Sample records for inertial reference frames

  1. Frames of Reference in the Classroom

    ERIC Educational Resources Information Center

    Grossman, Joshua

    2012-01-01

    The classic film "Frames of Reference" effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating--all with…

  2. Mechanical Energy Change in Inertial Reference Frames

    ERIC Educational Resources Information Center

    Ghanbari, Saeed

    2016-01-01

    The mechanical energy change of a system in an inertial frame of reference equals work done by the total nonconservative force in the same frame. This relation is covariant under the Galilean transformations from inertial frame S to S', where S' moves with constant velocity relative to S. In the presence of nonconservative forces, such as normal…

  3. Physics of Non-Inertial Reference Frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamalov, Timur F.

    2010-12-22

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate ofmore » its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.« less

  4. The Inertial Property of Approximately Inertial Frames of Reference

    ERIC Educational Resources Information Center

    Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.

    2011-01-01

    Is it possible to compare approximately inertial frames in the inertial property? If this is the case, the inertial property becomes a measurable quantity. We give a positive answer to this question, and discuss the general principle of design of devices for making the required measurements. This paper is intended for advanced undergraduate and…

  5. The error of L5/S1 joint moment calculation in a body-centered non-inertial reference frame when the fictitious force is ignored.

    PubMed

    Xu, Xu; Faber, Gert S; Kingma, Idsart; Chang, Chien-Chi; Hsiang, Simon M

    2013-07-26

    In ergonomics studies, linked segment models are commonly used for estimating dynamic L5/S1 joint moments during lifting tasks. The kinematics data input to these models are with respect to an arbitrary stationary reference frame. However, a body-centered reference frame, which is defined using the position and the orientation of human body segments, is sometimes used to conveniently identify the location of the load relative to the body. When a body-centered reference frame is moving with the body, it is a non-inertial reference frame and fictitious force exists. Directly applying a linked segment model to the kinematics data with respect to a body-centered non-inertial reference frame will ignore the effect of this fictitious force and introduce errors during L5/S1 moment estimation. In the current study, various lifting tasks were performed in the laboratory environment. The L5/S1 joint moments during the lifting tasks were calculated by a linked segment model with respect to a stationary reference frame and to a body-centered non-inertial reference frame. The results indicate that applying a linked segment model with respect to a body-centered non-inertial reference frame will result in overestimating the peak L5/S1 joint moments of the coronal plane, sagittal plane, and transverse plane during lifting tasks by 78%, 2%, and 59% on average, respectively. The instant when the peak moment occurred was delayed by 0.13, 0.03, and 0.09s on average, correspondingly for the three planes. The root-mean-square errors of the L5/S1 joint moment for the three planes are 21Nm, 19Nm, and 9Nm, correspondingly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Unitary cocycle representations of the Galilean line group: Quantum mechanical principle of equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, B.R.; McCoy, A.E.; Wickramasekara, S., E-mail: wickrama@grinnell.edu

    2012-09-15

    We present a formalism of Galilean quantum mechanics in non-inertial reference frames and discuss its implications for the equivalence principle. This extension of quantum mechanics rests on the Galilean line group, the semidirect product of the real line and the group of analytic functions from the real line to the Euclidean group in three dimensions. This group provides transformations between all inertial and non-inertial reference frames and contains the Galilei group as a subgroup. We construct a certain class of unitary representations of the Galilean line group and show that these representations determine the structure of quantum mechanics in non-inertialmore » reference frames. Our representations of the Galilean line group contain the usual unitary projective representations of the Galilei group, but have a more intricate cocycle structure. The transformation formula for the Hamiltonian under the Galilean line group shows that in a non-inertial reference frame it acquires a fictitious potential energy term that is proportional to the inertial mass, suggesting the equivalence of inertial mass and gravitational mass in quantum mechanics. - Highlights: Black-Right-Pointing-Pointer A formulation of Galilean quantum mechanics in non-inertial reference frames is given. Black-Right-Pointing-Pointer The key concept is the Galilean line group, an infinite dimensional group. Black-Right-Pointing-Pointer Unitary, cocycle representations of the Galilean line group are constructed. Black-Right-Pointing-Pointer A non-central extension of the group underlies these representations. Black-Right-Pointing-Pointer Quantum equivalence principle and gravity emerge from these representations.« less

  7. Dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio

    2007-09-06

    The origin of inertia has intrigued scientists and philosophers for centuries. Inertial frames of reference permeate our daily life. The inertial and centrifugal forces, such as the pull and push that we feel when our vehicle accelerates, brakes and turns, arise because of changes in velocity relative to uniformly moving inertial frames. A classical interpretation ascribed these forces to acceleration relative to some absolute frame independent of the cosmological matter, whereas an opposite view related them to acceleration relative to all the masses and 'fixed stars' in the Universe. An echo and partial realization of the latter idea can be found in Einstein's general theory of relativity, which predicts that a spinning mass will 'drag' inertial frames along with it. Here I review the recent measurements of frame dragging using satellites orbiting Earth.

  8. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less

  9. Description and User Instructions for the Quaternion_to_Orbit_v3 Software

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Kruizinga, Gerhard L.; Paik, Meegyeong; Yuan, Dah-Ning; Asmar, Sami W.

    2012-01-01

    For a given inertial frame of reference, the software combines the spacecraft orbits with the spacecraft attitude quaternions, and rotates the body-fixed reference frame of a particular spacecraft to the inertial reference frame. The conversion assumes that the two spacecraft are aligned with respect to the mutual line of sight, with a parameterized time tag. The software is implemented in Python and is completely open source. It is very versatile, and may be applied under various circumstances and for other related purposes. Based on the solid linear algebra analysis, it has an extra option for compensating the linear pitch. This software has been designed for simulation of the calibration maneuvers performed by the two spacecraft comprising the GRAIL mission to the Moon, but has potential use for other applications. In simulations of formation flights, one needs to coordinate the spacecraft orbits represented in an appropriate inertial reference frame and the spacecraft attitudes. The latter are usually given as the time series of quaternions rotating the body-fixed reference frame of a particular spacecraft to the inertial reference frame. It is often desirable to simulate the same maneuver for different segments of the orbit. It is also useful to study various maneuvers that could be performed at the same orbit segment. These two lines of study are more timeand labor-efficient if the attitude and orbit data are generated independently, so that the part of the data that has not been changed can be recycled in the course of multiple simulations.

  10. Explaining as Mediated Action: An Analysis of Pre-Service Teachers' Account of Forces of Inertia in Non-Inertial Frames of Reference

    ERIC Educational Resources Information Center

    de Pereira, Alexsandro Pereira; Lima Junior, Paulo; Rodrigues, Renato Felix

    2016-01-01

    Explaining is one of the most important everyday practices in science education. In this article, we examine how scientific explanations could serve as cultural tools for members of a group of pre-service physics teachers. Specifically, we aim at their use of explanations about forces of inertia in non-inertial frames of reference. A basic…

  11. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  12. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  13. The Gaia inertial reference frame and the tilting of the Milky Way disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, Michael; Spergel, David N.; Lindegren, Lennart, E-mail: mac.perryman@gmail.com

    2014-07-10

    While the precise relationship between the Milky Way disk and the symmetry planes of the dark matter halo remains somewhat uncertain, a time-varying disk orientation with respect to an inertial reference frame seems probable. Hierarchical structure formation models predict that the dark matter halo is triaxial and tumbles with a characteristic rate of ∼2 rad H{sub 0}{sup −1} (∼30 μas yr{sup –1}). These models also predict a time-dependent accretion of gas, such that the angular momentum vector of the disk should be misaligned with that of the halo. These effects, as well as tidal effects of the LMC, will resultmore » in the rotation of the angular momentum vector of the disk population with respect to the quasar reference frame. We assess the accuracy with which the positions and proper motions from Gaia can be referred to a kinematically non-rotating system, and show that the spin vector of the transformation from any rigid self-consistent catalog frame to the quasi-inertial system defined by quasars should be defined to better than 1 μas yr{sup –1}. Determination of this inertial frame by Gaia will reveal any signature of the disk orientation varying with time, improve models of the potential and dynamics of the Milky Way, test theories of gravity, and provide new insights into the orbital evolution of the Sagittarius dwarf galaxy and the Magellanic Clouds.« less

  14. Flying over uneven moving terrain based on optic-flow cues without any need for reference frames or accelerometers.

    PubMed

    Expert, Fabien; Ruffier, Franck

    2015-02-26

    Two bio-inspired guidance principles involving no reference frame are presented here and were implemented in a rotorcraft, which was equipped with panoramic optic flow (OF) sensors but (as in flying insects) no accelerometer. To test these two guidance principles, we built a tethered tandem rotorcraft called BeeRotor (80 grams), which was tested flying along a high-roofed tunnel. The aerial robot adjusts its pitch and hence its speed, hugs the ground and lands safely without any need for an inertial reference frame. The rotorcraft's altitude and forward speed are adjusted via two OF regulators piloting the lift and the pitch angle on the basis of the common-mode and differential rotor speeds, respectively. The robot equipped with two wide-field OF sensors was tested in order to assess the performances of the following two systems of guidance involving no inertial reference frame: (i) a system with a fixed eye orientation based on the curved artificial compound eye (CurvACE) sensor, and (ii) an active system of reorientation based on a quasi-panoramic eye which constantly realigns its gaze, keeping it parallel to the nearest surface followed. Safe automatic terrain following and landing were obtained with CurvACE under dim light to daylight conditions and the active eye-reorientation system over rugged, changing terrain, without any need for an inertial reference frame.

  15. Work and Inertial Frames

    NASA Astrophysics Data System (ADS)

    Kaufman, Richard

    2017-12-01

    A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by forces acting over distances. An analysis of the system must include all energy interactions, including the work done on the car and especially the (negative) work done on Earth in a moving reference frame. This shows the importance of considering the force on Earth and the distance Earth travels. For calculation of work in inertial reference frames, the center of mass perspective is shown to be useful. We also consider the energy requirements to efficiently accelerate a mass among interacting masses.

  16. Motion of a Point Mass in a Rotating Disc: A Quantitative Analysis of the Coriolis and Centrifugal Force

    NASA Astrophysics Data System (ADS)

    Haddout, Soufiane

    2016-06-01

    In Newtonian mechanics, the non-inertial reference frames is a generalization of Newton's laws to any reference frames. While this approach simplifies some problems, there is often little physical insight into the motion, in particular into the effects of the Coriolis force. The fictitious Coriolis force can be used by anyone in that frame of reference to explain why objects follow curved paths. In this paper, a mathematical solution based on differential equations in non-inertial reference is used to study different types of motion in rotating system. In addition, the experimental data measured on a turntable device, using a video camera in a mechanics laboratory was conducted to compare with mathematical solution in case of parabolically curved, solving non-linear least-squares problems, based on Levenberg-Marquardt's and Gauss-Newton algorithms.

  17. Astrophysics of Reference Frame Tie Objects

    NASA Technical Reports Server (NTRS)

    Johnston, Kenneth J.; Boboltz, David; Fey, Alan Lee; Gaume, Ralph A.; Zacharias, Norbert

    2004-01-01

    The Astrophysics of Reference Frame Tie Objects Key Science program will investigate the underlying physics of SIM grid objects. Extragalactic objects in the SIM grid will be used to tie the SIM reference frame to the quasi-inertial reference frame defined by extragalactic objects and to remove any residual frame rotation with respect to the extragalactic frame. The current realization of the extragalactic frame is the International Celestial Reference Frame (ICRF). The ICRF is defined by the radio positions of 212 extragalactic objects and is the IAU sanctioned fundamental astronomical reference frame. This key project will advance our knowledge of the physics of the objects which will make up the SIM grid, such as quasars and chromospherically active stars, and relates directly to the stability of the SIM reference frame. The following questions concerning the physics of reference frame tie objects will be investigated.

  18. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  19. Inertial constraints on limb proprioception are independent of visual calibration.

    PubMed

    Riley, M A; Turvey, M T

    2001-04-01

    When the coincidence of a limb's spatial axes and inertial eigenvectors is broken, haptic proprioception of the limb's position conforms to the eigenvectors. Additionally, when prisms break the coincidence between an arm's visual and actual positions, haptic proprioception is shifted toward the visual-spatial direction. In 3 experiments, variation of the arm's mass distribution was combined with prism adaptation to investigate the hypothesis that the proprioceptive effects of inertial and visual manipulations are additive. This hypothesis was supported across manipulations of plane of motion, body posture, proprioceptive target, and proprioceptive experience during prism adaptation. Haptic proprioception seems to depend on local, physical reference frames that are relative to the physical reference frames for the body's environmental position and orientation.

  20. Dynamical Reference Frame: Current Relevance and Future Prospects

    NASA Technical Reports Server (NTRS)

    Standish, E. M., Jr

    2000-01-01

    Planetary and lunar ephemerides are no longer used for the determination of inertial space. Instead, the new fundamental reference frame, the International Celestial Reference Frame (ICRF), is inherently less susceptible to extraneous, non-inertial rotations than a dynamical reference frame determined by the ephemerides would be. Consequently, the ephemerides are now adjusted onto the ICRF, and they are fit to two modern, accurate observational data types: ranging (radar, lunar laser, spacecraft) and Very Long Baseline Interferometry (VLBI) (of spacecraft near planets). The uncertainties remaining in the inner planet ephemerides are on the order of 1 kilometer, both in relative positions between the bodies and in the orientation of the inner system as a whole. The predictive capabilities of the inner planet ephemerides are limited by the uncertainties in the masses of many asteroids. For this reason, future improvements to the ephemerides must await determinations of many asteroid masses. Until then, it will be necessary to constantly update the ephemerides with a continuous supply of observational data.

  1. Frames of Reference in the Classroom

    NASA Astrophysics Data System (ADS)

    Grossman, Joshua

    2012-12-01

    The classic film "Frames of Reference"1,2 effectively illustrates concepts involved with inertial and non-inertial reference frames. In it, Donald G. Ivey and Patterson Hume use the cameras perspective to allow the viewer to see motion in reference frames translating with a constant velocity, translating while accelerating, and rotating—all with respect to the Earth frame. The film is a classic for good reason, but today it does have a couple of drawbacks: 1) The film by nature only accommodates passive learning. It does not give students the opportunity to try any of the experiments themselves. 2) The dated style of the 50-year-old film can distract students from the physics content. I present here a simple setup that can recreate many of the movies demonstrations in the classroom. The demonstrations can be used to supplement the movie or in its place, if desired. All of the materials except perhaps the inexpensive web camera should likely be available already in most teaching laboratories. Unlike previously described activities, these experiments do not require travel to another location3 or an involved setup.4,5

  2. Coordinates of Human Visual and Inertial Heading Perception.

    PubMed

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results.

  3. Coordinates of Human Visual and Inertial Heading Perception

    PubMed Central

    Crane, Benjamin Thomas

    2015-01-01

    Heading estimation involves both inertial and visual cues. Inertial motion is sensed by the labyrinth, somatic sensation by the body, and optic flow by the retina. Because the eye and head are mobile these stimuli are sensed relative to different reference frames and it remains unclear if a perception occurs in a common reference frame. Recent neurophysiologic evidence has suggested the reference frames remain separate even at higher levels of processing but has not addressed the resulting perception. Seven human subjects experienced a 2s, 16 cm/s translation and/or a visual stimulus corresponding with this translation. For each condition 72 stimuli (360° in 5° increments) were delivered in random order. After each stimulus the subject identified the perceived heading using a mechanical dial. Some trial blocks included interleaved conditions in which the influence of ±28° of gaze and/or head position were examined. The observations were fit using a two degree-of-freedom population vector decoder (PVD) model which considered the relative sensitivity to lateral motion and coordinate system offset. For visual stimuli gaze shifts caused shifts in perceived head estimates in the direction opposite the gaze shift in all subjects. These perceptual shifts averaged 13 ± 2° for eye only gaze shifts and 17 ± 2° for eye-head gaze shifts. This finding indicates visual headings are biased towards retina coordinates. Similar gaze and head direction shifts prior to inertial headings had no significant influence on heading direction. Thus inertial headings are perceived in body-centered coordinates. Combined visual and inertial stimuli yielded intermediate results. PMID:26267865

  4. Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area.

    PubMed

    Fetsch, Christopher R; Wang, Sentao; Gu, Yong; Deangelis, Gregory C; Angelaki, Dora E

    2007-01-17

    Heading perception is a complex task that generally requires the integration of visual and vestibular cues. This sensory integration is complicated by the fact that these two modalities encode motion in distinct spatial reference frames (visual, eye-centered; vestibular, head-centered). Visual and vestibular heading signals converge in the primate dorsal subdivision of the medial superior temporal area (MSTd), a region thought to contribute to heading perception, but the reference frames of these signals remain unknown. We measured the heading tuning of MSTd neurons by presenting optic flow (visual condition), inertial motion (vestibular condition), or a congruent combination of both cues (combined condition). Static eye position was varied from trial to trial to determine the reference frame of tuning (eye-centered, head-centered, or intermediate). We found that tuning for optic flow was predominantly eye-centered, whereas tuning for inertial motion was intermediate but closer to head-centered. Reference frames in the two unimodal conditions were rarely matched in single neurons and uncorrelated across the population. Notably, reference frames in the combined condition varied as a function of the relative strength and spatial congruency of visual and vestibular tuning. This represents the first investigation of spatial reference frames in a naturalistic, multimodal condition in which cues may be integrated to improve perceptual performance. Our results compare favorably with the predictions of a recent neural network model that uses a recurrent architecture to perform optimal cue integration, suggesting that the brain could use a similar computational strategy to integrate sensory signals expressed in distinct frames of reference.

  5. The Extended HANDS Characterization and Analysis of Metric Biases

    NASA Astrophysics Data System (ADS)

    Kelecy, T.; Knox, R.; Cognion, R.

    The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.

  6. Reference Frames in Relativistic Space-Time

    NASA Astrophysics Data System (ADS)

    Soffel, M.; Herold, H.; Ruder, H.; Schneider, M.

    Three fundamental concepts of reference frames in relativistic space-time are confronted: 1. the gravitation compass, 2. the stellar compass and 3. the inertial compass. It is argued that under certain conditions asymptotically fixed (stellar) reference frames can be introduced with the same rigour as local Fermi frames, thereby eliminating one possible psychological reason why the importance of Fermi frames frequently has been overestimated in the past. As applications of these three concepts the authors discuss: 1. a relativistic definition of the geoid, 2. a relativistic astrometric problem and 3. the post-Newtonian theory of a laser gyroscope fixed to the Earth's surface.

  7. A Newton-Euler Description for Sediment Movement.

    NASA Astrophysics Data System (ADS)

    Maniatis, G.; Hoey, T.; Drysdale, T.; Hodge, R. A.; Valyrakis, M.

    2015-12-01

    We present progress from the development of a purpose specific sensing system for sediment transport (Maniatis et al. 2013). This system utilises the capabilities of contemporary inertial micro-sensors (strap-down accelerometers and gyroscopes) to record fluvial transport from the moving body-frame of artificial pebbles modelled precisely to represent the motion of real, coarse sediment grains (D90=100 mm class). This type of measurements can be useful in the context of sediment transport only if the existing mathematical understanding of the process is updated. We test a new mathematical model which defines specifically how the data recorded in the body frame of the sensor (Lagrangian frame of reference) can be generalised to the reference frame of the flow (channel, Eulerian frame of reference). Given the association of the two most widely used models for sediment transport with those frames of reference (Shields' to Eulerian frame and HA. Einstein's to Lagrangian frame), this description builds the basis for the definition of explicit incipient motion criteria (Maniatis et al. 2015) and for the upscaling from point-grain scale measurements to averaged, cross-sectional, stream related metrics. Flume experiments where conducted in the Hydraulics laboratory of the University of Glasgow where a spherical sensor of 800 mm diameter and capable of recoding inertial dynamics at 80Hz frequency was tested under fluvial transport conditions. We managed to measure the dynamical response of the unit during pre-entrainment/entrainment transitions, on scaled and non-scaled to the sensor's diameter bed and for a range of hydrodynamic conditions (slope up to 0.02 and flow increase rate up to 0.05m3.s-1. Preliminary results from field deployment on a mixed bedrock-alluvial channel are also presented. Maniatis et. al 2013 J. Sens. Actuator Netw. 2013, 2(4), 761-779; Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.

  8. Myths, Misconceptions, and Misunderstandings: A Different Spin on Coriolis--Applying Frame of Reference

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2011-01-01

    This article addresses misconceptions surrounding the Coriolis force and describes how it should be presented as a function within inertial and noninertial frames of reference. Not only does this demonstrate the nature of science as it strives to best interpret the natural world (and presents alternative explanations), but it offers a rich…

  9. Frequency analysis of a two-stage planetary gearbox using two different methodologies

    NASA Astrophysics Data System (ADS)

    Feki, Nabih; Karray, Maha; Khabou, Mohamed Tawfik; Chaari, Fakher; Haddar, Mohamed

    2017-12-01

    This paper is focused on the characterization of the frequency content of vibration signals issued from a two-stage planetary gearbox. To achieve this goal, two different methodologies are adopted: the lumped-parameter modeling approach and the phenomenological modeling approach. The two methodologies aim to describe the complex vibrations generated by a two-stage planetary gearbox. The phenomenological model describes directly the vibrations as measured by a sensor fixed outside the fixed ring gear with respect to an inertial reference frame, while results from a lumped-parameter model are referenced with respect to a rotating frame and then transferred into an inertial reference frame. Two different case studies of the two-stage planetary gear are adopted to describe the vibration and the corresponding spectra using both models. Each case presents a specific geometry and a specific spectral structure.

  10. Statistical foundations of liquid-crystal theory

    PubMed Central

    Seguin, Brian; Fried, Eliot

    2013-01-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals. PMID:23772091

  11. Equivalence principle and quantum mechanics: quantum simulation with entangled photons.

    PubMed

    Longhi, S

    2018-01-15

    Einstein's equivalence principle (EP) states the complete physical equivalence of a gravitational field and corresponding inertial field in an accelerated reference frame. However, to what extent the EP remains valid in non-relativistic quantum mechanics is a controversial issue. To avoid violation of the EP, Bargmann's superselection rule forbids a coherent superposition of states with different masses. Here we suggest a quantum simulation of non-relativistic Schrödinger particle dynamics in non-inertial reference frames, which is based on the propagation of polarization-entangled photon pairs in curved and birefringent optical waveguides and Hong-Ou-Mandel quantum interference measurement. The photonic simulator can emulate superposition of mass states, which would lead to violation of the EP.

  12. Spatial and physical frames of reference in positioning a limb.

    PubMed

    Garrett, S R; Pagano, C; Austin, G; Turvey, M T

    1998-10-01

    Splints attached to the right forearm were used to rotate the forearm's physical reference frame, as defined by the eigenvectors of its inertia tensor, relative to its spatial reference frame. In two experiments, when subjects were required to orient the forearm parallel to, or at 45 degrees to, the environmental horizontal, they produced limb orientations that were systematically deflected from the forearm's longitudinal spatial axis in the direction of the forearm's physical axes. The position sense seems to be based on inertial eigenvectors rather than on joint angles or gravitational torques.

  13. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  15. Kalman Filter for Spinning Spacecraft Attitude Estimation

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  16. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors.

    PubMed

    Ricci, Luca; Formica, Domenico; Sparaci, Laura; Lasorsa, Francesca Romana; Taffoni, Fabrizio; Tamilia, Eleonora; Guglielmelli, Eugenio

    2014-01-09

    Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU), that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children's motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU) motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors' frames of reference into useful kinematic information in the human limbs' frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD) children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs). We will also present a novel cost function for the Levenberg-Marquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF) and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children.

  17. Re-examination of globally flat space-time.

    PubMed

    Feldman, Michael R

    2013-01-01

    In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

  18. Re-Examination of Globally Flat Space-Time

    NASA Astrophysics Data System (ADS)

    Feldman, Michael R.

    2013-11-01

    In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

  19. Statistical foundations of liquid-crystal theory: I. Discrete systems of rod-like molecules.

    PubMed

    Seguin, Brian; Fried, Eliot

    2012-12-01

    We develop a mechanical theory for systems of rod-like particles. Central to our approach is the assumption that the external power expenditure for any subsystem of rods is independent of the underlying frame of reference. This assumption is used to derive the basic balance laws for forces and torques. By considering inertial forces on par with other forces, these laws hold relative to any frame of reference, inertial or noninertial. Finally, we introduce a simple set of constitutive relations to govern the interactions between rods and find restrictions necessary and sufficient for these laws to be consistent with thermodynamics. Our framework provides a foundation for a statistical mechanical derivation of the macroscopic balance laws governing liquid crystals.

  20. A Celestial Reference Frame at X/ka-Band (8.4/32 Ghz) for Deep Space Navigation

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Clark, J. E.; Garcia-Miro, C.; Horiuchi, S.; Romero-Wolf, A.; Snedeker, L.; Sotuela, I.

    2012-01-01

    Deep space tracking and navigation are done in a quasi-inertial reference frame based upon the angular positions of distant active galactic nuclei (AGN). These objects, which are found at extreme distances characterized by median redshifts of z = 1, are ideal for reference frame definition because they exhibit no measurable parallax or proper motion. They are thought to be powered by super massive black holes whose gravitational energy drives galactic sized relativistic jets. These jets produce synchrotron emissions which are detectable by modern radio techniques such as Very Long baseline Interferometry (VLBI).

  1. Reynolds Stress Closure for Inertial Frames and Rotating Frames

    NASA Astrophysics Data System (ADS)

    Petty, Charles; Benard, Andre

    2017-11-01

    In a rotating frame-of-reference, the Coriolis acceleration and the mean vorticity field have a profound impact on the redistribution of kinetic energy among the three components of the fluctuating velocity. Consequently, the normalized Reynolds (NR) stress is not objective. Furthermore, because the Reynolds stress is defined as an ensemble average of a product of fluctuating velocity vector fields, its eigenvalues must be non-negative for all turbulent flows. These fundamental properties (realizability and non-objectivity) of the NR-stress cannot be compromised in computational fluid dynamic (CFD) simulations of turbulent flows in either inertial frames or in rotating frames. The recently developed universal realizable anisotropic prestress (URAPS) closure for the NR-stress depends explicitly on the local mean velocity gradient and the Coriolis operator. The URAPS-closure is a significant paradigm shift from turbulent closure models that assume that dyadic-valued operators associated with turbulent fluctuations are objective.

  2. Radiation from violently accelerated bodies

    NASA Astrophysics Data System (ADS)

    Gerlach, Ulrich H.

    2001-11-01

    A determination is made of the radiation emitted by a linearly uniformly accelerated uncharged dipole transmitter. It is found that, first of all, the radiation rate is given by the familiar Larmor formula, but it is augmented by an amount which becomes dominant for sufficiently high acceleration. For an accelerated dipole oscillator, the criterion is that the center of mass motion become relativistic within one oscillation period. The augmented formula and the measurements which it summarizes presuppose an expanding inertial observation frame. A static inertial reference frame will not do. Secondly, it is found that the radiation measured in the expanding inertial frame is received with 100% fidelity. There is no blueshift or redshift due to the accelerative motion of the transmitter. Finally, it is found that a pair of coherently radiating oscillators accelerating (into opposite directions) in their respective causally disjoint Rindler-coordinatized sectors produces an interference pattern in the expanding inertial frame. Like the pattern of a Young double slit interferometer, this Rindler interferometer pattern has a fringe spacing which is inversely proportional to the proper separation and the proper frequency of the accelerated sources. The interferometer, as well as the augmented Larmor formula, provide a unifying perspective. It joins adjacent Rindler-coordinatized neighborhoods into a single spacetime arena for scattering and radiation from accelerated bodies.

  3. The Minkowski metric in non-inertial observer radar coordinates

    NASA Astrophysics Data System (ADS)

    Minguzzi, E.

    2005-12-01

    We give a closed expression for the Minkowski (1+1)-dimensional metric in the radar coordinates of an arbitrary non-inertial observer O in terms of O's proper acceleration. Knowledge of the metric allows the non-inertial observer to perform experiments in spacetime without making reference to inertial frames. To clarify the relation between inertial and non-inertial observers the coordinate transformation between radar and inertial coordinates also is given. We show that every conformally flat coordinate system can be regarded as the radar coordinate system of a suitable observer for a suitable parametrization of the observer worldline. Therefore, the coordinate transformation between arbitrarily moving observers is a conformal transformation and conformally invariant (1+1)-dimensional theories lead to the same physics for all observers, independently of their relative motion.

  4. Osculating Relative Orbit Elements Resulting from Chief Eccentricity and J2 Perturbing Forces

    DTIC Science & Technology

    2011-03-01

    significant importance to the analytical investigation in this study and is described in depth in Section 3.1.1. There do exist approaches to mapping the...necessary to introduce the environment which the majority of models describe. 2.2.1 Inertial Reference Frame. A geocentric reference frame will be used for...closest approach , modifying the period and minima locations of the radial and in-track components. This change impacts the periodicity of the radial

  5. The explanation of the twin paradox using Poincare transformation and computer algebra system REDUCE

    NASA Astrophysics Data System (ADS)

    Hermanto, Arief

    2012-06-01

    We explain the twin (A and B) paradox using Poincare transformation (as the generalization of Lorentz transformation) in Special Relativity. We want to emphasize the fact that the paradox can really be explained in the context of Special Relativity. The twin A stays at home whereas B makes a round trip. We can still stay in Special Relativity if the non-inertial reference frame of B is in the form of a set of two inertial frames (K1 and K2) moving with different velocities with respect to a fixed inertial reference frame (K0) of A. K1 and K2 are each connected to K0 with Poincare Transformation. We use the CAS (computer algebra system) REDUCE to assist the computation. To make the discussion realistic and simpler we use rational numbers (so that we will get exact computational results) instead of symbols. The important point is that we will show how the fact can be understood by both parties (A and B) by simulating numerically the trip from the points of view of each A and B. A will accept the fact that B is younger and B will also accept the fact that A is older at the reunion. We hope the paradox will thus be explained away satisfactorily.

  6. Re-Examination of Globally Flat Space-Time

    PubMed Central

    Feldman, Michael R.

    2013-01-01

    In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of “dark energy,” “dark matter,” and “dark flow.” Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at “large enough” scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems) and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of “dark energy,” “dark matter,” and “dark flow.” In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems. PMID:24250790

  7. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  8. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  9. Observable Zitterbewegung in curved spacetimes

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  10. Newton-Cartan Gravity in Noninertial Reference Frames

    NASA Astrophysics Data System (ADS)

    Rodriguez, Leo; St. Germaine-Fuller, James; Wickramasekara, Sujeev

    2015-03-01

    We study Newton-Cartan gravity under transformations into all noninertial, nonrelativistic reference frames. These transformations form an infinite dimensional Lie group, called the Galilean line group, which contains as a subgroup the Galilei group. The fictitious forces of noninertial reference frames are encoded in the Cartan connection transformed under the Galilean line group. These fictitious forces, which are coordinate effects, do not contribute to the Ricci tensor. Only the 00-component of the Ricci tensor is non-zero and equals (4 π times) the matter density in all reference frames. While the Ricci field equation and Gauss' law are fulfilled by the physical matter density in inertial and linearly accelerating reference frames, in rotating reference frames Gauss' law holds for an effective mass density that differs from the physical matter density. This effective density has its origin in the simulated magnetic field of rotating frames, highlighting a striking difference between linearly and rotationally accelerating frames. The equations governing the simulated fields have the same form as Maxwell's equations, a surprising result given that these equations obey special relativity (and U (1) -gauge symmetry), rather than Galilean symmetry. This work was supported in part by the HHMI Undergraduate Science Education Award 52006298 and the Grinnell College Academic Affairs' CSFS and MAP programs.

  11. Weak Galilean invariance as a selection principle for coarse-grained diffusive models.

    PubMed

    Cairoli, Andrea; Klages, Rainer; Baule, Adrian

    2018-05-29

    How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.

  12. Instrument Pointing Capabilities: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Blackmore, Lars; Murray, Emmanuell; Scharf, Daniel P.; Aung, Mimi; Bayard, David; Brugarolas, Paul; Hadaegh, Fred; Lee, Allan; Milman, Mark; Sirlin, Sam; hide

    2011-01-01

    This paper surveys the instrument pointing capabilities of past, present and future space telescopes and interferometers. As an important aspect of this survey, we present a taxonomy for "apples-to-apples" comparisons of pointing performances. First, pointing errors are defined relative to either an inertial frame or a celestial target. Pointing error can then be further sub-divided into DC, that is, steady state, and AC components. We refer to the magnitude of the DC error relative to the inertial frame as absolute pointing accuracy, and we refer to the magnitude of the DC error relative to a celestial target as relative pointing accuracy. The magnitude of the AC error is referred to as pointing stability. While an AC/DC partition is not new, we leverage previous work by some of the authors to quantitatively clarify and compare varying definitions of jitter and time window averages. With this taxonomy and for sixteen past, present, and future missions, pointing accuracies and stabilities, both required and achieved, are presented. In addition, we describe the attitude control technologies used to and, for future missions, planned to achieve these pointing performances.

  13. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effect of adopting definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term: general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site. The CIS differences by comparing the ERP's are determined by the different techniques during the same time period.

  14. Effects of adopting new precession, nutation and equinox corrections on the terrestrial reference frame

    NASA Technical Reports Server (NTRS)

    Zhu, S. Y.; Mueller, I. I.

    1982-01-01

    The effects of adopting new definitive precession and equinox corrections on the terrestrial reference frame was investigated. It is noted that: (1) the effect on polar motion is a diurnal periodic term with an amplitude increasing linearly in time whole on UT1 it is a linear term; (2) general principles are given to determine the effects of small rotations of the frame of a conventional inertial reference system (CIS) on the frame of the conventional terrestrial reference system (CTS); (3) seven CTS options are presented, one of which is necessary to accommodate such rotation. Accommodating possible future changes in the astronomical nutation is discussed. The effects of differences which may exist between the various CTS's and CIS's on Earth rotation parameters (ERP) and how these differences can be determined are examined. It is shown that the CTS differences can be determined from observations made at the same site, while the CIS differences by comparing the ERP's determined by the different techniques during the same time period.

  15. Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.

    PubMed

    Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C

    1995-01-01

    To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).

  16. Reference Frames in Earth Rotation Theories

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Belda, Santiago; Heinkelmann, Robert; Getino, Juan; Schuh, Harald; Escapa, Alberto

    2015-04-01

    Nowadays the determination of the Earth Orientation Parameters (EOP) and the different Terrestrial Reference Frames (TRF) are not independent. The available theories of Earth rotation aims at providing the orientation of a certain reference system linked somehow to the Earth with respect to a given celestial system, considered as inertial. In the past years a considerable effort has been dedicated to the improvement of the TRF realizations, following the lines set up in the 1980's. However, the reference systems used in the derivation of the theories have been rather considered as something fully established, not deserving a special attention. In this contribution we review the definitions of the frames used in the main theoretical approaches, focusing on those used in the construction of IAU2000, and the extent to which their underlying hypotheses hold. The results are useful to determine the level of consistency of the predicted and determined EOP.

  17. Attitude Heading Reference System Using MEMS Inertial Sensors with Dual-Axis Rotation

    PubMed Central

    Kang, Li; Ye, Lingyun; Song, Kaichen; Zhou, Yang

    2014-01-01

    This paper proposes a low cost and small size attitude and heading reference system based on MEMS inertial sensors. A dual-axis rotation structure with a proper rotary scheme according to the design principles is applied in the system to compensate for the attitude and heading drift caused by the large gyroscope biases. An optimization algorithm is applied to compensate for the installation angle error between the body frame and the rotation table's frame. Simulations and experiments are carried out to evaluate the performance of the AHRS. The results show that the proper rotation could significantly reduce the attitude and heading drifts. Moreover, the new AHRS is not affected by magnetic interference. After the rotation, the attitude and heading are almost just oscillating in a range. The attitude error is about 3° and the heading error is less than 3° which are at least 5 times better than the non-rotation condition. PMID:25268911

  18. A Quadrotor Sensor Platform

    DTIC Science & Technology

    2008-08-01

    quadrotor with two planes of symmetry. As a reference, a blue flag was fixed to one arm to mark the tail. y z inertial frame x y z body frame x N...Vermont, 1976. [5] Charles Gablehouse. Helicopters and Autogiros. J. B. Lippencott Company, Philadelphia, 1969. [6] C. V. Glines. “The Flying Octopus ...and Darryll J. Pines. “Characterization of Ring Laser Gyro Performance Using the Allan Variance Method”. Journal of Guidance, Control, and Dynamics, vol

  19. Inertial Frames Without the Relativity Principle: Breaking Lorentz Symmetry

    NASA Astrophysics Data System (ADS)

    Baccetti, Valentina; Tate, Kyle; Visser, Matt

    2015-01-01

    We investigate inertial frames in the absence of Lorentz invariance, reconsidering the usual group structure implied by the relativity principle. We abandon the relativity principle, discarding the group structure for the transformations between inertial frames, while requiring these transformations to be at least linear (to preserve homogeneity). In theories with a preferred frame (aether), the set of transformations between inertial frames forms a groupoid/pseudogroup instead of a group, a characteristic essential to evading the von Ignatowsky theorems. In order to understand the dynamics, we also demonstrate that the transformation rules for energy and momentum are in general affine. We finally focus on one specific and compelling model implementing a minimalist violation of Lorentz invariance.

  20. On the Energy and Momentum of an Accelerated Charged Particle and the Sources of Radiation

    ERIC Educational Resources Information Center

    Eriksen, Erik; Gron, Oyvind

    2007-01-01

    We give a systematic development of the theory of the radiation field of an accelerated charged particle with reference to an inertial reference frame in flat spacetime. Special emphasis is given to the role of the Schott energy and momentum in the energy-momentum balance of the charge and its field. It is shown that the energy of the radiation…

  1. Determination of Phobos' rotational parameters by an inertial frame bundle block adjustment

    NASA Astrophysics Data System (ADS)

    Burmeister, Steffi; Willner, Konrad; Schmidt, Valentina; Oberst, Jürgen

    2018-01-01

    A functional model for a bundle block adjustment in the inertial reference frame was developed, implemented and tested. This approach enables the determination of rotation parameters of planetary bodies on the basis of photogrammetric observations. Tests with a self-consistent synthetic data set showed that the implementation converges reliably toward the expected values of the introduced unknown parameters of the adjustment, e.g., spin pole orientation, and that it can cope with typical observational errors in the data. We applied the model to a data set of Phobos using images from the Mars Express and the Viking mission. With Phobos being in a locked rotation, we computed a forced libration amplitude of 1.14^circ ± 0.03^circ together with a control point network of 685 points.

  2. Inertial processing of vestibulo-ocular signals

    NASA Technical Reports Server (NTRS)

    Hess, B. J.; Angelaki, D. E.

    1999-01-01

    New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.

  3. Underwater image mosaicking and visual odometry

    NASA Astrophysics Data System (ADS)

    Sadjadi, Firooz; Tangirala, Sekhar; Sorber, Scott

    2017-05-01

    This paper summarizes the results of studies in underwater odometery using a video camera for estimating the velocity of an unmanned underwater vehicle (UUV). Underwater vehicles are usually equipped with sonar and Inertial Measurement Unit (IMU) - an integrated sensor package that combines multiple accelerometers and gyros to produce a three dimensional measurement of both specific force and angular rate with respect to an inertial reference frame for navigation. In this study, we investigate the use of odometry information obtainable from a video camera mounted on a UUV to extract vehicle velocity relative to the ocean floor. A key challenge with this process is the seemingly bland (i.e. featureless) nature of video data obtained underwater which could make conventional approaches to image-based motion estimation difficult. To address this problem, we perform image enhancement, followed by frame to frame image transformation, registration and mosaicking/stitching. With this approach the velocity components associated with the moving sensor (vehicle) are readily obtained from (i) the components of the transform matrix at each frame; (ii) information about the height of the vehicle above the seabed; and (iii) the sensor resolution. Preliminary results are presented.

  4. Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration

    PubMed Central

    Kipreos, Edward T.

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift–distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116

  5. Implications of an absolute simultaneity theory for cosmology and universe acceleration.

    PubMed

    Kipreos, Edward T

    2014-01-01

    An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.

  6. The delayed theory of fields

    NASA Astrophysics Data System (ADS)

    Poormohammadi, Jaber; Rezagholizadeh, Hessam

    The idea of action immediate propagation has been in physicists' mind from the beginning, until Faraday raised the idea of delayed propagation. Using this idea and the delayed theory of fields, we face consequences which can be interesting for anyone who has learned physics. We can mention non-equivalency between stationary frames and moving frames, dependency of field to medium, different velocity barriers for different mediums and non-equivalency of inertial reference frames are among these consequences. By designing an experiment we can challenge this theory and its consequences. All of these sections processed in the article titled ''The delayed theory of fields''.

  7. Nonlinear dynamic analysis of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Bauchau, Olivier A.; Kang, Nam Kook

    1991-01-01

    Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.

  8. On the relativistic micro-canonical ensemble and relativistic kinetic theory for N relativistic particles in inertial and non-inertial rest frames

    NASA Astrophysics Data System (ADS)

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2015-03-01

    A new formulation of relativistic classical mechanics allows a reconsideration of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincaré generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonical ensemble in terms of the Galilei generators.

