

    PubMed

    Chatterjee, Barun Kumar

    2014-04-01

    The major objection to homeopathic medicine is that the doses of medicine prescribed in some cases are too dilute for any active ingredient to be present. The medicines would hence be rendered inactive, necessitating novel explanations for the action. A further examination of dilution in the light of the Langmuir equation shows that homeopathic medicines may not be as dilute as a simplistic application of Avogadro's Principle suggests, due to surface effects.

  11. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  12. Performance of an adjustable, threaded inertance tube

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Pfotenhauer, J. M.; Nellis, G. F.; Liu, S. Y.

    2015-12-01

    The performance of the Stirling type pulse tube cryocooler depends strongly on the design of the inertance tube. The phase angle produced by the inertance tube is very sensitive to its diameter and length. Recent developments are reported here regarding an adjustable inertance device that can be adjusted in real time. The inertance passage is formed by the root of a concentric cylindrical threaded device. The depth of the threads installed on the outer screw varies. In this device, the outer screw can be rotated four and half turns. At the zero turn position the length of the passage is 1.74 m and the hydraulic diameter is 7 mm. By rotating the outer screw, the inner threaded rod engages with additional, larger depth threads. Therefore, at its upper limit of rotation, the inertance passage includes both the original 1.74 m length with 7mm hydraulic diameter plus an additional 1.86 m length with a 10 mm hydraulic diameter. A phase shift change of 24° has been experimentally measured by changing the position of outer screw while operating the device at a frequency of 60 Hz. This phase angle shift is less than the theoretically predicted value due to the presence of a relatively large leak through the thread clearance. Therefore, the distributed component model of the inertance tube was modified to account for the leak path causing the data to agree with the model. Further, the application of vacuum grease to the threads causes the performance of the device to improve substantially.

  13. Inert strength of pristine silica glass fibers

    SciTech Connect

    Smith, W.L.; Michalske, T.A.

    1993-11-01

    Silica glass fibers have been produced and tested under ultra high vacuum (UHV) conditions to investigate the inert strength of pristine fibers in absence of reactive agents. Analysis of the coefficient of variation in diameter ({upsilon}{sub d}) vs the coefficient of variation of breaking strength ({upsilon}{sub {sigma}}) does not adequately explain the variation of breaking stress. Distribution of fiber tensile strength data suggests that the inert strength of such fibers is not single valued and that the intrinsic strength is controlled by defects in the glass. Furthermore, comparison of room temperature UHV data with LN{sub 2} data indicates that these intrinsic strengths are not temperature dependent.

  14. a Study of Behavior of Inert Gases in Some Candidate Materials for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Zhang, C. H.; Chen, K. Q.; Wang, Y. S.; Sun, J. G.; Hu, B. F.; Donnelly, S. E.

    2003-06-01

    This paper gives a review of our study of inert gases (helium, argon) in several materials candidate to future fusion reactors. The study is focused on the agglomeration of gas atoms and formation of nanoscale cavities in several materials including stainless steels and silicon carbide under irradiation with ions with energy ranging from 10 keV to 100 MeV.

  15. Two systems developed for purifying inert atmospheres

    NASA Technical Reports Server (NTRS)

    Foster, M. S.; Johnson, C. E.; Kyle, M. L.

    1969-01-01

    Two systems, one for helium and one for argon, are used for purifying inert atmospheres. The helium system uses an activated charcoal bed at liquid nitrogen temperature to remove oxygen and nitrogen. The argon system uses heated titanium sponge to remove nitrogen and copper wool beds to remove oxygen. Both use molecular sieves to remove water vapor.

  16. ɛ -pseudoclassical model for quantum resonances in a cold dilute atomic gas periodically driven by finite-duration standing-wave laser pulses

    NASA Astrophysics Data System (ADS)

    Beswick, Benjamin T.; Hughes, Ifan G.; Gardiner, Simon A.; Astier, Hippolyte P. A. G.; Andersen, Mikkel F.; Daszuta, Boris

    2016-12-01

    Atom interferometers are a useful tool for precision measurements of fundamental physical phenomena, ranging from the local gravitational-field strength to the atomic fine-structure constant. In such experiments, it is desirable to implement a high-momentum-transfer "beam splitter," which may be achieved by inducing quantum resonance in a finite-temperature laser-driven atomic gas. We use Monte Carlo simulations to investigate these quantum resonances in the regime where the gas receives laser pulses of finite duration and derive an ɛ -classical model for the dynamics of the gas atoms which is capable of reproducing quantum resonant behavior for both zero-temperature and finite-temperature noninteracting gases. We show that this model agrees well with the fully quantum treatment of the system over a time scale set by the choice of experimental parameters. We also show that this model is capable of correctly treating the time-reversal mechanism necessary for implementing an interferometer with this physical configuration and that it explains an unexpected universality in the dynamics.

  17. Isotope dilution analysis of polychlorinated biphenyls (PCBs) in transformer oil and global commercial PCB formulations by high resolution gas chromatography-high resolution mass spectrometry.

    PubMed

    Takasuga, Takumi; Senthilkumar, Kurunthachalam; Matsumura, Tohru; Shiozaki, Ken; Sakai, Shin-ichi

    2006-01-01

    Special polychlorinated biphenyls (PCBs) standards (native and isotope labeled) were analyzed by isotope dilution method using HRGC-HRMS. Multiple analysis of special PCBs standards by three different laboratories produced the relative response factors (RRFs) and relative standard deviations (RSDs %) was in the average of 0.979 and 3.86, respectively. Additionally, inter-laboratory analysis of various forms of transformer oil revealed the PCBs concentrations were in the following order; PCBs fortified transformer oil (940-1300 ng/g)>PCB polluted transformer oil (490-680 ng/g)>chemically degraded-transformer oil (480-490 ng/g) and PCBs free oil (ND-17 ng/g). Chemical degradation resulted in an order of magnitude decrease in the PCB concentrations. Specifically, higher chlorinated PCBs degraded into lower chlorinated PCBs. Also, composition of PCBs have been determined in PCB formulations from Japan (Kanechlor), Germany (Clophen), USA (Aroclor), Russia (Sovol) and Poland (Chlorofen). Major PCBs (24-PCB congeners) contributed 54-67%, 55-68%, 16-69%, 71% and 72% in Kanechlor, Clophen, Aroclor, Sovol and Chlorofen, respectively to total PCBs. The homologue pattern of Kanechlor, Aroclor and Clophen in technical fromulation was similar (e.g., Kanechlor-300 resembled to those of Clophen A-30 and Aroclor-1242). Furthermore, congener-specific distributions of major PCBs/dioxin-like PCBs and toxic equivalency quantities (TEQ) were calculated. Based on our tentative assumption calculations, cumulative production of five different technical PCB formulations, WHO-TEQ emission was estimated to be approximately 16.05 tons.

