Science.gov

Sample records for infection impairs toll-like

  1. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection.

    PubMed

    Roger, Thierry; Lugrin, Jérôme; Le Roy, Didier; Goy, Geneviève; Mombelli, Matteo; Koessler, Thibaud; Ding, Xavier C; Chanson, Anne-Laure; Reymond, Marlies Knaup; Miconnet, Isabelle; Schrenzel, Jacques; François, Patrice; Calandra, Thierry

    2011-01-27

    Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.

  2. Impaired Toll-Like Receptor 3-Mediated Immune Responses from Macrophages of Patients Chronically Infected with Hepatitis C Virus

    PubMed Central

    Qian, Feng; Bolen, Christopher R.; Jing, Chunxia; Wang, Xiaomei; Zheng, Wei; Zhao, Hongyu; Fikrig, Erol; Bruce, R. Douglas; Kleinstein, Steven H.

    2013-01-01

    Hepatitis C virus (HCV) is the most common chronic blood-borne infection in the United States, with the majority of patients becoming chronically infected and a subset (20%) progressing to cirrhosis and hepatocellular carcinoma. Individual variations in immune responses may help define successful resistance to infection with HCV. We have compared the immune response in primary macrophages from patients who have spontaneously cleared HCV (viral load negative [VL−], n = 37) to that of primary macrophages from HCV genotype 1 chronically infected (VL+) subjects (n = 32) and found that macrophages from VL− subjects have an elevated baseline expression of Toll-like receptor 3 (TLR3). Macrophages from HCV patients were stimulated ex vivo through the TLR3 pathway and assessed using gene expression arrays and pathway analysis. We found elevated TLR3 response genes and pathway activity from VL− subjects. Furthermore, macrophages from VL− subjects showed higher production of beta interferon (IFN-β) and related IFN response genes by quantitative PCR (Q-PCR) and increased phosphorylation of STAT-1 by immunoblotting. Analysis of polymorphisms in TLR3 revealed a significant association of intronic TLR3 polymorphism (rs13126816) with the clearance of HCV and the expression of TLR3. Of note, peripheral blood mononuclear cells (PBMCs) from the same donors showed opposite changes in gene expression, suggesting ongoing inflammatory responses in PBMCs from VL+ HCV patients. Our results suggest that an elevated innate immune response enhances HCV clearance mechanisms and may offer a potential therapeutic approach to increase viral clearance. PMID:23220997

  3. Role of Toll-Like Receptors in Tuberculosis Infection

    PubMed Central

    Biyikli, Oguz Oben; Baysak, Aysegul; Ece, Gulfem; Oz, Adnan Tolga; Ozhan, Mustafa Hikmet; Berdeli, Afig

    2016-01-01

    Background One-third of the world’s population is infected with Mycobacterium tuberculosis. Investigation of Toll-like receptors (TLRs) has revealed new information regarding the immunopathogenesis of this disease. Toll-like receptors can recognize various ligands with a lipoprotein structure in the bacilli. Toll-like receptor 2 and TLR-4 have been identified in association with tuberculosis infection. Objectives The aim of our study was to investigate the relationship between TLR polymorphism and infection progress. Methods Twenty-nine patients with a radiologically, microbiologically, and clinically proven active tuberculosis diagnosis were included in this 25-month study. Toll-like receptor 2 and TLR-4 polymorphisms and allele distributions were compared between these 29 patients and 100 healthy control subjects. Peripheral blood samples were taken from all patients. Genotyping of TLR-2, TLR-4, and macrophage migration inhibitory factor was performed. The extraction step was completed with a Qiagen mini blood purification system kit (Qiagen, Ontario, Canada) using a peripheral blood sample. The genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Results In total, 19 of the 29 patients with tuberculosis infection had a TLR-2 polymorphism, and 20 of the 100 healthy subjects had a TLR-2 polymorphism (P < 0.001). The TLR-4 polymorphism and interferon-γ allele distributions were not statistically correlated. Conclusions Toll-like receptor 2 polymorphism is a risk factor for tuberculosis infection. The limiting factor in this study was the lack of investigation of the interferon-γ and tumor necrosis factor-α levels, which are important in the development of infection. Detection of lower levels of these cytokines in bronchoalveolar lavage specimens, especially among patients with TLR-2 defects, will provide new data that may support the results of this study. PMID:27942355

  4. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  5. IKBKG (nuclear factor-κB essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function

    PubMed Central

    Salt, Bryn H.; Niemela, Julie E.; Pandey, Rahul; Hanson, Eric P.; Deering, Raquel P.; Quinones, Ralph; Jain, Ashish; Orange, Jordan S.; Gelfand, Erwin W.

    2011-01-01

    Background Patients with hypomorphic nuclear factor-κB essential modulator (NEMO) mutations have extensive phenotypic variability that can include atypical infectious susceptibility. Objective This study may provide important insight into immunologic mechanisms of host defense. Methods Immunologic evaluation, including studies of Toll-like receptor (TLR) function, was performed in a 6-month-old boy with normal ectodermal development who was diagnosed with Pneumocystis pneumonia and cytomegalovirus sepsis. Results Genomic and cDNA sequencing demonstrated a novel NEMO missense mutation, 337G->A, predicted to cause a D113N (aspartic acid to asparagine) substitution in the first coiled-coil region of the NEMO protein. Quantitative serum immunoglobulins, lymphocyte subset numbers, and mitogeninduced lymphocyte proliferation were essentially normal. The PBMC responses to TLR ligands were also surprisingly normal, whereas natural killer cell cytolytic activity, T-cell proliferative responses to specific antigens, and T-cell receptor–induced NF-κB activation were diminished. Conclusion Unlike the unique NEMO mutation described here, the most commonly reported mutations are clustered at the 3′ end in the tenth exon, which encodes a zinc finger domain. Because specific hypomorphic variants of NEMO are associated with distinctive phenotypes, this particular NEMO mutation highlights a dispensability of the region including amino acid 113 for TLR signaling and ectodysplasin A receptor function. This region is required for certain immunoreceptor functions as demonstrated by his susceptibility to infections as well as natural killer cell and T-cell defects. PMID:18179816

  6. Toll-like receptors in skin infections and inflammatory diseases.

    PubMed

    Lai, Yuping; Gallo, Richard L

    2008-09-01

    The skin is the ultimate example of the function of innate immunity, it alerts the host of danger by many systems including sensing pathogen-associated molecule patterns (PAMPs) through Toll-like receptors and other pattern recognition receptors (PRRs), yet normally provides defense without inflammation. The skin responds rapidly to invading microbes by producing antimicrobial peptides or other antimicrobial intermediates before cytokine release results in inflammation. To achieve maximal immune responses for clearing invading microbes, the activation of select PRRs in skin then initiates and shapes adaptive immune responses through the activation of dendritic cells and recruitment of T cell subsets. Importantly, cross-talk between TLRs can influence this system in several ways including augmenting or suppressing the immune response. As a consequence of their pivotal role, TLR responses need to be tightly controlled by associated negative regulators or negative feedback loops to prevent detrimental effects from TLRs overactivation. This review focuses on describing the involvement of TLRs in the development of skin infections and inflammatory diseases, and highlights the potential application of TLR agonists or antagonists in these skin diseases.

  7. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8⁺ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection.

    PubMed

    Bandyopadhyay, Syamdas; Kar Mahapatra, Santanu; Paul Chowdhury, Bidisha; Kumar Jha, Mukesh; Das, Shibali; Halder, Kuntal; Bhattacharyya Majumdar, Suchandra; Saha, Bhaskar; Majumdar, Subrata

    2015-01-01

    Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL.

  8. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8+ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection

    PubMed Central

    Bandyopadhyay, Syamdas; Kar Mahapatra, Santanu; Paul Chowdhury, Bidisha; Kumar Jha, Mukesh; Das, Shibali; Halder, Kuntal; Bhattacharyya Majumdar, Suchandra; Saha, Bhaskar; Majumdar, Subrata

    2015-01-01

    Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL. PMID:26559815

  9. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection.

    PubMed

    Noto, Michael J; Boyd, Kelli L; Burns, William J; Varga, Matthew G; Peek, Richard M; Skaar, Eric P

    2015-10-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9(-/-) mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9(-/-) mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii.

  10. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection

    PubMed Central

    Noto, Michael J.; Boyd, Kelli L.; Burns, William J.; Varga, Matthew G.; Peek, Richard M.

    2015-01-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9−/− mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9−/− mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii. PMID:26238713

  11. Acute toll-like receptor 4 activation impairs rat renal microvascular autoregulatory behaviour.

    PubMed

    Van Beusecum, J P; Zhang, S; Cook, A K; Inscho, E W

    2017-05-25

    Little is known about how toll-like receptor 4 (TLR4) influences the renal microvasculature. We hypothesized that acute TLR4 stimulation with lipopolysaccharide (LPS) impairs afferent arteriole autoregulatory behaviour, partially through reactive oxygen species (ROS). We assessed afferent arteriole autoregulatory behaviour after LPS treatment (1 mg kg(-1) ; i.p.) using the in vitro blood-perfused juxtamedullary nephron preparation. Autoregulatory behaviour was assessed by measuring diameter responses to stepwise changes in renal perfusion pressure. TLR4 expression was assessed by immunofluorescence, immunohistochemistry and Western blot analysis in the renal cortex and vasculature. Baseline arteriole diameter at 100 mmHg averaged 15.2 ± 1.2 μm and 12.2 ± 1.0 μm for control and LPS groups (P < 0.05) respectively. When perfusion pressure was increased in 15 mmHg increments from 65 to 170 mmHg, arteriole diameter in control kidneys decreased significantly to 69 ± 6% of baseline diameter. In the LPS-treated group, arteriole diameter remained essentially unchanged (103 ± 9% of baseline), indicating impaired autoregulatory behaviour. Pre-treatment with anti-TLR4 antibody or the TLR4 antagonist, LPS-RS, preserved autoregulatory behaviour during LPS treatment. P2 receptor reactivity was normal in control and LPS-treated rats. Pre-treatment with Losartan (angiotensin type 1 receptor blocker; (AT1 ) 2 mg kg(-1) ; i.p.) increased baseline afferent arteriole diameter but did not preserve autoregulatory behaviour in LPS-treated rats. Acute exposure to Tempol (10(-3) mol L(-1) ), a superoxide dismutase mimetic, restored pressure-mediated vasoconstriction in kidneys from LPS-treated rats. These data demonstrate that TLR4 activation impairs afferent arteriole autoregulatory behaviour, partially through ROS, but independently of P2 and AT1 receptor activation. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Toll-like receptor 4 polymorphisms in dengue virus-infected children.

    PubMed

    Djamiatun, Kis; Ferwerda, Bart; Netea, Mihai G; van der Ven, André J A M; Dolmans, Wil M V; Faradz, Sultana M H

    2011-08-01

    Differential viral recognition by cells bearing Toll-like receptor 4 (TLR4) polymorphisms Asp299Gly and Thr399Ile may influence susceptibility and severity of dengue virus infection. In central Java, Indonesia, we investigated 201 children with dengue hemorrhagic fever (DHF) and 179 healthy controls. Patients and controls were mostly ethnic Javanese. A nearly complete cosegregation of the two mutations was observed. The TLR4 299/399 genotype was found in five patients and four controls. Prevalence of the TLR4 299/399 genotype did not differ significantly between controls and DHF patients or between patients with different severities of DHF. Also, vascular leakage in patients with different TLR4 genotypes did not differ. Thus, the 299/399 TLR4 haplotype has only minor influence on susceptibility and severity of complicated dengue virus infection.

  13. Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients.

    PubMed

    Zayed, Rania A; Omran, Dalia; Mokhtar, Doha A; Zakaria, Zinab; Ezzat, Sameera; Soliman, Mohamed A; Mobarak, Lamiaa; El-Sweesy, Hossam; Emam, Ghada

    2017-01-16

    Toll-like receptors (TLRs) are recognized as fundamental contributors to the immune system function against infections. Hepatitis C virus (HCV) infection represents a global health problem especially in Egypt having the highest HCV prevalence worldwide where HCV infection is a continuing epidemic. The aim of the present study was to investigate the possible association between genetic variation in TLR-3 and TLR-9 and HCV infection and hepatic fibrosis in chronic HCV-positive Egyptian patients. The present study included 100 naïve chronic HCV-positive patients and 100 age- and sex-matched healthy controls. Genotyping of TLR-3 (_7 C/A [rs3775296]), TLR-3 (c.1377C/T [rs3775290]) and TLR-9 (1237T/C [rs5743836]) were done by polymerase chain reaction restriction fragment length polymorphism technique. Frequency of polymorphic genotypes in TLR-3 (_7 C/A), TLR-3 (c.1377C/T) and TLR-9 (1237T/C) were not significantly different between studied HCV-positive patients and controls with P values 0.121, 0.112, and 0.683, respectively. TLR-3 c.1377 T-allele was associated with advanced stage of hepatic fibrosis (P = 0.003).

  14. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection.

    PubMed

    Darville, Toni; O'Neill, Joshua M; Andrews, Charles W; Nagarajan, Uma M; Stahl, Lynn; Ojcius, David M

    2003-12-01

    The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.

  15. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons.

    PubMed

    Rajbhandari, Labchan; Tegenge, Million Adane; Shrestha, Shiva; Ganesh Kumar, Nishant; Malik, Adeel; Mithal, Aditya; Hosmane, Suneil; Venkatesan, Arun

    2014-12-01

    Microglia are rapidly activated in the central nervous system (CNS) in response to a variety of injuries, including inflammation, trauma, and stroke. In addition to modulation of the innate immune response, a key function of microglia is the phagocytosis of dying cells and cellular debris, which can facilitate recovery. Despite emerging evidence that axonal debris can pose a barrier to regeneration of new axons in the CNS, little is known of the cellular and molecular mechanisms that underlie clearance of degenerating CNS axons. We utilize a custom micropatterned microfluidic system that enables robust microglial-axon co-culture to explore the role of Toll-like receptors (TLRs) in microglial phagocytosis of degenerating axons. We find that pharmacologic and genetic disruption of TLR4 blocks induction of the Type-1 interferon response and inhibits phagocytosis of axon debris in vitro. Moreover, TLR4-dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. In vivo, microglial phagocytosis of CNS axons undergoing Wallerian degeneration in a dorsal root axotomy model is impaired in adult mice in which TLR4 has been deleted. Since purinergic receptors can influence TLR4-mediated signaling, we also explored a role for the microglia P2 receptors and found that the P2X7R contributes to microglial clearance of degenerating axons. Overall, we identify TLR4 as a key player in axonal debris clearance by microglia, thus creating a more permissive environment for axonal outgrowth. Our findings have significant implications for the development of protective and regenerative strategies for the many inflammatory, traumatic, and neurodegenerative conditions characterized by CNS axon degeneration.

  16. Impaired Innate COPD Alveolar Macrophage Responses and Toll-Like Receptor-9 Polymorphisms

    PubMed Central

    Berenson, Charles S.; Kruzel, Ragina L.; Wrona, Catherine T.; Mammen, Manoj J.; Sethi, Sanjay

    2015-01-01

    Background Dysfunctional innate responses of alveolar macrophages to nontypeable Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae contribute to morbidity in chronic obstructive pulmonary disease (COPD). Our earlier studies discovered impaired COPD alveolar macrophage responses to Toll-like receptor (TLR) ligands of nontypeable H. influenzae and provide rationale for further evaluation of TLR signaling. While the role of TLR single nucleotide polymorphisms is increasingly recognized in inflammatory diseases, TLR single nucleotide polymorphisms in COPD have only recently been explored. We hypothesized that specific TLR polymorphisms are associated with dysfunctional innate immune COPD alveolar macrophage responses and investigated polymorphisms of TLR2(Arg753Gln), TLR4(Thr399Ile; Asp299Gly), and TLR9(T1486C; T1237C). Methods DNA was purified from cells of 1) healthy nonsmokers (n = 20); 2) COPD ex-smokers (n = 83); 3) COPD active smokers (n = 93). DNA amplifications (polymerase chain reaction) were performed for each SNP. Alveolar macrophages from each group were incubated with nontypeable H. influenzae, M. catarrhalis and S. pneumoniae. Cytokine induction of macrophage supernatants was measured and the association with TLR single nucleotide polymorphism expression was determined. Results No significant inter-group differences in frequency of any TLR SNP existed. However both TLR9 single nucleotide polymorphisms were expressed in high frequency. Among COPD ex-smokers, diminished IL-8 responsiveness to nontypeable H. influenzae, M. catarrhalis and S. pneumoniae was strongly associated with carriage of TLR9(T1237C) (p = 0.02; p = 0.008; p = 0.02), but not TLR9(T1486C). Carriage of TLR9(T1237C), but not TLR9(T1486C), correlated with diminished FEV1%predicted (p = 0.037). Conclusion Our results demonstrate a notable association of TLR9(T1237C) expression with dysfunctional innate alveolar macrophage responses to respiratory pathogens and with

  17. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    PubMed Central

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  18. Divergent functions of Toll-like receptors during bacterial lung infections.

    PubMed

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L; Downey, Gregory P; Jeyaseelan, Samithamby

    2014-10-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.

  19. Divergent Functions of Toll-like Receptors during Bacterial Lung Infections

    PubMed Central

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L.; Downey, Gregory P.

    2014-01-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4+ T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain–like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs. PMID:25033332

  20. Naturally occurring Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12) polymorphisms are not associated with Toxoplasma gondii infection in wild wood mice.

    PubMed

    Morger, Jennifer; Bajnok, Jaroslav; Boyce, Kellyanne; Craig, Philip S; Rogan, Michael T; Lun, Zhao-Rong; Hide, Geoff; Tschirren, Barbara

    2014-08-01

    Toxoplasma gondii is a highly successful parasite with a worldwide prevalence. Small rodents are the main intermediate hosts, and there is growing evidence that T. gondii modifies their behaviour. Chronically infected rodents show impaired learning capacity, enhanced activity, and, most importantly, a reduction of the innate fear towards cat odour. This modification of host behaviour ensures a successful transmission of T. gondii from rodents to felids, the definitive hosts of the parasite. Given the negative fitness consequences of this behavioural manipulation, as well as an increased mortality during the acute phase of infection, we expect rodents to evolve potent resistance mechanisms that prevent or control infection. Indeed, studies in laboratory mice have identified candidate genes for T. gondii resistance. Of particular importance appear to be the innate immune receptors Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12), which recognise T. gondii profilin and initiate immune responses against the parasite. Here we analyse the genetic diversity of TLR11 and TLR12 in a natural population of wood mice (Apodemus sylvaticus), and test for associations between TLR11 and TLR12 polymorphisms and T. gondii infection, as well as for epistatic interactions between TLR11 and TLR12 on infection status. We found that both TLR11 and TLR12 were polymorphic in wood mice, with four and nine amino acid haplotypes, respectively. However, we found no evidence that TLR11 or TLR12 genotypes or haplotypes were significantly associated with Toxoplasma infection. Despite the importance of TLR11 and TLR12 in T. gondii recognition and immune defence initiation, naturally occurring polymorphisms at TLR11 and TLR12 thus appear to play a minor role in mediating qualitative resistance to T. gondii in natural host populations of A. sylvaticus. This highlights the importance of assessing the role of candidate genes for parasite resistance identified in a laboratory setting in

  1. Association of Toll-Like Receptor 3 Single-Nucleotide Polymorphisms and Hepatitis C Virus Infection

    PubMed Central

    Al-Anazi, Mashael R.; Matou-Nasri, Sabine; Abdo, Ayman A.; Sanai, Faisal M.; Alkahtani, Saad; Alarifi, Saud; Alkahtane, Abdullah A.; Al-Yahya, Hamad; Ali, Daoud; Alessia, Mohammed S.; Alshahrani, Bushra; Al-Ahdal, Mohammed N.

    2017-01-01

    Toll-like receptor 3 (TLR3) plays a key role in innate immunity by recognizing pathogenic, double-stranded RNAs. Thus, activation of TLR3 is a major factor in antiviral defense and tumor eradication. Although downregulation of TLR3 gene expression has been mainly reported in patients infected with hepatitis C virus (HCV), the influence of TLR3 genotype on the risk of HCV infection, HCV-related cirrhosis, and/or hepatocellular carcinoma (HCC) remains to be determined. Single-nucleotide polymorphisms (SNPs) within the TLR3 gene and their associations with HCV-related disease risk were investigated in a Saudi Arabian population in this study. Eight TLR3 SNPs were analyzed in 563 patients with HCV, which consisted of 437 patients with chronic HCV infections, 88 with HCV-induced liver cirrhosis, and 38 with HCC. A total of 599 healthy control subjects were recruited to the study. Among the eight TLR3 SNPs studied, the rs78726532 SNP was strongly associated with HCV infection when compared to that in healthy control subjects. The rs5743314 was also strongly associated with HCV-related liver disease progression (cirrhosis and HCC). In summary, these results indicate that distinct genetic variants of TLR3 SNPs are associated with HCV infection and HCV-mediated liver disease progression in the Saudi Arabian population. PMID:28127569

  2. Regulation of toll like receptors in intestinal epithelial cells by stress and Toxoplasma gondii infection

    PubMed Central

    Gopal, R.; Birdsell, D.; Monroy, F. P.

    2008-01-01

    SUMMARY Intestinal epithelial cells (IECs) form a barrier between invading microorganisms and the underlying host tissues. IECs express Toll-like receptors (TLRs) that recognize specific molecular signatures on microbes which activate intracellular signaling pathways leading to production of proinflammatory cytokines and chemokines. Stress hormones play an important role in modulation of proinflammatory cytokines and downregulation of immune responses. Here we demonstrated that expression levels of TLR-2, TLR-4, TLR-9 and TLR-11 were significantly increased in mouse IECs following infection with Toxoplasma gondii on day 8 post infection. In contrast, expression of TLRs was significantly decreased in infected mice subjected to cold water stress (CWS+INF). Expression of TLR-9 and TLR-11 in the mouse MODE-K cell line was significantly increased after infection. Expression of TLR-9 and TLR-11 in cells exposed to norepinephrine (NE) and parasites was significantly decreased when compared to cells exposed to parasites only. A significant increase was observed in SIGIRR, a negative regulator of TLRs in the CWS+INF group when compared to the INF group. Stress components were able to decrease expression levels of TLRs in IECs, decrease parasite load, and increase expression of a negative regulator thereby ameliorating intestinal inflammatory responses commonly observed during per oral T. gondii infection in C57BL/6 mice. PMID:19067837

  3. Role of Toll-like receptors in Helicobacter pylori infection and immunity

    PubMed Central

    Smith, Sinéad M

    2014-01-01

    The gram-negative bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world’s population. Although infection induces an immune response that contributes to chronic gastric inflammation, the response is not sufficient to eliminate the bacterium. H. pylori infection causes peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Disease outcome is linked to the severity of the host inflammatory response. Gastric epithelial cells represent the first line of innate immune defence against H. pylori, and respond to infection by initiating numerous cell signalling cascades, resulting in cytokine induction and the subsequent recruitment of inflammatory cells to the gastric mucosa. Pathogen recognition receptors of the Toll-like receptor (TLR) family mediate many of these cell signalling events. This review discusses recent findings on the role of various TLRs in the recognition of H. pylori in distinct cell types, describes the TLRs responsible for the recognition of individual H. pylori components and outlines the influence of innate immune activation on the subsequent development of the adaptive immune response. The mechanistic identification of host mediators of H. pylori-induced pathogenesis has the potential to reveal drug targets and opportunities for therapeutic intervention or prevention of H. pylori-associated disease by means of vaccines or immunomodulatory therapy. PMID:25133016

  4. Toll-like receptors in prostate infection and cancer between bench and bedside

    PubMed Central

    Gambara, Guido; Cesaris, Paola; Nunzio, Cosimo; Ziparo, Elio; Tubaro, Andrea; Filippini, Antonio; Riccioli, Anna

    2013-01-01

    Toll-Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR-expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen-specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti- and pro-tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy. PMID:23551576

  5. Toll-like receptors and cytokines are upregulated during Helicobacter pylori infection in children.

    PubMed

    Lagunes-Servin, Hugo; Torres, Javier; Maldonado-Bernal, Carmen; Pérez-Rodríguez, Martha; Huerta-Yépez, Sara; Madrazo de la Garza, Armando; Muñoz-Pérez, Leopoldo; Flores-Luna, Lourdes; Ramón-García, Guillermo; Camorlinga-Ponce, Margarita

    2013-12-01

    Helicobacter pylori infection is mainly acquired during childhood, and establishes a chronic infection that may lead to peptic ulcer or gastric cancer during adulthood. Toll-like receptors (TLRs) are expressed by distinct cell types throughout the gastrointestinal tract, and play an important role in regulation of the innate immune response. Few works have addressed TLRs expression in gastric epithelia of adults, and scarce studies have done it in children. The aim of this work was to analyze the expression of TLR2, TLR4, TLR5, TLR9, and IL-8, IL-10 and TNF-α in the gastric mucosa of children with and without H. pylori infection. Gastric biopsies were collected by endoscopy from 50 children with recurrent abdominal pain, 25 with H. pylori infection and 25 without infection. In the gastric biopsies the expression of TLRs and cytokines was studied by immunohistochemistry, and the degree of mucosal inflammation was determined using the Sydney system. We found that H. pylori infection was associated with a significant increased expression of TLRs 2, 4, 5 and 9, although expression varied between surface epithelia and glands. Epithelial cells expressing IL-8, IL-10 and TNF-α were increased in gastric mucosa of children with H. pylori infection. This study shows the gastric epithelia of children respond to H. pylori infection by increasing the expression of TLR2, TLR4, TLR5, TLR9 and the cytokines IL-8, IL-10 and TNF-α. © 2013 John Wiley & Sons Ltd.

  6. Toll-Like Receptor 2 Is Required for Inflammatory Process Development during Leishmania infantum Infection

    PubMed Central

    Sacramento, Laís A.; da Costa, Jéssica L.; de Lima, Mikhael H. F.; Sampaio, Pedro A.; Almeida, Roque P.; Cunha, Fernando Q.; Silva, João S.; Carregaro, Vanessa

    2017-01-01

    Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2−/− mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2−/− neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection. PMID:28280488

  7. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection.

    PubMed

    Nemati, Maryam; Larussa, Tiziana; Khorramdelazad, Hossein; Mahmoodi, Merat; Jafarzadeh, Abdollah

    2017-06-01

    Toll like receptors (TLRs) are an essential subset of pathogen recognition receptors (PRRs) which identify the microbial components and contribute in the regulation of innate and adaptive immune responses against the infectious agents. The TLRs, especially TLR2, TLR4, TLR5 and TLR9, participate in the induction of immune response against H. pylori. TLR2 is expressed on a number of immune and non-immune cells and recognizes a vast broad of microbial components due to its potential to form heterodimers with other TLRs, including TLR1, TLR6 and TLR10. A number of H. pylori-related molecules may contribute to TLR2-dependent responses, including HP-LPS, HP-HSP60 and HP-NAP. TLR2 plays a pivotal role in regulation of immune response to H. pylori through activation of NF-κB and induction of cytokine expression in epithelial cells, monocytes/macrophages, dendritic cells, neutrophils and B cells. The TLR2-related immune response that is induced by H. pylori-derived components may play an important role regarding the outcome of the infection toward bacterial elimination, persistence or pathological reactions. The immunomodulatory and immunoregulatory roles of TLR2 during H. pylori infection were considered in this review. TLR2 could be considered as an interesting therapeutic target for treatment of H. pylori-related diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria.

    PubMed

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C; Beutler, Bruce

    2005-08-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C(16:1)) and oleate (C(18:1)), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1-a gene with numerous NF-kappaB elements in its promoter--is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria.

  9. A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria

    PubMed Central

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C.; Beutler, Bruce

    2005-01-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2) (K. Takeda and S. Akira, Cell. Microbiol. 5:143-153, 2003). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C16:1) and oleate (C18:1), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1—a gene with numerous NF-κB elements in its promoter—is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria. PMID:16040962

  10. Antagonistic effect of toll-like receptor signaling and bacterial infections on transplantation tolerance*

    PubMed Central

    Alegre, Maria-Luisa; Chen, Luqiu; Wang, Tongmin; Ahmed, Emily; Wang, Chyung-Ru; Chong, Anita

    2009-01-01

    The induction of donor-specific tolerance remains a major goal in the field of transplantation immunology. Therapies that target costimulatory molecules can induce tolerance to heart and pancreatic islet allografts in mouse models, but fail to do so following transplantation of skin or intestinal allografts. We have proposed that organs colonized by commensal bacteria such as skin, lung and intestine may be resistant to such therapies as a result of bacterial translocation at the time of transplantation, which may promote antigen-presenting cell (APC) maturation and the production of pro-inflammatory cytokines, consequently enhancing responses of alloreactive T cells. Our results indicate that the inability to sense signaling by most toll-like receptors (TLRs), as well as by interleukin (IL)-1R and IL-18R, as a result of genetic ablation of myeloid differentiation factor 88 (MyD88) promotes the acceptance of skin allografts. Conversely, TLR signals and infections by a model bacterium, Listeria monocytogenes (LM), at the time of transplantation can prevent the induction of transplantation tolerance. The effects of the TLR9 agonist CpG are MyD88-dependent, while the pro-rejection capacity of LM depends on the intracellular sensing of LM and the production of type I interferon (IFN). Therefore, transiently targeting these innate, pro-inflammatory pathways may have therapeutic value to promote transplantation tolerance. PMID:19424015

  11. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs)

    PubMed Central

    Behzadi, Elham

    2016-01-01

    Introduction Urinary Tract Infections (UTIs) are caused by different types of microbial agents such as uropathogenic Escherichia coli (UPEC) and Candida albicans. The presence of strong physical barriers may prevent the breach of pathogens into the urinary tract. However, sometimes the pathogenic microorganisms may pass through the barriers and stimulate the innate and adaptive responses. Among a variety of innate immune responses, Toll-Like Receptors (TLRs) are one of the most unique and interesting molecules regarding UTIs. Thus, the authors have focused their attention on the role of TLRs in urinary tract defense against pathogenic microbial agents such as UPEC and C.albicans through this literature review. Material and methods Several papers regarding UTIs and TLRs including original and review articles were searched by PubMed and Google Scholar. They were studied and the most important aspects in association with the role of TLRs in UTIs were extracted. Additionally, this paper was prepared using the experience of the authors. Results The TLRs 2, 4 and 5 are the most functional molecules that contribute to urinary tract defense system and UTIs. It is incredible that TLRs are able to detect and recognize different parts of microbial components relating to the same pathogen. Besides, the flexibility of the TLR molecules may lead to identification of different types of microorganisms with different signaling pathways. Conclusions Our knowledge associated with TLRs and their activities against microbial causative agents of UTIs may help us to prevent, control and treat UTIs at a higher quality level. PMID:28127459

  12. Toll-Like Receptor Gene Variants Associated with Bacterial Vaginosis among HIV-1 Infected Adolescents

    PubMed Central

    Royse, Kathryn E; Kempf, Mirjam-Colette; McGwin, Gerald; Wilson, Craig M; Tang, Jianming; Shrestha, Sadeep

    2012-01-01

    Bacterial vaginosis (BV) is a common vaginal disorder in women of reproductive age, especially among women with HIV-1 infection. Several bacterial products including lipopolysaccharides (LPS), lipoteichoic acids (LTA), and peptidoglycans (PGN) are stimulatory ligands for Toll-like receptors (TLRs), and recent evidence indicates the important role of variation in TLR genes for permitting overgrowth of gram negative and BV-type flora. We assessed whether genetic polymorphisms in five TLR genes (TLR1, TLR2, TLR4, TLR6, and TLR9) could be determinants of differential host immune responses to BV in 159 HIV-1-positive African American adolescents enrolled in the Reaching for Excellence in Adolescent Care and Health (REACH) study. BV was assessed biannually and diagnosed either by a Nugent Score of at least 7 of 10, or using the Amsel Criteria. Cox-proportional hazards regression models, adjusted for concurrent Chlamydia and Gonorrhea infections, douching, and absolute CD4 cell count, were used to identify host genetic factors associated with BV. Two SNPs were associated with BV as diagnosed by the Nugent Score and the combined criteria: a minor allele G of rs4986790 (frequency=0.07), which encodes a His to Tyr substitution in TLR4 (HR=1.47, 95% CI 1.15–1.87) and rs187084 (frequency=0.24) on TLR9. The minor allele of rs1898830 (frequency=0.13) was associated with an increased hazard of BV defined by the Amsel criteria (HR=1.86, 95%CI 1.17–2.95). Further studies are warranted to confirm the associations of TLR gene variants and also to understand the underlying pathways and immunogenetic correlates in the context of HIV-1 infection. PMID:23021866

  13. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin

    PubMed Central

    Jang, Hyun-Ju; Hwang, Daniel H.

    2015-01-01

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction. PMID:26522062

  14. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin.

    PubMed

    Kim, Jeong-A; Jang, Hyun-Ju; Hwang, Daniel H

    2015-11-01

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction.

  15. Anti-viral role of toll like receptor 4 in hepatitis B virus infection: An in vitro study

    PubMed Central

    Das, Dipanwita; Sarkar, Neelakshi; Sengupta, Isha; Pal, Ananya; Saha, Debraj; Bandopadhyay, Manikankana; Das, Chandrima; Narayan, Jimmy; Singh, Shivram Prasad; Chakravarty, Runu

    2016-01-01

    AIM Toll like receptors plays a significant anti-viral role in different infections. The aim of this study was to look into the role of toll like receptor 4 (TLR4) in hepatitis B virus (HBV) infection. METHODS Real time PCR was used to analyze the transcription of TLR4 signaling molecules, cell cycle regulators and HBV DNA viral load after triggering the HepG2.2.15 cells with TLR4 specific ligand. Nuclear factor (NF)-κB translocation on TLR4 activation was analyzed using microscopic techniques. Protein and cell cycle analysis was done using Western Blot and FACS respectively. RESULTS The present study shows that TLR4 activation represses HBV infection. As a result of HBV suppression, there are several changes in host factors which include partial release in G1/S cell cycle arrest and changes in host epigenetic marks. Finally, it was observed that anti-viral action of TLR4 takes place through the NF-κB pathway. CONCLUSION The study shows that TLR4 activation in HBV infection brings about changes in hepatocyte microenvironment and can be used for developing a promising therapeutic target in future. PMID:28058014

  16. Impaired toll-like receptor signalling in peripheral B cells from newly diagnosed type-2 diabetic subjects.

    PubMed

    Madhumitha, Haridoss; Mohan, Viswanathan; Kumar, Nathella P; Pradeepa, Rajendra; Babu, Subash; Aravindhan, Vivekanandhan

    2015-12-01

    Toll-like receptors (TLRs) under diabetic conditions trigger inflammation and impair immunity. In the present study, we looked at the expression of TLRs (2 and 4) and their adaptors in Normal Glucose Tolerant (NGT), Newly Diagnosed Type-2 Diabetic (NDD) and Known Type-2 Diabetic (KDM) subjects. We also estimated TLR induced cytokine secretion, cellular activation and apoptosis. Surface expression of TLR2 and 4 was significantly reduced in the B cells of the NDD subjects and was associated with decreased cellular activation and cytokine secretion (TNF-α and IL-6). This impairment was not due to B cell deficiency or apoptosis or immunosuppressive cytokine (IL-10 and TGF-β) secretion. However, the upregulation of immunomodulatory enzymes (Arg-1, HO-1 and IDO) could probably account for the reduced TLR expression. The defective TLR signalling was largely ameliorated in the KDM group which might be due to the use the anti-diabetic drugs which have anti-inflammatory effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination

    PubMed Central

    Arunachalam, Prabhu S.; Mishra, Ria; Badarinath, Krithika; Selvam, Deepak; Payeli, Sravan K.; Stout, Richard R.; Ranga, Udaykumar

    2016-01-01

    The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization. PMID:27658623

  18. Genetic and epigenetic alterations in Toll like receptor 2 and wound healing impairment in type 2 diabetes patients.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2015-03-01

    Persistent hyperglycemic microenvironment in type 2 diabetes mellitus (T2DM) leads to the development of secondary complications like wound healing impairment. Proper co-ordination of innate immune system plays an integral role in wound healing. Toll like receptors (TLRs) are prominent contributors for the induction of the innate immune and inflammation response. TLR2 is an important extracellular member in mammalian TLR family and has been shown to be a potent player in the wound healing mechanism. Expressional status of TLR2 was seen in wounds of T2DM cases with respect to the severity of wounds in 110 human lower extremity wounds. The methylation status of TLR2 promoter was also examined. Although TLR2 transcripts were downregulated in T2DM wounds compared to control, their levels tend to increase with the severity of T2DM wounds. The methylation status of TLR2 gene promoter was not significantly different among different grades of wounds in T2DM subjects. The CpG sites investigated were totally or partially methylated in majority of DFU cases. TLR2 down regulation in wounds of T2DM patients compared to non diabetic patients may lead to development of non healing chronic ulcers in them. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Human TRAF3 adaptor molecule deficiency leads to impaired Toll-like receptor 3 response and susceptibility to herpes simplex encephalitis

    PubMed Central

    de Diego, Rebeca Pérez; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Puel, Anne; Plancoulaine, Sabine; Picard, Capucine; Herman, Melina; Cardon, Annabelle; Durandy, Anne; Bustamante, Jacinta; Vallabhapurapu, Sivakumar; Bravo, Jerónimo; Warnatz, Klaus; Chaix, Yves; Cascarrigny, Françoise; Lebon, Pierre; Rozenberg, Flore; Karin, Michael; Tardieu, Marc; Al-Muhsen, Saleh; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent

    2010-01-01

    Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple receptors that induce interferon-α (IFN-α), IFN–β and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here we reported the autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele was a loss-of-expression, loss-of-function, dominant-negative phenotype, and was associated with impaired, but not abolished TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency was associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3. Highlight sentence Autosomal dominant TRAF3 deficiency is a genetic etiology of herpes simplex encephalitis. Highlight sentence R118W TRAF3 allele is loss-of-function, loss-of-expression, and dominant-negative. Highlight sentence Human TRAF3 deficiency impairs the TLR3-dependent induction of anti-viral interferons. PMID:20832341

  20. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses.