  9. Connecting kinematic and dynamic reference frames by D-VLBI

    NASA Astrophysics Data System (ADS)

    Schuh, Harald; Plank, Lucia; Madzak, Matthias; Böhm, Johannes

    2012-08-01

    In geodetic and astrometric practice, terrestrial station coordinates are usually provided in the kinematic International Terrestrial Reference Frame (ITRF) and radio source coordinates in the International Celestial Reference Frame (ICRF), whereas measurements of space probes such as satellites and spacecrafts, or planetary ephemerides rest upon dynamical theories. To avoid inconsistencies and errors during measurement and calculation procedures, exact frame ties between quasi - inertial, kinematic and dynamic reference frames have to be secured. While the Earth Orientation Parameters (EOP), e.g. measured by VLBI, link the ITRF to the ICRF, the ties with the dynamic frames can be established with the differential Very Long Baseline Interferometry (D - VLBI) method. By observing space probes alternately t o radio sources, the relative position of the targets to each other on the sky can be determined with high accuracy. While D - VLBI is a common technique in astrophysics (source imaging) and deep space navigation, just recently there have been several effort s to use it for geodetic purposes. We present investigations concerning possible VLBI observations to satellites. This includes the potential usage of available GNNS satellites as well as specifically designed missions, as e.g. the GRASP mission proposed b y JPL/NASA and an international consortium, where the aspect of co - location in space of various techniques (VLBI, SLR, GNSS, DORIS) is the main focus.

  10. When Equal Masses Don't Balance

    ERIC Educational Resources Information Center

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-01-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these…

  11. The Challenge of Changing Deeply Held Student Beliefs about the Relativity of Simultaneity.

    ERIC Educational Resources Information Center

    Scherr, Rachel E.; Shaffer, Peter S.; Vokos, Stamatis

    2002-01-01

    Describes the development and assessment of instructional materials intended to improve student understanding of the concept of time in special relativity, the relativity of simultaneity, and the role of observers in inertial reference frames. Demonstrates the effect of the curriculum and illustrates the intense cognitive conflict as students are…

  12. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-04-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  13. Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations

    NASA Astrophysics Data System (ADS)

    Fu, Yuan; Zhang, Da-peng; Xie, Xi-lin

    2018-03-01

    In this study, a vorticity vector-potential method for two-dimensional viscous incompressible rotating driven flows is developed in the time-dependent curvilinear coordinates. The method is applicable in both inertial and non-inertial frames of reference with the advantage of a fixed and regular calculation domain. The numerical method is applied to triangle and curved triangle configurations in constant and varying rotational angular velocity cases respectively. The evolutions of flow field are studied. The geostrophic effect, unsteady effect and curvature effect on the evolutions are discussed.

  14. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Charlot, P.; Finger, M. H.; Williams, J. G.; Sovers, O. J.; Newhall, XX; Standish, E. M., Jr.

    1994-01-01

    Very Long Baseline Interferometry (VLBI) observations of extragalactic radio sources provide the basis for defining an accurate non-rotating reference frame in terms of angular positions of the sources. Measurements of the distance from the Earth to the Moon and to the inner planets provide the basis for defining an inertial planetary ephemeris reference frame. The relative orientation, or frame tie, between these two reference frames is of interest for combining Earth orientation measurements, for comparing Earth orientation results with theories referred to the mean equator and equinox, and for determining the positions of the planets with respect to the extragalactic reference frame. This work presents an indirect determination of the extragalactic-planetary frame tie from a combined reduction of VLBI and Lunar Laser Ranging (LLR) observations. For this determination, data acquired by LLR tracking stations since 1969 have been analyzed and combined with 14 years of VLBI data acquired by NASA's Deep Space Network since 1978. The frame tie derived from this joint analysis, with an accuracy of 0.003 sec, is the most accurate determination obtained so far. This result, combined with a determination of the mean ecliptic (defined in the rotating sense), shows that the mean equinox of epoch J2000 is offset from the x-axis of the extragalactic frame adopted by the International Earth Rotation Service for astrometric and geodetic applications by 0.078 sec +/- 0.010 sec along the y-direction and y 0.019 sec +/- 0.001 sec. along the z-direction.

  15. Inertial nonvacuum states viewed from the Rindler frame

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Padmanabhan, T.

    2015-02-01

    The appearance of the inertial vacuum state in Rindler frame has been extensively studied in the literature, both from the point of view of quantum field theory developed using Rindler foliation and using the response of an Unruh-Dewitt detector. In comparison, less attention has been devoted to the study of inertial nonvacuum states when viewed from the Rindler frame. We provide a comprehensive study of this issue in this paper. We first present a general formalism describing the characterization of arbitrary inertial state (i) when described using an arbitrary foliation and (ii) using the response of an Unruh-DeWitt detector moving along an arbitrary trajectory. This allows us to calculate the mean number of particles in an arbitrary inertial state, when the QFT is described using an arbitrary foliation of spacetime or when the state is probed by a detector moving along an arbitrary trajectory. We use this formalism to explicitly compute the results for the Rindler frame and uniformly accelerated detectors. Any arbitrary inertial state will always have a thermal component in the Rindler frame with additional contributions arising from the nonvacuum nature. We classify the nature of the additional contributions in terms of functions characterizing the inertial state. We establish that for all physically well-behaved normalizable inertial states, the correction terms decrease rapidly with the energy of the Rindler mode so that the high frequency limit is dominated by the thermal noise in any normalizable inertial state. However, inertial states which are not strictly normalizable like, for example, the one-particle state with definite momentum, lead to a constant contribution at all high frequencies in the Rindler frame. We show that a similar behavior arises in the response of the Unruh-DeWitt detector as well. In the case of the detector response, we provide a physical interpretation for the constant contribution at high frequencies in terms of total detection rate of comoving inertial detectors. We also describe two different approaches for defining a transition rate for the Unruh-DeWitt detector, when the two-point function lacks the time translation invariance, and discuss several features of different definitions of transition rates. The implications are discussed.

  16. A simple demonstration when studying the equivalence principle

    NASA Astrophysics Data System (ADS)

    Mayer, Valery; Varaksina, Ekaterina

    2016-06-01

    The paper proposes a lecture experiment that can be demonstrated when studying the equivalence principle formulated by Albert Einstein. The demonstration consists of creating stroboscopic photographs of a ball moving along a parabola in Earth's gravitational field. In the first experiment, a camera is stationary relative to Earth's surface. In the second, the camera falls freely downwards with the ball, allowing students to see that the ball moves uniformly and rectilinearly relative to the frame of reference of the freely falling camera. The equivalence principle explains this result, as it is always possible to propose an inertial frame of reference for a small region of a gravitational field, where space-time effects of curvature are negligible.

  17. Vision and dual IMU integrated attitude measurement system

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Lu, Huang

    2018-01-01

    To determination relative attitude between two space objects on a rocking base, an integrated system based on vision and dual IMU (inertial determination unit) is built up. The determination system fuses the attitude information of vision with the angular determinations of dual IMU by extended Kalman filter (EKF) to obtain the relative attitude. One IMU (master) is attached to the measured motion object and the other (slave) to the rocking base. As the determination output of inertial sensor is relative to inertial frame, thus angular rate of the master IMU includes not only motion of the measured object relative to inertial frame but also the rocking base relative to inertial frame, where the latter can be seen as redundant harmful movement information for relative attitude determination between the measured object and the rocking base. The slave IMU here assists to remove the motion information of rocking base relative to inertial frame from the master IMU. The proposed integrated attitude determination system is tested on practical experimental platform. And experiment results with superior precision and reliability show the feasibility and effectiveness of the proposed attitude determination system.

  18. Agate Beach BOBr Processed Breaking Wave Data

    DOE Data Explorer

    Adam C Brown

    2013-10-31

    This data was recorded of the coast of Newport, OR at Agate Beach in the surf zone. The data was recorded by a 9dof inertial measurement unit and consists of a timestamp, quaternion orientation, acceleration vector, rotation vector, and magnetic vector. The acceleration, rotation, and magnetic vectors have all been corrected back to a North East Down reference frame.

  19. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Xie, Yi

    2010-11-01

    We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

  20. Einstein's Elevator in Class: A Self-Construction by Students for the Study of the Equival

    ERIC Educational Resources Information Center

    Kapotis, Efstratios; Kalkanis, George

    2016-01-01

    According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him…

  1. Deeply-Integrated Feature Tracking for Embedded Navigation

    DTIC Science & Technology

    2009-03-01

    metric would result in increased feature strength, but a decrease in repeatability. The feature spacing also helped with repeatability of strong...locations in the second frame. This relationship is a constraint of projective geometry and states that the cross product of a point with itself (when...integrated refers to the incorporation of inertial information into the image processing, rather than just

  2. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    NASA Technical Reports Server (NTRS)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  3. On the establishment and maintenance of a modern conventional terrestrial reference system

    NASA Technical Reports Server (NTRS)

    Bock, Y.; Zhu, S. Y.

    1982-01-01

    The frame of the Conventional Terrestrial Reference System (CTS) is defined by an adopted set of coordinates, at a fundamental epoxh, of a global network of stations which contribute the vertices of a fundamental polyhedron. A method to estimate this set of coordinates using a combination of modern three dimensional geodetic systems is presented. Once established, the function of the CTS is twofold. The first is to monitor the external (or global) motions of the polyhedron with respect to the frame of a Conventional Inertial Reference System, i.e., those motions common to all stations. The second is to monitor the internal motions (or deformations) of the polyhedron, i.e., those motions that are not common to all stations. Two possible estimators for use in earth deformation analysis are given and their statistical and physical properties are described.

  4. Spherical Pendulum Small Oscillations for Slewing Crane Motion

    PubMed Central

    Perig, Alexander V.; Stadnik, Alexander N.; Deriglazov, Alexander I.

    2014-01-01

    The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies' problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown. PMID:24526891

  5. On the Behavior of Velocity Fluctuations in Rapidly Rotating Flows

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.; Ristorcelli, J. R.

    1997-01-01

    The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.

  6. Transformative Relation of Kinematical Descriptive Quantities Defined by Different Spatial Referential Frame, Its Property and Application

    NASA Astrophysics Data System (ADS)

    Luo, Ji

    2012-08-01

    Quantitative transformations between corresponding kinetic quantities defined by any two spatial referential frames, whose relative kinematics relations (purely rotational and translational movement) are known, are presented based on necessarily descriptive definitions of the fundamental concepts (instant, time, spatial referential frame that distinguishes from Maths. Coordination, physical point) had being clarified by directly empirical observation with artificially descriptive purpose. Inductive investigation of the transformation reveals that all physical quantities such as charge, temperature, time, volume, length, temporal rate of the quantities and relations like temporal relation between signal source and observer as such are independent to spatial frames transformation except above kinematical quantities transformations, kinematics related dynamics such as Newton ’ s second law existing only in inertial frames and exchange of kinetic energy of mass being valid only in a selected inertial frame. From above bas is, we demonstrate a series of inferences and applications such as phase velocity of light being direct respect to medium (including vacuum) rather than to the frame, using spatial referential frame to describe any measurable field (electric field, magnetic field, gravitational field) and the field ’ s variation; and have tables to contrast and evaluate all aspects of those hypotheses related with spacetime such as distorted spacetime around massive stellar, four dimension spacetime, gravitational time dilation and non - Euclid geometry with new one. The demonstration strongly suggests all the hypotheses are invalid in capable tested concepts ’ meaning and relations. The conventional work on frame transformation and its property, hypothesized by Voigt, Heaviside, Lorentz, Poincare and Einstein a century ago with some mathematical speculation lacking rigorous definition of the fundamental concepts such as instant, time, spatial reference, straight line, plane area, merely good in building up patchwork to do self p referred explanation by making up derivative concepts or accumulating new hypothesis, has disturbed people to describe the physical nature by setting up the sound basis of concept and relations with capable tested method, it’s time to be replaced by empirically effective alternative.

  7. Relativistic effects in local inertial frames including parametrized-post-Newtonian effects

    NASA Astrophysics Data System (ADS)

    Shahid-Saless, Bahman; Ashby, Neil

    1988-09-01

    We use the concept of a generalized Fermi frame to describe relativistic effects, due to local and distant sources of gravitation, on a body placed in a local inertial frame of reference. In particular we have considered a model of two spherically symmetric gravitating point sources, moving in circular orbits around a common barycenter where one of the bodies is chosen to be the local and the other the distant one. This has been done using the slow-motion, weak-field approximation and including four of the parametrized-post-Newtonian (PPN) parameters. The position of the classical center of mass must be modified when the PPN parameter ζ2 is included. We show that the main relativistic effect on a local satellite is described by the Schwarzschild field of the local body and the nonlinear term corresponding to the self-interaction of the local source with itself. There are also much smaller terms that are proportional, respectively, to the product of the potentials of local and distant bodies and to the distant body's self-interactions. The spatial axes of the local frame undergo geodetic precession. In addition we have an acceleration of the order of 10-11 cm sec-2 that vanish in the case of general relativity, which is discussed in detail.

  8. Astrometry VLBI in Space (AVS

    NASA Technical Reports Server (NTRS)

    Altunin, V.; Alekseev, V.; Akim, E.; Eubanks, M.; Kingham, K.; Treuhaft, R.; Sukhanov, K.

    1995-01-01

    A proposed new space radio astronomy mission for astrometry is described. The Astrometry VLBI (very long baseline) in Space (AVS) nominal mission includes two identical spacecraft, each with a 4-m antenna sending data to a 70-m ground station. The goals of AVS are improving astrometry accuracy to the microarcsecond level and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames.

  9. Fourier-based integration of quasi-periodic gait accelerations for drift-free displacement estimation using inertial sensors.

    PubMed

    Sabatini, Angelo Maria; Ligorio, Gabriele; Mannini, Andrea

    2015-11-23

    In biomechanical studies Optical Motion Capture Systems (OMCS) are considered the gold standard for determining the orientation and the position (pose) of an object in a global reference frame. However, the use of OMCS can be difficult, which has prompted research on alternative sensing technologies, such as body-worn inertial sensors. We developed a drift-free method to estimate the three-dimensional (3D) displacement of a body part during cyclical motions using body-worn inertial sensors. We performed the Fourier analysis of the stride-by-stride estimates of the linear acceleration, which were obtained by transposing the specific forces measured by the tri-axial accelerometer into the global frame using a quaternion-based orientation estimation algorithm and detecting when each stride began using a gait-segmentation algorithm. The time integration was performed analytically using the Fourier series coefficients; the inverse Fourier series was then taken for reconstructing the displacement over each single stride. The displacement traces were concatenated and spline-interpolated to obtain the entire trace. The method was applied to estimate the motion of the lower trunk of healthy subjects that walked on a treadmill and it was validated using OMCS reference 3D displacement data; different approaches were tested for transposing the measured specific force into the global frame, segmenting the gait and performing time integration (numerically and analytically). The width of the limits of agreements were computed between each tested method and the OMCS reference method for each anatomical direction: Medio-Lateral (ML), VerTical (VT) and Antero-Posterior (AP); using the proposed method, it was observed that the vertical component of displacement (VT) was within ±4 mm (±1.96 standard deviation) of OMCS data and each component of horizontal displacement (ML and AP) was within ±9 mm of OMCS data. Fourier harmonic analysis was applied to model stride-by-stride linear accelerations during walking and to perform their analytical integration. Our results showed that analytical integration based on Fourier series coefficients was a useful approach to accurately estimate 3D displacement from noisy acceleration data.

  10. The principle of relativity, superluminality and EPR experiments. "Riserratevi sotto coverta ..."

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.

    2015-07-01

    The principle of relativity claims the invariance of the results for experiments carried out in inertial reference frames if the system under examination is not in interaction with the outside world. In this paper it is analysed a model suggested by J. S. Bell, and later developed by P. H. Eberhard, D. Bohm and B. Hiley on the basis of which the EPR correlations would be due to superluminal exchanges between the various parts of the entangled system under examination. In the model the existence of a privileged reference frame (PF) for the propagation of superluminal signals is hypothesized so that these superluminal signals may not give rise to causal paradoxes. According to this model, in an EPR experiment, the entangled system interacts with the outer world since the result of the experiment depends on an entity (the reference frame PF) that is not prepared by the experimenter. The existence of this privileged reference frame makes the model non invariant for Lorentz transformations. In this paper, in opposition to what claimed by the authors mentioned above, the perfect compatibility of the model with the theory of relativity is strongly maintained since, as already said, the principle of relativity does not require that the results of experiments carried out on systems interacting with the outside world should be invariant.

  11. An experimental protocol for the definition of upper limb anatomical frames on children using magneto-inertial sensors.

    PubMed

    Ricci, L; Formica, D; Tamilia, E; Taffoni, F; Sparaci, L; Capirci, O; Guglielmelli, E

    2013-01-01

    Motion capture based on magneto-inertial sensors is a technology enabling data collection in unstructured environments, allowing "out of the lab" motion analysis. This technology is a good candidate for motion analysis of children thanks to the reduced weight and size as well as the use of wireless communication that has improved its wearability and reduced its obtrusivity. A key issue in the application of such technology for motion analysis is its calibration, i.e. a process that allows mapping orientation information from each sensor to a physiological reference frame. To date, even if there are several calibration procedures available for adults, no specific calibration procedures have been developed for children. This work addresses this specific issue presenting a calibration procedure for motion capture of thorax and upper limbs on healthy children. Reported results suggest comparable performance with similar studies on adults and emphasize some critical issues, opening the way to further improvements.

  12. Initial Alignment for SINS Based on Pseudo-Earth Frame in Polar Regions.

    PubMed

    Gao, Yanbin; Liu, Meng; Li, Guangchun; Guang, Xingxing

    2017-06-16

    An accurate initial alignment must be required for inertial navigation system (INS). The performance of initial alignment directly affects the following navigation accuracy. However, the rapid convergence of meridians and the small horizontalcomponent of rotation of Earth make the traditional alignment methods ineffective in polar regions. In this paper, from the perspective of global inertial navigation, a novel alignment algorithm based on pseudo-Earth frame and backward process is proposed to implement the initial alignment in polar regions. Considering that an accurate coarse alignment of azimuth is difficult to obtain in polar regions, the dynamic error modeling with large azimuth misalignment angle is designed. At the end of alignment phase, the strapdown attitude matrix relative to local geographic frame is obtained without influence of position errors and cumbersome computation. As a result, it would be more convenient to access the following polar navigation system. Then, it is also expected to unify the polar alignment algorithm as much as possible, thereby further unifying the form of external reference information. Finally, semi-physical static simulation and in-motion tests with large azimuth misalignment angle assisted by unscented Kalman filter (UKF) validate the effectiveness of the proposed method.

  13. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  14. Head tilt during driving.

    PubMed

    Zikovitz, D C; Harris, L R

    1999-05-01

    In order to distinguish between the use of visual and gravito-inertial force reference frames, the head tilt of drivers and passengers were measured as they went around corners at various speeds. The visual curvature of the corners were thus dissociated from the magnitude of the centripetal forces (0.30-0.77 g). Drivers' head tilts were highly correlated with the visually-available estimate of the curvature of the road (r2=0.86) but not with the centripetal force (r2<0.1). Passengers' head tilts were inversely correlated with the lateral forces (r2=0.3-0.7) and seem to reflect a passive sway. The strong correlation of the tilt of drivers' heads with a visual aspect of the road ahead, supports the use of a predominantly visual reference frame for the driving task.

  15. Reference coordinate systems: An update. Supplement 11

    NASA Technical Reports Server (NTRS)

    Mueller, Ivan I.

    1988-01-01

    A common requirement for all geodetic investigations is a well-defined coordinate system attached to the earth in some prescribed way, as well as a well-defined inertial coordinate system in which the motions of the terrestrial frame can be monitored. The paper deals with the problems encountered when establishing such coordinate systems and the transformations between them. In addition, problems related to the modeling of the deformable earth are discussed. This paper is an updated version of the earlier work, Reference Coordinate Systems for Earth Dynamics: A Preview, by the author.

  16. Seismological versus geodetic reference frames for seismic dislocation: consistency under momentum conservations

    NASA Astrophysics Data System (ADS)

    Xu, Changyi; Chao, Benjamin F.

    2015-02-01

    We raise attention to the issue of consistency between the reference frame with respect to which the seismological model calculations of displacement are made on one hand, and that to which the geodetic measurements of crustal deformation refer (e.g. the ITRF) on the other. This issue is critical in principle if the seismologically calculated displacement (or gravity change) is to be compared or used in joint inversion with geodetic measurements. A necessary set of conditions to be satisfied by inertial frames is the conservations of linear and angular momentums: no net change in them can be induced by a seismic source indigenous to the Earth. We show that the momentums are embodied in the degree-1 terms of the vector spherical-harmonic expansion of the displacement field. Using three largest recent earthquakes as case examples we find that the algorithms of seismological dislocation modelling in the literature do not conserve the momentums. However, quantitatively this inconsistency amounts to two orders of magnitude smaller than the current precision in the definition of the ITRF, hence insignificant in practice. Some caveats are raised.

  17. Navigation System Design and State Estimation for a Small Rigid Hull Inflatable Boat (RHIB)

    DTIC Science & Technology

    2014-09-01

    addition of the Coriolis term as previously defined has no effect on pitch, only one measurement is compared against Condor’s true pitch angle values...33  B.  REFERENCE FRAME DEFINITIONS ......................................................33  1.  Earth Centered Inertial...the effect of higher order terms. Lastly, the zeroth weight of the scaled weight set can be modified to incorporate prior knowledge of the

  18. Inertial Measures of Motion for Clinical Biomechanics: Comparative Assessment of Accuracy under Controlled Conditions – Changes in Accuracy over Time

    PubMed Central

    Lebel, Karina; Boissy, Patrick; Hamel, Mathieu; Duval, Christian

    2015-01-01

    Background Interest in 3D inertial motion tracking devices (AHRS) has been growing rapidly among the biomechanical community. Although the convenience of such tracking devices seems to open a whole new world of possibilities for evaluation in clinical biomechanics, its limitations haven’t been extensively documented. The objectives of this study are: 1) to assess the change in absolute and relative accuracy of multiple units of 3 commercially available AHRS over time; and 2) to identify different sources of errors affecting AHRS accuracy and to document how they may affect the measurements over time. Methods This study used an instrumented Gimbal table on which AHRS modules were carefully attached and put through a series of velocity-controlled sustained motions including 2 minutes motion trials (2MT) and 12 minutes multiple dynamic phases motion trials (12MDP). Absolute accuracy was assessed by comparison of the AHRS orientation measurements to those of an optical gold standard. Relative accuracy was evaluated using the variation in relative orientation between modules during the trials. Findings Both absolute and relative accuracy decreased over time during 2MT. 12MDP trials showed a significant decrease in accuracy over multiple phases, but accuracy could be enhanced significantly by resetting the reference point and/or compensating for initial Inertial frame estimation reference for each phase. Interpretation The variation in AHRS accuracy observed between the different systems and with time can be attributed in part to the dynamic estimation error, but also and foremost, to the ability of AHRS units to locate the same Inertial frame. Conclusions Mean accuracies obtained under the Gimbal table sustained conditions of motion suggest that AHRS are promising tools for clinical mobility assessment under constrained conditions of use. However, improvement in magnetic compensation and alignment between AHRS modules are desirable in order for AHRS to reach their full potential in capturing clinical outcomes. PMID:25811838

  19. Coupling Vanishing Point Tracking with Inertial Navigation to Estimate Attitude in a Structured Environment

    DTIC Science & Technology

    2011-03-01

    with the Earth but does follow the Earth’s orbit around the sun . Though it is not a true inertial frame, for the sake of terrestrial navigation it can...the center of the Earth , with the x and y-axes on the equatorial plane and the z- axis along the Earth’s axis of rotation. The i-frame does not spin...be considered as such. Earth -centered Earth -fixed frame (e-frame) - The origin is fixed at the center of the Earth , with the x- axis on the equatorial

  20. Suggested notation conventions for rotational seismology

    USGS Publications Warehouse

    Evans, J.R.

    2009-01-01

    We note substantial inconsistency among authors discussing rotational motions observed with inertial seismic sensors (and much more so in the broader topic of rotational phenomena). Working from physics and other precedents, we propose standard terminology and a preferred reference frame for inertial sensors (Fig. 1) that may be consistently used in discussions of both finite and infinitesimal observed rotational and translational motions in seismology and earthquake engineering. The scope of this article is limited to observations because there are significant differences in the analysis of finite and infinitesimal rotations, though such discussions should remain compatible with those presented here where possible. We recommend the general use of the notation conventions presented in this tutorial, and we recommend that any deviations or alternatives be explicitly defined.

  1. Inertial frames and breakthrough propulsion physics

    NASA Astrophysics Data System (ADS)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  2. Inertial Properties of an External-Frame Backpack Device

    DTIC Science & Technology

    2003-04-10

    for designers (NASA Reference Publication 1024) (pp. IV-l-IV- 76). Yellow Springs, OH: Anthropology Research Project. Serway , R.A. (1990), Physics for...for use in studying the effects of the weight carried and the distribution of the weight on the physical performance of soldiers. The backpack was...soldier’s health and ability to perform physical activities, we thought it important to measure the MOI of the backpack device in the nine different

  3. When equal masses don't balance

    NASA Astrophysics Data System (ADS)

    Newburgh, Ronald; Peidle, Joseph; Rueckner, Wolfgang

    2004-05-01

    We treat a modified Atwood's machine in which equal masses do not balance because of being in an accelerated frame of reference. Analysis of the problem illuminates the meaning of inertial forces, d'Alembert's principle, the use of free-body diagrams and the selection of appropriate systems for the diagrams. In spite of the range of these applications the analysis does not require calculus, so the ideas are accessible even to first-year students.

  4. Post-Newtonian Reference Frames for Advanced Theory of the Lunar Motion and a New Generation of Lunar Laser Ranging

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei Affiliaiton: AB(Department of Physics and Astronomy, University of Missouri, USA kopeikins@missouri.edu)

    2010-08-01

    We overview a set of post-Newtonian reference frames for a comprehensive study of the orbital dynamics and rotational motion of Moon and Earth by means of lunar laser ranging (LLR). We employ a scalar-tensor theory of gravity depending on two post-Newtonian parameters, and , and utilize the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. We assume that the solar system is isolated and space-time is asymptotically flat at infinity. The primary reference frame covers the entire space-time, has its origin at the solar-system barycenter (SSB) and spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are forming the International Celestial Reference Frame (ICRF). The secondary reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally-inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames geocentric (GRF) and selenocentric (SRF) have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description. Each local frame can be aligned with the axes of ICRF after applying the matrix of the relativistic precession. The set of one global and three local frames is introduced in order to fully decouple the relative motion of Moon with respect to Earth from the orbital motion of the Earth-Moon barycenter as well as to connect the coordinate description of the lunar motion, an observer on Earth, and a retro-reflector on Moon to directly measurable quantities such as the proper time and the round-trip laser-light distance. We solve the gravity field equations and find out the metric tensor and the scalar field in all frames which description includes the post-Newtonian multipole moments of the gravitational field of Earth and Moon. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom.

  5. Gyroscope precession in special and general relativity from basic principles

    NASA Astrophysics Data System (ADS)

    Jonsson, Rickard M.

    2007-05-01

    In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.

  6. Compensation of Horizontal Gravity Disturbances for High Precision Inertial Navigation

    PubMed Central

    Cao, Juliang; Wu, Meiping; Lian, Junxiang; Cai, Shaokun; Wang, Lin

    2018-01-01

    Horizontal gravity disturbances are an important factor that affects the accuracy of inertial navigation systems in long-duration ship navigation. In this paper, from the perspective of the coordinate system and vector calculation, the effects of horizontal gravity disturbance on the initial alignment and navigation calculation are simultaneously analyzed. Horizontal gravity disturbances cause the navigation coordinate frame built in initial alignment to not be consistent with the navigation coordinate frame in which the navigation calculation is implemented. The mismatching of coordinate frame violates the vector calculation law, which will have an adverse effect on the precision of the inertial navigation system. To address this issue, two compensation methods suitable for two different navigation coordinate frames are proposed, one of the methods implements the compensation in velocity calculation, and the other does the compensation in attitude calculation. Finally, simulations and ship navigation experiments confirm the effectiveness of the proposed methods. PMID:29562653

  7. Noninertial coordinate time: A new concept affecting time standards, time transfers, and clock synchronization

    NASA Technical Reports Server (NTRS)

    Deines, Steven D.

    1992-01-01

    Relativity compensations must be made in precise and accurate measurements whenever an observer is accelerated. Although many believe the Earth-centered frame is sufficiently inertial, accelerations of the Earth, as evidenced by the tides, prove that it is technically a noninertial system for even an Earth-based observer. Using the constant speed of light, a set of fixed remote clocks in an inertial frame can be synchronized to a fixed master clock transmitting its time in that frame. The time on the remote clock defines the coordinate time at that coordinate position. However, the synchronization procedure for an accelerated frame is affected, because the distance between the master and remote clocks is altered due to the acceleration of the remote clock toward or away from the master clock during the transmission interval. An exact metric that converts observations from noninertial frames to inertial frames was recently derived. Using this metric with other physical relationships, a new concept of noninertial coordinate time is defined. This noninertial coordinate time includes all relativity compensations. This new issue raises several timekeeping issues, such as proper time standards, time transfer process, and clock synchronization, all in a noninertial frame such as Earth.

  8. Astrometry VLBI in Space (AVS)

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Reyes, George

    1995-01-01

    This paper describes a proposal for a new space radio astronomy mission for astrometry using Very Long Baseline Interferometry (VLBI) called Astrometry VLBI in Space (AVS). The ultimate goals of AVS are improving the accuracy of radio astrometry measurements to the microarcsecond level in one epoch of measurements and improving the accuracy of the transformation between the inertial radio and optical coordinate reference frames. This study will also assess the impact of this mission on astrophysics astrometry and geophysics.

  9. Dynamical reference frames in the planetary and earth-moon systems

    NASA Technical Reports Server (NTRS)

    Standish, E. M.; Williams, G.

    1990-01-01

    Estimates of the accuracies of the ephemerides are reviewed using data for planetary and lunar systems to determine the efficacy of the inherent dynamical reference frame. The varied observational data are listed and given with special attention given to ephemeris improvements. The importance of ranging data is discussed with respect to the inner four planets and the moon, and the discrepancy of 1 arcsec/century between mean motions determined by optical observations versus ranging data is addressed. The Viking mission data provide inertial mean motions for the earth and Mars of 0.003 arcsec/century which will deteriorate to 0.01 arcsec after about 10 years. Uncertainties for other planets and the moon are found to correspond to approximately the same level of degradation. In general the data measurements and error estimates are improving the ephemerides, although refitting the data cannot account for changes in mean motion.

  10. Relativistic Velocity Addition Law from Machine Gun Analogy

    NASA Astrophysics Data System (ADS)

    Rothenstein, Bernhard; Popescu, Stefan

    2009-01-01

    Many derivations of the relativistic addition law of parallel velocities without use of the Lorentz transformations (LT) are known.1-5 Some of them are based on thought experiments that require knowledge of the time dilation and the length contraction effects.1,4,5 Other derivations involve the Doppler effect in the optic domain considered from three inertial reference frames in relative motion.6 A few derivations simply involve only the principle of constancy of the light velocity.2 Such derivations are interesting for the teaching of special relativity theory since the relativistic addition of velocities leads directly to the LT.7 The derivation we propose is based on a machine gun-target analogy8 of the acoustic Doppler effect, considered from the rest frame of the machine gun and from the rest frame of the target.

  11. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition

    PubMed Central

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-01-01

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041

  12. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.

    PubMed

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-04-24

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.

  13. Dark matter: a problem in relativistic metrology?

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    2017-05-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least part of what is called dark matter in all its astrophysical signatures.

  14. Relativistic solar sails

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, M.

    2018-05-01

    We apply the four-vector formalism of special relativity to describe various interaction processes of photons with a solar sail, in two cases: when the sail’s surface is a perfect mirror, and when it is a body coated with a totally absorbing material. We stress the pedagogical value of implementing simultaneously both the linear momentum and the energy conservation in a covariant fashion, as our formalism inherently does. It also allows for a straightforward change of the description of a certain process in different inertial reference frames.

  15. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model: Measurement of Earth's dragging of inertial frames.

    PubMed

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey

    2016-01-01

    We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.

  16. Corrections to the Thomson cross section caused by relativistic effects and by the presence of the drift velocity of a classical charged particle in the field of a monochromatic plane wave

    NASA Astrophysics Data System (ADS)

    Perestoronin, A. V.

    2017-03-01

    An approach to the solution of the relativistic problem of the motion of a classical charged particle in the field of a monochromatic plane wave with an arbitrary polarization (linear, circular, or elliptic) is proposed. It is based on the analysis of the 4-vector equation of motion of the charged particle together with the 4-vector and tensor equations for the components of the electromagnetic field tensor of a monochromatic plane wave. This approach provides analytical expressions for the time-averaged square of the 4-acceleration of the charge, as well as for the averaged values of any quantities periodic in the time of the reference frame. Expressions for the integral power of scattered radiation, which is proportional to the time-averaged square of the 4-acceleration of the charge, and for the integral scattering cross section, which is the ratio of the power of scattered radiation to the intensity of incident radiation, are obtained for an arbitrary inertial reference frame. An expression for the scattering cross section, which coincides with the known results at the circular and linear polarizations of the incident waves and describes the case of elliptic polarization of the incident wave, is obtained for the reference frame where the charged particle is on average at rest. An expression for the scattering cross section including relativistic effects and the nonzero drift velocity of a particle in this system is obtained for the laboratory reference frame, where the initial velocity of the charged particle is zero. In the case of the circular polarization of the incident wave, the scattering cross section in the laboratory frame is equal to the Thompson cross section.

  17. Cosmic ray anisotropies at high energies

    NASA Technical Reports Server (NTRS)

    Martinic, N. J.; Alarcon, A.; Teran, F.

    1986-01-01

    The directional anisotropies of the energetic cosmic ray gas due to the relative motion between the observers frame and the one where the relativistic gas can be assumed isotropic is analyzed. The radiation fluxes formula in the former frame must follow as the Lorentz invariance of dp/E, where p, E are the 4-vector momentum-energy components; dp is the 3-volume element in the momentum space. The anisotropic flux shows in such a case an amplitude, in a rotating earth, smaller than the experimental measurements from say, EAS-arrays for primary particle energies larger than 1.E(14) eV. Further, it is shown that two consecutive Lorentz transformations among three inertial frames exhibit the violation of dp/E invariance between the first and the third systems of reference, due to the Wigner rotation. A discussion of this result in the context of the experimental anisotropic fluxes and its current interpretation is given.

  18. Computations of the three-dimensional flow and heat transfer within a coolant passage of a radial turbine blade

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.

    1991-01-01

    A numerical code is developed for computing three-dimensional, turbulent, compressible flow within coolant passages of turbine blades. The code is based on a formulation of the compressible Navier-Stokes equations in a rotating frame of reference in which the velocity dependent variable is specified with respect to the rotating frame instead of the inertial frame. The algorithm employed to obtain solutions to the governing equation is a finite-volume LU algorithm that allows convection, source, as well as diffusion terms to be treated implicitly. In this study, all convection terms are upwind differenced by using flux-vector splitting, and all diffusion terms are centrally differenced. This paper describes the formulation and algorithm employed in the code. Some computed solutions for the flow within a coolant passage of a radial turbine are also presented.

  19. New dynamic variables for rotating spacecraft

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    This paper introduces two new seven-parameter representations for spacecraft attitude dynamics modeling. The seven parameters are the three components of the total system angular momentum in the spacecraft body frame; the three components of the angular momentum in the inertial reference frame; and an angle variable. These obey a single constraint as do parameterizations that include a quaternion; in this case the constraint is the equality of the sum of the squares of the angular momentum components in the two frames. The two representations are nonsingular if the system angular momentum is non-zero and obeys certain orientation constraints. The new parameterizations of the attitude matrix, the equations of motion, and the relation of the solution of these equations to Euler angles for torque-free motion are developed and analyzed. The superiority of the new parameterizations for numerical integration is shown in a specific example.

  20. A parallel overset-curvilinear-immersed boundary framework for simulating complex 3D incompressible flows

    PubMed Central

    Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis

    2013-01-01

    We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331

  1. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-06-25

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm.

  2. Relativistic theory of particles in a scattering flow I: basic equations, diffusion and drift.

    NASA Astrophysics Data System (ADS)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We reconsider the theory of particle transport in a scattering medium, allowing for relativistic flow velocities. The theory uses a mixed set of variables, with position and time measured in the Laboratory Frame, and particle energy and momentum measured in the Fluid Rest Frame, the reference frame where scattering is assumed to be elastic. We give a new derivation for the fictitious force terms in the equation of motion that are present if the Fluid Rest Frame is not an inertial frame. By using a 3+1 notation we discuss the physical interpretation of the different terms in the fictitious force. It is shown that different approaches to the problem of particle propagation in a magnetized medium due to Skilling (1975) and Kulsrud (1983) are largely equivalent. We extend known results for non-relativistic flows to include the effects of cross-field diffusion for cosmic rays in a magnetized plasma. We also carefully consider the correct form of the diffusion approximation for scattering, and show that the resulting equations can be cast in conservation form.

  3. OPERA, MINOS Experimental Result Prove Special and General Relativity Theories; the Principle of Lorentz Invariance Invalid

    NASA Astrophysics Data System (ADS)

    Pressler, David E.

    2012-03-01

    A great discrepancy exists - the speed of light and the neutrino speed must be identical; as indicated by supernova1987A; yet, OPERA predicts faster-than-light neutrinos. Einstein's theories are based on the invariance of the speed of light, and no privileged Galilean frame of reference exists. Both of these hypotheses are in error and must be reconciled in order to solve the dilemma. The Michelson-Morley Experiment was misinterpreted - my Neoclassical Theory postulates that BOTH mirrors of the interferometer physically and absolutely move towards its center. The result is a three-directional-Contraction, (x, y, z axis), an actual distortion of space itself; a C-Space condition. ``PRESSLER'S LAW OF C-SPACE: The speed of light, c, will always be measured the same speed in all three directions (˜300,000 km/sec), in ones own inertial reference system, and will always be measured as having a different speed in all other inertial frames which are at a different kinetic energy level or at a location with a different strength gravity field'' Thus, the faster you go, motion, or the stronger the gravity field the smaller you get in all three directions. OPERA results are explained; at the surface of Earth, the strength of gravity field is at maximum -- below the earth's surface, time and space is less distorted; therefore, time is absolutely faster accordingly. Reference OPERA's preprint: Neutrino's faster time-effect due to altitude difference; (10-13ns) x c (299792458m) = 2.9 x 10-5 m/ns x distance (730085m) + 21.8m.) This is consistent with the OPERA result.

  4. Variation in center of mass estimates for extant sauropsids and its importance for reconstructing inertial properties of extinct archosaurs.

    PubMed

    Allen, Vivian; Paxton, Heather; Hutchinson, John R

    2009-09-01

    Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.

  5. Decoupling the Role of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Rogers, Chris; Squires, Kyle

    1996-01-01

    Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.

  6. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less

  7. Laboratory measurements of grain-bedrock interactions using inertial sensors.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim

    2016-04-01

    Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the translational energy component of transport (defined as a function of 3-dimensional translational velocity) as well as the rotational component (a function of the 3-axis angular velocity measurements from the gyroscope) which is neglected in the majority of contemporary saltation models. The results suggest that, for this grain scale, the magnitude of the impact of mobile grains on the bed is primarily controlled by their inertia. References Maniatis et al. 2014 EGU General assembly http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12829.pdf Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.

  8. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldin, Gerald A.; Sharp, David H.

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  9. Inertial Movements of the Iris as the Origin of Postsaccadic Oscillations.

    PubMed

    Bouzat, S; Freije, M L; Frapiccini, A L; Gasaneo, G

    2018-04-27

    Recent studies on the human eye indicate that the pupil moves inside the eyeball due to deformations of the iris. Here we show that this phenomenon can be originated by inertial forces undergone by the iris during the rotation of the eyeball. Moreover, these forces affect the iris in such a way that the pupil behaves effectively as a massive particle. To show this, we develop a model based on the Newton equation on the noninertial reference frame of the eyeball. The model allows us to reproduce and interpret several important findings of recent eye-tracking experiments on saccadic movements. In particular, we get correct results for the dependence of the amplitude and period of the postsaccadic oscillations on the saccade size and also for the peak velocity. The model developed may serve as a tool for characterizing eye properties of individuals.

  10. Lorentz-invariant three-vectors and alternative formulation of relativistic dynamics

    NASA Astrophysics Data System (ADS)

    Rȩbilas, Krzysztof

    2010-03-01

    Besides the well-known scalar invariants, there also exist vectorial invariants in special relativity. It is shown that the three-vector (dp⃗/dt)∥+γv(dp⃗/dt)⊥ is invariant under the Lorentz transformation. The subscripts ∥ and ⊥ denote the respective components with respect to the direction of the velocity of the body v⃗, and p⃗ is the relativistic momentum. We show that this vector is equal to a force F⃗R, which satisfies the classical Newtonian law F⃗R=ma⃗R in the instantaneous inertial rest frame of an accelerating body. Therefore, the relation F⃗R=(dp⃗/dt)∥+γv(dp⃗/dt)⊥, based on the Lorentz-invariant vectors, may be used as an invariant (not merely a covariant) relativistic equation of motion in any inertial system of reference. An alternative approach to classical electrodynamics based on the invariant three-vectors is proposed.

  11. Inertial Movements of the Iris as the Origin of Postsaccadic Oscillations

    NASA Astrophysics Data System (ADS)

    Bouzat, S.; Freije, M. L.; Frapiccini, A. L.; Gasaneo, G.

    2018-04-01

    Recent studies on the human eye indicate that the pupil moves inside the eyeball due to deformations of the iris. Here we show that this phenomenon can be originated by inertial forces undergone by the iris during the rotation of the eyeball. Moreover, these forces affect the iris in such a way that the pupil behaves effectively as a massive particle. To show this, we develop a model based on the Newton equation on the noninertial reference frame of the eyeball. The model allows us to reproduce and interpret several important findings of recent eye-tracking experiments on saccadic movements. In particular, we get correct results for the dependence of the amplitude and period of the postsaccadic oscillations on the saccade size and also for the peak velocity. The model developed may serve as a tool for characterizing eye properties of individuals.