  18. Microfluidic serial dilution circuit.

    PubMed

    Paegel, Brian M; Grover, William H; Skelley, Alison M; Mathies, Richard A; Joyce, Gerald F

    2006-11-01

    In vitro evolution of RNA molecules requires a method for executing many consecutive serial dilutions. To solve this problem, a microfluidic circuit has been fabricated in a three-layer glass-PDMS-glass device. The 400-nL serial dilution circuit contains five integrated membrane valves: three two-way valves arranged in a loop to drive cyclic mixing of the diluent and carryover, and two bus valves to control fluidic access to the circuit through input and output channels. By varying the valve placement in the circuit, carryover fractions from 0.04 to 0.2 were obtained. Each dilution process, which is composed of a diluent flush cycle followed by a mixing cycle, is carried out with no pipeting, and a sample volume of 400 nL is sufficient for conducting an arbitrary number of serial dilutions. Mixing is precisely controlled by changing the cyclic pumping rate, with a minimum mixing time of 22 s. This microfluidic circuit is generally applicable for integrating automated serial dilution and sample preparation in almost any microfluidic architecture.

  19. Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography-mass spectrometry.

    PubMed

    Yegemova, Saltanat; Bakaikina, Nadezhda V; Kenessov, Bulat; Koziel, Jacek A; Nauryzbayev, Mikhail

    2015-10-01

    Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40°C was not observed. Increase of temperature to 60°C and 80°C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24 mg kg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1 mg kg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods.

  20. Report on the source of the electrochemical impedance on cermet inert anodes

    SciTech Connect

    Windisch, C.F. Jr.; Stice, N.D.

    1991-02-01

    the Inert Electrode Program at Pacific Northwest Laboratory (PNL) is supported by the Office of Industrial Processes of the US Department of Energy and is aimed at improving the energy efficiency of Hall-Heroult cells through the development of inert anodes. The inert anodes currently under study are composed of a cermet material of the general composition NiO-NiFe{sub 2}O{sub 4}-Cu. The program has three primary objectives: (a) to evaluate the anode material in a scaled-up, pilot cell facility, (b) to investigate the mechanisms of the electrochemical reactions at the anode surface, and (c) to develop sensors for monitoring anode and/or electrolyte conditions. This report covers the results of a portion of the studies on anode reaction mechanisms. The electrochemical impedances of cermet inert anodes in alumina-saturated molten cryolite as a function of frequency, current density, and time indicated that a significant component of the impedance is due to the gas bubbles produced at the anode during electrolysis. The data also showed a connection between surface structure and impedance that appears to be related to the effects of surface structure on bubble flow. Given the results of this work, it is doubtful that a resistive film contributes significantly to the electrochemical impedances on inert anodes. Properties previously assigned to such a film are more likely due to the bubbles and those factors that affect the properties and dynamics of the bubbles at the anode surface. 12 refs., 16 figs., 3 tabs.

  1. Evaluation of oxygen pressurized microwave-assisted digestion of botanical materials using diluted nitric acid.

    PubMed

    Bizzi, Cezar Augusto; Barin, Juliano Smanioto; Müller, Edson Irineu; Schmidt, Lucas; Nóbrega, Joaquim A; Flores, Erico Marlon Moraes

    2011-02-15

    The feasibility of diluted nitric acid solutions for microwave-assisted decomposition of botanical samples in closed vessels was evaluated. Oxygen pressurized atmosphere was used to improve the digestion efficiency and Al, Ca, K, Fe, Mg and Na were determined in digests by inductively coupled plasma optical emission spectrometry (ICP OES). Efficiency of digestion was evaluated taking into account the residual carbon content (RCC) and residual acidity in digests. Samples were digested using nitric acid solutions (2, 3, 7, and 14 mol L(-1) HNO(3)) and the effect of gas phase composition inside the reaction vessels by purging the vessel with Ar (inert atmosphere, 1 bar), air (20% of oxygen, 1 bar) and pure O(2) (100% of oxygen, 1 bar) was evaluated. The influence of oxygen pressure was studied using pressures of 5, 10, 15 and 20 bar. It was demonstrated that a diluted nitric acid solution as low as 3 mol L(-1) was suitable for an efficient digestion of sample masses up to 500 mg of botanical samples using 5 bar of oxygen pressure. The residual acidities in final digests were lower than 45% in relation to the initial amount of acid used for digestion (equivalent to 1.3 mol L(-1) HNO(3)). The accuracy of the proposed procedure was evaluated using certified reference materials of olive leaves, apple leaves, peach leaves and pine needles. Using the optimized conditions for sample digestion, the results obtained were in agreement with certified values. The limit of quantification was improved up to a factor of 14.5 times for the analytes evaluated. In addition, the proposed procedure was in agreement with the recommendations of the green chemistry once it was possible to obtain relatively high digestion efficiency (RCC<5%) using only diluted HNO(3), which is important to minimize the generation of laboratory residues.

  2. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  3. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces...

  4. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces...

  5. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces...

  6. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces...

  7. 46 CFR 154.912 - Inerted spaces: Relief devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Inerted spaces: Relief devices. 154.912 Section 154.912 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY... Atmospheric Control in Cargo Containment Systems § 154.912 Inerted spaces: Relief devices. Inerted spaces...