    PubMed

    Shinya, Kyoko; Okamura, Tadashi; Sueta, Setsuko; Kasai, Noriyuki; Tanaka, Motoko; Ginting, Teridah E; Makino, Akiko; Eisfeld, Amie J; Kawaoka, Yoshihiro

    2011-03-04

    Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.

  1. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation.

    PubMed

    Costello, Derek A; Lyons, Anthony; Denieffe, Stephanie; Browne, Tara C; Cox, F Fionnuala; Lynch, Marina A

    2011-10-07

    The membrane glycoprotein CD200 is expressed on several cell types, including neurons, whereas expression of its receptor, CD200R, is restricted principally to cells of the myeloid lineage, including microglia. The interaction between CD200 and CD200R maintains microglia and macrophages in a quiescent state; therefore, CD200-deficient mice express an inflammatory phenotype exhibiting increased macrophage or microglial activation in models of arthritis, encephalitis, and uveoretinitis. Here, we report that lipopolysaccharide (LPS) and Pam(3)CysSerLys(4) exerted more profound effects on release of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNFα), in glia prepared from CD200(-/-) mice compared with wild type mice. This effect is explained by the loss of CD200 on astrocytes, which modulates microglial activation. Expression of Toll-like receptors 4 and 2 (TLR4 and -2) was increased in glia prepared from CD200(-/-) mice, and the evidence indicates that microglial activation, assessed by the increased numbers of CD11b(+) cells that stained positively for both MHCII and CD40, was enhanced in CD200(-/-) mice compared with wild type mice. These neuroinflammatory changes were associated with impaired long term potentiation (LTP) in CA1 of hippocampal slices prepared from CD200(-/-) mice. One possible explanation for this is the increase in TNFα in hippocampal tissue prepared from CD200(-/-) mice because TNFα application inhibited LTP in CA1. Significantly, LPS and Pam(3)CysSerLys(4), at concentrations that did not affect LTP in wild type mice, inhibited LTP in slices prepared from CD200(-/-) mice, probably due to the accompanying increase in TLR2 and TLR4. Thus, the neuroinflammatory changes that result from CD200 deficiency have a negative impact on synaptic plasticity.

  2. Toll-Like Receptor Stimulation Induces Nondefensin Protein Expression and Reverses Antibiotic-Induced Gut Defense Impairment

    PubMed Central

    Wu, Ying-Ying; Hsu, Ching-Mei; Chen, Pei-Hsuan; Fung, Chang-Phone

    2014-01-01

    Prior antibiotic exposure is associated with increased mortality in Gram-negative bacteria-induced sepsis. However, how antibiotic-mediated changes of commensal bacteria promote the spread of enteric pathogenic bacteria in patients remains unclear. In this study, the effects of systemic antibiotic treatment with or without Toll-like receptor (TLR) stimulation on bacterium-killing activity, antibacterial protein expression in the intestinal mucosa, and bacterial translocation were examined in mice receiving antibiotics with or without oral supplementation of dead Escherichia coli or Staphylococcus aureus. We developed a systemic ampicillin, vancomycin, and metronidazole treatment protocol to simulate the clinical use of antibiotics. Antibiotic treatment decreased the total number of bacteria, including aerobic bacteria belonging to the family Enterobacteriaceae and the genus Enterococcus as well as organisms of the anaerobic genera Lactococcus and Bifidobacterium in the intestinal mucosa and lumen. Antibiotic treatment significantly decreased the bacterium-killing activity of the intestinal mucosa and the expression of non-defensin-family proteins, such as RegIIIβ, RegIIIγ, C-reactive protein-ductin, and RELMβ, but not the defensin-family proteins, and increased Klebsiella pneumoniae translocation. TLR stimulation after antibiotic treatment increased NF-κB DNA binding activity, nondefensin protein expression, and bacterium-killing activity in the intestinal mucosa and decreased K. pneumoniae translocation. Moreover, germfree mice showed a significant decrease in nondefensin proteins as well as intestinal defense against pathogen translocation. Since TLR stimulation induced NF-κB DNA binding activity, TLR4 expression, and mucosal bacterium-killing activity in germfree mice, we conclude that the commensal microflora is critical in maintaining intestinal nondefensin protein expression and the intestinal barrier. In turn, we suggest that TLR stimulation induces

  3. Impaired interferon-γ production in response to live bacteria and Toll-like receptor agonists in patients with ataxia telangiectasia

    PubMed Central

    Reichenbach, J; Schubert, R; Feinberg, J; Beck, O; Rosewich, M; Rose, M A; Zielen, S

    2006-01-01

    Ataxia telangiectasia (AT) is a pleiotropic autosomal recessive neurodegenerative disorder with associated immunodeficiency and cancer predisposition, caused by mutational inactivation of the ATM gene. Early death usually results from lymphoreticular malignancy or recurrent, chronic respiratory infections. Immune deficiency of AT patients is heterogeneous and involves both humoral and cellular responses. Reports on the number and integrity of immunocompetent cells in AT are conflicting. In the early phase of infection, the interleukin (IL)-12/interferon (IFN)-γ axis plays a crucial role in first-line defence against pathogens. In a whole blood assay we studied the IL-12/IFN-γ axis in the immune response of AT cells to the Toll-like receptor agonists lipopolysaccharide and heat-killed Staphylococcus aureus, as well as whole live M. bovis bacille Calmette–Guérin (BCG). The function of AT antigen-presenting cells was normal in terms of IL-12 production, while IFN-γ production by T and natural killer (NK) cells was severely impaired, even in the presence of adequate co-stimulation by exogenous IL-12. PMID:17100756

  4. Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus.

    PubMed

    Xu, Yang; Zhang, Tingting; Xu, Qianqian; Han, Zongxi; Liang, Shuling; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-11-01

    The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian β-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.

  5. Effects of Toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells.

    PubMed

    Sun, Xiuning; Shi, Lihong; Zhang, Haoyun; Li, Ruifang; Liang, Ruiwen; Liu, Zhijun

    2015-03-01

    In this study, we aimed to investigate the effect of herpes simplex virus type-1 (HSV-1) infection on the phosphorylation of interferon regulatory factor 3 (IRF3) and the expression of interferon-β (IFN-β), as well as to clarify the functions of toll-like receptor 3 (TLR3) in mouse neural stem cells (NSCs) infected with HSV-1. In HSV-1-infected cultured NSCs, immunofluorescence, reverse transcription - polymerase chain reaction, Western blot, and ELISA were performed to reveal the expression patterns of TLR3, IRF3, and IFN-β. Then, lentivirus-mediated RNA interference (RNAi) was used to block the expression of TLR3, and its effect on host resistance to HSV-1 infection was investigated. Under uninfected conditions, NSCs expressed TLR3 and phosphorylated IRF3, but after infection, the expression level of TLR3 was upregulated and the phosphorylation level of IRF3 in the nucleus was significantly enhanced, while IFN-β was also expressed. After TLR3 expression was blocked by lentivirus-mediated RNAi, IRF3 phosphorylation and IFN-β expression were downregulated. Therefore, HSV-1 upregulated the expression of TLR3 in NSCs and promoted nuclear translocation after IRF3 was phosphorylated to induce IFN-β expression. TLR3 exhibited an anti-HSV-1 infection capacity via innate immune functions.

  6. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4).

    PubMed

    Derda, Monika; Wojtkowiak-Giera, Agnieszka; Kolasa-Wołosiuk, Agnieszka; Kosik-Bogacka, Danuta; Hadaś, Edward; Jagodziński, Paweł P; Wandurska-Nowak, Elżbieta

    2016-06-01

    Toll-like receptors (TLRs) play a key role in the innate immune responses to a variety of pathogens including parasites. TLRs are among the most highly conserved in the evolution of the receptor family, localized mainly on cells of the immune system and on other cells such as lung cells. The aim of this study was to determine for the first time the expression of TLR2 and TLR4 in the lung of Acanthamoeba spp. infected mice using quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemical (IHC) staining. The Acanthamoeba spp. were isolated from a patient with Acanthamoeba keratitis (AK) (strain Ac 55) and from environmental samples of water from Malta Lake (Poznań, Poland - strain Ac 43). We observed a significantly increased level of expression of TLR2 as well as TLR4 mRNA from 2 to 30 days post Acanthamoeba infection (dpi) in the lungs of mice infected with Ac55 (KP120880) and Ac43 (KP120879) strains. According to our observations, increased TLR2 and TLR4 expression in the pneumocytes, interstitial cells and epithelial cells of the bronchial tree may suggest an important role of these receptors in protective immunity against Acanthamoeba infection in the lung. Moreover, increased levels of TLR2 and TLR4 mRNA expression in infected Acanthamoeba mice may suggest the involvement of these TLRs in the recognition of this amoeba pathogen-associated molecular pattern (PAMP).

  7. Polymorphism in the promoter region of the Toll-like receptor 9 gene and cervical human papillomavirus infection.

    PubMed

    Oliveira, Lucas Boeno; Louvanto, Karolina; Ramanakumar, Agnihotram V; Franco, Eduardo L; Villa, Luisa L

    2013-08-01

    Polymorphism in the Toll-like receptor (TLR) 9 gene has been shown to have a significant role in some diseases; however, little is known about its possible role in the natural history of human papillomavirus (HPV) infections. We investigated the association between a single-nucleotide polymorphism (SNP) (rs5743836) in the promoter region of TLR9 (T1237C) and type-specific HPV infections. Specimens were derived from a cohort of 2462 women enrolled in the Ludwig-McGill Cohort Study. We randomly selected 500 women who had a cervical HPV infection detected at least once during the study as cases. We defined two control groups: (i) a random sample of 300 women who always tested HPV negative, and (ii) a sample of 234 women who were always HPV negative but had a minimum of ten visits during the study. TLR9 genotyping was performed using bidirectional PCR amplification of specific alleles. Irrespective of group, the WT homozygous TLR9 genotype (TT) was the most common form, followed by the heterozygous (TC) and the mutant homozygous (CC) forms. There were no consistent associations between polymorphism and infection risk, either overall or by type or species. Likewise, there were no consistently significant associations between polymorphism and HPV clearance or persistence. We concluded that this polymorphism in the promoter region of TLR9 gene does not seem to have a mediating role in the natural history of the HPV infection.

  8. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection.

    PubMed

    Marinho, Fábio A V; de Paula, Rafaella R; Mendes, Aline C; de Almeida, Leonardo A; Gomes, Marco T R; Carvalho, Natália B; Oliveira, Fernanda S; Caliari, Marcelo V; Oliveira, Sergio C

    2013-09-01

    Mycobacterium avium has been reported to signal through both Toll-like receptor (TLR2) and TLR9. To investigate the role of TLR6 in innate immune responses to M. avium, TLR6, MyD88, TLR2, and TLR2/6 KO mice were infected with this pathogen. Bacterial burdens were higher in the lungs and livers of infected TLR6, TLR2, TLR2/6, and MyD88 KO mice compared with those in C57BL/6 mice, which indicates that TLR6 is required for the efficient control of M. avium infection. However, TLR6 KO spleen cells presented with normal M. avium induced IFN-γ responses as measured by ELISA and flow cytometry. In contrast, the production of IFN-γ in lung tissue was diminished in all studied KO mice. Furthermore, only MyD88 deficiency reduced granuloma areas in mouse livers. Moreover, we determined that TLR6 plays an important role in controlling bacterial growth within macrophages and in the production of TNF-α, IL-12, and IL-6 by M. avium infected DCs. Finally, the lack of TLR6 reduced activation of MAPKs and NF-κB in DCs. In summary, TLR6 is required for full resistance to M. avium and for the activation of DCs to produce proinflammatory cytokines.

  9. Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection.

    PubMed

    Cezário, Glaucia Aparecida Gomes; de Oliveira, Larissa Ragozo Cardoso; Peresi, Eliana; Nicolete, Vanessa Cristina; Polettini, Jossimara; de Lima, Carlos Roberto Gonçalves; Gatto, Mariana; Calvi, Sueli Aparecida

    2011-08-01

    Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.

  10. Expression of Toll-like receptor 4 in lungs of immune-suppressed rat with Acinetobacter baumannii infection

    PubMed Central

    Wang, Yanmei; Zhang, Xiaohong; Feng, Xuanlin; Liu, Xiaoshu; Deng, Lei; Liang, Zong-An

    2016-01-01

    Toll-like receptor 4 (TLR4) is involved in the regulation of host responses to Acinetobacter baumannii (A. baumannii). The aim of the present study was to examine the function of TLR4 in lung inflammation in immune-suppressed rats with A. baumannii infection. A total of 72 Sprague-Dawley male rats were randomly divided into the control, A. baumannii infection and immune-suppressed infection groups. The immune-suppressed infection group was treated with 100 mg/kg hydrocortisone by subcutaneous injection every other day for 2 weeks prior to A. baumannii infection. Lung tissue was obtained on the 3rd and 7th day after tracheal inoculation with A. baumannii. The expression of TLR4 in bronchial and alveolar epithelial cells, and alveolar macrophage was examined using immunohistochemistry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid were detected using ELISA. The results showed that in the control group, the expression of TLR4 was upregulated in the bronchial and alveolar epithelial, and alveolar macrophages, and the levels of IL-6 and TNF-α were increased in the early phase of A. baumannii infection. On the 7th day, no significant difference in the levels of IL-6 and TNF-α was observed between the A. baumannii infection and control groups. Conversely, the expression of TLR4 was downregulated in the immune-suppressed group, and the levels of IL-6 and TNF-α were reduced on the 3rd day after infection. In the subsequent observation period, the expression of TLR4 was upregulated and the levels of IL-6 and TNF-α were increased. In conclusion, the results show a critical role of TLR4 in mediating effective immune response in the lung of rat with A. baumannii infection. PMID:27703512

  11. TBX21 participates in innate immune response by regulating Toll-like receptor 2 expression in Streptococcus pneumoniae infections.

    PubMed

    Woo, C H; Shin, S G; Koh, S H; Lim, J H

    2014-10-01

    Nasopharyngeal carriage of Streptococcus pneumoniae (pneumococcus) plays an important role in the development of invasive diseases, and is also critically involved in setting up respiratory bacterial and viral infections. We previously reported that pneumococcus, one of the commonly carried bacteria in the nasopharynx, regulates non-typeable Haemophilus influenzae-induced inflammation by upregulating the expression of Toll-like receptor 2 (TLR2). However, the underlying molecular mechanisms by which TLR2 expression is regulated during pneumococcal infections have not yet been well characterized. TBX21 is an important transcription factor of adaptive immunity, but there is an increasing body of evidence pointing to a role in regulating innate immunity. The expression of TBX21 was reported in epithelial cells, but the expression and role of TBX21 in respiratory epithelium, especially for regulating TLR2, has not yet been studied. In this study, we found that pneumococcus upregulates TBX21 expression in the respiratory epithelium. The effect of pneumococcus on TBX21 expression was dependent on its cytoplasmic toxin, pneumolysin. In addition, epithelial TBX21 expression was not regulated by the gram-negative bacterium non-typeable Haemophilus influenzae, peptidoglycan or endotoxin. Deficiency of TBX21 in mice or knocking down TBX21 in epithelial cells suppressed pneumococcus-induced TLR2 expression, but not that of TLR4 or TLR9. These results indicate that the adaptive immune regulator TBX21 participates in regulating innate immune responses, through regulation of TLR2 expression during pneumococcal infections.

  12. [Toll-like receptor 2 R753Q polymorphisms are associated with an increased risk of infective endocarditis].

    PubMed

    Bustamante, Juan; Tamayo, Eduardo; Flórez, Santiago; Telleria, Juan J; Bustamante, Elena; López, Javier; San Román, J Alberto; Alvarez, F Javier

    2011-11-01

    The ability to respond to the ligands of toll-like receptors (TLR) could be affected by single nucleotide polymorphisms in TLR codifying genes. The influence of the polymorphisms TLR2 (R753Q, R677W), TLR4 (D299G, T399I) and CD14 (C-159T) was consecutively studied in 65 patients with infective endocarditis. The control group (n=66) consisted of healthy volunteers. All the polymorphisms were genotyped by means of restriction analysis after their amplification. An association between endocarditis and variants of TLR2 R753Q (P <.001) was observed, but no association with other polymorphisms was found. The TLR2 R753Q co-dominant (odds ratio=13.33), recessive (odds ratio=9.12) and dominant (odds ratio=3.65) genotypes showed a positive association with the infective endocarditis phenotype. The polymorphism TLR2 R753Q was associated with a greater susceptibility towards the development of infective endocarditis. Further studies are required to validate these results and identify other genetic risk factors.

  13. Genetic variation of toll-like receptor genes and infection by Mycobacterium avium ssp. paratuberculosis in Holstein-Friesian cattle.

    PubMed

    Ruiz-Larrañaga, O; Manzano, C; Iriondo, M; Garrido, J M; Molina, E; Vazquez, P; Juste, R A; Estonba, A

    2011-07-01

    Toll-like receptors (TLR) are membrane proteins that play a key role in innate immunity, by recognizing pathogens and subsequently activating appropriate responses. Mutations in TLR genes are associated with susceptibility to inflammatory and infectious diseases in humans. In cattle, 3 members of the TLR family, TLR1, TLR2, and TLR4, are associated with Mycobacterium avium ssp. paratuberculosis infection, although the extent of this association for the TLR1 and TLR4 receptors has not yet been determined. Moreover, the causal variant in the TLR2 gene has not yet been unequivocally established. In this study, 24 single nucleotide polymorphisms (SNP) in the bovine TLR1, TLR2, and TLR4 genes were selected from the literature, databases, and in silico searches, for a population-based genetic association study of a Spanish Holstein-Friesian sample. Whereas previous results regarding the TLR1 gene were not corroborated, a risk haplotype was detected in TLR2; however, its low frequency indicates that this detected association should be interpreted with caution. In the case of the TLR4 gene, 3 tightly linked SNP were found to be associated with susceptibility to M. avium ssp. paratuberculosis infection. Moreover, one of these SNP, the SNP c.-226G>C, which is localized in the 5'UTR region of the TLR4 gene, has been reported to be able to alter TLR4 expression, raising the possibility that this mutation may contribute to the response of the individual to infection.

  14. Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice

    PubMed Central

    Iwanaga, Naoki; Seki, Masafumi; Fukudome, Kenji; Oshima, Kazuhiro; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Mukae, Hiroshi; Kohno, Shigeru

    2016-01-01

    Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G+ neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4+ T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function. PMID:27091927

  15. Direct Detection of Microbial Infection Through Activation Coupling of the Toll-Like Receptors

    DTIC Science & Technology

    2007-11-02

    sensors of bacterial infection, as a means of constructing an early warning system by which a detectable signal could be generated. The project...infection by MCMV (a mouse equivalent of human cytomegalovirus), and eight mutations that create susceptibility to Listeria monocytogenes have been

  16. The role of MAPK in CD4{sup +} T cells toll-like receptor 9-mediated signaling following HHV-6 infection

    SciTech Connect

    Chi, Jing; Wang, Fang; Li, Lingyun; Feng, Dongju; Qin, Jian; Xie, Fangyi; Zhou, Feng; Chen, Yun; Wang, Jinfeng; Yao, Kun

    2012-01-05

    Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4{sup +} T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4{sup +} T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4{sup +} T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-{alpha} also induced by HHV-6A infection.

  17. Ciprofloxacin and ceftriaxone alter cytokine responses, but not Toll-like receptors, to Salmonella infection in vitro.

    PubMed

    Anuforom, Olachi; Wallace, Graham R; Buckner, Michelle M C; Piddock, Laura J V

    2016-07-01

    Antibiotics that enhance host natural defences to infection offer an alternative approach to treating infections. However, mechanisms underlying such processes are poorly understood. The aim of this study was to investigate the effects of clinically relevant concentrations of two antibiotics on bacterial interactions with murine macrophages. Adhesion of Salmonella Typhimurium SL1344 to and invasion by Salmonella Typhimurium SL1344 of antibiotic-treated or untreated J774 murine macrophages were measured using a tissue culture infection model. Expression of genes central to the Toll-like receptor (TLR) signalling pathway of macrophages infected with Salmonella was analysed using the RT(2) Profiler PCR Array. Cytokine production was measured by ELISA. Adhesion of Salmonella Typhimurium SL1344 to J774 macrophage monolayers was increased when macrophages were exposed to ciprofloxacin and ceftriaxone, while invasion was decreased by ciprofloxacin. Expression of IL-1β and TNF-α mRNA was greater in SL1344-infected macrophages that had been treated with ciprofloxacin or ceftriaxone than in macrophages exposed to antibiotics alone or SL1344 alone. TLR mRNA was down-regulated by SL1344 infection, a response that was not altered by antibiotic pretreatment. Clinically relevant concentrations of two antibiotics differentially enhanced the response of immune cells and their interaction with bacteria, increasing bacterial adhesion to macrophages and increasing cytokine production. As increased expression of IL-1β fosters apoptosis of Salmonella-infected macrophages and clearance by neutrophils, the immunomodulatory potential of these antibiotics may explain, in part, why these two drugs continue to be used to treat salmonellosis successfully. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Tissue localization of Toll-like receptors in biopsy specimens of liver from children infected with hepatitis C virus.

    PubMed

    Mozer-Lisewska, I; Sluzewski, W; Kaczmarek, M; Jenek, R; Szczepanski, M; Figlerowicz, M; Kowala-Piaskowska, A; Zeromski, J

    2005-10-01

    Toll-like receptors (TLR) are important tools of innate immunity, localized mainly on cells of the immune system, but also have been shown on cells of other origin. In the current study, they have been searched in biopsy specimens of liver from children bearing chronic viral hepatitis of C type (HCV). TLR2, TLR3 and TLR4 were traced by means of polyclonal antibodies and avidin-biotin complex (ABC) immunohistochemistry. Besides, mRNA for TLR was looked for using specific primers and polymerase chain reaction. Several controls, including neutralization of primary antibody with respective blocking peptide, confirmed the specificity of the immunohistochemical reaction. All TLR tested could be visualized in a focal distribution in single hepatocytes and some cells of inflammatory infiltrates. There was no reaction whatsoever in liver samples not infected with hepatotropic virus. In molecular studies, mRNA for TLR2 and TLR4 was detected in both noninfected and hepatitis B virus-infected established cell lines of human hepatoma as well as in HCV(+) biopsy samples. These data indicate that TLR can be traced in liver cells, both at the protein and at the mRNA level. Their irregular and focal distribution in HCV(+), but not in HCV(-), liver suggests some role of TLR in the pathogenesis of chronic viral hepatitis, at least in children.

  19. Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes.

    PubMed

    Dudek, Slawomir; Ziółko, Ewa; Kimsa-Dudek, Magdalena; Solarz, Krzysztof; Mazurek, Urszula; Wierzgoń, Aleksander; Kokot, Teresa; Muc-Wierzgoń, Małgorzata

    2017-04-01

    The similarity of Lyme borreliosis to other diseases and its complex pathogenesis present diagnostic and therapeutic difficulties. The changes that occur at the cellular and molecular levels after a Borrelia sp. infection still remain poorly understood. Therefore, the present study focused on the expression of TLR and TLR-signaling genes in human dermal fibroblasts in the differentiation of an infection with Borrelia burgdorferi sensu lato spirochetes. Normal human dermal fibroblasts were cultured with the spirochetes of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii. Total RNA was extracted from the cells using TRIzol reagent. The analysis of the expression profiles of TLRs and TLR-related genes was performed using commercially available oligonucleotide microarrays of HG-U133A. The GeneSpring 12.0 platform and significance analysis of microarrays were used for the statistical analysis of microarray data. The analyses using the oligonucleotide microarray and QRT-PCR techniques permitted to identify the genes encoding TLR4 and TLR6 as specific for infection with B. afzelii and B. burgdorferi sensu stricto. In turn, TLR3 was only characteristic for an infection with B. burgdorferi sensu stricto. There were no changes in the TLR gene expression after infection with B. garinii. Our findings confirm that Borrelia has a major effect on fibroblast gene expression. Further characterization of changes in gene expression may lead to valuable insights into the role of the toll-like receptor in the pathogenesis of Lyme disease and may provide guidelines for the development of diagnostic markers for an infection with a particular Borrelia genospecies. Moreover, this will help to identify better treatment strategies for Lyme disease.

  20. Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1

    PubMed Central

    Li, Yanyan; Xu, Qianqian; Zhang, Tingting; Gao, Mengying; Wang, Qiuling; Han, Zongxi; Shao, Yuhao

    2015-01-01

    The high morbidity and mortality in pigeons caused by pigeon paramyxovirus type 1 (PPMV-1) highlights the need for new insights into the host immune response and novel treatment approaches. Host defense peptides (HDPs) are key components of the innate immune system. In this study, three novel avian β-defensins (AvBDs 2, 7, and 10) were characterized in pigeons and shown to possess direct antiviral activity against PPMV-1 in vitro. In addition, we evaluated the mRNA expression of these AvBDs and other immune-related genes in tissues of 2-month-old infected pigeons at 3 and 7 days postinfection. We observed that the expression of AvBD2 in the cecal tonsil, lungs, and proventriculus, as well as the expression of AvBD10 in the spleen, lungs, proventriculus, and kidneys, was upregulated in infected pigeons. Similarly, the expression of both Toll-like receptor 3 (TLR3) and TLR7 was increased in the spleen, trachea, and proventriculus, while TLR15 expression was increased only in the lungs of infected pigeons. In addition, inducible nitric oxide synthase (iNOS) expression was upregulated in the spleen, the bursa of Fabricius, the trachea, and the proventriculus of infected pigeons. Furthermore, we observed a high correlation between the expression of AvBD2 and the expression of either TLR7 or TLR15, as well as between AvBD10 expression and either TLR3 or TLR7 expression in respective tissues. The results suggest that PPMV-1 infection can induce innate host responses characterized by the activation of TLRs, particularly TLR3 and TLR7, AvBDs (2 and 10), and iNOS in pigeons. PMID:26162868

  1. Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1.

    PubMed

    Li, Yanyan; Xu, Qianqian; Zhang, Tingting; Gao, Mengying; Wang, Qiuling; Han, Zongxi; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-09-01

    The high morbidity and mortality in pigeons caused by pigeon paramyxovirus type 1 (PPMV-1) highlights the need for new insights into the host immune response and novel treatment approaches. Host defense peptides (HDPs) are key components of the innate immune system. In this study, three novel avian β-defensins (AvBDs 2, 7, and 10) were characterized in pigeons and shown to possess direct antiviral activity against PPMV-1 in vitro. In addition, we evaluated the mRNA expression of these AvBDs and other immune-related genes in tissues of 2-month-old infected pigeons at 3 and 7 days postinfection. We observed that the expression of AvBD2 in the cecal tonsil, lungs, and proventriculus, as well as the expression of AvBD10 in the spleen, lungs, proventriculus, and kidneys, was upregulated in infected pigeons. Similarly, the expression of both Toll-like receptor 3 (TLR3) and TLR7 was increased in the spleen, trachea, and proventriculus, while TLR15 expression was increased only in the lungs of infected pigeons. In addition, inducible nitric oxide synthase (iNOS) expression was upregulated in the spleen, the bursa of Fabricius, the trachea, and the proventriculus of infected pigeons. Furthermore, we observed a high correlation between the expression of AvBD2 and the expression of either TLR7 or TLR15, as well as between AvBD10 expression and either TLR3 or TLR7 expression in respective tissues. The results suggest that PPMV-1 infection can induce innate host responses characterized by the activation of TLRs, particularly TLR3 and TLR7, AvBDs (2 and 10), and iNOS in pigeons.

  2. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria.

    PubMed

    Parkunan, Salai Madhumathi; Randall, C Blake; Coburn, Phillip S; Astley, Roger A; Staats, Rachel L; Callegan, Michelle C

    2015-10-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2(-/-) mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88(-/-) and TRIF(-/-) mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4(-/-) eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria

    PubMed Central

    Parkunan, Salai Madhumathi; Randall, C. Blake; Coburn, Phillip S.; Astley, Roger A.; Staats, Rachel L.

    2015-01-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2−/− mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88−/− and TRIF−/− mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4−/− eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. PMID:26195555

  4. Requirement of UNC93B1 reveals a critical role for Toll-Like Receptor 7 in host resistance to primary infection with Trypanosoma cruzi1,2

    PubMed Central

    Caetano, Braulia C.; Carmo, Bianca B.; Melo, Mariane B.; Cerny, Anna; dos Santos, Sara L.; Bartholomeu, Daniella C.; Golenbock, Douglas T.; Gazzinelli, Ricardo T.

    2011-01-01

    UNC93B1 associates with Toll-Like Receptor (TLR) 3, 7 and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple deficient ‘3d’ mice, which lack functional UNC93B1 as well as functional endossomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired pro-inflammatory response, including reduced levels of IL-12p40 and IFN-γ. Importantly, the phenotype of 3d mice was intermediary between MyD88−/− (highly susceptible) and TLR9−/− (less susceptible), indicating the involvement of an additional UN93B1-dependent-TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-γ by T lymphocytes. Furthermore, we show that upon T. cruzi infection triple TLR3/7/9−/− mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi. PMID:21753151

  5. Chronic hyperosmotic stress inhibits renal Toll-Like Receptors expression in striped catfish (Pangasianodon hypophthalmus, Sauvage) exposed or not to bacterial infection.

    PubMed

    Schmitz, Mélodie; Baekelandt, Sébastien; Bequet, Sandrine; Kestemont, Patrick

    2017-03-24

    Toll-like Receptors (TLRs) are the first innate receptors in recognizing pathogen-associated molecular patterns. In fish, upregulation of toll-like receptors during infection has been largely demonstrated while the effects of abiotic stressors on their expression remain poorly investigated. In this study, striped catfish were submitted during 20 days to three salinity profiles (freshwater, low saline water, saline water), followed by injection of a bacterial strain of Edwardsiella ictaluri. The expression of TLRs 1, 3, 4, 5, 7, 9, 19, 21, and 22 was measured in kidney at different time points in non infected and infected striped catfish. Infection induced overexpression of TLRs 1, 3, 4, 5, 7, 21 and 22. With elevated salinity, the expression of all TLRs, except TLR5, was severely decreased, particularly after bacterial infection. The TLRs responsiveness of striped catfish facing bacterial disease and salinity stress and possible consequences on striped catfish immune response's efficiency are discussed.

  6. Association of Toll-Like Receptor 4 Gene Polymorphism and Expression with Urinary Tract Infection Types in Adults

    PubMed Central

    Yin, Xiaolin; Hou, Tianwen; Liu, Ying; Chen, Jing; Yao, Zhiyan; Ma, Cuiqing; Yang, Lijuan; Wei, Lin

    2010-01-01

    Background Innate immunity of which Toll-like receptor (TLR) 4 and CXCR1 are key elements plays a central role in the development of urinary tract infection (UTI). Although the relation between the genetics of TLR4 and CXCR1 and UTI is investigated partly, the polymorphisms and expression of TLR4 and CXCR1 in different types of UTI in adults are not extremely clear. Methodology/Principal Findings This study investigates the presence of TLR4 A (896) G and CXCR1 G (2608) C polymorphisms in 129 UTI patients using RFLP-PCR. Gene and allelic prevalence were compared with 248 healthy controls. Flow cytometry was used to detect TLR4 and CXCR1 expression in the monocytes of UTI patients and healthy controls. TLR4 (896) AG genotype and TLR4 (896) G allele had higher prevalence in UTI (especially in acute cystitis and urethritis) patients, whereas CXCR1 (2608) GC genotype and CXCR1 (2608) C allele had lower prevalence in UTI patients than controls. TLR4 expression was significantly lower in chronic UTI patients than in acute pyelonephritis or healthy controls. CXCR1 expression was similar in both controls and patients. TLR4 expression in chronic UTI patients after astragalus treatment was higher than pre-treatment. Conclusions The results indicate the relationship between the carrier status of TLR4 (896) G alleles and the development of UTI, especially acute cystitis and urethritis, in adults. TLR4 expression levels are correlated with chronic UTI. PMID:21151974

  7. Genetic polymorphisms in the Toll-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer.

    PubMed

    Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O; Pardo, Aryce L; Goh, Khean-Lee; Fock, Kwong Ming; Mitchell, Hazel M

    2014-08-01

    Gastric cancer (GC) is a progressive process initiated by Helicobacter pylori-induced inflammation. Initial recognition of H. pylori involves Toll-like receptors (TLRs), central molecules in the host inflammatory response. Here, we investigated the association between novel polymorphisms in genes involved in the TLR signalling pathway, including TLR2, TLR4, LBP, MD-2, CD14 and TIRAP, and risk of H. pylori infection and related GC. A case-control study comprising 310 ethnic Chinese individuals (87 non-cardia GC cases and 223 controls with functional dyspepsia) was conducted. Twenty-five polymorphisms were detected by MALDI-TOF mass spectrometry, PCR, PCR-RFLP and real-time PCR. Seven polymorphisms showed significant associations with GC (TLR4 rs11536889, TLR4 rs10759931, TLR4 rs1927911, TLR4 rs10116253, TLR4 rs10759932, TLR4 rs2149356 and CD14 -260 C/T). In multivariate analyses, TLR4 rs11536889 remained a risk factor for GC (OR: 3.58, 95% CI: 1.20-10.65). TLR4 rs10759932 decreased the risk of H. pylori infection (OR: 0.59, 95% CI: 0.41-0.86). Statistical analyses assessing the joint effect of H. pylori infection and the selected polymorphisms revealed strong associations with GC (TLR2, TLR4, MD-2, LBP and TIRAP polymorphisms). Novel polymorphisms in TLR2, TLR4, MD-2, LBP, CD14 and TIRAP, genes encoding important molecules of the TLR signalling pathway, showed clear associations with H. pylori-related GC in Chinese. Copyright © 2014 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  8. Roles of Toll-like receptor 2 (TLR2) and superantigens on adaptive immune responses during CNS staphylococcal infection

    PubMed Central

    Vidlak, Debbie; Mariani, Monica M.; Aldrich, Amy; Liu, Shuliang; Kielian, Tammy

    2010-01-01

    Staphylococcus aureus is a common etiologic agent of brain abscesses and possesses numerous virulence factors that manipulate host immunity. One example is superantigens (SAG) that clonally expand T cell subsets bearing specific Vβ receptors. Toll-like receptor 2 (TLR2) is one receptor implicated in S. aureus recognition. However, the interplay between TLR2, SAG, and adaptive immunity during brain abscess formation has not yet been investigated and could reveal novel insights into host-pathogen interactions for regulating protective immunity. A comprehensive analysis of abscess-associated T cell populations in TLR2 KO and WT mice was performed following infection with a S. aureus clinical isolate. Both natural killer T (NKT) and γδ T cell infiltrates were increased in brain abscesses of TLR2 KO mice and produced more IL-17 and IFN-γ compared to WT populations, which could have resulted from elevated bacterial burdens observed in these animals. Analysis of SAG-reactive T cells revealed a predominant Vβ8.1,8.2 infiltrate reactive with staphylococcal enterotoxin B (SEB), whereas SEA-reactive Vβ11 T cells were less numerous. Brain abscesses of TLR2 KO mice had fewer Vβ8.1,8.2 and Vβ11 T cells and produced less TNF-α and IFN-γ compared to WT animals. Treatment of primary microglia with purified SEB augmented TNF-α production in response to the TLR2 ligand Pam3Cys, which may serve to amplify proinflammatory cascades during CNS S. aureus infection. Collectively, these studies demonstrate that TLR2 impacts adaptive immunity to S. aureus infection and modulates SAG responses. PMID:20868736

  9. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    PubMed Central

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  10. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients.

    PubMed

    Winckelmann, Anni A; Munk-Petersen, Lærke V; Rasmussen, Thomas A; Melchjorsen, Jesper; Hjelholt, Thomas J; Montefiori, David; Østergaard, Lars; Søgaard, Ole S; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1:1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: -23.6-0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: -4.2-19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted.

  11. Patency of Litomosoides sigmodontis infection depends on Toll-like receptor 4 whereas Toll-like receptor 2 signalling influences filarial-specific CD4(+) T-cell responses.