  12. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  13. Special relativity in a discrete quantum universe

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2016-10-01

    The hypothesis of a discrete fabric of the universe, the "Planck scale," is always on stage since it solves mathematical and conceptual problems in the infinitely small. However, it clashes with special relativity, which is designed for the continuum. Here, we show how the clash can be overcome within a discrete quantum theory where the evolution of fields is described by a quantum cellular automaton. The reconciliation is achieved by defining the change of observer as a change of representation of the dynamics, without any reference to space-time. We use the relativity principle, i.e., the invariance of dynamics under change of inertial observer, to identify a change of inertial frame with a symmetry of the dynamics. We consider the full group of such symmetries, and recover the usual Lorentz group in the relativistic regime of low energies, while at the Planck scale the covariance is nonlinearly distorted.

  14. An Eulerian-Lagrangian description for fluvial coarse sediment transport: theory and verification with low-cost inertial sensors.

    NASA Astrophysics Data System (ADS)

    Maniatis, Georgios

    2017-04-01

    Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097

  15. Quantum correlations of helicity entangled states in non-inertial frames beyond single mode approximation

    NASA Astrophysics Data System (ADS)

    Harsij, Zeynab; Mirza, Behrouz

    2014-12-01

    A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.

  16. Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.

    PubMed

    Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong

    2017-01-30

    Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.

  17. A New Precession Formula

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2003-07-01

    We adapt J. G. Williams' expression of the precession and nutation using the 3-1-3-1 rotation to an arbitrary inertial frame of reference. The modified formulation avoids a singularity caused by finite pole offsets near the epoch. By adopting the planetary precession formula numerically determined from DE405 and by using a recent theory of the forced nutation of the nonrigid Earth by Shirai & Fukishima, we analyze the celestial pole offsets observed by VLBI for 1979-2000 and determine the best-fit polynomials of the lunisolar precession angles. We then translate the results into classical precession quantities and evaluate the difference due to the difference in the ecliptic definition. The combination of these formulae and the periodic part of the Shirai-Fukishima nutation theory serves as a good approximation of the precession-nutation matrix in the International Celestial Reference Frame. As a by-product, we determine the mean celestial pole offset at J2000.0 as X0=-(17.12+/-0.01) mas and Y0=-(5.06+/-0.02) mas. Also, we estimate the speed of general precession in longitude at J2000.0 as p=5028.7955"+/-0.0003" per Julian century, the mean obliquity at J2000.0 in the inertial sense as (ɛ0)I=84381.40621"+/-0.00001" and in the rotational sense as (ɛ0)R=84381.40955"+/-0.00001", and the dynamical flattening of Earth as Hd=(3.2737804+/-0.0000003)×10-3. Furthermore, we establish a fast way to compute the precession-nutation matrix and provide a best-fit polynomial of an angle to specify the mean Celestial Ephemeris Origin.

  18. Shoulder torques resulting from luggage handling tasks in non-inertial frames.

    PubMed

    Shippen, James; May, Barbara

    2018-05-18

    This paper reports on the torques developed in the shoulder joint experienced by occupants of moving vehicles during manual handling tasks. Handling heavy weights can cause musculoskeletal injuries, especially if handling is done with arms extended or at high levels. The aim of the study was to measure the longitudinal and lateral accelerations in a variety of passenger vehicles together with the postures of subjects lifting luggage onto storage shelves. This data enabled the application of inverse dynamics methods in a non-inertial reference frame to calculate the shoulder joint torques. The subjects lifted 3 pieces of luggage of masses of 5 kg, 10 kg and 14 kg onto shelving which were at heights of 1.2 m, 1.6 m and 1.8 m. The movement of subjects was measured using a 12 camera, 3-dimensional optical tracking system. The subjects stood on force plates to measure the ground reaction forces. Sixty-three trials were completed, although 9 trials were aborted because subjects felt unable to complete the task. It was found that the shoulder torques exceeded the levels recommend by the UK Health and Safety Executive for manual handling. A lift assistance device is suggested to reduce the shoulder torques required for luggage handling.

  19. Effect of eye position during human visual-vestibular integration of heading perception.

    PubMed

    Crane, Benjamin T

    2017-09-01

    Visual and inertial stimuli provide heading discrimination cues. Integration of these multisensory stimuli has been demonstrated to depend on their relative reliability. However, the reference frame of visual stimuli is eye centered while inertia is head centered, and it remains unclear how these are reconciled with combined stimuli. Seven human subjects completed a heading discrimination task consisting of a 2-s translation with a peak velocity of 16 cm/s. Eye position was varied between 0° and ±25° left/right. Experiments were done with inertial motion, visual motion, or a combined visual-inertial motion. Visual motion coherence varied between 35% and 100%. Subjects reported whether their perceived heading was left or right of the midline in a forced-choice task. With the inertial stimulus the eye position had an effect such that the point of subjective equality (PSE) shifted 4.6 ± 2.4° in the gaze direction. With the visual stimulus the PSE shift was 10.2 ± 2.2° opposite the gaze direction, consistent with retinotopic coordinates. Thus with eccentric eye positions the perceived inertial and visual headings were offset ~15°. During the visual-inertial conditions the PSE varied consistently with the relative reliability of these stimuli such that at low visual coherence the PSE was similar to that of the inertial stimulus and at high coherence it was closer to the visual stimulus. On average, the inertial stimulus was weighted near Bayesian ideal predictions, but there was significant deviation from ideal in individual subjects. These findings support visual and inertial cue integration occurring in independent coordinate systems. NEW & NOTEWORTHY In multiple cortical areas visual heading is represented in retinotopic coordinates while inertial heading is in body coordinates. It remains unclear whether multisensory integration occurs in a common coordinate system. The experiments address this using a multisensory integration task with eccentric gaze positions making the effect of coordinate systems clear. The results indicate that the coordinate systems remain separate to the perceptual level and that during the multisensory task the perception depends on relative stimulus reliability. Copyright © 2017 the American Physiological Society.

  20. Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padmanabhan, T.

    2011-02-15

    It has been known for several decades that Einstein's field equations, when projected onto a null surface, exhibit a structure very similar to the nonrelativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremizing the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes equation. This is in contrast to the usual description of the Damour-Navier-Stokes equation in a general coordinate system, in which there appears a Lie derivative rather thanmore » a convective derivative. I discuss this difference, its importance, and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame, while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremization principle that leads to the Damour-Navier-Stokes equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.« less

  1. Bubble mass center and fluid feedback force fluctuations activated by constant lateral impulse with variable thrust

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Long, Y. T.

    1995-01-01

    Sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 are investigated in response to constant lateral impulse with variable thrust. The study, including how the rotating bubble of superfluid helium 2 reacts to the constant impulse with variable time period of thrust action in microgravity, how amplitudes of bubble mass center fluctuates with growth and decay of disturbances, and how fluid feedback forces fluctuates in activating on the rotating dewar through the dynamics of sloshing waves are investigated. The numerical computation of sloshing dynamics is based on the non-inertial frame spacecraft bound coordinate with lateral impulses actuating on the rotating dewar in both inertial and non-inertial frames of thrust. Results of the simulations are illustrated.

  2. Decomposition of the compound Atwood machine

    NASA Astrophysics Data System (ADS)

    Lopes Coelho, R.

    2017-11-01

    Non-standard solving strategies for the compound Atwood machine problem have been proposed. The present strategy is based on a very simple idea. Taking an Atwood machine and replacing one of its bodies by another Atwood machine, we have a compound machine. As this operation can be repeated, we can construct any compound Atwood machine. This rule of construction is transferred to a mathematical model, whereby the equations of motion are obtained. The only difference between the machine and its model is that instead of pulleys and bodies, we have reference frames that move solidarily with these objects. This model provides us with the accelerations in the non-inertial frames of the bodies, which we will use to obtain the equations of motion. This approach to the problem will be justified by the Lagrange method and exemplified by machines with six and eight bodies.

  3. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    The parametrized post-Newtonian (PPN) formalism is a tool for quantitative analysis of the weak gravitational field based on the field equations of general relativity. This formalism and its ten parameters provide the practical theoretical foundation for the evaluation of empirical data produced by space-based missions designed to map and better understand the gravitational field (e.g., GRAIL, GRACE, GOCE). Accordingly, mission data is interpreted in the context of the canonical PPN formalism; unexpected, anomalous data are explained as similarly unexpected but apparently real physical phenomena, which may be characterized as ``gravitational anomalies," or by various sources contributing to the total error budget. Another possibility, which is typically not considered, is a small modeling error in canonical general relativity. The concept of the idealized point-mass spherical equipotential surface, which originates with Newton's law of gravity, is preserved in Einstein's synthesis of special relativity with accelerated reference frames in the form of the field equations. It was not previously realized that the fundamental principles of relativity invalidate this concept and with it the idea that the gravitational field is conservative (i.e., zero net work is done on any closed path). The ideal radial free fall of a material body from arbitrarily-large range to a point on such an equipotential surface (S) determines a unique escape-velocity vector of magnitude v collinear to the acceleration vector of magnitude g at this point. For two such points on S separated by angle dφ , the Equivalence Principle implies distinct reference frames experiencing inertial acceleration of identical magnitude g in different directions in space. The complete equivalence of these inertially-accelerated frames to their analogous frames at rest on S requires evaluation at instantaneous velocity v relative to a local inertial observer. Because these velocity vectors are not parallel, a symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.

  4. Canonical Gravity, Non-Inertial Frames, Relativistic Metrology and Dark Matter

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    Clock synchronization leads to the definition of instantaneous 3-spaces (to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian space-times can be described in this framework. This allows to find the York canonical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the gravitational field can be identified. A Post-Minkowskian linearization with respect to the asymptotic Minkowski metric (asymptotic background) allows to solve the Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT gravitational waves. The inertial gauge variable York time (the trace of the extrinsic curvature of the 3-space) describes the general relativistic freedom in clock synchronization. After a digression on the gauge problem in general relativity and its connection with relativistic metrology, it is shown that dark matter, whose experimental signatures are the rotation curves and the mass of galaxies, may be described (at least partially) as an inertial relativistic effect (absent in Newtonian gravity) connected with the York time, namely with the non-Euclidean nature of 3-spaces as 3-sub-manifolds of space-time.

  5. Effective Inertial Frame in an Atom Interferometric Test of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Overstreet, Chris; Asenbaum, Peter; Kovachy, Tim; Notermans, Remy; Hogan, Jason M.; Kasevich, Mark A.

    2018-05-01

    In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δ g /g ≈6 ×10-11 per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 1 013 , these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

  6. Enhancement Strategies for Frame-To Uas Stereo Visual Odometry

    NASA Astrophysics Data System (ADS)

    Kersten, J.; Rodehorst, V.

    2016-06-01

    Autonomous navigation of indoor unmanned aircraft systems (UAS) requires accurate pose estimations usually obtained from indirect measurements. Navigation based on inertial measurement units (IMU) is known to be affected by high drift rates. The incorporation of cameras provides complementary information due to the different underlying measurement principle. The scale ambiguity problem for monocular cameras is avoided when a light-weight stereo camera setup is used. However, also frame-to-frame stereo visual odometry (VO) approaches are known to accumulate pose estimation errors over time. Several valuable real-time capable techniques for outlier detection and drift reduction in frame-to-frame VO, for example robust relative orientation estimation using random sample consensus (RANSAC) and bundle adjustment, are available. This study addresses the problem of choosing appropriate VO components. We propose a frame-to-frame stereo VO method based on carefully selected components and parameters. This method is evaluated regarding the impact and value of different outlier detection and drift-reduction strategies, for example keyframe selection and sparse bundle adjustment (SBA), using reference benchmark data as well as own real stereo data. The experimental results demonstrate that our VO method is able to estimate quite accurate trajectories. Feature bucketing and keyframe selection are simple but effective strategies which further improve the VO results. Furthermore, introducing the stereo baseline constraint in pose graph optimization (PGO) leads to significant improvements.

  7. Numerical algorithm for rigid body position estimation using the quaternion approach

    NASA Astrophysics Data System (ADS)

    Zigic, Miodrag; Grahovac, Nenad

    2017-11-01

    This paper deals with rigid body attitude estimation on the basis of the data obtained from an inertial measurement unit mounted on the body. The aim of this work is to present the numerical algorithm, which can be easily applied to the wide class of problems concerning rigid body positioning, arising in aerospace and marine engineering, or in increasingly popular robotic systems and unmanned aerial vehicles. Following the considerations of kinematics of rigid bodies, the relations between accelerations of different points of the body are given. A rotation matrix is formed using the quaternion approach to avoid singularities. We present numerical procedures for determination of the absolute accelerations of the center of mass and of an arbitrary point of the body expressed in the inertial reference frame, as well as its attitude. An application of the algorithm to the example of a heavy symmetrical gyroscope is presented, where input data for the numerical procedure are obtained from the solution of differential equations of motion, instead of using sensor measurements.

  8. The effect of inertial coupling in the dynamics and control of flexible robotic manipulators

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Curran, Carol Cockrell; Graves, Philip Lee

    1988-01-01

    A general model of the dynamics of flexible robotic manipulators is presented, including the gross motion of the links, the vibrations of the links and joints, and the dynamic coupling between the gross motions and vibrations. The vibrations in the links may be modeled using lumped parameters, truncated modal summation, a component mode synthesis method, or a mixture of these methods. The local link inertia matrix is derived to obtain the coupling terms between the gross motion of the link and the vibrations of the link. Coupling between the motions of the links results from the kinematic model, which utilizes the method of kinematic influence. The model is used to simulate the dynamics of a flexible space-based robotic manipulator which is attached to a spacecraft, and is free to move with respect to the inertial reference frame. This model may be used to study the dynamic response of the manipulator to the motions of its joints, or to externally applied disturbances.

  9. Tiltmeter studies in earthquake prediction

    USGS Publications Warehouse

    Johnston, M.

    1978-01-01

    tilt measurements give us a means of monitoring vertical displacements or local uplift of the crust. The simplest type of tiltmeter is a stationary pendulum (fig. 1). As the Earth's surface distorts locally, the pendulum housing is tilted while, of course, the pendulum continues to hang vertically (that is, in the direction of the gravity vector). The tilt angle is the angle through which the pendulum housing is tilted. The pendulum is the inertial reference (the force of gravity remains unchanged at the site), and tilting of the instrument housing represents the moving reference frame. We note in passing that the tiltmeter could also be used to measure the force of gravity by using the pendulum in the same way as Henry Kater did in his celebrated measurement of g in 1817. 

  10. Flight test results of the Strapdown hexad Inertial Reference Unit (SIRU). Volume 1: Flight test summary

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Flight test results of the strapdown inertial reference unit (SIRU) navigation system are presented. The fault-tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance.

  11. Covariant Structure of Models of Geophysical Fluid Motion

    NASA Astrophysics Data System (ADS)

    Dubos, Thomas

    2018-01-01

    Geophysical models approximate classical fluid motion in rotating frames. Even accurate approximations can have profound consequences, such as the loss of inertial frames. If geophysical fluid dynamics are not strictly equivalent to Newtonian hydrodynamics observed in a rotating frame, what kind of dynamics are they? We aim to clarify fundamental similarities and differences between relativistic, Newtonian, and geophysical hydrodynamics, using variational and covariant formulations as tools to shed the necessary light. A space-time variational principle for the motion of a perfect fluid is introduced. The geophysical action is interpreted as a synchronous limit of the relativistic action. The relativistic Levi-Civita connection also has a finite synchronous limit, which provides a connection with which to endow geophysical space-time, generalizing Cartan (1923). A covariant mass-momentum budget is obtained using covariance of the action and metric-preserving properties of the connection. Ultimately, geophysical models are found to differ from the standard compressible Euler model only by a specific choice of a metric-Coriolis-geopotential tensor akin to the relativistic space-time metric. Once this choice is made, the same covariant mass-momentum budget applies to Newtonian and all geophysical hydrodynamics, including those models lacking an inertial frame. Hence, it is argued that this mass-momentum budget provides an appropriate, common fundamental principle of dynamics. The postulate that Euclidean, inertial frames exist can then be regarded as part of the Newtonian theory of gravitation, which some models of geophysical hydrodynamics slightly violate.

  12. In-flight angular alignment of inertial navigation systems by means of radio aids

    NASA Technical Reports Server (NTRS)

    Tanner, W.

    1972-01-01

    The principles involved in the angular alignment of the inertial reference by nondirectional data from radio aids are developed and compared with conventional methods of alignment such as gyro-compassing and pendulous vertical determination. The specific problem is considered of the space shuttle reentry and a proposed technique for the alignment of the inertial reference system some time before landing. A description is given of the digital simulation of a transponder interrogation system and of its interaction with the inertial navigation system. Data from reentry simulations are used to demonstrate the effectiveness of in-flight inertial system alignment. Concluding remarks refer to other potential applications such as space shuttle orbit insertion and air navigation of conventional aircraft.

  13. Advancements in the U.S. Army Corps of Engineers Hydrographic Survey Capabilities: The SHOALS System

    DTIC Science & Technology

    2016-05-12

    forward direction of the aircraft. The scanner uses feedback from an inertial reference unit , rigidly mounted to the TRS, that measures aircraft roll ...LTN-90 inertial reference unit provides aircraft attitude, including roll , pitch, and heading and vertical accelerations. The unit supports four...Figure 3 The transceiver subsystem. From left to right, receiver optics, receiver electronics, telescope, scanner, and inertial reference unit . The

  14. Assessment of modern smartphone sensors performance on vehicle localization in urban environments

    NASA Astrophysics Data System (ADS)

    Lazarou, Theodoros; Danezis, Chris

    2017-09-01

    The advent of Global Navigation Satellite Systems (GNSS) initiated a revolution in Positioning, Navigation and Timing (PNT) applications. Besides the enormous impact on geospatial data acquisition and reality capture, satellite navigation has penetrated everyday life, a fact which is proved by the increasing degree of human reliance on GNSS-enabled smart devices to perform casual activities. Nevertheless, GNSS does not perform well in all cases. Specifically, in GNSS-challenging environments, such as urban canyons or forested areas, navigation performance may be significantly degraded or even nullified. Consequently, positioning is achieved by combining GNSS with additional heterogeneous information or sensors, such as inertial sensors. To date, most smartphones are equipped with at least accelerometers and gyroscopes, besides GNSS chipsets. In the frame of this research, difficult localization scenarios were investigated to assess the performance of these low-cost inertial sensors with respect to higher grade GNSS and IMU systems. Four state-of-the-art smartphones were mounted on a specifically designed on-purpose build platform along with reference equipment. The platform was installed on top of a vehicle, which was driven by a predefined trajectory that included several GNSS-challenging parts. Consequently, positioning and inertial readings were acquired by smartphones and compared to the information collected by the reference equipment. The results indicated that although the smartphone GNSS receivers have increased sensitivity, they were unable to produce an acceptable solution for more than 30% of the driven course. However, all smartphones managed to identify, up to a satisfactory degree, distinct driving features, such as curves or bumps.

  15. Einstein's Elevator in Class: A Self-Construction by Students for the Study of the Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Kapotis, Efstratios; Kalkanis, George

    2016-10-01

    According to the principle of equivalence, it is impossible to distinguish between gravity and inertial forces that a noninertial observer experiences in his own frame of reference. For example, let's consider an elevator in space that is being accelerated in one direction. An observer inside it would feel as if there was gravity force pulling him toward the opposite direction. The same holds for a person in a stationary elevator located in Earth's gravitational field. No experiment enables us to distinguish between the accelerating elevator in space and the motionless elevator near Earth's surface. Strictly speaking, when the gravitational field is non-uniform (like Earth's), the equivalence principle holds only for experiments in elevators that are small enough and that take place over a short enough period of time (Fig. 1). However, performing an experiment in an elevator in space is impractical. On the other hand, it is easy to combine both forces on the same observer, i.e., gravity and a fictitious inertial force due to acceleration. Imagine an observer in an elevator that falls freely within Earth's gravitational field. The observer experiences gravity pulling him down while it might be said that the inertial force due to gravity acceleration g pulls him up. Gravity and inertial force cancel each other, (mis)leading the observer to believe there is no gravitational field. This study outlines our implementation of a self-construction idea that we have found useful in teaching introductory physics students (undergraduate, non-majors).

  16. Flight test results of the strapdown hexad inertial reference unit (SIRU). Volume 2: Test report

    NASA Technical Reports Server (NTRS)

    Hruby, R. J.; Bjorkman, W. S.

    1977-01-01

    Results of flight tests of the Strapdown Inertial Reference Unit (SIRU) navigation system are presented. The fault tolerant SIRU navigation system features a redundant inertial sensor unit and dual computers. System software provides for detection and isolation of inertial sensor failures and continued operation in the event of failures. Flight test results include assessments of the system's navigational performance and fault tolerance. Performance shortcomings are analyzed.

  17. A novel body frame based approach to aerospacecraft attitude tracking.

    PubMed

    Ma, Carlos; Chen, Michael Z Q; Lam, James; Cheung, Kie Chung

    2017-09-01

    In the common practice of designing an attitude tracker for an aerospacecraft, one transforms the Newton-Euler rotation equations to obtain the dynamic equations of some chosen inertial frame based attitude metrics, such as Euler angles and unit quaternions. A Lyapunov approach is then used to design a controller which ensures asymptotic convergence of the attitude to the desired orientation. Although this design methodology is pretty standard, it usually involves singularity-prone coordinate transformations which complicates the analysis process and controller design. A new, singularity free error feedback method is proposed in the paper to provide simple and intuitive stability analysis and controller synthesis. This new body frame based method utilizes the concept of Euleraxis and angles to generate the smallest error angles from a body frame perspective, without coordinate transformations. Global tracking convergence is illustrated with the use of a feedback linearizing PD tracker, a sliding mode controller, and a model reference adaptive controller. Experimental results are also obtained on a quadrotor platform with unknown system parameters and disturbances, using a boundary layer approximated sliding mode controller, a PIDD controller, and a unit sliding mode controller. Significant tracking quality is attained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Theory of inertial waves in rotating fluids

    NASA Astrophysics Data System (ADS)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E. V., & Dauxois, T., Internal wave attractors examined using laboratory experiments and 3D numerical simulations. Journal of Fluid Mechanics, 793, 109-131, 2016. [4] Gelash A. A., L'vov V. S., Zakharov V. E. Dynamics of inertial waves in rotating fluids, arXiv preprint arXiv:1604.07136. - 2016. [5] Galtier S. Weak inertial-wave turbulence theory, Physical Review E 68.1: 015301, 2003.

  19. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery

    NASA Astrophysics Data System (ADS)

    Douch, Karim; Wu, Hu; Schubert, Christian; Müller, Jürgen; Pereira dos Santos, Franck

    2018-03-01

    The prospects of future satellite gravimetry missions to sustain a continuous and improved observation of the gravitational field have stimulated studies of new concepts of space inertial sensors with potentially improved precision and stability. This is in particular the case for cold-atom interferometry (CAI) gradiometry which is the object of this paper. The performance of a specific CAI gradiometer design is studied here in terms of quality of the recovered gravity field through a closed-loop numerical simulation of the measurement and processing workflow. First we show that mapping the time-variable field on a monthly basis would require a noise level below 5mE /√{Hz } . The mission scenarios are therefore focused on the static field, like GOCE. Second, the stringent requirement on the angular velocity of a one-arm gradiometer, which must not exceed 10-6 rad/s, leads to two possible modes of operation of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir mode, which corresponds to the usual Earth-pointing satellite attitude, only the gradient Vyy , along the cross-track direction, is measured. In the quasi-inertial mode, the satellite attitude is approximately constant in the inertial reference frame and the 3 diagonal gradients Vxx,Vyy and Vzz are measured. Both modes are successively simulated for a 239 km altitude orbit and the error on the recovered gravity models eventually compared to GOCE solutions. We conclude that for the specific CAI gradiometer design assumed in this paper, only the quasi-inertial mode scenario would be able to significantly outperform GOCE results at the cost of technically challenging requirements on the orbit and attitude control.

  20. Whispering-gallery-mode-based seismometer

    DOEpatents

    Fourguette, Dominique Claire; Otugen, M Volkan; Larocque, Liane Marie; Ritter, Greg Aan; Meeusen, Jason Jeffrey; Ioppolo, Tindaro

    2014-06-03

    A whispering-gallery-mode-based seismometer provides for receiving laser light into an optical fiber, operatively coupling the laser light from the optical fiber into a whispering-gallery-mode-based optical resonator, operatively coupling a spring of a spring-mass assembly to a housing structure; and locating the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure so as to provide for compressing the whispering-gallery-mode-based optical resonator between the spring-mass assembly and the housing structure responsive to a dynamic compression force from the spring-mass assembly responsive to a motion of the housing structure relative to an inertial frame of reference.

  1. Work and Inertial Frames

    ERIC Educational Resources Information Center

    Kaufman, Richard

    2017-01-01

    A fairly recent paper resolves a large discrepancy in the internal energy utilized to fire a cannon as calculated by two inertial observers. Earth and its small reaction velocity must be considered in the system so that the change in kinetic energy is calculated correctly. This paper uses a car in a similar scenario, but considers the work done by…

  2. Trajectory Control and Optimization for Responsive Spacecraft

    DTIC Science & Technology

    2012-03-22

    Orbital Elements and Local-Vertical-Local-Horizontal Frame 10 2.3 Equinoctial Frame with respect to ECI Frame [17] . . . . . . . . . 14 3.1...position and velocity, classical orbital elements , and equinoctial elements . These methods are detailed in the following sections. 2.1.1 Inertial Position...trajectory. However, if the singularities are unavoidable equinoctial orbital elements could be used. 2.1.3 Equinoctial Elements . Equinoctial

  3. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS).

    PubMed

    Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li

    2018-05-14

    Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.

  4. Effects of head orientation and lateral body tilt on egocentric coding: cognitive and sensory-motor accuracy.

    PubMed

    Prieur, J-M; Bourdin, C; Sarès, F; Vercher, J-L

    2006-01-01

    A major issue in motor control studies is to determine whether and how we use spatial frames of reference to organize our spatially oriented behaviors. In previous experiments we showed that simulated body tilt during off-axis rotation affected the performance in verbal localization and manual pointing tasks. It was hypothesized that the observed alterations were at least partly due to a change in the orientation of the egocentric frame of reference, which was indeed centered on the body but aligned with the gravitational vector. The present experiments were designed to test this hypothesis in a situation where no inertial constraints (except the usual gravitational one) exist and where the orientation of the body longitudinal z-axis was not aligned with the direction of the gravity. Eleven subjects were exposed to real static body tilt and were required to verbally localize (experiment 1) and to point as accurately as possible towards (experiment 2) memorized visual targets, in two conditions, Head-Free and Head-Fixed conditions. Results show that the performance was only affected by real body tilt in the localization task performed when the subject's head was tilted relative to the body. Thus, dissociation between gravity and body longitudinal z-axis alone is not responsible for localization nor for pointing errors. Therefore, the egocentric frame of reference seems independent from the orientation of the gravity with regard to body z-axis as expected from our previous studies. Moreover, the use of spatial referentials appears to be less mandatory than expected for pointing movements (motor task) than for localization task (cognitive task).

  5. Geoscience laser altimeter system-stellar reference system

    NASA Astrophysics Data System (ADS)

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-01

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with ~15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 km×100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to ~5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  6. Vibration sensing in smart machine rotors using internal MEMS accelerometers

    NASA Astrophysics Data System (ADS)

    Jiménez, Samuel; Cole, Matthew O. T.; Keogh, Patrick S.

    2016-09-01

    This paper presents a novel topology for enhanced vibration sensing in which wireless MEMS accelerometers embedded within a hollow rotor measure vibration in a synchronously rotating frame of reference. Theoretical relations between rotor-embedded accelerometer signals and the vibration of the rotor in an inertial reference frame are derived. It is thereby shown that functionality as a virtual stator-mounted displacement transducer can be achieved through appropriate signal processing. Experimental tests on a prototype rotor confirm that both magnitude and phase information of synchronous vibration can be measured directly without additional stator-mounted key-phasor sensors. Displacement amplitudes calculated from accelerometer signals will become erroneous at low rotational speeds due to accelerometer zero-g offsets, hence a corrective procedure is introduced. Impact tests are also undertaken to examine the ability of the internal accelerometers to measure transient vibration. A further capability is demonstrated, whereby the accelerometer signals are used to measure rotational speed of the rotor by analysing the signal component due to gravity. The study highlights the extended functionality afforded by internal accelerometers and demonstrates the feasibility of internal sensor topologies, which can provide improved observability of rotor vibration at externally inaccessible rotor locations.

  7. Can Newton's Third Law Be "Derived" from the Second?

    NASA Astrophysics Data System (ADS)

    Gangopadhyaya, Asim; Harrington, James

    2017-04-01

    Newton's laws have engendered much discussion over several centuries. Today, the internet is awash with a plethora of information on this topic. We find many references to Newton's laws, often discussions of various types of misunderstandings and ways to explain them. Here we present an intriguing example that shows an assumption hidden in Newton's third law that is often overlooked. As is well known, the first law defines an inertial frame of reference and the second law determines the acceleration of a particle in such a frame due to an external force. The third law describes forces exerted on each other in a two-particle system, and allows us to extend the second law to a system of particles. Students are often taught that the three laws are independent. Here we present an example that challenges this assumption. At first glance, it seems to show that, at least for a special case, the third law follows from the second law. However, a careful examination of the assumptions demonstrates that is not quite the case. Ultimately, the example does illustrate the significance of the concept of mass in linking Newton's dynamical principles.

  8. Visualizing turbulent mixing of gases and particles

    NASA Technical Reports Server (NTRS)

    Ma, Kwan-Liu; Smith, Philip J.; Jain, Sandeep

    1995-01-01

    A physical model and interactive computer graphics techniques have been developed for the visualization of the basic physical process of stochastic dispersion and mixing from steady-state CFD calculations. The mixing of massless particles and inertial particles is visualized by transforming the vector field from a traditionally Eulerian reference frame into a Lagrangian reference frame. Groups of particles are traced through the vector field for the mean path as well as their statistical dispersion about the mean position by using added scalar information about the root mean square value of the vector field and its Lagrangian time scale. In this way, clouds of particles in a turbulent environment are traced, not just mean paths. In combustion simulations of many industrial processes, good mixing is required to achieve a sufficient degree of combustion efficiency. The ability to visualize this multiphase mixing can not only help identify poor mixing but also explain the mechanism for poor mixing. The information gained from the visualization can be used to improve the overall combustion efficiency in utility boilers or propulsion devices. We have used this technique to visualize steady-state simulations of the combustion performance in several furnace designs.

  9. Covariant Uniform Acceleration

    NASA Astrophysics Data System (ADS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-04-01

    We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.

  10. Magnetotail boundary and energy transfer processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swift, D.W.; Lee, L.C.

    1982-05-01

    A particle code is used to simulate the magnetopause region in the high latitude geomagnetic tail in which the magnetic field undergoes a significant increase in going from the magnetosheath to the magnetotail lobe. The simulation indicates that plasma can flow from the magnetosheath to the lobe, which is accompanied by a drop in pressure and density. In the earth's inertial frame, the particles do work against the convection electric field. Hence the magnetopause region serves ass a dynamo. The simulation also shows that the width of th transition region increases with time. In the earth's inertial frame this ismore » seen as an expansion of the magnetopause thickness in the antisunward direction.« less

  11. A sensor fusion method for tracking vertical velocity and height based on inertial and barometric altimeter measurements.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-07-24

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04-0.24 m/s; height RMSE was in the range 5-68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions.

  12. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  13. Geodetic precession or dragging of inertial frames

    NASA Technical Reports Server (NTRS)

    Ashby, Neil; Shahid-Saless, Bahman

    1989-01-01

    In General Relativity, the Principle of General Covariance allows one to describe phenomena by means of any convenient choice of coordinate system. Here, it is shown that the geodetic precession of a gyroscope orbiting a spherically symmetric, nonrotating mass can be recast as a Lense-Thirring frame-dragging effect, in an appropriately chosen coordinate frame whose origin falls freely along with the gyroscope and whose spatial coordinate axes point in fixed directions.

  14. A Robust Self-Alignment Method for Ship's Strapdown INS Under Mooring Conditions

    PubMed Central

    Sun, Feng; Lan, Haiyu; Yu, Chunyang; El-Sheimy, Naser; Zhou, Guangtao; Cao, Tong; Liu, Hang

    2013-01-01

    Strapdown inertial navigation systems (INS) need an alignment process to determine the initial attitude matrix between the body frame and the navigation frame. The conventional alignment process is to compute the initial attitude matrix using the gravity and Earth rotational rate measurements. However, under mooring conditions, the inertial measurement unit (IMU) employed in a ship's strapdown INS often suffers from both the intrinsic sensor noise components and the external disturbance components caused by the motions of the sea waves and wind waves, so a rapid and precise alignment of a ship's strapdown INS without any auxiliary information is hard to achieve. A robust solution is given in this paper to solve this problem. The inertial frame based alignment method is utilized to adapt the mooring condition, most of the periodical low-frequency external disturbance components could be removed by the mathematical integration and averaging characteristic of this method. A novel prefilter named hidden Markov model based Kalman filter (HMM-KF) is proposed to remove the relatively high-frequency error components. Different from the digital filters, the HMM-KF barely cause time-delay problem. The turntable, mooring and sea experiments favorably validate the rapidness and accuracy of the proposed self-alignment method and the good de-noising performance of HMM-KF. PMID:23799492

  15. Application of Millisecond Pulsar Timing to the Long-Term Stability of Clock Ensembles

    NASA Technical Reports Server (NTRS)

    Foster, Roger S.; Matsakis, Demetrios N.

    1996-01-01

    We review the application of millisecond pulsars to define a precise long-term standard and positional reference system in a nearly inertial reference frame. We quantify the current timing precision of the best millisecond pulsars and define the required precise time and time interval (PTTI) accuracy and stability to enable time transfer via pulsars. Pulsars may prove useful as independent standards to examine decade-long timing stability and provide an independent natural system within which to calibrate any new, perhaps vastly improved atomic time scale. Since pulsar stability appears to be related to the lifetime of the pulsar, the new millisecond pulsar J173+0747 is projected to have a 100-day accuracy equivalent to a single HP5071 cesium standard. Over the last five years, dozens of new millisecond pulsars have been discovered. A few of the new millisecond pulsars may have even better timing properties.

  16. A computational procedure for multibody systems including flexible beam dynamics

    NASA Technical Reports Server (NTRS)

    Downer, J. D.; Park, K. C.; Chiou, J. C.

    1990-01-01

    A computational procedure suitable for the solution of equations of motions for flexible multibody systems has been developed. A fully nonlinear continuum approach capable of accounting for both finite rotations and large deformations has been used to model a flexible beam component. The beam kinematics are referred directly to an inertial reference frame such that the degrees of freedom embody both the rigid and flexible deformation motions. As such, the beam inertia expression is identical to that of rigid body dynamics. The nonlinear coupling between gross body motion and elastic deformation is contained in the internal force expression. Numerical solution procedures for the integration of spatial kinematic systems can be directily applied to the generalized coordinates of both the rigid and flexible components. An accurate computation of the internal force term which is invariant to rigid motions is incorporated into the general solution procedure.

  17. The Missing Link Coupling the Foreshock to the Magnetosphere?: Impact of the Magnetosheath Velocity Fluctuations on the Growth of the Kelvin-Helmholtz instability.

    NASA Astrophysics Data System (ADS)

    Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.

    2014-12-01

    Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere

  18. Scattering characteristics of relativistically moving concentrically layered spheres

    NASA Astrophysics Data System (ADS)

    Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.

    2018-02-01

    The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.

  19. Expression of Cassini's third law for Callisto, and theory of its rotation

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît

    2009-07-01

    The rotation of the main natural satellites of the Solar System is widely assumed to be synchronous, because this corresponds to an equilibrium state. In the case of the Moon, 3 laws have been formulated by Cassini, assuming a spin-orbit resonance and a 1:1 nodal resonance. The recent gravitational data collected by the spacecrafts Galileo (in the jovian system) and Cassini (in the saturnian system) allows us to study the rotation of other natural satellites, and to check the universality of Cassini's laws. This paper deals with the rotation of the Galilean satellites of Jupiter J-4 Callisto. In this study we use both analytical (like Lie transforms) and numerical methods (numerical detection of chaos, numerical integration, frequency analysis) to first check the reliability of Cassini Laws for Callisto, and then to give a first theory of its rotation, Callisto's being considered as a rigid body. We first show that the Third Cassini Law (i.e. the nodal resonance), is not satisfied in every reference frame, in particular in the most natural one (i.e. the J2000 jovian equator). The difference of the nodes presents a chaotic-like behavior, that we prove to be just a geometrical illusion. Moreover, we give a mathematical condition ruling the choice of an inertial reference frame in which the Third Cassini Law is fulfilled. Secondly, we give a theory of Callisto's rotation in the International Celestial Reference Frame (ICRF). We highlight a small motion (i.e. <200 m) of its rotation axis about its body figure, a 11.86-yr periodicity in Callisto's length-of-day, and the proximity of a resonance that forces 182-yr librations in Callisto's obliquity.

  20. A Sensor Fusion Method for Tracking Vertical Velocity and Height Based on Inertial and Barometric Altimeter Measurements

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2014-01-01

    A sensor fusion method was developed for vertical channel stabilization by fusing inertial measurements from an Inertial Measurement Unit (IMU) and pressure altitude measurements from a barometric altimeter integrated in the same device (baro-IMU). An Extended Kalman Filter (EKF) estimated the quaternion from the sensor frame to the navigation frame; the sensed specific force was rotated into the navigation frame and compensated for gravity, yielding the vertical linear acceleration; finally, a complementary filter driven by the vertical linear acceleration and the measured pressure altitude produced estimates of height and vertical velocity. A method was also developed to condition the measured pressure altitude using a whitening filter, which helped to remove the short-term correlation due to environment-dependent pressure changes from raw pressure altitude. The sensor fusion method was implemented to work on-line using data from a wireless baro-IMU and tested for the capability of tracking low-frequency small-amplitude vertical human-like motions that can be critical for stand-alone inertial sensor measurements. Validation tests were performed in different experimental conditions, namely no motion, free-fall motion, forced circular motion and squatting. Accurate on-line tracking of height and vertical velocity was achieved, giving confidence to the use of the sensor fusion method for tracking typical vertical human motions: velocity Root Mean Square Error (RMSE) was in the range 0.04–0.24 m/s; height RMSE was in the range 5–68 cm, with statistically significant performance gains when the whitening filter was used by the sensor fusion method to track relatively high-frequency vertical motions. PMID:25061835

  1. Entanglement concentration for two-mode Gaussian states in non-inertial frames

    NASA Astrophysics Data System (ADS)

    Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco

    2017-04-01

    Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case.

  2. Inertial sensor and method of use

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor)

    2003-01-01

    The inertial sensor of the present invention utilizes a proof mass suspended from spring structures forming a nearly degenerate resonant structure into which a perturbation is introduced, causing a split in frequency of the two modes so that the mode shape become uniquely defined, and to the first order, remains orthogonal. The resonator is provided with a mass or inertia tensor with off-diagonal elements. These off-diagonal elements are large enough to change the mode shape of the two nearly degenerate modes from the original coordinate frame. The spring tensor is then provided with a compensating off-diagonal element, such that the mode shape is again defined in the original coordinate frame. The compensating off-diagonal element in the spring tensor is provided by a biasing voltage that softens certain elements in the spring tensor. Acceleration disturbs the compensation and the mode shape again changes from the original coordinate frame. By measuring the change in the mode shape, the acceleration is measured.

  3. inertial orientation tracker having automatic drift compensation using an at rest sensor for tracking parts of a human body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2004-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive sate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  4. Inertial orientation tracker having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2000-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  5. Inertial orientation tracker having gradual automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    2002-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  6. Inertial orientation tracker apparatus method having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1998-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  7. Inertial orientation tracker apparatus having automatic drift compensation for tracking human head and other similarly sized body

    NASA Technical Reports Server (NTRS)

    Foxlin, Eric M. (Inventor)

    1997-01-01

    A self contained sensor apparatus generates a signal that corresponds to at least two of the three orientational aspects of yaw, pitch and roll of a human-scale body, relative to an external reference frame. A sensor generates first sensor signals that correspond to rotational accelerations or rates of the body about certain body axes. The sensor may be mounted to the body. Coupled to the sensor is a signal processor for generating orientation signals relative to the external reference frame that correspond to the angular rate or acceleration signals. The first sensor signals are impervious to interference from electromagnetic, acoustic, optical and mechanical sources. The sensors may be rate sensors. An integrator may integrate the rate signal over time. A drift compensator is coupled to the rate sensors and the integrator. The drift compensator may include a gravitational tilt sensor or a magnetic field sensor or both. A verifier periodically measures the orientation of the body by a means different from the drift sensitive rate sensors. The verifier may take into account characteristic features of human motion, such as stillness periods. The drift compensator may be, in part, a Kalman filter, which may utilize statistical data about human head motion.

  8. Bell's twin rockets non-inertial length enigma resolved by real geometry

    NASA Astrophysics Data System (ADS)

    Coleman, Brian

    A priori uniformity and monotonicity of the 'non-inertial length' expansion of a uniformly co-accelerating medium, uniquely yield an unfamiliar 'hemicoid' real-values metric surface ϒ in R3 . ϒ (τ, l) hosts congruent helicoidally distributed fixed-l 'hemix world-lines' tracing medium increments' clock times τ and crossed by fixed- τ medium helices of parameterized length λ sharing comoving 'non-inertial frames'. Radar intervals and expansion factor ∂λ / ∂l = √ (1 +v2 /c2) conform to requirements established in Coleman, Results in Physics,6, 2016-Minkowski spacetime does not apply to a homogeneously accelerating medium. Co-directional radar paths on ϒ mapped from home frame chart diagonals crossing hyperbolic world-lines, surf 'horizon' increment hemices, whereas counter-directional radar paths tend to 'overlap' horizon medium helices. They also traverse each medium expansion helix at respectively identical angles and geodesic curvatures, independently of differing rocket emission times. Surface ϒ 's real metric is: ds2 = dτ2 + dλ2 +[ 2 tanhτ . (tanhτ - 1 / coshτ) / √ (1 +tanh2 τ) ] dτ . dλ .