  8. Effect of adduct formation with molecular nitrogen on the measured collisional cross sections of transition metal-1,10-phenanthroline complexes in traveling wave ion-mobility spectrometry: N2 is not always an "inert" buffer gas.

    PubMed

    Rijs, Nicole J; Weiske, Thomas; Schlangen, Maria; Schwarz, Helmut

    2015-10-06

    The number of separations and analyses of molecular species using traveling wave ion-mobility spectrometry-mass spectrometry (TWIMS-MS) is increasing, including those extending the technique to analytes containing metal atoms. A critical aspect of such applications of TWIMS-MS is the validity of the collisional cross sections (CCSs) measured and whether they can be accurately calibrated against other ion-mobility spectrometry (IMS) techniques. Many metal containing species have potential reactivity toward molecular nitrogen, which is present in high concentration in the typical Synapt-G2 TWIMS cell. Here, we analyze the effect of nitrogen on the drift time of a series of cationic 1,10-phenanthroline complexes of the late transition metals, [(phen)M](+), (M = Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, and Hg) in order to understand potential deviations from expected drift time behaviors. These metal complexes were chosen for their metal open-coordination site and lack of rotameric species. The target species were generated via electrospray ionization (ESI), analyzed using TWIMS in N2 drift gas, and the observed drift time trends compared. Theoretically derived CCSs for all species (via both the projection approximation and trajectory method) were also compared. The results show that, indeed, for metal containing species in this size regime, reaction with molecular nitrogen has a dramatic effect on measured drift times and must not be ignored when comparing and interpreting TWIMS arrival time distributions. Density-functional theory (DFT) calculations are employed to analyze the periodic differences due to the metal's interaction with nitrogen (and background water) in detail.

  9. Analysis of organochlorines in harbor seal (Phoca vitulina) tissue samples from Alaska using gas chromatography/ion trap mass spectrometry by an isotopic dilution technique.

    PubMed

    Wang, Dongli; Atkinson, Shannon; Hoover-Miller, Anne; Li, Qing X

    2005-01-01

    A gas chromatography/ion trap mass spectrometry (GC/ITMS) method was developed for the determination of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in harbor seal (Phoca vitulina) tissues. Tissue samples were homogenized, lyophilized and fortified with (13)C-PCBs 28, 123, 169 and 170, and then extracted with an accelerated solvent extractor with a mixture of hexane and methylene chloride (1:1, v/v). After lipid removal using a 40% H(2)SO(4)-modified silica gel column, all organochlorines were collected in one fraction and further fractionated with an activated carbon/silica gel (1:20) column into a first fraction containing OCPs, non-coplanar PCBs and (13)C-PCBs 28, 123 and 170, and a second containing PCNs, coplanar PCBs and (13)C-PCB 169. Prior to GC/MS/MS analysis, (13)C-PCB 169 was added into the first fraction as an injection standard and (13)C-PCB 170 into the second fraction to calibrate the recoveries of the fortified internal standards. This method can effectively eliminate matrix interferences, and has high selectivity and sensitivity. Recoveries averaged 45-86% for OCPs with relative standard deviations (RSDs) of 2-14%, 52-137% for PCBs with RSDs of 3-29% and 36-152% for PCNs with RSDs of 7-29% from lard and chicken heart samples, which were used as alternative matrices to harbor seal samples in recovery studies. The limits of detection for OCPs, PCBs and PCNs were 0.7-1.9, 1.5-8.9 and 0.5-10 pg/g dry weight, respectively. This method can be used to analyze OCPs, PCBs and PCNs in harbor seal blubber, liver and kidney samples.

  10. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  11. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  12. Dilution Zone Mixing

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1983-01-01

    Studies to characterize dilution zone mixing; experiments on the effects of free-stream turbulence on a jet in crossflow; and the development of an interactive computer code for the analysis of the mixing of jets with a confined crossflow are reviewed.

  13. Dilution, Concentration, and Flotation

    ERIC Educational Resources Information Center

    Liang, Ling; Schmuckler, Joseph S.

    2004-01-01

    As both classroom teaching practice and literature show, many students have difficulties learning science concepts such as density. Here are some investigations that identify the relationship between density and floating through experimenting with successive dilution of a liquid, or the systematic change of concentration of a saltwater solution.…

  14. Fast and solvent-free quantitation of boar taint odorants in pig fat by stable isotope dilution analysis-dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry.

    PubMed

    Fischer, Jochen; Haas, Torsten; Leppert, Jan; Lammers, Peter Schulze; Horner, Gerhard; Wüst, Matthias; Boeker, Peter

    2014-09-01

    Boar taint is a specific off-odour of boar meat products, known to be caused by at least three unpleasant odorants, with very low odour thresholds. Androstenone is a boar pheromone produced in the testes, whereas skatole and indole originate from the microbial breakdown of tryptophan in the intestinal tract. A new procedure, applying stable isotope dilution analysis (SIDA) and dynamic headspace-thermal desorption-gas chromatography/time-of-flight mass spectrometry (dynHS-TD-GC/TOFMS) for the simultaneous quantitation of these boar taint compounds in pig fat was elaborated and validated in this paper. The new method is characterised by a simple and solvent-free dynamic headspace sampling. The deuterated compounds d3-androstenone, d3-skatole and d6-indole were used as internal standards to eliminate matrix effects. The method validation performed revealed low limits of detection (LOD) and quantitation (LOQ) with high accuracy and precision, thus confirming the feasibility of the new dynHS-TD-GC/TOFMS approach for routine analysis.

  15. Analysis of natural-occurring and synthetic sexual hormones in sludge-amended soils by matrix solid-phase dispersion and isotope dilution gas chromatography-tandem mass spectrometry.