    PubMed

    Rodrigo, Maria B; Schulz, Sandy; Krupp, Vanessa; Ritter, Manuel; Wiszniewsky, Katharina; Arndts, Kathrin; Tamadaho, Ruth S E; Endl, Elmar; Hoerauf, Achim; Layland, Laura E

    2016-04-01

    BALB/c mice develop a patent state [release of microfilariae (Mf), the transmission life-stage, into the periphery] when exposed to the rodent filariae Litomosoides sigmodontis. Interestingly, only a portion of the infected mice become patent, which reflects the situation in human individuals infected with Wuchereria bancrofti. Since those individuals had differing filarial-specific profiles, this study compared differences in immune responses between Mf(+) and Mf(-) infected BALB/c mice. We demonstrate that cultures of total spleen or mediastinal lymph node cells from Mf(+) mice produce significantly more interleukin-5 (IL-5) to filarial antigens but equal levels of IL-10 when compared with Mf(-) mice. However, isolated CD4(+) T cells from Mf(+) mice produced significantly higher amounts of all measured cytokines, including IL-10, when compared with CD4(+) T-cell responses from Mf(-) mice. Since adaptive immune responses are influenced by triggering the innate immune system we further studied the immune profiles and parasitology in infected Toll-like receptor-2-deficient (TLR2(-/-)) and TLR4(-/-) BALB/c mice. Ninety-three per cent of L. sigmodontis-exposed TLR4(-/-) BALB/c mice became patent (Mf(+)) although worm numbers remained comparable to those in Mf(+) wild-type controls. Lack of TLR2 had no influence on patency outcome or worm burden but infected Mf(+) mice had significantly lower numbers of Foxp3(+) regulatory T cells and dampened peripheral immune responses. Interestingly, in vitro culturing of CD4(+) T cells from infected wild-type mice with granulocyte-macrophage colony-stimulating factor-derived TLR2(-/-) dendritic cells resulted in an overall diminished cytokine profile to filarial antigens. Hence, triggering TLR4 or TLR2 during chronic filarial infection has a significant impact on patency and efficient CD4(+) T-cell responses, respectively. © 2015 John Wiley & Sons Ltd.

  12. Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice

    PubMed Central

    Xie, Guorui; Luo, Huanle; Pang, Lan; Peng, Bi-hung; Winkelmann, Evandro; McGruder, Brenna; Hesse, Joseph; Whiteman, Melissa; Campbell, Gerald; Milligan, Gregg N.; Cong, Yingzi; Barrett, Alan D.

    2015-01-01

    ABSTRACT The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), a mosquito-borne flavivirus, has induced severe neurological symptoms, mostly in the elderly population. No vaccines are available for human use. Recent work showed that an attenuated WNV, a nonstructural (NS) 4B-P38G mutant, induced no lethality but strong immune responses in young (6- to 10-week-old) mice. While studying protective efficacy, we found unexpectedly that old (21- to 22-month) mice were susceptible to WNV NS4B-P38G mutant infection but were protected from subsequent lethal wild-type WNV challenge. Compared to responses in young mice, the NS4B-P38G mutant triggered higher inflammatory cytokine and interleukin-10 (IL-10) production, a delayed γδ T cell expansion, and lower antibody and WNV-specific T cell responses in old mice. Toll-like receptor 7 (TLR7) is expressed on multiple types of cells. Impaired TLR7 signaling in old mice led to dendritic cell (DC) antigen-presenting function compromise and a reduced γδ T cell and regulatory T cell (Treg) expansion during NS4B-P38G mutant infection. R848, a TLR7 agonist, decreased host vulnerability in NS4B-P38G-infected old mice by enhancing γδ T cell and Treg expansion and the antigen-presenting capacity of DCs, thereby promoting T cell responses. In summary, our results suggest that dysregulation of TLR7 partially contributes to impaired innate and adaptive T cell responses and an enhanced vulnerability in old mice during WNV NS4B-P38G mutant infection. R848 increases the safety and efficacy during immunization of old mice with the WNV NS4B-P38G mutant. IMPORTANCE The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), an emerging mosquito-borne flavivirus, has induced severe neurological symptoms more frequently in the elderly population. No vaccines are available

  13. Administration of a Toll-Like Receptor 9 Agonist Decreases the Proviral Reservoir in Virologically Suppressed HIV-Infected Patients

    PubMed Central

    Winckelmann, Anni A.; Munk-Petersen, Lærke V.; Rasmussen, Thomas A.; Melchjorsen, Jesper; Hjelholt, Thomas J.; Montefiori, David; Østergaard, Lars; Søgaard, Ole S.; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1∶1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: −23.6–0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: −4.2–19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted. PMID:23637967

  14. Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice.

    PubMed

    Tsai, Tsung-Huang; Chen, Shu-Fen; Huang, Tai-Yu; Tzeng, Chun-Fu; Chiang, Ann-Shyn; Kou, Yu Ru; Lee, Tzong-Shyuan; Shyue, Song-Kun

    2011-01-01

    An overwhelming immune response, particularly from macrophages, with gram-negative bacteria-induced sepsis plays a critical role in survival of and organ damage in infected patients. Caveolin-1 (Cav-1), a major structure protein of caveolae, regulates many cellular functions. We examined the vital role of Cav-1 in the response of macrophages and mice to bacteria or LPS exposure. Deletion of Cav-1 decreased the expression of CD14 and CD36 during macrophage differentiation and suppressed their phagocytotic ability. As well, the ability to kill bacteria was inhibited in Cav-1 macrophages and mice peritoneal cavity, tissue, and plasma, which was partly attributed to hindered expression of iNOS induced by bacteria or LPS. Furthermore, deletion of Cav-1 attenuated the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and the activation of nuclear factor κB, all of which impeded the production of inflammatory cytokines in response to bacterial exposure in Cav-1 macrophages and mice. Thus, Cav-1 participates in the regulation of CD14, CD36, Toll-like receptor 4 and myeloid differentiation factor 88 protein expression and is crucial for the immune response of macrophages to bacterial infection. Cav-1 may be a therapeutic target in the treatment of sepsis.

  15. Crosstalk between adrenergic and toll-like receptors in human mesenchymal stem cells and keratinocytes: a recipe for impaired wound healing.

    PubMed

    Dasu, Mohan R; Ramirez, Sandra R; La, Thi Dinh; Gorouhi, Farzam; Nguyen, Chuong; Lin, Benjamin R; Mashburn, Chelcy; Stewart, Heather; Peavy, Thomas R; Nolta, Jan A; Isseroff, Roslyn R

    2014-06-01

    Previous studies demonstrate that skin wounds generate epinephrine (EPI) that can activate local adrenergic receptors (ARs), impairing healing. Bacterially derived activators of Toll-like receptors (TLRs) within the wound initiate inflammatory responses and can also impair healing. In this study, we examined the hypothesis that these two pathways crosstalk to one another, using EPI and macrophage-activating lipopeptide-2 (MALP2) to activate ARs and TLR2, respectively, in human bone marrow-derived mesenchymal stem cells (BM-MSCs) and neonatal keratinocytes (NHKs). BM-MSCs exposed to EPI significantly (p < .05) increased TLR2 message (sevenfold BM-MSCs), TLR2 protein (twofold), and myeloid differentiation factor 88 (MyD88) (fourfold). Conversely, activation of TLR2 by MALP2 in these cells increased β2-AR message (twofold in BM-MSCs, 2.7-fold in NHKs), β2-AR protein (2.5-fold), phosphorylation of β-AR-activated kinase (p-BARK, twofold), and induced release of EPI from both cell types (twofold). Treating cells with EPI and MALP2 together, as would be encountered in a wound, increased β2-AR and p-BARK protein expression (sixfold), impaired cell migration (BM-MSCs- 21%↓ and NHKs- 60%↓, p < .002), and resulted in a 10-fold (BM-MSCs) and 51-fold (NHKs) increase in release of IL-6 (p < .001) responses that were remarkably reduced by pretreatment with β2-AR antagonists. In vivo, EPI-stressed animals exhibited impaired healing, with elevated levels of TLR2, MyD88, and IL-6 in the wounds (p < .05) relative to nonstressed controls. Thus, our data describe a recipe for decreasing cell migration and exacerbating inflammation via novel crosstalk between the adrenergic and Toll-like receptor pathways in BM-MSCs and NHKs. ©AlphaMed Press.

  16. Crosstalk Between Adrenergic and Toll-Like Receptors in Human Mesenchymal Stem Cells and Keratinocytes: A Recipe for Impaired Wound Healing

    PubMed Central

    Ramirez, Sandra R.; La, Thi Dinh; Gorouhi, Farzam; Nguyen, Chuong; Lin, Benjamin R.; Mashburn, Chelcy; Stewart, Heather; Peavy, Thomas R.; Nolta, Jan A.

    2014-01-01

    Previous studies demonstrate that skin wounds generate epinephrine (EPI) that can activate local adrenergic receptors (ARs), impairing healing. Bacterially derived activators of Toll-like receptors (TLRs) within the wound initiate inflammatory responses and can also impair healing. In this study, we examined the hypothesis that these two pathways crosstalk to one another, using EPI and macrophage-activating lipopeptide-2 (MALP2) to activate ARs and TLR2, respectively, in human bone marrow-derived mesenchymal stem cells (BM-MSCs) and neonatal keratinocytes (NHKs). BM-MSCs exposed to EPI significantly (p < .05) increased TLR2 message (sevenfold BM-MSCs), TLR2 protein (twofold), and myeloid differentiation factor 88 (MyD88) (fourfold). Conversely, activation of TLR2 by MALP2 in these cells increased β2-AR message (twofold in BM-MSCs, 2.7-fold in NHKs), β2-AR protein (2.5-fold), phosphorylation of β-AR-activated kinase (p-BARK, twofold), and induced release of EPI from both cell types (twofold). Treating cells with EPI and MALP2 together, as would be encountered in a wound, increased β2-AR and p-BARK protein expression (sixfold), impaired cell migration (BM-MSCs- 21%↓ and NHKs- 60%↓, p < .002), and resulted in a 10-fold (BM-MSCs) and 51-fold (NHKs) increase in release of IL-6 (p < .001) responses that were remarkably reduced by pretreatment with β2-AR antagonists. In vivo, EPI-stressed animals exhibited impaired healing, with elevated levels of TLR2, MyD88, and IL-6 in the wounds (p < .05) relative to nonstressed controls. Thus, our data describe a recipe for decreasing cell migration and exacerbating inflammation via novel crosstalk between the adrenergic and Toll-like receptor pathways in BM-MSCs and NHKs. PMID:24760207

  17. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment

    PubMed Central

    Bode, Konrad A; Schroder, Kate; Hume, David A; Ravasi, Timothy; Heeg, Klaus; Sweet, Matthew J; Dalpke, Alexander H

    2007-01-01

    Post-translational modifications of histone proteins are major mechanisms that modify chromatin structure and regulate gene expression in eukaryotes. Activation of histone acetyltransferases or inhibition of histone deacetylases (HDACs) is generally believed to allow chromatin to assume a more open state, permitting transcriptional activity. We report here the surprising observation that treatment of murine dendritic cells with the HDAC inhibitors trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) in non-apoptotic concentrations strongly inhibited induction of both interleukin-12 protein p40 (IL-12p40) mRNA and protein upon stimulation of Toll-like receptors (TLRs). Moreover, TLR-mediated up-regulation of costimulatory molecules was also inhibited. Up-regulation of tumour necrosis factor-α mRNA and protein in response to TLR agonists was only affected upon prolonged exposure to HDAC inhibitors and regulation of IL-1β was not affected. Similar effects were apparent in murine and human macrophages. Regarding the mode of action, HDAC inhibition increased the acetylation status at the IL-12p40 locus. Nevertheless, IL-12p40 chromatin remodelling, binding of Rel-A and IRF1 to the IL-12p40 promoter and transcriptional activation were abrogated. In contrast, HDAC inhibitors had no effects on upstream nuclear factor-κB and mitogen-activated protein kinase activation. Thus HDACs positively regulate the expression of a subset of cytokine genes by enabling transcription factor recruitment. PMID:17635610

  18. A Temporal Gate for Viral Enhancers to Co-opt Toll-Like-Receptor Transcriptional Activation Pathways upon Acute Infection

    PubMed Central

    Kropp, Kai A.; Hsieh, Wei Yuan; Isern, Elena; Forster, Thorsten; Krause, Eva; Brune, Wolfram; Angulo, Ana; Ghazal, Peter

    2015-01-01

    Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a

  19. A temporal gate for viral enhancers to co-opt Toll-like-receptor transcriptional activation pathways upon acute infection.

    PubMed

    Kropp, Kai A; Hsieh, Wei Yuan; Isern, Elena; Forster, Thorsten; Krause, Eva; Brune, Wolfram; Angulo, Ana; Ghazal, Peter

    2015-04-01

    Viral engagement with macrophages activates Toll-Like-Receptors (TLRs) and viruses must contend with the ensuing inflammatory responses to successfully complete their replication cycle. To date, known counter-strategies involve the use of viral-encoded proteins that often employ mimicry mechanisms to block or redirect the host response to benefit the virus. Whether viral regulatory DNA sequences provide an opportunistic strategy by which viral enhancer elements functionally mimic innate immune enhancers is unknown. Here we find that host innate immune genes and the prototypical viral enhancer of cytomegalovirus (CMV) have comparable expression kinetics, and positively respond to common TLR agonists. In macrophages but not fibroblasts we show that activation of NFκB at immediate-early times of infection is independent of virion-associated protein, M45. We find upon virus infection or transfection of viral genomic DNA the TLR-agonist treatment results in significant enhancement of the virus transcription-replication cycle. In macrophage time-course infection experiments we demonstrate that TLR-agonist stimulation of the viral enhancer and replication cycle is strictly delimited by a temporal gate with a determined half-maximal time for enhancer-activation of 6 h; after which TLR-activation blocks the viral transcription-replication cycle. By performing a systematic siRNA screen of 149 innate immune regulatory factors we identify not only anticipated anti-viral and pro-viral contributions but also new factors involved in the CMV transcription-replication cycle. We identify a central convergent NFκB-SP1-RXR-IRF axis downstream of TLR-signalling. Activation of the RXR component potentiated direct and indirect TLR-induced activation of CMV transcription-replication cycle; whereas chromatin binding experiments using wild-type and enhancer-deletion virus revealed IRF3 and 5 as new pro-viral host transcription factor interactions with the CMV enhancer in macrophages. In a

  20. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding

    PubMed Central

    McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R.; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S.; Boutagy, Nabil E.; Mynatt, Randall L.; Frisard, Madlyn I.

    2015-01-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. PMID:26084695

  1. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding.

    PubMed

    McMillan, Ryan P; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S; Boutagy, Nabil E; Mynatt, Randall L; Frisard, Madlyn I; Hulver, Matthew W

    2015-08-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6-8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. Copyright © 2015 the American Physiological Society.

  2. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    SciTech Connect

    Arcangeletti, Maria-Cristina; Germini, Diego; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Medici, Maria-Cristina; Gatti, Rita; Chezzi, Carlo; Calderaro, Adriana

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  3. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    USDA-ARS?s Scientific Manuscript database

    Rationale - Obesity is characterized by a chronic pro-inflammatory state that promotes insulin resistance in liver, adipose tissue, and skeletal muscle as well as impairing insulin action in vascular endothelium that contributes to endothelial dysfunction. Cadiovascular complications of obesity are ...

  4. Stimulation of Toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory.

    PubMed

    Tauber, Simone C; Ebert, Sandra; Weishaupt, Jochen H; Reich, Arno; Nau, Roland; Gerber, Joachim

    2009-10-01

    Bacterial DNA contains a high frequency of unmethylated cytosine-guanine (CpG) motifs that have strong immunostimulatory properties; they are recognized by mammalian Toll-like receptor 9 (TLR9). Because accumulating data suggest that chronic inflammatory processes are involved in the pathogenesis of neurodegenerative diseases, we hypothesized that inflammatory responses stimulated by CpG DNA might contribute to neurodegeneration and brain dysfunction. To assess the effects of continuous CpG DNA exposure in the brain, C57BL/6 (n = 21) and TLR9-deficient mice (n = 15) were given intracerebroventricular infusions of CpG DNA or saline for 28 days. Spatial memory assessed weekly by Morris water maze demonstrated impairment in CpG-treated wild-type mice but not in TLR9-deficient or control-treated mice. Motor function was not affected. Immunohistochemical analysis revealed marked microglial activation and acute axonal damage surrounding the ventricles, ependymal disruption, and reactive astrogliosis within the hippocampal formation in the CpG-treated wild-type but not TLR9-deficient mice or saline-infused controls. These results suggest that the unfavorable effects of CpG DNA are dependent on TLR9 signaling and that exposure to bacterial DNA may contribute to impaired neural function, neuroinflammation, and subsequent neurodegeneration.

  5. Toll-Like Receptor 4-Defective C3H/HeJ Mice Are Not More Susceptible than Other C3H Substrains to Infection with Mycobacterium tuberculosis

    PubMed Central

    Kamath, Arati B.; Alt, Jennifer; Debbabi, Hajer; Behar, Samuel M.

    2003-01-01

    Mycobacterium tuberculosis produces a variety of molecules capable of activating Toll-like receptors, a family of pattern recognition receptors expressed by macrophages and a variety of other cells. To determine whether Toll-like receptor 4 (TLR4) was critical in resistance to M. tuberculosis infection, we compared the morbidity and mortality of TLR4-defective C3H/HeJ mice to those of TLR4-sufficient C3H mouse substrains. TLR4-defective C3H/HeJ mice and TLR4-sufficient C3H/HeSnJ, C3HeB/FeJ, and C3H/HeOuJ mice were infected by the aerosol route with M. tuberculosis. TLR4-defective C3H/HeJ mice had levels of cytokines in their bronchoalveolar lavage fluids and in vitro mycobacterial antigen-specific recall responses similar to those of other C3H mouse substrains. In addition, bacterial replication and long-term survival of mice following infection appeared to be independent of TLR4. Interestingly, C3HeB/FeJ mice were significantly more susceptible to M. tuberculosis infection, indicating that genetic heterogeneity among inbred C3H mouse substrains modifies resistance to infection. Therefore, cautious interpretation is required when the C3H/HeJ strain is used as a model of a TLR4-defective mouse strain, as there are significant allelic differences between C3H/HeJ and other C3H mouse substrains in response to M. tuberculosis infection. With this caveat, our data indicate that TLR4 may not be required for optimal immunity of mice to M. tuberculosis. PMID:12819102

  6. Antiviral role of Toll-like receptors and cytokines against the new 2009 H1N1 virus infection.

    PubMed

    Liu, Ye; Chen, Hong; Sun, Yajiao; Chen, Fuhui

    2012-02-01

    People are generally susceptible to the 2009 new mutate of H1N1 influenza due to lack of appropriate immunity. Influenza H1N1 2009 infection triggers a massive inflammatory response that contributes to fever, lung impairment or other tissue damage, eventually leading to death. Infection with pathogenic influenza virus H1N1 induces severe pulmonary immune pathology. To date, more than 10,000 cases worldwide have died of the disease. It still has strong infectious ability although the mortality of influenza isn't currently high. Therefore, to explore the pathogenesis of H1N1 influenza can help with the disease prevention, diagnosis and provide a theoretical basis and the new ideas of treatment. Laboratory confirmed cases of pandemic influenza H1N1 2009 were enrolled to collect general information on pre-clinical, clinical and laboratory data for analysis. Blood samples were obtained from patients with H1N1, healthy volunteers and patients with bacterial pneumonia. Serum were separated and collected. RT-PCR and ELISA methods were applied to detect the different expression of TLRs and cytokines. The young, pregnant and postpartum women and infant are highly susceptible to influenza H1N1 2009 infection; degree of susceptibility is not associated with BMI. Biochemical changes can be seen in the patients with influenza H1N1 2009 infection: ALT, AST, CK, LDH increased in varying degrees. TLR2, TLR3, TLR9 expression increased in the patients with influenza H1N1 2009 infection; no obvious changes of TLR4, TLR7, TLR8 can be detected. In pregnant and postpartum women group, only TLR9 expression increased. The expression of IL-2, IL-6, IFN-γ, TNF-α in the patients with influenza H1N1 2009 infection was significantly increased; while IL-10 expression decreased and IL-4 expression did not change. H1N1 influenza-infected pregnant and postpartum women group, only IL-2 and TNF-α expression expression increased, other cytokines decreased or didn't change. TLR2, TLR3, TLR9 are the

  7. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy.

    PubMed

    Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George; Sloan, Derek D; Murry, Jeffrey P

    2017-04-15

    Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs.IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently

  8. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy

    PubMed Central

    Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George

    2017-01-01

    ABSTRACT Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is

  9. Molecular cloning, characterization and expression analysis of Toll-like receptor 5M gene in Japanese sea perch (Lateolabrax japonicas) after bacterial infection.

    PubMed

    Wang, Chengyang; Zhao, Chao; Fu, Mingjun; Bao, Weiyang; Qiu, Lihua

    2016-09-01

    Toll-like receptor 5M belongs to Toll-like receptors (TLRs) family, which plays a crucial role in innate immunity due to its important role in the recognition of bacteria invasion and in the activation of immune related pathways downstream. In the present study, we firstly cloned the full-length cDNAs of TLR 5M (LjTLR 5M) from Japanese sea perch (Lateolabrax japonicas). The full-length cDNAs of LjTLR 5M include an open reading frame (ORF) of 2676 bp encoding a polypeptide of 891 amino acid residues. The deduced amino acid sequence analysis showed that LiTLR 5M contains LRRs (extracellular leucine rich repeats), transmembrane and TIR (Toll/interleukin-1 receptor) domain. Transcriptional expression analysis indicated that LiTLR 5M mRNAs were ubiquitously expressed in wide array of tissues and the peak level was observed in the head-kidney. The expression patterns of LjTLR 5M after Vibro harveyi and Streptococus agalactiae infection were detected by qRT-PCR, and the results showed that LjTLR 5M was significant up-regulated in spleen, liver and head-kidney. Additionally, the expression patterns of LjTLR 5M in infected spleen and head-kidney were further validated by in situ hybridization (ISH). In summary, these findings indicate that LjTLR 5M is significant induced after different bacterial infection and is involved in immune response. Furthermore, this study will provide foundational information for other TLRs research of L. japonicas against different bacterial pathogens invasion.

  10. MyD88-dependent immunity to a natural model of vaccinia virus infection does not involve Toll-like receptor 2.

    PubMed

    Davies, Michael L; Sei, Janet J; Siciliano, Nicholas A; Xu, Ren-Huan; Roscoe, Felicia; Sigal, Luis J; Eisenlohr, Laurence C; Norbury, Christopher C

    2014-03-01

    Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand the mechanisms that

  11. MyD88-Dependent Immunity to a Natural Model of Vaccinia Virus Infection Does Not Involve Toll-Like Receptor 2

    PubMed Central

    Davies, Michael L.; Sei, Janet J.; Siciliano, Nicholas A.; Xu, Ren-Huan; Roscoe, Felicia; Sigal, Luis J.; Eisenlohr, Laurence C.

    2014-01-01

    ABSTRACT Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. IMPORTANCE Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand

  12. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs.

    PubMed

    Shinkai, H; Arakawa, A; Tanaka-Matsuda, M; Ide-Okumura, H; Terada, K; Chikyu, M; Kawarasaki, T; Ando, A; Uenishi, H

    2012-12-01

    The genes encoding swine leukocyte antigen (SLA) and Toll-like receptor (TLR) are highly polymorphic in pig populations, and likely have influences on infection and the effects of vaccination. We explored the associations of different genotypes of SLA class II and of the genes TLR1, TLR4, TLR5, and TLR6 with antibody responses after vaccination against Erysipelothrix rhusiopathiae (ER) and Actinobacillus pleuropneumoniae (APP) serotypes 1, 2, and 5 in 191 Duroc pigs maintained under specific pathogen-free conditions. We demonstrated close relationships between SLA class II and ER antibody response and between TLR genes other than TLR4 and APP antibody responses. Pigs with specific haplotypes in SLA class II or TLR5 showed decreased antibody response to ER vaccination or increased responses to APP2 and APP5 vaccination, respectively. It might be possible to breed for responsiveness to vaccination and to implement new vaccine development strategies unaffected by genetic backgrounds of pigs.

  13. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer.

    PubMed

    Moreno Ayala, Mariela A; Gottardo, María Florencia; Gori, María Soledad; Nicola Candia, Alejandro Javier; Caruso, Carla; De Laurentiis, Andrea; Imsen, Mercedes; Klein, Slobodanka; Bal de Kier Joffé, Elisa; Salamone, Gabriela; Castro, Maria G; Seilicovich, Adriana; Candolfi, Marianela

    2017-04-21

    Since combination of Toll-like receptor (TLR) ligands could boost antitumor immunity, we evaluated the efficacy of dendritic cell (DC) vaccines upon dual activation of TLR9 and TLR7 in breast cancer models. DCs were generated from mouse bone marrow or peripheral blood from healthy human donors and stimulated with CpG1826 (mouse TLR9 agonist), CpG2006 or IMT504 (human TLR9 agonists) and R848 (TLR7 agonist). Efficacy of antitumor vaccines was evaluated in BALB/c mice bearing metastatic mammary adenocarcinomas. CpG-DCs improved the survival of tumor-bearing mice, reduced the development of lung metastases and generated immunological memory. However, dual activation of TLRs impaired the efficacy of DC vaccines. In vitro, we found that R848 inhibited CpG-mediated maturation of murine DCs. A positive feedback loop in TLR9 mRNA expression was observed upon CpG stimulation that was inhibited in the presence of R848. Impaired activation of NF-κB was detected when TLR9 and TLR7 were simultaneously activated. Blockade of nitric oxide synthase (NOS) and indoleamine-pyrrole-2,3-dioxygenase (IDO) improved the activation of CpG-DCs. When we evaluated the effect of combined activation of TLR9 and TLR7 in human DCs, we found that R848 induced robust DC activation that was inhibited by TLR9 agonists. These observations provide insight in the biology of TLR9 and TLR7 crosstalk and suggest caution in the selection of agonists for multiple TLR stimulation. Blockade of NOS and IDO could improve the maturation of antitumor DC vaccines. R848 could prove a useful adjuvant for DC vaccines in human patients.

  14. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses

    PubMed Central

    Ma, Zhiyong; Zhang, Ejuan; Yang, Dongliang; Lu, Mengji

    2015-01-01

    It is well accepted that adaptive immunity plays a key role in the control of hepatitis B virus (HBV) infection. In contrast, the contribution of innate immunity has only received attention in recent years. Toll-like receptors (TLRs) sense pathogen-associated molecule patterns and activate antiviral mechanisms, including intracellular antiviral pathways and the production of antiviral effector interferons (IFNs) and pro-inflammatory cytokines. Experimental results from in vitro and in vivo models have demonstrated that TLRs mediate the activation of cellular signaling pathways and the production of antiviral cytokines, resulting in a suppression of HBV replication. However, HBV infection is associated with downregulation of TLR expression on host cells and blockade of the activation of downstream signaling pathways. In primary HBV infection, TLRs may slow down HBV infection, but contribute only indirectly to viral clearance. Importantly, TLRs may modulate HBV-specific T- and B-cell responses in vivo, which are essential for the termination of HBV infection. Thus, TLR agonists are promising candidates to act as immunomodulators for the treatment of chronic HBV infection. Antiviral treatment may recover TLR expression and function in chronic HBV infection and may increase the efficacy of therapeutic approaches based on TLR activation. A combined therapeutic strategy with antiviral treatment and TLR activation could facilitate the restoration of HBV-specific immune responses and thereby, achieve viral clearance in chronically infected HBV patients. PMID:25418467

  15. Toll-like receptor of mud crab, Scylla serrata: molecular characterisation, ontogeny and functional expression analysis following ligand exposure, and bacterial and viral infections.

    PubMed

    Vidya, R; Paria, Anutosh; Deepika, A; Sreedharan, K; Makesh, M; Purushothaman, C S; Chaudhari, Aparna; Gireesh Babu, P; Rajendran, K V

    2014-10-01

    Toll-like receptors are sentinels of innate immune system, which recognise pathogen-associated molecular patterns, and subsequently activate production of antimicrobial peptides to contain the infection. In the present study, we cloned and characterised a Toll gene from Scylla serrata (SsToll) encoding 1005 amino acids with typical Toll-like receptor domain topology. Phylogenetic analysis revealed that it belongs to insect-type invertebrate Toll family showing 100 % identity with Scylla paramamosain (SpToll). The expression pattern of mRNA in different tissues indicated that SsToll is constitutively expressed in all the tissues examined, with varying expression levels. The expression was also detected in all the life-stages (egg, zoea stages 1-5, megalopa and crab instar) with the highest level observed in zoea 2. In-vitro studies using crab haemocyte culture demonstrated that SsToll transcripts are distinctly modulated in response to ligands such as peptidoglycan and lipopolysaccharide at all time-points. A significant change in SsToll expression was also noticed in haemocytes exposed to poly I:C (3-9 h). On the contrary, the transcription level of SsToll in response to white spot syndrome virus (WSSV) challenge was noticeably different. The change in expression in vitro was not significant at early time-points until 3 h; the transcripts showed a significant up-regulation commencing from 6 h, but not beyond 12 h. However, in vivo expression was unaffected at early time-points of WSSV challenge (until 12 h) and a gradual up-regulation was detected at 24 h. In-vivo challenge with Vibrio parahaemolyticus resulted in delayed up-regulation of the gene. The results obtained in the present study suggest that SsToll might be involved in the innate immunity of mud crab.

  16. Distribution of bovine alpha-herpesviruses and expression of toll-like receptors in the respiratory system of experimentally infected calves.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Odeón, A C; Pérez, S E

    2016-04-01

    This study provides an initial analysis of the toll-like receptors (TLRs) that might be implicated in alpha-herpesvirus infection of the bovine respiratory system. A significant variation in the expression of TLR3 and TLRs 7-9 during bovine herpesvirus type 1 (BoHV-1) and 5 (BoHV-5) acute infections and particularly an up-regulation during viral reactivation in respiratory tissues has been demonstrated. Furthermore, viral distribution in the respiratory tract of BoHV-1- and BoHV-5-infected calves at different stages of the infectious cycle was analysed. The wide distribution of BoHV DNA in the respiratory tract during acute infection was restricted during latent infection and the subsequent reactivation of BoHV-1 and BoHV-5. Overall, the findings presented here contribute to the knowledge on the replication and dissemination of bovine alpha-herpesviruses. Furthermore, some of the immune factors triggered in the host that determine the different outcomes of infection by two closely related pathogens of cattle have been elucidated.

  17. Impaired interferon-alpha production by plasmacytoid dendritic cells after cord blood transplantation in children: implication for post-transplantation toll-like receptor ligand-based immunotherapy.

    PubMed

    Charrier, Emily; Cordeiro, Paulo; Brito, Rose-Marie; Harnois, Michaël; Mezziani, Samira; Herblot, Sabine; Le Deist, Françoise; Duval, Michel

    2014-10-01

    Plasmacytoid dendritic cells (pDCs) initiate both innate and adaptive immune responses, making them attractive targets for post-transplantation immunotherapy, particularly after cord blood transplantation (CBT). Toll-like receptor (TLR) agonists are currently studied for pDC stimulation in various clinical settings. Their efficacy depends on pDC number and functionality, which are unknown after CBT. We performed a longitudinal study of pDC reconstitution in children who underwent bone marrow transplantation (BMT) and single-unit CBT. Both CBT and unrelated BMT patients received antithymocyte globulin as part of their graft-versus-host disease prophylaxis regimen. pDC blood counts were higher in CBT patients than in healthy volunteers from 2 to 9 months after transplantation, whereas they remained lower in BMT patients. We showed that cord blood progenitors gave rise in vitro to a 500-fold increase in functional pDCs over bone marrow counterparts. Upon stimulation with a TLR agonist, pDCs from both CBT and BMT recipients upregulated T cell costimulatory molecules, whereas interferon-alpha (IFN-α) production was impaired for 9 months after CBT. TLR agonist treatment is thus not expected to induce IFN-α production by pDCs after CBT, limiting its immunotherapeutic potential. Fortunately, in vitro production of large amounts of functional pDCs from cord blood progenitors paves the way for the post-transplantation adoptive transfer of pDCs. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  18. Expression of Toll-like receptor signaling-related genes in pigs co-infected with porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Dong, Van Hieu; Tu, Pang-Yan; Tsai, Pei-Chun; Lin, Yi-Hsin; Chang, Hsiu-Luan; Kuo, Tsun-Yung; Chiou, Ming-Tang; Lin, Chao-Nan; Chung, Wen-Bin

    2015-08-01

    Pigs co-infected with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) have been shown to develop more severe diseases than pigs infected with PRRSV or PCV2 only. The underlying interaction mechanisms between the two viruses in developing the disease are unclear. The present study investigates the mRNA expression of Toll-like receptor (TLR) signaling-related molecules in peripheral blood mononuclear cells from pigs infected with PRRSV or PCV2 or both. The mRNA expression levels were determined by quantitative real-time RT-PCR. Co-infection of pigs with PRRSV and PCV2 resulted in a negatively synergistic effect on the mRNA expression of the negative regulators of TLR, including A20, Bcl-3, IRAK-M, MKP-1, SARM1 and SIGIRR, as well as the TLR downstream transcription factors IRF-1 and IRF-3. A positively synergistic effect of a combined infection of PRRSV and PCV2 on the CD14 mRNA expression was also observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Therapeutic Administration of KM+ Lectin Protects Mice Against Paracoccidioides brasiliensis Infection via Interleukin-12 Production in a Toll-Like Receptor 2-Dependent Mechanism

    PubMed Central

    Coltri, Kely C.; Oliveira, Leandro L.; Pinzan, Camila F.; Vendruscolo, Patrícia E.; Martinez, Roberto; Goldman, Maria Helena; Panunto-Castelo, Ademilson; Roque-Barreira, Maria-Cristina

    2008-01-01

    KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper 1 immune response against Leishmania major infection. In this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM+) and its recombinant counterpart (rKM+) in experimental paracoccidioidomycosis. To this end, jfKM+ or rKM+ was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-γ, and tumor necrosis factor-α, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule. PMID:18599609

  20. Toll-like receptor (TLR)21 signalling-mediated antiviral response against avian influenza virus infection correlates with macrophage recruitment and nitric oxide production.

    PubMed

    Abdul-Cader, Mohamed Sarjoon; Ahmed-Hassan, Hanaa; Amarasinghe, Aruna; Nagy, Eva; Sharif, Shayan; Abdul-Careem, Mohamed Faizal

    2017-06-01

    Cytosine-guanosinedeoxynucleotide (CpG) DNA can be used for the stimulation of the toll-like receptor (TLR)21 signalling pathway in avian species which ultimately leads to up-regulation of gene transcription for pro-inflammatory molecules including nitric oxide and recruitment of innate immune cells. The objective of this study was to determine the antiviral effect of NO, produced in response to in ovo delivery of CpG DNA, against avian influenza virus (AIV) infection. We found that when CpG DNA is delivered at embryo day (ED)18 in ovo and subsequently challenged with H4N6 AIV at ED19 pre-hatch and day 1 post-hatching, CpG DNA reduces H4N6 AIV replication associated with enhanced NO production and macrophage recruitment in lungs. In vitro, we showed that NO originating from macrophages is capable of eliciting an antiviral response against H4N6 AIV infection. This study provides insights into the mechanisms of CpG DNA-mediated antiviral response, particularly against AIV infection in avian species.

  1. Toll-like receptors 3, 7 and 8 are upregulated in the placental caruncle and fetal spleen of Neospora caninum experimentally infected cattle.

    PubMed

    Marin, M S; Hecker, Y P; Quintana, S; Pérez, S E; Leunda, M R; Cantón, G J; Cobo, E R; Moore, D P; Odeón, A C

    2017-03-15

    Innate immune responses at the maternal-fetal interface are key in the pathogenesis of Neospora caninum, an obligate parasite that causes abortion in cattle. Herein, we determined the gene expression of endosomal Toll-like receptors (TLRs) in the placenta and fetuses from both non-infected pregnant heifers and pregnant heifers intravenously challenged with live tachyzoites of N. caninum on day 70 of gestation. On day 104 of pregnancy, mRNA expression of TLRs 3 and 8, as well as that of TLRs 7 and 9, was high in the spleen of fetuses from N. caninum-infected heifers. Gene expression levels of endosomal TLRs were also detectable in the placenta and the maternal caruncle from infected heifers, being TLRs 3, 7 and 8 particularly upregulated, mostly in the caruncle. Basal TLR levels were higher in fetal spleen than in placental tissues. This study provides novel information on how innate TLR responses are induced at the maternal-fetal interface of cattle in response to intracellular N. caninum. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Toll like receptor 2 and CC chemokine receptor 5 cluster in the lipid raft enhances the susceptibility of Leishmania donovani infection in macrophages.