  9. Experimental test of photonic entanglement in accelerated reference frames

    NASA Astrophysics Data System (ADS)

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-05-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  10. Experimental test of photonic entanglement in accelerated reference frames.

    PubMed

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert

    2017-05-10

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.

  11. A Gyroless Safehold Control Law Using Angular Momentum as an Inertial Reference Vector

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lebsock, Ken

    2008-01-01

    A novel safehold control law was developed for the nadir-pointing Vegetation Canopy Lidar (VCL) spacecraft, necessitated by a challenging combination of constraints. The instrument optics did not have a recloseable cover to protect them form potentially catastrophic damage if they were exposed to direct sunlight. The baseline safehold control law relied on a single-string inertial reference unit. A gyroless safehold law was developed to give a degree of robustness to gyro failures. Typical safehold solutions were not viable; thermal constraints made spin stabilization unsuitable, and an inertial hold based solely on magnetometer measurements wandered unaceptably during eclipse. The novel approach presented here maintains a momentum bias vector not for gyroscopic stiffness, but to use as an inertial reference direction during eclipse. The control law design is presented. The effect on stability of the rank-deficiency of magnetometer-based rate derivation is assessed. The control law's performance is evaluated by simulation.

  12. A Gyroless Safehold Control Law using Angular Momentum as an Inertial Reference Vector

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric; Lebsock, Ken

    2008-01-01

    A novel safehold control law was developed for the nadir-pointing Vegetation Canopy Lidar (VCL) spacecraft, necessitated by a challenging combination of constraints. The instrument optics did not have a reclosable cover to protect them from potentially catastrophic damage if they were exposed to direct sunlight. The baseline safehold control law relied on a single-string inertial reference unit. A gyroless safehold law was developed to give a degree of rebustness to gyro failures. Typical safehold solutions were not viable; thermal constraints made spin stabilization unsuitable, and an inertial hold based solely on magnetometer measurements wandered unacceptably during eclipse. The novel approach presented here maintains a momentum bias vector not for gyroscopic stiffness, but to use as an inertial reference direction during eclipse. The control law design is presented. The effect on stability of the rate-deficiency of magnetometer-based rate derivation is assessed. The control law's performance is evaluated by simulation.

  13. Stellar motion induced by gravitational instabilities in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Durisen, R. H.

    2010-07-01

    We test the effect of assumptions about stellar motion on the behaviour of gravitational instabilities (GIs) in protoplanetary discs around solar-type stars by performing two simulations that are identical in all respects except the treatment of the star. In one simulation, the star is assumed to remain fixed at the centre of the inertial reference frame. In the other, stellar motion is handled properly by including an indirect potential in the hydrodynamic equations to model the star's reference frame as one which is accelerated by star/disc interactions. The discs in both simulations orbit a solar mass star, initially extend from 2.3 to 40 au with a ϖ-1/2 surface density profile, and have a total mass of 0.14 Msolar. The γ = 5/3 ideal gas is assumed to cool everywhere with a constant cooling time of two outer rotation periods. The overall behaviour of the disc evolution is similar, except for weakening in various measures of GI activity by about at most tens of per cent for the indirect potential case. Overall conclusions about disc evolution in earlier papers by our group, where the star was always assumed to be fixed in an inertial frame, remain valid. There is no evidence for independent one-armed instabilities, like the Stimulation by the Long-range Interaction of Newtonian Gravity (SLING), in either simulation. On the other hand, the stellar motion about the system centre of mass (COM) in the simulation with the indirect potential is substantial, up to 0.25 au during the burst phase, as GIs initiate, and averaging about 0.9 au during the asymptotic phase, when the GIs reach an overall balance of heating and cooling. These motions appear to be a stellar response to non-linear interactions between discrete global spiral modes in both the burst and asymptotic phases of the evolution, and the star's orbital motion about the COM reflects the orbit periods of disc material near the corotation radii of the dominant spiral waves. This motion is, in principle, large enough to be observable and could be confused with stellar wobble due to the presence of one or more super-Jupiter mass protoplanets orbiting at 10's au. We discuss why the excursions in our simulation are so much larger than those seen in simulations by Rice et al.

  14. Inflight alignment of payload inertial reference from Shuttle navigation system

    NASA Astrophysics Data System (ADS)

    Treder, A. J.; Norris, R. E.; Ruprecht, R.

    Two methods for payload attitude initialization from the STS Orbiter have been proposed: body axis maneuvers (BAM) and star line maneuvers (SLM). The first achieves alignment directly through the Shuttle star tracker, while the second, indirectly through the stellar-updated Shuttle inertial platform. The Inertial Upper Stage (IUS) with its strapdown navigation system is used to demonstrate in-flight alignment techniques. Significant accuracy can be obtained with minimal impact on Orbiter operations, with payload inertial reference potentially approaching the accuracy of the Shuttle star tracker. STS-6 flight performance parameters, including alignment stability, are discussed and compared with operational complexity. Results indicate overall alignment stability of .06 deg, 3 sigma per axis.

  15. Inertial Navigation System Aiding Using Vision

    DTIC Science & Technology

    2013-03-01

    abp a + Cba d dt ( pa ) + d dt ( rbba ) (2.11) vb = d dt ( rbba ) + Cba (Ω a... abp a + va) (2.12) where ddt (r b ba) accounts for the relative velocity betwwen the a-frame and b-frame, CbaΩaabp a is the instantaneous velocity of p...frame. Taking another time derivative of Eq. 2.12 results in: d dt ( vb ) , ab = d2 dt2 rbba + d dt [ Cba (Ω a abp a + va) ] (2.13) = r̈bba + dCba

  16. High accuracy attitude reference stabilization and pointing using the Teledyne SDG-5 gyro and the DRIRU II inertial reference unit

    NASA Astrophysics Data System (ADS)

    Green, K. N.; van Alstine, R. L.

    This paper presents the current performance levels of the SDG-5 gyro, a high performance two-axis dynamically tuned gyro, and the DRIRU II redundant inertial reference unit relating to stabilization and pointing applications. Also presented is a discussion of a product improvement program aimed at further noise reductions to meet the demanding requirements of future space defense applications.

  17. A New Determination of Planetary Precession

    NASA Astrophysics Data System (ADS)

    Harada, Wataru; Fukushima, Toshio

    2004-01-01

    By using a nonlinear method of harmonic analysis, we have analyzed the motion of two angles, Ω and ɛ, specifying the direction of the Newtonian heliocentric orbital angular momentum of the Earth-Moon barycenter in the latest lunar and planetary ephemeris, DE405, from 1629 to 2169. Here Ω is the longitude of the node of the ecliptic of date with respect to the International Celestial Reference Frame (ICRF) equator, measured from the ICRF x-axis, while ɛ is the obliquity of the ecliptic of date referred to the ICRF equator. After dropping 86 Fourier terms and four mixed secular terms that were detected, we determined their secular variation in the form of quadratic polynomials as ΩDE405=-0.02109+10.54227t+0.48609t2 and ɛDE405=84,381.40578-46.81972t+0.04817t2 , where the units are arcseconds and t is the time since J2000.0 measured in Julian centuries. This is the latest determination of the planetary precession in the inertial sense and referred to the ICRF.

  18. Simulating the Compton-Getting effect for hydrogen flux measurements: Implications for IBEX-Hi and -Lo observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; Heerikhuisen, J.; McComas, D. J.

    The Interstellar Boundary EXplorer (IBEX), launched in 2008 October, has improved our understanding of the solar wind-local interstellar medium interaction through its detection of neutral atoms, particularly that of hydrogen (H). IBEX is able to create full maps of the sky in six-month intervals as the Earth orbits the Sun, detecting H with energies between ∼0.01 and 6 keV. Due to the relative motion of IBEX to the solar inertial frame, measurements made in the spacecraft frame introduce a Compton-Getting (CG) effect, complicating measurements at the lowest energies. In this paper we provide results from a numerical simulation that calculatesmore » fluxes of H atoms at 1 AU in the inertial and spacecraft frames (both ram and anti-ram), at energies relevant to IBEX-Hi and -Lo. We show theory behind the numerical simulations, applying a simple frame transformation to derived flux equations that provides a straightforward way to simulate fluxes in the spacecraft frame. We then show results of H energetic neutral atom fluxes simulated at IBEX-Hi energy passbands 2-6 in all frames, comparing with IBEX-Hi data along selected directions, and also show results simulated at energies relevant to IBEX-Lo. Although simulations at IBEX-Hi energies agree reasonably well with the CG correction method used for IBEX-Hi data, we demonstrate the importance of properly modeling low energy H fluxes due to inherent complexities involved with measurements made in moving frames, as well as dynamic radiation pressure effects close to the Sun.« less

  19. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  20. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  1. Relative motion of orbiting particles under the influence of perturbing forces. Volume 2: Analytical results. [equations of motion and mathematical solutions

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1974-01-01

    The mathematical developments carried out for this investigation are reported. In addition to describing and discussing the solutions which were acquired, there are compendia of data presented herein which summarize the equations and describe them as representative trace geometries. In this analysis the relative motion problems have been referred to two particular frames of reference; one which is inertially aligned, and one which is (local) horizon oriented. In addition to obtaining the classical initial values solutions, there are results which describe cases having applied specific forces serving as forcing functions. Also, in order to provide a complete state representation the speed components, as well as the displacements, have been described. These coordinates are traced on representative planes analogous to the displacement geometries. By this procedure a complete description of a relative motion is developed; and, as a consequence range rate as well as range information is obtained.

  2. Experimental test of photonic entanglement in accelerated reference frames

    PubMed Central

    Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert

    2017-01-01

    The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082

  3. A demonstration of an independent-station radio interferometry system with 4-cm precision on a 16-km base line. [for geodesy

    NASA Technical Reports Server (NTRS)

    Thomas, J. B.; Fanselow, J. L.; Macdoran, P. F.; Skjerve, L. J.; Spitzmesser, D. J.; Fliegel, H. F.

    1976-01-01

    Radio interferometry promises eventually to measure directly, with accuracies of a few centimeters, both whole earth motions and relative crustal motions with respect to an 'inertial' reference frame. Interferometry measurements of arbitrarily long base lines require, however, the development of new techniques for independent-station observation. In connection with the development of such techniques, a series of short base line demonstration experiments has been conducted between two antennas. The experiments were related to a program involving the design of independent-station instrumentation capable of making three-dimensional earth-fixed base line measurements with an accuracy of a few centimeters. Attention is given to the instrumentation used in the experiments, aspects of data analysis, and the experimental results.

  4. SED16 autonomous star tracker night sky testing

    NASA Astrophysics Data System (ADS)

    Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier

    2017-11-01

    The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.

  5. Center of mass perception and inertial frames of reference.

    PubMed

    Bingham, G P; Muchisky, M M

    1993-11-01

    Center of mass perception was investigated by varying the shape, size, and orientation of planar objects. Shape was manipulated to investigate symmetries as information. The number of reflective symmetry axes, the amount of rotational symmetry, and the presence of radial symmetry were varied. Orientation affected systematic errors. Judgments tended to undershoot the center of mass. Random errors increased with size and decreased with symmetry. Size had no effect on random errors for maximally symmetric objects, although orientation did. The spatial distributions of judgments were elliptical. Distribution axes were found to align with the principle moments of inertia. Major axes tended to align with gravity in maximally symmetric objects. A functional and physical account was given in terms of the repercussions of error. Overall, judgments were very accurate.

  6. High-Accuracy Decoupling Estimation of the Systematic Coordinate Errors of an INS and Intensified High Dynamic Star Tracker Based on the Constrained Least Squares Method

    PubMed Central

    Jiang, Jie; Yu, Wenbo; Zhang, Guangjun

    2017-01-01

    Navigation accuracy is one of the key performance indicators of an inertial navigation system (INS). Requirements for an accuracy assessment of an INS in a real work environment are exceedingly urgent because of enormous differences between real work and laboratory test environments. An attitude accuracy assessment of an INS based on the intensified high dynamic star tracker (IHDST) is particularly suitable for a real complex dynamic environment. However, the coupled systematic coordinate errors of an INS and the IHDST severely decrease the attitude assessment accuracy of an INS. Given that, a high-accuracy decoupling estimation method of the above systematic coordinate errors based on the constrained least squares (CLS) method is proposed in this paper. The reference frame of the IHDST is firstly converted to be consistent with that of the INS because their reference frames are completely different. Thereafter, the decoupling estimation model of the systematic coordinate errors is established and the CLS-based optimization method is utilized to estimate errors accurately. After compensating for error, the attitude accuracy of an INS can be assessed based on IHDST accurately. Both simulated experiments and real flight experiments of aircraft are conducted, and the experimental results demonstrate that the proposed method is effective and shows excellent performance for the attitude accuracy assessment of an INS in a real work environment. PMID:28991179

  7. Interpretation of Mössbauer experiment in a rotating system: A new proof for general relativity

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-04-01

    A historical experiment by Kündig on the transverse Doppler shift in a rotating system measured with the Mössbauer effect (Mössbauer rotor experiment) has been recently first re-analyzed and then replied by an experimental research group. The results of re-analyzing the experiment have shown that a correct re-processing of Kündig's experimental data gives an interesting deviation of a relative redshift between emission and absorption resonant lines from the standard prediction based on the relativistic dilatation of time. That prediction gives a redshift ∇E/E ≃ -1/2 v2/c2 where v is the tangential velocity of the absorber of resonant radiation, c is the velocity of light in vacuum and the result is given to the accuracy of first-order in v2/c2. Data re-processing gave ∇E/E ≃ - kv2/c2 with k = 0.596 ± 0.006. Subsequent new experimental results by the reply of Kündig experiment have shown a redshift with k = 0.68 ± 0.03 instead. By using Einstein Equivalence Principle, which states the equivalence between the gravitational "force" and the pseudo-force experienced by an observer in a non-inertial frame of reference (included a rotating frame of reference) here we re-analyze the theoretical framework of Mössbauer rotor experiments directly in the rotating frame of reference by using a general relativistic treatment. It will be shown that previous analyses missed an important effect of clock synchronization and that the correct general relativistic prevision in the rotating frame gives k ≃ 2/3 in perfect agreement with the new experimental results. Such an effect of clock synchronization has been missed in various papers in the literature with some subsequent claim of invalidity of relativity theory and/or some attempts to explain the experimental results through "exotic" effects. Our general relativistic interpretation shows, instead, that the new experimental results of the Mössbauer rotor experiment are a new, strong and independent, proof of Einstein general relativity. In the final section of the paper we discuss an analogy with the use of General Relativity in Global Positioning Systems.

  8. SeaVipers- Computer Vision and Inertial Position/Reference Sensor System (CVIPRSS)

    DTIC Science & Technology

    2015-08-01

    uses an Inertial Measurement Unit (IMU) to detect changes in roll , pitch, and yaw (x-, y-, and z-axis movement). We use a 9DOF Razor IMU from SparkFun... inertial measurement unit (IMU) and cameras that are hardware synchronized to provide close coupling. Several fast food companies, Internet giants like...light cameras [32]. 4.1.4 Inertial Measurement Unit To assist the PTU in video stabilization for the camera and aiming the rangefinder, Sea- Vipers

  9. From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect

    NASA Astrophysics Data System (ADS)

    Lusanna, Luca

    Clock synchronization leads to the definition of instantaneous 3-spaces (to be used as Cauchy surfaces) in non-inertial frames, the only ones allowed by the equivalence principle. ADM canonical tetrad gravity in asymptotically Minkowskian space-times can be described in this framework. This allows to find the York canonical basis in which the inertial (gauge) and tidal (physical) degrees of freedom of the gravitational field can be identified. A Post-Minkowskian linearization with respect to the asymptotic Minkowski metric (asymptotic background) allows to solve the Dirac constraints in non-harmonic 3-orthogonal gauges and to find non-harmonic TT gravitational waves. The inertial gauge variable York time (the trace of the extrinsic curvature of the 3-space) describes the general relativistic freedom in clock synchronization. After a digression on the gauge problem in general relativity, it is shown that dark matter, whose experimental signatures are the rotation curves and the mass of galaxies, may be described (at least partially) as an inertial relativistic effect (absent in Newton gravity) connected with the York time.

  10. Inertial navigation without accelerometers

    NASA Astrophysics Data System (ADS)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  11. INTEGRATED INS/GPS NAVIGATION FROM A POPULAR PERSPECTIVE

    DOT National Transportation Integrated Search

    2002-02-13

    Inertial navigation, blended with other navigation aids Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relat...

  12. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  13. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    DTIC Science & Technology

    2009-12-01

    For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this

  14. IMU: inertial sensing of vertical CoM movement.

    PubMed

    Esser, Patrick; Dawes, Helen; Collett, Johnny; Howells, Ken

    2009-07-22

    The purpose of this study was to use a quaternion rotation matrix in combination with an integration approach to transform translatory accelerations of the centre of mass (CoM) from an inertial measurement unit (IMU) during walking, from the object system onto the global frame. Second, this paper utilises double integration to determine the relative change in position of the CoM from the vertical acceleration data. Five participants were tested in which an IMU, consisting of accelerometers, gyroscopes and magnetometers was attached on the lower spine estimated centre of mass. Participants were asked to walk three times through a calibrated volume at their self-selected walking speed. Synchronized data were collected by an IMU and an optical motion capture system (OMCS); both measured at 100 Hz. Accelerations of the IMU were transposed onto the global frame using a quaternion rotation matrix. Translatory acceleration, speed and relative change in position from the IMU were compared with the derived data from the OMCS. Peak acceleration in vertical axis showed no significant difference (p> or =0.05). Difference between peak and trough speed showed significant difference (p<0.05) but relative peak-trough position between the IMU and OMCS did not show any significant difference (p> or =0.05). These results indicate that quaternions, in combination with Simpsons rule integration, can be used in transforming translatory acceleration from the object frame to the global frame and therefore obtain relative change in position, thus offering a solution for using accelerometers in accurate global frame kinematic gait analyses.

  15. One-Piece Faraday Generator: A Paradoxical Experiment from 1851

    ERIC Educational Resources Information Center

    Crooks, M. J.; And Others

    1978-01-01

    Describes an experiment based on Faraday's one-piece generator, where the rotating disk is replaced by a cylindrical permanent magnet. Explains the apparent paradox that an observer in an inertial frame could measure his absolute velocity. (GA)

  16. Analytic model of a laser-accelerated composite plasma target and its stability

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Shvets, Gennady

    2013-10-01

    A self-consistent analytical model of monoenergetic acceleration of a one and two-species ultrathin target irradiated by a circularly polarized laser pulse is developed. In the accelerated reference frame, the bulk plasma in the target is neutral and its parameters are assumed to be stationary. It is found that the structure of the target depends strongly on the temperatures of electrons and ions, which are both strongly influenced by the laser pulse pedestal. When the electron temperature is large, the hot electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials while the heavy and light ions are forced-balanced by the electrostatic and non-inertial fields forming two separated layers. In the opposite limiting case when the ion temperature is large, the hot ions are trapped in the potential well formed by the ion-sheath's electric and non-inertial potentials while the cold electrons are forced-balanced by the electrostatic and ponderomotive fields. Using PIC simulations we have determined which scenario is realized in practice depending on the initial target structure and laser intensity. Target stability with respect to Rayleigh-Taylor instability will also be discussed. This work is supported by the US DOE grants DE-FG02-04ER41321 and DE-FG02-07ER54945.

  17. Air Defense Initiative Air-to-Air Engagement Analysis. Volume 2. Error Models and Simulation for Case I: Pre-Launch Coordination Without Post-Launch Updates

    DTIC Science & Technology

    1991-03-08

    acceleration and angular rates (produced by roll, pitch. and yaw motions) experienced by the LP. 12 ___________________________________ Synetics Table 3 2...at time tlP,INIT. The corresponding n-frame to b-frame D(’NI is: Cb(t) = L.q(Y’LP,INIT). (A.30) 41). (’onipute angular rates: The angular rates with...respect to inertial space (p, q, and r) are computed from the angular rates with respect to the n-frame (P, Q, and R), which in turn are computed from

  18. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  19. GN/C translation and rotation control parameters for AR/C (category 2)

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1991-01-01

    Detailed analysis of the Automatic Rendezvous and Capture problem indicate a need for three different regions of mathematical description for the GN&C algorithms: (1) multi-vehicle orbital mechanics to the rendezvous interface point, i.e., within 100 n.; (2) relative motion solutions (such as Clohessy-Wiltshire type) from the far-field to the near-field interface, i.e., within 1 nm; and (3) close proximity motion, the nearfield motion where the relative differences in the gravitational and orbit inertial accelerations can be neglected from the equations of motion. This paper defines the reference coordinate frames and control parameters necessary to model the relative motion and attitude of spacecraft in the close proximity of another space system (Region 2 and 3) during the Automatic Rendezvous and Capture phase of an orbit operation.

  20. High-sensitivity rotation sensing with atom interferometers using Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Özcan, Meriac

    2006-02-01

    In recent years there has been significant activity in research and development of high sensitivity accelerometers and gyroscopes using atom interferometers. In these devices, a fringe shift in the interference of atom de Broglie waves indicates the rotation rate of the interferometer relative to an inertial frame of reference. In both optical and atomic conventional Sagnac interferometers, the resultant phase difference due to rotation is independent of the wave velocity. However, we show that if an atom interforemeter is enclosed in a Faraday cage which is at some potential, the phase difference of the counter-propagating waves is proportional to the inverse square of the particle velocity and it is proportional to the applied potential. This is due to Aharonov-Bohm effect and it can be used to increase the rotation sensitivity of atom interferometers.

  1. Nonlinear regimes on polygonal hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Rojas, Nicolas

    2016-11-01

    This work extends previous leading and higher order results on the polygonal hydraulic jump in the framework of inertial lubrication theory. The rotation of steady polygonal jumps is observed in the transition from one wavenumber to the next one, induced by a change in height of an external obstacle near the outer edge. In a previous publication, the study of stationary polygons is considered under the assumption that the reference frame rotates with the polygons when the number of corners change, in order to preserve their orientation. In this research work I provide a Hamiltonian approach and the stability analysis of the nonlinear oscillator that describe the polygonal structures at the jump interface, in addition to a perturbation method that enables to explain, for instance, the diversity of patterns found in experiments. GRASP, Institute of Physics, University of Liege, Belgium.

  2. Strapdown cost trend study and forecast

    NASA Technical Reports Server (NTRS)

    Eberlein, A. J.; Savage, P. G.

    1975-01-01

    The potential cost advantages offered by advanced strapdown inertial technology in future commercial short-haul aircraft are summarized. The initial procurement cost and six year cost-of-ownership, which includes spares and direct maintenance cost were calculated for kinematic and inertial navigation systems such that traditional and strapdown mechanization costs could be compared. Cost results for the inertial navigation systems showed that initial costs and the cost of ownership for traditional triple redundant gimbaled inertial navigators are three times the cost of the equivalent skewed redundant strapdown inertial navigator. The net cost advantage for the strapdown kinematic system is directly attributable to the reduction in sensor count for strapdown. The strapdown kinematic system has the added advantage of providing a fail-operational inertial navigation capability for no additional cost due to the use of inertial grade sensors and attitude reference computers.

  3. Resonant tidal excitation of oscillation modes in merging binary neutron stars: Inertial-gravity modes

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2017-10-01

    In coalescing neutron star (NS) binaries, tidal force can resonantly excite low-frequency (≲500 Hz ) oscillation modes in the NS, transferring energy between the orbit and the NS. This resonant tide can induce phase shift in the gravitational waveforms, and potentially provide a new window of studying NS interior using gravitational waves. Previous works have considered tidal excitations of pure g-modes (due to stable stratification of the star) and pure inertial modes (due to Coriolis force), with the rotational effect treated in an approximate manner. However, for realistic NSs, the buoyancy and rotational effects can be comparable, giving rise to mixed inertial-gravity modes. We develop a nonperturbative numerical spectral code to compute the frequencies and tidal coupling coefficients of these modes. We then calculate the phase shift in the gravitational waveform due to each resonance during binary inspiral. Given the uncertainties in the NS equation of state and stratification property, we adopt polytropic NS models with a parametrized stratification. We derive relevant scaling relations and survey how the phase shift depends on various properties of the NS. We find that for canonical NSs (with mass M =1.4 M⊙ and radius R =10 km ) and modest rotation rates (≲300 Hz ), the gravitational wave phase shift due to a resonance is generally less than 0.01 radian. But the phase shift is a strong function of R and M , and can reach a radian or more for low-mass NSs with larger radii (R ≳15 km ). Significant phase shift can also be produced when the combination of stratification and rotation gives rise to a very low frequency (≲20 Hz in the inertial frame) modified g-mode. As a by-product of our precise calculation of oscillation modes in rotating NSs, we find that some inertial modes can be strongly affected by stratification; we also find that the m =1 r -mode, previously identified to have a small but finite inertial-frame frequency based on the Cowling approximation, in fact has essentially zero frequency, and therefore cannot be excited during the inspiral phase of NS binaries.

  4. The effects of patch-potentials on the gravity probe B gyroscopes.

    PubMed

    Buchman, S; Turneaure, J P

    2011-07-01

    Gravity probe B (GP-B) was designed to measure the geodetic and frame dragging precessions of gyroscopes in the near field of the Earth using a drag-free satellite in a 642 km polar orbit. Four electrostatically suspended cryogenic gyroscopes were designed to measure the precession of the local inertial frame of reference with a disturbance drift of about 0.1 marc sec/yr-0.2 marc sec/yr. A number of unexpected gyro disturbance effects were observed during the mission: spin-speed and polhode damping, misalignment and roll-polhode resonance torques, forces acting on the gyroscopes, and anomalies in the measurement of the gyro potentials. We show that all these effects except possibly polhode damping can be accounted for by electrostatic patch potentials on both the gyro rotors and the gyro housing suspension and ground-plane electrodes. We express the rotor and housing patch potentials as expansions in spherical harmonics Y(l,m)(θ,φ). Our analysis demonstrates that these disturbance effects are approximated by a power spectrum for the coefficients of the spherical harmonics of the form V(0)(2)/l(r) with V(0) ≈ 100 mV and r ≈ 1.7.

  5. Spacetime geodesy and the LAGEOS-3 satellite experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.A.; Chen, Kaiyou; Habib, S.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). LAGEOS-1 is a dense spherical satellite whose tracking accuracy is such as to yield a medium-term inertial reference frame and that is used as an adjunct to more difficult and more data-intensive absolute frame measurements. LAGEOS-3, an identical satellite to be launched into an orbit complementary to that of LAGEOS-1, would experience an equal and opposite classical precession to that of LAGEOS- 1. Besides providing a more accurate real-time measurement of the earth`s length of day and polar wobble,more » this paired-satellite system would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. We have modeled the spin dynamics of a LAGEOS-type satellite and used this spin model to estimate the impact of the thermal rocketing effect on the LAGEOS-3 experiment. We have also performed an analytic tensor expansion of Synge`s world function to better reveal the nature of the predicted frame-dragging effect. We showed that this effect is not due to the Riemann curvature tensor, but rather is a ``potential effect`` arising from the acceleration of the world lines in the Kerr spacetime geometry.« less

  6. Influence of gravity on inertial particle clustering in turbulence

    NASA Astrophysics Data System (ADS)

    Lu, J.; Nordsiek, H.; Saw, E. W.; Fugal, J. P.; Shaw, R. A.

    2008-11-01

    We report results from experiments aimed at studying inertial particles in homogeneous, isotropic turbulence, under the influence of gravitational settling. Conditions are selected to investigate the transition from negligible role of gravity to gravitationally dominated, as is expected to occur in atmospheric clouds. We measure droplet clustering, relative velocities, and the distribution of collision angles in this range. The experiments are carried out in a laboratory chamber with nearly homogeneous, isotropic turbulence. The turbulence is characterized using LDV and 2-frame holographic particle tracking velocimetry. We seed the flow with particles of various Stokes and Froude numbers and use digital holography to obtain 3D particle positions and velocities. From particle positions, we investigate the impact of gravity on inertial clustering through the calculation of the radial distribution function and we compare to computational results and other recent experiments.

  7. Limitation to Communication of Fermionic System in Accelerated Frame

    NASA Astrophysics Data System (ADS)

    Chang, Jinho; Kwon, Younghun

    2015-03-01

    In this article, we investigate communication between an inertial observer and an accelerated observer, sharing fermionic system, when they use classical and quantum communication using single rail or dual rail encoding. The purpose of this work is to understand the limit to the communication between an inertial observer and an accelerated observer, with single rail or dual rail encoding of fermionic system. We observe that at the infinite acceleration, the coherent information of single(or double) rail quantum channel vanishes, but those of classical ones may have finite values. In addition, we see that even when considering a method beyond the single-mode approximation, for the communication between Alice and Bob, the dual rail entangled state seems to provide better information transfer than the single rail entangled state, when we take a fixed choice of the Unruh mode. Moreover, we find that the single-mode approximation may not be sufficient to analyze communication of fermionic system in an accelerated frame.

  8. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  9. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  10. Westinghouse ICF power plant study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sucov, E. W.

    1980-10-01

    In this study, two different electric power plants for the production of about 1000 MWe which were based on a CO/sub 2/ laser driver and on a heavy ion driver have been developed and analyzed. The purposes of this study were: (1) to examine in a self consistent way the technological and institutional problems that need to be confronted and solved in order to produce commercially competitive electricity in the 2020 time frame from an inertial fusion reactor, and (2) to compare, on a common basis, the consequences of using two different drivers to initiate the DT fuel pellet explosions.more » Analytic descriptions of size/performance/cost relationships for each of the subsystems comprising the power plant have been combined into an overall computer code which models the entire plant. This overall model has been used to conduct trade studies which examine the consequences of varying critical design values around the reference point.« less

  11. Method and apparatus for autonomous, in-receiver prediction of GNSS ephemerides

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Bertiger, William I. (Inventor)

    2012-01-01

    Methods and apparatus for autonomous in-receiver prediction of orbit and clock states of Global Navigation Satellite Systems (GNSS) are described. Only the GNSS broadcast message is used, without need for periodic externally-communicated information. Earth orientation information is extracted from the GNSS broadcast ephemeris. With the accurate estimation of the Earth orientation parameters it is possible to propagate the best-fit GNSS orbits forward in time in an inertial reference frame. Using the estimated Earth orientation parameters, the predicted orbits are then transformed into Earth-Centered-Earth-Fixed (ECEF) coordinates to be used to assist the GNSS receiver in the acquisition of the signals. GNSS satellite clock states are also extracted from the broadcast ephemeris and a parameterized model of clock behavior is fit to that data. The estimated modeled clocks are then propagated forward in time to enable, together with the predicted orbits, quicker GNSS signal acquisition.

  12. Orbital stability of the unseen solar companion linked to periodic extinction events

    NASA Technical Reports Server (NTRS)

    Torbett, M. V.; Smoluchowski, R.

    1984-01-01

    Evidence from three-dimensional numerical modelling is presented that only cometary orbits with a limited range in inclination with respect to the galactic plane are formally stable for the length of time required to cause periodic extinction events. The calculations were done using Cowell's method employing a fourth-order Runge-Kutta integration scheme in an inertial reference frame in orbit about the Galaxy. Tidal perturbations in the radial direction due to the Galaxy and the Coriolis forces are included. The vertical component of the gravitational field of the galactic disk is superimposed on these forces. The results indicate that orbits for Nemesis that are inclined at more than 30 deg to the galactic plane are not allowed and suggests that the search for Nemesis should be concentrated toward the plane of the Galaxy. Perturbations by passing stars or molecular clouds may make even the low-inclination orbits unstable.

  13. Computation of the stability derivatives via CFD and the sensitivity equations

    NASA Astrophysics Data System (ADS)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  14. Vestibular system: the many facets of a multimodal sense.

    PubMed

    Angelaki, Dora E; Cullen, Kathleen E

    2008-01-01

    Elegant sensory structures in the inner ear have evolved to measure head motion. These vestibular receptors consist of highly conserved semicircular canals and otolith organs. Unlike other senses, vestibular information in the central nervous system becomes immediately multisensory and multimodal. There is no overt, readily recognizable conscious sensation from these organs, yet vestibular signals contribute to a surprising range of brain functions, from the most automatic reflexes to spatial perception and motor coordination. Critical to these diverse, multimodal functions are multiple computationally intriguing levels of processing. For example, the need for multisensory integration necessitates vestibular representations in multiple reference frames. Proprioceptive-vestibular interactions, coupled with corollary discharge of a motor plan, allow the brain to distinguish actively generated from passive head movements. Finally, nonlinear interactions between otolith and canal signals allow the vestibular system to function as an inertial sensor and contribute critically to both navigation and spatial orientation.

  15. Differential GPS/inertial navigation approach/landing flight test results

    NASA Technical Reports Server (NTRS)

    Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary

    1992-01-01

    In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.

  16. Geometric Cues, Reference Frames, and the Equivalence of Experienced-Aligned and Novel-Aligned Views in Human Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Sjolund, Lori A.; Sturz, Bradley R.

    2013-01-01

    Spatial memories are often organized around reference frames, and environmental shape provides a salient cue to reference frame selection. To date, however, the environmental cues responsible for influencing reference frame selection remain relatively unknown. To connect research on reference frame selection with that on orientation via…

  17. STS-44 Defense Support Program (DSP) / IUS during preflight operations

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-44 Defense Support Program (DSP) satellite atop the inertial upper stage (IUS) is prepared for transfer in a processing facility at Cape Canaveral Air Force Station. Clean-suited technicians overseeing the operation are dwarfed by the size of the 5,200-pound DSP satellite and the IUS. The underside of the IUS (bottom) mounted in the airborne support equipment (ASE) aft frame tilt actuator (AFTA) table and ASE forward frame is visible at the base. The umbilical boom between the two ASE frames and the forward frame keel trunnion are visible. DSP, a surveillance satellite that can detect missle and space launches as well as nuclear detonations will be boosted into geosynchronous Earth orbit by the IUS. View provided by KSC with alternate number KSC-91PC-1749.

  18. Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.

    PubMed

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J

    2014-08-25

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.

  19. Relativistic analysis of stochastic kinematics

    NASA Astrophysics Data System (ADS)

    Giona, Massimiliano

    2017-10-01

    The relativistic analysis of stochastic kinematics is developed in order to determine the transformation of the effective diffusivity tensor in inertial frames. Poisson-Kac stochastic processes are initially considered. For one-dimensional spatial models, the effective diffusion coefficient measured in a frame Σ moving with velocity w with respect to the rest frame of the stochastic process is inversely proportional to the third power of the Lorentz factor γ (w ) =(1-w2/c2) -1 /2 . Subsequently, higher-dimensional processes are analyzed and it is shown that the diffusivity tensor in a moving frame becomes nonisotropic: The diffusivities parallel and orthogonal to the velocity of the moving frame scale differently with respect to γ (w ) . The analysis of discrete space-time diffusion processes permits one to obtain a general transformation theory of the tensor diffusivity, confirmed by several different simulation experiments. Several implications of the theory are also addressed and discussed.

  20. Analysis of Six Algorithms for Bearings only Ranging in an Air-to-Air Environment

    DTIC Science & Technology

    1982-12-01

    rotation of this frame is thus ignored, as in the inertial NED frame. This is less valid here, however, because the rotation of the axes of thc , LOS...22 / I 0 E -4 0 hD II 0 rubm~~ ~ ~ ~ ~ 0*’w~jac~ * *0- roo-W~lwoe. fl,~ 11O I 0 a’). U4- bO 9 P, co) E 06 zc oocl un0 -E 9) 1 12J N.330U cbD 231r~ a9

  1. STS-43 TDRS-E during preflight processing at KSC's VPF

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-43 Tracking and Data Relay Satellite E (TDRS-E) undergoes preflight processing in the Kennedy Space Center's (KSC's) Vertical Processing Facility (VPF) before being loaded into a payload canister for transfer to the launch pad and eventually into Atlantis', Orbiter Vehicle (OV) 104's, payload bay (PLB). This side of the TDRS-E will rest at the bottom of the PLB therefore the airborne support equipment (ASE) forward frame keel pin (at center of spacecraft) and the umbilical boom running between the two ASE frames are visible. The solar array panels are covered with protective TRW shields. Above the shields the stowed antenna and solar sail are visible. The inertial upper stage (IUS) booster is the white portion of the spacecraft and rests in the ASE forward frame and ASE aft frame tilt actuator (AFTA) frame (at the bottom of the IUS). The IUS booster nozzle extends beyond the AFTA frame. View provided by KSC with alternate number KSC-91PC-1079.

  2. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  3. Gait parameter and event estimation using smartphones.

    PubMed

    Pepa, Lucia; Verdini, Federica; Spalazzi, Luca

    2017-09-01

    The use of smartphones can greatly help for gait parameters estimation during daily living, but its accuracy needs a deeper evaluation against a gold standard. The objective of the paper is a step-by-step assessment of smartphone performance in heel strike, step count, step period, and step length estimation. The influence of smartphone placement and orientation on estimation performance is evaluated as well. This work relies on a smartphone app developed to acquire, process, and store inertial sensor data and rotation matrices about device position. Smartphone alignment was evaluated by expressing the acceleration vector in three reference frames. Two smartphone placements were tested. Three methods for heel strike detection were considered. On the basis of estimated heel strikes, step count is performed, step period is obtained, and the inverted pendulum model is applied for step length estimation. Pearson correlation coefficient, absolute and relative errors, ANOVA, and Bland-Altman limits of agreement were used to compare smartphone estimation with stereophotogrammetry on eleven healthy subjects. High correlations were found between smartphone and stereophotogrammetric measures: up to 0.93 for step count, to 0.99 for heel strike, 0.96 for step period, and 0.92 for step length. Error ranges are comparable to those in the literature. Smartphone placement did not affect the performance. The major influence of acceleration reference frames and heel strike detection method was found in step count. This study provides detailed information about expected accuracy when smartphone is used as a gait monitoring tool. The obtained results encourage real life applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.

    PubMed

    Malik, Nadeem A

    2017-01-01

    Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005)] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS), Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992)], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K) due to the sweeping effect decreases with increasing pair separation (σl), such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poivey, C.; Notebaert, O.; Garnier, P.

    The ARIANE5 On Board Computer (OBC) and Inertial Reference System (SRI) are based on Motorola MC68020 processor and MC68882 coprocessor. The SRI data acquisition board also uses the DSP TMS320C25 from Texas Instruments. These devices were characterized to proton induced SEUs. But representativeness of SEU test results on processors was questioned during ARIANE5 studies. Protons test of these devices were also performed in the actual equipments with flight (or representative of) softwares. The results show that the On Board Computer and the Inertial Reference System can satisfy the requirements of the ARIANE5 missions.

  6. The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS

    NASA Astrophysics Data System (ADS)

    Xu, M. H.

    2016-03-01

    Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.

  7. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  8. Micrometeorite Science with LISA Pathfinder

    NASA Astrophysics Data System (ADS)

    Pagane, Nicole; Thorpe, James Ira; Littenberg, Tyson; Littenberg, Tyson; Baker, John; Slutsky, Jacob; Hourihane, Sophie; LISA Pathfinder Team

    2018-01-01

    The primary objective of LISA Pathfinder (LPF) was to demonstrate drag-free control of test masses—along with the technology necessary to maintain the inertial motion—that LISA (Laser Interferometer Space Antenna) would later utilize as a space-based gravitational wave observatory. Due to the precise interferometry used during the mission, LPF could be employed as an accelerometer and used to detect micrometeorite impacts while in orbit about the Sun-Earth Lagrange Point L1. To infer micrometeorite impacts, the flight data was processed for event reconstruction to determine external acceleration of LPF; impact parameters were then estimated through a Markov-Chain Monte-Carlo (MCMC) tool via Bayesian analysis by fitting delta functions in the acceleration domain. As impact candidates were collected, a catalog of event data was curated with the reconstructed estimated parameters, among which were impact sky localizations that were later rotated into more intuitive reference frames. To infer the results of this dust modeling technique, current micrometeorite models were compared to the impact data. In the final reference frame common to the available micrometeorite models, the reconstructed impacts appear to cluster at (±90°, 0°)—where impacts prograde in this longitude-latitude frame were at (-90°, 0°), retrograde were (90°, 0°), and the sun was centered at the origin. The two available models used for comparison were of the Jupiter-family comets (JFC) and Halley-type comets (HTC), which clustered primarily around (±90°, 0°) and (0°, ±20°) respectively. This suggests that the JFC population seems to account for the majority of the impacts detected by LPF. The models’ expected rates given localization and velocity are currently being compared to the reconstructed data to further characterize the micrometeorite populations at L1. We will present our current analysis of this data set and discuss possibilities of extending such an analysis for LISA.

  9. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    PubMed

    Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa

    2015-01-01

    Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  10. An enhanced inertial navigation system based on a low-cost IMU and laser scanner

    NASA Astrophysics Data System (ADS)

    Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok

    2012-06-01

    This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.

  11. A polar-region-adaptable systematic bias collaborative measurement method for shipboard redundant rotational inertial navigation systems

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang

    2018-05-01

    The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.

  12. The reference frame for encoding and retention of motion depends on stimulus set size.

    PubMed

    Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk

    2017-04-01

    The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.