    PubMed

    Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Pérez, Rosa A; Tadeo, José L

    2013-03-29

    A sensitive analytical method is presented for the simultaneous determination of four synthetic estrogens and six steroid hormones in sludge-amended soil. The method employs matrix solid-phase dispersion (MSPD) followed by isotope dilution gas chromatography-tandem mass spectrometry injecting a large volume sample (10μL) after trimethylsilyl derivatization, using the solvent vent mode. It affords good resolution, high sensitivity and reproducibility and freedom from interferences even from complex matrices as soil amended with sewage sludge. The limits of detection (LODs) ranged from 10 to 300pgg(-1) with testosterone and progesterone having the highest limits. Soil amended with sewage sludge was spiked at 2, 10, 25 and 50ngg(-1) and the recoveries after MSPD with acetonitrile:methanol (90:10, v/v), ranged from 80 to 110% with relative standard deviations ≤9%. The method was applied to the analysis of six soil samples collected from agricultural plots and forested fields that had been amended with sewage sludge using isotopically labeled surrogates. Three of the synthetic estrogens studied were found at least in one of the six samples analyzed and trans-androsterone and estrone were the only natural hormones detected, although at very low levels (≤0.4ngg(-1)).

  16. Muco-inert nanoparticle probes and drug carriers

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Ying

    2011-12-01

    mucus microstructure and consequently the microrheology. Indeed, N9 caused the average mucus pore size to decrease from ˜340 nm to 130 nm. I then looked at the effect of pH on mucus and found that the microstructure of CVM is essentially pH-independent over a broad range of physiological pH. Between pH 4 (the native pH of CVM) and 6--7, the average pore size in the mucus mesh remained unchanged, and between pH 1--2 and 8--9, there was at most a 2-fold drop in the average pore size (likely due to changes in electrostatic vs. hydrophobic interactions between mucin fibers). Finally, I found that mucoadhesive synthetic nanoparticles, at sufficiently high concentrations, can bundle mucin fibers and create large openings in the mucus microstructure. Disruption of the mucus barrier in this manner allowed a greater fraction of large (1 microm) muco-inert particles to diffuse through the mucus mesh. Muco-inert nanoparticles---also referred to as "mucus-penetrating particles" (MPP)---offer the potential for sustained and targeted drug delivery to mucosal surfaces. By penetrating luminal mucus layers, MPP may be able to reach the slowly cleared adherent mucus layer or deep folds of the epithelium and thereby achieve prolonged retention. I first measured the long range penetration of MPP compared to conventional mucoadhesive particles (CP) into CVM. With minimal dilution of CVM, MPP could penetrate up to 200 microm over 1 hr with ˜530 particles/mm2 penetrating 100 microm or more, while CP remained immobilized (note that physiological mucus layer thicknesses are no more than ˜200 microm). Furthermore, with 30% v/v dilution, MPP could penetrate up to 1.5 mm over 1 hr with ˜74,000 particles/mm2 penetrating 100 microm or more, while CP continued to remain stuck. I then studied the distribution and retention of MPP vs. CP in the mouse vagina to determine whether improved mucus penetration leads to more uniform distribution and prolonged retention. I found that MPP were not only more

  17. C(240)-----The most Chemically Inert Fullerene?

    NASA Technical Reports Server (NTRS)

    Haddon, R. C.; Scuseria, G. E.; Smalley, R. E.

    1997-01-01

    The reactivity of the fullerenes is primarily a function of their strain, as measured by the pyramidalization angle or curvature of the conjugated carbon atoms. The development of faceting in the structure of large icosahedral fullerenes leads to a minimum in the value of the maximum fullerene pyramidalization angle that lies in the vicinity of C-240. On this basis it is argued that C-240 will be the most chemically inert fullerene. This observation explains the production of [10,10] single-walled nanotubes because a C-240 hemisphere is required for the nucleation of such tubes.

  18. Continuous distributions of specific ventilation recovered from inert gas washout

    NASA Technical Reports Server (NTRS)

    Lewis, S. M.; Evans, J. W.; Jalowayski, A. A.

    1978-01-01

    A new technique is described for recovering continuous distributions of ventilation as a function of tidal ventilation/volume ratio from the nitrogen washout. The analysis yields a continuous distribution of ventilation as a function of tidal ventilation/volume ratio represented as fractional ventilations of 50 compartments plus dead space. The procedure was verified by recovering known distributions from data to which noise had been added. Using an apparatus to control the subject's tidal volume and FRC, mixed expired N2 data gave the following results: (a) the distributions of young, normal subjects were narrow and unimodal; (b) those of subjects over age 40 were broader with more poorly ventilated units; (c) patients with pulmonary disease of all descriptions showed enlarged dead space; (d) patients with cystic fibrosis showed multimodal distributions with the bulk of the ventilation going to overventilated units; and (e) patients with obstructive lung disease fell into several classes, three of which are illustrated.

  19. Simple device facilitates inert-gas welding of tubes

    NASA Technical Reports Server (NTRS)

    Carrithers, K. V.; Kelley, W. B.

    1966-01-01

    Metal Y-tube simultaneously directs argon streams over weld areas on both sides of tubes being joined along a line on their outer periphery. The device is advanced along the junction in step with the welding operation.

  20. Molecular hydrogen: An inert gas turns clinically effective.

    PubMed

    Ostojic, Sergej M

    2015-06-01

    Molecular hydrogen (H2) appeared as an experimental agent in biomedicine approximately 40 years ago, yet the past 5 years seem to confirm its medicinal value in the clinical environment. H2 improves clinical end-points and surrogate markers in several clinical trials, from metabolic diseases to chronic systemic inflammatory disorders to cancer. However, less information is available concerning its medicinal properties, such as dosage and administration, or adverse reactions and use in specific populations. The present paper overviews the clinical relevance of molecular hydrogen, and summarizes data from clinical trials on this innovative medical agent. Clinical profiles of H2 provide evidence-based direction for practical application and future research on molecular hydrogen for the wider health care community.