    PubMed

    Majumdar, Suchandra Bhattacharyya; Bhattacharya, Parna; Bhattacharjee, Surajit; Majumder, Saikat; Banerjee, Sayantan; Majumdar, Subrata

    2014-01-01

    In experimental visceral leishmaniasis the causative obligate protozoan parasite, L. donovani invades and multiplies inside of macrophages, one of the sentries of the mammalian immune system. The initial host-parasite interaction between the Leishmania promastigote and the macrophage takes place at the plasma membrane interface. To trace any possible interaction between Toll-like receptor 2 (TLR2) and CC chemokine receptor 5 (CCR5) during early Leishmania-macrophage interactions, it was observed that the expression of both TLR2 and CCR5 were significantly increased, along with their recruitment to the lipid raft. TLR2 silencing attenuates CCR5 expression and restricts L. donovani infection, indicating a regulatory role of TLR2 and CCR5 during infection. Silencing of CCR5 and TLR2 markedly reduced the number of intracellular parasites in macrophages by host protective cytokine responses, while raft disruption using beta-MCD affected TLR2/CCR5 cross-talk and resulted in a significant reduction in parasite invasion. In vivo RNA interference of TLR2 and CCR5 using shRNA plasmids rendered protection in Leishmania donovani-infected mice. Thus, this study for the first time demonstrates the importance of TLR2/CCR5 crosstalk as a significant determinant of Leishmania donovani entry in host macrophages.

  3. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Totura, Allison L.; Whitmore, Alan; Agnihothram, Sudhakar; Schäfer, Alexandra; Katze, Michael G.; Heise, Mark T.

    2015-01-01

    ABSTRACT Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections. PMID:26015500

  4. Interleukin-1 receptor but not Toll-like receptor 2 is essential for MyD88-dependent Th17 immunity to Coccidioides infection.

    PubMed

    Hung, Chiung-Yu; Jiménez-Alzate, María del Pilar; Gonzalez, Angel; Wüthrich, Marcel; Klein, Bruce S; Cole, Garry T

    2014-05-01

    Interleukin-17A (IL-17A)-producing CD4(+) T helper (Th17) cells have been shown to be essential for defense against pulmonary infection with Coccidioides species. However, we have just begun to identify the required pattern recognition receptors and understand the signal pathways that lead to Th17 cell activation after fungal infection. We previously reported that Card9(-/-) mice vaccinated with formalin-killed spherules failed to acquire resistance to Coccidioides infection. Here, we report that both MyD88(-/-) and Card9(-/-) mice immunized with a live, attenuated vaccine also fail to acquire protective immunity to this respiratory disease. Like Card9(-/-) mice, vaccinated MyD88(-/-) mice revealed a significant reduction in numbers of both Th17 and Th1 cells in their lungs after Coccidioides infection. Both Toll-like receptor 2 (TLR2) and IL-1 receptor type 1 (IL-1r1) upstream of MyD88 have been implicated in Th17 cell differentiation. Surprisingly, vaccinated TLR2(-/-) and wild-type (WT) mice showed similar outcomes after pulmonary infection with Coccidioides, while vaccinated IL-1r1(-/-) mice revealed a significant reduction in the number of Th17 cells in their infected lungs compared to WT mice. Thus, activation of both IL-1r1/MyD88- and Card9-mediated Th17 immunity is essential for protection against Coccidioides infection. Our data also reveal that the numbers of Th17 cells were reduced in IL-1r1(-/-) mice to a lesser extent than in MyD88(-/-) mice, raising the possibility that other TLRs are involved in MyD88-dependent Th17 immunity to coccidioidomycosis. An antimicrobial action of Th17 cells is to promote early recruitment of neutrophils to infection sites. Our data revealed that neutrophils are required for vaccine immunity to this respiratory disease.

  5. The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages.

    PubMed

    Mallama, Celeste A; McCoy-Simandle, Kessler; Cianciotto, Nicholas P

    2017-04-01

    Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.

  6. A Functional Toll-Like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-borne Encephalitis Virus (TBEV) Infection

    PubMed Central

    Vene, Sirkka; Mickiene, Aukse; Lundkvist, Åke; Lindquist, Lars; Svensson, Lennart

    2011-01-01

    Background. Tick-borne encephalitis virus (TBEV) infections may be asymptomatic or cause severe symptoms in the central nervous system. A mutation in the chemokine receptor 5 gene has been associated with increased risk of TBE but explains only a limited number of cases. Investigations of further risk factors are needed. Method. To investigate the importance of the innate immune response, we analyzed 128 TBE patients, 77 patients with aseptic meningoencephalitis (AME) and 135 healthy controls, for 3mutations: 2 in the Toll-like receptor 3 (TLR3) gene and 1 in the 2′-5′-oligoadenylate synthetase (OAS1) gene. Results. Although no association was found between the mutation in the OAS1 gene and TBE, the genotype distribution ofrs3775291, a mutation in TLR3, differed significantly between TBE patients and controls; 61%, 32%, and 7% of the TBE patients were carriers of the wild-type, heterozygous, and mutant genotype of rs3775291, respectively. The corresponding percentages among healthy controls (n = 126) were 52%, 29%, and 19% (P = .02), and among AME patients (n = 75) were 47%, 32%, and 21% (P = .009). Additionally, the wild-type rs3775291 allele was more common among TBE patients than among healthy controls (allele frequency, .768 vs .663; P = .01). Conclusion. A functional TLR3 is a risk factor for TBEV infection. PMID:21216866

  7. Expression of toll-like receptors 2 and 4 in subplacental trophoblasts from guinea pigs (Cavia porcellus) following infection with Campylobacter jejuni.

    PubMed

    Burrough, E R; DiVerde, K D; Sahin, O; Plummer, P J; Zhang, Q; Yaeger, M J

    2011-03-01

    Toll-like receptors 2 and 4 (TLR2 and TLR4) are well-characterized cell surface receptors that recognize specific pathogen-associated molecular patterns and play an important role in pathogen recognition and activation of the innate immune system. Variable expression of TLR2 and TLR4 has been described in trophoblasts from normal and diseased placentas; yet, there are limited data regarding trophoblast TLR expression in response to specific placental pathogens, and TLR expression in the guinea pig placenta has not been described. The guinea pig is an effective model for Campylobacter-induced abortion of small ruminants, and the authors have shown by immunohistochemistry that C jejuni localizes within syncytiotrophoblasts of the guinea pig subplacenta. The present study was designed to determine if the expression of either TLR2 or TLR4 would be affected in subplacental trophoblasts following infection with C jejuni. Immunohistochemistry for TLR2 and TLR4 was performed on placenta from guinea pigs that aborted following inoculation with C jejuni and from sham-inoculated controls. Quantitative assessment of TLR expression was performed, and mean immunoreactivity for TLR2 was significantly higher in subplacental trophoblasts from animals that aborted compared with uninfected controls (P = .0283), whereas TLR4 expression was not statistically different (P = .5909). These results suggest that abortion in guinea pigs following infection with C jejuni is associated with increased TLR2 expression in subplacental trophoblasts and may reveal a possible role for TLR2 in the pathogenesis of Campylobacter-induced abortion.

  8. Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection

    PubMed Central

    Baker, David G.; Woods, Tyson A.; Butchi, Niranjan B.; Morgan, Timothy M.; Taylor, R. Travis; Sunyakumthorn, Piyanate; Mukherjee, Piyali; Lubick, Kirk J.; Best, Sonja M.

    2013-01-01

    Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log10 increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses. PMID:23136362

  9. Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection.

    PubMed

    Baker, David G; Woods, Tyson A; Butchi, Niranjan B; Morgan, Timothy M; Taylor, R Travis; Sunyakumthorn, Piyanate; Mukherjee, Piyali; Lubick, Kirk J; Best, Sonja M; Peterson, Karin E

    2013-02-01

    Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log(10) increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses.

  10. The Importance of Toll-like Receptors in NF-κB Signaling Pathway Activation by Helicobacter pylori Infection and the Regulators of this Response.

    PubMed

    Hu, Yi; Liu, Jian-Ping; Zhu, Yin; Lu, Nong-Hua

    2016-10-01

    Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron-deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF-κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll-like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF-κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori-related diseases. © 2016 John Wiley & Sons Ltd.

  11. The Association of Toll-Like Receptor 4 Polymorphism with Hepatitis C Virus Infection in Saudi Arabian Patients

    PubMed Central

    Al-Qahtani, Ahmed A.; Al-Anazi, Mashael R.; Al-Zoghaibi, Fahad; Abdo, Ayman A.; Sanai, Faisal M.; Khan, Mohammed Q.; Al-Ashgar, Hamad I.; Al-Ahdal, Mohammed N.

    2014-01-01

    Hepatitis C virus (HCV) is a single stranded RNA virus. It affects millions of people worldwide and is considered as a leading cause of liver diseases including cirrhosis and hepatocellular carcinoma. A recent study reported that TLR4 gene polymorphisms are good prognostic predictors and are associated with protection from liver fibrosis among Caucasians. This study aims to investigate the implication of genetic polymorphisms of TLR4 gene on the HCV infection in Saudi Arabian patients. Two SNPs in the TLR4 gene, rs4986790 (A/G) and rs4986791 (C/T), were genotyped in 450 HCV patients and 600 uninfected controls. The association analysis confirmed that both SNPs showed a significant difference in their distribution between HCV-infected patients and uninfected control subjects (P < 0.0001; OR = 0.404, 95% CI = 0.281–0.581) and (P < 0.0001; OR = 0.298, 95% CI = 0.201–0.443), respectively. More importantly, haplotype analysis revealed that four haplotypes, AC, GT, GC, and AT (rs4986790, rs4986791), were significantly associated with HCV infection when compared with control subjects. One haplotype AC was more prominently found when chronic HCV-infected patients were compared with cirrhosis/HCC patients (frequency = 94.7% and P = 0.04). Both TLR4 SNPs under investigation were found to be significantly implicated with HCV-infection among Saudi Arabian population. PMID:25177689

  12. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load.

    PubMed

    Farias, María Victoria Nieto; Lendez, Pamela Anahí; Marin, Maia; Quintana, Silvina; Martínez-Cuesta, Lucía; Ceriani, María Carolina; Dolcini, Guillermina Laura

    2016-08-01

    Bovine leukemia virus (BLV) infection is widespread mainly in dairy cattle and 5-10% of infected animals will die due to lymphosarcoma; most cattle remain asymptomatic but 30% develop persistent lymphocytosis (PL). BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms which govern the control of viral dissemination will be desirable for the design of effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. We aimed to characterize cytokines and toll-like receptors (TLR) expression related to the proviral load profiles. IFN-γ and IL-12 mRNA expression level was significantly higher in PBMC from infected cattle (LPL n=6 and HPL n=7) compared to uninfected animals (n=5). While no significant differences were observed in IL-12 expression between LPL and HPL group, IFN-γ expression was significantly higher in LPL animals. Infected cattle exhibited higher expression levels of TLR3, 7-9. Animals with HPL had significantly higher expression of TLR7/8 than uninfected cattle. TLR8 and TLR9 were up-regulated in HPL group, and TLR3 was up-regulated in LPL group. This is the first report related to TLR gene expression in BLV infected cattle and represents evidence of the involvement of these receptors in BLV recognition. Further studies on different subpopulations of immune cells may help clarify their role in response to BLV and its consequences on viral dissemination. Copyright © 2016. Published by Elsevier Ltd.

  13. Toll-like receptor 4 orchestrates neutrophil recruitment into airways during the first hours of Bordetella pertussis infection.

    PubMed

    Moreno, Griselda; Errea, Agustina; Van Maele, Laurye; Roberts, Roy; Léger, Hélène; Sirard, Jean Claude; Benecke, Arndt; Rumbo, Martin; Hozbor, Daniela

    2013-01-01

    Most of the knowledge on the impact of Bordetella pertussis lipo-oligosaccharide (LOS) on the infectious process was obtained when the bacteria was established within the host. The aim of the present work was to determine the role of TLR4 at a very early step of the infectious process. To this end we used a transcriptomic approach on B. pertussis intranasal infection model in C3H/HeN, a TLR4-competent mouse strain, and C3H/HeJ, a TLR4-deficient mouse strain. The expression of approximately 140 genes was significantly changed 2 h post-infection in the C3H/HeN animals compared to the C3H/HeJ animals, which were essentially non-responders at this early time point. Pathways specific for immunity and defense, chemokine- and cytokine-mediated functions and TLR signaling, were activated upon infection in the TLR4 competent mice either at 2 h or 24 h. Furthermore, we observed that TLR4 signaling is absolutely required to promote the rapid recruitment of neutrophils into the airways. Interestingly, the depletion of those neutrophils impacted on B. pertussis lung counts in the first three days, thereby exacerbating the lung infection. In summary, we determined that TLR4 is a central player in initial neutrophil recruitment and orchestration of the very early innate defense against B. pertussis. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Eimeria tenella: expression profiling of toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old SPF chickens.

    PubMed

    Zhang, Lei; Liu, Renqiang; Ma, Liping; Wang, Yingwei; Pan, Baoliang; Cai, Jianping; Wang, Ming

    2012-04-01

    Coccidiosis is an economically important protozoan disease worldwide caused by Eimeria parasites. Toll-like receptors (TLRs), a family of highly conserved proteins, are involved in pathogen detection by initiating host responses, and play important roles in the reduction and clearance of pathogens. Little is known about the roles of chicken TLRs during Eimeria tenella infection. We detected the dynamic changes in the expression of TLRs and associated cytokines in the cecum of E. tenella-infected chickens during the early stage of infection. Day-old (Experiment 1) and three-week-old (Experiment 2) chickens were orally gavaged with 10,000 oocysts (30 chickens each experiment), and their cecum intraepithelial lymphocytes were collected at 3, 6, 12, 24, 48, and 72h post-infection (hpi). Expression profiling of TLR1LA, TLR4, TLR5, TLR7, TLR21, and IFN-α, IFN-β, IFN-γ, IL-1β, IL-12 genes were analyzed using quantitative real-time polymerase chain reaction. Almost all TLR transcripts were transiently increased at 3hpi in Experiment 1. In three-week-old chickens, TLR1LA, TLR4, TLR5, TLR7, and TLR21 expression was upregulated at 12hpi, and TLR1LA, TLR5, and TLR21 were highly expressed at 72hpi. In day-old chickens, IFN-α, IFN-β, IFN-γ, IL-1β, and IL-12 expression was significantly upregulated at 3hpi (156.1-1117.1-fold change), in comparison to the different peak level times and relatively small changes for these cytokines in the three-week-old chickens. Our results provide a valuable overview for the expression pattern of TLRs and associated cytokines during the early stage of E. tenella infection in chickens.

  15. Toll-like receptor 9-mediated protection of enterovirus 71 infection in mice is due to the release of danger-associated molecular patterns.

    PubMed

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Chen, I-Hua; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Liu, Shih-Jen

    2014-10-01

    Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) with severe neurological symptoms. Antiviral type I interferon (alpha/beta interferon [IFN-α/β]) responses initiated from innate receptor signaling are inhibited by EV71-encoded proteases. It is less well understood whether EV71-induced apoptosis provides a signal to activate type I interferon responses as a host defensive mechanism. In this report, we found that EV71 alone cannot activate Toll-like receptor 9 (TLR9) signaling, but supernatant from EV71-infected cells is capable of activating TLR9. We hypothesized that TLR9-activating signaling from plasmacytoid dendritic cells (pDCs) may contribute to host defense mechanisms. To test our hypothesis, Flt3 ligand-cultured DCs (Flt3L-DCs) from both wild-type (WT) and TLR9 knockout (TLR9KO) mice were infected with EV71. More viral particles were produced in TLR9KO mice than by WT mice. In contrast, alpha interferon (IFN-α), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), IFN-γ, interleukin 6 (IL-6), and IL-10 levels were increased in Flt3L-DCs from WT mice infected with EV71 compared with TLR9KO mice. Seven-day-old TLR9KO mice infected with a non-mouse-adapted EV71 strain developed neurological lesion-related symptoms, including hind-limb paralysis, slowness, ataxia, and lethargy, but WT mice did not present with these symptoms. Lung, brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice exhibited significantly higher viral loads than equivalent tissues collected from WT mice. Histopathologic damage was observed in brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice infected with EV71. Our findings demonstrate that TLR9 is an important host defense molecule during EV71 infection. Importance: The host innate immune system is equipped with pattern recognition receptors (PRRs), which are useful for defending the host

  16. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling.

    PubMed

    Burberry, Aaron; Zeng, Melody Y; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J; Núñez, Gabriel

    2014-06-11

    Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilize for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin(-/low)Sca1+cKit+) was diminished in TLR4-deficient and RIPK2-deficient mice, implicating TLRs and cytosolic NOD1/NOD2 signaling in the process. Accordingly, dual stimulation of NOD1 and TLR4 in radio-resistant cells alone was sufficient to mobilize HSCs, while TLR4 expression on HSCs was dispensable. Mechanistically, TLR4 and NOD1 synergistically induced granulocyte colony-stimulating factor (G-CSF), which was required for extramedullary HSC accumulation. Mobilized HSCs and progenitor cells gave rise to neutrophils and monocytes and contributed to limiting secondary infection.

  17. Polymorphisms at Locus 4p14 of Toll-Like Receptors TLR-1 and TLR-10 Confer Susceptibility to Gastric Carcinoma in Helicobacter pylori Infection

    PubMed Central

    Ravishankar Ram, M.; Goh, Khean Lee; Leow, Alex Hwong Ruey; Poh, Bee Hoon; Loke, Mun Fai; Harrison, Richard; Shankar, Esaki M.; Vadivelu, Jamuna

    2015-01-01

    Helicobacter pylori (H. pylori) -induced gastric inflammation impacts the functions of leptin- and ghrelin-producing cells in the gastroduodenum. Inflammation resulting from H. pylori sensing via Toll-like receptors (TLRs) and the associated downstream signaling largely remain ambiguous. Here, we investigated the role of gut hormones, pro-inflammatory cytokines and single nucleotide polymorphisms (SNPs) associated with TLR 4p14 in H. pylori disease in 30 subjects with non-ulcer dyspepsia (NUD), 40 with peptic ulcer disease (PUD) and 15 with gastric cancer (GC) subjects positive and negative for H. pylori infection. The level of pro-inflammatory cytokines was directly proportional to the severity of gastritis, and disease status influenced the levels of gut hormones and pro-inflammatory cytokines. TLR-1 SNPs rs4833095 and TLR-10 SNPs rs10004195 and were directly associated with H. pylori disease, and were up-regulated in the presence of H. pylori in a genotype-independent manner. We concluded that TLR-1 rs4833095 and TLR10 rs10004195 confer susceptibility to development of gastroduodenal disease, especially GC in H.pylori disease. PMID:26559190

  18. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniae Infection1

    PubMed Central

    Happel, Kyle I.; Zheng, Mingquan; Young, Erana; Quinton, Lee J.; Lockhart, Euan; Ramsay, Alistair J.; Shellito, Judd E.; Schurr, Jill R.; Bagby, Gregory J.; Nelson, Steve; Kolls, Jay K.

    2010-01-01

    Local production of IL-17 is a significant factor in effective host defense against Gram-negative bacteria. However, the proximal events mediating IL-17 elaboration by T cells remain unclear. In this study, we show in vivo that intact Toll-like receptor 4 signaling in the lung is required for induction of both the p19 transcript of IL-23 and IL-17 protein elaboration in response to Klebsiella pneumoniae. Although IL-17 is widely considered a CD4+ T cell product, we also demonstrate significant in vitro IL-17 production by CD8+ T cells after culture in medium from dendritic cells exposed to these bacteria. The dominant portion of this IL-17-inducing activity for both CD4+ and CD8+ T cells is IL-23. These data demonstrate the critical signaling pathway for IL-17 induction in the host response to Gram-negative pulmonary infection and suggest a direct role for IL-23 in CD8+ T cell IL-17 production. PMID:12707317

  19. Toll-like receptors and interferon associated immune factors responses to spring viraemia of carp virus infection in common carp (Cyprinus carpio).

    PubMed

    Wei, Xinxian; Li, Xiao Zheng; Zheng, Xiaocong; Jia, Peng; Wang, Jinjin; Yang, Xianle; Yu, Li; Shi, Xiujie; Tong, Guixiang; Liu, Hong

    2016-08-01

    Pattern recognition receptor (PRR) toll-like receptors (TLRs), antiviral agent interferon (IFN) and the effector IFN stimulated genes (ISGs) play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for spring viraemia of carp virus (Rhabdovirus carpio, SVCV), which belong to Rhabdoviridae family. The present in-vivo experiment was conducted to investigate the expression of these innate immune factors in early phase as well as during recovery of SVCV infection by real-time quantitative reverse transcriptase polymerase chain reaction. A less lethal SVCV infection was generated in common carp (Cyprinus carpio) and was sampled at 3, 6, 12 h post infection (hpi), 1, 3, 5, 7 and 10 days post infection (dpi). At 3 hpi, the SVCV N gene was detected in all three fish and all three fish showed a relative fold increase of TLR2, TLR3 and TLR7, IFNa1, ISG15 and Vig1. Viral copies rapidly increased at 12 hpi then remained high until 5 dpi. When viral copy numbers were high, a higher expression of immune genes TLR2, TLR3, TLR7, IFNa1, IFNa2, IFNa1S, IFN regulatory factor 3 (IRF3), IRF7, interleukin 1β (IL1β), IL6, IL10, ADAR, ISG15, Mx1, PKR and Vig1 were observed. Viral copies were gradually reduced in 5 to 10 dpi fish, and also the immune response was considerably reduced but remained elevated. A high degree of correlation was observed between immune genes and viral copy number in each of the sampled fish at 12 hpi. The quick and prolonged elevated expression of the immune genes indicates their crucial role in survival of host against SVCV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Immunization with inactivated antigens of Neospora caninum induces toll-like receptors 3, 7, 8 and 9 in maternal-fetal interface of infected pregnant heifers.

    PubMed

    Marin, M S; Hecker, Y P; Quintana, S; Pérez, S E; Leunda, M R; Cantón, G J; Cobo, E R; Moore, D P; Odeón, A C

    2017-08-30

    Neospora caninum is an obligate parasite and a major cause of abortion in cattle. Pregnancy failures appear to be associated with weak innate defences on the maternal-fetal interface during infection with N. caninum. Herein, we studied the gene expression of Toll-like receptors (TLRs) in pregnant heifers immunized with different vaccine formulations against N. caninum before mating and then challenged the heifers with live N. caninum on day 70 of gestation. TLR7 and TLR8 expression was upregulated in the placental caruncle of infected-pregnant heifers previously exposed to live N. caninum as immunogen. However, TLR7 and 8 expression in both placenta and caruncle as well as, TLR3 and 9 expression in caruncle were upregulated when heifers were previously immunized with inactivated soluble whole antigens and recombinant NcSAG1, NcHSP20 and NcGRA7 proteins. All dams were carrying viable fetuses when they were culled at day 104 of gestation. Upregulation of TLR7 and IFNγ expression was detected in fetal spleen when their mothers where previously vaccinated with soluble antigens and recombinant NcSAG1, NcHSP20 and NcGRA7 proteins. These studies demonstrate that soluble or recombinant NcSAG1, NcHSP20 and NcGRA7 antigens induce key TLRs expression at the maternal-fetal interface, probably triggering damaging inflammatory cellular immune responses associated with abortion. Previous infection with N. caninum seems to attenuate the innate immune response at the maternal-fetal interface, which could favour pregnancy maintenance and perpetuation of the disease. This finding represents novel information on how N. caninum vaccination and infection modulate TLRs expression at the placenta and fetal spleen, the possible role in the pregnancy outcomes and transplacental transmission of the protozoa. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Expression of miR-155 associated with Toll-like receptors 3, 7, and 9 transcription in the olfactory bulbs of cattle naturally infected with BHV5.

    PubMed

    Oliveira, Bruna R S M; Vieira, Flavia V; de S Vieira, Dielson; da Silva, Sergio E L; Gameiro, Roberto; Flores, Eduardo F; Cardoso, Tereza C

    2017-08-22

    Bovine herpesvirus 5 (BHV5) infection of young cattle is frequently associated with fatal neurological disease and, as such, represents an attractive model for studying the pathogenesis of viral-induced meningoencephalitis. Following replication in the nasal mucosa, BHV5 invades the central nervous system (CNS) mainly through the olfactory pathway. The innate immune response triggered by the host face to virus replication through the olfactory route is poorly understood. Recently, an upregulation of conserved pathogen-associated molecular pattern, as Toll-like receptors (TLRs), has been demonstrated in the CNS of BHV5 experimentally infected cows. A new perspective to understand host-pathogen interactions has emerged elucidating microRNAs (miRNAs) network that interact with innate immune response during neurotropic viral infections. In this study, we demonstrated a link between the expression of TLRs 3, 7, and 9 and miR-155 transcription in the olfactory bulbs (OB) of 16 cows suffering from acute BHV5-induced neurological disease. The OBs were analyzed for viral antigens and genome, miR-155 and TLR 3, 7, and 9 expression considering three major regions: olfactory receptor neurons (ORNs), glomerular layer (GL), and mitral cell layer (ML). BHV5 antigens and viral genomes, corresponding to glycol-C gene, were detected in all OBs regions by fluorescent antibody assay (FA) and PCR, respectively. TLR 3, 7, and 9 transcripts were upregulated in ORNs and ML, yet only ORN layers revealed a positive correlation between TLR3 and miR-155 transcription. In ML, miR-155 correlated positively with all TLRs studied. Herein, our results evidence miR-155 transcription in BHV5 infected OB tissue associated to TLRs expression specifically ORNs which may be a new window for further studies.

  2. Toll-like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar typhimurium infection, but not for the initiation of bacterial clearance.

    PubMed

    Talbot, Suzanne; Tötemeyer, Sabine; Yamamoto, Masahiro; Akira, Shizuo; Hughes, Katherine; Gray, David; Barr, Tom; Mastroeni, Pietro; Maskell, Duncan J; Bryant, Clare E

    2009-12-01

    Toll-like receptor-4 (TLR4) is important in protection against lethal Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Control of the early stages of sublethal S. Typhimurium infection in mice depends on TLR4-dependent activation of macrophages and natural killer (NK) cells to drive an inflammatory response. TLR4 signals through the adapter proteins Mal/MyD88 and TRIF-related adaptor molecule (TRAM)/TIR-domain-containing adaptor-inducing interferon-b (TRIF). In the mouse typhoid model we showed that TLR4 and MyD88, but not Mal or TRIF, are essential for the control of exponential S. Typhimurium growth. TRIF(-/-) mice have a higher bacterial load in comparison with wild-type mice during a sublethal infection because TRIF is important for bacterial killing during the first day of systemic disease. Minimal pro-inflammatory responses were induced by S. Typhimurium infection of macrophages from TLR4(-/-), MyD88(-/-) and TRIF(-/-) mice in vitro. Pro-inflammatory responses from Mal(-/-) macrophages were similar to those from wild-type cells. The pro-inflammatory responses of TRIF(-/-) macrophages were partially restored by the addition of interferon-gamma (IFN-gamma), and TRIF(-/-) mice produced markedly enhanced IFN-gamma levels, in comparison to wild-type mice, probably explaining why bacterial growth can be controlled in these mice. TLR4(-/-), MyD88(-/-), TRIF(-/-) and Mal(-/-) mice all initiated clearance of S. Typhimurium, suggesting that TLR4 signalling is not important in driving bacterial clearance in comparison to its critical role in controlling early bacterial growth in mouse typhoid.

  3. Genetic variations in toll-like receptor 4 in Mexican-Mestizo patients with intra-abdominal infection and/or pneumonia.

    PubMed

    Rodriguez-Osorio, Carlos A; Lima, Guadalupe; Herrera-Caceres, Jaime O; Villegas-Torres, Beatriz E; Zuñiga, Joaquin; Ponce-de-Leon, Sergio; Llorente, Luis; Sifuentes-Osornio, Jose

    2013-06-01

    Sepsis is a leading cause of death around the world, and 73-83% of all sepsis cases requiring attention in intensive care units are linked to intra-abdominal infection (IAI) or pneumonia. The activation of innate immunity is central to the manifestation of sepsis, and toll-like receptor (TLR) 4 plays an important role in this activation process. The 299G and 399I alleles of TLR4 have been linked with an increased risk of Gram-negative bacteria (GNB) infections and septic shock in some populations. This case-control study evaluated the prevalence of D299G/T399I polymorphisms in Mexican patients with IAI and/or pneumonia and in healthy controls. Genotyping revealed that 1 in 44 patients (2.3%; CI 95%: 0.05-12.0%) and 4 in 126 controls (3.2%; CI 95%: 0.9-7.9%) were heterozygous for both the D299G and T399l polymorphisms (OR: 0.71, CI 95%: 0.01-7.44, p = NS), confirming the co-segregation of these alleles in this population. Furthermore, the patients with a GNB infection and severe sepsis were not carriers of the risk alleles. In summary, this report shows that the frequency of the D299G and T399I polymorphisms in Mexican-Mestizos is lower than anticipated in comparison with other ethnic groups, emphasizing the variable distribution of TLR4 polymorphisms among different populations. Consequently, this study was not able to detect associations between TLR4 polymorphisms and sepsis in this population.

  4. Expression of avian β-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection.

    PubMed

    Anastasiadou, M; Avdi, M; Michailidis, G

    2013-08-01

    The epididymis is an organ involved in the maturation, transport, and storage of sperm prior to ejaculation. As epididymis is exposed to a constant risk of inflammatory conditions that may lead to transient or permanent sterility, protection of this organ from pathogens is an essential aspect of reproductive physiology. The families of antimicrobial peptides β-defensins and the pattern-recognition receptors Toll-like (TLR) mediate innate immunity in various vertebrates including avian species. As rooster infertility is a major concern in the poultry industry, the objectives of this study were to determine the expression profile of the entire family of the avian β-defensins (AvBD) and TLR genes in the rooster epididymis, to investigate whether sexual maturation affects their epididymidal mRNA abundance and to determine the changes in their expression levels in response to Salmonella enteritidis (SE) infection in the epididymis of sexually mature roosters. RNA was extracted from the epididymis of healthy pubertal, sexually mature and aged birds, and from sexually mature SE infected birds. RT-PCR analysis revealed that 10 members of the AvBD and nine members of the TLR gene families were expressed in the epididymis. Quantitative real-time PCR analysis revealed that the epididymidal mRNA abundance of certain AvBD and TLR genes was developmentally regulated with respect to sexual maturation. SE infection resulted in a significant induction of AvBD 1, 9, 10, 12 and 14, as well as TLR 1-2, 2-1, 2-2, 4, 5 and 7 genes, in the epididymis of sexually mature roosters, compared to healthy birds of the same age. These findings provide strong evidence to suggest that the rooster epididymis is capable of initiating an inflammatory response to Salmonella, through activation of certain members of the AvBD and TLR gene families. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. TREM-1 Amplifies Corneal Inflammation after Pseudomonas aeruginosa Infection by Modulating Toll-Like Receptor Signaling and Th1/Th2-Type Immune Responses ▿

    PubMed Central

    Wu, Minhao; Peng, Anping; Sun, Mingxia; Deng, Qiuchan; Hazlett, Linda D.; Yuan, Jin; Liu, Xialin; Gao, Qianying; Feng, Lianqiang; He, Junfang; Zhang, Ping; Huang, Xi

    2011-01-01

    As a novel family of cell surface receptors, triggering receptors expressed on myeloid cells (TREMs) play an important role in inflammatory responses. However, the role of TREMs in the ocular immune system remains unknown. In this study, we examined the expression and function of TREM-1 in Pseudomonas aeruginosa keratitis, one of the most common sight-threatening ocular diseases. TREM-1 was significantly increased in human corneas after P. aeruginosa infection. Consistent with TREM-1 expression at the human ocular surface, TREM-1 levels (mRNA and protein) were also elevated in the infected corneas of C57BL/6 (B6) mice at 1, 3, and 5 days postinfection. To determine whether TREM-1 dictates the outcome of P. aeruginosa keratitis in susceptible mice, TREM-1 signaling in B6 mice was blocked with a soluble mTREM-1/Fc fusion protein. The results indicated that blockade of TREM-1 reduced the severity of corneal disease, polymorphonuclear neutrophil infiltration, Th1/proinflammatory cytokine expression and Toll-like receptor (TLR) activation but enhanced the production of Th2 cytokines, murine β-defensin 2 (mBD2), single Ig interleukin-1R-related molecule (SIGIRR), and ST2. Furthermore, we also used agonistic anti-mTREM-1 antibody to activate TREM-1 signaling in B6 mice and found that TREM-1 activation resulted in worsened disease and earlier corneal perforation in infected B6 mouse corneas and elevated production of proinflammatory cytokines and TLR signaling molecules but reduced expression of mBD2, SIGIRR, and ST2. To the best of our knowledge, this study provides the first evidence that TREM-1 functions as an inflammatory amplifier in P. aeruginosa keratitis by modulating TLR signaling and Th1/Th2 responses. PMID:21555403

  6. TREM-1 amplifies corneal inflammation after Pseudomonas aeruginosa infection by modulating Toll-like receptor signaling and Th1/Th2-type immune responses.

    PubMed

    Wu, Minhao; Peng, Anping; Sun, Mingxia; Deng, Qiuchan; Hazlett, Linda D; Yuan, Jin; Liu, Xialin; Gao, Qianying; Feng, Lianqiang; He, Junfang; Zhang, Ping; Huang, Xi

    2011-07-01

    As a novel family of cell surface receptors, triggering receptors expressed on myeloid cells (TREMs) play an important role in inflammatory responses. However, the role of TREMs in the ocular immune system remains unknown. In this study, we examined the expression and function of TREM-1 in Pseudomonas aeruginosa keratitis, one of the most common sight-threatening ocular diseases. TREM-1 was significantly increased in human corneas after P. aeruginosa infection. Consistent with TREM-1 expression at the human ocular surface, TREM-1 levels (mRNA and protein) were also elevated in the infected corneas of C57BL/6 (B6) mice at 1, 3, and 5 days postinfection. To determine whether TREM-1 dictates the outcome of P. aeruginosa keratitis in susceptible mice, TREM-1 signaling in B6 mice was blocked with a soluble mTREM-1/Fc fusion protein. The results indicated that blockade of TREM-1 reduced the severity of corneal disease, polymorphonuclear neutrophil infiltration, Th1/proinflammatory cytokine expression and Toll-like receptor (TLR) activation but enhanced the production of Th2 cytokines, murine β-defensin 2 (mBD2), single Ig interleukin-1R-related molecule (SIGIRR), and ST2. Furthermore, we also used agonistic anti-mTREM-1 antibody to activate TREM-1 signaling in B6 mice and found that TREM-1 activation resulted in worsened disease and earlier corneal perforation in infected B6 mouse corneas and elevated production of proinflammatory cytokines and TLR signaling molecules but reduced expression of mBD2, SIGIRR, and ST2. To the best of our knowledge, this study provides the first evidence that TREM-1 functions as an inflammatory amplifier in P. aeruginosa keratitis by modulating TLR signaling and Th1/Th2 responses.

  7. Toll-Like Receptor (TLR) 2 and TLR9 Expressed in Trigeminal Ganglia are Critical to Viral Control During Herpes Simplex Virus 1 Infection

    PubMed Central

    Lima, Graciela Kunrath; Zolini, Guilherme Pimenta; Mansur, Daniel Santos; Freire Lima, Bráulio Henrique; Wischhoff, Uschi; Astigarraga, Ruiz Gerhardt; Dias, Marcela França; Silva, Mariana das Graças Almeida; Béla, Samantha Ribeiro; do Valle Antonelli, Lis Ribeiro; Arantes, Rosa Maria; Gazzinelli, Ricardo Tostes; Báfica, André; Kroon, Erna Geessien; Campos, Marco Antônio

    2010-01-01

    Herpes simplex virus 1 (HSV-1) is a neurotropic DNA virus that is responsible for several clinical manifestations in humans, including encephalitis. HSV-1 triggers toll-like receptors (TLRs), which elicit cytokine production. Viral multiplication and cytokine expression in C57BL/6 wild-type (WT) mice infected with HSV-1 were evaluated. Virus was found in the trigeminal ganglia (TG), but not in the brains of animals without signs of encephalitis, between 2 and 6 days postinfection (d.p.i.). Cytokine expression in the TG peaked at 5 d.p.i. TLR9−/− and TLR2/9−/− mice were more susceptible to the virus, with 60% and 100% mortality, respectively, as opposed to 10% in the WT and TLR2−/− mice. Increased levels of both CXCL10/IP-10 and CCL2/MCP-1, as well as reduced levels of interferon-γ and interleukin 1-β transcripts, measured in both the TG and brains at 5 d.p.i., and the presence of virus in the brain were correlated with total mortality in TLR2/9−/− mice. Cytokine alterations in TLR2/9−/− mice coincided with histopathological changes in their brains, which did not occur in WT and TLR2−/− mice and occurred only slightly in TLR9−/− mouse brain. Increased cellularity, macrophages, CD8 T cells producing interferon-γ, and expression levels of TLR2 and TLR9 were detected in the TG of WT-infected mice. We hypothesize that HSV-1 infection is controlled by TLR-dependent immune responses in the TG, which prevent HSV-1 encephalitis. PMID:20864677

  8. Network Analysis of the Systemic Response to Fasciola hepatica Infection in Sheep Reveals Changes in Fibrosis, Apoptosis, Toll-Like Receptors 3/4, and B Cell Function

    PubMed Central

    Fu, Yan; Browne, John A.; Killick, Kate; Mulcahy, Grace

    2017-01-01

    The Trematode Fasciola hepatica is an important cause of disease in livestock and in man. Modulation of immunity is a critical strategy used by this parasite to facilitate its long-term survival in the host. Understanding the underlying mechanisms at a system level is important for the development of novel control strategies, such as vaccination, as well as for increasing general understanding of helminth-mediated immunoregulation and its consequences. Our previous RNA sequencing work identified a large number of differentially expressed genes (DEG) from ovine peripheral blood mononuclear cells (PBMCs) at acute and chronic stages of F. hepatica infection, and yielded important information on host–parasite interaction, with particular reference to the immune response. To extend our understanding of the immunoregulatory effects of this parasite, we employed InnateDB to further analyze the DEG dataset and identified 2,458 and 224 molecular interactions in the context of innate immunity from the acute and chronic stages of infection, respectively. Notably, 458 interactions at the acute stage of infection were manually curated from studies involving PBMC-related cell-types, which guaranteed confident hypothesis generation. NetworkAnalyst was subsequently used to construct and visualize molecular networks. Two complementary strategies (function-first and connection-first) were conducted to interpret the networks. The function-first approach highlighted subnetworks implicated in regulation of Toll-like receptor 3/4 signaling in both acute and chronic infections. The connection-first approach highlighted regulation of intrinsic apoptosis and B-cell receptor-signaling during acute and chronic infections, respectively. To the best of our knowledge, this study is the first system level analysis of the regulation of host innate immunity during F. hepatica infection. It provides insights into the profound changes induced by F. hepatica infection that not only favors parasite

  9. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    PubMed

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  10. A novel mouse model of Campylobacter jejuni gastroenteritis reveals key pro-inflammatory and tissue protective roles for Toll-like receptor signaling during infection.