  13. How Flexible is the Use of Egocentric Versus Allocentric Frame of Reference in the Williams Syndrome Population?

    PubMed

    Heiz, J; Majerus, S; Barisnikov, K

    2017-09-28

    This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source

    NASA Astrophysics Data System (ADS)

    Fukue, Jun

    2015-06-01

    Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 < β ≤ 0.4, while it becomes negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.

  15. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma.

    PubMed

    Marshall, F J; Radha, P B

    2014-11-01

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  16. Heightened clinical utility of smartphone versus body-worn inertial system for shoulder function B-B score.

    PubMed

    Pichonnaz, Claude; Aminian, Kamiar; Ancey, Céline; Jaccard, Hervé; Lécureux, Estelle; Duc, Cyntia; Farron, Alain; Jolles, Brigitte M; Gleeson, Nigel

    2017-01-01

    The B-B Score is a straightforward kinematic shoulder function score including only two movements (hand to the Back + lift hand as to change a Bulb) that demonstrated sound measurement properties for patients for various shoulder pathologies. However, the B-B Score results using a smartphone or a reference system have not yet been compared. Provided that the measurement properties are comparable, the use of a smartphone would offer substantial practical advantages. This study investigated the concurrent validity of a smartphone and a reference inertial system for the measurement of the kinematic shoulder function B-B Score. Sixty-five patients with shoulder conditions (with rotator cuff conditions, adhesive capsulitis and proximal humerus fracture) and 20 healthy participants were evaluated using a smartphone and a reference inertial system. Measurements were performed twice, alternating between two evaluators. The B-B Score differences between groups, differences between devices, relationship between devices, intra- and inter-evaluator reproducibility were analysed. The smartphone mean scores (SD) were 94.1 (11.1) for controls and 54.1 (18.3) for patients (P < 0.01). The difference between devices was non-significant for the control (P = 0.16) and the patient group (P = 0.81). The analysis of the relationship between devices showed 0.97 ICC, -0.6 bias and -13.2 to 12.0 limits of agreement (LOA). The smartphone intra-evaluator ICC was 0.92, the bias 1.5 and the LOA -17.4 to 20.3. The smartphone inter-evaluator ICC was 0.92, the bias 1.5 and the LOA -16.9 to 20.0. The B-B Score results measured with a smartphone were comparable to those of an inertial system. While single measurements diverged in some cases, the intra- and inter-evaluator reproducibility was excellent and was equivalent between devices. The B-B score measured with a smartphone is straightforward and as efficient as a reference inertial system measurement.

  17. Heightened clinical utility of smartphone versus body-worn inertial system for shoulder function B-B score

    PubMed Central

    Aminian, Kamiar; Ancey, Céline; Jaccard, Hervé; Lécureux, Estelle; Duc, Cyntia; Farron, Alain; Jolles, Brigitte M.; Gleeson, Nigel

    2017-01-01

    Background The B-B Score is a straightforward kinematic shoulder function score including only two movements (hand to the Back + lift hand as to change a Bulb) that demonstrated sound measurement properties for patients for various shoulder pathologies. However, the B-B Score results using a smartphone or a reference system have not yet been compared. Provided that the measurement properties are comparable, the use of a smartphone would offer substantial practical advantages. This study investigated the concurrent validity of a smartphone and a reference inertial system for the measurement of the kinematic shoulder function B-B Score. Methods Sixty-five patients with shoulder conditions (with rotator cuff conditions, adhesive capsulitis and proximal humerus fracture) and 20 healthy participants were evaluated using a smartphone and a reference inertial system. Measurements were performed twice, alternating between two evaluators. The B-B Score differences between groups, differences between devices, relationship between devices, intra- and inter-evaluator reproducibility were analysed. Results The smartphone mean scores (SD) were 94.1 (11.1) for controls and 54.1 (18.3) for patients (P < 0.01). The difference between devices was non-significant for the control (P = 0.16) and the patient group (P = 0.81). The analysis of the relationship between devices showed 0.97 ICC, −0.6 bias and −13.2 to 12.0 limits of agreement (LOA). The smartphone intra-evaluator ICC was 0.92, the bias 1.5 and the LOA −17.4 to 20.3. The smartphone inter-evaluator ICC was 0.92, the bias 1.5 and the LOA −16.9 to 20.0. Conclusions The B-B Score results measured with a smartphone were comparable to those of an inertial system. While single measurements diverged in some cases, the intra- and inter-evaluator reproducibility was excellent and was equivalent between devices. The B-B score measured with a smartphone is straightforward and as efficient as a reference inertial system measurement. PMID:28319141

  18. Determination of the lunar orbital and rotational parameters and of the ecliptic reference system orientation from LLR measurements and IERS data

    NASA Astrophysics Data System (ADS)

    Chapront, J.; Chapront-Touzé, M.; Francou, G.

    1999-03-01

    An analysis of Lunar Laser Ranging (LLR) observations from January 1972 till March 1998 is performed using the lunar theory ELP 2000-96 and the completed Moons' theory of the lunar libration. The LLR station coordinates, polar motion and Universal Time are provided by the International Earth Rotation Service (IERS). In Solution 1 the precession-nutation transformation is given by recent analytical theories, while in Solution 2 it is derived from the IERS daily corrections. Orbital and free libration parameters of the Moon, and coordinates of the reflectors are obtained in both cases. The position of the inertial mean ecliptic of J2000.0 with respect to the equator of the mean Celestial Ephemeris Pole (CEP) of J2000.0 (in Solution 1) and to the International Celestial Reference System (ICRS), the IERS celestial reference system, (in Solution 2) are fit. The position of the mean CEP equator of J2000.0 and of several dynamical reference planes and origins, with respect to ICRS, are derived from these fits (Fig. 1). The leading results are the following: 0farcs057 60+/- 0farcs000 20 (in the equator) for the separation of the origin of right ascensions in ICRS from the ascending node of the inertial mean ecliptic of J2000.0 on the reference plane of ICRS, -0farcs0460 +/- 0farcs0008 (in the ecliptic) for the separation of the latter point from the inertial dynamical mean equinox of J2000.0, -0farcs015 19+/- 0farcs000 35 (in the equator) for the separation of the inertial dynamical mean equinox of J2000.0 from the J2000.0 right ascension origin derived from IERS polar motion and Universal Time and from precise theories of precession-nutation, and 23degr26 arcmin21 farcs405 22+/- 0farcs000 07 for the inertial obliquity of J2000.0. A correction of -0farcs3437 +/- 0farcs0040 /cy to the IAU 1976 value of the precession constant is also obtained (the errors quoted are formal errors).

  19. Cases Study of Nonlinear Interaction Between Near-Inertial Waves Induced by Typhoon and Diurnal Tides Near the Xisha Islands

    NASA Astrophysics Data System (ADS)

    Liu, Junliang; He, Yinghui; Li, Juan; Cai, Shuqun; Wang, Dongxiao; Huang, Yandan

    2018-04-01

    Nonlinear interaction between near-inertial waves (NIWs) and diurnal tides (DTs) after nine typhoons near the Xisha Islands of the northwestern South China Sea (SCS) were investigated using three-year in situ mooring observation data. It was found that a harmonic wave (f + D1, hereafter referred to as fD1 wave), with a frequency equal to the sum of frequencies of NIWs and DTs (hereafter referred to as f and D1, respectively), was generated via nonlinear interaction between typhoon-induced NIWs and DTs after each typhoon. The fD1 wave mainly concentrates in the subsurface layer, and is mainly induced by the first component of the vertical nonlinear momentum term, the product of the vertical velocity of DT and vertical shear of near-inertial current (hereafter referred to as Component 1), in which the vertical shear of the near-inertial current greatly affects the strength of the fD1 current. The larger the Component 1, the stronger the fD1 currents. The background preexisting mesoscale anticyclonic eddy near the mooring site may also enhance the vertical velocity of DT and thus Component 1, which subsequently facilitates the nonlinear interaction-induced energy transfer to the fD1 wave and enhances the fD1 currents after the passage of a typhoon.

  20. The Kinematics Parameters of the Galaxy Using Data of Modern Astrometric Catalogues

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    Based on the Ogorodnikov-Milne model, we analyze the proper motions of XPM2, UCAC4 and PPMXL stars. To estimate distances to the stars we used the method of statistical parallaxes herewith the random errors of the distance estimations do not exceed 10%. The method of statistical parallaxes was used to estimate the distances to stars with random errors no larger than 14%. The linear solar velocity relative to the local standard of rest, which is well determined for the local entroid (d 150 p), was used as a reference. We have established that the model component that describes the rotation of all stars under consideration about the Galactic Y axis differs from zero. For the distant (d < 1000 pc) PPMXL and UCAC4 stars, the mean rotation about the Galactic Y axis has been found to be M-13 = -0.75± 0.04 mas yr-1. As for distances greater than 1 kpc M-13>derived from the data of only XPM2 catalogue becomes positive and exceeds 0.5 mas yr-1. We interpret this rotation found using the distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame.

  1. The reference frame of figure-ground assignment.

    PubMed

    Vecera, Shaun P

    2004-10-01

    Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.

  2. Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction

    PubMed Central

    Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.

    2014-01-01

    The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546

  3. A detailed description of the sequential probability ratio test for 2-IMU FDI

    NASA Technical Reports Server (NTRS)

    Rich, T. M.

    1976-01-01

    The sequential probability ratio test (SPRT) for 2-IMU FDI (inertial measuring unit failure detection/isolation) is described. The SPRT is a statistical technique for detecting and isolating soft IMU failures originally developed for the strapdown inertial reference unit. The flowchart of a subroutine incorporating the 2-IMU SPRT is included.

  4. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  5. Reframing Student Affairs Leadership: An Analysis of Organizational Frames of Reference and Locus of Control

    ERIC Educational Resources Information Center

    Tull, Ashley; Freeman, Jerrid P.

    2011-01-01

    Examined in this study were the identified frames of reference and locus of control used by 478 student affairs administrators. Administrator responses were examined to identify frames of reference most commonly used and their preference order. Locus of control most commonly used and the relationship between frames of reference and locus of…

  6. Realization of ETRF2000 as a New Terrestrial Reference Frame in Republic of Serbia

    NASA Astrophysics Data System (ADS)

    Blagojevic, D.; Vasilic, V.

    2012-12-01

    The International Earth Rotation and Reference Systems Service (IERS) is a joint service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU), which provides the scientific community with the means for computing the transformation from the International Celestial Reference System (ICRS) to the International Terrestrial Reference System (ITRS). It further maintains the realizations of these systems by appropriate coordinate sets called "frames". The densification of terrestrial frame usually serves as official frame for positioning and navigation tasks within the territory of particular country. One of these densifications was recently performed in order to establish new reference frame for Republic of Serbia. The paper describes related activities resulting in ETRF2000 as a new Serbian terrestrial reference frame.

  7. Active Vibration Isolation Devices with Inertial Servo Actuators

    NASA Astrophysics Data System (ADS)

    Melik-Shakhnazarov, V. A.; Strelov, V. I.; Sofiyanchuk, D. V.; Tregubenko, A. A.

    2018-03-01

    The use of active vibration isolation devices (AVIDs) in aerospace engineering is subject to the following restrictions. First, the volume for installing additional devices is always limited in instrument racks and compartments. Secondly, in many cases, it is impossible to add supports for servo actuators for fundamental or design considerations. In the paper, it has been shown that this problem can be solved if the inertial servo actuators are used in AVIDs instead of reference actuators. A transfer function has been theoretically calculated for an AVID controlled by inertial actuators. It has been shown that the volume of a six-mode single-housing AVID with inertial actuators can be 2-2.5 times smaller than that of devices with support actuators.

  8. A low-cost inertial smoothing system for landing approach guidance

    NASA Technical Reports Server (NTRS)

    Niessen, F. R.

    1973-01-01

    Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, Craig

    It is argued by extrapolation of general relativity and quantum mechanics that a classical inertial frame corresponds to a statistically defined observable that rotationally fluctuates due to Planck scale indeterminacy. Physical effects of exotic nonlocal rotational correlations on large scale field states are estimated. Their entanglement with the strong interaction vacuum is estimated to produce a universal, statistical centrifugal acceleration that resembles the observed cosmological constant.

  10. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  11. Embodied Interaction Priority: Other's Body Part Affects Numeral-Space Mappings.

    PubMed

    You, Xuqun; Zhang, Yu; Zhu, Rongjuan; Guo, Yu

    2018-01-01

    Traditionally, the spatial-numerical association of response codes (SNARC) effect was presented in two-choice condition, in which only one individual reacted to both even (small) and odd (large) numbers. Few studies explored SNARC effect in a social situation. Moreover, there are many reference frames involved in SNARC effect, and it has not yet been investigated which reference frame is dominated when two participants perform the go-nogo task together. In the present study, we investigated which reference frame plays a primary role in SNARC effect when allocentric and egocentric reference frames were consistent or inconsistent in social settings. Furthermore, we explored how two actors corepresent number-space mapping interactively. Results of the two experiments demonstrated that egocentric reference frame was at work primarily when two reference frames were consistent and inconsistent. This shows that body-centered coordinate frames influence number-space mapping in social settings, and one actor may represent another actor's action and tasks.

  12. Mission Capability Gains from Multi-Mode Propulsion Thrust Variations on a Variety Spacecraft Orbital Maneuvers

    DTIC Science & Technology

    2011-03-01

    Geocentric -Equatorial Reference Frame2 ....................................................................... 31  Figure 8: Perifocal and Geocentric ...67  Figure 25: Mission 3 Geocentric Equatorial Reference Frame ...................................................... 69  Figure 26: Mission 3...Coordinate system, the Geocentric -Equatorial Reference frame and the reference frame depicted on one another is shown below. The following figures are from

  13. Strapdown system redundancy management flight demonstration. [vertical takeoff and landing aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The suitability of strapdown inertial systems in providing highly reliable short-term navigation for vertical take-off and landing (VTOL) aircraft operating in an intra-urban setting under all-weather conditions was assessed. A preliminary design configuration of a skewed sensor inertial reference system employing a redundancy management concept to achieve fail-operational, fail-operational performance, was developed.

  14. Error Propagation in the four terrestrial reference frames of the 2022 Modernized National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Smith, D. A.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames with four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on three main areas of error propagation when defining coordinates in these four frames. Those areas are (1) use of the small angle approximation to relate true rotation about an Euler Pole to small rotations about three Cartesian axes (2) The current state of the art in determining the Euler Poles of these four plates and (3) the combination of both IGS Cartesian coordinate uncertainties and EPP uncertainties into coordinate uncertainties in the four new frames. Discussion will also include recent efforts at improving the Euler Poles for these frames and expected dates when errors in the EPPs will cause an unacceptable level of uncertainty in the four new terrestrial reference frames.

  15. Environmental Inversion Effects in Face Perception

    ERIC Educational Resources Information Center

    Davidenko, Nicolas; Flusberg, Stephen J.

    2012-01-01

    Visual processing is highly sensitive to stimulus orientation; for example, face perception is drastically worse when faces are oriented inverted vs. upright. However, stimulus orientation must be established in relation to a particular reference frame, and in most studies, several reference frames are conflated. Which reference frame(s) matter in…

  16. Comparative research of redundant strap down inertial navigation system based on different configuration schemes

    NASA Astrophysics Data System (ADS)

    Yu, Yuting; Cheng, Ming

    2018-05-01

    Aiming at various configuration scheme and inertial measurement units of Strapdown Inertial Navigation System, selected tetrahedron skew configuration and coaxial orthogonal configuration by nine low cost IMU to build system. Calculation and simulation the performance index, reliability and fault diagnosis ability of the navigation system. Analysis shows that the reliability and reconfiguration scheme of skew configuration is superior to the orthogonal configuration scheme, while the performance index and fault diagnosis ability of the system are similar. The work in this paper provides a strong reference for the selection of engineering applications.

  17. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  18. Predicting NonInertial Effects with Algebraic Stress Models which Account for Dissipation Rate Anisotropies

    NASA Technical Reports Server (NTRS)

    Jongen, T.; Machiels, L.; Gatski, T. B.

    1997-01-01

    Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.

  19. Swimming motion of rod-shaped magnetotactic bacteria: the effects of shape and growing magnetic moment

    PubMed Central

    Kong, Dali; Lin, Wei; Pan, Yongxin; Zhang, Keke

    2014-01-01

    We investigate the swimming motion of rod-shaped magnetotactic bacteria affiliated with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible, we derive a new system of the twelve coupled equations that govern both the motion and orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment in the laboratory frame of reference. It is revealed that the initial pattern of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is also revealed, through comparing mathematical solutions of the twelve coupled equations to the swimming motion observed in our laboratory experiments with rod-shaped magnetotactic bacteria, that the laboratory trajectories of the swimming motion can be approximately reproduced using an appropriate set of the parameters in our theoretical model. PMID:24523716

  20. Negative frequencies in wave propagation: A microscopic model

    NASA Astrophysics Data System (ADS)

    Horsley, S. A. R.; Bugler-Lamb, S.

    2016-06-01

    A change in the sign of the frequency of a wave between two inertial reference frames corresponds to a reversal of the phase velocity. Yet from the point of view of the relation E =ℏ ω , a positive quantum of energy apparently becomes a negative-energy one. This is physically distinct from a change in the sign of the wave vector and can be associated with various effects such as Cherenkov radiation, quantum friction, and the Hawking effect. In this work we provide a more detailed understanding of these negative-frequency modes based on a simple microscopic model of a dielectric medium as a lattice of scatterers. We calculate the classical and quantum mechanical radiation damping of an oscillator moving through such a lattice and find that the modes where the frequency has changed sign contribute negatively. In terms of the lattice of scatterers we find that this negative radiation damping arises due to the phase of the periodic force experienced by the oscillator due to the relative motion of the lattice.

  1. On the investigation of cascade and turbomachinery rotor wake characteristics

    NASA Technical Reports Server (NTRS)

    Raj, R.; Lakshminarayana, B.

    1975-01-01

    The objective of the investigation reported in this thesis is to study the characteristics of a turbomachinery rotor wake, both analytically and experimentally. The constitutive equations for the rotor wake are developed using generalized tensors and a non-inertial frame of reference. Analytical and experimental investigation is carried out in two phases; the first phase involved the study of a cascade wake in the absence of rotation and three dimensionality. In the second phase the wake of a rotor is studied. Simplified two- and three-dimensional models are developed for the prediction of the mean velocity profile of the cascade and the rotor wake, respectively, using the principle of self-similarity. The effect of various major parameters of the rotor and the flow geometry is studied on the development of a rotor wake. Laws governing the decay of the wake velocity defect in a cascade and rotor wake as a function of downstream distance from the trailing edge, pressure gradient and other parameters are derived.

  2. Spatial Cognitive Performance During Adaptation to Conflicting Tilt-Translation Stimuli as a Sensorimotor Spaceflight Analog

    NASA Technical Reports Server (NTRS)

    Kayanickupuram, A. J.; Ramos, K. A.; Cordova, M. L.; Wood, S. J.

    2009-01-01

    The need to resolve new patterns of sensory feedback in altered gravitoinertial environments requires cognitive processes to develop appropriate reference frames for spatial orientation awareness. The purpose of this study was to examine deficits in spatial cognitive performance during adaptation to conflicting tilt-translation stimuli. Fourteen subjects were tilted within a lighted enclosure that simultaneously translated at one of 3 frequencies. Tilt and translation motion was synchronized to maintain the resultant gravitoinertial force aligned with the longitudinal body axis, resulting in a mismatch analogous to spaceflight in which the canals and vision signal tilt while the otoliths do not. Changes in performance on different spatial cognitive tasks were compared 1) without motion, 2) with tilt motion alone (pitch at 0.15, 0.3 and 0.6 Hz or roll at 0.3 Hz), and 3) with conflicting tilt-translation motion. The adaptation paradigm was continued for up to 30 min or until the onset of nausea. The order of the adaptation conditions were counter-balanced across 4 different test sessions. There was a significant effect of stimulus frequency on both motion sickness and spatial cognitive performance. Only 3 of 14 were able to complete the full 30 min protocol at 0.15 Hz, while 7 of 14 completed 0.3 Hz and 13 of 14 completed 0.6 Hz. There were no changes in simple visual-spatial cognitive tests, e.g., mental rotation or match-to-sample. There were significant deficits during 0.15 Hz adaptation in both accuracy and reaction time during a spatial reference task in which subjects are asked to identify a match of a 3D reoriented cube assemblage. Our results are consistent with antidotal reports of cognitive impairment that are common during sensorimotor adaptation with G-transitions. We conclude that these cognitive deficits stem from the ambiguity of spatial reference frames for central processing of inertial motion cues.

  3. Classical and quantum communication without a shared reference frame.

    PubMed

    Bartlett, Stephen D; Rudolph, Terry; Spekkens, Robert W

    2003-07-11

    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.

  4. The dynamics and control of solar-sail spacecraft in displaced lunar orbits

    NASA Astrophysics Data System (ADS)

    Wawrzyniak, Geoffrey George

    Trajectory generation for any spacecraft mission application typically involves either well-developed analytical approximations or a linearization with respect to a known solution. Such approximations are based on the well-understood dynamics of behavior in the system. However, when two or more large bodies (e.g., the Earth and the Moon or the Sun, the Earth and the Moon) are present, trajectories in the multi-body gravitational field can evolve chaotically. The problem is further complicated when an additional force from a solar sail is included. Solar sail trajectories are often developed in a Sun-centered reference frame in which the sunlight direction is fixed. New challenges arise when modeling a solar-sail trajectory in a reference frame attached to the Earth and the Moon (a frame that rotates in inertial space). Advantages accrue from geometry and symmetry properties that are available in this Earth--Moon reference frame, but the Sun location and the sunlight direction change with time. Current trajectory design tools can reveal many solutions within these regimes. Recent work using numerical boundary value problem (BVP) solvers has demonstrated great promise for uncovering additional and, sometimes, "better" solutions to problems in spacecraft trajectory design involving solar sails. One such approach to solving BVPs is the finite-difference method. Derivatives that appear in the differential equations are replaced with their respective finite differences and evaluated at node points along the trajectory. The solution process is iterative. A candidate solution, such as an offset circle or a point, is discretized into nodes, and the equations that represent the relationships at the nodes are solved simultaneously. Finite-difference methods (FDMs) exploit coarse initial approximations and, with the system constraints (such as the continuous visibility of the spacecraft from a point on the lunar surface), to develop orbital solutions in regions where the structure of the solution space is not well known. Because of their simplicity and speed, the FDM is used to populate a survey to assist in the understanding of the available design space. Trajectories generated by FDMs can also be used to initialize other nonlinear BVP solvers. Any solution is only as accurate as the model used to generate it, especially when the trajectory is dynamically unstable, certainly the case when an orbit is purposefully offset from the Moon. Perturbations, such as unmodeled gravitational forces, variations in the solar flux, as well as mis-modeling of the sail and bus properties, all shift the spacecraft off the reference trajectory and, potentially, into a regime from which the vehicle is unrecoverable. Therefore, some type of flight-path control is required to maintain the vehicle near the reference path. Reference trajectories, supplied by FDMs, are used to develop guidance algorithms based on other, more accurate, numerical procedures, such as multiple shooting. The primary motivation of this investigation is to determine what level of technology is required to displace a solar sail spacecraft sufficiently such that a vehicle equipped with a sail supplies a continuous relay between the Earth and an outpost at the lunar south pole. To accomplish this objective, numerical methods to generate reference orbits that meet mission constraints are examined, as well as flight-path control strategies to ensure that a sailcraft follows those reference trajectories. A survey of the design space is also performed to highlight vehicle-performance and ground-based metrics critical to a mission that monitors the lunar south pole at all times. Finally, observations about the underlying dynamical structure of solar sail motion in a multi-body system are summarized.

  5. Frames of Reference: A Metaphor for Analyzing and Interpreting Attitudes of Environmental Policy Makers and Policy Influencers

    PubMed

    Swaffield

    1998-07-01

    / The concept of frame of reference offers a potentially useful analytical metaphor in environmental management. This is illustrated by a case study in which attitudes of individuals involved in the management of trees in the New Zealand high country are classified into seven distinctive frames of reference. Some practical and theoretical implications of the use of the frame metaphor are explored, including its potential contribution to the emerg- ing field of communicative planning. KEY WORDS: Frames of reference; Environmental policy analysis; Metaphor; New Zealand high country

  6. GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Möller, Gregor; Weber, Robert

    2014-05-01

    The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.

  7. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  8. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  9. Connection Between the ICRF and the Dynamical Reference Frame for the Outer Planets

    NASA Astrophysics Data System (ADS)

    da Silva Neto, D. N.; Assafin, M.; Andrei, A. H.; Vieira Martins, R.

    2005-01-01

    This work brings an approach intending to improve the connection between the Dynamical Reference Frame and the Extragalactic Reference Frame. For that, close encounters of outer Solar System objects and quasars are used. With this goal, Uranus, Neptune and two quasars were observed at Laborat´orio Nacional de Astrof´ısica (LNA), Brazil. The optical reference frame is the HCRF, as given by the UCAC2 catalogue. The first results show an accuracy of 45 mas - 50 mas in the optical positions. The optical minus radio offsets give the local orientation between the catalogue and radio frame. From this, it is possible to place the optical planet coordinates on the extragalactic frame. A comparison between the new corrected optical coordinates and the respective DE ephemeris to these planets can give the instant orientations of the Dynamical Reference Frame with regard to the ICRS, for this zone of outer Solar System.

  10. Estimating pixel variances in the scenes of staring sensors

    DOEpatents

    Simonson, Katherine M [Cedar Crest, NM; Ma, Tian J [Albuquerque, NM

    2012-01-24

    A technique for detecting changes in a scene perceived by a staring sensor is disclosed. The technique includes acquiring a reference image frame and a current image frame of a scene with the staring sensor. A raw difference frame is generated based upon differences between the reference image frame and the current image frame. Pixel error estimates are generated for each pixel in the raw difference frame based at least in part upon spatial error estimates related to spatial intensity gradients in the scene. The pixel error estimates are used to mitigate effects of camera jitter in the scene between the current image frame and the reference image frame.

  11. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1991-01-01

    It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.

  12. Uniqueness of the Isotropic Frame and Usefulness of the Lorentz Transformation

    NASA Astrophysics Data System (ADS)

    Choi, Yang-Ho

    2018-05-01

    According to the postulates of the special theory of relativity (STR), physical quantities such as proper times and Doppler shifts can be obtained from any inertial frame by regarding it as isotropic. Nonetheless many inconsistencies arise from the postulates, as shown in this paper. However, there are numerous experimental results that agree with the predictions of STR. It is explained why they are accurate despite the inconsistencies. The Lorentz transformation (LT), unless subject to the postulates of STR, may be a useful method to approach physics problems. As an example to show the usefulness of LT, the problem of the generalized Sagnac effect is solved by utilizing it.

  13. Corrections of the finite relativistic contributions to the synodic month period Earth-Moon range oscillations: Agreement between the geocentric and the solar-system barycentric inertial-frame calculations

    NASA Astrophysics Data System (ADS)

    Nordtvedt, Ken

    1993-04-01

    We have corrected our calculation of the finite general relativistic contribution to the synodic month period Earth-Moon range oscillation by including previously overlooked terms in the Moon's post-Newtonian equation of motion: the corrected result x(t)~=(3gSr2/c2) cos(ω-Ω)t agrees with the Shahid-Saless calculation which was performed in the geocentric frame. It is also pointed out that at the level of a few millimeters synodic month period amplitude, the Moon's orbit is polarized by the solar radiation pressure force on the Moon.

  14. MS Peterson and MS Musgrave in payload bay (PLB) during EVA

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Extravehicular mobility unit (EMU) suited Mission Specialist (MS) Peterson, designated EV2, translates from forward payload bay (PLB) to aft bulkhead worksite along port side sill longeron using tether and slidewire system while MS Musgrave, designated EV1, floats on a tether in center of PLB. Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table appear in front and behind Musgrave and vertical tail and Orbital Maneuvering System (OMS) pods appear in background highlighted against the cloudy surface of Earth. EMU mini workstation extravehicular activity (EVA) crewmember safety tether reel floats on Musgrave's waist tether.

  15. Pulsed x-ray sources for characterization of gated framing cameras

    NASA Astrophysics Data System (ADS)

    Filip, Catalin V.; Koch, Jeffrey A.; Freeman, Richard R.; King, James A.

    2017-08-01

    Gated X-ray framing cameras are used to measure important characteristics of inertial confinement fusion (ICF) implosions such as size and symmetry, with 50 ps time resolution in two dimensions. A pulsed source of hard (>8 keV) X-rays, would be a valuable calibration device, for example for gain-droop measurements of the variation in sensitivity of the gated strips. We have explored the requirements for such a source and a variety of options that could meet these requirements. We find that a small-size dense plasma focus machine could be a practical single-shot X-ray source for this application if timing uncertainties can be overcome.

  16. Contextual cueing of tactile search is coded in an anatomical reference frame.

    PubMed

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Heading Tuning in Macaque Area V6.

    PubMed

    Fan, Reuben H; Liu, Sheng; DeAngelis, Gregory C; Angelaki, Dora E

    2015-12-16

    Cortical areas, such as the dorsal subdivision of the medial superior temporal area (MSTd) and the ventral intraparietal area (VIP), have been shown to integrate visual and vestibular self-motion signals. Area V6 is interconnected with areas MSTd and VIP, allowing for the possibility that V6 also integrates visual and vestibular self-motion cues. An alternative hypothesis in the literature is that V6 does not use these sensory signals to compute heading but instead discounts self-motion signals to represent object motion. However, the responses of V6 neurons to visual and vestibular self-motion cues have never been studied, thus leaving the functional roles of V6 unclear. We used a virtual reality system to examine the 3D heading tuning of macaque V6 neurons in response to optic flow and inertial motion stimuli. We found that the majority of V6 neurons are selective for heading defined by optic flow. However, unlike areas MSTd and VIP, V6 neurons are almost universally unresponsive to inertial motion in the absence of optic flow. We also explored the spatial reference frames of heading signals in V6 by measuring heading tuning for different eye positions, and we found that the visual heading tuning of most V6 cells was eye-centered. Similar to areas MSTd and VIP, the population of V6 neurons was best able to discriminate small variations in heading around forward and backward headings. Our findings support the idea that V6 is involved primarily in processing visual motion signals and does not appear to play a role in visual-vestibular integration for self-motion perception. To understand how we successfully navigate our world, it is important to understand which parts of the brain process cues used to perceive our direction of self-motion (i.e., heading). Cortical area V6 has been implicated in heading computations based on human neuroimaging data, but direct measurements of heading selectivity in individual V6 neurons have been lacking. We provide the first demonstration that V6 neurons carry 3D visual heading signals, which are represented in an eye-centered reference frame. In contrast, we found almost no evidence for vestibular heading signals in V6, indicating that V6 is unlikely to contribute to multisensory integration of heading signals, unlike other cortical areas. These findings provide important constraints on the roles of V6 in self-motion perception. Copyright © 2015 the authors 0270-6474/15/3516303-12$15.00/0.

  18. A compact, large-range interferometer for precision measurement and inertial sensing

    NASA Astrophysics Data System (ADS)

    Cooper, S. J.; Collins, C. J.; Green, A. C.; Hoyland, D.; Speake, C. C.; Freise, A.; Mow-Lowry, C. M.

    2018-05-01

    We present a compact, fibre-coupled interferometer with high sensitivity and a large working range. We propose to use this interferometer as a readout mechanism for future inertial sensors, removing a major limiting noise source, and in precision positioning systems. The interferometer’s peak sensitivity is 2 × 10-{14} m \\sqrt{Hz-1} at 70 Hz and 7 × 10-{11} m \\sqrt{Hz-1} at 10 mHz. If deployed on a GS-13 geophone, the resulting inertial sensing output will be limited by the suspension thermal noise of the reference mass from 10 mHz to 2 Hz.

  19. Automatic identification of inertial sensor placement on human body segments during walking

    PubMed Central

    2013-01-01

    Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757

  20. Automatic identification of inertial sensor placement on human body segments during walking.

    PubMed

    Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H

    2013-03-21

    Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.

  1. On the coupled evolution of oceanic internal waves and quasi-geostrophic flow

    NASA Astrophysics Data System (ADS)

    Wagner, Gregory LeClaire

    Oceanic motion outside thin boundary layers is primarily a mixture of quasi-geostrophic flow and internal waves with either near-inertial frequencies or the frequency of the semidiurnal lunar tide. This dissertation seeks a deeper understanding of waves and flow through reduced models that isolate their nonlinear and coupled evolution from the Boussinesq equations. Three physical-space models are developed: an equation that describes quasi-geostrophic evolution in an arbitrary and prescribed field of hydrostatic internal waves; a three-component model that couples quasi-geostrophic flow to both near-inertial waves and the near-inertial second harmonic; and a model for the slow evolution of hydrostatic internal tides in quasi-geostrophic flow of near-arbitrary scale. This slow internal tide equation opens the path to a coupled model for the energetic interaction of quasi-geostrophic flow and oceanic internal tides. Four results emerge. First, the wave-averaged quasi-geostrophic equation reveals that finite-amplitude waves give rise to a mean flow that advects quasi-geostrophic potential vorticity. Second is the definition of a new material invariant: Available Potential Vorticity, or APV. APV isolates the part of Ertel potential vorticity available for balanced-flow evolution in Eulerian frames and proves necessary in the separating waves and quasi-geostrophic flow. The third result, hashed out for near-inertial waves and quasi-geostrophic flow, is that wave-flow interaction leads to energy exchange even under conditions of weak nonlinearity. For storm-forced oceanic near-inertial waves the interaction often energizes waves at the expense of flow. We call this extraction of balanced quasi-geostrophic energy 'stimulated generation' since it requires externally-forced rather than spontaneously-generated waves. The fourth result is that quasi-geostrophic flow can encourage or 'catalyze' a nonlinear interaction between a near-inertial wave field and its second harmonic that transfers energy to the small near-inertial vertical scales of wave breaking and mixing.

  2. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  3. Apollo experience report guidance and control systems: Lunar module abort guidance system

    NASA Technical Reports Server (NTRS)

    Kurten, P. M.

    1975-01-01

    The history of a unique development program that produced an operational fixed guidance system of inertial quality is presented. Each phase of development, beginning with requirement definition and concluding with qualification and testing, is addressed, and developmental problems are emphasized. Software generation and mission operations are described, and specifications for the inertial reference unit are included, as are flight performance results. Significant program observations are noted.

  4. Design and Analysis of an Attitude Determination and Control Subsystem (ADCS) for AFIT’s 6U Standard Bus

    DTIC Science & Technology

    2014-03-27

    Fault Detection and Isolation GUI Graphical User Interface IGRF International Geomagnetic Reference Field IMU Inertial Measurement Unit IR infrared xv...ADCS hardware components were either commercially purchased or built in-house and include an Inertial Measurement Unit ( IMU ), external magnetometer, 4...3.2.1.3 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1.4 External Magnetometer . . . . . . . . . . . . . . . . . . 48 3.2.2

  5. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    PubMed

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  6. Spatial Updating Strategy Affects the Reference Frame in Path Integration.

    PubMed

    He, Qiliang; McNamara, Timothy P

    2018-06-01

    This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame. We assumed that the initial heading defined the principal reference direction in an allocentric reference frame. In Experiment 1, participants were instructed to use a configural updating strategy and to monitor the shape of the outbound path while they walked it. Pointing performance was best when the final heading was aligned with the initial heading, indicating the use of an allocentric reference frame. In Experiment 2, participants were instructed to use a continuous updating strategy and to keep track of the location of the first waypoint while walking the outbound path. Pointing performance was equivalent regardless of the alignment between the final and the initial headings, indicating the use of an egocentric reference frame. These results confirmed that people could employ different spatial updating strategies in path integration (Wiener, Berthoz, & Wolbers Experimental Brain Research 208(1) 61-71, 2011), and suggested that these strategies could affect the selection of the reference frame for path integration.

  7. Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P. Y.; Anderson, K. S.

    2010-05-15

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less

  8. Instantaneous progression reference frame for calculating pelvis rotations: Reliable and anatomically-meaningful results independent of the direction of movement.

    PubMed

    Kainz, Hans; Lloyd, David G; Walsh, Henry P J; Carty, Christopher P

    2016-05-01

    In motion analysis, pelvis angles are conventionally calculated as the rotations between the pelvis and laboratory reference frame. This approach assumes that the participant's motion is along the anterior-posterior laboratory reference frame axis. When this assumption is violated interpretation of pelvis angels become problematic. In this paper a new approach for calculating pelvis angles based on the rotations between the pelvis and an instantaneous progression reference frame was introduced. At every time-point, the tangent to the trajectory of the midpoint of the pelvis projected into the horizontal plane of the laboratory reference frame was used to define the anterior-posterior axis of the instantaneous progression reference frame. This new approach combined with the rotation-obliquity-tilt rotation sequence was compared to the conventional approach using the rotation-obliquity-tilt and tilt-obliquity-rotation sequences. Four different movement tasks performed by eight healthy adults were analysed. The instantaneous progression reference frame approach was the only approach that showed reliable and anatomically meaningful results for all analysed movement tasks (mean root-mean-square-differences below 5°, differences in pelvis angles at pre-defined gait events below 10°). Both rotation sequences combined with the conventional approach led to unreliable results as soon as the participant's motion was not along the anterior-posterior laboratory axis (mean root-mean-square-differences up to 30°, differences in pelvis angles at pre-defined gait events up to 45°). The instantaneous progression reference frame approach enables the gait analysis community to analysis pelvis angles for movements that do not follow the anterior-posterior axis of the laboratory reference frame. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hip-hop solutions of the 2N-body problem

    NASA Astrophysics Data System (ADS)

    Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume

    2006-05-01

    Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.

  10. Four-Year-Olds Use a Mixture of Spatial Reference Frames

    PubMed Central

    Negen, James; Nardini, Marko

    2015-01-01

    Keeping track of unseen objects is an important spatial skill. In order to do this, people must situate the object in terms of different frames of reference, including body position (egocentric frame of reference), landmarks in the surrounding environment (extrinsic frame reference), or other attached features (intrinsic frame of reference). Nardini et al. hid a toy in one of 12 cups in front of children, turned the array when they were not looking, and then asked them to point to the cup with the toy. This forced children to use the intrinsic frame (information about the array of cups) to locate the hidden toy. Three-year-olds made systematic errors by using the wrong frame of reference, 4-year-olds were at chance, and only 5- and 6-year-olds were successful. Can we better understand the developmental change that takes place at four years? This paper uses a modelling approach to re-examine the data and distinguish three possible strategies that could lead to the previous results at four years: (1) Children were choosing cups randomly, (2) Children were pointing between the egocentric/extrinsic-cued location and the correct target, and (3) Children were pointing near the egocentric/extrinsic-cued location on some trials and near the target on the rest. Results heavily favor the last possibility: 4-year-olds were not just guessing or trying to combine the available frames of reference. They were using the intrinsic frame on some trials, but not doing so consistently. These insights suggest that accounts of improving spatial performance at 4 years need to explain why there is a mixture of responses. Further application of the selected model also suggests that children become both more reliant on the correct frame and more accurate with any chosen frame as they mature. PMID:26133990

  11. Spatial cognition and navigation

    NASA Technical Reports Server (NTRS)

    Aretz, Anthony J.

    1989-01-01

    An experiment that provides data for the development of a cognitive model of pilot flight navigation is described. The experiment characterizes navigational awareness as the mental alignment of two frames of reference: (1) the ego centered reference frame that is established by the forward view out of the cockpit and (2) the world centered reference frame that is established by the aircraft's location on a map. The data support a model involving at least two components: (1) the perceptual encoding of the navigational landmarks and (2) the mental rotation of the map's world reference frame into alignment with the ego centered reference frame. The quantitative relationships of these two factors are provided as possible inputs for a computational model of spatial cognition during flight navigation.

  12. Real-time moving objects detection and tracking from airborne infrared camera

    NASA Astrophysics Data System (ADS)

    Zingoni, Andrea; Diani, Marco; Corsini, Giovanni

    2017-10-01

    Detecting and tracking moving objects in real-time from an airborne infrared (IR) camera offers interesting possibilities in video surveillance, remote sensing and computer vision applications, such as monitoring large areas simultaneously, quickly changing the point of view on the scene and pursuing objects of interest. To fully exploit such a potential, versatile solutions are needed, but, in the literature, the majority of them works only under specific conditions about the considered scenario, the characteristics of the moving objects or the aircraft movements. In order to overcome these limitations, we propose a novel approach to the problem, based on the use of a cheap inertial navigation system (INS), mounted on the aircraft. To exploit jointly the information contained in the acquired video sequence and the data provided by the INS, a specific detection and tracking algorithm has been developed. It consists of three main stages performed iteratively on each acquired frame. The detection stage, in which a coarse detection map is computed, using a local statistic both fast to calculate and robust to noise and self-deletion of the targeted objects. The registration stage, in which the position of the detected objects is coherently reported on a common reference frame, by exploiting the INS data. The tracking stage, in which the steady objects are rejected, the moving objects are tracked, and an estimation of their future position is computed, to be used in the subsequent iteration. The algorithm has been tested on a large dataset of simulated IR video sequences, recreating different environments and different movements of the aircraft. Promising results have been obtained, both in terms of detection and false alarm rate, and in terms of accuracy in the estimation of position and velocity of the objects. In addition, for each frame, the detection and tracking map has been generated by the algorithm, before the acquisition of the subsequent frame, proving its capability to work in real-time.

  13. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  14. Image registration of naval IR images

    NASA Astrophysics Data System (ADS)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  15. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems.