  1. Inert gas test of two 12-cm magnetostatic thrusters

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1982-01-01

    Comparative performance tests were conducted with 12 cm line and ring magnetic cusp thrusters. Shell anode and magnetoelectrostatic containment boundary anode configurations were evaluated with each magnet array. The best performance was achieved with the 12-cm ring cusp-shell anode configuration. Argon operation of this configuration produced 65-81 percent mass utilization efficiency at 170-208 watts/single-charged-equivalent (SCE) ampere beam. Xenon test results showed 75-95 percent utilization at 162-188 watts/SCE ampere beam.

  2. Durable cathodes for high-power inert-gas arcs

    NASA Technical Reports Server (NTRS)

    Decker, A. J.; Gettleman, C. C.; Goldman, G. C.; Hall, J. H.; Pollack, J. L.

    1971-01-01

    Cathode design minimizes evaporation of electrode material which may deposit on associated optical surfaces. It also results in stable operation and precise positioning of arc relative to optical collector. Innovation applies to high power light sources and to arcs used in industrial furnaces.

  3. Inert Welding/Brazing Gas Filters and Dryers

    NASA Technical Reports Server (NTRS)

    Goudy, Jerry

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heat-flux environments (150 W/sq cm) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading-edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same "pick" location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by the choice of constituents, varying fiber tow sizes and constituent part ratios. This structural concept provides high strength and stiffness at low density 1.06 g/cu cm in panels tested. Varieties of face sheet constructions are possible, including variations in fiber type and weave geometry. The integrated structures possible with this composite could eliminate the need for non-load-bearing thermal protection systems on top of a structural component. The back sheet can readily be integrated to substructures through the incorporation of ribs. This would eliminate weight and cost for aerospace missions.

  4. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs.

    PubMed

    Pálmai, Marcell; Szalay, Roland; Bartczak, Dorota; Varga, Zoltán; Nagy, Lívia Naszályi; Gollwitzer, Christian; Krumrey, Michael; Goenaga-Infante, Heidi

    2015-05-01

    A new method was developed for the preparation of highly monodisperse isotopically enriched Si-29 silica nanoparticles ((29)Si-silica NPs) with the purpose of using them as spikes for isotope dilution mass spectrometry (IDMS) quantification of silica NPs with natural isotopic distribution. Si-29 tetraethyl orthosilicate ((29)Si-TEOS), the silica precursor was prepared in two steps starting from elementary silicon-29 pellets. In the first step Si-29 silicon tetrachloride ((29)SiCl4) was prepared by heating elementary silicon-29 in chlorine gas stream. By using a multistep cooling system and the dilution of the volatile and moisture-sensitive (29)SiCl4 in carbon tetrachloride as inert medium we managed to reduce product loss caused by evaporation. (29)Si-TEOS was obtained by treating (29)SiCl4 with absolute ethanol. Structural characterisation of (29)Si-TEOS was performed by using (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. For the NP preparation, a basic amino acid catalysis route was used and the resulting NPs were analysed using transmission electron microscopy (TEM), small angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. Finally, the feasibility of using enriched NPs for on-line field-flow fractionation coupled with multi-angle light scattering and inductively coupled plasma mass spectrometry (FFF/MALS/ICP-MS) has been demonstrated.

  5. EXTENDING LEAN AND EGR-DILUTE OPERATING LIMITS OF A MODERN GDI ENGINE USING A LOW-ENERGY TRANSIENT PLASMA IGNITION SYSTEM

    SciTech Connect

    Sevik, James Michael; Wallner, Thomas; Pamminger, Michael; Scarcelli, Riccardo; Singleton, Dan; Sanders, Jason

    2015-01-01

    The efficiency improvement and emissions reduction potential of lean and EGR dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nano-second pulses and its performance compared to a conventional transistorized coil ignition system operated on an automotive, gasoline direct injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar IMEP, where dilution tolerance is particularly critical to improving efficiency and emissions performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ=1.55 to 1.7) with the low-energy transient plasma ignition system.

  6. Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter

    SciTech Connect

    Lu, Wen-Bin; Gu, Pei-Hong

    2016-05-18

    We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgs triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.

  7. Automatic diluter for bacteriological samples.

    PubMed Central

    Trinel, P A; Bleuze, P; Leroy, G; Moschetto, Y; Leclerc, H

    1983-01-01

    The described apparatus, carrying 190 tubes, allows automatic and aseptic dilution of liquid or suspended-solid samples. Serial 10-fold dilutions are programmable from 10(-1) to 10(-9) and are carried out in glass tubes with screw caps and split silicone septa. Dilution assays performed with strains of Escherichia coli and Bacillus stearothermophilus permitted efficient conditions for sterilization of the needle to be defined and showed that the automatic dilutions were as accurate and as reproducible as the most rigorous conventional dilutions. Images PMID:6338826

  8. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1984-06-05

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  9. Gas shielding apparatus

    DOEpatents

    Brandt, Daniel

    1985-01-01

    An apparatus for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area.

  10. Gas shielding apparatus

    DOEpatents

    Brandt, D.

    1985-12-31

    An apparatus is disclosed for preventing oxidation by uniformly distributing inert shielding gas over the weld area of workpieces such as pipes being welded together. The apparatus comprises a chamber and a gas introduction element. The chamber has an annular top wall, an annular bottom wall, an inner side wall and an outer side wall connecting the top and bottom walls. One side wall is a screen and the other has a portion defining an orifice. The gas introduction element has a portion which encloses the orifice and can be one or more pipes. The gas introduction element is in fluid communication with the chamber and introduces inert shielding gas into the chamber. The inert gas leaves the chamber through the screen side wall and is dispersed evenly over the weld area. 3 figs.

  11. Resonance-inert stabilization for space stations

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L.

    1972-01-01

    An approach to stabilizing control systems is presented which structures controllers like passive mechanical systems. The controller is visualized as a structural part with a passive behavior similar to springs, dashpots, and masses. If such a controller is connected by a proper feedback arrangement, then a passive mechanical plant cannot upset stability, regardless of masses, resonances, and three-dimensional coupling. The concept of resonance-inert stabilization is explained by structuring the controller of a simple feedback loop. Reactive functions, connections, and matrices are defined and used in the stabilization concept. The realization of a possible Skylab control system is discussed and compared with the present design. This example demonstrates the applicability to three-dimensional problems with lagging controllers.