    PubMed

    Stahl, Martin; Ries, Jenna; Vermeulen, Jenny; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M; Badayeva, Yuliya; Turvey, Stuart E; Gaynor, Erin C; Li, Xiaoxia; Vallance, Bruce A

    2014-07-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr(-/-)), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr(-/-) mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr(-/-) mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4(-/-)/Sigirr(-/-) mice were largely unresponsive to infection by C. jejuni, whereas Tlr2(-/-)/Sigirr(-/-) mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr(-/-) mice as an exciting and relevant animal model for

  11. Vasoactive Intestinal Peptide Down-Regulates Pro- While Up-Regulating Anti-Inflammatory Toll-like Receptors in the Infected Cornea

    PubMed Central

    Jiang, Xiaoyu; McClellan, Sharon A.; Barrett, Ronald P.; Zhang, Yunfan; Hazlett, Linda D.

    2012-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger an immune response, but their regulation by neuropeptides such as vasoactive intestinal peptide (VIP) during Pseudomonas aeruginosa corneal infection remains unexplored. Therefore, C57BL/6 (B6) mice were injected intraperitoneally with VIP and mRNA, protein and immunostaining assays done. After VIP treatment PCR array and real-time RT-PCR demonstrated that pro-inflammatory TLRs (Chuk, IRAK1, TLR1, 4, 6, 8, 9 and TRAF6) were down-regulated, while anti-inflammatory TLRs (SIGIRR and ST2) were up-regulated. ELISA showed that VIP modestly down-regulated phosphorylated IKKα, but up-regulated ST2 almost 2 fold. SIGIRR also was up-regulated, while TLR4 immunostaining was reduced in cornea; all confirming the mRNA data. To determine if VIP effects were cAMP dependent, mice were injected with siRNA for type 7 adenylate cyclase (AC7) with or without VIP treatment. After silencing AC7, changes in mRNA levels of TLR1, TRAF6 and ST2 were seen and unchanged with addition of VIP, indicating their regulation was cAMP dependent. In contrast, changes were seen in mRNA levels of Chuk, IRAK1, 2, TLR4, 9 and SIGIRR following AC7 silencing alone, which were modified by VIP addition, indicating their cAMP independence. In vitro studies tested the effects of VIP on TLR regulation in macrophages and Langerhans cells. VIP down-regulated mRNA expression of pro-inflammatory, while up-regulating anti-inflammatory TLRs in both cell types. Collectively, the data provide evidence that VIP down-regulates pro- and up-regulates anti-inflammatory TLRs, that this regulation is both cAMP dependent and independent, and involves immune cell types found in the infected cornea. PMID:22661083

  12. A Novel Mouse Model of Campylobacter jejuni Gastroenteritis Reveals Key Pro-inflammatory and Tissue Protective Roles for Toll-like Receptor Signaling during Infection

    PubMed Central

    Stahl, Martin; Yang, Hong; Sham, Ho Pan; Crowley, Shauna M.; Badayeva, Yuliya; Turvey, Stuart E.; Gaynor, Erin C.; Li, Xiaoxia; Vallance, Bruce A.

    2014-01-01

    Campylobacter jejuni is a major source of foodborne illness in the developed world, and a common cause of clinical gastroenteritis. Exactly how C. jejuni colonizes its host's intestines and causes disease is poorly understood. Although it causes severe diarrhea and gastroenteritis in humans, C. jejuni typically dwells as a commensal microbe within the intestines of most animals, including birds, where its colonization is asymptomatic. Pretreatment of C57BL/6 mice with the antibiotic vancomycin facilitated intestinal C. jejuni colonization, albeit with minimal pathology. In contrast, vancomycin pretreatment of mice deficient in SIGIRR (Sigirr−/−), a negative regulator of MyD88-dependent signaling led to heavy and widespread C. jejuni colonization, accompanied by severe gastroenteritis involving strongly elevated transcription of Th1/Th17 cytokines. C. jejuni heavily colonized the cecal and colonic crypts of Sigirr−/− mice, adhering to, as well as invading intestinal epithelial cells. This infectivity was dependent on established C. jejuni pathogenicity factors, capsular polysaccharides (kpsM) and motility/flagella (flaA). We also explored the basis for the inflammatory response elicited by C. jejuni in Sigirr−/− mice, focusing on the roles played by Toll-like receptors (TLR) 2 and 4, as these innate receptors were strongly stimulated by C. jejuni. Despite heavy colonization, Tlr4−/−/Sigirr−/− mice were largely unresponsive to infection by C. jejuni, whereas Tlr2−/−/Sigirr−/− mice developed exaggerated inflammation and pathology. This indicates that TLR4 signaling underlies the majority of the enteritis seen in this model, whereas TLR2 signaling had a protective role, acting to promote mucosal integrity. Furthermore, we found that loss of the C. jejuni capsule led to increased TLR4 activation and exaggerated inflammation and gastroenteritis. Together, these results validate the use of Sigirr−/− mice as an exciting and relevant animal

  13. Human herpesvirus 6A infection in CD46 transgenic mice: viral persistence in the brain and increased production of proinflammatory chemokines via Toll-like receptor 9.

    PubMed

    Reynaud, Joséphine M; Jégou, Jean-François; Welsch, Jérémy C; Horvat, Branka

    2014-05-01

    Human herpesvirus 6 (HHV-6) is widely spread in the human population and has been associated with several neuroinflammatory diseases, including multiple sclerosis. To develop a small-animal model of HHV-6 infection, we analyzed the susceptibility of several lines of transgenic mice expressing human CD46, identified as a receptor for HHV-6. We showed that HHV-6A (GS) infection results in the expression of viral transcripts in primary brain glial cultures from CD46-expressing mice, while HHV-6B (Z29) infection was inefficient. HHV-6A DNA persisted for up to 9 months in the brain of CD46-expressing mice but not in the nontransgenic littermates, whereas HHV-6B DNA levels decreased rapidly after infection in all mice. Persistence in the brain was observed with infectious but not heat-inactivated HHV-6A. Immunohistological studies revealed the presence of infiltrating lymphocytes in periventricular areas of the brain of HHV-6A-infected mice. Furthermore, HHV-6A stimulated the production of a panel of proinflammatory chemokines in primary brain glial cultures, including CCL2, CCL5, and CXCL10, and induced the expression of CCL5 in the brains of HHV-6A-infected mice. HHV-6A-induced production of chemokines in the primary glial cultures was dependent on the stimulation of toll-like receptor 9 (TLR9). Finally, HHV-6A induced signaling through human TLR9 as well, extending observations from the murine model to human infection. Altogether, this study presents a first murine model for HHV-6A-induced brain infection and suggests a role for TLR9 in the HHV-6A-initiated production of proinflammatory chemokines in the brain, opening novel perspectives for the study of virus-associated neuropathology. HHV-6 infection has been related to neuroinflammatory diseases; however, the lack of a suitable small-animal infection model has considerably hampered further studies of HHV-6-induced neuropathogenesis. In this study, we have characterized a new model for HHV-6 infection in mice

  14. Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection.

    PubMed

    Ehrlich, Allison K; Fernández, Olga L; Rodriguez-Pinto, Daniel; Castilho, Tiago M; Corral Caridad, Maria J; Goldsmith-Pestana, Karen; Saravia, Nancy Gore; McMahon-Pratt, Diane

    2017-03-01

    Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L (V) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9(+) cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a

  15. Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection

    PubMed Central

    Fernández, Olga L.; Rodriguez-Pinto, Daniel; Castilho, Tiago M.; Corral Caridad, Maria J.; Goldsmith-Pestana, Karen; Saravia, Nancy Gore; McMahon-Pratt, Diane

    2017-01-01

    ABSTRACT Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L. (V.) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9+ cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo. Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously

  16. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection.

    PubMed

    Cavalcante, Paola; Galbardi, Barbara; Franzi, Sara; Marcuzzo, Stefania; Barzago, Claudia; Bonanno, Silvia; Camera, Giorgia; Maggi, Lorenzo; Kapetis, Dimos; Andreetta, Francesca; Biasiucci, Amelia; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Baggi, Fulvio; Mantegazza, Renato; Bernasconi, Pia

    2016-04-01

    Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune

  17. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  18. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Merlini, Esther; Tincati, Camilla; Biasin, Mara; Saulle, Irma; Cazzaniga, Federico Angelo; d’Arminio Monforte, Antonella; Cappione, Amedeo J.; Snyder-Cappione, Jennifer; Clerici, Mario; Marchetti, Giulia Carla

    2016-01-01

    In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting

  19. Induction of Innate Immunity against Herpes Simplex Virus Type 2 Infection via Local Delivery of Toll-Like Receptor Ligands Correlates with Beta Interferon Production

    PubMed Central

    Gill, Navkiran; Deacon, Philip M.; Lichty, Brian; Mossman, Karen L.; Ashkar, Ali A.

    2006-01-01

    Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is not well-defined. Here we report that production of beta interferon (IFN-β) but not production of IFN-α, IFN-γ, or tumor necrosis factor alpha (TNF-α) strongly correlates with innate protection against HSV-2. Local delivery of poly(I:C) and CpG oligodeoxynucleotides induced significant production of IFN-β in the genital tract and provided complete protection against intravaginal (IVAG) HSV-2 challenge. There was no detectable IFN-β in mice treated with ligands for TLR4 or TLR2, and these mice were not protected against subsequent IVAG HSV-2 challenge. There was no correlation between levels of TNF-α or IFN-γ in the genital tract and protection against IVAG HSV-2 challenge following TLR ligand delivery. Both TNF-α−/− and IFN-γ−/− mice were protected against IVAG HSV-2 challenge following local delivery of poly(I:C). To confirm that type I interferon, particularly IFN-β, mediates innate protection, mice unresponsive to type I interferons (IFN-α/βR−/− mice) and mice lacking IFN regulatory factor-3 (IRF-3−/− mice) were treated with poly(I:C) and then challenged with IVAG HSV-2. There was no protection against HSV-2 infection following poly(I:C) treatment of IFN-α/βR−/− or IRF-3−/− mice. Local delivery of murine recombinant IFN-β protected C57BL/6 and IRF-3−/− mice against IVAG HSV-2 challenge. Results from these in vivo studies clearly suggest a strong correlation between IFN-β production and innate antiviral immunity against HSV-2. PMID:17005672

  20. Toll-like receptor 22 in Labeo rohita: molecular cloning, characterization, 3D modeling, and expression analysis following ligands stimulation and bacterial infection.

    PubMed

    Samanta, Mrinal; Swain, Banikalyan; Basu, Madhubanti; Mahapatra, Girishbala; Sahoo, Bikash R; Paichha, Mahismita; Lenka, Saswati S; Jayasankar, Pallipuram

    2014-09-01

    Toll-like receptors (TLRs) are a class of innate immune receptors that sense pathogens or their molecular signatures and activate signaling cascades to induce a quick and non-specific immune response in the host. Among various types of TLRs, TLR22 is exclusively present in teleosts and amphibians and is expected to play the distinctive role in innate immunity. This report describes molecular cloning, three-dimensional (3D) modeling, and expression analysis of TLR22 in rohu (Labeo rohita), the most commercially important freshwater fish species in the Indian subcontinent. The open reading frame (ORF) of rohu TLR22 (LrTLR22) comprised of 2,838 nucleotides (nt), encoding 946 amino acid (aa) residues with the molecular mass of ∼ 107.6 kDa. The secondary structure of deduced LrTLR22 exhibited the presence of signal peptide (1-22 aa), 18 leucine-rich repeat (LRR) regions (79-736 aa), and TIR domain (792-935 aa). The 3D model of LrTLR22-LRR regions together elucidated the horse-shoe-shaped structure having parallel β-strands at the concave surface and few α-helices at the convex surface. The TIR domain structure revealed alternate presence of five α-helices and β-sheets. Phylogenetically, LrTLR22 was closely related to common carp and exhibited significant similarity (92.2 %) and identity (86.1 %) in their amino acids. In rohu, TLR22 was constitutively expressed in all embryonic developmental stages, and tissue-specific analysis illustrated its expression in all examined tissues, highest was in liver and lowest in brain. In vivo modulation of TLR22 gene expression was analyzed by quantitative real-time PCR (qRT-PCR) assay following stimulation with lipopolysaccharide (LPS), synthetic double stranded RNA (polyinosinic-polycytidylic acid), and bacterial (Aeromonas hydrophila) RNA. Among these ligands, bacterial RNA most significantly (p < 0.05) induced TLR22 gene expression in most of the tested tissues. In A. hydrophila infection, induction of TLR22 gene expression

  1. Toll-like receptor 4 polymorphism impairing lipopolysaccharide signaling in Sus scrofa, and its restricted distribution among Japanese wild boar populations.

    PubMed

    Shinkai, Hiroki; Okumura, Naohiko; Suzuki, Rintaro; Muneta, Yoshihiro; Uenishi, Hirohide

    2012-04-01

    Toll-like receptor 4 (TLR4) responds to lipid A, the active moiety of lipopolysaccharide from gram-negative bacteria, in cooperation with myeloid differentiation protein-2 and plays a vital role in innate immunity. Polymorphisms in TLR4 are associated with changes in susceptibility to various infectious diseases. We previously found seven amino acid polymorphisms in Sus scrofa TLR4. In this study, we showed by luciferase reporter assay that an alteration from cysteine to tryptophan at position 506 (C506W) caused loss of ability to induce nuclear factor-κB activation after lipid A stimulation. This polymorphism was found only in Japanese wild boar (JWB) populations of S. scrofa. Genotyping of TLR4 in different JWB populations revealed that C506W polymorphism was under pressure from purifying selection in a local population (Tajima's D=-0.98; p<0.05). However, in another population, this polymorphism existed at a frequency such that homozygous animals with the W506 alleles seldom appeared. These findings suggest that the C506W polymorphism is under different types of pressure by natural selection between populations, which may reflect differences in residential pathogens or demographic factors.

  2. Toll-Like Receptors in Chronic Pain

    PubMed Central

    Nicotra, Lauren; Loram, Lisa C; Watkins, Linda R; Hutchinson, Mark R

    2011-01-01

    Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed. PMID:22001158

  3. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling.

    PubMed

    Amyot, Julie; Semache, Meriem; Ferdaoussi, Mourad; Fontés, Ghislaine; Poitout, Vincent

    2012-01-01

    Type 2 diabetes is characterized by pancreatic β-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that the signalling cascade activated by lipopolysaccharides (LPS) binding to Toll-Like Receptor 4 (TLR4) exerts deleterious effects on pancreatic β-cell function; however, the molecular mechanisms of these effects are incompletely understood. In this study, we tested the hypothesis that LPS alters insulin gene expression via TLR4 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in islets. A 24-h exposure of isolated human, rat and mouse islets of Langerhans to LPS dose-dependently reduced insulin gene expression. This was associated in mouse and rat islets with decreased mRNA expression of pancreas-duodenum homebox-1 (PDX-1) and mammalian homologue of avian MafA/l-Maf (MafA). Accordingly, LPS exposure also decreased glucose-induced insulin secretion. LPS repression of insulin, PDX-1 and MafA expression, as well as its inhibition of insulin secretion, were not observed in islets from TLR4-deficient mice. LPS inhibition of β-cell gene expression in rat islets was prevented by inhibition of the NF-κB pathway, but not the p38 mitogen-activated protein kinase (p38 MAPK) pathway. Our findings demonstrate that LPS inhibit β-cell gene expression in a TLR4-dependent manner and via NF-κB signaling in pancreatic islets, suggesting a novel mechanism by which the gut microbiota might affect pancreatic β-cell function.

  4. Toll-like receptors and airway inflammation.

    PubMed

    Gon, Yasuhiro

    2008-03-01

    The respiratory tract opens to the external environment at the oral side edge, and the other edge of the respiratory tract connects to the closed space (alveoli), and so to preserve the sterility in the terminal respiratory tract is critical for protection against pathogens. The recognition machinery for the invasion of microbes is indispensable for the preservation of the sterility in the lungs. Our general understanding of how microbes are recognized by the innate immune system has increased considerably over the past several years, and the contribution of Toll-Like Receptors (TLRs) to innate immunity is now well documented. In the meantime, it has come to understand that many inflammatory processes may depend on TLR signaling, it has been considered to be involved in the pathogenesis of airway inflammatory diseases such as airway infections, bronchial asthma, and occupational airway diseases. In this review, we focus on physiological roles of TLRs in defense mechanisms of the airways, and pathophysiological roles on airway diseases.

  5. Mycobacterial signaling through toll-like receptors

    PubMed Central

    Basu, Joyoti; Shin, Dong-Min; Jo, Eun-Kyeong

    2012-01-01

    Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs. PMID:23189273

  6. Natural killer cell intrinsic toll-like receptor MyD88 signaling contributes to IL-12-dependent IFN-γ production by mice during infection with Toxoplasma gondii.

    PubMed

    Ge, Yiyue; Chen, Jinling; Qiu, Xiaoyan; Zhang, Jie; Cui, Lunbiao; Qi, Yuhua; Liu, Xinjian; Qiu, Jingfan; Shi, Zhiyang; Lun, Zhaorong; Shen, Jilong; Wang, Yong

    2014-06-01

    Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88(-/-) mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88(-/-) mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m(-/-)) mice injected i.v. with MyD88(-/-) natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.

  7. [The investigations of the role of toll-like receptors (TLR) in host response to parasitic infection on the current background regarding TLR in mammals and the model nematode Caenorhabditis elegans].

    PubMed

    Wojtkowiak, Agnieszka

    2007-01-01

    Toll-like receptors (TLRs) are amongst the most highly conserved in the evolution of receptor family, being found in both immune and other cells. TLRs were observed in vascular endothelial cells, epithelial cells, microglia cells, adipocytes, and intestinal and renal cells. TLRs plays a key role in the innate immune response to a variety of pathogens. At present, very little is known about the role of TLRs in host defense against parasitic pathogen infections. The first study shows that TLRs contribute to both innate and adaptive immune responses following infection with protozoan parasite Leishmania major. The TLRs recognizing PAMPs associated with the parasite L. major are essential for the activation of the innate and adaptive immune responses to infection. A study concerning recognition of the role of TLRs in the host-parasite relationship would be an interesting challenge for future study.

  8. Is There a Link between Human Herpesvirus Infection and Toll-like Receptors in the Pathogenesis of Pityriasis Rosea? A Case-control Study.

    PubMed

    El-Ela, Mostafa Abou; Shaarawy, Eman; El-Komy, Mohamed; Fawzy, Marwa; Hay, Rania Abdel; Hegazy, Rehab; Sharobim, Amin; Moustafa, Nadine; Rashed, Laila; Sayed Amr, Khalda Sayed

    2016-12-01

    Human herpesvirus (HHV) 6 and 7 are involved in the pathogenesis of pityriasis rosea (PR). Our aim was to evaluate the role of the innate immune response in PR through the detection of Toll-like receptors (TLR) 2, 3, 4, 7, 8, and 9 expression in the skin of affected patients and to detect the possibility of being induced by HHV-6 and/or HHV-7 viral coexistence in these patients. Twenty-four patients with PR and 24 healthy controls were included in this case-control study. Biopsy was obtained from the PR lesion and from the healthy skin of controls for detection of HHV-6 and 7 as well as TLRs 2, 3, 4, 7, 8, and 9 gene expression using real-time polymerase chain reaction (PCR). Significantly elevated expression of all studied TLRs and significantly higher viral load of HHV-6 and 7 in PR cases were detected. A significant higher expression of TLR2 and 4 in HHV-7 positive cases and a significant positive correlation between TLR9 and HHV-7 viral load were documented. HHV6 and 7 may also be involved in the pathogenesis of PR via TLR pathways.

  9. Toll-like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia

    PubMed Central

    Plantinga, Theo S.; Johnson, Melissa D.; Scott, William K.; van de Vosse, Esther; Velez Edwards, Digna R.; Smith, P. Brian; Alexander, Barbara D.; Yang, John C.; Kremer, Dennis; Laird, Gregory M.; Oosting, Marije; Joosten, Leo A. B.; van der Meer, Jos W. M.; van Dissel, Jaap T.; Walsh, Thomas J.; Perfect, John R.; Kullberg, Bart Jan

    2012-01-01

    (See the editorial commentary by Bagni and Whitby, on pages 873–4.) Background. Candidemia is a severe invasive fungal infection with high mortality. Recognition of Candida species is mediated through pattern recognition receptors such as Toll-like receptors (TLRs). This study assessed whether genetic variation in TLR signaling influences susceptibility to candidemia. Methods. Thirteen mostly nonsynonymous single nucleotide polymorphisms (SNPs) in genes encoding TLRs and signaling adaptors MyD88 and Mal/TIRAP were genotyped in 338 patients (237 white, 93 African American, 8 other race) with candidemia and 351 noninfected controls (263 white, 88 African American). The SNPs significant in univariate analysis were further analyzed with multivariable logistic regression to determine association with clinical outcomes. Functional consequences of these polymorphisms were assessed via in vitro stimulation assays. Results. Analyses of TLR SNPs revealed that 3 TLR1 SNPs (R80T, S248N, I602S) were significantly associated with candidemia susceptibility in whites. This association was not found in African Americans, likely due to lower power in this smaller study population. Furthermore, these TLR1 polymorphisms displayed impaired cytokine release by primary monocytes. No associations with susceptibility to candidemia were observed for SNPs in TLR2, TLR4, TLR6, TLR9, MyD88, or TIRAP. Conclusions. Nonsynonymous SNPs in TLR1 are associated with impaired TLR1 function, decreased cytokine responses, and predisposition to candidemia in whites. PMID:22301633

  10. Toll-like receptor 7 mediates pruritus.

    PubMed

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-12-01

    Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease conditions.

  11. Toll-like Receptor Expression and Signaling in Peripheral Blood Mononuclear Cells Correlate With Clinical Outcomes in Acute Hepatitis C Virus Infection.

    PubMed

    Chen Yi Mei, Swee Lin G; Burchell, Jodie; Skinner, Narelle; Millen, Rosie; Matthews, Gail; Hellard, Margaret; Dore, Gregory J; Desmond, Paul V; Sundararajan, Vijaya; Thompson, Alexander J; Visvanathan, Kumar; Sasadeusz, Joe

    2016-09-01

    Mechanisms by which spontaneous clearance of acute hepatitis C occurs are unclear. A critical role for the innate immune system and IFNL4 polymorphisms has been proposed. This study investigates whether Toll-like receptor (TLR) expression and signaling during acute hepatitis C correlates with clinical outcomes. Participants identified from the Australian Trial in Acute Hepatitis C and the Networks study were followed longitudinally from the time of diagnosis of acute hepatitis C. Peripheral blood mononuclear cells (PBMCs) and plasma were collected at and 2 time points after diagnosis. At each time point, TLR2, TLR4, and CD86 expression on peripheral blood monocytes, natural killer (NK) cells, and NK T cells was measured, as well as the response of PBMCs to stimulation with TLR ligands. Cytokine and chemokine levels were measured in stimulated PBMCs and plasma. We identified 20 participants with acute hepatitis C (10 with hepatitis C virus [HCV] monoinfection and 10 with HCV and human immunodeficiency virus coinfection). Eleven participants (55%) spontaneously cleared HCV. Acute hepatitis C and spontaneous clearance was associated with lower TLR4 expression on monocytes (P = .009) and NK cells (P = .029). Acute hepatitis C and spontaneous clearance was also associated with a reduced interferon γ response to TLR4 (P = .038) and TLR7/8 stimulation (P = .035), a reduced interleukin 6 response to TLR7/8 stimulation (P = .037), and reduced IFN-γ-inducible protein 10 (IP-10) response to TLR2 stimulation (P = .042). Lower plasma IP-10 levels were associated with spontaneous clearance (P = .001). These findings implicate TLR4 signaling as playing a critical role in the outcome of acute hepatitis C. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Dysregulation of toll-like receptor (TLR) 2 expression on monocytes and upregulation of the frequency of T cells expressing TLR2 in patients with chronic hepatitis C virus infection.

    PubMed

    Ronit, Andreas; Salem, Mohammad; Hartling, Hans J; Gaardbo, Julie C; Ullum, Henrik; Gerstoft, Jan; Nielsen, Susanne D

    2013-05-01

    Toll-like receptors (TLRs) initiate inflammatory responses that may play a role in disease progression in patients infected with hepatitis C virus (HCV). TLR2 and TLR4 surface expression were assessed on CD14(+) monocytes, CD4(+) and CD8(+) T cells in treatment naïve patients with chronic HCV infection with fibrosis, without fibrosis, co-infected with human immunodeficiency virus (HIV), and in healthy controls. Increased expression of TLR2 was found on monocytes in HCV-infected patients with fibrosis (p < 0.01), co-infected with HIV (p = 0.03), and possibly in patients without fibrosis (p = 0.07) when compared to controls. TLR2 positive CD4(+) and CD8(+) T cells were upregulated in patients with fibrosis only (p < 0.01). However, expression of TLR2 was not associated with T cell activation. TLR4 expression was similar in patients and healthy controls. In conclusion, TLR2 expression on monocytes and the frequency of T cells expressing TLR2 may contribute to disease progression in chronic HCV infection.

  13. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection

    PubMed Central

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent

    2016-01-01

    ABSTRACT In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4+ T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4+ T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6+ CD4+ T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6+ CD4+ T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6+ CD4+ T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. IMPORTANCE Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4+ T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6+ CD4+ T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6+ CD4+ T cells to productive HIV-1 infection. PMID:27928019

  14. Toll-Like Receptor 2 Ligation Enhances HIV-1 Replication in Activated CCR6+ CD4+ T Cells by Increasing Virus Entry and Establishing a More Permissive Environment to Infection.

    PubMed

    Bolduc, Jean-François; Ouellet, Michel; Hany, Laurent; Tremblay, Michel J

    2017-02-15

    In this study, we investigated the effect of Toll-like receptor 2 (TLR2) ligation on the permissiveness of activated CD4(+) T cells to HIV-1 infection by focusing our experiments on the relative susceptibility of cell subsets based on their expression of CCR6. Purified primary human CD4(+) T cells were first subjected to a CD3/CD28 costimulation before treatment with the TLR2 agonist Pam3CSK4. Finally, cells were inoculated with R5-tropic HIV-1 particles that permit us to study the effect of TLR2 triggering on virus production at both population and single-cell levels. We report here that HIV-1 replication is augmented in CD3/CD28-costimulated CCR6(+) CD4(+) T cells upon engagement of the cell surface TLR2. Additional studies indicate that a higher virus entry and polymerization of the cortical actin are seen in this cell subset following TLR2 stimulation. A TLR2-mediated increase in the level of phosphorylated NF-κB p65 subunit was also detected in CD3/CD28-costimulated CCR6(+) CD4(+) T cells. We propose that, upon antigenic presentation, an engagement of TLR2 acts specifically on CCR6(+) CD4(+) T cells by promoting virus entry in an intracellular milieu more favorable for productive HIV-1 infection. Following primary infection, HIV-1 induces an immunological and structural disruption of the gut mucosa, leading to bacterial translocation and release of microbial components in the bloodstream. These pathogen-derived constituents include several agonists of Toll-like receptors that may affect gut-homing CD4(+) T cells, such as those expressing the chemokine receptor CCR6, which are highly permissive to HIV-1 infection. We demonstrate that TLR2 ligation in CD3/CD28-costimulated CCR6(+) CD4(+) T cells leads to enhanced virus production. Our results highlight the potential impact of bacterial translocation on the overall permissiveness of CCR6(+) CD4(+) T cells to productive HIV-1 infection. Copyright © 2017 American Society for Microbiology.

  15. Crosstalk between toll-like receptors and hypoxia-dependent pathways in health and disease.

    PubMed

    Crifo, Bianca; Taylor, Cormac T

    2016-02-01

    Toll-like receptors (TLRs) play an important role in shaping the host immune response to infection and inflammation. Tissue hypoxia is a common microenvironmental feature of infected and inflamed tissues. Furthermore, hypoxia significantly impacts the development of immune and inflammatory responses through the regulation of host innate and adaptive immunity. Here, we will discuss current knowledge in relation to the crosstalk that exists between toll-like receptor- and hypoxia-dependent signaling pathways in health and disease.

  16. Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion.

    PubMed

    Mackern-Oberti, Juan Pablo; Maccioni, Mariana; Cuffini, Cecilia; Gatti, Gerardo; Rivero, Virginia E

    2006-12-01

    Although Chlamydia infections are widespread throughout the world, data about immunopathogenesis of genitourinary tract infections in males are very limited. In the present work we present an in vitro model of male genital tract-derived epithelial cells, more precisely prostate epithelial cells (PEC), to analyze if they are susceptible and able to respond to Chlamydia muridarum infection. Our results demonstrate that rat PEC are susceptible to C. muridarum infection and respond to this pathogen by up-regulating different proinflammatory cytokine and chemokine genes that could participate in the recruitment and local activation of immune cells, therefore influencing innate and adaptive immune responses during Chlamydia infection. Moreover, we analyzed the expression of Toll-like receptor 4 (TLR4), TLR2, and related molecules on PEC and the effect of C. muridarum infection on their expression. Our results demonstrate that PEC express significant levels of TLR4, CD14, TLR2, and the adaptor molecule MyD88 and up-regulate these proteins in response to C. muridarum infection. Indeed, TLR4, CD14, TLR2, and the adaptor MyD88 are specifically recruited to the vicinity of the bacterial inclusion, suggesting that these TLRs are actively engaged in signaling from this intracellular location in these cells. This is, to our knowledge, the first time that an in vitro model of infection with Chlamydia of male tract-derived epithelial cells has been achieved, and it provides the opportunity to determine how these cells respond and participate in modulating innate and adaptive immune response during Chlamydia infections.

  17. A role for Toll-like receptor 4 in the host response to the lung infection of Yersinia pseudotuberculosis in mice.

    PubMed

    Choi, Jin-A; Jeong, Yu-Jin; Kim, Jae-Eun; Kang, Min-Jung; Kim, Jee-Cheon; Oh, Sang-Muk; Lee, Kyung-Bok; Kim, Dong-Hyun; Kim, Dong-Jae; Park, Jong-Hwan

    2016-02-01

    Although a Yersinia pseudotuberculosis (Yptb) lung infection model has been developed to study Y. pestis pathogenesis, it is still necessary to establish a new animal model to mimic the pathophysiological features induced by Y. pestis infection. Here, we provide a new lung infection model using the Yptb strain, IP2777, which displayed rapid spread of bacteria to the liver, spleen, and blood. In addition, we examined whether TLR4 is involved in Yptb-induced pathogenesis in the lung infection model of mice we generated. Following lung infection of WT and TLR4-deficient mice with the Yptb strain IP2777, the survival rate, bacterial colonization, histopathology, and level of cytokines and chemokines in the lung, spleen, liver, and blood were analyzed. TLR4-deficient mice had a lower survival rate than WT mice in response to Yptb lung infection. Although the bacterial colonization and pathology of the lung were comparable between WT and TLR4-deficient mice, those of the spleen and liver were more severe in TLR4-deficient mice. In addition, the levels of TNF-α and CXCL2 in the liver and IL-6 and CXCL2 in the blood were higher in TLR4-deficient mice than in WT mice. Our results demonstrate that TLR4 is necessary for optimal host protection against Yptb lung infection and TLR4-deficient mice may serve as a better genetic model of Yptb infection for mimicking Y. pestis infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Polymorphisms of Mannose-binding Lectin and Toll-like Receptors 2, 3, 4, 7 and 8 and the Risk of Respiratory Infections and Acute Otitis Media in Children.

    PubMed

    Toivonen, Laura; Vuononvirta, Juho; Mertsola, Jussi; Waris, Matti; He, Qiushui; Peltola, Ville

    2017-05-01

    Mannose-binding lectin (MBL) and toll-like receptors (TLRs) are important components of the innate immune system. We assessed the susceptibility of children with genetic variants in these factors to respiratory infections, rhinovirus infections and acute otitis media. In a prospective cohort study, blood samples from 381 Finnish children were analyzed for polymorphisms in MBL2 at codons 52, 54 and 57, TLR2 Arg753Gln, TLR3 Leu412Phe, TLR4 Asp299Gly, TLR7 Gln11Leu and TLR8 Leu651Leu. Children were followed up for respiratory infections until 24 months of age with daily diaries. Polymerase chain reaction and antigen tests were used for detection of respiratory viruses from nasal swabs. Children with MBL variant genotype had a mean of 59 days with symptoms of respiratory infection per year, compared with 49 days in those with wild-type (P = 0.01). TLR8 polymorphisms were associated with an increased risk and TLR7 polymorphisms with a decreased risk of recurrent rhinovirus infections (P = 0.02 for both). TLR2 polymorphisms were associated with recurrent acute otitis media (P = 0.02). MBL polymorphisms were associated with an increased and TLR7 polymorphisms with a decreased risk of rhinovirus-associated acute otitis media (P = 0.03 and P = 0.006, respectively). Genetic polymorphisms in MBL and TLRs promote susceptibility to or protection against respiratory infections. In addition to environmental factors, genetic variations may explain why some children are more prone to respiratory infections.

  19. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4.

    PubMed

    Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W

    2014-04-01

    Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Constitutive gene expression in monocytes from chronic HIV-1 infection overlaps with acute Toll-like receptor induced monocyte activation profiles.

    PubMed

    Gekonge, Bethsebah; Giri, Malavika S; Kossenkov, Andrew V; Nebozyhn, Michael; Yousef, Malik; Mounzer, Karam; Showe, Louise; Montaner, Luis J

    2012-01-01

    Elevated TLR expression/signalling in monocyte/macrophages has been shown to mediate systemic immune activation, a hallmark of progressive HIV-1 infection. Here we show, via differential gene expression comparisons, the presence of a constitutive in vivo TLR-like gene activation signature in steady-state circulating monocytes from chronically HIV-1 infected subjects. The TLR2-like gene signature was defined as an 82 gene subset of the 376 genes constitutively modulated in in vivo HIV-1 monocytes, based on their overlap with de novo TLR2-induced genes in uninfected subjects' monocytes following acute ex vivo stimulation with Staphylococcus Aureus Cowan (SAC). Additional comparison of in vivo gene networks with available datasets from acute TLR activations in M/M expanded the overlap to 151-gene concordance among the 376 differential genes with emphasis on ERK/MAPK, TNF/IL6 (NFκB) and p53 gene networks. TLR2 stimulation of monocytes from HIV-1 infected subjects resulted in further upregulation of inflammatory genes indicative of a sustained transcriptional potential upon stimulation. In summary, our data support the presence of a sustained TLR-like gene activation profile in circulating monocyte from steady-state viremia in HIV-1 infected subjects.

  1. Ex vivo infection of human placental chorionic villi explants with Trypanosoma cruzi and Toxoplasma gondii induces different Toll-like receptor expression and cytokine/chemokine profiles.

    PubMed

    Castillo, Christian; Muñoz, Lorena; Carrillo, Ileana; Liempi, Ana; Gallardo, Christian; Galanti, Norbel; Maya, Juan Diego; Kemmerling, Ulrike

    2017-07-01

    Trypanosoma cruzi and Toxoplasma gondii present, respectively, low and high congenital transmission rates. The placenta as an immune regulatory organ expresses TLRs, leading to the secretion of cytokines. Both parasites are recognized by TLR-2, TLR-4, and TLR-9. Here, we studied if the parasites induce differences in TLR protein expression, cytokine profiles, and whether receptor inhibition is related to parasite infection. Placental tissue explants were infected ex vivo with each parasite, TLRs protein expression, cytokine profile and parasite infection were determined by Western blotting, ELISA and qPCR. Trypanosoma cruzi and Toxoplasma gondii infection is related to TLR-2 and TLR-4/TLR-9, respectively. Trypanosoma cruzi elicits an increase in TNF-α, IL-1β, IL-6, IL-8 and IL-10 cytokine secretion whereas T. gondii only increases the secretion of IL-8. The susceptibility of the placenta to each parasite is mediated partially by the innate immune response. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    PubMed Central

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  3. Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class ii downregulation in Brucella abortus-infected alveolar macrophages.