    PubMed

    de Vries, W H K; Veeger, H E J; Cutti, A G; Baten, C; van der Helm, F C T

    2010-07-20

    Inertial Magnetic Measurement Systems (IMMS) are becoming increasingly popular by allowing for measurements outside the motion laboratory. The latest models enable long term, accurate measurement of segment motion in terms of joint angles, if initial segment orientations can accurately be determined. The standard procedure for definition of segmental orientation is based on the measurement of positions of bony landmarks (BLM). However, IMMS do not deliver position information, so an alternative method to establish IMMS based, anatomically understandable segment orientations is proposed. For five subjects, IMMS recordings were collected in a standard anatomical position for definition of static axes, and during a series of standardized motions for the estimation of kinematic axes of rotation. For all axes, the intra- and inter-individual dispersion was estimated. Subsequently, local coordinate systems (LCS) were constructed on the basis of the combination of IMMS axes with the lowest dispersion and compared with BLM based LCS. The repeatability of the method appeared to be high; for every segment at least two axes could be determined with a dispersion of at most 3.8 degrees. Comparison of IMMS based with BLM based LCS yielded compatible results for the thorax, but less compatible results for the humerus, forearm and hand, where differences in orientation rose to 17.2 degrees. Although different from the 'gold standard' BLM based LCS, IMMS based LCS can be constructed repeatable, enabling the estimation of segment orientations outside the laboratory. A procedure for the definition of local reference frames using IMMS is proposed. 2010 Elsevier Ltd. All rights reserved.

  16. Spacecraft attitude calibration/verification baseline study

    NASA Technical Reports Server (NTRS)

    Chen, L. C.

    1981-01-01

    A baseline study for a generalized spacecraft attitude calibration/verification system is presented. It can be used to define software specifications for three major functions required by a mission: the pre-launch parameter observability and data collection strategy study; the in-flight sensor calibration; and the post-calibration attitude accuracy verification. Analytical considerations are given for both single-axis and three-axis spacecrafts. The three-axis attitudes considered include the inertial-pointing attitudes, the reference-pointing attitudes, and attitudes undergoing specific maneuvers. The attitude sensors and hardware considered include the Earth horizon sensors, the plane-field Sun sensors, the coarse and fine two-axis digital Sun sensors, the three-axis magnetometers, the fixed-head star trackers, and the inertial reference gyros.

  17. Why the Greenwich Meridian Moved

    DTIC Science & Technology

    2015-08-01

    that are related to the geocentric reference frame introduced by the Bureau International de l’Heure (BIH) in 1984. This BIHTerrestrial System provided...the basis for orientation of subsequent geocentric reference frames, including all realizations of theWorld Geodetic Sys- tem 1984 and the...astronomical time. The coordinates of satellite-navigation receivers are provided in reference frames that are related to the geocentric reference

  18. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  19. Miniature Inertial and Augmentation Sensors for Integrated Inertial/GPS Based Navigation Applications

    DTIC Science & Technology

    2010-03-01

    in this paper. Velocity sensing can be accomplished in the optical domain with laser Doppler radar (i.e. LIDAR ), through RF band or ultrasonic... Doppler radar. Reference [34] discusses an example of a LIDAR based velocimeter, used to furnish landing speed information for spacecraft terminal descent...in military (and commercial) capabilities: the Ring Laser Gyro (since ~1975), Fiber Optic Gyros (since ~1985), and MEMS (since ~1995). RLGs enabled

  20. Report of the panel on earth rotation and reference frames, section 7

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.; Dickman, Steven R.; Eubanks, Marshall T.; Feissel, Martine; Herring, Thomas A.; Mueller, Ivan I.; Rosen, Richard D.; Schutz, Robert E.; Wahr, John M.; Wilson, Charles R.

    1991-01-01

    Objectives and requirements for Earth rotation and reference frame studies in the 1990s are discussed. The objectives are to observe and understand interactions of air and water with the rotational dynamics of the Earth, the effects of the Earth's crust and mantle on the dynamics and excitation of Earth rotation variations over time scales of hours to centuries, and the effects of the Earth's core on the rotational dynamics and the excitation of Earth rotation variations over time scales of a year or longer. Another objective is to establish, refine and maintain terrestrial and celestrial reference frames. Requirements include improvements in observations and analysis, improvements in celestial and terrestrial reference frames and reference frame connections, and improved observations of crustal motion and mass redistribution on the Earth.

  1. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  2. Reliability of frames of reference used for tibial component rotation in total knee arthroplasty.

    PubMed

    Page, Stephen R; Deakin, Angela H; Payne, Anthony P; Picard, Frederic

    2011-01-01

    This study evaluated seven different frames of reference used for tibial component rotation in total knee arthroplasty (TKA) to determine which ones showed good reliability between bone specimens. An optoelectronic system based around a computer-assisted surgical navigation system was used to measure and locate 34 individual anatomical landmarks on 40 tibias. Each particular frame of reference was reconstructed from a group of data points taken from the surface of each bone. The transverse axis was used as the baseline to which the other axes were compared, and the differences in angular rotation between the other six reference frames and the transverse axis were calculated. There was high variability in the tibial rotational alignment associated with all frames of reference. Of the references widely used in current TKA procedures, the tibial tuberosity axis and the anterior condylar axis had lower standard deviations (6.1° and 7.3°, respectively) than the transmalleolar axis and the posterior condylar axis (9.3° for both). In conclusion, we found high variability in the frames of reference used for tibial rotation alignment. However, the anterior condylar axis and transverse axis may warrant further tests with the use of navigation. Combining different frames of reference such as the tibial tuberosity axis, anterior condylar axis and transverse axis may reduce the range of errors found in all of these measurements.

  3. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  4. NChina16: A stable geodetic reference frame for geological hazard studies in North China

    NASA Astrophysics Data System (ADS)

    Wang, Guoquan; Bao, Yan; Gan, Weijun; Geng, Jianghui; Xiao, Gengru; Shen, Jack S.

    2018-04-01

    We have developed a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8-2016.8) from 12 continuously operating reference stations (CORS) fixed to the North China Craton. Applications of NChina16 in landslide and subsidence studies are illustrated in this article. A method for realizing a regional geodetic reference frame is introduced. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to align the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) daily solutions with respect to IGS08. The frame stability of NChina16 is approximately 0.5 mm/year in both horizontal and vertical directions. This study also developed a regional model for correcting seasonal motions superimposed into the vertical component of the GPS-derived displacement time series. Long-term GPS observations (1999-2016) from five CORS in North China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to study geodynamic problems in North China, such as earthquakes, faulting, subsidence, and landslides. The regional reference frame will be periodically updated every few years to mitigate degradation of the frame with time and be synchronized with the update of IGS reference frame.

  5. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base

    PubMed Central

    Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng

    2018-01-01

    The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150

  6. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  7. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  8. Unstructured High-Order Galerkin-Temporal- Boundary Methods for the Klein-Gordon Equation with Non-Reflecting Boundary Conditions

    DTIC Science & Technology

    2010-06-01

    9 C. Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . 11 1. Gravity Effects . . . . . . . . . . . . . . . . . . . . . . . . . 12 2...describe the high-order spectral element method used to discretize the problem in space (up to 16th order polynomials ) in Chapter IV. Chapter V discusses...inertial frame. Body forces are those acting on the fluid volume that are proportional to the mass. The body forces considered here are gravity and

  9. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  10. Development of a 3-D Pen Input Device

    DTIC Science & Technology

    2008-09-01

    of a unistroke which can be written on any surface or in the air while correcting integration errors from the...navigation frame of a unistroke, which can be written on any surface or in the air while correcting integration errors from the measurements of the IMU... be written on any surface or in the air while correcting integration errors from the measurements of the IMU (Inertial Measurement Unit) of the

  11. Guidance of Autonomous Aerospace Vehicles for Vertical Soft Landing using Nonlinear Control Theory

    DTIC Science & Technology

    2015-08-11

    Measured and Kalman filter Estimate of the Roll Attitude of the Quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4...and faster Hart- ley et al. [2013]. With availability of small, light, high fidelity sensors (Inertial Measurement Units IMU ) and processors on board...is a product of inverse of rotation matrix and inertia matrix for the quad frame. Since both the matrix are invertible at all times except when roll

  12. Inertial Navigation System Standardized Software Development. Volume II. INS Survey and Analytical Development

    DTIC Science & Technology

    1978-06-01

    unit magnitude, mutually orthogonal, right handed) (in the particular case i, j, k are along the x, y, z axes of the body frame). -2 A good concise...shown. A-_22 __ _ __ I - -~- - ’ The signal flow form is shown in Figure A-l6: C5 L Li ’Liter = (~1 Z~LI) L Z ~LO) For th sm reaon as beor, 2’ is

  13. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  14. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  15. Mercury's Reference Frames After the MESSENGER Mission

    NASA Astrophysics Data System (ADS)

    Stark, A.; Oberst, J.; Preusker, F.; Burmeister, S.; Steinbrügge, G.; Hussmann, H.

    2018-05-01

    We provide an overview of Mercury's reference frames based on MESSENGER observations. We discuss the dynamical, the principal-axes, the ellipsoid, as well as the cartographic frame, which was adopted for MESSENGER data products.

  16. Determination of Galactic Aberration from VLBI Measurements and Its Effect on VLBI Reference Frames and Earth Orientation Parameters.

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2014-12-01

    Galactic aberration is due to the motion of the solar system barycenter around the galactic center. It results in a systematic pattern of apparent proper motion of radio sources observed by VLBI. This effect is not currently included in VLBI analysis. Estimates of the size of this effect indicate that it is important that this secular aberration drift be accounted for in order to maintain an accurate celestial reference frame and allow astrometry at the several microarcsecond level. Future geodetic observing systems are being designed to be capable of producing a future terrestrial reference frame with an accuracy of 1 mm and stability of 0.1 mm/year. We evaluate the effect galactic aberration on attaining these reference frame goals. This presentation will discuss 1) the estimation of galactic aberration from VLBI data and 2) the effect of aberration on the Terrestrial and Celestial Reference Frames and the Earth Orientation Parameters that connect these frames.

  17. Multiple reference frames in haptic spatial processing

    NASA Astrophysics Data System (ADS)

    Volčič, R.

    2008-08-01

    The present thesis focused on haptic spatial processing. In particular, our interest was directed to the perception of spatial relations with the main focus on the perception of orientation. To this end, we studied haptic perception in different tasks, either in isolation or in combination with vision. The parallelity task, where participants have to match the orientations of two spatially separated bars, was used in its two-dimensional and three-dimensional versions in Chapter 2 and Chapter 3, respectively. The influence of non-informative vision and visual interference on performance in the parallelity task was studied in Chapter 4. A different task, the mental rotation task, was introduced in a purely haptic study in Chapter 5 and in a visuo-haptic cross-modal study in Chapter 6. The interaction of multiple reference frames and their influence on haptic spatial processing were the common denominators of these studies. In this thesis we approached the problems of which reference frames play the major role in haptic spatial processing and how the relative roles of distinct reference frames change depending on the available information and the constraints imposed by different tasks. We found that the influence of a reference frame centered on the hand was the major cause of the deviations from veridicality observed in both the two-dimensional and three-dimensional studies. The results were described by a weighted average model, in which the hand-centered egocentric reference frame is supposed to have a biasing influence on the allocentric reference frame. Performance in haptic spatial processing has been shown to depend also on sources of information or processing that are not strictly connected to the task at hand. When non-informative vision was provided, a beneficial effect was observed in the haptic performance. This improvement was interpreted as a shift from the egocentric to the allocentric reference frame. Moreover, interfering visual information presented in the vicinity of the haptic stimuli parametrically modulated the magnitude of the deviations. The influence of the hand-centered reference frame was shown also in the haptic mental rotation task where participants were quicker in judging the parity of objects when these were aligned with respect to the hands than when they were physically aligned. Similarly, in the visuo-haptic cross-modal mental rotation task the parity judgments were influenced by the orientation of the exploring hand with respect to the viewing direction. This effect was shown to be modulated also by an intervening temporal delay that supposedly counteracts the influence of the hand-centered reference frame. We suggest that the hand-centered reference frame is embedded in a hierarchical structure of reference frames where some of these emerge depending on the demands and the circumstances of the surrounding environment and the needs of an active perceiver.

  18. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines.

    PubMed

    Huang, Xinbo; Zhao, Long; Chen, Guimin

    2016-10-09

    Conductor galloping may cause flashovers and even tower collapses. The available conductor galloping monitoring methods often employ acceleration sensors to measure the conductor translations without considering the conductor twist. In this paper, a new sensor for monitoring conductor galloping of transmission lines based on an inertial measurement unit and wireless communication is proposed. An inertial measurement unit is used for collecting the accelerations and angular rates of a conductor, which are further transformed into the corresponding geographic coordinate frame using a quaternion transformation to reconstruct the galloping of the conductor. Both the hardware design and the software design are described in details. The corresponding test platforms are established, and the experiments show the feasibility and accuracy of the proposed monitoring sensor. The field operation of the proposed sensor in a conductor spanning 734 m also shows its effectiveness.

  19. A novel method of calibrating a MEMS inertial reference unit on a turntable under limited working conditions

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Liang, Shufang; Yang, Yanqiang

    2017-10-01

    Micro-electro-mechanical systems (MEMS) inertial measurement devices tend to be widely used in inertial navigation systems and have quickly emerged on the market due to their characteristics of low cost, high reliability and small size. Calibration is the most effective way to remove the deterministic error of an inertial reference unit (IRU), which in this paper consists of three orthogonally mounted MEMS gyros. However, common testing methods in the lab cannot predict the corresponding errors precisely when the turntable’s working condition is restricted. In this paper, the turntable can only provide a relatively small rotation angle. Moreover, the errors must be compensated exactly because of the great effect caused by the high angular velocity of the craft. To deal with this question, a new method is proposed to evaluate the MEMS IRU’s performance. In the calibration procedure, a one-axis table that can rotate a limited angle in the form of a sine function is utilized to provide the MEMS IRU’s angular velocity. A new algorithm based on Fourier series is designed to calculate the misalignment and scale factor errors. The proposed method is tested in a set of experiments, and the calibration results are compared to a traditional calibration method performed under normal working conditions to verify their correctness. In addition, a verification test in the given rotation speed is implemented for further demonstration.

  20. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  1. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  2. Stable Adaptive Inertial Control of a Doubly-Fed Induction Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Moses; Muljadi, Eduard; Hur, Kyeon

    2016-11-01

    This paper proposes a stable adaptive inertial control scheme of a doubly-fed induction generator. The proposed power reference is defined in two sections: the deceleration period and the acceleration period. The power reference in the deceleration period consists of a constant and the reference for maximum power point tracking (MPPT) operation. The latter contributes to preventing a second frequency dip (SFD) in this period because its reduction rate is large at the early stage of an event but quickly decreases with time. To improve the frequency nadir (FN), the constant value is set to be proportional to the rotor speedmore » prior to an event. The reference ensures that the rotor speed converges to a stable operating region. To accelerate the rotor speed while causing a small SFD, when the rotor speed converges, the power reference is reduced by a small amount and maintained until it meets the MPPT reference. The results show that the scheme causes a small SFD while improving the FN and the rate of change of frequency in any wind conditions, even in a grid that has a high penetration of wind power.« less

  3. Different reference frames can lead to different hand transplantation decisions by patients and physicians.

    PubMed

    Edgell, S E; McCabe, S J; Breidenbach, W C; Neace, W P; LaJoie, A S; Abell, T D

    2001-03-01

    Different frames of reference can affect one's assessment of the value of hand transplantation. This can result in different yet rational decisions by different groups of individuals, especially patients and physicians. In addition, factors other than frames of reference can affect one's evaluation of hand transplantation, which can result in different decisions.

  4. Quantum reference frames and their applications to thermodynamics.

    PubMed

    Popescu, Sandu; Sainz, Ana Belén; Short, Anthony J; Winter, Andreas

    2018-07-13

    We construct a quantum reference frame, which can be used to approximately implement arbitrary unitary transformations on a system in the presence of any number of extensive conserved quantities, by absorbing any back action provided by the conservation laws. Thus, the reference frame at the same time acts as a battery for the conserved quantities. Our construction features a physically intuitive, clear and implementation-friendly realization. Indeed, the reference system is composed of the same types of subsystems as the original system and is finite for any desired accuracy. In addition, the interaction with the reference frame can be broken down into two-body terms coupling the system to one of the reference frame subsystems at a time. We apply this construction to quantum thermodynamic set-ups with multiple, possibly non-commuting conserved quantities, which allows for the definition of explicit batteries in such cases.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  5. A confirmation of the general relativistic prediction of the Lense-Thirring effect.

    PubMed

    Ciufolini, I; Pavlis, E C

    2004-10-21

    An important early prediction of Einstein's general relativity was the advance of the perihelion of Mercury's orbit, whose measurement provided one of the classical tests of Einstein's theory. The advance of the orbital point-of-closest-approach also applies to a binary pulsar system and to an Earth-orbiting satellite. General relativity also predicts that the rotation of a body like Earth will drag the local inertial frames of reference around it, which will affect the orbit of a satellite. This Lense-Thirring effect has hitherto not been detected with high accuracy, but its detection with an error of about 1 per cent is the main goal of Gravity Probe B--an ongoing space mission using orbiting gyroscopes. Here we report a measurement of the Lense-Thirring effect on two Earth satellites: it is 99 +/- 5 per cent of the value predicted by general relativity; the uncertainty of this measurement includes all known random and systematic errors, but we allow for a total +/- 10 per cent uncertainty to include underestimated and unknown sources of error.

  6. Large Angle Unsteady Aerodynamic Theory of a Flat Plate

    NASA Astrophysics Data System (ADS)

    Manar, Field; Jones, Anya

    2016-11-01

    A purely analytical approach is taken for the evaluation of the unsteady loads on a flat plate. This allows for an extremely low cost theoretical prediction of the plate loads in the style of Wagner and Theodorsen, without making the assumption of small angle of attack or small disturbance flow. The forces and moments are evaluated using the time rate of change of fluid momentum, expressed as an integral of the vorticity field. The flow is taken as inviscid and incompressible with isolated vorticity bound to the plate and in the shed wake. The bound vorticity distribution on the plate is solved exactly using conformal mapping of the plate to a cylinder. In keeping with the original assumption of Wagner, the wake vorticity is assumed to remain stationary in an inertial reference frame and convection is disregarded. Formulation in this manner allows for a closed form solution of Wagner's problem valid at all angles of attack. Separation from the leading edge of the plate can also be included to further increase the fidelity of the model at high angles.

  7. Characteristics of tip-leakage flow in an axial fan

    NASA Astrophysics Data System (ADS)

    Park, Keuntae; Choi, Haecheon; Choi, Seokho; Sa, Yongcheol

    2014-11-01

    An axial fan with a shroud generates complicated vortical structures by the interaction of the axial flow with the fan blades and shroud near the blade tips. Large eddy simulation (LES) is performed for flow through a forward-swept axial fan, operating at the design condition of Re = 547,000 based on the radius of blade tip and the tip velocity. A dynamic global model (Lee et al. 2010) is used for a subgrid-scale model, and an immersed boundary method in a non-inertial reference frame (Kim & Choi 2006) is adopted for the present simulation. It is found that two vortical structures are formed near the blade tip: the main tip leakage vortex (TLV) and the auxiliary TLV. The main TLV is initiated near the leading edge, develops downstream, and impinges on the pressure surface of the next blade, where the pressure fluctuations and turbulence intensity become high. On the other hand, the auxiliary TLV is initiated at the aft part of the blade but is relatively weak such that it merges with the main TLV. Supported by the KISTI Supercomputing Center (KSC-2014-C2-014).

  8. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  9. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  10. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  11. A novel redundant INS based on triple rotary inertial measurement units

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Li, Kui; Wang, Wei; Li, Peng

    2016-10-01

    Accuracy and reliability are two key performances of inertial navigation system (INS). Rotation modulation (RM) can attenuate the bias of inertial sensors and make it possible for INS to achieve higher navigation accuracy with lower-class sensors. Therefore, the conflict between the accuracy and cost of INS can be eased. Traditional system redundancy and recently researched sensor redundancy are two primary means to improve the reliability of INS. However, how to make the best use of the redundant information from redundant sensors hasn’t been studied adequately, especially in rotational INS. This paper proposed a novel triple rotary unit strapdown inertial navigation system (TRUSINS), which combines RM and sensor redundancy design to enhance the accuracy and reliability of rotational INS. Each rotary unit independently rotates to modulate the errors of two gyros and two accelerometers. Three units can provide double sets of measurements along all three axes of body frame to constitute a couple of INSs which make TRUSINS redundant. Experiments and simulations based on a prototype which is made up of six fiber-optic gyros with drift stability of 0.05° h-1 show that TRUSINS can achieve positioning accuracy of about 0.256 n mile h-1, which is ten times better than that of a normal non-rotational INS with the same level inertial sensors. The theoretical analysis and the experimental results show that due to the advantage of the innovative structure, the designed fault detection and isolation (FDI) strategy can tolerate six sensor faults at most, and is proved to be effective and practical. Therefore, TRUSINS is particularly suitable and highly beneficial for the applications where high accuracy and high reliability is required.

  12. The Reciprocal Internal/External Frame of Reference Model: An Integration of Models of Relations between Academic Achievement and Self-Concept

    ERIC Educational Resources Information Center

    Moller, Jens; Retelsdorf, Jan; Koller, Olaf; Marsh, Herb W.

    2011-01-01

    The reciprocal internal/external frame of reference model (RI/EM) combines the internal/external frame of reference model and the reciprocal effects model. The RI/EM predicts positive effects of mathematics and verbal achievement and academic self-concepts (ASC) on subsequent mathematics and verbal achievements and ASCs within domains and negative…

  13. Implementing system simulation of C3 systems using autonomous objects

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1987-01-01

    The basis of all conflict recognition in simulation is a common frame of reference. Synchronous discrete-event simulation relies on the fixed points in time as the basic frame of reference. Asynchronous discrete-event simulation relies on fixed-points in the model space as the basic frame of reference. Neither approach provides sufficient support for autonomous objects. The use of a spatial template as a frame of reference is proposed to address these insufficiencies. The concept of a spatial template is defined and an implementation approach offered. Discussed are the uses of this approach to analyze the integration of sensor data associated with Command, Control, and Communication systems.

  14. Current control of PMSM based on maximum torque control reference frame

    NASA Astrophysics Data System (ADS)

    Ohnuma, Takumi

    2017-07-01

    This study presents a new method of current controls of PMSMs (Permanent Magnet Synchronous Motors) based on a maximum torque control reference frame, which is suitable for high-performance controls of the PMSMs. As the issues of environment and energy increase seriously, PMSMs, one of the AC motors, are becoming popular because of their high-efficiency and high-torque density in various applications, such as electric vehicles, trains, industrial machines, and home appliances. To use the PMSMs efficiently, a proper current control of the PMSMs is necessary. In general, a rotational coordinate system synchronizing with the rotor is used for the current control of PMSMs. In the rotating reference frame, the current control is easier because the currents on the rotating reference frame can be expressed as a direct current in the controller. On the other hand, the torque characteristics of PMSMs are non-linear and complex; the PMSMs are efficient and high-density though. Therefore, a complicated control system is required to involve the relation between the torque and the current, even though the rotating reference frame is adopted. The maximum torque control reference frame provides a simpler way to control efficiently the currents taking the torque characteristics of the PMSMs into consideration.

  15. Tgermonuclear Ignition in Inertial Confinement Fusion and Comparison with Magnetic Confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, R.; Chang, P.Y.; Spears, B.K.

    2010-04-23

    The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA [T. R.more » Boehly et al., Opt. Commun. 133, 495 (1997)] have achieved Ptau ~ 1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptau ~ 1 atm s. Since OMEGA implosions are relatively cold (T ~ 2 keV), their overall ignition parameter chi ~ 0.02–0.03 is ~5X lower than in JET (chi ~ 0.13), where the average temperature is about 10 keV.« less

  16. Failure Detection of a Pseudolite-Based Reference System Using Residual Monitoring

    DTIC Science & Technology

    2009-03-01

    inertial measurements contain white Gaussian noise, wfins and w ! ins. f bins = f b + abias + w f ins (2.3) !bibins = ! b ib + !bias + w ! ins (2.4) A...type of IMU being used and the length of navigation. For a more accurate model the bias can estimated as a drift, shown as abias and !bias. The drift...to be estimated inside a Kalman lter. _abias = abias T + wabias (2.5) where T is the time constant. The strapdown mechanization for raw inertial

  17. The efficiency evaluation of support vibration isolation with mechanic inertial motion converter for vibroactive process equipment

    NASA Astrophysics Data System (ADS)

    Buryan, Yu. A.; Babichev, D. O.; Silkov, M. V.; Shtripling, L. O.; Kalashnikov, B. A.

    2017-08-01

    This research refers to the problems of processing equipment protection from vibration influence. The theory issues of vibration isolation for vibroactive objects such as engines, pumps, compressors, fans, piping, etc. are considered. The design of the perspective air spring with the parallel mounted mechanical inertial motion converter is offered. The mathematical model of the suspension, allowing selecting options to reduce the factor of the force transmission to the base in a certain frequency range is obtained.

  18. The Addition of Enhanced Capabilities to NATO GMTIF STANAG 4607 to Support RADARSAT-2 GMTI Data

    DTIC Science & Technology

    2007-12-01

    However, the cost is a loss in the accuracy of the position specification and its dependence on the particular ellipsoid and/or geoid models used in...platform provides these parameters. Table B-3. Reference Coordinate Systems COORDINATE SYSTEM VALUE Unidentified 0 GEI: Geocentric Equatorial...Inertial, also known as True Equator and True Equinox of Date, True of Date (TOD), ECI, or GCI 1 J2000: Geocentric Equatorial Inertial for epoch J2000.0

  19. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    PubMed

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  20. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  1. Mode shape analysis using a commercially available peak store video frame buffer

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.

    1994-01-01

    Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and resynthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non-integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the 'peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.

  2. Mode shape analysis using a commercially available "peak-store" video frame buffer

    NASA Astrophysics Data System (ADS)

    Snow, Walter L.; Childers, Brooks A.

    1994-10-01

    Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and re synthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the `peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.

  3. Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor

    PubMed Central

    Rueckauer, Bodo; Delbruck, Tobi

    2016-01-01

    In this study we compare nine optical flow algorithms that locally measure the flow normal to edges according to accuracy and computation cost. In contrast to conventional, frame-based motion flow algorithms, our open-source implementations compute optical flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS). For this benchmarking we created a dataset of two synthesized and three real samples recorded from a 240 × 180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS). This dataset contains events from the DVS as well as conventional frames to support testing state-of-the-art frame-based methods. We introduce a new source for the ground truth: In the special case that the perceived motion stems solely from a rotation of the vision sensor around its three camera axes, the true optical flow can be estimated using gyro data from the inertial measurement unit integrated with the DAVIS camera. This provides a ground-truth to which we can compare algorithms that measure optical flow by means of motion cues. An analysis of error sources led to the use of a refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to achieve significant improvements in accuracy. Our pure Java implementations of two recently published algorithms reduce computational cost by up to 29% compared to the original implementations. Two of the algorithms introduced in this paper further speed up processing by a factor of 10 compared with the original implementations, at equal or better accuracy. On a desktop PC, they run in real-time on dense natural input recorded by a DAVIS camera. PMID:27199639

  4. Kinematics of Laying an Automated Weapon System

    DTIC Science & Technology

    2017-07-19

    mathematical transformation is required to move the firing solution from its reference frame to a reference frame that is meaningful to the weapon system. This...Procedures 2 Conventions and Variable Definitions 2 Rotation Matrices 5 Transformation of a Vector 5 Conversion Between Cartestian and Spherical...Coordinate Systems 6 Transformation of Earth Referenced Lay to Platform Reference Frame 6 Results and Discussions 7 Conclusions 8 Bibliography 9

  5. Differential School Contextual Effects for Math and English: Integrating the Big-Fish-Little-Pond Effect and the Internal/External Frame of Reference

    ERIC Educational Resources Information Center

    Parker, Philip D.; Marsh, Herbert W.; Ludtke, Oliver; Trautwein, Ulrich

    2013-01-01

    The internal/external frame of reference and the big-fish-little-pond effect are two major models of academic self-concept formation which have considerable theoretical and empirical support. Integrating the domain specific and compensatory processes of the internal/external frame of reference model with the big-fish-little-pond effect suggests a…

  6. Admiralty Inlet Advanced Turbulence Measurements: June 2014

    DOE Data Explorer

    Kilcher, Levi

    2014-06-30

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in June of 2014. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on Tidal Turbulence Mooring's (TTMs). The TTM positions the ADV head above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway. Each ttm was deployed with two ADVs. The 'top' ADV head was positioned 0.5m above the 'bottom' ADV head. The TTMs were placed in 58m of water. The position of the TTMs were: ttm01 : (48.1525, -122.6867) ttm01b : (48.15256666, -122.68678333) ttm02b : (48.152783333, -122.686316666) Deployments TTM01b and TTM02b occurred simultaneously and were spaced approximately 50m apart in the cross-stream direction. Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.

  7. Admiralty Inlet Advanced Turbulence Measurements: May 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilcher, Levi

    This data is from measurements at Admiralty Head, in Admiralty Inlet (Puget Sound) in May of 2015. The measurements were made using Inertial Motion Unit (IMU) equipped ADVs mounted on a 'StableMoor' (Manufacturer: DeepWater Buoyancy) buoy and a Tidal Turbulence Mooring (TTM). These platforms position ADV heads above the seafloor to make mid-depth turbulence measurements. The inertial measurements from the IMU allows for removal of mooring motion in post processing. The mooring and buoy motion has been removed from the stream-wise and vertical velocity signals (u, w). The lateral (v) velocity has some 'persistent motion contamination' due to mooring sway.more » The TTM was deployed with one ADV, it's position was: 48 09.145', -122 41.209' The StableMoor was deployed twice, the first time it was deployed in 'wing-mode' with two ADVs ('Port' and 'Star') at: 48 09.166', -122 41.173' The second StableMoor deployment was in 'Nose' mode with one ADV at: 48 09.166', -122 41.174' Units ----- - Velocity data (_u, urot, uacc) is in m/s. - Acceleration (Accel) data is in m/s^2. - Angular rate (AngRt) data is in rad/s. - The components of all vectors are in 'ENU' orientation. That is, the first index is True East, the second is True North, and the third is Up (vertical). - All other quantities are in the units defined in the Nortek Manual. Motion correction and rotation into the ENU earth reference frame was performed using the Python-based open source DOLfYN library (http://lkilcher.github.io/dolfyn/). Details on motion correction can be found there. Additional details on TTM measurements at this site can be found in the included Marine Energy Technology Symposium paper.« less

  8. The International Celestial Reference Frame (ICRF) and the Relationship Between Frames

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    2000-01-01

    The International Celestial Reference Frame (ICRF), a catalog of VLBI source positions, is now the basis for astrometry and geodesy. Its construction and extension/maintenance will be discussed as well as the relationship of the ICRF, ITRF, and EOP/nutation.

  9. Networked Mediated Influence 2.0

    DTIC Science & Technology

    2014-12-12

    but they communicate the information through different frames of reference. . . . Frames work by accessing a particular perspective on an issue...nature yet attention grabbers.214 Framing. A form of communications where information is presented in a unique slant, focal point, or frame of reference...mental frameworks differ in their implications for decision making, the results can be dramatic.215 Information Communication Technologies (ICTs). A term

  10. What a speaker's choice of frame reveals: reference points, frame selection, and framing effects.

    PubMed

    McKenzie, Craig R M; Nelson, Jonathan D

    2003-09-01

    Framing effects are well established: Listeners' preferences depend on how outcomes are described to them, or framed. Less well understood is what determines how speakers choose frames. Two experiments revealed that reference points systematically influenced speakers' choices between logically equivalent frames. For example, speakers tended to describe a 4-ounce cup filled to the 2-ounce line as half full if it was previously empty but described it as half empty if it was previously full. Similar results were found when speakers could describe the outcome of a medical treatment in terms of either mortality or survival (e.g., 25% die vs. 75% survive). Two additional experiments showed that listeners made accurate inferences about speakers' reference points on the basis of the selected frame (e.g., if a speaker described a cup as half empty, listeners inferred that the cup used to be full). Taken together, the data suggest that frames reliably convey implicit information in addition to their explicit content, which helps explain why framing effects are so robust.

  11. Updating of visual orientation in a gravity-based reference frame.

    PubMed

    Niehof, Nynke; Tramper, Julian J; Doeller, Christian F; Medendorp, W Pieter

    2017-10-01

    The brain can use multiple reference frames to code line orientation, including head-, object-, and gravity-centered references. If these frames change orientation, their representations must be updated to keep register with actual line orientation. We tested this internal updating during head rotation in roll, exploiting the rod-and-frame effect: The illusory tilt of a vertical line surrounded by a tilted visual frame. If line orientation is stored relative to gravity, these distortions should also affect the updating process. Alternatively, if coding is head- or frame-centered, updating errors should be related to the changes in their orientation. Ten subjects were instructed to memorize the orientation of a briefly flashed line, surrounded by a tilted visual frame, then rotate their head, and subsequently judge the orientation of a second line relative to the memorized first while the frame was upright. Results showed that updating errors were mostly related to the amount of subjective distortion of gravity at both the initial and final head orientation, rather than to the amount of intervening head rotation. In some subjects, a smaller part of the updating error was also related to the change of visual frame orientation. We conclude that the brain relies primarily on a gravity-based reference to remember line orientation during head roll.

  12. A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application

    PubMed Central

    Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang

    2018-01-01

    Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549

  13. In-flight alignment using H ∞ filter for strapdown INS on aircraft.

    PubMed

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition.

  14. Design of rapid prototype of UAV line-of-sight stabilized control system

    NASA Astrophysics Data System (ADS)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  15. Thinking inside the box: Spatial frames of reference for drawing in Williams syndrome and typical development.

    PubMed

    Hudson, Kerry D; Farran, Emily K

    2017-09-01

    Successfully completing a drawing relies on the ability to accurately impose and manipulate spatial frames of reference for the object that is being drawn and for the drawing space. Typically developing (TD) children use cues such as the page boundary as a frame of reference to guide the orientation of drawn lines. Individuals with Williams syndrome (WS) typically produce incohesive drawings; this is proposed to reflect a local processing bias. Across two studies, we provide the first investigation of the effect of using a frame of reference when drawing simple lines and shapes in WS and TD groups (matched for non-verbal ability). Individuals with WS (N=17 Experiment 1; N=18 Experiment 2) and TD children matched by non-verbal ability drew single lines (Experiment One) and whole shapes (Experiment Two) within a neutral, incongruent or congruent frame. The angular deviation of the drawn line/shape, relative to the model line/shape, was measured. Both groups were sensitive to spatial frames of reference when drawing single lines and whole shapes, imposed by a frame around the drawing space. A local processing bias in WS cannot explain poor drawing performance in WS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  16. The influence of visual and vestibular orientation cues in a clock reading task.

    PubMed

    Davidenko, Nicolas; Cheong, Yeram; Waterman, Amanda; Smith, Jacob; Anderson, Barrett; Harmon, Sarah

    2018-05-23

    We investigated how performance in the real-life perceptual task of analog clock reading is influenced by the clock's orientation with respect to egocentric, gravitational, and visual-environmental reference frames. In Experiment 1, we designed a simple clock-reading task and found that observers' reaction time to correctly tell the time depends systematically on the clock's orientation. In Experiment 2, we dissociated egocentric from environmental reference frames by having participants sit upright or lie sideways while performing the task. We found that both reference frames substantially contribute to response times in this task. In Experiment 3, we placed upright or rotated participants in an upright or rotated immersive virtual environment, which allowed us to further dissociate vestibular from visual cues to the environmental reference frame. We found evidence of environmental reference frame effects only when visual and vestibular cues were aligned. We discuss the implications for the design of remote and head-mounted displays. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Fey, A. L.; Gordon, D.; Jacobs, C. S.; Ma, C.; Gaume, R. A.; Arias, E. F.; Bianco, G.; Boboltz, D. A.; Böckmann, S.; Bolotin, S.; Charlot, P.; Collioud, A.; Engelhardt, G.; Gipson, J.; Gontier, A.-M.; Heinkelmann, R.; Kurdubov, S.; Lambert, S.; Lytvyn, S.; MacMillan, D. S.; Malkin, Z.; Nothnagel, A.; Ojha, R.; Skurikhina, E.; Sokolova, J.; Souchay, J.; Sovers, O. J.; Tesmer, V.; Titov, O.; Wang, G.; Zharov, V.

    2015-08-01

    We present the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths using nearly 30 years of Very Long Baseline Interferometry observations. ICRF2 contains precise positions of 3414 compact radio astronomical objects and has a positional noise floor of ∼40 μas and a directional stability of the frame axes of ∼10 μas. A set of 295 new “defining” sources was selected on the basis of positional stability and the lack of extensive intrinsic source structure. The positional stability of these 295 defining sources and their more uniform sky distribution eliminates the two greatest weaknesses of the first realization of the International Celestial Reference Frame (ICRF1). Alignment of ICRF2 with the International Celestial Reference System was made using 138 positionally stable sources common to both ICRF2 and ICRF1. The resulting ICRF2 was adopted by the International Astronomical Union as the new fundamental celestial reference frame, replacing ICRF1 as of 2010 January 1.

  18. Recovery of a geocentric reference frame using the present-day GPS system

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1990-01-01

    A geocentric reference frame adopts the center of mass of the earth as the origin of the coordinate axes. The center of mass of the earth is the natural and unambiguous origin of a geocentric satellite dynamical system. But in practice a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. The establishment of a geocentric reference frame, to which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of earth can be formulated, requires the ability to accurately recover a given coordinate frame origin offset from the geocenter. GPS measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the First Central And South America (Casa Uno) geodynamics experiment has been studied, in order to demonstrate the ability of recovering the geocenter location with present day GPS satellites and receivers.

  19. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking

    PubMed Central

    Lin, Zhicheng; He, Sheng

    2012-01-01

    Object identities (“what”) and their spatial locations (“where”) are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects (“files”) within the reference frame (“cabinet”) are orderly coded relative to the frame. PMID:23104817

  20. On the Design of Attitude-Heading Reference Systems Using the Allan Variance.

    PubMed

    Hidalgo-Carrió, Javier; Arnold, Sascha; Poulakis, Pantelis

    2016-04-01

    The Allan variance is a method to characterize stochastic random processes. The technique was originally developed to characterize the stability of atomic clocks and has also been successfully applied to the characterization of inertial sensors. Inertial navigation systems (INS) can provide accurate results in a short time, which tend to rapidly degrade in longer time intervals. During the last decade, the performance of inertial sensors has significantly improved, particularly in terms of signal stability, mechanical robustness, and power consumption. The mass and volume of inertial sensors have also been significantly reduced, offering system-level design and accommodation advantages. This paper presents a complete methodology for the characterization and modeling of inertial sensors using the Allan variance, with direct application to navigation systems. Although the concept of sensor fusion is relatively straightforward, accurate characterization and sensor-information filtering is not a trivial task, yet they are essential for good performance. A complete and reproducible methodology utilizing the Allan variance, including all the intermediate steps, is described. An end-to-end (E2E) process for sensor-error characterization and modeling up to the final integration in the sensor-fusion scheme is explained in detail. The strength of this approach is demonstrated with representative tests on novel, high-grade inertial sensors. Experimental navigation results are presented from two distinct robotic applications: a planetary exploration rover prototype and an autonomous underwater vehicle (AUV).

  1. Development of a vibration isolation prototype system for microgravity space experiments

    NASA Technical Reports Server (NTRS)

    Logsdon, Kirk A.; Grodsinsky, Carlos M.; Brown, Gerald V.

    1990-01-01

    The presence of small levels of low-frequency accelerations on the space shuttle orbiters has degraded the microgravity environment for the science community. Growing concern about this microgravity environment has generated interest in systems that can isolate microgravity science experiments from vibrations. This interest has resulted primarily in studies of isolation systems with active methods of compensation. The development of a magnetically suspended, six-degree-of-freedom active vibration isolation prototype system capable of providing the needed compensation to the orbital environment is presented. A design for the magnetic actuators is described, and the control law for the prototype system that gives a nonintrusive inertial isolation response to the system is also described. Relative and inertial sensors are used to provide an inertial reference for isolating the payload.

  2. Design and Principles Enabling the Space Reference FOM

    NASA Technical Reports Server (NTRS)

    Moeller, Bjoern; Dexter, Dan; Madden, Michael; Crues, Edwin Z.; Garro, Alfredo; Skuratovskiy, Anton

    2017-01-01

    A first complete draft of the Simulation Interoperability Standards Organization (SISO) Space Reference Federation Object Model (FOM) has now been produced. This paper provides some insights into its capabilities and discusses the opportunity for reuse in other domains. The focus of this first version of the standard is execution control, time management and coordinate systems, well-known reference frames, as well as some basic support for physical entities. The biggest part of the execution control is the coordinated start-up process. This process contains a number of steps, including checking of required federates, handling of early versus late joiners, sharing of federation wide configuration data and multi-phase initialization. An additional part of Execution Control is the coordinated and synchronized transition between Run mode, Freeze mode and Shutdown. For time management, several time lines are defined, including real-time, scenario time, High Level Architecture (HLA) logical time and physical time. A strategy for mixing simulations that use different time steps is introduced, as well as an approach for finding common boundaries for fully synchronized freeze. For describing spatial information, a mechanism with a set of reference frames is specified. Each reference frame has a position and orientation related to a parent reference frame. This makes it possible for federates to perform calculations in reference frames that are convenient to them. An operation on the Moon can be performed using lunar coordinates whereas an operation on Earth can be performed using Earth coordinates. At the same time, coordinates in one reference frame have an unambiguous relationship to a coordinate in another reference frame. While the Space Reference FOM is originally being developed for Space operations, the authors believe that many parts of it can be reused for any simulation that has a focus on physical processes with one or more coordinate systems, and require high fidelity and repeatability.