  12. Mucosal Vaccination against Tuberculosis Using Inert Bioparticles

    PubMed Central

    Reljic, Rajko; Sibley, Laura; Huang, Jen-Min; Pepponi, Ilaria; Hoppe, Andreas; Hong, Huynh A.

    2013-01-01

    Needle-free, mucosal immunization is a highly desirable strategy for vaccination against many pathogens, especially those entering through the respiratory mucosa, such as Mycobacterium tuberculosis. Unfortunately, mucosal vaccination against tuberculosis (TB) is impeded by a lack of suitable adjuvants and/or delivery platforms that could induce a protective immune response in humans. Here, we report on a novel biotechnological approach for mucosal vaccination against TB that overcomes some of the current limitations. This is achieved by coating protective TB antigens onto the surface of inert bacterial spores, which are then delivered to the respiratory tract. Our data showed that mice immunized nasally with coated spores developed humoral and cellular immune responses and multifunctional T cells and, most importantly, presented significantly reduced bacterial loads in their lungs and spleens following pathogenic challenge. We conclude that this new vaccine delivery platform merits further development as a mucosal vaccine for TB and possibly also other respiratory pathogens. PMID:23959722

  13. S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry.

    PubMed

    Sin, Della Wai-Mei; Wong, Yee-Lok; Cheng, Eddie Chung-Chin; Lo, Man-Fung; Ho, Clare; Mok, Chuen-Shing; Wong, Siu-Kay

    2015-04-01

    This paper presents the certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate tea certified reference material (code: GLHK-11-03) according to the requirements of the ISO Guide 30 series. Certification of GLHK-11-03 was based on an analytical method purposely developed for the accurate measurement of the mass fraction of the target analytes in the material. An isotope dilution mass spectrometry (IDMS) method involving determination by (i) gas chromatography-negative chemical ionization-mass spectrometry (GC-NCI-MS) and (ii) gas chromatography-electron ionization-high-resolution mass spectrometry (GC-EI-HRMS) techniques was employed. The performance of the described method was demonstrated through participation in the key comparison CCQM-K95 "Mid-Polarity Analytes in Food Matrix: Mid-Polarity Pesticides in Tea" organized by the Consultative Committee for Amount of Substance-Metrology in Chemistry in 2012, where the study material was the same as the certified reference material (CRM). The values reported by using the developed method were in good agreement with the key comparison reference value (KCRV) assigned for beta-endosulfan (727 ± 14 μg kg(-1)) and endosulfan sulfate (505 ± 11 μg kg(-1)), where the degree of equivalence (DoE) values were 0.41 and 0.40, respectively. The certified values of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in dry mass fraction in GLHK-11-03 were 350, 730, and 502 μg kg(-1), respectively, and the respective expanded uncertainties, due to sample inhomogeneity, long-term and short-term stability, and variability in the characterization procedure, were 27 μg kg(-1) (7.8 %), 48 μg kg(-1) (6.6 %), and 33 μg kg(-1) (6.6 %).

  14. Improved Back-Side Purge-Gas Chambers For Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    Ezell, Kenneth G.; Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Improved chambers for inert-gas purging of back sides of workpieces during plasma arc welding in keyhole (full-penetration) mode based on concept of directing flows of inert gases toward, and concentrating them on, hot weld zones. Tapered chamber concentrates flow of inert gas on plasma arc plume and surrounding metal.

  15. Dispersion serial dilution methods using the gradient diluter device.

    PubMed

    Walling, Leslie; Schulz, Craig; Johnson, Michael

    2012-12-01

    A solute aspirated into a prefilled tube of diluent undergoes a dilution effect known as dispersion. Traditionally the effects of dispersion have been considered a negative consequence of using liquid-filled fixed-tip liquid handlers. We present a novel device and technique that utilizes the effects of dispersion to the benefit of making dilutions. The device known as the Gradient Diluter extends the dilution range of practical serial dilutions to six orders of magnitude in final volumes as low as 10 μL. Presented are the device, dispersion methods, and validation tests using fluorescence detection of sulforhodamine and the high-performance liquid chromatography/ultraviolet detection of furosemide. In addition, a T-cell inhibition assay of a relevant downstream protein is used to demonstrate IC(50) curves made with the Gradient Diluter compare favorably with those generated by hand.

  16. Planning a serial dilution test with multiple dilutions.

    PubMed

    Blodgett, Robert J

    2009-06-01

    The dilutions used in a serial dilution test determine which concentrations it can estimate well. Two criteria help to select how many and which dilutions to use. The first criterion is a low probability of outcomes with either all growth or all non-growth tubes at the concentrations of interest. The second criterion considers how far the estimated concentration (MPN) is likely to be from the actual concentration.

  17. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  18. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  19. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  20. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  1. 46 CFR 154.1740 - Vinyl chloride: Inhibiting and inerting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vinyl chloride: Inhibiting and inerting. 154.1740... Operating Requirements § 154.1740 Vinyl chloride: Inhibiting and inerting. When a vessel is carrying vinyl chloride, the master shall ensure that: (a) Section 154.1818 is met; or (b) Section 154.1710 is met,...

  2. Electrolytic production of high purity aluminum using ceramic inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Douglas A.; DiMilia, Robert A.; Dynys, Joseph M.; Phelps, Frankie E.; LaCamera, Alfred F.

    2002-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

  3. Electrolytic production of high purity aluminum using inert anodes

    DOEpatents

    Ray, Siba P.; Liu, Xinghua; Weirauch, Jr., Douglas A.

    2001-01-01

    A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

  4. Isobutane Made Practical as a Reagent Gas for Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Steinkamp, F. Lucus; Giordano, Braden C.