    PubMed

    Ferrero, Mariana C; Hielpos, M Soledad; Carvalho, Natalia B; Barrionuevo, Paula; Corsetti, Patricia P; Giambartolomei, Guillermo H; Oliveira, Sergio C; Baldi, Pablo C

    2014-02-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival.

  4. Role of Toll Interleukin-1 Receptor (IL-1R) 8, a Negative Regulator of IL-1R/Toll-Like Receptor Signaling, in Resistance to Acute Pseudomonas aeruginosa Lung Infection

    PubMed Central

    Véliz Rodriguez, Tania; Moalli, Federica; Polentarutti, Nadia; Paroni, Moira; Bonavita, Eduardo; Anselmo, Achille; Nebuloni, Manuela; Mantero, Stefano; Jaillon, Sébastien; Bragonzi, Alessandra; Mantovani, Alberto; Riva, Federica

    2012-01-01

    Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8−/− IL-1RI−/− double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease. PMID:22025515

  5. Tamoxifen alleviates hepatitis C virus-induced inhibition of both toll-like receptor 7 and JAK-STAT signalling pathways in PBMCs of infected Egyptian females.

    PubMed

    Fawzy, I O; Negm, M; Ahmed, R; Esmat, G; Hamdi, N; Abdelaziz, A I

    2012-12-01

    Summary.  Hepatitis C virus (HCV) is a major health concern in Egypt being highly prevalent among Egyptians. The two genders experience different responses to HCV infection and show variations in response to interferon (IFN)-based therapy that may be attributed to sex hormones. We previously demonstrated the suppressive effect of 17β-estradiol (E2) on the expression of the IFN-stimulated gene MxA in HCV-infected peripheral blood mononuclear cells (PBMCs). The selective oestrogen receptor (ER) modulator Tamoxifen has been shown to have an antiviral effect against HCV, but its effect on the host immune response is unknown. We investigated the effect of Tamoxifen on the IFN signalling pathways in PBMCs of HCV-infected Egyptian females. We pooled PBMCs and treated then with exogenous interferon alpha (IFNα) or the TLR7 ligand, Imiquimod, and quantified the relative expressions of MxA using RTqPCR. Studies were performed with and without Tamoxifen pretreatment. Pretreatment with Tamoxifen reversed the suppressive effect of E2 on the JAK-STAT pathway in IFNα-treated PBMCs as indicated by a significant increase in MxA expression (P = 0.05*). Tamoxifen pretreatment also significantly upregulated MxA expression in Imiquimod-treated PBMCs (P = 0.0011**), an effect not ascribed to ER blocking nor to an upregulation in TLR7 expression because Tamoxifen showed no potentiating effect on the expression of the receptor. In conclusion, our findings reveal that Tamoxifen has immunomodulatory effects whereby it enhances the host IFN signalling pathways during HCV infection. © 2012 Blackwell Publishing Ltd.

  6. Signaling via Tumor Necrosis Factor Receptor 1 but Not Toll-Like Receptor 2 Contributes Significantly to Hydrosalpinx Development following Chlamydia muridarum Infection

    PubMed Central

    Dong, Xiaohua; Liu, Yuanjun; Chang, Xiaotong; Lei, Lei

    2014-01-01

    Chlamydial infection in the lower genital tract can lead to hydrosalpinx, which is accompanied by activation of both pattern recognition receptor TLR2- and inflammatory cytokine receptor TNFR1-mediated signaling pathways. In the current study, we compared the relative contributions of these two receptors to chlamydial induction of hydrosalpinx in mice. We found that mice with or without deficiencies in TLR2 or TNFR1 displayed similar time courses of live organism shedding from vaginal swabs, suggesting that these receptor-mediated signaling pathways are not required for controlling chlamydial lower genital infection. However, mice deficient in TNFR1 but not TLR2 developed significantly reduced hydrosalpinx. The decreased pathogenicity correlated with a significant reduction in interleukin-17 by in vitro-restimulated splenocytes of TNFR1-deficient mice. Although TLR2-deficient mice developed hydrosalpinx as severe as that of wild-type mice, peritoneal macrophages from mice deficient in TLR2 but not TNFR1 produced significantly reduced cytokines upon chlamydial stimulation, suggesting that reduced macrophage responses to chlamydial infection do not always lead to a reduction in hydrosalpinx. Thus, we have demonstrated that the signaling pathways triggered by the cytokine receptor TNFR1 play a more significant role in chlamydial induction of hydrosalpinx than those mediated by the pattern recognition receptor TLR2, which has laid a foundation for further revealing the chlamydial pathogenic mechanisms. PMID:24549331

  7. Toll-like Receptor-7 Mediates Pruritus

    PubMed Central

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-01-01

    Toll-like receptors (TLRs) are typically expressed in immune cells to regulate innate immunity. Here we report that functional TLR7 is expressed in C-fiber primary sensory neurons and important for inducing itch (pruritis) but not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Thus, we have uncovered TLR7 as a novel itch mediator and a potential therapeutic target for anti-itch treatment in skin disease conditions. PMID:21037581

  8. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  9. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection.

    PubMed

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  10. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells.

    PubMed

    Xu, Cheng; Evensen, Øystein; Munang'andu, Hetron

    2016-04-21

    A fundamental step in cellular defense mechanisms is the recognition of "danger signals" made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.

  11. Genetic Variants in Toll-Like Receptor 2 (TLR2), TLR4, TLR9, and FCγ Receptor II Are Associated with Antibody Response to Quadrivalent Meningococcal Conjugate Vaccine in HIV-Infected Youth

    PubMed Central

    Qin, Min; Lujan-Zilbermann, Jorge; Singh, Kumud K.; Warshaw, Meredith G.; Williams, Paige L.; Jean-Philippe, Patrick; Fenton, Terence; Siberry, George K.

    2013-01-01

    This study examined the association of host genetic variants with the antibody response to the quadrivalent meningococcal conjugate vaccine (MCV4) in HIV-infected youth. Genetic variants associated with severity of meningococcal disease, including the IgG Fc receptor (FCγRII)-A484T, interleukin-10 (IL-10)-A1082G, -C819T, and -C627A, IL-4-C589T, mannose binding lectin-2 (MBL2)-A/O, -H/L, -P/Q, and -X/Y, toll-like receptor 2 (TLR2)-G2408A, TLR4-A12874G and -C13174T, and TLR9-T1237C and -T1486C were determined by real-time PCR (RT-PCR) for 271 HIV-infected subjects (median, 17 years). Response was defined as a ≥4-fold increase from entry in bactericidal antibody titers to each serogroup. Generalized estimating equation (GEE) models were used to evaluate the association of allelic variants with the immunologic response to all serogroups within each subject with and without adjusting for CD4 percentage and HIV viral load. At week 4, but not after, subjects with TLR2-2408-G/A versus -G/G genotypes and the TLR4-12874-A/A genotype were more likely to achieve a ≥4-fold increase overall in the four serogroups (unadjusted P of 0.006 and adjusted P of 0.008 and unadjusted P of 0.008 and adjusted P of 0.019, respectively). At week 28, the TLR9-1237 T allele was associated with enhanced antibody response (T allele versus C/C, unadjusted P of 0.014 and adjusted P of 0.009), which was maintained at week 72 (unadjusted and adjusted P of 0.008). At week 72, the FcγRII-131Arg allotype was associated with a ≥4-fold increase in antibody titer versus those with His/His (unadjusted P of 0.009; adjusted P of <0.001). These findings suggest that for HIV-infected youth, the initial antibody response to MCV4 is associated with variants in TLR2 and TLR4 while the long-term response is associated with genetic polymorphisms in TLR9 and FcγRIIa. PMID:23595505

  12. Toll-like receptor signalling in liver disease: ER stress the missing link?

    PubMed

    Lawless, M W; Greene, C M

    2012-08-01

    Toll-like receptors induce a complex inflammatory response that can function to alert the body to infection, neutralize pathogens and repair damaged tissues. Toll-like receptors are expressed on kupffer, endothelial, dendritic, biliary epithelial, hepatic stellate cells, and hepatocytes in the liver. The endoplasmic reticulum (ER) is a central organelle of eukaryotic cells that exists as a place of lipid synthesis, protein folding and protein maturation. The ER is a major signal transduction organelle that senses and responds to changes in homeostasis. Conditions interfering with the function of the ER are collectively known as ER stress and can be induced by accumulation of unfolded protein aggregates or by excessive protein traffic as can occur during viral infection. The ability of ER stress to induce an inflammatory response is considered to play a role in disease pathogenesis. Importantly, ER stress is viewed as a contributor to the pathogenesis of liver diseases with evidence linking components of ER homeostasis as requirements for optimal Toll-like receptor function. In this context this review discusses the association of Toll-like receptors with ER stress. This is an emerging paradigm in the understanding of Toll-like receptor signalling which may have an underlying role in the pathogenesis of liver disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Toll-Like Receptors in Atherosclerosis

    PubMed Central

    Falck-Hansen, Mika; Kassiteridi, Christina; Monaco, Claudia

    2013-01-01

    Atherosclerosis, the leading cause of cardiovascular disease (CVD), is driven by inflammation. Increasing evidence suggests that toll-like receptors (TLRs) are key orchestrators of the atherosclerotic disease process. Interestingly, a distinct picture is being revealed for individual receptors in atherosclerosis. TLRs exhibit a complex nature enabling the detection of multiple motifs named danger-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Activation of these receptors triggers an intracellular signalling cascade mediated through MyD88 or TRIF, leading to the production of pro- and anti-inflammatory cytokines. In this review we explore key novel findings pertaining to TLR signalling in atherosclerosis, including recently described endosomal TLRs and future directions in TLR research. PMID:23880853

  14. Toll-like receptor signaling in transplantation

    PubMed Central

    Alegre, Maria-Luisa; Goldstein, Daniel R.; Chong, Anita S.

    2008-01-01

    Purpose of the review This review summarizes recent advances on the role of endogenous and exogenous Toll-like receptor (TLR) ligands in the activation and inhibition of immune responses in transplantation. Recent findings During an alloresponse, TLRs can be engaged by both damage-induced endogenous ligands or microbial-associated molecular patterns. The damage-induced molecule high mobility group box 1 protein (HGMB1) and its binding to TLR4 have been identified as major initiators of anti-tumor and anti-transplant immune responses. Type I interferon (IFN) signaling plays an important role in the pro-rejection effect mediated by TLR agonists and some bacteria. However, similar pathways in neonates can result in inhibition rather than activation of alloimmune responses. Summary The consequences of TLR engagement by endogenous and exogenous ligands in transplantation may depend on the relative induction of inflammatory and regulatory pathways and the stage of development of the immune system. PMID:18685330

  15. Toll-like receptors and liver disease.

    PubMed

    Kesar, Vivek; Odin, Joseph A

    2014-02-01

    Toll-like receptors (TLRs) are pattern recognition receptors that play an important role in host defence by recognizing pathogen-associated molecular patterns (PAMP). Recent studies indicate that TLR signalling plays an important role in progression of chronic liver diseases. Ongoing clinical trials suggest that therapeutic manipulation of TLR pathways may offer novel means of reversing chronic liver diseases. Upon activation by their respective ligands, TLRs initiate an intracellular pro-inflammatory/anti-inflammatory signalling cascade via recruitment of various adaptor proteins. TLR associated signalling pathways are tightly regulated to keep a check on inappropriate production of pro-inflammatory cytokines and interferons thereby preventing various autoimmune and inflammatory processes. Herein, we review the current state of knowledge of hepatic distribution, signalling pathways and therapeutic modulation of TLRs in chronic liver diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Toll-like Receptors at the Ocular Surface

    PubMed Central

    Pearlman, Eric; Johnson, Angela; Adhikary, Gautam; Sun, Yan; Chinnery, Holly R.; Fox, Todd; Kester, Mark; Mcmenamin, Paul G.

    2012-01-01

    The Toll-like receptor (TLR) family of pathogen recognition molecules has an important role in recognizing microbial pathogens and microbial breakdown products. Activation of TLRs in the corneal epithelium induces CXC chemokine production and recruitment of neutrophils to the corneal stroma. Although essential for pathogen killing, neutrophils can cause extensive tissue damage, leading to visual impairment and blindness. In this review, we examine the role of TLRs in microbial keratitis and in noninfectious corneal inflammation, most commonly associated with contact lens wear. We present recent findings on TLR signaling pathways in the cornea, including MyD88- and TRIF-dependent responses and discuss the role of resident macrophages and dendritic cells. Finally, we examine the potential for targeting the TLR pathway as a potential therapeutic intervention for microbial keratitis and contact lens-associated corneal inflammation. PMID:18781257

  17. Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn's associated NOD2 gene variants.

    PubMed

    Salem, M; Seidelin, J B; Eickhardt, S; Alhede, M; Rogler, G; Nielsen, O H

    2015-03-01

    Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M. segmatisΔnamH (expressing A-MDP), Listeria monocytogenes (LM) (an A-MDP-containing bacteria) and M. avium paratuberculosis (MAP) (a G-MDP-containing bacteria associated with CD) was investigated in human peripheral blood mononuclear cells (PBMCs). A-MDP and M. segmatisΔnamH induced significantly higher tumour necrosis factor (TNF)-α protein levels in healthy wild-type NOD2 PBMCs compared with G-MDP and M. segmatis. NOD2 mutations resulted in a low tumour necrosis factor (TNF)-α protein secretion following stimulation with LM. Contrary to this, TNF-α levels were unchanged upon MAP stimulation regardless of NOD2 genotype and MAP solely activated NOD2- and Toll-like receptor (TLRs)-pathway with an enhanced production of interleukin (IL)-1β and IL-10. In conclusion, the results indicate that CD-associated NOD2 deficiencies might affect the response towards a broader array of commensal and pathogenic bacteria expressing A-MDP, whereas they attenuate the role of mycobacteria in the pathogenesis of CD. © 2014 British Society for Immunology.

  18. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  19. A Novel Toll-Like Receptor 9 Agonist, MGN1703, Enhances HIV-1 Transcription and NK Cell-Mediated Inhibition of HIV-1-Infected Autologous CD4+ T Cells.

    PubMed

    Offersen, Rasmus; Nissen, Sara Konstantin; Rasmussen, Thomas A; Østergaard, Lars; Denton, Paul W; Søgaard, Ole Schmeltz; Tolstrup, Martin

    2016-05-01

    Toll-like receptor (TLR) agonists are potent enhancers of innate antiviral immunity and may also reverse HIV-1 latency. Therefore, TLR agonists have a potential role in the context of a "shock-and-kill" approach to eradicate HIV-1. Our extensive preclinical evaluation suggests that a novel TLR9 agonist, MGN1703, may indeed perform both functions in an HIV-1 eradication trial. Peripheral blood mononuclear cells (PBMCs) from aviremic HIV-1-infected donors on antiretroviral therapy (ART) that were incubated with MGN1703 ex vivo exhibited increased secretion of interferon alpha (IFN-α) (P= 0.005) and CXCL10 (P= 0.0005) in culture supernatants. Within the incubated PBMC pool, there were higher proportions of CD69-positive CD56(dim)CD16(+)NK cells (P= 0.001) as well as higher proportions of CD107a-positive (P= 0.002) and IFN-γ-producing (P= 0.038) NK cells. Incubation with MGN1703 also increased the proportions of CD69-expressing CD4(+)and CD8(+)T cells. Furthermore, CD4(+)T cells within the pool of MGN1703-incubated PBMCs showed enhanced levels of unspliced HIV-1 RNA (P= 0.036). Importantly, MGN1703 increased the capacity of NK cells to inhibit virus spread within a culture of autologous CD4(+)T cells assessed by using an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) (P= 0.03). In conclusion, we show that MGN1703 induced strong antiviral innate immune responses, enhanced HIV-1 transcription, and boosted NK cell-mediated suppression of HIV-1 infection in autologous CD4(+)T cells. These findings support clinical testing of MGN1703 in HIV-1 eradication trials. We demonstrate that MGN1703 (a TLR9 agonist currently undergoing phase 3 clinical testing for the treatment of metastatic colorectal cancer) induces potent antiviral responses in immune effector cells from HIV-1-infected individuals on suppressive antiretroviral therapy. The significantly improved safety and tolerability profiles of MGN1703 versus TLR9 agonists of the CpG-oligodeoxynucleotide (CpG-ODN) family

  20. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  1. Toll-like receptors and cutaneous melanoma

    PubMed Central

    Coati, Ilaria; Miotto, Serena; Zanetti, Irene; Alaibac, Mauro

    2016-01-01

    Innate immune cells recognize highly conserved pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Previous studies have demonstrated that PRRs also recognize endogenous molecules, termed damage-associated molecular patterns (DAMPs) that are derived from damaged cells. PRRs include Toll-like receptors (TLRs), scavenger receptors, C-type lectin receptors and nucleotide oligomerization domain-like receptors. To date, 10 TLRs have been identified in humans and each receptor responds to a different ligand. The recognition of PAMPS or DAMPs by TLRs leads to the activation of signaling pathways and cellular responses with subsequent pro-inflammatory cytokine release, phagocytosis and antigen presentation. In the human skin, TLRs are expressed by keratinocytes and melanocytes: The main cells from which skin cancers arise. TLRs 1–6 and 9 are expressed in keratinocytes, while TLRs 2–5, 7, 9 and 10 have been identified in melanocytes. It is hypothesized that TLRs may present a target for melanoma therapies. In this review, the involvement of TLRs in the pathogenesis and treatment of melanoma was discussed. PMID:27900049

  2. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  3. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  4. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  5. Induction of Toll-Like Receptor 3-Mediated Immunity during Gestation Inhibits Cortical Neurogenesis and Causes Behavioral Disturbances

    PubMed Central

    De Miranda, Joari; Yaddanapudi, Kavitha; Hornig, Mady; Villar, Gabriel; Serge, Robert; Lipkin, W. Ian

    2010-01-01

    Maternal infection during pregnancy with a wide range of RNA and DNA viruses is associated with increased risk for schizophrenia and autism in their offspring. A common feature in these exposures is that virus replication induces innate immunity through interaction with Toll-like receptors (TLRs). We employed a mouse model wherein pregnant mice were exposed to polyinosinic-polycytidylic acid [poly(I  ⋅  C)], a synthetic, double-stranded RNA molecular mimic of replicating virus. Poly(I ⋅ C) inhibited embryonic neuronal stem cell replication and population of the superficial layers of the neocortex by neurons. Poly(I ⋅ C) also led to impaired neonatal locomotor development and abnormal sensorimotor gating responses in adult offspring. Using Toll-like receptor 3 (TLR3)-deficient mice, we established that these effects were dependent on TLR3. Inhibition of stem cell proliferation was also abrogated by pretreatment with the nonsteroidal anti-inflammatory drug (NSAID) carprofen, a cyclooxygenase (COX) inhibitor. Our findings provide insights into mechanisms by which maternal infection can induce subtle neuropathology and behavioral dysfunction, and they may suggest strategies for reducing the risk of neuropsychiatric disorders subsequent to prenatal exposures to pathogens and other triggers of innate immunity. PMID:20941330

  6. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia

    PubMed Central

    Morris, Amy E.; Liggitt, H. Denny; Hawn, Thomas R.

    2009-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and an important pathogen in patients with chronic lung disease, such as cystic fibrosis and bronchiectasis. The contribution of Toll-like receptor 5 (TLR5) to the innate immune response to this organism is incompletely understood. We exposed wild-type and TLR5-deficient (Tlr5−/−) mice to aerosolized P. aeruginosa at low and high inocula and assessed bacterial clearance, lung inflammation, and cytokine production 4 and 24 h after infection. Bacterial clearance was impaired in Tlr5−/− mice after low-inoculum, but not high-inoculum, infection. Early bronchoalveolar accumulation of neutrophils was reduced in Tlr5−/− mice after low- and high-dose infection. Cytokine responses, including markedly impaired monocyte chemoattractant protein-1 production 4 h after low- and high-inoculum challenge, were selectively altered in Tlr5−/− mice. In contrast, there was no impairment of bacterial clearance, neutrophil recruitment, or monocyte chemoattractant protein-1 production in Tlr5−/− mice after infection with a nonflagellated isotypic strain of P. aeruginosa. Thus TLR5-mediated recognition of flagellin is involved in activating pulmonary defenses against P. aeruginosa and contributes to antibacterial resistance in a manner that is partially inoculum dependent. These data are the first to demonstrate a unique role for TLR5 in the innate immune response to P. aeruginosa lung infection. PMID:19801452

  7. Toll-like receptor signaling in primary immune deficiencies

    PubMed Central

    Maglione, Paul J.; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 (HSV-1) encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell (pDC) defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  8. The Role of Toll-Like Receptors in Hematopoietic Malignancies

    PubMed Central

    Monlish, Darlene A.; Bhatt, Sima T.; Schuettpelz, Laura G.

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors that shape the innate immune system by identifying pathogen-associated molecular patterns and host-derived damage-associated molecular patterns. TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells, effector immune cell populations, and endothelial cells. In addition to their well-known role in the innate immune response to acute infection or injury, accumulating evidence supports a role for TLRs in the development of hematopoietic and other malignancies. Several hematopoietic disorders, including lymphoproliferative disorders and myelodysplastic syndromes, which possess a high risk of transformation to leukemia, have been linked to aberrant TLR signaling. Furthermore, activation of TLRs leads to the induction of a number of proinflammatory cytokines and chemokines, which can promote tumorigenesis by driving cell proliferation and migration and providing a favorable microenvironment for tumor cells. Beyond hematopoietic malignancies, the upregulation of a number of TLRs has been linked to promoting tumor cell survival, proliferation, and metastasis in a variety of cancers, including those of the colon, breast, and lung. This review focuses on the contribution of TLRs to hematopoietic malignancies, highlighting the known direct and indirect effects of TLR signaling on tumor cells and their microenvironment. In addition, the utility of TLR agonists and antagonists as potential therapeutics in the treatment of hematopoietic malignancies is discussed. PMID:27733853

  9. Panax ginseng induces production of proinflammatory cytokines via toll-like receptor.

    PubMed

    Nakaya, Taka-Aki; Kita, Masakazu; Kuriyama, Hiroko; Iwakura, Yoichiro; Imanishi, Jiro

    2004-02-01

    Ginseng radix, the dried root of Panax ginseng C. A. Meyer, has been shown to enhance the ability to resist microbial infections. Proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6, and interferon-gamma (IFN-gamma) are produced by macrophages treated with ginseng radix extract (GRE) in vitro as well as in vivo. However, the molecular mechanisms of the production are still not clear. In the present study, we demonstrated that production of TNF-alpha and IFN-gamma was induced by GRE in spleen cells and peritoneal macrophages from C3H/HeN mice but was impaired in C3H/HeJ mice carrying a defective toll-like receptor-4 (TLR-4) gene. In addition to these cytokines, the expression of IFN-beta and inducible nitric oxide synthase (iNOS) mRNAs was also increased in GRE-treated C3H/HeN spleen cells. We investigated the possibility that GRE contains a lipopolysaccharide (LPS)-like component. However, GRE induced production of TNF-alpha and IFN-gamma in the presence of polymyxin B, an LPS inhibitor. Furthermore, a Limulus amebocyte lysate assay showed that the endotoxin content of GRE was below the threshold level of 1 ng/ml LPS. These results suggest that GRE contains a non-LPS agent that enhances innate immunity through production of proinflammatory cytokines via TLR-4.

  10. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models.

    PubMed

    Weehuizen, Tassili A F; Prior, Joann L; van der Vaart, Thomas W; Ngugi, Sarah A; Nepogodiev, Sergey A; Field, Robert A; Kager, Liesbeth M; van 't Veer, Cornelis; de Vos, Alex F; Wiersinga, W Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis.

  11. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  12. An introduction to Toll-like receptors and their possible role in the initiation of labour.

    PubMed

    Patni, S; Flynn, P; Wynen, L P; Seager, A L; Morgan, G; White, J O; Thornton, C A

    2007-11-01

    Toll-like receptors (TLR) have emerged as key upstream mediators of inflammation at many tissue sites in humans. Inflammatory processes are involved in the process of parturition suggesting that TLR activity within gestation-associated tissues might have an important role in the initiation and/or maintenance of normal term labour and in various pathological states of pregnancy such as infection-associated preterm labour. Either TLRs or their signalling molecules might be excellent therapeutic targets for prevention of preterm labour.

  13. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer.

    PubMed

    Kang, Jin Young; Nan, Xuehua; Jin, Mi Sun; Youn, Suk-Jun; Ryu, Young Hee; Mah, Shinjee; Han, Seung Hyun; Lee, Hayyoung; Paik, Sang-Gi; Lee, Jie-Oh

    2009-12-18

    Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.

  14. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  15. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  16. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    PubMed

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  17. Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis.

    PubMed

    Schmidt, Marc; Goebeler, Matthias; Martin, Stefan F

    2016-01-01

    Allergic contact disease is a common inflammatory skin disease resulting from hyperresponsiveness to harmless nonprotein substances such as metals, fragrances, or rubber. Recent research has highlighted a prominent role of Toll-like receptors, particularly TLR4 in contact allergen-induced innate immune activation that crucially contributes to the pathogenesis of this disease. Here we describe several methods to investigate the role of Toll-like receptors in contact allergen-induced pro-inflammatory responses. These include expansion of disease-relevant human primary cells including endothelial cells and keratinocytes and their manipulation of TLR signaling by transfection, retroviral infection and RNA interference, basic methods to induce contact hypersensitivity in mice, and protocols for adoptive transfer of hapten-stimulated dendritic cells and T cells from TLR-deficient mice to wild-type mice and vice versa wild-type mice to TLR-deficient mice in order to explore cell-specific roles of TLRs in contact hypersensitivity responses.

  18. Hepatitis B virus genome replication triggers toll-like receptor 3-dependent interferon responses in the absence of hepatitis B surface antigen

    PubMed Central

    Real, Catherine Isabell; Lu, Mengji; Liu, Jia; Huang, Xuan; Trippler, Martin; Hossbach, Markus; Deckert, Jochen; Jahn-Hofmann, Kerstin; Ickenstein, Ludger Markus; John, Matthias Johannes; Gibbert, Kathrin; Dittmer, Ulf; Vornlocher, Hans-Peter; Schirmbeck, Reinhold; Gerken, Guido; Schlaak, Joerg Friedrich; Broering, Ruth

    2016-01-01

    The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV. PMID:27121087

  19. Toll-like receptors (TLRs) in transplantation

    PubMed Central

    Alegre, Maria-Luisa; Chong, Anita

    2015-01-01

    TLRs have been extensively studied over the past decade for their ability to recognize microbial molecular patterns and activate innate immune cells to fight infections. They have also been described to provide a link between innate and adaptive immunity, as TLR signals also enhance the antigen presenting capacity of innate immune cells to T cells. In recent years, a contribution of TLR pathways to immune responses elicited by ischemia/reperfusion injury (IRI), allografts and xenografts has been uncovered, although the ligands that bind TLRs in these settings remain to be revealed. Such research has the potential to identify novel therapeutic targets that may facilitate allograft acceptance. In this review, we will summarize the results published to date on the role of TLRs in experimental and clinical transplantation. PMID:19482622

  20. Antibody WN1 222-5 mimics Toll-like receptor 4 binding in the recognition of LPS

    PubMed Central

    Gomery, Kathryn; Müller-Loennies, Sven; Brooks, Cory L.; Brade, Lore; Kosma, Paul; Di Padova, Franco; Brade, Helmut; Evans, Stephen V.

    2012-01-01

    Escherichia coli infections, a leading cause of septic shock, remain a major threat to human health because of the fatal action to endotoxin (LPS). Therapeutic attempts to neutralize endotoxin currently focus on inhibiting the interaction of the toxic component lipid A with myeloid differentiating factor 2, which forms a trimeric complex together with Toll-like receptor 4 to induce immune cell activation. The 1.73-Å resolution structure of the unique endotoxin-neutralizing protective antibody WN1 222-5 in complex with the core region shows that it recognizes LPS of all E. coli serovars in a manner similar to Toll-like receptor 4, revealing that protection can be achieved by targeting the inner core of LPS and that recognition of lipid A is not required. Such interference with Toll-like receptor complex formation opens new paths for antibody sepsis therapy independent of lipid A antagonists. PMID:23184990

  1. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    PubMed

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  2. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease.

    PubMed

    Sun, ShuMin; Wang, XueLin; Wu, XiuPing; Zhao, Ying; Wang, Feng; Liu, XiaoLei; Song, Yanxia; Wu, ZhiLiang; Liu, MingYuan

    2011-09-27

    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD.

  3. Toll-like receptor activation by helminths or helminth products to alleviate inflammatory bowel disease

    PubMed Central

    2011-01-01

    Helminth infection may modulate the expression of Toll like receptors (TLR) in dendritic cells (DCs) and modify the responsiveness of DCs to TLR ligands. This may regulate aberrant intestinal inflammation in humans with helminthes and may thus help alleviate inflammation associated with human inflammatory bowel disease (IBD). Epidemiological and experimental data provide further evidence that reducing helminth infections increases the incidence rate of such autoimmune diseases. Fine control of inflammation in the TLR pathway is highly desirable for effective host defense. Thus, the use of antagonists of TLR-signaling and agonists of their negative regulators from helminths or helminth products should be considered for the treatment of IBD. PMID:21943110

  4. Toll like receptors in self-recovering hepatitis E patients with or without pregnancy.

    PubMed

    Arya, Ravi P; Arankalle, Vidya A

    2014-12-01

    Hepatitis E virus (HEV) causes high mortality among pregnant women. Pathogenesis of HEV, especially during pregnancy, is poorly understood. Our aim was to assess the role of Toll-like-receptors (TLRs) in hepatitis E patients with pregnancy (Antenatal care, ANC) or without pregnancy (non-ANC). The patient categories included acute-phase, non-ANC (n=46) and ANC patients (2nd/3rd trimesters, n=13) and non-ANC patients (n=31) during convalescence. Controls included apparently healthy non-ANC (n=30) and ANC subjects in the first (n=10) and later (2nd/3rd, n=20) trimesters. TLR2/TLR3/TLR4/TLR7/TLR8 levels were determined by flow-cytometry. Cytokine responses induced by TLR-specific-ligands-stimulated-PBMCs from ANC/non-ANC-patients and TLR-signaling-molecules (non-ANC-patients) were measured. PBMCs were used to assess gene expression levels by TaqMan-Low-Density-Array. Compared to the temporal activation of TLR4/TLR7/TLR8 at protein and mRNA levels, the ANC-patients and controls exhibited reduced TLRs indicative of impaired TLR response. Stimulation of PBMCs with TLR-specific ligands led to the induction of type-I interferons, IFNβ by the non-ANC group and IFNα by the ANC category. Involvement of MyD88-independent (TLR3/TLR4) and MyD88-dependent (TLR4/TLR7/TLR8) pathways and association of TLR4/TLR7/TLR8 with recovery was documented in the non-ANC-patients. Except for robust type-I-interferon response, HEV infection could not modulate pregnancy-related diminished immune response. The results have implications in the understanding of HEV pathogenesis.

  5. Alternate transcription of the Toll-like receptor signaling cascade

    PubMed Central

    Wells, Christine A; Chalk, Alistair M; Forrest, Alistair; Taylor, Darrin; Waddell, Nic; Schroder, Kate; Himes, S Roy; Faulkner, Geoffrey; Lo, Sandra; Kasukawa, Takeya; Kawaji, Hideya; Kai, Chikatoshi; Kawai, Jun; Katayama, Shintaro; Carninci, Piero; Hayashizaki, Yoshihide; Hume, David A; Grimmond, Sean M

    2006-01-01

    Background Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. Results A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. Conclusion Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling. PMID:16507160

  6. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  7. MicroRNAs: the fine-tuners of Toll-like receptor signalling.

    PubMed

    O'Neill, Luke A; Sheedy, Frederick J; McCoy, Claire E

    2011-03-01

    Toll-like receptor (TLR) signalling must be tightly regulated to avoid excessive inflammation and to allow for tissue repair and the return to homeostasis after infection and tissue injury. MicroRNAs (miRNAs) have emerged as important controllers of TLR signalling. Several miRNAs are induced by TLR activation in innate immune cells and these and other miRNAs target the 3' untranslated regions of mRNAs encoding components of the TLR signalling system. miRNAs are also proving to be an important link between the innate and adaptive immune systems, and their dysregulation might have a role in the pathogenesis of inflammatory diseases.

  8. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5.

    PubMed

    Rumbo, Martin; Nempont, Clément; Kraehenbuhl, Jean-Pierre; Sirard, Jean-Claude

    2006-05-22

    Toll-like receptors (TLR) detect pathogen-associated molecular patterns (PAMP) and play a crucial role in triggering immunity. Due to their large surfaces in direct contact with the environment, mucosal tissues are the major sites of PAMP-TLR signalling. How innate and adaptive immunity are triggered through flagellin-TLR5 interaction is the main focus of the review. In view of recent reports on genetic polymorphism, we will summarize the impact of TLR5 on the susceptibility to mucosal infections and on various immuno-pathologies. Finally, the contribution of TLRs in the induction and maintenance of mucosal homeostasis and commensal discrimination is discussed.

  9. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.

    PubMed

    Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha

    2012-09-06

    The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis.

  10. Innate immunity and toll-like receptors: clinical implications of basic science research.

    PubMed

    Abreu, Maria T; Arditi, Moshe

    2004-04-01

    Humans are constantly exposed to a wide variety of microorganisms that can cause infection. In self-defense, the human host has evolved complex protective mechanisms, and Toll-like receptors (TLRs) have emerged as a central point in defense. These receptors bind molecular structures that are expressed by microbes but are not expressed by the human host, eg, lipopolysaccharides (LPS) or double-stranded RNA (dsRNA). Activation of these receptors initiates an inflammatory cascade that attempts to clear the offending pathogen and set in motion a specific adaptive immune response. Defects in sensing of pathogens may predispose the host to recurrent infections. The relative rarity of these syndromes of defective innate immunity, however, speaks to the redundancy in sensing of pathogens by the innate immune system. More common, polymorphisms in TLR4 are associated with increased predisposition to severe and recurrent infections but protection against atherosclerotic disease due to diminished inflammation. Toll-like receptor signaling may also contribute to the pathophysiology of disease and injure the host by activating a deleterious immune response such as in sepsis or inflammatory bowel disease (IBD). The focus of this article is to describe the role of TLRs in the innate immune response in health and disease.

  11. Phosphorothioate 2' deoxyribose oligomers as microbicides that inhibit human immunodeficiency virus type 1 (HIV-1) infection and block Toll-like receptor 7 (TLR7) and TLR9 triggering by HIV-1.

    PubMed

    Fraietta, Joseph A; Mueller, Yvonne M; Do, Duc H; Holmes, Veronica M; Howett, Mary K; Lewis, Mark G; Boesteanu, Alina C; Alkan, Sefik S; Katsikis, Peter D

    2010-10-01

    Topical microbicides may prove to be an important strategy for preventing human immunodeficiency virus type 1 (HIV-1) transmission. We examined the safety and efficacy of sequence-nonspecific phosphorothioate 2' deoxyribose oligomers as potential novel microbicides. A short, 13-mer poly(T) phosphorothioate oligodeoxynucleotide (OPB-T) significantly inhibited infection of primary peripheral blood mononuclear cells (PBMC) by high-titer HIV-1(Ba-L) and simian immunodeficiency virus mac251 (SIV(mac251)). Continuous exposure of human vaginal and foreskin tissue explants to OPB-T showed no toxicity. An abasic 14-mer phosphorothioate 2' deoxyribose backbone (PDB) demonstrated enhanced anti-HIV-1 activity relative to OPB-T and other homo-oligodeoxynucleotide analogs. When PDB was used to pretreat HIV-1, PDB was effective against R5 and X4 isolates at a half-maximal inhibitory concentration (IC(50)) of <1 μM in both PBMC and P4-R5 MAGI cell infections. PDB also reduced HIV-1 infectivity following the binding of virus to target cells. This novel topical microbicide candidate exhibited an excellent in vitro safety profile in human PBMC and endocervical epithelial cells. PDB also retained activity in hydroxyethylcellulose gel at pH 4.4 and after transition to a neutral pH and was stable in this formulation for 30 days at room temperature. Furthermore, the compound displayed potent antiviral activity following incubation with a Lactobacillus strain derived from normal vaginal flora. Most importantly, PDB can inhibit HIV-1-induced alpha interferon production. Phosphorothioate 2' deoxyribose oligomers may therefore be promising microbicide candidates that inhibit HIV-1 infection and also dampen the inflammation which is critical for the initial spread of the virus.

  12. Roles of Toll-like receptors in innate immune responses.

    PubMed

    Takeda, K; Akira, S

    2001-09-01

    Innate immunity recognizes invading micro-organisms and triggers a host defence response. However, the molecular mechanism for innate immune recognition was unclear. Recently, a family of Toll-like receptors (TLRs) was identified, and crucial roles for these receptors in the recognition of microbial components have been elucidated. The TLR family consists of 10 members and will be expanding. Each TLR distinguishes between specific patterns of microbial components to provoke innate immune responses. The activation of innate immunity then leads to the development of antigen-specific adaptive immunity. Thus, TLRs control both innate and adaptive immune responses.

  13. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  14. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals.