  3. Magnetic monopoles, Galilean invariance, and Maxwell's equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1992-02-01

    Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less

  4. Precision enhancement of pavement roughness localization with connected vehicles

    NASA Astrophysics Data System (ADS)

    Bridgelall, R.; Huang, Y.; Zhang, Z.; Deng, F.

    2016-02-01

    Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers.

  5. An objective comparison of commercially-available cavitation meters.

    PubMed

    Sarno, Daniel; Hodnett, Mark; Wang, Lian; Zeqiri, Bajram

    2017-01-01

    With a number of cavitation meters on the market which claim to characterise fields in ultrasonic cleaning baths, this paper provides an objective comparison of a selection of these devices and establishes the extent to which their claims are met. The National Physical Laboratory's multi-frequency ultrasonic reference vessel provided the stable 21.06kHz field, above and below the inertial cavitation threshold, as a test bed for the sensor comparison. Measurements from these devices were evaluated in relation to the known acoustic pressure distribution in the cavitating vessel as a means of identifying the mode of operation of the sensors and to examine the particular indicator of cavitation activity which they deliver. Through the comparison with megahertz filtered acoustic signals generated by inertial cavitation, it was determined that the majority of the cavitation meters used in this study responded to acoustic pressure generated by the direct applied acoustic field and therefore tended to overestimate the occurrence of cavitation within the vessel, giving non-zero responses under conditions when there was known to be no inertial cavitation occurring with the reference vessel. This has implications for interpreting the data they provide in user applications. Copyright © 2016. Published by Elsevier B.V.

  6. Centimeter-Level Robust Gnss-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations

    NASA Astrophysics Data System (ADS)

    Hutton, J. J.; Gopaul, N.; Zhang, X.; Wang, J.; Menon, V.; Rieck, D.; Kipka, A.; Pastor, F.

    2016-06-01

    For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.

  7. GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing

    NASA Astrophysics Data System (ADS)

    Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.

    2007-12-01

    The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.

  8. Camera pose estimation to improve accuracy and reliability of joint angles assessed with attitude and heading reference systems.

    PubMed

    Lebel, Karina; Hamel, Mathieu; Duval, Christian; Nguyen, Hung; Boissy, Patrick

    2018-01-01

    Joint kinematics can be assessed using orientation estimates from Attitude and Heading Reference Systems (AHRS). However, magnetically-perturbed environments affect the accuracy of the estimated orientations. This study investigates, both in controlled and human mobility conditions, a trial calibration technic based on a 2D photograph with a pose estimation algorithm to correct initial difference in AHRS Inertial reference frames and improve joint angle accuracy. In controlled conditions, two AHRS were solidly affixed onto a wooden stick and a series of static and dynamic trials were performed in varying environments. Mean accuracy of relative orientation between the two AHRS was improved from 24.4° to 2.9° using the proposed correction method. In human conditions, AHRS were placed on the shank and the foot of a participant who performed repeated trials of straight walking and walking while turning, varying the level of magnetic perturbation in the starting environment and the walking speed. Mean joint orientation accuracy went from 6.7° to 2.8° using the correction algorithm. The impact of starting environment was also greatly reduced, up to a point where one could consider it as non-significant from a clinical point of view (maximum mean difference went from 8° to 0.6°). The results obtained demonstrate that the proposed method improves significantly the mean accuracy of AHRS joint orientation estimations in magnetically-perturbed environments and can be implemented in post processing of AHRS data collected during biomechanical evaluation of motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reference frames, gauge transformations and gravitomagnetism in the post-Newtonian theory of the lunar motion

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Kopeikin, Sergei

    2010-01-01

    We construct a set of reference frames for description of the orbital and rotational motion of the Moon. We use a scalar-tensor theory of gravity depending on two parameters of the parametrized post-Newtonian (PPN) formalism and utilize the concepts of the relativistic resolutions on reference frames adopted by the International Astronomical Union in 2000. We assume that the solar system is isolated and space-time is asymptotically flat. The primary reference frame has the origin at the solar-system barycenter (SSB) and spatial axes are going to infinity. The SSB frame is not rotating with respect to distant quasars. The secondary reference frame has the origin at the Earth-Moon barycenter (EMB). The EMB frame is local with its spatial axes spreading out to the orbits of Venus and Mars and not rotating dynamically in the sense that both the Coriolis and centripetal forces acting on a free-falling test particle, moving with respect to the EMB frame, are excluded. Two other local frames, the geocentric (GRF) and the selenocentric (SRF) frames, have the origin at the center of mass of the Earth and Moon respectively. They are both introduced in order to connect the coordinate description of the lunar motion, observer on the Earth, and a retro-reflector on the Moon to the observable quantities which are the proper time and the laser-ranging distance. We solve the gravity field equations and find the metric tensor and the scalar field in all frames. We also derive the post-Newtonian coordinate transformations between the frames and analyze the residual gauge freedom of the solutions of the field equations. We discuss the gravitomagnetic effects in the barycentric equations of the motion of the Moon and argue that they are beyond the current accuracy of lunar laser ranging (LLR) observations.

  10. Satellite Ephemeris Correction via Remote Site Observation for Star Tracker Navigation Performance Improvement

    DTIC Science & Technology

    2016-03-01

    squared RMS root mean squared GCRF Geocentric Celestial Reference Frame xi List of Figures Figure Page 1 Geometry of single observation...RA and DEC in the celestial sphere. The Geocentric Celestial Reference Frame (GCRF) is the standard geocentric frame that measures the RA east in the...Figure 2. Right ascension (α) and declination (δ) in the celestial sphere[6] 7 made between geocentric and topocentric angles. Geocentric is referred to

  11. Establishing a celestial VLBI reference frame. 1: Searching for VLBI sources

    NASA Technical Reports Server (NTRS)

    Preston, R. A.; Morabito, D. D.; Williams, J. G.; Slade, M. A.; Harris, A. W.; Finley, S. G.; Skjerve, L. J.; Tanida, L.; Spitzmesser, D. J.; Johnson, B.

    1978-01-01

    The Deep Space Network is currently engaged in establishing a new high-accuracy VLBI celestial reference frame. The present status of the task of finding suitable celestial radio sources for constructing this reference frame is discussed. To date, 564 VLBI sources were detected, with 166 of these lying within 10 deg of the ecliptic plane. The variation of the sky distribution of these sources with source strength is examined.

  12. Rational engineering correlations of diffusional and inertial particle deposition behavior in non-isothermal forced convection environments

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Gokoglu, S. A.; Israel, R.

    1982-01-01

    A multiparameter correlation approach to the study of particle deposition rates in engineering applications is discussed with reference to two specific examples, one dealing with thermophoretically augmented small particle convective diffusion and the other involving larger particle inertial impaction. The validity of the correlations proposed here is demonstrated through rigorous computations including all relevant phenomena and interactions. Such representations are shown to minimize apparent differences between various geometric, flow, and physicochemical parameters, allowing many apparently different physicochemical situations to be described in a unified way.

  13. Energy conversion at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  14. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.

  15. Monitoring of wind turbines

    DOEpatents

    White, Jonathan R.; Adams, Douglas E.; Paquette, Josh

    2017-07-25

    Method and apparatus for determining the deflection or curvature of a rotating blade, such as a wind turbine blade or a helicopter blade. Also, methods and apparatus for establishing an inertial reference system on a rotating blade.

  16. Ambulatory estimation of foot placement during walking using inertial sensors.

    PubMed

    Martin Schepers, H; van Asseldonk, Edwin H F; Baten, Chris T M; Veltink, Peter H

    2010-12-01

    This study proposes a method to assess foot placement during walking using an ambulatory measurement system consisting of orthopaedic sandals equipped with force/moment sensors and inertial sensors (accelerometers and gyroscopes). Two parameters, lateral foot placement (LFP) and stride length (SL), were estimated for each foot separately during walking with eyes open (EO), and with eyes closed (EC) to analyze if the ambulatory system was able to discriminate between different walking conditions. For validation, the ambulatory measurement system was compared to a reference optical position measurement system (Optotrak). LFP and SL were obtained by integration of inertial sensor signals. To reduce the drift caused by integration, LFP and SL were defined with respect to an average walking path using a predefined number of strides. By varying this number of strides, it was shown that LFP and SL could be best estimated using three consecutive strides. LFP and SL estimated from the instrumented shoe signals and with the reference system showed good correspondence as indicated by the RMS difference between both measurement systems being 6.5 ± 1.0 mm (mean ± standard deviation) for LFP, and 34.1 ± 2.7 mm for SL. Additionally, a statistical analysis revealed that the ambulatory system was able to discriminate between the EO and EC condition, like the reference system. It is concluded that the ambulatory measurement system was able to reliably estimate foot placement during walking. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Spatial vision within egocentric and exocentric frames of reference

    NASA Technical Reports Server (NTRS)

    Howard, Ian P.

    1989-01-01

    The extent to which perceptual judgements within egocentric and exocentric frames of reference are subject to illusory disturbances and long term modifications is discussed. It is argued that well known spatial illusions, such as the oculogyral illusion and induced visual motion have usually been discussed without proper attention being paid to the frame of reference within which they occur, and that this has led to the construction of inadequate theories and inappropriate procedures for testing them.

  18. Reference frames in virtual spatial navigation are viewpoint dependent

    PubMed Central

    Török, Ágoston; Nguyen, T. Peter; Kolozsvári, Orsolya; Buchanan, Robert J.; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory. PMID:25249956

  19. Reference frames in virtual spatial navigation are viewpoint dependent.

    PubMed

    Török, Agoston; Nguyen, T Peter; Kolozsvári, Orsolya; Buchanan, Robert J; Nadasdy, Zoltan

    2014-01-01

    Spatial navigation in the mammalian brain relies on a cognitive map of the environment. Such cognitive maps enable us, for example, to take the optimal route from a given location to a known target. The formation of these maps is naturally influenced by our perception of the environment, meaning it is dependent on factors such as our viewpoint and choice of reference frame. Yet, it is unknown how these factors influence the construction of cognitive maps. Here, we evaluated how various combinations of viewpoints and reference frames affect subjects' performance when they navigated in a bounded virtual environment without landmarks. We measured both their path length and time efficiency and found that (1) ground perspective was associated with egocentric frame of reference, (2) aerial perspective was associated with allocentric frame of reference, (3) there was no appreciable performance difference between first and third person egocentric viewing positions and (4) while none of these effects were dependent on gender, males tended to perform better in general. Our study provides evidence that there are inherent associations between visual perspectives and cognitive reference frames. This result has implications about the mechanisms of path integration in the human brain and may also inspire designs of virtual reality applications. Lastly, we demonstrated the effective use of a tablet PC and spatial navigation tasks for studying spatial and cognitive aspects of human memory.

  20. Radio-planetary from tie from Phobos-2 VLBI data

    NASA Technical Reports Server (NTRS)

    Hildebrand, C. E.; Iijima, B. A.; Kroger, P. M.; Folkner, W. M.; Edwards, C. D.

    1994-01-01

    In an ongoing effort to improve the knowledge of the relative orientation (the 'frame tie') of the planetary ephemeris reference frame used in deep navigation and a second reference frame that is defined by the coordinates of a set of extragalactic radio sources, VLBI observations of the Soviet Phobos-2 spacecraft and nearby (in angle) radio sources were obtained at two epochs in 1989, shortly after the spacecraft entered orbit about Mars. The frame tie is an important systematic error source affecting both interplanetary navigation and the process of improving the theory of the Earth's orientation. The data from a single Phobos-2 VLBI session measure one component of the direction vector from Earth to Mars in the frame of the extragalactic radio sources (the 'radio frame'). The radio frame has been shown to be stable and internally consistent with an accuracy of 5 nrad. The planetary ephemeris reference frame has an internal consistency of approximately 15 nrad. The planetary and radio source reference frames were aligned prior to 1989 and measurements of occulations of the radio source 3C273 by the Moon. The Phobos-2 VLBI measurements provide improvement in the accuracy of two of the three angles describing a general rotation between the planetary and radio reference frames. A complete set of measurements is not available because data acquisition was terminated prematurely by loss of spacecraft. The analysis of the two Phobos-2 VLBI data sets indicates that, in the directions of the two rotation components determined by these data, the JPL planetary ephemeris DE200 is aligned with the radio frame as adopted by the International Earth Rotation Service within an accuracy of 20-40 nrad, depending on direction. The limiting errors in the solutions for these offsets are spacecraft trajectory (20 nrad), instrumental biases (19 nrad), and dependence of quasar coordinates on observing frequency (24 nrad).

  1. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    NASA Astrophysics Data System (ADS)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  2. Celestial Reference Frames at Multiple Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Jacobs, Christopher S.

    2012-01-01

    In 1997 the IAU adopted the International Celestial Reference Frame (ICRF) built from S/X VLBI data. In response to IAU resolutions encouraging the extension of the ICRF to additional frequency bands, VLBI frames have been made at 24, 32, and 43 gigahertz. Meanwhile, the 8.4 gigahertz work has been greatly improved with the 2009 release of the ICRF-2. This paper discusses the motivations for extending the ICRF to these higher radio bands. Results to date will be summarized including evidence that the high frequency frames are rapidly approaching the accuracy of the 8.4 gigahertz ICRF-2. We discuss current limiting errors and prospects for the future accuracy of radio reference frames. We note that comparison of multiple radio frames is characterizing the frequency dependent systematic noise floor from extended source morphology and core shift. Finally, given Gaia's potential for high accuracy optical astrometry, we have simulated the precision of a radio-optical frame tie to be approximately10-15 microarcseconds ((1-sigma) (1-standard deviation), per component).

  3. Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames

    PubMed Central

    Simmering, Vanessa R.; Peterson, Clayton; Darling, Warren; Spencer, John P.

    2008-01-01

    Five experiments explored the influence of visual and kinesthetic/proprioceptive reference frames on location memory. Experiments 1 and 2 compared visual and kinesthetic reference frames in a memory task using visually-specified locations and a visually-guided response. When the environment was visible, results replicated previous findings of biases away from the midline symmetry axis of the task space, with stability for targets aligned with this axis. When the environment was not visible, results showed some evidence of bias away from a kinesthetically-specified midline (trunk anterior–posterior [a–p] axis), but there was little evidence of stability when targets were aligned with body midline. This lack of stability may reflect the challenges of coordinating visual and kinesthetic information in the absence of an environmental reference frame. Thus, Experiments 3–5 examined kinesthetic guidance of hand movement to kinesthetically-defined targets. Performance in these experiments was generally accurate with no evidence of consistent biases away from the trunk a–p axis. We discuss these results in the context of the challenges of coordinating reference frames within versus between multiple sensori-motor systems. PMID:17703284

  4. Linking HIPPARCOS to the Extragalactic Reference Frame Part 5 OF 6, Newc, Cycle 2,CONTINUATION of 2565-HIGH

    NASA Astrophysics Data System (ADS)

    Hemenway, Paul

    1991-07-01

    Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.

  5. Investigating coarse sediment particles transport using PTV and "smart-pebbles" instrumented with inertial sensors

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Farhadi, Hamed

    2017-04-01

    This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as the captured frames need to be flatted and calibrated due to lens distortion. Special effort is made to ensure the center of mass of the "smart-pebble" in each frame is well identified (using image thresholding techniques to improve colour contrast), so that its trajectory comprising of concequtive displacements is accurately defined. It is sensible to follow a probabilistic analytical approach, considering the stochastic nature of particle transport at low transport rates. By using the output data from the camera and inertial sensor, particle transport velocity and acceleration time-series, are produced for each fluvial transport experiment. To that goal empirical probability distribution functions (PDFs) are derived for the particle's motion features from both techniques and best fits for these are estimated. The parameters of the probability distribution functions are plotted against the Reynolds particle number for all the transport experiments, to identify any trends. Such information can help calibrate the "smart-pebble" for sediment transport studies and can also offer novel insights on the mechanisms of particle transport, from a Lagnrangian perspective.

  6. Space shuttle navigation analysis

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Sciabarrasi, J. E.

    1976-01-01

    A detailed analysis of space shuttle navigation for each of the major mission phases is presented. A covariance analysis program for prelaunch IMU calibration and alignment for the orbital flight tests (OFT) is described, and a partial error budget is presented. The ascent, orbital operations and deorbit maneuver study considered GPS-aided inertial navigation in the Phase III GPS (1984+) time frame. The entry and landing study evaluated navigation performance for the OFT baseline system. Detailed error budgets and sensitivity analyses are provided for both the ascent and entry studies.

  7. Comparison of the inertial properties and forces required to initiate movement for three gait trainers.

    PubMed

    Paleg, Ginny; Huang, Morris; Vasquez Gabela, Stephanie C; Sprigle, Stephen; Livingstone, Roslyn

    2016-01-01

    The purpose of this study was to evaluate the inertial properties and forces required to initiate movement on two different surfaces in a sample of three commonly prescribed gait trainers. Tests were conducted in a laboratory setting to compare the Prime Engineering KidWalk, Rifton Pacer, and Snug Seat Mustang with and without a weighted anthropometric test dummy configured to the weight and proportions of a 4-year-old child. The Pacer was the lightest and the KidWalk the heaviest while footprints of the three gait trainers were similar. Weight was borne fairly evenly on the four casters of the Pacer and Mustang while 85% of the weight was borne on the large wheels of the mid-wheel drive KidWalk. These differences in frame style, wheel, and caster style and overall mass impact inertial properties and forces required to initiate movement. Test results suggest that initiation forces on tile were equivalent for the Pacer and KidWalk while the Mustang had the highest initiation force. Initiation forces on carpet were lowest for the KidWalk and highest for the Mustang. This initial study of inertia and movement initiation forces may provide added information for clinicians to consider when selecting a gait trainer for their clients.

  8. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A.

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts,more » the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.« less

  9. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.

    2015-11-01

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  10. Resonance Trapping in the Galactic Disc and Halo and its Relation with Moving Groups

    NASA Astrophysics Data System (ADS)

    Pichardo, Barbara; Moreno, Edmundo; william, schuster B.

    2015-08-01

    With the use of a detailed Milky Way nonaxisymmetric potential, observationally and dynamically constrained, the eects of the bar and the spiral arms in the Galaxy are studied in the disc and in the stellar halo. Especially the trapping of stars in the disk and Galactic halo by resonances on the Galactic plane created by the Galactic bar has been analysed in detail. To this purpose, a new method is presented to delineate the trapping regions using empirical diagrams of some orbital properties obtained in the Galactic potential. In these diagrams we plot in the inertial Galactic frame a characteristic orbital energy versus a characteristic orbital angular momentum, or versus the orbital Jacobi constant in the reference frame of the bar, when this is the only nonaxisymmetric component in the Galactic potential. With these diagrams some trapping regions are obtained in the disc and halo using a sample of disc stars and halo stars in the solar neighborhood. We compute several families of periodic orbits on the Galactic plane, some associated with this resonant trapping. In particular, we nd that the trapping eect of these resonances on the Galactic plane can extend some kpc from this plane, trapping stars in the Galactic halo. The purpose of our analysis is to investigate if the trapping regions contain some known moving groups in our Galaxy. We have applied our method to the Kapteyn group, a moving group in the halo, and we have found that this group appears not to be associated with a particular resonance on the Galactic plane.

  11. Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

    NASA Astrophysics Data System (ADS)

    Man'ko, V. I.; Markovich, L. A.

    2018-02-01

    Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

  12. Superenergy flux of Einstein-Rosen waves

    NASA Astrophysics Data System (ADS)

    Domínguez, P. J.; Gallegos, A.; Macías-Díaz, J. E.; Vargas-Rodríguez, H.

    In this work, we consider the propagation speed of the superenergy flux associated to the Einstein-Rosen cylindrical waves propagating in vacuum and over the background of the gravitational field of an infinitely long mass line distribution. The velocity of the flux is determined considering the reference frame in which the super-Poynting vector vanishes. This reference frame is then considered as comoving with the flux. The explicit expressions for the velocities are given with respect to a reference frame at rest with the symmetry axis.

  13. GENERAL RELATIVITY DERIVATION OF BEAM REST-FRAME HAMILTONIAN.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEI,J.

    2001-06-18

    Analysis of particle interaction in the laboratory frame of storage rings is often complicated by the fact that particle motion is relativistic, and that reference particle trajectory is curved. Rest frame of the reference particle is a convenient coordinate system to work with, within which particle motion is non-relativistic. We have derived the equations of motion in the beam rest frame from the general relativity formalism, and have successfully applied them to the analysis of crystalline beams [1].

  14. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang

    2017-02-01

    Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

  15. Hierarchical motion organization in random dot configurations

    NASA Technical Reports Server (NTRS)

    Bertamini, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    Motion organization has 2 aspects: the extraction of a (moving) frame of reference and the hierarchical organization of moving elements within the reference frame. Using a discrimination of relative motions task, the authors found large differences between different types of motion (translation, divergence, and rotation) in the degree to which each can serve as a moving frame of reference. Translation and divergence are superior to rotation. There are, however, situations in which rotation can serve as a reference frame. This is due to the presence of a second factor, structural invariants (SIs). SIs are spatial relationships persisting among the elements within a configuration such as a collinearity among points or one point coinciding with the center of rotation for another (invariant radius). The combined effect of these 2 factors--motion type and SIs-influences perceptual motion organization.

  16. A spatial reference frame model of Beijing based on spatial cognitive experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhang, Jing; Liu, Yu

    2006-10-01

    Orientation relation in the spatial relation is very important in GIS. People can obtain orientation information by making use of map reading and the cognition of the surrounding environment, and then create the spatial reference frame. City is a kind of special spatial environment, a person with life experiences has some spatial knowledge about the city where he or she lives in. Based on the spatial knowledge of the city environment, people can position, navigate and understand the meaning embodied in the environment correctly. Beijing as a real geographic space, its layout is very special and can form a kind of new spatial reference frame. Based on the characteristics of the layout of Beijing city, this paper will introduce a new spatial reference frame of Beijing and use two psychological experiments to validate its cognitive plausibility.

  17. ``Frames of Reference'' revisited

    NASA Astrophysics Data System (ADS)

    Steyn-Ross, Alistair; Ivey, Donald G.

    1992-12-01

    The PSSC teaching film, ``Frames of Reference,'' was made in 1960, and was one of the first audio-visual attempts at showing how your physical ``point of view,'' or frame of reference, necessarily alters both your perceptions and your observations of motion. The gentle humor and original demonstrations made a lasting impact on many audiences, and with its recent re-release as part of the AAPT Cinema Classics videodisc it is timely that we should review both the message and the methods of the film. An annotated script and photographs from the film are presented, followed by extension material on rotating frames which teachers may find appropriate for use in their classrooms: constructions, demonstrations, an example, and theory.

  18. Hertz's special relativity and physical reality.

    NASA Astrophysics Data System (ADS)

    Mocanu, C. I.

    Maxwell-Hertz electrodynamics (MHE), valid for nonuniform motions as they occur in physical reality and which holds for the noninertial reference frame of our laboratory at small velocities only, is extended to relativistic velocities. The new theory, called Hertz's relativistic electrodynamics (HRE), is completely independent and built-up in a completely different way than Einstein's special relativity (ESR). HRE, a coordinate-free formulation, does not need postulates, but confirms the constancy principle of the speed of light in a vacuum. All experiments of first and second order in v2/c2 are correctly interpreted. To this theory a Hertzian kinematics and dynamics are associated. HRE with its corresponding mechanics form Hertz's special relativity (HSR) as a theory complementary to ESR. According to the principle of complementarity and neglecting gravitational effects, extended special relativity (ExSR) is a double-faced theory which becomes either ESR when the motion is inertial or HSR when the motion is noninertial. The complementarity of both theories assumes that the two descriptions cannot be employed for the same motion, being mutually exclusive. Consequently, to every statement of ExSR, a complementary statement of the other ExSR corresponds. The completeness of ESR with HSR ensures an extended view over relativity in our physical world.

  19. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  20. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  1. Extended analytical formulas for the perturbed Keplerian motion under a constant control acceleration

    NASA Astrophysics Data System (ADS)

    Zuiani, Federico; Vasile, Massimiliano

    2015-03-01

    This paper presents a set of analytical formulae for the perturbed Keplerian motion of a spacecraft under the effect of a constant control acceleration. The proposed set of formulae can treat control accelerations that are fixed in either a rotating or inertial reference frame. Moreover, the contribution of the zonal harmonic is included in the analytical formulae. It will be shown that the proposed analytical theory allows for the fast computation of long, multi-revolution spirals while maintaining good accuracy. The combined effect of different perturbations and of the shadow regions due to solar eclipse is also included. Furthermore, a simplified control parameterisation is introduced to optimise thrusting patterns with two thrust arcs and two cost arcs per revolution. This simple parameterisation is shown to ensure enough flexibility to describe complex low thrust spirals. The accuracy and speed of the proposed analytical formulae are compared against a full numerical integration with different integration schemes. An averaging technique is then proposed as an application of the analytical formulae. Finally, the paper presents an example of design of an optimal low-thrust spiral to transfer a spacecraft from an elliptical to a circular orbit around the Earth.

  2. Estimating the Inertia Matrix of a Spacecraft

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet; Keim, Jason; Shields, Joel

    2007-01-01

    A paper presents a method of utilizing some flight data, aboard a spacecraft that includes reaction wheels for attitude control, to estimate the inertia matrix of the spacecraft. The required data are digitized samples of (1) the spacecraft attitude in an inertial reference frame as measured, for example, by use of a star tracker and (2) speeds of rotation of the reaction wheels, the moments of inertia of which are deemed to be known. Starting from the classical equations for conservation of angular momentum of a rigid body, the inertia-matrix-estimation problem is formulated as a constrained least-squares minimization problem with explicit bounds on the inertia matrix incorporated as linear matrix inequalities. The explicit bounds reflect physical bounds on the inertia matrix and reduce the volume of data that must be processed to obtain a solution. The resulting minimization problem is a semidefinite optimization problem that can be solved efficiently, with guaranteed convergence to the global optimum, by use of readily available algorithms. In a test case involving a model attitude platform rotating on an air bearing, it is shown that, relative to a prior method, the present method produces better estimates from few data.

  3. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, H.A.; Paik, H.J.

    1987-06-15

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for themore » device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges.« less

  4. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  5. Use of Reference Frames for Interplanetary Navigation at JPL

    NASA Technical Reports Server (NTRS)

    Heflin, Michael; Jacobs, Chris; Sovers, Ojars; Moore, Angelyn; Owen, Sue

    2010-01-01

    Navigation of interplanetary spacecraft is typically based on range, Doppler, and differential interferometric measurements made by ground-based telescopes. Acquisition and interpretation of these observations requires accurate knowledge of the terrestrial reference frame and its orientation with respect to the celestial frame. Work is underway at JPL to reprocess historical VLBI and GPS data to improve realizations of the terrestrial and celestial frames. Improvements include minimal constraint alignment, improved tropospheric modeling, better orbit determination, and corrections for antenna phase center patterns.

  6. Voyager Saturn encounter attitude and articulation control experience

    NASA Technical Reports Server (NTRS)

    Carlisle, G.; Hill, M.

    1981-01-01

    The Voyager attitude and articulation control system is designed for a three-axis stabilized spacecraft; it uses a biasable sun sensor and a Canopus Star Tracker (CST) for celestial control, as well as a dry inertial reference unit, comprised of three dual-axis dry gryos, for inertial control. A series of complex maneuvers was required during the first of two Voyager spacecraft encounters with Saturn (November 13, 1980); these maneuvers involved rotating the spacecraft simultaneously about two or three axes while maintaining accurate pointing of the scan platform. Titan and Saturn earth occulation experiments and a ring scattering experiment are described. Target motion compensation and the effects of celestial sensor interference are also considered. Failure of the CST, which required an extensive reevaluation of the star reference and attitude control mode strategy, is discussed. Results analyzed thus far show that the system performed with high accuracy, gathering data deeper into Saturn's atmosphere than on any previous planetary encounter.

  7. SIRU development. Volume 3: Software description and program documentation

    NASA Technical Reports Server (NTRS)

    Oehrle, J.

    1973-01-01

    The development and initial evaluation of a strapdown inertial reference unit (SIRU) system are discussed. The SIRU configuration is a modular inertial subsystem with hardware and software features that achieve fault tolerant operational capabilities. The SIRU redundant hardware design is formulated about a six gyro and six accelerometer instrument module package. The six axes array provides redundant independent sensing and the symmetry enables the formulation of an optimal software redundant data processing structure with self-contained fault detection and isolation (FDI) capabilities. The basic SIRU software coding system used in the DDP-516 computer is documented.

  8. To frame is to explain: a deductive frame-analysis of Dutch and French climate change coverage during the annual UN Conferences of the Parties.

    PubMed

    Dirikx, Astrid; Gelders, Dave

    2010-11-01

    This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.

  9. Relation between the celestial reference system and the terrestrial reference system of a rigid earth

    NASA Astrophysics Data System (ADS)

    Aoki, Shinko

    The equations of motion for a rigid earth under the influence of the sun and moon are solved analytically up to the second-order perturbation, and the results are used to elucidate the relationship between the celestial and terrestrial reference systems. The derivations are given in detail, and consideration is given to celestial-ephemeris and instantaneous-rotation poles, wobble, the departure point as the origin of the local inertial system, the precession-nutation matrix, and techniques for improving the celestial reference system.

  10. Results of Microgravity Fluid Dynamics Captured With the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  11. Result of Microgravity Fluid Dynamics Captured with the SPHERES-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Moder, Jeffrey

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  12. Results of Microgravity Fluid Dynamics Captured with the Spheres-Slosh Experiment

    NASA Technical Reports Server (NTRS)

    Lapilli, Gabriel; Kirk, Daniel Robert; Gutierrez, Hector; Schallhorn, Paul; Marsell, Brandon; Roth, Jacob; Jeffrey Moder

    2015-01-01

    This paper provides an overview of the SPHERES-Slosh Experiment (SSE) aboard the International Space Station (ISS) and presents on-orbit results with data analysis. In order to predict the location of the liquid propellant during all times of a spacecraft mission, engineers and mission analysts utilize Computational Fluid Dynamics (CFD). These state-of-the-art computer programs numerically solve the fluid flow equations to predict the location of the fluid at any point in time during different spacecraft maneuvers. The models and equations used by these programs have been extensively validated on the ground, but long duration data has never been acquired in a microgravity environment. The SSE aboard the ISS is designed to acquire this type of data, used by engineers on earth to validate and improve the CFD prediction models, improving the design of the next generation of space vehicles as well as the safety of current missions. The experiment makes use of two Synchronized Position Hold, Engage, Reorient Experimental Satellites (SPHERES) connected by a frame. In the center of the frame there is a plastic, pill shaped tank that is partially filled with green-colored water. A pair of high resolution cameras records the movement of the liquid inside the tank as the experiment maneuvers within the Japanese Experimental Module test volume. Inertial measurement units record the accelerations and rotations of the tank, making the combination of stereo imaging and inertial data the inputs for CFD model validation.

  13. Cultural background shapes spatial reference frame proclivity

    PubMed Central

    Goeke, Caspar; Kornpetpanee, Suchada; Köster, Moritz; Fernández-Revelles, Andrés B.; Gramann, Klaus; König, Peter

    2015-01-01

    Spatial navigation is an essential human skill that is influenced by several factors. The present study investigates how gender, age, and cultural background account for differences in reference frame proclivity and performance in a virtual navigation task. Using an online navigation study, we recorded reaction times, error rates (confusion of turning axis), and reference frame proclivity (egocentric vs. allocentric reference frame) of 1823 participants. Reaction times significantly varied with gender and age, but were only marginally influenced by the cultural background of participants. Error rates were in line with these results and exhibited a significant influence of gender and culture, but not age. Participants’ cultural background significantly influenced reference frame selection; the majority of North-Americans preferred an allocentric strategy, while Latin-Americans preferred an egocentric navigation strategy. European and Asian groups were in between these two extremes. Neither the factor of age nor the factor of gender had a direct impact on participants’ navigation strategies. The strong effects of cultural background on navigation strategies without the influence of gender or age underlines the importance of socialized spatial cognitive processes and argues for socio-economic analysis in studies investigating human navigation. PMID:26073656

  14. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    NASA Technical Reports Server (NTRS)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  15. Language and spatial frames of reference in mind and brain.

    PubMed

    Gallistel, C R.

    2002-08-01

    Some language communities routinely use allocentric reference directions (e.g. 'uphill-downhill') where speakers of European languages would use egocentric references ('left-right'). Previous experiments have suggested that the different language groups use different reference frames in non-linguistic tasks involving the recreation of oriented arrays. However, a recent paper argues that manipulating test conditions produces similar effects in monolingual English speakers, and in animals.

  16. On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking

    NASA Astrophysics Data System (ADS)

    Guo, J. Y.; Shang, K.; Jekeli, C.; Shum, C. K.

    2015-04-01

    Two approaches have been formulated to compute the gravitational potential difference using low-low satellite-to-satellite tracking data based on energy integral: one in the geocentric inertial reference system, and the other in the terrestrial reference system. The focus of this work is on the approach in the geocentric inertial reference system, where a potential rotation term appears in addition to the potential term. In former formulations, the contribution of the time-variable components of the gravitational potential to the potential term was included, but their contribution to the potential rotation term was neglected. In this work, an improvement to the former formulations is made by reformulating the potential rotation term to include the contribution of the time-variable components of the gravitational potential. A simulation shows that our more accurate formulation of the potential rotation term is necessary to achieve the accuracy for recovering the temporal variation of the Earth's gravity field, such as for use to the Gravity Recovery And Climate Experiment GRACE observation data based on this approach.

  17. Joint Transform Correlation for face tracking: elderly fall detection application

    NASA Astrophysics Data System (ADS)

    Katz, Philippe; Aron, Michael; Alfalou, Ayman

    2013-03-01

    In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.

  18. On explicit algebraic stress models for complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Speziale, C. G.

    1992-01-01

    Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.

  19. Minkowski spacetime does not apply to a homogeneously accelerating medium

    NASA Astrophysics Data System (ADS)

    Coleman, Brian

    Home and comoving inertial frame parameters of an individual point of an idealized medium of launch length L uniformly co-accelerating between identical fixed-thrust rockets, are well known. This is not the case with the varying inter-rocket radar periods and related implications regarding a changing 'noninertial own-length' Λ which differs from a front rocket's retrospective separation L from the simultaneously relatively moving rear rocket. On the other hand, the nonhomogeneous acceleration case involving every comoving frame's unchanging perception of a contrived 'rigor mortis' medium (so-called 'rigid motion' traditionally associated with 'Rindler coordinates') whereby Λ = L = L , constitutes the sole extended accelerating medium scenario where the entrenched Minkowski metric is actually applicable. Paraphrasing Wolfgang Pauli, not only is Minkowski spacetime not correct [in the general sense], it is not even wrong [in the restricted sense].

  20. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  1. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  2. Very Long Baseline Array Astrometric Observations of the Cassini Spacecraft at Saturn

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Fomalont, Ed; Dhawan, Vivek; Romney, Jon; Folkner, William M.; Lanyi, Gabor; Border, James; Jacobson, Robert A.

    2011-02-01

    The planetary ephemeris is an essential tool for interplanetary spacecraft navigation, studies of solar system dynamics (including, for example, barycenter corrections for pulsar timing ephemerides), the prediction of occultations, and tests of general relativity. We are carrying out a series of astrometric very long baseline interferometry observations of the Cassini spacecraft currently in orbit around Saturn, using the Very Long Baseline Array (VLBA). These observations provide positions for the center of mass of Saturn in the International Celestial Reference Frame (ICRF) with accuracies ~0.3 mas (1.5 nrad) or about 2 km at the average distance of Saturn. This paper reports results from eight observing epochs between 2006 October and 2009 April. These data are combined with two VLBA observations by other investigators in 2004 and a Cassini-based gravitational deflection measurement by Fomalont et al. in 2009 to constrain a new ephemeris (DE 422). The DE 422 post-fit residuals for Saturn with respect to the VLBA data are generally 0.2 mas, but additional observations are needed to improve the positions of all of our phase reference sources to this level. Over time we expect to be able to improve the accuracy of all three coordinates in the Saturn ephemeris (latitude, longitude, and range) by a factor of at least three. This will represent a significant improvement not just in the Saturn ephemeris but also in the link between the inner and outer solar system ephemerides and in the link to the inertial ICRF.

  3. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-12-15

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat framesmore » used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.« less

  4. Ray Effect Mitigation Through Reference Frame Rotation

    DOE PAGES

    Tencer, John

    2016-05-01

    The discrete ordinates method is a popular and versatile technique for solving the radiative transport equation, a major drawback of which is the presence of ray effects. Mitigation of ray effects can yield significantly more accurate results and enhanced numerical stability for combined mode codes. Moreover, when ray effects are present, the solution is seen to be highly dependent upon the relative orientation of the geometry and the global reference frame. It is an undesirable property. A novel ray effect mitigation technique of averaging the computed solution for various reference frame orientations is proposed.

  5. In-Flight Alignment Using H ∞ Filter for Strapdown INS on Aircraft

    PubMed Central

    Pei, Fu-Jun; Liu, Xuan; Zhu, Li

    2014-01-01

    In-flight alignment is an effective way to improve the accuracy and speed of initial alignment for strapdown inertial navigation system (INS). During the aircraft flight, strapdown INS alignment was disturbed by lineal and angular movements of the aircraft. To deal with the disturbances in dynamic initial alignment, a novel alignment method for SINS is investigated in this paper. In this method, an initial alignment error model of SINS in the inertial frame is established. The observability of the system is discussed by piece-wise constant system (PWCS) theory and observable degree is computed by the singular value decomposition (SVD) theory. It is demonstrated that the system is completely observable, and all the system state parameters can be estimated by optimal filter. Then a H ∞ filter was designed to resolve the uncertainty of measurement noise. The simulation results demonstrate that the proposed algorithm can reach a better accuracy under the dynamic disturbance condition. PMID:24511300

  6. On the Stark effect in open shell complexes exhibiting partially quenched electronic angular momentum: Infrared laser Stark spectroscopy of OH–C 2H 2, OH–C 2H 4, and OH–H 2O

    DOE PAGES

    Moradi, Christopher P.; Douberly, Gary E.

    2015-06-22

    The Stark effect is considered for polyatomic open shell complexes that exhibit partially quenched electronic angular momentum. Matrix elements of the Stark Hamiltonian represented in a parity conserving Hund's case (a) basis are derived for the most general case, in which the permanent dipole moment has projections on all three inertial axes of the system. Transition intensities are derived, again for the most general case, in which the laser polarization has projections onto axes parallel and perpendicular to the Stark electric field, and the transition dipole moment vector is projected onto all three inertial axes in the molecular frame. Asmore » a result, simulations derived from this model are compared to experimental rovibrational Stark spectra of OH-C 2H 2, OH-C 2H 4, and OH-H 2O complexes formed in helium nanodroplets.« less

  7. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    NASA Astrophysics Data System (ADS)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  8. David Malament and the Conventionality of Simultaneity: A Reply

    NASA Astrophysics Data System (ADS)

    Grünbaum, Adolf

    2010-10-01

    In 1977, David Malament proved the valuable technical result that the simultaneity relation of standard synchrony ɛ=1/2 with respect to an inertial observer O is uniquely definable in terms of the relation κ of causal connectibility. And he claimed that this definability undermines my own version of the conventionality of metrical simultaneity within an inertial frame. But Malament’s proof depends on the imposition of several supposedly “innocuous” constraints on any candidate for the simultaneity relation relative to O. Relying on Allen I. Janis’s 1983 challenge to one of these constraints, I argue that Malament’s technical result did not undermine my philosophical construal of the ontological status of relative metrical simultaneity. Furthermore, I show that (a) Michael Friedman’s peremptorily substantivalist critique of my conception, which Malament endorses, is ill-founded, and (b) if Malament had succeeded in discrediting my own conventionalist version of metrical simultaneity, he would likewise have invalidated Einstein’s pioneering version of it.

  9. Coordinate references for the indoor/outdoor seamless positioning

    NASA Astrophysics Data System (ADS)

    Ruan, Ling; Zhang, Ling; Long, Yi; Cheng, Fei

    2018-05-01

    Indoor positioning technologies are being developed rapidly, and seamless positioning which connected indoor and outdoor space is a new trend. The indoor and outdoor positioning are not applying the same coordinate system and different indoor positioning scenes uses different indoor local coordinate reference systems. A specific and unified coordinate reference frame is needed as the space basis and premise in seamless positioning application. Trajectory analysis of indoor and outdoor integration also requires a uniform coordinate reference. However, the coordinate reference frame in seamless positioning which can applied to various complex scenarios is lacking of research for a long time. In this paper, we proposed a universal coordinate reference frame in indoor/outdoor seamless positioning. The research focus on analysis and classify the indoor positioning scenes and put forward the coordinate reference system establishment and coordinate transformation methods in each scene. And, through some experiments, the calibration method feasibility was verified.

  10. A Paleolatitude Calculator for Paleoclimate Studies

    PubMed Central

    van Hinsbergen, Douwe J. J.; de Groot, Lennart V.; van Schaik, Sebastiaan J.; Spakman, Wim; Bijl, Peter K.; Sluijs, Appy; Langereis, Cor G.; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed. PMID:26061262

  11. A Paleolatitude Calculator for Paleoclimate Studies.

    PubMed

    van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.

  12. NChina16: A stable geodetic reference frame for geological hazard studies in north China

    NASA Astrophysics Data System (ADS)

    Wang, G.; Yan, B.; Gan, W.; Geng, J.