    2016-11-01

    As a reagent gas for positive- and negative-mode chemical ionization mass spectrometry (CI-MS), isobutane ( i-C4H10) produces superior analyte signal abundance to methane. Isobutane has never been widely adopted for CI-MS because it fouls the ion source more rapidly and produces positive CI spectra that are more strongly dependent on reagent gas pressure compared with methane. Isobutane was diluted to various concentrations in argon for use as a reagent gas with an unmodified commercial gas chromatograph-mass spectrometer. Analyte spectra were directly compared using methane, isobutane, and isobutane/argon mixtures. A mixture of 10% i-C4H10 in argon produced twice the positive-mode analyte signal of methane, equal to pure isobutane, and reduced spectral dependence on reagent gas pressure. Electron capture negative chemical ionization using 1% i-C4H10 in argon tripled analyte signal compared with methane and was reproducible, unlike pure isobutane. The operative lifetime of the ion source using isobutane/argon mixtures was extended exponentially compared with pure isobutane, producing stable and reproducible CI signal throughout. By diluting the reagent gas in an inert buffer gas, isobutane CI-MS experiments were made as practical to use as methane CI-MS experiments but with superior analytical performance.

  5. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  6. 40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Determine minimum dilution ratio based on tracer gas (e.g., CO2) concentrations in the raw (or previously... flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the...

  7. Growth and development in inert non-aqueous liquids. [of higher plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1974-01-01

    A preview is presented of the survival and growth capabilities of higher plants in non-aqueous, inert liquids. The two media which were used are mineral (white) oil and fluorochemical inert liquid FC-75. Both liquids dissolve oxygen and carbon dioxide readily, but are insoluble in water. Consequently, plants submerged in these liquids are capable of gas exchange with the atmosphere, but possess a water impermeable coating the dimensions of which are determined by the size of the liquid holding container. In a sense, growing plants in a tank of mineral oil imparts on them a cuticle. Plants plus prescribed volumes of water were innoculated into mineral oil. Organisms with minimal water supplied could then be observed. Also, submersed plants covered with an oil slick were shown to be capable of growth in dessicating atmospheres.

  8. Distribution of inert gases in fines from the Cayley-Descartes region

    NASA Technical Reports Server (NTRS)

    Walton, J. R.; Lakatos, S.; Heymann, D.

    1973-01-01

    The inert gases in 14 different fines and in one sample of 2 to 4 mm fines from Apollo 16 were measured by mass spectroscopy with respect to trapped solar wind gases, cosmogenic gases, and 'parentless' Ar-40. Such studies are helpful for the understanding of regolith evolution, of transport of regolith fines, and of the lunar atmosphere. The Apollo 16 soils are unique because they represent, after Luna 20, the second and much more extensive record from the lunar highlands. The landing site presents the problem of materials from the Cayley Formation vs those from the Descartes Formation. There are two large, relatively fresh craters in the area, North Ray and South Ray, whose ejecta patterns may be recognized in the inert-gas record.

  9. Probing the center-vortex area law in d=3: The role of inert vortices

    NASA Astrophysics Data System (ADS)

    Cornwall, John M.

    2006-03-01

    In center-vortex theory, beyond the simplest picture of confinement several conceptual problems arise that are the subject of this paper. Recall that confinement arises through configuration averaging of phase factors associated with the gauge center group, raised to powers depending on the total Gauss link number of a vortex ensemble with a given Wilson loop. The simplest approach to confinement counts this link number by counting the number of vortices, considered in d=3 as infinitely long closed self-avoiding random walks of fixed step length, piercing any surface spanning the Wilson loop. Problems arise because a given vortex may pierce a given spanning surface several times without being linked or without contributing a nontrivial phase factor, or it may contribute a nontrivial phase factor appropriate to a smaller number of pierce points. We estimate the dilution factor α, due to these inert or partially inert vortices, that reduces the ratio of fundamental string tension KF to the areal density ρ of vortices from the ratio given by elementary approaches and find α=0.6±0.1. Then we show how inert vortices resolve the problem that the link number of a given vortex-Wilson-loop configuration is the same for any spanning surface of whatever area, yet a unique area (of a minimal surface) appears in the area law. Third, we discuss semiquantitatively a configuration of two distinct Wilson loops separated by a variable distance, and show how inert vortices govern the transition between two possible forms of the area law (one at small loop separation, the other at large), and point out the different behaviors in SU(2) and higher groups, notably SU(3). The result is a finite-range van der Waals force between the two loops. Finally, in a problem related to the double-loop problem, we argue that the analogs of inert vortices do not affect the fact that, in the SU(3) baryonic area law, the mesonic string tension appears.

  10. Probing the center-vortex area law in d=3: The role of inert vortices

    SciTech Connect

    Cornwall, John M.

    2006-03-15

    In center-vortex theory, beyond the simplest picture of confinement several conceptual problems arise that are the subject of this paper. Recall that confinement arises through configuration averaging of phase factors associated with the gauge center group, raised to powers depending on the total Gauss link number of a vortex ensemble with a given Wilson loop. The simplest approach to confinement counts this link number by counting the number of vortices, considered in d=3 as infinitely long closed self-avoiding random walks of fixed step length, piercing any surface spanning the Wilson loop. Problems arise because a given vortex may pierce a given spanning surface several times without being linked or without contributing a nontrivial phase factor, or it may contribute a nontrivial phase factor appropriate to a smaller number of pierce points. We estimate the dilution factor {alpha}, due to these inert or partially inert vortices, that reduces the ratio of fundamental string tension K{sub F} to the areal density {rho} of vortices from the ratio given by elementary approaches and find {alpha}=0.6{+-}0.1. Then we show how inert vortices resolve the problem that the link number of a given vortex-Wilson-loop configuration is the same for any spanning surface of whatever area, yet a unique area (of a minimal surface) appears in the area law. Third, we discuss semiquantitatively a configuration of two distinct Wilson loops separated by a variable distance, and show how inert vortices govern the transition between two possible forms of the area law (one at small loop separation, the other at large), and point out the different behaviors in SU(2) and higher groups, notably SU(3). The result is a finite-range van der Waals force between the two loops. Finally, in a problem related to the double-loop problem, we argue that the analogs of inert vortices do not affect the fact that, in the SU(3) baryonic area law, the mesonic string tension appears.