    PubMed

    Bulut, Yonca; Michelsen, Kathrin S; Hayrapetian, Linda; Naiki, Yoshikazu; Spallek, Ralf; Singh, Mahavir; Arditi, Moshe

    2005-06-03

    Although the Toll-like receptors used by Mycobacterium tuberculosis membrane and secreted factors are known, the pathways activated by M. tuberculosis heat shock proteins are not. An efficient immune response against the intracellular pathogen M. tuberculosis is critically dependent on rapid detection of the invading pathogen by the innate immune system and coordinated activation of the adaptive immune response. Macrophage phagocytosis of M. tuberculosis is accompanied by activation of the transcription factor NF-kappaB and secretion of inflammatory mediators that play an important role in granuloma formation and immune protection during M. tuberculosis infection. The interaction between M. tuberculosis and the various Toll-like receptors is complex, and it appears that distinct mycobacterial components may interact with different members of the Toll-like receptor family. Here we show that recombinant, purified, mycobacterial heat shock proteins 65 and 70 induce NF-kappaB activity in a dose-dependent manner in human endothelial cells. Furthermore, we show that whereas mycobacterial heat shock protein 65 signals exclusively through Toll-like receptor 4, heat shock protein 70 also signals through Toll-like receptor 2. Mycobacterial heat shock protein 65-induced NF-kappaB activation was MyD88-, TIRAP-, TRIF-, and TRAM-dependent and required the presence of MD-2. A better understanding of the recognition of mycobacterial heat shock proteins and their role in the host immune response to the pathogen may open the way to a better understanding of the immunological processes induced by this important human pathogen and the host-pathogen interactions and may help in the rational design of more effective vaccines or vaccine adjuvants.

  15. Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals.

    PubMed

    Novák, Karel

    2014-01-15

    The exploitation of the genetic factors affecting the health status of farm animals represents an alternative approach to controlling the diseases caused by microbial pathogens. The determination of innate immunity based on the genotype of the germplasm cells is a constraint for specificity but becomes an advantage in breeding schemes. The structural deviations among Toll-like receptors (TLRs), as the most frequently studied innate immunity components, have been documented at all levels, i.e., interspecific, inter- and intravarietal, in the main farm species. The current computational methods facilitate the prediction of the functional consequences of the observed mutations. Subsequently, these predictions can be verified through immunological responsiveness and population-wide association studies. The frequency and haplotype grouping of individual polymorphisms are used to track the origin and selection coefficient as independent indicators of functional changes. The Toll-like receptor variants associated with mastitis and mycobacterial infection have been identified in cattle, consequently, the targeting of these proteins in breeding could contribute to disease control. The range of infections affected by TLR polymorphisms suggests that the improvement of innate resistance is feasible in more species. Thus, the traditional breeds and wild populations should be regarded as the resources of genetic variability accessible for these purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Mannose-Binding Lectin and Toll-Like Receptor Polymorphisms and Chagas Disease in Chile

    PubMed Central

    Zulantay, Inés; Danquah, Ina; Hamann, Lutz; Schumann, Ralf R.; Apt, Werner; Mockenhaupt, Frank P.

    2012-01-01

    Mannose-binding lectin (MBL) and Toll-like receptor (TLR) polymorphisms may influence susceptibility and manifestation of Trypanosoma cruzi infection. In northern Chile, we examined 61 asymptomatic patients with chronic Chagas disease (CD), 64 patients with chronic Chagas cardiomyopathy (CCC), and 45 healthy individuals. Low-producer MBL2*B genotypes were more common in CD patients (48%) than healthy individuals (31%; adjusted odds ratio = 2.3, 95% confidence interval = 1.01–5.4, P = 0.047) but did not differ with manifestation. In contrast, the heterozygous Toll-like receptor 4 (TLR4)-deficiency genotype D299G/T399I occurred more frequently in asymptomatic (14.8%) than CCC patients (3.1%; P = 0.02). TLR1-I602S, TLR2-R753Q, TLR6-S249P, and MAL/TIRAP-S180L did not associate with CD or CCC. These findings support the complement system to be involved in defense against Trypanosoma cruzi infection and indicate that curbed TLR4 activation might be beneficial in preventing CCC. PMID:22302853

  17. Mannose-binding lectin and Toll-like receptor polymorphisms and Chagas disease in Chile.

    PubMed

    Weitzel, Thomas; Zulantay, Inés; Danquah, Ina; Hamann, Lutz; Schumann, Ralf R; Apt, Werner; Mockenhaupt, Frank P

    2012-02-01

    Mannose-binding lectin (MBL) and Toll-like receptor (TLR) polymorphisms may influence susceptibility and manifestation of Trypanosoma cruzi infection. In northern Chile, we examined 61 asymptomatic patients with chronic Chagas disease (CD), 64 patients with chronic Chagas cardiomyopathy (CCC), and 45 healthy individuals. Low-producer MBL2*B genotypes were more common in CD patients (48%) than healthy individuals (31%; adjusted odds ratio = 2.3, 95% confidence interval = 1.01-5.4, P = 0.047) but did not differ with manifestation. In contrast, the heterozygous Toll-like receptor 4 (TLR4)-deficiency genotype D299G/T399I occurred more frequently in asymptomatic (14.8%) than CCC patients (3.1%; P = 0.02). TLR1-I602S, TLR2-R753Q, TLR6-S249P, and MAL/TIRAP-S180L did not associate with CD or CCC. These findings support the complement system to be involved in defense against Trypanosoma cruzi infection and indicate that curbed TLR4 activation might be beneficial in preventing CCC.

  18. Recognition of herpes simplex viruses: toll-like receptors and beyond.

    PubMed

    Ma, Yijie; He, Bin

    2014-03-20

    Herpes simplex viruses (HSVs) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a lifelong source of recurrent infection. In this complex process, HSV triggers and neutralizes innate immunity. Therefore, a dynamic equilibrium between HSV and the innate immune system determines the outcome of viral infection. Detection of HSV involves pathogen recognition receptors that include Toll-like receptors, retinoic acid-inducible gene I-like receptors, and cytosolic DNA sensors. Moreover, innate components or pathways exist to sense membrane fusion upon viral entry into host cells. Consequently, this surveillance network activates downstream transcription factors, leading to the induction of type I interferon and inflammatory cytokines. Not surprisingly, with the capacity to establish chronic infection HSV has evolved strategies that modulate or evade innate immunity. In this review, we describe recent advances pertinent to the interplay of HSV and the induction of innate immunity mediated by pathogen recognition receptors or pathways.

  19. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression.

    PubMed

    Zhao, Zhao; Cai, Tian-Zhi; Lu, Yan; Liu, Wen-Jun; Cheng, Man-Li; Ji, Yu-Qiang

    2015-04-01

    In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.

  20. Immunomodulatory parasites and toll-like receptor-mediated tumour necrosis factor alpha responsiveness in wild mammals

    PubMed Central

    Jackson, Joseph A; Friberg, Ida M; Bolch, Luke; Lowe, Ann; Ralli, Catriona; Harris, Philip D; Behnke, Jerzy M; Bradley, Janette E

    2009-01-01

    Background Immunological analyses of wild populations can increase our understanding of how vertebrate immune systems respond to 'natural' levels of exposure to diverse infections. A major recent advance in immunology has been the recognition of the central role of phylogenetically conserved toll-like receptors in triggering innate immunity and the subsequent recruitment of adaptive response programmes. We studied the cross-sectional associations between individual levels of systemic toll-like receptor-mediated tumour necrosis factor alpha responsiveness and macro- and microparasite infections in a natural wood mouse (Apodemus sylvaticus) population. Results Amongst a diverse group of macroparasites, only levels of the nematode Heligmosomoides polygyrus and the louse Polyplax serrata were correlated (negatively) with innate immune responsiveness (measured by splenocyte tumour necrosis factor alpha responses to a panel of toll-like receptor agonists). Polyplax serrata infection explained a strikingly high proportion of the total variation in innate responses. Contrastingly, faecal oocyst count in microparasitic Eimeria spp. was positively associated with innate immune responsiveness, most significantly for the endosomal receptors TLR7 and TLR9. Conclusion Analogy with relevant laboratory models suggests the underlying causality for the observed patterns may be parasite-driven immunomodulatory effects on the host. A subset of immunomodulatory parasite species could thus have a key role in structuring other infections in natural vertebrate populations by affecting the 'upstream' innate mediators, like toll-like receptors, that are important in initiating immunity. Furthermore, the magnitude of the present result suggests that populations free from immunosuppressive parasites may exist at 'unnaturally' elevated levels of innate immune activation, perhaps leading to an increased risk of immunopathology. PMID:19386086

  1. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  2. Endogenous toll-like receptor ligands and their biological significance

    PubMed Central

    Yu, Li; Wang, Liantang; Chen, Shangwu

    2010-01-01

    Abstract Toll-like receptors (TLRs), a family of pattern recognition receptors, recognize and respond to conserved components of microbes and play a crucial role in both innate and adaptive immunity. In addition to binding exogenous ligands derived from pathogens, TLRs interact with endogenous molecules released from damaged tissues or dead cells and regulate many sterile inflammation processes. Putative endogenous TLR ligands include proteins and peptides, polysaccharides and proteoglycan, nucleic acids and phospholipids, which are cellular components, particularly extracellular matrix degradation products. Accumulating evidence demonstrates that endogenous ligand-mediated TLR signalling is involved in pathological conditions such as tissue injury, repair and regeneration; autoimmune diseases and tumorigenesis. The ability of TLRs to recognize endogenous stimulators appears to be essential to their function in regulating non-infectious inflammation. In this review, we summarize current knowledge of endogenous TLR ligands and discuss the biological significance of TLR signalling triggered by endogenous ligands in several sterile inflammation conditions. PMID:20629986

  3. Assembly and localization of Toll-like receptor signalling complexes.

    PubMed

    Gay, Nicholas J; Symmons, Martyn F; Gangloff, Monique; Bryant, Clare E

    2014-08-01

    Signal transduction by the Toll-like receptors (TLRs) is central to host defence against many pathogenic microorganisms and also underlies a large burden of human disease. Thus, the mechanisms and regulation of signalling by TLRs are of considerable interest. In this Review, we discuss the molecular basis for the recognition of pathogen-associated molecular patterns, the nature of the protein complexes that mediate signalling, and the way in which signals are regulated and integrated at the level of allosteric assembly, post-translational modification and subcellular trafficking of the components of the signalling complexes. These fundamental molecular mechanisms determine whether the signalling output leads to a protective immune response or to serious pathologies such as sepsis. A detailed understanding of these processes at the molecular level provides a rational framework for the development of new drugs that can specifically target pathological rather than protective signalling in inflammatory and autoimmune disease.

  4. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  5. Toll-like receptor signalling through macromolecular protein complexes.

    PubMed

    Bryant, Clare E; Symmons, Martyn; Gay, Nicholas J

    2015-02-01

    The molecular mechanisms by which pattern recognition receptors (PRRs) signal are increasingly well understood. Toll-like receptor 4 (TLR4) signals through two separate pairs of adaptor proteins Mal/MyD88 and Tram/Trif. Structural studies have revealed a common theme for PRR signalling in that their signalling proteins form large macromolecular complexes which are thought to form the active signalling complex. The first of these to be characterised was the MyD88 signalling complex Myddosome. Many questions remain unanswered however. In particular it is unclear whether these signalling complexes form within the living cell, how many of each signalling protein is within the intracellular Myddosome and whether the stoichiometry can vary in a ligand-dependent manner. In this review we will discuss what is known about the macromolecular complexes thought to be important for TLR4 signalling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Toll-like receptors are key players in neurodegeneration.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Rodriguez-Galan, Maria C; Iribarren, Pablo

    2011-10-01

    The activation of innate immune response is initiated by engagement of pattern-recognition receptors (PPRs), such as Toll-like receptors (TLRs). These receptors are expressed in peripheral leukocytes and in many cell types in the central nervous system (CNS). The expression of TLRs in CNS was mainly studied in astrocytes and microglial cells. However, new evidence indicates that these receptors may play an important role in neuronal homeostasis. The expression of TLRs in the CNS is variable and can be modulated by multiple factors, including pro-inflammatory molecules, which are elevated in neurodegenerative diseases and can increase the expression of TLRs in CNS cells. Moreover, activation of TLRs induces the release of pro-inflammatory cytokines. Therefore, TLRs have been shown to play a role in several aspects of neurodegenerative diseases. Here we will discuss results reported in the recent literature concerning the participation of TLRs in neurodegenerative diseases.

  7. Toll-like receptor 2 and type 2 diabetes.

    PubMed

    Sepehri, Zahra; Kiani, Zohre; Nasiri, Ali Akbar; Kohan, Farhad

    2016-01-01

    Innate immunity plays a crucial role in the pathogenesis of type 2 diabetes and related complications. Since the toll-like receptors (TLRs) are central to innate immunity, it appears that they are important participants in the development and pathogenesis of the disease. Previous investigations demonstrated that TLR2 homodimers and TLR2 heterodimers with TLR1 or TLR6 activate innate immunity upon recognition of damage-associated molecular patterns (DAMPs). Several DAMPs are released during type 2 diabetes, so it may be hypothesized that TLR2 is significantly involved in its progression. Here, we review recent data on the important roles and status of TLR2 in type 2 diabetes and related complications.

  8. Toll-Like Receptors: Role in Dermatological Disease

    PubMed Central

    Hari, Aswin; Flach, Tracy L.; Shi, Yan; Mydlarski, P. Régine

    2010-01-01

    Toll-like receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated molecular patterns (PAMPs) present in microbes. In humans, at least ten TLRs have been identified, and their recognition targets range from bacterial endotoxins to lipopeptides, DNA, dsRNA, ssRNA, fungal products, and several host factors. Of dermatological interest, these receptors are expressed on several skin cells including keratinocytes, melanocytes, and Langerhans cells. TLRs are essential in identifying microbial products and are known to link the innate and adaptive immune systems. Over the years, there have been significant advances in our understanding of TLRs in skin inflammation, cutaneous malignancies, and defence mechanisms. In this paper, we will describe the association between TLRs and various skin pathologies and discuss proposed TLR therapeutics. PMID:20847936

  9. The role of toll-like receptors 2 and 4 in the pathogenesis of feline pyometra.

    PubMed

    Jursza, E; Kowalewski, M P; Boos, A; Skarzynski, D J; Socha, P; Siemieniuch, M J

    2015-03-01

    Pyometra is the most common uterine disease in queens. To protect itself from infection, the female reproductive tract possesses several immune mechanisms that are based on germline-encoded pattern recognition receptors (toll-like receptors [TLRs]). The aim of our study was to examine endometrial immunolocalization of TLR2/4, study the influence of lipopolysaccharide (LPS) and tumor necrosis factor (TNF) α on messenger RNA expression of both receptors in pyometric queens, and compare these patterns between estrous cycling queens and those hormonally treated with medroxyprogesterone acetate (MPA). Thirty-six queens, ranging in age from 7 months to 11 years, were allocated into seven groups (anestrus, estrus, mid-diestrus and late diestrus, short-term and long-term hormonally treated queens, and pyometric queens). At the messenger RNA level, the real-time polymerase chain reaction was applied, whereas at the TLR2/4 protein level, the expression was tested by immunohistochemistry. In queens at estrus, gene expression of TLR2 was upregulated after stimulation of endometrial explants by TNF (P < 0.001) and by TNF together with the LPS (P < 0.01). Moreover, gene expression of TLR2 was significantly upregulated after stimulation by TNF (P < 0.001) and LPS (P < 0.01) explants derived from queens that had been long-term hormonally treated with MPA. Endometrial gene expression of TLR4 was significantly upregulated after incubation of explants with TNF (P < 0.001) in queens at estrus and with LPS (P < 0.05) in queens short-term hormonally treated with MPA. Immunolocalization reported that TLR2/4 receptors are mainly localized in the surface and glandular epithelia. These data show that short-term and especially long-term administration of progesterone derivatives impairs TLRs in the endometrial epithelium, presumably enabling pathogens to break through this first natural barrier and thereby increase the risk of pyometra development.

  10. Bacterial lysates improve the protective antibody response against respiratory viruses through Toll-like receptor 4

    PubMed Central

    Coviello, Silvina; Wimmenauer, Vera; Polack, Fernando P; Irusta, Pablo M

    2014-01-01

    Respiratory viruses cause significant morbidity and mortality in infants and young children worldwide. Current strategies to modulate the immune system and prevent or treat respiratory viral infections in this age group have shown limited success. Here, we demonstrate that a lysate derived from Gram-positive and Gram-negative organisms positively modulates protective antibody responses against both respiratory syncytial virus (RSV) and influenza virus in murine models of infection. Interestingly, despite the complex mixture of Toll-like receptor (TLR) agonists present in the bacterial lysate, the modulatory effects were mostly dependent on TLR4 signaling. Our results indicate that the use of simple formulations of TLR-agonists can significantly improve the immune response against critical pediatric respiratory pathogens. PMID:25483455

  11. Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens

    PubMed Central

    El Kasmi, Karim C; Qualls, Joseph E; Pesce, John T; Smith, Amber M; Thompson, Robert W; Henao-Tamayo, Marcela; Basaraba, Randall J; König, Till; Schleicher, Ulrike; Koo, Mi-Sun; Kaplan, Gilla; Fitzgerald, Katherine A; Tuomanen, Elaine I; Orme, Ian M; Kanneganti, Thirumala-Devi; Bogdan, Christian; Wynn, Thomas A; Murray, Peter J

    2008-01-01

    Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a ‘loophole’ in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 (TH2) responses, TLR-mediated Arg1 induction was independent of the TH2-associated STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival in T. gondii infection and decreased lung bacterial load in tuberculosis infection. PMID:18978793

  12. MicroRNAs: new regulators of Toll-like receptor signalling pathways.

    PubMed

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels.

  13. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  14. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation

    PubMed Central

    Molteni, Monica; Gemma, Sabrina

    2016-01-01

    Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions. PMID:27293318

  15. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer.

  16. The acylation state of mycobacterial lipomannans modulates innate immunity response through toll-like receptor 2.

    PubMed

    Gilleron, Martine; Nigou, Jérôme; Nicolle, Delphine; Quesniaux, Valérie; Puzo, Germain

    2006-01-01

    Detection of Mycobacterium tuberculosis antigens by professional phagocytes via toll-like receptors (TLR) contributes to controlling chronic M. tuberculosis infection. Lipomannans (LM), which are major lipoglycans of the mycobacterial envelope, were recently described as agonists of TLR2 with potent activity on proinflammatory cytokine regulation. LM correspond to a heterogeneous population of acyl- and glyco-forms. We report here the purification and the complete structural characterization of four LM acyl-forms from Mycobacterium bovis BCG using MALDI MS and 2D (1)H-(31)P NMR analyses. All this biochemical work provided the tools to investigate the implication of LM acylation degree on its proinflammatory activity. The latter was ascribed to the triacylated LM form, essentially an agonist of TLR2, using TLR2/TLR1 heterodimers for signaling. Altogether, these findings shed more light on the molecular basis of LM recognition by TLR.

  17. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  18. Control of hepatitis B virus replication by interferons and Toll-like receptor signaling pathways

    PubMed Central

    Pei, Rong-Juan; Chen, Xin-Wen; Lu, Meng-Ji

    2014-01-01

    Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, affecting more than 350 million people worldwide. The interferon (IFN)-mediated innate immune responses could restrict HBV replication at the different steps of viral life cycle. Indeed, IFN-α has been successfully used for treatment of patients with chronic hepatitis B. However, the role of the innate immune response in HBV replication and the mechanism of the anti-HBV effect of IFN-α are not completely explored. In this review, we summarized the currently available knowledge about the IFN-mediated anti-HBV effect in the HBV life cycle and the possible effectors downstream the IFN signaling pathway. The antiviral effect of Toll-like receptors (TLRs) in HBV replication is briefly discussed. The strategies exploited by HBV to evade the IFN- and TLR-mediated antiviral actions are summarized. PMID:25206268

  19. Toll-Like Receptor–2/6 and Toll-Like Receptor–9 Agonists Suppress Viral Replication but Not Airway Hyperreactivity in Guinea Pigs

    PubMed Central

    Evans, Scott E.; Dickey, Burton F.; Fryer, Allison D.; Jacoby, David B.

    2013-01-01

    Respiratory virus infections cause airway hyperreactivity (AHR). Preventative strategies for virus-induced AHR remain limited. Toll-like receptors (TLRs) have been suggested as a therapeutic target because of their central role in triggering antiviral immune responses. Previous studies showed that concurrent treatment with TLR2/6 and TLR9 agonists reduced lethality and the microbial burden in murine models of bacterial and viral pneumonia. This study investigated the effects of TLR2/6 and TLR9 agonist pretreatment on parainfluenza virus pneumonia and virus-induced AHR in guinea pigs in vivo. Synthetic TLR2/6 lipopeptide agonist Pam2CSK4 and Class C oligodeoxynucleotide TLR9 agonist ODN2395, administered in combination 24 hours before virus infection, significantly reduced viral replication in the lung. Despite a fivefold reduction in viral titers, concurrent TLR2/6 and TLR9 agonist pretreatment did not prevent virus-induced AHR or virus-induced inhibitory M2 muscarinic receptor dysfunction. Interestingly, the TLR agonists independently caused non–M2-dependent AHR. These data confirm the therapeutic antiviral potential of TLR agonists, while suggesting that virus inhibition may be insufficient to prevent virus-induced airway pathophysiology. Furthermore, TLR agonists independently cause AHR, albeit through a distinctly different mechanism from that of parainfluenza virus. PMID:23449736

  20. Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4.

    PubMed

    Chessa, Daniela; Spiga, Luisella; De Riu, Nicola; Delaconi, Paola; Mazzarello, Vittorio; Ganau, Giulia; Rubino, Salvatore

    2014-11-01

    Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so.

  1. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  2. Comparative studies of Toll-like receptor signalling using zebrafish.

    PubMed

    Kanwal, Zakia; Wiegertjes, Geert F; Veneman, Wouter J; Meijer, Annemarie H; Spaink, Herman P

    2014-09-01

    Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Negative regulation of Toll-like receptor signalling].

    PubMed

    Antosz, Halina; Choroszyńska, Dorota

    2013-04-25

    The mechanism of innate immunity is based on the pattern recognition receptors (PRR) that recognize molecular patterns associated with pathogens (PAMPs). Among PRR receptors Toll-like receptors (TLR) are distinguished. As a result of contact with pathogens, TLRs activate specific intracellular signaling pathways. It happens through proteins such as adaptor molecules, e.g. MyD88, TIRAP, TRIF, TRAM, and IPS-1, which participate in the cascade activation of kinases (IKK, MAP, RIP-1, TBK-1) as well as transcription factors (NF-κB, AP-1) and regulatory factor (IRF3). The result of this activation is the production of active proinflammatory cytokines, chemokines, interferons and enzymes. The PRR pathways are controlled by extra- and intracellular molecules to prevent overexpression of PRR. They include soluble receptors (sTLR), transmembrane proteins (ST2, SIGIRR, RP105, TRAIL-R) and intracellular inhibitors (SOCS-1, SOCS-3, sMyD88, TOLLIP, IRAK-M, SARM, A20, β-arrestin, CYLD, SHP). These molecules maintain the balance between activation and inhibition and ensure balancing of the beneficial and adverse effects of antigen recognition.

  4. Controversial role of toll-like receptors in acute pancreatitis

    PubMed Central

    Vaz, Juan; Akbarshahi, Hamid; Andersson, Roland

    2013-01-01

    Acute pancreatitis (AP) is a common clinical condition with an incidence of about 300 or more patients per million annually. About 10%-15% of patients will develop severe acute pancreatitis (SAP) and of those, 10%-30% may die due to SAP-associated complications. Despite the improvements done in the diagnosis and management of AP, the mortality rate has not significantly declined during the last decades. Toll-like receptors (TLRs) are pattern-recognition receptors that seem to play a major role in the development of numerous diseases, which make these molecules attractive as potential therapeutic targets. TLRs are involved in the development of the systemic inflammatory response syndrome, a potentially lethal complication in SAP. In the present review, we explore the current knowledge about the role of different TLRs that have been described associated with AP. The main candidate for targeting seems to be TLR4, which recognizes numerous damage-associated molecular patterns related to AP. TLR2 has also been linked with AP, but there are only limited studies that exclusively studied its role in AP. There is also data suggesting that TLR9 may play a role in AP. PMID:23431068

  5. A Toll-like receptor in horseshoe crabs.

    PubMed

    Inamori, Kei-ichiro; Ariki, Shigeru; Kawabata, Shun-ichiro

    2004-04-01

    Non-self-recognition of invading microbes relies on the pattern-recognition of pathogen-associated molecular patterns (PAMPs) derived from microbial cell-wall components. Insects and mammals conserve a signaling pathway of the innate immune system through cell-surface receptors called Tolls and Toll-like receptors (TLRs). Bacterial lipopolysaccharides (LPSs) are an important trigger of the horseshoe crab's innate immunity to infectious microorganisms. Horseshoe crabs' granular hemocytes respond specifically to LPS stimulation, inducing the secretion of various defense molecules from the granular hemocytes. Here, we show a cDNA which we named tToll, coding for a TLR identified from hemocytes of the horseshoe crab Tachypleus tridentatus. tToll is most closely related to Drosophila Toll in both domain architecture and overall length. Human TLRs have been suggested to contain numerous PAMP-binding insertions located in the leucine-rich repeats (LRRs) of their ectodomains. However, the LRRs of tToll contained no obvious PAMP-binding insertions. Furthermore, tToll was non-specifically expressed in horseshoe crab tissues. These observations suggest that tToll does not function as an LPS receptor on granular hemocytes.

  6. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  7. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

  8. Toll-like receptors in pathophysiology of liver diseases

    PubMed Central

    Kiziltas, Safak

    2016-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases. PMID:27917262

  9. Toll-Like Receptor 9 Agonists for Cancer Therapy

    PubMed Central

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-01-01

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required. PMID:28548068

  10. Toll-Like Receptor 9 Agonists for Cancer Therapy.

    PubMed

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-08-04

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required.

  11. Toll-like receptors as targets for allergen immunotherapy.

    PubMed

    Aryan, Zahra; Rezaei, Nima

    2015-12-01

    Toll-like receptors (TLRs) are novel and promising targets for allergen immunotherapy. Bench studies suggest that TLR agonists reduce Th2 responses and ameliorate airway hyper-responsiveness. In addition, clinical trials are at initial phases to evaluate the safety and efficacy of TLR agonists for the allergen immunotherapy of patients with allergic rhinitis and asthma. (Figure is included in full-text article.) To date, two allergy vaccine-containing TLR agonists have been investigated in clinical trials; Pollinex Quattro and AIC. The former contains monophosphoryl lipid, a TLR4 agonist and the latter contains, CpG motifs activating the TLR9 cascade. Preseasonal subcutaneous injection of both of these allergy vaccines has been safe and efficacious in control of nasal symptoms of patients with allergic rhinitis. CRX-675 (a TLR4 agonist), AZD8848 (a TLR7 agonist), VTX-1463 (a TLR8 agonist) and 1018 ISS and QbG10 (TLR9 agonists) are currently in clinical development for allergic rhinitis and asthma. TLR agonists herald promising results for allergen immunotherapy of patients with allergic rhinitis and asthma. Future research should be directed at utilizing these agents for immunotherapy of food allergy (for instance, peanut allergy) as well.

  12. Computational Approaches to Toll-Like Receptor 4 Modulation.

    PubMed

    Billod, Jean-Marc; Lacetera, Alessandra; Guzmán-Caldentey, Joan; Martín-Santamaría, Sonsoles

    2016-07-30

    Toll-like receptor 4 (TLR4), along with its accessory protein myeloid differentiation factor 2 (MD-2), builds a heterodimeric complex that specifically recognizes lipopolysaccharides (LPS), which are present on the cell wall of Gram-negative bacteria, activating the innate immune response. Some TLR4 modulators are undergoing preclinical and clinical evaluation for the treatment of sepsis, inflammatory diseases, cancer and rheumatoid arthritis. Since the relatively recent elucidation of the X-ray crystallographic structure of the extracellular domain of TLR4, research around this fascinating receptor has risen to a new level, and thus, new perspectives have been opened. In particular, diverse computational techniques have been applied to decipher some of the basis at the atomic level regarding the mechanism of functioning and the ligand recognition processes involving the TLR4/MD-2 system at the atomic level. This review summarizes the reported molecular modeling and computational studies that have recently provided insights into the mechanism regulating the activation/inactivation of the TLR4/MD-2 system receptor and the key interactions modulating the molecular recognition process by agonist and antagonist ligands. These studies have contributed to the design and the discovery of novel small molecules with promising activity as TLR4 modulators.

  13. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  14. Mechanisms of disease: Toll-like receptors in cardiovascular disease.

    PubMed

    Frantz, Stefan; Ertl, Georg; Bauersachs, Johann

    2007-08-01

    The innate immune system detects highly conserved, relatively invariant structural motifs of pathogens. Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different patterns of pathogens and activate a rapid innate immune response; however, TLRs can also be activated by host-derived molecules. In addition to being expressed in immune cells, TLRs are expressed in other tissues, such as those of the cardiovascular system. TLRs could, therefore, be a key link between cardiovascular disease development and the immune system. Indeed, evidence that TLR activation contributes to the development and progression of atherosclerosis, cardiac dysfunction in sepsis, and congestive heart failure, is convincing. Although much has been learned about TLR activation in cellular components of the cardiovascular system, the role individual TLR family members have in the pathophysiology of cardiovascular diseases and hence in clinical practice remains to be defined. Here we review the rapid progress that has been made in this field, which has improved our understanding of vascular as well as myocardial TLR function in basic and clinical science.

  15. The evolution of vertebrate Toll-like receptors

    USGS Publications Warehouse

    Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.

    2005-01-01

    The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.

  16. Role of Toll-like receptors in diabetic nephropathy.

    PubMed

    Mudaliar, Harshini; Pollock, Carol; Panchapakesan, Usha

    2014-05-01

    Diabetic nephropathy is the leading cause of kidney failure and its increasing prevalence and incidence has imposed global socio-economic stress on healthcare systems worldwide. Although historically considered a metabolic disorder, recent studies have established that inflammatory responses are central to the pathogenesis of diabetic nephropathy. TLRs (Toll-like receptors) are a family of pattern recognition receptors responsible for the initiation of inflammatory and immune responses. The regulation of TLR2 and TLR4 have been implicated in the pathogenesis of various kidney diseases, and emerging evidence shows their involvement in the perpetuation of inflammation in the diabetic kidney. The present review focuses on the relative contributions of TLR2 and TLR4 in recognizing endogenous ligands relevant to diabetic nephropathy and their subsequent activation of NF-κB (nuclear factor κB), which results in the synthesis and secretion of pro-inflammatory cytokines and chemokines. Moreover, we discuss the pro-inflammatory signalling pathways of TLR2 and TLR4, in which their interruption or blockade may prove to be important therapeutic targets, potentially translated into clinical treatments for diabetic nephropathy. Currently, inhibitors to TLR2 and TLR4 are undergoing clinical trials in various inflammatory models of disease, but none in patients with diabetic nephropathy. Given the existing literature, there is a fundamental necessity to undertake trials in patients with diabetic nephropathy with a focus on renal end points.

  17. The Role of Toll Like Receptors in Pregnancy

    PubMed Central

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-01-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy. PMID:24520479

  18. The role of toll like receptors in pregnancy.

    PubMed

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-10-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy.

  19. Phosphoinositide turnover in Toll-like receptor signaling and trafficking

    PubMed Central

    Tu Le, Oanh Thi; Ngoc Nguyen, Tu Thi; Lee, Sang Yoon

    2014-01-01

    Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368] PMID:24856829

  20. Cathepsins are required for Toll-like receptor 9 responses

    SciTech Connect

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-03-14

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.

  1. Enterovirus 68 3C Protease Cleaves TRIF To Attenuate Antiviral Responses Mediated by Toll-Like Receptor 3

    PubMed Central

    Xiang, Zichun; Li, Linlin; Lei, Xiaobo; Zhou, Hongli; Zhou, Zhuo

    2014-01-01

    ABSTRACT Human enterovirus 68 (EV68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, there have been increasingly documented outbreaks of respiratory disease associated with EV68. As a globally emerging pathogen, EV68 infects both adults and children. However, the molecular basis of EV68 pathogenesis is unknown. Here we report that EV68 inhibits Toll-like receptor 3 (TLR3)-mediated innate immune responses by targeting the TIR domain-containing adaptor inducing beta interferon (TRIF). In infected HeLa cells, EV68 inhibits poly(I·C)-induced interferon regulatory factor 3 (IRF3) activation and beta interferon (IFN-β) expression. Further investigations revealed that TRIF, a critical adaptor downstream of TLR3, is targeted by EV68. When expressed alone, 3Cpro, an EV68-encoded protease, cleaves TRIF. 3Cpro mediates TRIF cleavage at Q312 and Q653, which are sites in the amino- and carboxyl-terminal domains, respectively. This cleavage relies on 3Cpro's cysteine protease activity. Cleavage of TRIF abolishes the capacity of TRIF to activate NF-κB and IFN-β signaling. These results suggest that control of TRIF by 3Cpro may be a mechanism by which EV68 subverts host innate immune responses. IMPORTANCE EV68 is a globally emerging pathogen, but the molecular basis of EV68 pathogenesis is unclear. Here we report that EV68 inhibits TLR3-mediated innate immune responses by targeting TRIF. Further investigations revealed that TRIF is cleaved by 3Cpro. These results suggest that control of TRIF by 3Cpro may be a mechanism by which EV68 impairs type I IFN production in response to TLR3 activation. PMID:24672048

  2. Toll-like receptor signalling and their therapeutic targeting in colorectal cancer.

    PubMed

    Moossavi, Shirin; Rezaei, Nima

    2013-06-01

    Intestinal homeostasis is dependent on the proper host/microbiota interaction via pattern recognition receptors. Toll-like receptors are a specialised group of membrane receptors which detect pathogen-associated conserved structures. They are present in the intestinal tract and are required for intestinal homeostasis. Dysregulation in the Toll-like receptor signalling can conceivably result in a dysregulated immune response which could contribute to major intestinal pathologies including colorectal cancer. Evidence for the role of microbiota and toll-like receptors in colorectal cancer is emerging. In this report the evidence for the contribution of toll-like receptors to the pathogenesis of colorectal cancer; potential mechanisms affecting toll-like receptor signalling; and their therapeutic targeting in colorectal cancer are reviewed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Bovine mammary epithelial cells contribute to the innate immune response to intramammary infections by recognizing pathogens through specialized pattern recognition receptors. Toll-like receptor 4 (TLR4) is one such receptor that binds and is activated by lipopolysaccharide (LPS), a component of the...

  4. Neurocognitive impairments in hiv infection.

    PubMed

    Edwin, T; Nammalvar, N; Sabhesan, S; Ganesh, R; Devarajan, H

    1999-01-01

    Neuropsychological impairments punctuate the early neurological involvement among HIV-1 infected patients. Three groups of patients, twenty in each were selected. The first group consisted of seronegative local controls, the second being a group of asymptomatic seropositive patients and the third a group of seropositive symptomatic individuals. All these three groups were tested using standard neuropsychological tests. Results indicate that a broad spectrum of impairments occur in the seropositive patients and that the impairments of various functions occur at different phases of the illness. The importance of these findings in prediction of early neurological disturbance is highlighted and their significance in the total management and rehabilitation is discussed.

  5. Structural characterisation of Toll-like receptor 1 (TLR1) and Toll-like receptor 6 (TLR6) in elephant and harbor seals.

    PubMed

    Woodman, Sally; Gibson, Amanda J; García, Ana Rubio; Contreras, Guillermo Sanchez; Rossen, John W; Werling, Dirk; Offord, Victoria

    2016-01-01

    Pinnipeds are a diverse clade of semi-aquatic mammals, which act as key indicators of ecosystem health. Their transition from land to marine environments provides a complex microbial milieu, making them vulnerable to both aquatic and terrestrial pathogens, thereby contributing to pinniped population decline. Indeed, viral pathogens such as influenza A virus and phocine distemper virus (PDV) have been identified as the cause of several of these mass mortality events. Furthermore, bacterial infection with mammalian Brucella sp. and methicillin-resistant Staphylococcus aureus strains have also been observed in marine mammals, posing further risk to both co-habiting endangered species and public health. During these disease outbreaks, mortality rates have varied amongst different pinniped species. Analyses of innate immune receptors at the host-pathogen interface have previously identified variants which may drive these species-specific responses. Through a combination of both sequence- and structure-based methods, this study characterises members of the Toll-like receptor (TLR) 1 superfamily from both harbour and elephant seals, identifying variations which will help us to understand these species-specific innate immune responses, potentially aiding the development of specific vaccine-adjuvants for these species.