    2017-12-01

    This study established a stable North China Reference Frame 2016 (NChina16) using five years of continuous GPS observations (2011.8 to 2016.8) from 12 continuously operating reference stations (CORS) fixed to the stable interior of the North China Craton. Applications of NChina16 in landslide, subsidence, and post-seismic displacement studies are illustrated. The primary result of this study is the seven parameters for transforming Cartesian ECEF (Earth-Centered, Earth-Fixed) coordinates X, Y, and Z from the International GNSS Service Reference Frame 2008 (IGS08) to NChina16. The seven parameters include the epoch that is used to tie the regional reference frame to IGS08 and the time derivatives of three translations and three rotations. A method for developing a regional geodetic reference frame is introduced in detail. The GIPSY-OASIS (V6.4) software package was used to obtain the precise point positioning (PPP) time series with respect to IGS08. The stability (accuracy) of NChina16 is about 0.5 mm/year in both vertical and horizontal directions. This study also developed a regional seasonal model for correcting vertical displacement time series data derived from the PPP solutions. Long-term GPS observations (1999-2016) from five CORS in north China were used to develop the seasonal model. According to this study, the PPP daily solutions with respect to NChina16 could achieve 2-3 mm horizontal accuracy and 4-5 mm vertical accuracy after being modified by the regional model. NChina16 will be critical to the long-term landslide, subsidence, fault, and structural monitoring in north China and for ongoing post-seismic crustal deformation studies in Japan. NChina16 will be incrementally improved and synchronized with the IGS reference frame update.

  13. Update on VLBA Astrometry of Cassini

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Folkner, William M.; Jacobson, Robert A.; Jacobs, Christopher S.; Romney, Jon; Dhawan, Vivek; Fomalont, Edward B.

    2015-01-01

    The NRAO Very Long Baseline Array (VLBA) has been used to measure positions of the Cassini spacecraft 2-3 times per year during the decade since it arrived at Saturn. Combining these measurements with fits for Cassini's orbit about Saturn from Doppler tracking by the NASA Deep Space Network provides accurate positions for the Saturn system barycenter in the inertial International Celestial Reference Frame (ICRF) at each observing epoch. These positions in turn help to improve our knowledge of Saturn's orbit and thus the planetary ephemeris on which future interplanetary spacecraft navigation, pulsar timing, and studies of solar system dynamics depend. This observational program will continue to the end of Cassini's mission in 2017, thereby covering as large a fraction of Saturn's orbital period as possible. A multi-year period of accurate astrometry also increases the range of times over which ephemeris improvements can be extrapolated. Our current residuals with respect to JPL's DE430 ephemeris are approximately 0.2 mas in right ascension and 0.3 mas in declination. The primary error sources are residual troposphere delay calibration errors and uncertainties in the ICRF positions of some of our phase reference sources. The reference source position uncertainties are being reduced by continuing VLBI observations. Similar VLBI techniques will be applied to the Juno spacecraft when it begins orbiting Jupiter in 2016, thereby improving the orbit for this planet as well. This work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Support from the NASA Planetary Astronomy Program is gratefully acknowledged. The VLBA is a facility of the National Radio Astronomy Observatory, which is operated by Associated Universities, Inc, under a cooperative agreement with the National Science Foundation.

  14. Influences of indigenous language on spatial frames of reference in Aboriginal English

    NASA Astrophysics Data System (ADS)

    Edmonds-Wathen, Cris

    2014-06-01

    The Aboriginal English spoken by Indigenous children in remote communities in the Northern Territory of Australia is influenced by the home languages spoken by themselves and their families. This affects uses of spatial terms used in mathematics such as `in front' and `behind.' Speakers of the endangered Indigenous Australian language Iwaidja use the intrinsic frame of reference in contexts where speakers of Standard Australian English use the relative frame of reference. Children speaking Aboriginal English show patterns of use that parallel the Iwaidja contexts. This paper presents detailed examples of spatial descriptions in Iwaidja and Aboriginal English that demonstrate the parallel patterns of use. The data comes from a study that investigated how an understanding of spatial frame of reference in Iwaidja could assist teaching mathematics to Indigenous language-speaking students. Implications for teaching mathematics are explored for teachers without previous experience in a remote Indigenous community.

  15. Change of reference frame for tactile localization during child development.

    PubMed

    Pagel, Birthe; Heed, Tobias; Röder, Brigitte

    2009-11-01

    Temporal order judgements (TOJ) for two tactile stimuli, one presented to the left and one to the right hand, are less precise when the hands are crossed over the midline than when the hands are uncrossed. This 'crossed hand' effect has been considered as evidence for a remapping of tactile input into an external reference frame. Since late, but not early, blind individuals show such remapping, it has been hypothesized that the use of an external reference frame develops during childhood. Five- to 10-year-old children were therefore tested with the tactile TOJ task, both with uncrossed and crossed hands. Overall performance in the TOJ task improved with age. While children older than 5 1/2 years displayed a crossed hand effect, younger children did not. Therefore the use of an external reference frame for tactile, and possibly multisensory, localization seems to be acquired at age 5.

  16. Spatial Reorientation of Sensorimotor Balance Control in Altered Gravity

    NASA Technical Reports Server (NTRS)

    Paloski, W. H.; Black, F. L.; Kaufman, G. D.; Reschke, M. F.; Wood, S. J.

    2007-01-01

    Sensorimotor coordination of body segments following space flight are more pronounced after landing when the head is actively tilted with respect to the trunk. This suggests that central vestibular processing shifts from a gravitational frame of reference to a head frame of reference in microgravity. A major effect of such changes is a significant postural instability documented by standard head-erect Sensory Organization Tests. Decrements in functional performance may still be underestimated when head and gravity reference frames remained aligned. The purpose of this study was to examine adaptive changes in spatial processing for balance control following space flight by incorporating static and dynamic tilts that dissociate head and gravity reference frames. A second aim of this study was to examine the feasibility of altering the re-adaptation process following space flight by providing discordant visual-vestibular-somatosensory stimuli using short-radius pitch centrifugation.

  17. The Effect of Global-Scale, Steady-State Convection and Elastic-Gravitational Asphericities on Helioseismic Oscillations

    NASA Astrophysics Data System (ADS)

    Lavely, Eugene M.; Ritzwoller, Michael H.

    1992-06-01

    In this paper we derive a theory, based on quasi-degenerate perturbation theory, that governs the effect of global-scale, steady-state convection and associated static asphericities in the elastic-gravitational variables (adiabatic bulk modulus kappa , density ρ , and gravitational potential φ ) on helioseismic eigenfrequencies and eigenfunctions and present a formalism with which this theory can be applied computationally. The theory rests on three formal assumptions: (1) that convection is temporally steady in a frame corotating with the Sun, (2) that accurate eigenfrequencies and eigenfunctions can be determined by retaining terms in the seismically perturbed equations of motion only to first order in p-mode displacement, and (3) that we are justified in retaining terms only to first order in convective velocity (this is tantamount to assuming that the convective flow is anelastic). The most physically unrealistic assumption is (1), and we view the results of this paper as the first step toward a more general theory governing the seismic effects of time-varying fields. Although the theory does not govern the seismic effects of non-stationary flows, it can be used to approximate the effects of unsteady flows on the acoustic wavefield if the flow is varying smoothly in time. The theory does not attempt to model seismic modal amplitudes since these are governed, in part, by the exchange of energy between convection and acoustic motions which is not a part of this theory. However, we show how theoretical wavefields can be computed given a description of the stress field produced by a source process such as turbulent convection. The basic reference model that will be perturbed by rotation, convection, structural asphericities, and acoustic oscillations is a spherically symmetric, non-rotating, non-magnetic, isotropic, static solar model that, when subject to acoustic oscillations, oscillates adiabatically. We call this the SNRNMAIS model. An acoustic mode of the SNRNMAIS model is denoted by k = (n,l,m), where n is the radial order, l is the harmonic degree, and m is the azimuthal order of the mode. The main result of the paper is the general matrix element Hn'n,l'lm'm for steady-state convection satisfying the anelastic condition with static structural asphericities. It is written in terms of the radial, scalar eigenfunctions of the SNRNMAIS model, resulting in equations (90)-(110). We prove Rayleigh's principle in our derivation of quasi-degenerate perturbation theory which, as a by-product, yields the general matrix element. Within this perturbative method, modes need not be exactly degenerate in the SNRNMAIS solar model to couple, only nearly so. General matrix elements compose the hermitian supermatrix Z. The eigenvalues of the supermatrix are the eigenfrequency perturbations of the convecting, aspherical model and the eigenvector components of Z are the expansion coefficients in the linear combination forming the eigenfunctions in which the eigenfunctions of the SNRNMAIS solar model act as basis functions. The properties of the Wigner 3j symbols and the reduced matrix elements composing Hn'n,l'lm' produce selection rules governing the coupling of SNRNMAIS modes that hold even for time-varying flows. We state selection rules for both quasi-degenerate and degenerate perturbation theories. For example, within degenerate perturbation theory, only odd-degree s toroidal flows and even degree structural asphericities, both with s <= 2l, will couple and/or split acoustic modes with harmonic degree l. In addition, the frequency perturbations caused by a toroidal flow display odd symmetry with respect to the degenerate frequency when ordered from the minimum to the maximum frequency perturbation. We consider the special case of differential rotation, the odd-degree, axisymmetric, toroidal component of general convection, and present the general matrix element and selection rules under quasi-degenerate perturbation theory. We argue that due to the spacing of modes that satisfy the selection rules, quasi-degenerate coupling can, for all practical purposes, be neglected in modelling the effect of low-degree differential rotation on helioseismic data. In effect, modes that can couple through low-degree differential rotation are too far separated in frequency to couple strongly. This is not the case for non-axisymmetric flows and asphericities where near degeneracies will regularly occur, and couplings can be relatively strong especially among SNRNMAIS modes within the same multiplet. All derivations are performed and all solutions are presented in a frame corotating with the mean solar angular rotation rate. Equation (18) shows how to transform the eigenfrequencies and eigenfunctions in the corotating frame into an inertial frame. The transformation has the effect that each eigenfunction in the inertial frame is itself time varying. That is, a mode of oscillation, which is defined to have a single frequency in the corotating frame, becomes multiply periodic in the inertial frame.

  18. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  19. Hand Pose Estimation by Fusion of Inertial and Magnetic Sensing Aided by a Permanent Magnet.

    PubMed

    Kortier, Henk G; Antonsson, Jacob; Schepers, H Martin; Gustafsson, Fredrik; Veltink, Peter H

    2015-09-01

    Tracking human body motions using inertial sensors has become a well-accepted method in ambulatory applications since the subject is not confined to a lab-bounded volume. However, a major drawback is the inability to estimate relative body positions over time because inertial sensor information only allows position tracking through strapdown integration, but does not provide any information about relative positions. In addition, strapdown integration inherently results in drift of the estimated position over time. We propose a novel method in which a permanent magnet combined with 3-D magnetometers and 3-D inertial sensors are used to estimate the global trunk orientation and relative pose of the hand with respect to the trunk. An Extended Kalman Filter is presented to fuse estimates obtained from inertial sensors with magnetic updates such that the position and orientation between the human hand and trunk as well as the global trunk orientation can be estimated robustly. This has been demonstrated in multiple experiments in which various hand tasks were performed. The most complex task in which simultaneous movements of both trunk and hand were performed resulted in an average rms position difference with an optical reference system of 19.7±2.2 mm whereas the relative trunk-hand and global trunk orientation error was 2.3±0.9 and 8.6±8.7 deg respectively.

  20. Review Of The Working Group On Precession And The Ecliptic

    NASA Astrophysics Data System (ADS)

    Hilton, J. L.

    2006-08-01

    The IAU Working Group on Precession and the Ecliptic was charged with providing a precession model that was both dynamically consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends: 1. That the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively. 2. That, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs. 37) and the precession of the ecliptic (Eqs. 38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox based and Celestial Intermediate Origin based paradigms. 3. That the choice of precession parameters be left to the user. 4. That the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions. consistent and compatible with the IAU 2000A nutation model, along consistent and compatible with the IAU 2000A nutation model, along with an updated definition and model for the ecliptic. The report of the working group has been accepted for publication in Celestial Mechanics (Hilton et al. 2006, in press) and has resulted in a recommendation to be considered at this General Assembly of the IAU. Specifically, the working group recommends, * that the terms lunisolar precession and planetary precession be replaced by precession of the equator and precession of the ecliptic, respectively, * that, beginning on 1 January 2009, the precession component of the IAU 2000A precession-nutation model be replaced by the P03 precession theory, of Capitaine et al. (2003, A&A, 412, 567-586) for the precession of the equator (Eqs.~37) and the precession of the ecliptic (Eqs.~38); the same paper provides the polynomial developments for the P03 primary angles and a number of derived quantities for use in both the equinox basedand Celestial Intermediate Origin based paradigms, * that the choice of precession parameters be left to the user, and * that the ecliptic pole should be explicitly defined by the mean orbital angular momentum vector of the Earth-Moon barycenter in an inertial reference frame, and this definition should be explicitly stated to avoid confusion with other, older definitions.

  1. Particle-pair relative velocity measurement in high-Reynolds-number homogeneous and isotropic turbulence using 4-frame particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Dou, Zhongwang; Ireland, Peter J.; Bragg, Andrew D.; Liang, Zach; Collins, Lance R.; Meng, Hui

    2018-02-01

    The radial relative velocity (RV) between particles suspended in turbulent flow plays a critical role in droplet collision and growth. We present a simple and accurate approach to RV measurement in isotropic turbulence—planar 4-frame particle tracking velocimetry—using routine PIV hardware. It improves particle positioning and pairing accuracy over the 2-frame holographic approach by de Jong et al. (Int J Multiphas Flow 36:324-332; de Jong et al., Int J Multiphas Flow 36:324-332, 2010) without using high-speed cameras and lasers as in Saw et al. (Phys Fluids 26:111702, 2014). Homogeneous and isotropic turbulent flow ({R_λ }=357) in a new, fan-driven, truncated iscosahedron chamber was laden with either low-Stokes (mean St=0.09, standard deviation 0.05) or high-Stokes aerosols (mean St=3.46, standard deviation 0.57). For comparison, DNS was conducted under similar conditions ({R_λ }=398; St=0.10 and 3.00, respectively). Experimental RV probability density functions (PDF) and mean inward RV agree well with DNS. Mean inward RV increases with St at small particle separations, r, and decreases with St at large r, indicating the dominance of "path-history" and "inertial filtering" effects, respectively. However, at small r, the experimental mean inward RV trends higher than DNS, possibly due to the slight polydispersity of particles and finite light sheet thickness in experiments. To confirm this interpretation, we performed numerical experiments and found that particle polydispersity increases mean inward RV at small r, while finite laser thickness also overestimates mean inward RV at small r, This study demonstrates the feasibility of accurately measuring RV using routine hardware, and verifies, for the first time, the path-history and inertial filtering effects on particle-pair RV at large particle separations experimentally.

  2. Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

    NASA Astrophysics Data System (ADS)

    Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing

    2018-04-01

    Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

  3. Ultrafast 2-dimensional image monitoring and array-based passive cavitation detection for ultrasound contrast agent destruction in a variably sized region.

    PubMed

    Xu, Shanshan; Hu, Hong; Jiang, Hujie; Xu, Zhi'an; Wan, Mingxi

    2014-11-01

    A combined approach was proposed, based on programmable ultrasound equipment, to simultaneously monitor surviving microbubbles and detect cavitation activity during microbubble destruction in a variably sized region for use in ultrasound contrast agent (UCA)-enhanced therapeutic ultrasound applications. A variably sized focal region wherein the acoustic pressure was above the UCA fragmentation threshold was synthesized at frequencies of 3, 4, 5, and 6 MHz with a linear broadband imaging probe. The UCAs' temporal and spatial distribution during the microbubbles' destruction was monitored in a 2-dimensional imaging plane at 5 MHz and a frame rate of 400 Hz, and simultaneously, broadband noise emissions during the microbubbles' fragmentation were extracted by using the backscattered signals produced by the focused release bursts (ie, destruction pulses) themselves. Afterward, the temporal evolution of broadband noise emission, the surviving microbubbles in a region of interest (ROI), and the destruction area in a static UCA suspension were computed. Then the inertial cavitation dose, destruction rate of microbubbles in the ROI, and area of the destruction region were determined. It was found that an increasing pulse length and a decreasing transmit aperture and excitation frequency were correlated with an increased inertial cavitation dose, microbubble destruction rate, and destruction area. Furthermore, it was obvious that the microbubble destruction rate was significantly correlated with the inertial cavitation dose (P < .05). In addition, the intensity decrease in the ROI was significantly correlated with the destruction area (P < .05). By the proposed strategy, microbubbles could be destroyed in a variably sized region, and destruction efficiency as well as the corresponding inertial cavitation dose could be regulated by manipulating the transmission parameters. © 2014 by the American Institute of Ultrasound in Medicine.

  4. Simultaneity on the Rotating Disk

    NASA Astrophysics Data System (ADS)

    Koks, Don

    2017-04-01

    The disk that rotates in an inertial frame in special relativity has long been analysed by assuming a Lorentz contraction of its peripheral elements in that frame, which has produced widely varying views in the literature. We show that this assumption is unnecessary for a disk that corresponds to the simplest form of rotation in special relativity. After constructing such a disk and showing that observers at rest on it do not constitute a true rotating frame, we choose a "master" observer and calculate a set of disk coordinates and spacetime metric pertinent to that observer. We use this formalism to resolve the "circular twin paradox", then calculate the speed of light sent around the periphery as measured by the master observer, to show that this speed is a function of sent-direction and disk angle traversed. This result is consistent with the Sagnac Effect, but constitutes a finer analysis of that effect, which is normally expressed using an average speed for a full trip of the periphery. We also use the formalism to give a resolution of "Selleri's paradox".

  5. Relativistic Dynamos in Magnetospheres of Rotating Compact Objects

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Akira

    2000-01-01

    The kinematic evolution of axisymmetric magnetic fields in rotating magnetospheres of relativistic compact objects is analytically studied, based on relativistic Ohm's law in stationary axisymmetric geometry. By neglecting the poloidal flows of plasma in simplified magnetospheric models, we discuss a self-excited dynamo due to the frame-dragging effect (originally pointed out by Khanna & Camenzind) and propose alternative processes to generate axisymmetric magnetic fields against ohmic dissipation. The first process (which may be called ``induced excitation'') is caused by the help of a background uniform magnetic field in addition to the dragging of inertial frames. It is shown that excited multipolar components of poloidal and azimuthal fields are sustained as stationary modes, and outgoing Poynting flux converges toward the rotation axis. The second process is a self-excited dynamo through azimuthal convection current, which is found to be effective if plasma rotation becomes highly relativistic with a sharp gradient in the angular velocity. In this case, no frame-dragging effect is needed, and the coupling between charge separation and plasma rotation becomes important. We discuss briefly the results in relation to active phenomena in the relativistic magnetospheres.

  6. A high-speed two-frame, 1-2 ns gated X-ray CMOS imager used as a hohlraum diagnostic on the National Ignition Facility (invited).

    PubMed

    Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L

    2016-11-01

    A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.

  7. Emotional valence and contextual affordances flexibly shape approach-avoidance movements

    PubMed Central

    Saraiva, Ana Carolina; Schüür, Friederike; Bestmann, Sven

    2013-01-01

    Behavior is influenced by the emotional content—or valence—of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight) and attack (fight). Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference) or the stimulus that moves relative to the self (object-reference), adding flexibility and context-dependence to behavior. Alternatively, facilitation of approach avoidance movements may happen in a pre-defined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g., flexing the arm brings a stimulus closer) and arm extension faster to avoid negative stimuli (e.g., extending the arm moves the stimulus away). While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e., reference-frame). We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self) toward or away from a positive or negative stimulus, and move a stimulus toward or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behavior is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behavior toward emotional stimuli in our environment. PMID:24379794

  8. Flight results of attitude matching between Space Shuttle and Inertial Upper Stage (IUS) navigation systems

    NASA Astrophysics Data System (ADS)

    Treder, Alfred J.; Meldahl, Keith L.

    The recorded histories of Shuttle/Orbiter attitude and Inertial Upper Stage (IUS) attitude have been analyzed for all joint flights of the IUS in the Orbiter. This database was studied to determine the behavior of relative alignment between the IUS and Shuttle navigation systems. It is found that the overall accuracy of physical alignment has a Shuttle Orbiter bias component less than 5 arcmin/axis and a short-term stability upper bound of 0.5 arcmin/axis, both at 1 sigma. Summaries of the experienced physical and inertial alginment offsets are shown in this paper, together with alignment variation data, illustrated with some flight histories. Also included is a table of candidate values for some error source groups in an Orbiter/IUS attitude errror model. Experience indicates that the Shuttle is much more accurate and stable as an orbiting launch platform than has so far been advertised. This information will be valuable for future Shuttle payloads, especially those (such as the Aeroassisted Flight Experiment) which carry their own inertial navigation systems, and which could update or initialize their attitude determination systems using the Shuttle as the reference.

  9. A three axis turntable's online initial state measurement method based on the high-accuracy laser gyro SINS

    NASA Astrophysics Data System (ADS)

    Gao, Chunfeng; Wei, Guo; Wang, Qi; Xiong, Zhenyu; Wang, Qun; Long, Xingwu

    2016-10-01

    As an indispensable equipment in inertial technology tests, the three-axis turntable is widely used in the calibration of various types inertial navigation systems (INS). In order to ensure the calibration accuracy of INS, we need to accurately measure the initial state of the turntable. However, the traditional measuring method needs a lot of exterior equipment (such as level instrument, north seeker, autocollimator, etc.), and the test processing is complex, low efficiency. Therefore, it is relatively difficult for the inertial measurement equipment manufacturers to realize the self-inspection of the turntable. Owing to the high precision attitude information provided by the laser gyro strapdown inertial navigation system (SINS) after fine alignment, we can use it as the attitude reference of initial state measurement of three-axis turntable. For the principle that the fixed rotation vector increment is not affected by measuring point, we use the laser gyro INS and the encoder of the turntable to provide the attitudes of turntable mounting plat. Through this way, the high accuracy measurement of perpendicularity error and initial attitude of the three-axis turntable has been achieved.

  10. Star Pattern Recognition and Spacecraft Attitude Determination.

    DTIC Science & Technology

    1981-05-01

    direction; that is, Qf(Lx Ly L qva ) (A5 .2) If we let IS be the velocity of starlight in the inertial frame and 1 v be observer velocity, then the...Virginia 24061 DTIC Am = 1 .rECT E SEP 2 1981 "&AY 1981 APPOVED FOR MPW UDUCR Dgn"IUflON IJUND U.S. ARMY CORPS OF ENGINEERS ENGINEER TOPOGRAPHIC LABORATORIESI...NO. 3. RECIPIENT’S CATALOG NUMBER -/ 03 1 026g441,9sfog 5TARIATTERN ,ECOGNITION AND SPACECRAT EO ,iCV ATTITUDE DETERMINATION, -L Contract e .t 6

  11. Spin-Mechatronics

    NASA Astrophysics Data System (ADS)

    Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi

    2017-01-01

    We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.

  12. Parallel updating and weighting of multiple spatial maps for visual stability during whole body motion

    PubMed Central

    Medendorp, W. P.

    2015-01-01

    It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms. PMID:26490289

  13. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    ERIC Educational Resources Information Center

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  14. Radio stars - A possible link between the Hipparcos optical reference frame and an extra-galactic very long baseline interferometry reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Slade, M. A.

    1983-01-01

    The concept of typing the Hipparcos optical and the JPL VLBI frames of reference by means of VLBI measurements of the positions and proper motions of the radio components of some bright stars is considered. The properties of the thermal and non-thermal radio-stars are discussed and 22 candidate stars are selected to achieve this tie. A description is given of the first VLBI attempt to detect these stars on the intercontinental baselines of the Deep Space Network with the Mark II recording system.

  15. Analog Landau-He-McKellar-Wilkens quantization due to noninertial effects of the Fermi-Walker reference frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakke, Knut

    2010-05-15

    We will show that when a neutral particle with permanent electric dipole moment interacts with a specific field configuration when the local reference frames of the observers are Fermi-Walker transported, the Landau quantization analog to the He-McKellar-Wilkens setup arises in the nonrelativistic quantum dynamics of the neutral particle due the noninertial effects of the Fermi-Walker reference frame. We show that the noninertial effects do not break the infinity degeneracy of the energy levels, but in this case, the cyclotron frequency depends on the angular velocity.

  16. Language supports young children’s use of spatial relations to remember locations

    PubMed Central

    Miller, Hilary E.; Patterson, Rebecca; Simmering, Vanessa R.

    2016-01-01

    Two experiments investigated the role of language in children’s spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one’s body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds’ selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children’s recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children’s performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. PMID:26896902

  17. Language supports young children's use of spatial relations to remember locations.

    PubMed

    Miller, Hilary E; Patterson, Rebecca; Simmering, Vanessa R

    2016-05-01

    Two experiments investigated the role of language in children's spatial recall performance. In particular, we assessed whether selecting an intrinsic reference frame could be improved through verbal encoding. Selecting an intrinsic reference frame requires remembering locations relative to nearby objects independent of one's body (egocentric) or distal environmental (allocentric) cues, and does not reliably occur in children under 5 years of age (Nardini, Burgess, Breckenridge, & Atkinson, 2006). The current studies tested the relation between spatial language and 4-year-olds' selection of an intrinsic reference frame in spatial recall. Experiment 1 showed that providing 4-year-olds with location-descriptive cues during (Exp. 1a) or before (Exp. 1b) the recall task improved performance both overall and specifically on trials relying most on an intrinsic reference frame. Additionally, children's recall performance was predicted by their verbal descriptions of the task space (Exp. 1a control condition). Non-verbally highlighting relations among objects during the recall task (Exp. 2) supported children's performance relative to the control condition, but significantly less than the location-descriptive cues. These results suggest that the ability to verbally represent relations is a potential mechanism that could account for developmental changes in the selection of an intrinsic reference frame during spatial recall. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Modernized National Spatial Reference System in 2022: Focus on the Caribbean Terrestrial Reference Frame

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2017-12-01

    In 2022, the National Geodetic Survey will replace all three NAD 83 reference frames the four new terrestrial reference frames. Each frame will be named after a tectonic plate (North American, Pacific, Caribbean and Mariana) and each will be related to the IGS frame through three Euler Pole parameters (EPPs). This talk will focus on practical application in the Caribbean region. A working group is being re-established for development of the North American region and will likely also result in analysis of the Pacific region as well. Both of these regions are adequately covered with existing CORS sites to model the EPPs. The Mariana region currently lacks sufficient coverage, but a separate project is underway to collect additional information to help in defining EPPs for that region at a later date. The Caribbean region has existing robust coverage through UNAVCO's COCONet and other data sets, but these require further analysis. This discussion will focus on practical examination of Caribbean sites to establish candidates for determining the Caribbean frame EPPs as well as an examination of any remaining velocities that might inform a model of the remaining velocities within that frame (Intra-Frame Velocity Model). NGS has a vested interest in defining such a model to meet obligations to U.S. citizens in Puerto Rico and the U.S. Virgin Islands. Beyond this, NGS aims to collaborate with other countries in the region through efforts with SIRGAS and UN-GGIM-Americas for a more acceptable regional model to serve everyone's needs.

  19. Precision Mechanical Measurement Using the Levitation Mass Method (LMM)

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Jin, Tao; Maru, Koichi

    2010-12-01

    The present status and the future prospects of a method for precision mass and force measurement, the levitation mass method (LMM), are reviewed. The LMM has been proposed and improved by the authors. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects under test, such as force transducers, materials or structures. The inertial force of the levitated mass is measured using an optical interferometer. The three typical applications of the LMM, i.e. the dynamic force calibration, the micro force material tester and the space scale, are reviewed in this paper.

  20. Second-order Compton-Getting effect on arbitrary intensity distribution

    NASA Technical Reports Server (NTRS)

    Ng, C. K.

    1985-01-01

    Theoretical studies of energetic particles in space are often referred to a special frame of reference. To compare theory with experiment, one has to transform the particle distribution from the special frame to the observer's frame, or vice versa. Various methods have been derived to obtain the directional distribution in the comoving frame from the directional fluxes measured on a spacecraft. These methods have become progressively complicated as increasingly detailed directional particle data become available. A set of 2nd order correct formulae for the transformation of an arbitrary differential intensity distribution, expressed as a series of spherical harmonics, between any two frames in constant relative motion is presented. These formulae greatly simplify the complicated procedures currently in use for the determination of the differential intensity distribution in a comoving frame.

  1. Linear State-Space Representation of the Dynamics of Relative Motion, Based on Restricted Three Body Dynamics

    NASA Technical Reports Server (NTRS)

    Luquette,Richard J.; Sanner, Robert M.

    2004-01-01

    Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM) , the associated MAXIM pathfinder mission, Stellar Imager (SI) and the Terrestrial Planet Finder (TPF). An essential element of the technology is the control algorithm, requiring a clear understanding of the dynamics of relative motion. This paper examines the dynamics of relative motion in the context of the Restricted Three Body Problem (RTBP). The natural dynamics of relative motion are presented in their full nonlinear form. Motivated by the desire to apply linear control methods, the dynamics equations are linearized and presented in state-space form. The stability properties are explored for regions in proximity to each of the libration points in the Earth/Moon - Sun rotating frame. The dynamics of relative motion are presented in both the inertial and rotating coordinate frames.

  2. Laser-nucleated acoustic cavitation in focused ultrasound.

    PubMed

    Gerold, Bjoern; Kotopoulis, Spiros; McDougall, Craig; McGloin, David; Postema, Michiel; Prentice, Paul

    2011-04-01

    Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications. © 2011 American Institute of Physics

  3. Different strategies for spatial updating in yaw and pitch path integration

    PubMed Central

    Goeke, Caspar M.; König, Peter; Gramann, Klaus

    2013-01-01

    Research in spatial navigation revealed the existence of discrete strategies defined by the use of distinct reference frames during virtual path integration. The present study investigated the distribution of these navigation strategies as a function of gender, video gaming experience, and self-estimates of spatial navigation abilities in a population of 300 subjects. Participants watched videos of virtual passages through a star-field with one turn in either the horizontal (yaw) or the vertical (pitch) axis. At the end of a passage they selected one out of four homing arrows to indicate the initial starting location. To solve the task, participants could employ two discrete strategies, navigating within either an egocentric or an allocentric reference frame. The majority of valid subjects (232/260) consistently used the same strategy in more than 75% of all trials. With that approach 33.1% of all participants were classified as Turners (using an egocentric reference frame on both axes) and 46.5% as Non-turners (using an allocentric reference frame on both axes). 9.2% of all participants consistently used an egocentric reference frame in the yaw plane but an allocentric reference frame in the pitch plane (Switcher). Investigating the influence of gender on navigation strategies revealed that females predominantly used the Non-turner strategy while males used both the Turner and the Non-turner strategy with comparable probabilities. Other than expected, video gaming experience did not influence strategy use. Based on a strong quantitative basis with the sample size about an order of magnitude larger than in typical psychophysical studies these results demonstrate that most people reliably use one out of three possible navigation strategies (Turners, Non-turners, Switchers) for spatial updating and provides a sound estimate of how those strategies are distributed within the general population. PMID:23412683

  4. Importance of baseline specification in evaluating conservation interventions and achieving no net loss of biodiversity.

    PubMed

    Bull, J W; Gordon, A; Law, E A; Suttle, K B; Milner-Gulland, E J

    2014-06-01

    There is an urgent need to improve the evaluation of conservation interventions. This requires specifying an objective and a frame of reference from which to measure performance. Reference frames can be baselines (i.e., known biodiversity at a fixed point in history) or counterfactuals (i.e., a scenario that would have occurred without the intervention). Biodiversity offsets are interventions with the objective of no net loss of biodiversity (NNL). We used biodiversity offsets to analyze the effects of the choice of reference frame on whether interventions met stated objectives. We developed 2 models to investigate the implications of setting different frames of reference in regions subject to various biodiversity trends and anthropogenic impacts. First, a general analytic model evaluated offsets against a range of baseline and counterfactual specifications. Second, a simulation model then replicated these results with a complex real world case study: native grassland offsets in Melbourne, Australia. Both models showed that achieving NNL depended upon the interaction between reference frame and background biodiversity trends. With a baseline, offsets were less likely to achieve NNL where biodiversity was decreasing than where biodiversity was stable or increasing. With a no-development counterfactual, however, NNL was achievable only where biodiversity was declining. Otherwise, preventing development was better for biodiversity. Uncertainty about compliance was a stronger determinant of success than uncertainty in underlying biodiversity trends. When only development and offset locations were considered, offsets sometimes resulted in NNL, but not across an entire region. Choice of reference frame determined feasibility and effort required to attain objectives when designing and evaluating biodiversity offset schemes. We argue the choice is thus of fundamental importance for conservation policy. Our results shed light on situations in which biodiversity offsets may be an inappropriate policy instrument.

  5. Motion-based nearest vector metric for reference frame selection in the perception of motion.

    PubMed

    Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk

    2016-05-01

    We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.

  6. Cross-Sensory Transfer of Reference Frames in Spatial Memory

    ERIC Educational Resources Information Center

    Kelly, Jonathan W.; Avraamides, Marios N.

    2011-01-01

    Two experiments investigated whether visual cues influence spatial reference frame selection for locations learned through touch. Participants experienced visual cues emphasizing specific environmental axes and later learned objects through touch. Visual cues were manipulated and haptic learning conditions were held constant. Imagined perspective…

  7. Time evolution of an SLR reference frame

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Gerstl, M.; Kelm, R.; Müller, H.; Seemüller, W.; Vei, M.

    2002-07-01

    On the basis of LAGEOS-1 and LAGEOS-2 data we computed a 10-years (1990-2000) solution for SLR station positions and velocities. The paper describes the data processing with the DGFI software package DOGS. We present results for station coordinates and their time variation for 41 stations of the global SLR network, and discuss the stability and time evolution of the SLR reference frame established in the same way. We applied different methods to assess the quality and consistency of the SLR results. The results presented in this paper include: (1) a time series of weekly estimated station coordinates; (2) a comparison of a 10-year LAGEOS-1 and LAGEOS-2 solution; (3) a comparison of 2.5-year solutions with the combined 10-year solution to assess the internal stability and the time evolution of the SLR reference frame; (4) a comparison of the SLR reference frame with ITRF97; and (5) a comparison of SLR station velocities with those of ITRF97 and NNR NUVEL-1A.

  8. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Cheng, Y.; Bei, J.

    2017-12-01

    China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.

  9. Coordination of multiple robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Soloway, D.

    1987-01-01

    Kinematic resolved-rate control from one robot arm is extended to the coordinated control of multiple robot arms in the movement of an object. The structure supports the general movement of one axis system (moving reference frame) with respect to another axis system (control reference frame) by one or more robot arms. The grippers of the robot arms do not have to be parallel or at any pre-disposed positions on the object. For multiarm control, the operator chooses the same moving and control reference frames for each of the robot arms. Consequently, each arm then moves as though it were carrying out the commanded motions by itself.

  10. VLBI astrometry and the Hipparcos link to the extragalactic reference frame

    NASA Technical Reports Server (NTRS)

    Lestrade, J.-F.; Preston, R. A.; Gabuzda, D. C.; Phillips, R. B.

    1991-01-01

    Intermediate results are reported from a program of VLBI radio observations designed to establish a link between the rotating reference frame of the ESA Hipparcos astrometric satellite and the extragalactic VLBI frame being developed by the International Earth Rotation Service. A group of 12 link stars have been observed at various epochs since 1982, and more observations are being undertaken during the 3-yr Hipparcos mission (1989-1992). Analysis of data on Algol indicates that phase-reference VLBI can determine an expected sky displacement of 4 marcsec with an uncertainty of 0.5 marcsec, even when the activity is only a few mJy.

  11. The right frame of reference makes it simple: an example of introductory mechanics supported by video analysis of motion

    NASA Astrophysics Data System (ADS)

    Klein, P.; Gröber, S.; Kuhn, J.; Fleischhauer, A.; Müller, A.

    2015-01-01

    The selection and application of coordinate systems is an important issue in physics. However, considering different frames of references in a given problem sometimes seems un-intuitive and is difficult for students. We present a concrete problem of projectile motion which vividly demonstrates the value of considering different frames of references. We use this example to explore the effectiveness of video-based motion analysis (VBMA) as an instructional technique at university level in enhancing students’ understanding of the abstract concept of coordinate systems. A pilot study with 47 undergraduate students indicates that VBMA instruction improves conceptual understanding of this issue.

  12. Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces

    NASA Astrophysics Data System (ADS)

    Klink, W. H.; Wickramasekara, S.

    2016-06-01

    One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner-Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.

  13. MEASUREMENT OF MOTION CORRECTED WIND VELOCITY USING AN AEROSTAT LOFTED SONIC ANEMOMETER

    EPA Science Inventory

    An aerostat-lofted, sonic anemometer was used to determine instantaneous 3 dimensional wind velocities at altitudes relevant to fire plume dispersion modeling. An integrated GPS, inertial measurement unit, and attitude heading and reference system corrected the wind data for th...

  14. Evaluation of STOL navigation avionics

    NASA Technical Reports Server (NTRS)

    Dunn, W. R., Jr.

    1977-01-01

    Research projects, including work on a vector magnetometer for aircraft attitude measurement, are summarized. The earth's electric field phenomena was investigated in its application to aircraft control and navigation. Research on electronic aircraft cabin noise suppression is reviewed and strapdown inertial reference unit technical support is outlined.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doug Blankenship

    Natural fracture data from wells 33-7, 33A-7,52A-7, 52B-7 and 83-11 at West Flank. Fracture orientations were determined from image logs of these wells (see accompanying submissions). Data files contain depth, apparent (in wellbore reference frame) and true (in geographic reference frame) azimuth and dip, respectively.

  16. On Translators' Cultural Frame of Functionist Reference

    ERIC Educational Resources Information Center

    Fu, Zhiyi

    2009-01-01

    A deep cognition with translators' cultural frame of functionist reference can help instructors and teachers adjust and extend patterns and schemes of translation and generate the optimal classroom conditions for acquisition of the target language. The author of the paper, in the perspectives of motivational, cognitive and communicative…

  17. A Robust Nonlinear Observer for Real-Time Attitude Estimation Using Low-Cost MEMS Inertial Sensors

    PubMed Central

    Guerrero-Castellanos, José Fermi; Madrigal-Sastre, Heberto; Durand, Sylvain; Torres, Lizeth; Muñoz-Hernández, German Ardul

    2013-01-01

    This paper deals with the attitude estimation of a rigid body equipped with angular velocity sensors and reference vector sensors. A quaternion-based nonlinear observer is proposed in order to fuse all information sources and to obtain an accurate estimation of the attitude. It is shown that the observer error dynamics can be separated into two passive subsystems connected in “feedback”. Then, this property is used to show that the error dynamics is input-to-state stable when the measurement disturbance is seen as an input and the error as the state. These results allow one to affirm that the observer is “robustly stable”. The proposed observer is evaluated in real-time with the design and implementation of an Attitude and Heading Reference System (AHRS) based on low-cost MEMS (Micro-Electro-Mechanical Systems) Inertial Measure Unit (IMU) and magnetic sensors and a 16-bit microcontroller. The resulting estimates are compared with a high precision motion system to demonstrate its performance. PMID:24201316

  18. Contribution of TIGA reprocessing to the ITRF densification

    NASA Astrophysics Data System (ADS)

    Rudenko, S.; Dähnn, M.; Gendt, G.; Brandt, A.; Nischan, T.

    2009-04-01

    Analysis of tide gauge measurements with the purpose of sea level change investigations requires a well defined reference frame. Such reference frame can be realized through precise positions of GPS stations located at or near tide gauges (TIGA stations) and analyzed within the IGS GPS Tide Gauge Benchmark Monitoring Pilot Project (TIGA). To tie this reference frame to the International Terrestrial Reference Frame (ITRF), one should process simultaneously GPS data from TIGA and IGS stations included in the ITRF. A time series of GPS station positions has been recently derived by reprocessing GPS data from about 400 GPS stations globally distributed covering totally time span from 1998 till 2008 using EPOS-Potsdam software developed at GFZ and improved in the recent years. The analysis is based on the use of IERS Conventions 2003, ITRF2005 as a priori reference frame, FES2004 ocean tide loading model, absolute phase centre variations for GPS satellite transmit and ground receive antennae and other models. About 220 stations of the solution are IGS ones and about 180 are TIGA GPS stations that are not IGS ones. The solution includes weekly coordinates of GPS stations, daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. On the other hand, our new solution can contribute to the ITRF densification by providing positions of about 200 stations being not present in ITRF2005. The solution can be also used for the integration of regional frames. The paper presents the results of the analysis and the comparison of our solution with ITRF2005 and the solutions of other TIGA and IGS Analysis Centres.

  19. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  20. Ipsilateral wrist-ankle movements in the sagittal plane encoded in extrinsic reference frame.

    PubMed

    Muraoka, Tetsuro; Ishida, Yuki; Obu, Takashi; Crawshaw, Larry; Kanosue, Kazuyuki

    2013-04-01

    When performing oscillatory movements of two joints in the sagittal plane, there is a directional constraint for performing such movements. Previous studies could not distinguish whether the directional constraint reflected movement direction encoded in the extrinsic (outside the body) reference frame or in the intrinsic (the participants' torso/head) reference frame since participants performed coordinated movements in a sitting position where the torso/head was stationary relative to the external world. In order to discern the reference frame in the present study, participants performed paced oscillatory movements of the ipsilateral wrist and ankle in the sagittal plane in a standing position so that the torso/head moved relative to the external world. The coordinated movements were performed in one of two modes of coordination, moving the hand upward concomitant with either ankle plantarflexion or ankle dorsiflexion. The same directional mode relative to extrinsic space was more stable and accurate as compared with the opposite directional mode. When forearm position was changed from the pronated position to the supinated position, similar results were obtained, indicating that the results were independent of a particular coupling of muscles. These findings suggest that the directional constraint on ipsilateral joints movements in the sagittal plane reflects movement direction encoded in the extrinsic reference frame. Copyright © 2013 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Top