  11. Stress in dilute suspensions

    NASA Technical Reports Server (NTRS)

    Passman, Stephen L.

    1989-01-01

    Generally, two types of theory are used to describe the field equations for suspensions. The so-called postulated equations are based on the kinetic theory of mixtures, which logically should give reasonable equations for solutions. The basis for the use of such theory for suspensions is tenuous, though it at least gives a logical path for mathematical arguments. It has the disadvantage that it leads to a system of equations which is underdetermined, in a sense that can be made precise. On the other hand, the so-called averaging theory starts with a determined system, but the very process of averaging renders the resulting system underdetermined. A third type of theory is proposed in which the kinetic theory of gases is used to motivate continuum equations for the suspended particles. This entails an interpretation of the stress in the particles that is different from the usual one. Classical theory is used to describe the motion of the suspending medium. The result is a determined system for a dilute suspension. Extension of the theory to more concentrated systems is discussed.

  12. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    SciTech Connect

    JEPPSON, D.W.

    2000-05-18

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included.

  13. Bioactive and inert dental glass-ceramics.

    PubMed

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017.

  14. Results from electrolysis test of a prototype inert anode: Inert Electrode Program

    SciTech Connect

    Strachan, D.M.; Windisch, C.F. Jr.; Koski, O.H.; Morgan, L.G. ); Peterson, R.D.; Richards, N.E.; Tabereaux, A.T. . Mfg. Technology Lab.)

    1990-05-01

    Nonconsumable or inert anodes are being developed at the Pacific Northwest Laboratory (PNL)({sup a}) for use in the electrolytic production of aluminum. A series of laboratory test on the laboratory scale (Hart et al. 1987; Strachan et al. 1989; Marschman 1989) has shown the technology to be potentially feasible. A series of larger-scale experiments are now being run to determine the viability of the technology on a commercial scale. The results reported here are from a test performed at the Reynolds Metals Company, Manufacturing Technology Laboratory, Sheffield, Alabama, using a prototype anode. The prototype anode was approximately 15 cm in diameter and 20 cm high (Figure 1.1). The objectives of the test were to determine if an anode, produced by a commercial vendor, could survive in a test under conditions approximating those found in a commercial electrolysis cell; to familiarize the Reynolds staff with the operation of such an anode in a subsequent pilot cell test of the inert anode technology; and to familiarize the PNL staff with the operations at the Reynolds Metals Company facility. 8 refs., 39 figs., 9 tabs.

  15. Novel type of tuned mass damper with inerter which enables changes of inertance

    NASA Astrophysics Data System (ADS)

    Brzeski, P.; Kapitaniak, T.; Perlikowski, P.

    2015-08-01

    In this paper we propose the novel type of tuned mass damper and investigate its properties. Characteristic feature of the device is that it contains a special type of inerter equipped with a continuously variable transmission and gear-ratio control system which enables stepless and accurate changes of inertance. We examine the damping properties of the proposed tuned mass damper with respect to one-degree-of-freedom harmonically forced oscillator. To prove the potential of introduced device we test its four different embodiments characterized by four different sets of parameters. We generalize our investigation and show that proposed device has broad spectrum of applications, we consider three different stiffness characteristics of damped structure i.e. linear, softening and hardening. We use the frequency response curves to present how considered devices influence the dynamics of analyzed systems and demonstrate their capabilities. Moreover, we check how small perturbations introduced to the system by parametric and additive noise influence system's dynamics. Numerical results show excellent level of vibration reduction in an extremely wide range of forcing frequencies.

  16. 114. SMALL ARMS (BUILDINGS 9798) AND INERT STOREHOUSE (BLDGS. 1031040) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. SMALL ARMS (BUILDINGS 97-98) AND INERT STOREHOUSE (BLDGS. 103-1040) PLAN AND ELEVATIONS, FULLER/SCOTT, MARCH 15, 1941. QP ACC 1791. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  17. Inert electrodes program: Fiscal Year 1987 Annual Report

    SciTech Connect

    Koski, O.H.; Marschman, S.C.; Schilling, C.H.; Windisch, C.F.

    1988-12-01

    The Inert Electrodes Program is being conducted at the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE), Office of Industrial Programs (OIP). The purpose of the program is to develop long-lasting, energy-efficient anodes, cathodes, and ancillary equipment for Hall-Heroult cells used by aluminum industry. The program is divided into three tasks with the following objectives: Inert Anode Development - to improve the energy efficiency of Hall-Heroult cells by development of inert anodes; Stable Cathode Studies - to develop methods for retrofitting Hall-Heroult cells with TiB/sub 2/-based cathode materials; and Sensor Development - to devise sensors to control the chemistry of Hall-Heroult Cells using stable anodes and cathodes. This Inert Electrodes Program annual report highlights the major technical accomplishment of FY 1987. The accomplishments are presented in the following sections: Management, Materials Development and Testing, Materials Evaluation, Stable Cathode Studies, and Sensor Development. 50 refs., 47 figs.

  18. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    SciTech Connect

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  19. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  20. Process and apparatus for igniting a burner in an inert atmosphere

    SciTech Connect

    Coolidge, Dennis W.; Rinker, Franklin G.

    1994-01-01

    According to this invention there is provided a process and apparatus for the ignition of a pilot burner in an inert atmosphere without substantially contaminating the inert atmosphere. The process includes the steps of providing a controlled amount of combustion air for a predetermined interval of time to the combustor then substantially simultaneously providing a controlled mixture of fuel and air to the pilot burner and to a flame generator. The controlled mixture of fuel and air to the flame generator is then periodically energized to produce a secondary flame. With the secondary flame the controlled mixture of fuel and air to the pilot burner and the combustion air is ignited to produce a pilot burner flame. The pilot burner flame is then used to ignited a mixture of main fuel and combustion air to produce a main burner flame. The main burner flame then is used to ignite a mixture of process derived fuel and combustion air to produce products of combustion for use as an inert gas in a heat treatment process.