  6. Toll-like receptor 7 mediates early innate immune responses to malaria.

    PubMed

    Baccarella, Alyssa; Fontana, Mary F; Chen, Eunice C; Kim, Charles C

    2013-12-01

    Innate immune recognition of malaria parasites is the critical first step in the development of the host response. At present, Toll-like receptor 9 (TLR9) is thought to play a central role in sensing malaria infection. However, we and others have observed that Tlr9(-/-) mice, in contrast to mice deficient in the downstream adaptor, Myeloid differentiation primary response gene 88 (MYD88), exhibit few deficiencies in immune function during early infection with the malaria parasite Plasmodium chabaudi, implying that another MYD88-dependent receptor also contributes to the antimalarial response. Here we use candidate-based screening to identify TLR7 as a key sensor of early P. chabaudi infection. We show that TLR7 mediates a rapid systemic response to infection through induction of cytokines such as type I interferons (IFN-I), interleukin 12, and gamma interferon. TLR7 is also required for induction of IFN-I by other species and strains of Plasmodium, including an etiological agent of human disease, P. falciparum, suggesting that malaria parasites harbor a common pathogen-associated molecular pattern (PAMP) recognized by TLR7. In contrast to the nonredundant requirement for TLR7 in early immune activation, sensing through both TLR7 and TLR9 was required for proinflammatory cytokine production and immune cell activation during the peak of parasitemia. Our findings indicate that TLR7 plays a central role in early immune activation during malaria infection, whereas TLR7 and TLR9 contribute combinatorially to immune responses as infection progresses.

  7. The Immune Response to Trypanosoma cruzi: Role of Toll-Like Receptors and Perspectives for Vaccine Development

    PubMed Central

    Rodrigues, Mauricio M.; Oliveira, Ana Carolina; Bellio, Maria

    2012-01-01

    In the past ten years, studies have shown the recognition of Trypanosoma cruzi-associated molecular patterns by members of the Toll-like receptor (TLR) family and demonstrated the crucial participation of different TLRs during the experimental infection with this parasite. In the present review, we will focus on the role of TLR-activated pathways in the modulation of both innate and acquired immune responses to T. cruzi infection, as well as discuss the state of the art of vaccine research and development against the causative agent of Chagas disease (or American trypanosomiasis). PMID:22496959

  8. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti

    PubMed Central

    Arias, Maykel A.; Santiago, Llipsy; Costas-Ramon, Santiago; Jaime-Sánchez, Paula; Freudenberg, Marina; Jiménez De Bagüés, Maria P.; Pardo, Julián

    2017-01-01

    Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti, was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8+ T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2−/−, TLR4−/−, TLR9−/−, TLR2×4−/− and TLR2×4×9−/−. WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4−/− and TLR2×4×9−/− mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti-infected dendritic cells from TLR2×4−/− and TLR2×4×9−/− mice. Finally, it was found that Tc cells from TLR2×4−/− and TLR2×4×9−/− mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8+ Tc cells. PMID:28119856

  9. Toll-like receptor 4 signalling attenuates experimental allergic conjunctivitis.

    PubMed

    Chung, S-H; Choi, S H; Cho, K J; Joo, C-K

    2011-05-01

    Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4(-/-) mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4(-/-) mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model. © 2011 The Authors; Clinical and Experimental Immunology © 2011 British Society for Immunology.

  10. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation.

    PubMed

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2015-02-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni-corrected level P ≤ .001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease-free survival (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.16 to 1.85]; P = .001). Further analysis stratified by donor sex due to confounding by sex was suggestive for associations with overall survival (male donor: HR, 1.41 [95% CI, 1.09 to 1.83], P = .010; female donor: HR, 2.78 [95% CI, 1.43 to 5.41], P = .003), disease-free survival (male donor: HR, 1.45 [95% CI, 1.12 to 1.87], P = .005; female donor: HR, 2.34 [95% CI, 1.18 to 4.65], P = .015), and treatment-related mortality (male donor: HR, 1.49 [95% CI, 1.09 to 2.04], P = .012; female donor: HR, 3.12 [95% CI, 1.44 to 6.74], P = .004). In conclusion, our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT.

  11. Enteroendocrine cells express functional Toll-like receptors.

    PubMed

    Bogunovic, Milena; Davé, Shaival H; Tilstra, Jeremy S; Chang, Diane T W; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F; Plevy, Scott E

    2007-06-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-kappaB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-beta. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses.

  12. Enteroendocrine cells express functional Toll-like receptors

    PubMed Central

    Bogunovic, Milena; Davé, Shaival H.; Tilstra, Jeremy S.; Chang, Diane T. W.; Harpaz, Noam; Xiong, Huabao; Mayer, Lloyd F.; Plevy, Scott E.

    2011-01-01

    Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-κB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-β. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses. PMID:17395901

  13. Toll-like Receptors of the Ascidian Ciona intestinalis

    PubMed Central

    Sasaki, Naoko; Ogasawara, Michio; Sekiguchi, Toshio; Kusumoto, Shoichi; Satake, Honoo

    2009-01-01

    Key transmembrane proteins in the innate immune system, Toll-like receptors (TLRs), have been suggested to occur in the genome of non-mammalian organisms including invertebrates. However, authentic invertebrate TLRs have been neither structurally nor functionally investigated. In this paper, we originally present the structures, localization, ligand recognition, activities, and inflammatory cytokine production of all TLRs of the ascidian Ciona intestinalis, designated as Ci-TLR1 and Ci-TLR2. The amino acid sequence of Ci-TLR1 and Ci-TLR2 were found to possess unique structural organization with moderate sequence similarity to functionally characterized vertebrate TLRs. ci-tlr1 and ci-tlr2 genes were expressed predominantly in the stomach and intestine as well as in hemocytes. Ci-TLR1 and Ci-TLR2 expressed in HEK293 cells, unlike vertebrate TLRs, were localized to both the plasma membrane and endosomes. Intriguingly, both Ci-TLR1 and Ci-TLR2 stimulate NF-κB induction in response to multiple pathogenic ligands such as double-stranded RNA, and bacterial cell wall components that are differentially recognized by respective vertebrate TLRs, revealing that Ci-TLRs recognize broader pathogen-associated molecular patterns than vertebrate TLRs. The Ci-TLR-stimulating pathogenic ligands also induced the expression of Ci-TNFα in the intestine and stomach where Ci-TLRs are expressed. These results provide evidence that the TLR-triggered innate immune systems are essentially conserved in ascidians, and that Ci-TLRs possess “hybrid” biological and immunological functions, compared with vertebrate TLRs. Moreover, it is presumed that chordate TLR ancestors also acquired the Ci-TLR-like multiple cellular localization and pathogen-associated molecular pattern recognition. PMID:19651780

  14. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  15. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  16. Roles of toll-like receptors signaling in organ transplantation.

    PubMed

    Li, Ting; Chen, Guodong; Zhang, Zheng

    2011-12-01

    Organ transplantation is the gold standard of treatment for patients with end-stage organ failure. However, transplant recipients must take immunosuppressive drugs lifelong to fight against rejection, which is inevitably caused by the recipient's immune system in response to transplanted foreign tissues. Despite advances in the prevention of acute rejection, it is still a significant and potentially devastating complication of solid organ transplantation. Moreover, chronic allograft dysfunction as a result of acute and chronic alloimmune-mediated injury still develops in a majority of transplant recipients regardless of continuous immunosuppression. While host adaptive immune responses elicited by T lymphocytes are primarily responsible for allotransplant rejection, emerging evidence supports an important role of the innate immune system in the development of organ rejection. Innate immune recognition is initiated by a set of diverse receptors that belong to different protein families including the family of toll-like receptors (TLRs). TLR signaling is a highly specialized system that can identify a variety of microbial and endogenous mediators, and activate the innate immune system in response to danger. The discovery of TLRs over the past 10 years has started a new era in understanding the molecular events that initiate and regulate the inflammatory response following organ transplantation. They influence the adaptive immune reactions and contribute to ischemic reperfusion injury, acute and chronic allograft rejection, and tolerance induction. Their role as potential targets for therapeutic intervention has just begun to be appreciated. In this article, we summarize the structural and functional characteristics of TLRs and their ligands. We focus on the studies to define the roles of TLRs in ischemic reperfusion injury, allotransplant rejection, and immune regulation in both animal models and clinical transplantation.

  17. Toll-like receptor 4 signalling attenuates experimental allergic conjunctivitis

    PubMed Central

    Chung, S-H; Choi, S H; Cho, K J; Joo, C-K

    2011-01-01

    Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4−/− mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4−/− mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model. PMID:21391988

  18. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  19. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  20. Toll-Like Receptor 9 Mediated Responses in Cardiac Fibroblasts

    PubMed Central

    Ohm, Ingrid Kristine; Alfsnes, Katrine; Belland Olsen, Maria; Ranheim, Trine; Sandanger, Øystein; Dahl, Tuva Børresdatter; Aukrust, Pål; Finsen, Alexandra Vanessa; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and –C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions. PMID:25126740

  1. Toll-like receptor 9 mediated responses in cardiac fibroblasts.

    PubMed

    Ohm, Ingrid Kristine; Alfsnes, Katrine; Belland Olsen, Maria; Ranheim, Trine; Sandanger, Øystein; Dahl, Tuva Børresdatter; Aukrust, Pål; Finsen, Alexandra Vanessa; Yndestad, Arne; Vinge, Leif Erik

    2014-01-01

    Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.

  2. Regulation of Toll-like receptor 4-mediated immune responses through Pasteurella multocida toxin-induced G protein signalling.

    PubMed

    Hildebrand, Dagmar; Sahr, Aline; Wölfle, Sabine J; Heeg, Klaus; Kubatzky, Katharina F

    2012-08-01

    Lipopolysaccharide (LPS)-triggered Toll-like receptor (TLR) 4-signalling belongs to the key innate defence mechanisms upon infection with Gram-negative bacteria and triggers the subsequent activation of adaptive immunity. There is an active crosstalk between TLR4-mediated and other signalling cascades to secure an effective immune response, but also to prevent excessive inflammation. Many pathogens induce signalling cascades via secreted factors that interfere with TLR signalling to modify and presumably escape the host response. In this context heterotrimeric G proteins and their coupled receptors have been recognized as major cellular targets. Toxigenic strains of Gram-negative Pasteurella multocida produce a toxin (PMT) that constitutively activates the heterotrimeric G proteins Gαq, Gα13 and Gαi independently of G protein-coupled receptors through deamidation. PMT is known to induce signalling events involved in cell proliferation, cell survival and cytoskeleton rearrangement. Here we show that the activation of heterotrimeric G proteins through PMT suppresses LPS-stimulated IL-12p40 production and eventually impairs the T cell-activating ability of LPS-treated monocytes. This inhibition of TLR4-induced IL-12p40 expression is mediated by Gαi-triggered signalling as well as by Gβγ-dependent activation of PI3kinase and JNK.Taken together we propose the following model: LPS stimulates TLR4-mediated activation of the NFĸB-pathway and thereby the production of TNF-α, IL-6 and IL-12p40. PMT inhibits the production of IL-12p40 by Gαi-mediated inhibition of adenylate cyclase and cAMP accumulation and by Gβγ-mediated activation of PI3kinase and JNK activation. On the basis of the experiments with PMT this study gives an example of a pathogen-induced interaction between G protein-mediated and TLR4-triggered signalling and illustrates how a bacterial toxin is able to interfere with the host's immune response.

  3. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor.

    PubMed

    Brasch, J; Mörig, A; Neumann, B; Proksch, E

    2014-03-01

    In superficial tinea and pityriasis versicolor, the causative fungi are for the most part confined to the stratum corneum which is barely reached by leukocytes. Therefore, a role of non-cellular components in the epidermal antifungal defence was suggested. To investigate the presence of such factors in these infections, the expression of human beta defensins 2 and 3 (hBD-2, hBD-3), RNase 7, psoriasin, toll-like receptors 2, 4 and 9 (TLR2, TLR4 and TLR9) and dectin 2 was analysed by use of immunostainings in skin biopsies. We found that hBD2, hBD3, psoriasin, RNase7, TLR2 and TLR4 were significantly more often expressed in distinct layers of lesional epidermis as compared with uninfected epidermis. In both infections but not in normal skin, hBD2 and hBD3 were commonly expressed within the stratum corneum and in the stratum granulosum. Similarly, psoriasin was seen more often in the upper skin layers of both infections as compared with normal skin. No significant differences between normal and infected skin were found for the expression of TLR9 and dectin 2. Our findings clearly show the expression of specific antimicrobial proteins and defence-related ligands in superficial tinea as well as in pityriasis versicolor, suggesting that these factors contribute to fungal containment. © 2013 Blackwell Verlag GmbH.

  4. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  5. Identification and optimization of pteridinone Toll-like receptor 7 (TLR7) agonists for the oral treatment of viral hepatitis.

    PubMed

    Roethle, Paul A; McFadden, Ryan M; Yang, Hong; Hrvatin, Paul; Hui, Hon; Graupe, Michael; Gallagher, Brian; Chao, Jessica; Hesselgesser, Joseph; Duatschek, Paul; Zheng, Jim; Lu, Bing; Tumas, Daniel B; Perry, Jason; Halcomb, Randall L

    2013-09-26

    Pteridinone-based Toll-like receptor 7 (TLR7) agonists were identified as potent and selective alternatives to the previously reported adenine-based agonists, leading to the discovery of GS-9620. Analogues were optimized for the immunomodulatory activity and selectivity versus other TLRs, based on differential induction of key cytokines including interferon α (IFN-α) and tumor necrosis factor α (TNF-α). In addition, physicochemical properties were adjusted to achieve desirable in vivo pharmacokinetic and pharmacodynamic properties. GS-9620 is currently in clinical evaluation for the treatment of chronic hepatitis B (HBV) infection.

  6. Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis

    PubMed Central

    Novosad, Billy D.; Astley, Roger A.; Callegan, Michelle C.

    2011-01-01

    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial

  7. Role of Toll-like receptor (TLR) 2 in experimental Bacillus cereus endophthalmitis.

    PubMed

    Novosad, Billy D; Astley, Roger A; Callegan, Michelle C

    2011-01-01

    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2(-/-) mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to10(8) CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2(-/-) eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2(-/-) eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2(-/-) eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the

  8. Nitric oxide increases susceptibility of toll-like receptor-activated macrophages to spreading Listeria monocytogenes

    PubMed Central

    Cole, Caroline; Thomas, Stacey; Filak, Holly; Henson, Peter M.; Lenz, Laurel L.

    2012-01-01

    SUMMARY Toll-like receptor (TLR) stimulation activates macrophages to resist intracellular pathogens. Yet, the intracellular bacterium Listeria monocytogenes (Lm) causes lethal infections in spite of innate immune cell activation. Lm uses direct cell-cell spread to disseminate within its host. Here, we have shown that TLR-activated macrophages killed cell-free Lm but failed to prevent infection by spreading Lm. Instead, TLR signals increased the efficiency of Lm spread from “donor” to “recipient” macrophages. This enhancement required nitric oxide (NO) production by nitric oxide synthase-2 (NOS2). NO increased Lm escape from secondary vacuoles in recipient cells and delayed maturation of phagosomes containing membrane-like particles that mimic Lm-containing pseudopods. NO also promoted Lm spread during systemic in vivo infection, as inhibition of NOS2 with 1400W reduced spread-dependent Lm burdens in mouse livers. These findings reveal a mechanism by which pathogens capable of cell-cell spread can avoid the consequences of innate immune cell activation by TLR stimuli. PMID:22542147

  9. Methamphetamine Inhibits Toll-Like Receptor 9-Mediated Anti-HIV Activity in Macrophages

    PubMed Central

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin

    2013-01-01

    Abstract Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  10. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  11. One-week high-fat diet leads to reduced toll-like receptor 2 expression and function in young healthy men.

    PubMed

    Wan, Zhongxiao; Durrer, Cody; Mah, Dorrian; Simtchouk, Svetlana; Little, Jonathan P

    2014-12-01

    Toll-like receptor 2 (TLR2) is implicated in inflammatory responses to high-fat diet (HFD)-induced obesity in rodents, but human HFD studies examining TLR2-mediated immune responses are lacking. Our aim was to determine whether HFD affected TLR2 function in humans. We hypothesized that a short-term HFD in humans would impair TLR2-mediated immune function. Fasting blood samples were obtained from healthy young men (N = 9) before and after a 7-day HFD. Toll-like receptor 2 function was assessed in ex vivo whole blood cultures stimulated with the TLR2 agonist N-palmitoyl-S-[2,3-bis[palmitoyloxy]-[2RS]-propyl]-[R]-cysteinyl-[S]-seryl-[S]-lysyl-[S]-lysyl-[S]-lysyl-[S]-lysine (Pam3-Cys-SK4). Peripheral blood mononuclear cells (PBMCs) were isolated to examine TLR2, TLR4, and p47 subunit of nicotinamide adenine dinucleotide phosphate oxidase (p47(phox)) protein expression via Western blotting. Pam3-Cys-SK4-stimulated secretion of interleukin-1β (-35%, P = .005), interleukin-6 (-32%, P = .01), and tumor necrosis factor-α (-33%, P = .06) was reduced following the HFD. High-fat diet resulted in decreased TLR2 (P = .049) and p47(phox) (P = .037) protein expression from PBMCs. To mimic lipid overload ex vivo, follow-up experiments were performed in whole blood cultures exposed to a mixture of free fatty acids for 24 hours; and surface protein expression of TLR2 and TLR4 on CD14+ monocytes was measured by flow cytometry. Free fatty acid exposure for 24 hours ex vivo reduced monocyte TLR2 levels by about 20% (P = .028). A 7-day HFD in young healthy men resulted in impaired TLR2 function. Decreased TLR2 and p47(phox) protein expression in PBMCs, possibly due to excess free fatty acids, may mediate this response. Our current findings indicate that impaired TLR2 response after HFD might be partially responsible for increased risk of infection in diet-induced obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  13. Toll-like receptor agonists partially restore the production of pro-inflammatory cytokines and type I interferon in Sézary syndrome

    PubMed Central

    Manfrere, Kelly C. G.; Torrealba, Marina P.; Miyashiro, Denis R.; Oliveira, Luanda M. S.; de Carvalho, Gabriel C.; Lima, Josenilson F.; Branco, Anna Claudia C. C.; Pereira, Nátalli Z.; Pereira, Juliana; Sanches, José A.; Sato, Maria N.

    2016-01-01

    Sézary syndrome (SS) carries a poor prognosis, and infections represent the most frequent cause of death in SS patients. Toll-like receptors (TLRs) are a family of innate immune receptors that induce protective immune responses against infections. We sought to evaluate the ability of TLR agonists to induce inflammatory cytokine, Th2 cytokine, and type I interferon (IFN-I) production by peripheral blood mononuclear cells (PBMC) of untreated SS patients. We detected impaired IL-6, IL-10 and IL-13 secretion by PBMC induced by the agonists for TLR5, TLR3, TLR7 and TLR9 in SS patients, while it was partially recovered by TLR2/TLR4 and TLR7/8 agonists TNF secretion was restored following stimulation with TLR2/TLR4 agonists. IFN-γ was scarcely produced upon TLR activation in SS cells, albeit TLR 7/8 (CL097) enhanced their secretion at lower levels than the control group. TLR9 agonist efficiently induced IFN-I in SS patients, although this positive regulation was not observed for other cytokines, in direct contrast to the broad activity of CL097. Among the TLR agonists, TLR4 was able to induce pro-inflammatory, IL-10 and Th2 secretion, while TLR7-8 agonist induced the inflammatory cytokines, IFN-I and IFN-γ. These findings reveal a dysfunctional cytokine response upon both extracellular and intracellular TLR activation in SS patients, which was partially restored by TLRs agonists. PMID:27780938

  14. Posttranslational Modification of HOIP Blocks Toll-Like Receptor 4-Mediated Linear-Ubiquitin-Chain Formation

    PubMed Central

    Bowman, James; Rodgers, Mary A.; Shi, Mude; Amatya, Rina; Hostager, Bruce; Iwai, Kazuhiro; Gao, Shou-Jiang

    2015-01-01

    ABSTRACT Linear ubiquitination is an atypical posttranslational modification catalyzed by the linear-ubiquitin-chain assembly complex (LUBAC), containing HOIP, HOIL-1L, and Sharpin. LUBAC facilitates NF-κB activation and inflammation upon receptor stimulation by ligating linear ubiquitin chains to critical signaling molecules. Indeed, linear-ubiquitination-dependent signaling is essential to prevent pyogenic bacterial infections that can lead to death. While linear ubiquitination is essential for intracellular receptor signaling upon microbial infection, this response must be measured and stopped to avoid tissue damage and autoimmunity. While LUBAC is activated upon bacterial stimulation, the mechanisms regulating LUBAC activity in response to bacterial stimuli have remained elusive. We demonstrate that LUBAC activity itself is downregulated through ubiquitination, specifically, ubiquitination of the catalytic subunit HOIP at the carboxyl-terminal lysine 1056. Ubiquitination of Lys1056 dynamically altered HOIP conformation, resulting in the suppression of its catalytic activity. Consequently, HOIP Lys1056-to-Arg mutation led not only to persistent LUBAC activity but also to prolonged NF-κB activation induced by bacterial lipopolysaccharide-mediated Toll-like receptor 4 (TLR4) stimulation, whereas it showed no effect on NF-κB activation induced by CD40 stimulation. This study describes a novel posttranslational regulation of LUBAC-mediated linear ubiquitination that is critical for specifically directing TLR4-mediated NF-κB activation. PMID:26578682

  15. Beyond dsRNA: Toll-like receptor 3 signalling in RNA-induced immune responses.

    PubMed

    Tatematsu, Megumi; Seya, Tsukasa; Matsumoto, Misako

    2014-03-01

    The innate immune system recognizes pathogen- and damage-associated molecular patterns using pattern-recognition receptors that activate a wide range of signalling cascades to maintain host homoeostasis against infection and inflammation. Endosomal TLR3 (Toll-like receptor 3), a type I transmembrane protein, senses RNAs derived from cells with viral infection or sterile tissue damage, leading to the induction of type I interferon and cytokine production, as well as dendritic cell maturation. It has been accepted that TLR3 recognizes perfect dsRNA, but little has been addressed experimentally with regard to the structural features of virus- or host-derived RNAs that activate TLR3. Recently, a TLR3 agonist was identified, which was a virus-derived 'structured' RNA with incomplete stem structures. Both dsRNA and structured RNA are similarly internalized through clathrin- and raftlin-dependent endocytosis and delivered to endosomal TLR3. The dsRNA uptake machinery, in addition to TLR3, is critical for extracellular viral RNA-induced immune responses. A wide spectrum of TLR3 ligand structures beyond dsRNA and their delivery systems provide new insights into the physiological role of TLR3 in virus- or host-derived RNA-induced immune responses. In the present paper, we focus on the system for extracellular recognition of RNA and its delivery to TLR3.

  16. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth.

    PubMed

    Chin, Peck Yin; Dorian, Camilla L; Hutchinson, Mark R; Olson, David M; Rice, Kenner C; Moldenhauer, Lachlan M; Robertson, Sarah A

    2016-11-07

    Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (-)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting.

  17. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages.

    PubMed

    Huang, Ying-ling; Morales-Rosado, Joel; Ray, Jessica; Myers, Timothy G; Kho, Terry; Lu, Mingfang; Munford, Robert S

    2014-01-31

    Macrophages in infected tissues may sense microbial molecules that significantly alter their metabolism. In a seeming paradox, these critical host defense cells often respond by increasing glucose catabolism while simultaneously storing fatty acids (FA) as triglycerides (TAG) in lipid droplets. We used a load-chase strategy to study the mechanisms that promote long term retention of TAG in murine and human macrophages. Toll-like receptor (TLR)1/2, TLR3, and TLR4 agonists all induced the cells to retain TAG for ≥3 days. Prolonged TAG retention was accompanied by the following: (a) enhanced FA uptake and FA incorporation into TAG, with long lasting increases in acyl-CoA synthetase long 1 (ACSL1) and diacylglycerol acyltransferase-2 (DGAT2), and (b) decreases in lipolysis and FA β-oxidation that paralleled a prolonged drop in adipose triglyceride lipase (ATGL). TLR agonist-induced TAG storage is a multifaceted process that persists long after most early pro-inflammatory responses have subsided and may contribute to the formation of "lipid-laden" macrophages in infected tissues.

  18. Toll-like receptors: lessons to learn from normal and malignant human B cells

    PubMed Central

    Chiron, David; Bekeredjian-Ding, Isabelle; Pellat-Deceunynck, Catherine; Bataille, Régis

    2008-01-01

    The humoral immune system senses microbes via recognition of specific microbial molecular motifs by Toll-like receptors (TLRs). These encounters promote plasma cell differentiation and antibody production. Recent studies have demonstrated the importance of the TLR system in enhancing antibody-mediated defense against infections and maintaining memory B cells. These results have led the way to the design of vaccines that target B cells by engaging TLRs. In hematologic malignancies, cells often retain B cell–specific receptors and associated functions. Among these, TLRs are currently exploited to target different subclasses of B-cell leukemia, and TLR agonists are currently being evaluated in clinical trials. However, accumulating evidence suggests that endogenous TLR ligands or chronic infections promote tumor growth, thus providing a need for further investigations to decipher the exact function of TLRs in the B-cell lineage and in neoplastic B cells. The aim of this review is to present and discuss the latest advances with regard to the expression and function of TLRs in both healthy and malignant B cells. Special attention will be focused on the growth-promoting effects of TLR ligands on leukemic B cells and their potential clinical impact. PMID:18591383

  19. Toll-like receptor 1 variations influence susceptibility and immune response to Mycobacterium tuberculosis.

    PubMed

    Dittrich, Nickel; Berrocal-Almanza, Luis C; Thada, Shruthi; Goyal, Surabhi; Slevogt, Hortense; Sumanlatha, Gaddam; Hussain, Abid; Sur, Saubashya; Burkert, Sanne; Oh, Djin-Ye; Valluri, Vijayalakshmi; Schumann, Ralf R; Conrad, Melanie L

    2015-05-01

    Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (MTB) infection, is still a global public health problem. TB susceptibility varies greatly in infected individuals, and mycobacterial recognition by the innate immune system likely affects disease course and outcome. This research describes a single nucleotide polymorphism in the Toll-like receptor (TLR) 1 gene that functionally alters the innate immune response to MTB and is associated with TB susceptibility in India. 206 TB patients and 239 healthy controls from Hyderabad, India were analyzed for SNPs in the TLR1 and TLR2 genes, which were subsequently correlated to TB susceptibility. To test individual responses to MTB lysates, we stimulated PBMCs from genotyped healthy German individuals, as well as HEK cells transfected with TLR1/2 variants. TNF production and NF-kB activation were assessed respectively. Cohort analysis associated the TLR1-248N SNP (RS4833095) with TB protection. TLR1-248N expressing PBMCs from healthy controls exhibited an increased TNF response to MTB lysates. In addition to this, functional studies using HEK cell lines transfected with TLR1-248N and stimulated with MTB showed an increased NF-kB activation. SNP TLR1-248N is associated with TB protection in an Indian population and exhibits an increased immune response to MTB lysate in vitro. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Herpes virus entry mediator synergizes with Toll-like receptor mediated neutrophil inflammatory responses

    PubMed Central

    Haselmayer, Philipp; Tenzer, Stefan; Kwon, Byoung S; Jung, Gundram; Schild, Hansjörg; Radsak, Markus P

    2006-01-01

    In microbial infections polymorphnuclear neutrophils (PMN) constitute a major part of the innate host defence, based upon their ability to rapidly accumulate in inflamed tissues and clear the site of infection from microbial pathogens by their potent effector mechanisms. The recently described transmembrane receptor herpes virus entry mediator (HVEM) is a member of the tumour necrosis factor receptor super family and is expressed on many haematopoietic cells, including T cells, B cells, natural killer cells, monocytes and PMN. Interaction of HVEM with the natural ligand LIGHT on T cells has a costimulatory effect, and increases the bactericidal activity of PMN. To further characterize the function of HVEM on PMN, we evaluated the effect of receptor ligation on human PMN effector functions using an agonistic monoclonal antibody. Here we demonstrate that activation of HVEM causes activation of neutrophil effector functions, including respiratory burst, degranulation and release of interleukin-8 in synergy with ligands for Toll-like receptors or GM-CSF. In addition, stimulation via HVEM enhanced neutrophil phagocytic activity of complement opsonized, but not of non-opsonized, particles. In conclusion, these results indicate a new, as yet unknown, participation of HVEM in the innate immune response and points to a new link between innate and adaptive immunity. PMID:17067315

  1. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human.

    PubMed

    Belinda, Loh Wei-Ching; Wei, Wang Xiao; Hanh, Bui Thi Hong; Lei, Luan Xiao; Bow, Ho; Ling, Ding Jeak

    2008-03-01

    Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human.

  2. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth

    PubMed Central

    Chin, Peck Yin; Dorian, Camilla L.; Hutchinson, Mark R.; Olson, David M.; Rice, Kenner C.; Moldenhauer, Lachlan M.; Robertson, Sarah A.

    2016-01-01

    Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (−)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting. PMID:27819333

  3. Toll-Like Receptors 2 and 4 Modulate Autonomic Control of Heart Rate and Energy Metabolism

    PubMed Central

    Okun, Eitan; Griffioen, Kathleen J.; Sarah, Rothman; Wan, Ruiqian; Cong, Wei-Na; De Cabo, Rafael; Montalvo, Alejandro Martin; Levette, Andrew; Maudsley, Stuart; Martin, Bronwen; Arumugam, Thiruma Valavan; Mattson, Mark P.

    2013-01-01

    Toll-like receptors (TLR) are innate immune receptors typically activated by microbial-associated molecular patterns (MAMPs) during infection or damage-associated molecular patterns (DAMPs) as a result of tissue injury. Recent findings suggest that TLR2 and TLR4 signaling play important roles in developmental and adult neuroplasticity, and in learning and memory. In addition, activation of TLR2 and TLR4 worsens ischemic injury to the heart and brain in animal models of myocardial infarction and stroke. TLR activation is also implicated in thermoregulation and fever in response to infection. However, it is not known whether TLRs participate in the regulation of the sympathetic and/or parasympathetic components of the autonomic nervous system (ANS). Here we provide evidence that TLR2 and TLR4 influence autonomic regulation of heart rate (HR) body temperature and energy metabolism in mice. We show that mice lacking TLR2 or TLR4 exhibit reduced basal HR, which results from an increase of parasympathetic tone. In addition, thermoregulatory responses to stress are altered in TLR2−/− and TLR4−/− mice, and brown fat-dependent thermoregulation is altered in TLR4−/− mice. Moreover, TLR2−/− and TLR4−/− mice consume less food and exhibit a greater mass compared to wild type mice. Collectively, our findings suggest important roles for TLR2 and TLR4 in the ANS regulation of cardiovascular function, thermoregulation, and energy metabolism. PMID:24145051

  4. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  5. Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4

    PubMed Central

    Benomar, Yacir; Gertler, Arieh; De Lacy, Pamela; Crépin, Delphine; Ould Hamouda, Hassina; Riffault, Laure; Taouis, Mohammed

    2013-01-01

    Resistin promotes both inflammation and insulin resistance associated with energy homeostasis impairment. However, the resistin receptor and the molecular mechanisms mediating its effects in the hypothalamus, crucial for energy homeostasis control, and key insulin-sensitive tissues are still unknown. In the current study, we report that chronic resistin infusion in the lateral cerebral ventricle of normal rats markedly affects both hypothalamic and peripheral insulin responsiveness. Central resistin treatment inhibited insulin-dependent phosphorylation of insulin receptor (IR), AKT, and extracellular signal–related kinase 1/2 associated with reduced IR expression and with upregulation of suppressor of cytokine signaling-3 and phosphotyrosine phosphatase 1B, two negative regulators of insulin signaling. Additionally, central resistin promotes the activation of the serine kinases Jun NH2-terminal kinase and p38 mitogen-activated protein kinase, enhances the serine phosphorylation of insulin receptor substrate-1, and increases the expression of the proinflammatory cytokine interleukin-6 in the hypothalamus and key peripheral insulin-sensitive tissues. Interestingly, we also report for the first time, to our knowledge, the direct binding of resistin to Toll-like receptor (TLR) 4 receptors in the hypothalamus, leading to the activation of the associated proinflammatory pathways. Taken together, our findings clearly identify TLR4 as the binding site for resistin in the hypothalamus and bring new insight into the molecular mechanisms involved in resistin-induced inflammation and insulin resistance in the whole animal. PMID:22961082

  6. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    SciTech Connect

    Cao Canxiang; Yang Qingwu . E-mail: yangqwmlys@hotmail.com; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-02-09

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.

  7. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  8. Starring role of toll-like receptor-4 activation in the gut-liver axis

    PubMed Central

    Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio

    2015-01-01

    Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967

  9. Toll-like receptor 3 in viral pathogenesis: friend or foe?

    PubMed Central

    Perales-Linares, Renzo; Navas-Martin, Sonia

    2013-01-01

    Viral infections frequently induce acute and chronic inflammatory diseases, yet the contribution of the innate immune response to a detrimental host response remains poorly understood. In virus-infected cells, double-stranded RNA (dsRNA) is generated as an intermediate during viral replication. Cell necrosis (and the release of endogenous dsRNA) is a common event during both sterile and infectious inflammatory processes. The discovery of Toll-like receptor 3 (TLR3) as an interferon-inducing dsRNA sensor led to the assumption that TLR3 was the master sentinel against viral infections. This simplistic view has been challenged by the discovery of at least three members of the DExd/H-box helicase cytosolic sensors of dsRNA that share with TLR3 the Toll–interleukin-1 receptor (TIR) -adapter molecule TIR domain-containing adaptor protein interferon-β (TRIF) for downstream type I interferon signalling. Data are conflicting on the role of TLR3 in protective immunity against viruses in the mouse model. Varying susceptibility to infection and disease outcomes have been reported in TLR3-immunodeficient mice. Surprisingly, the susceptibility to develop herpes simplex virus-1 encephalitis in humans with inborn defects of the TLR3 pathway varies, and TLR3-deficient humans do not show increased susceptibility to other viral infections. Therefore, a current challenge is to understand the protective versus pathogenic contribution of TLR3 in viral infections. We review recent advances in the identification of TLR3-signalling pathways, endogenous and virus-induced negative regulators of the TLR3 cascade, and discuss the protective versus pathogenic role of TLR3 in viral pathogenesis. PMID:23909285

  10. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  11. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy

    PubMed Central

    Xu, Congfeng; Liu, Jin; Hsu, Li-Chung; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2011-01-01

    Autophagy is one of the downstream effector mechanisms for elimination of intracellular microbes following activation of the Toll-like receptors (TLRs). Although the detailed molecular mechanism for this cellular process is still unclear, Beclin 1, a key molecule for autophagy, has been suggested to play a role. Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the stability of signaling proteins. Herein, we show that Hsp90 forms a complex with Beclin 1 through an evolutionarily conserved domain to maintain the stability of Beclin 1. In monocytic cells, geldanamycin (GA), an Hsp90 inhibitor, effectively promoted proteasomal degradation of Beclin 1 in a concentration-dependent (EC50 100 nM) and time-dependent (t50 2 h) manner. In contrast, KNK437/Hsp inhibitor I had no effect. Hsp90 specifically interacted with Beclin 1 but not with other adapter proteins in the TLR signalsome. Treatment of cells with GA inhibited TLR3- and TLR4-mediated autophagy. In addition, S. typhimurium infection-induced autophagy was blocked by GA treatment. This further suggested a role of the Hsp90/Beclin 1 in controlling autophagy in response to microbial infections. Taken together, our data revealed that by maintaining the homeostasis of Beclin 1, Hsp90 plays a novel role in TLR-mediated autophagy.—Xu, C., Liu, J., Hsu, L. -C., Luo, Y., Xiang, R., Chuang, T. -H. Functional interaction of Hsp90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. PMID:21543763

  12. Toll-like receptor-based immuno-analysis of pathogenic microorganisms.

    PubMed

    Cho, Il-Hoon; Jeon, Jin-Woo; Paek, Sung-Ho; Kim, Dong-Hyung; Shin, Hee-Sung; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan

    2012-11-20

    In this study, a novel mammalian cell receptor-based immuno-analytical method was developed for the detection of food-poisoning microorganisms by employing toll-like receptors (TLRs) as sensing elements. Upon infection with bacterium, the host cells respond by expressing TLRs, particularly TLR1, TLR2, and TLR4, on the outer membrane surfaces. To demonstrate the potential of using this method for detection of foodborne bacteria, we initially selected two model sensing systems, expression of TLR1 on a cell line, A549, for Escherichia coli and TLR2 on a cell line, RAW264.7, for Shigella sonnei (S. sonnei). Each TLR was detected using antibodies specific to the respective marker. We also found that the addition of immunoassay for the pathogen captured by the TLRs on the mammalian cells significantly enhanced the detection capability. A dual-analytical system for S. sonnei was constructed and successfully detected an extremely low number (about 3.2 CFU per well) of the pathogenic bacterium 5.1 h after infection. This detection time was 2.5 h earlier than the time required for detection using the conventional immunoassay. To endow the specificity of detection, the target bacterium was immuno-magnetically concentrated by a factor of 50 prior to infection. This further shortened the response to approximately 3.4 h, which was less than half of the time needed when the conventional method was used. Such enhanced performance could basically result from synergistic effects of bacterial dose increase and subsequent autocrine signaling on TLRs' up-regulation upon infection with live bacterium. This TLR-based immuno-sensing approach may also be expanded to monitor infection of the body, provided scanning of the signal is feasible.

  13. Toll-Like Receptor 9-Mediated Inflammation Triggers Alveolar Bone Loss in Experimental Murine Periodontitis

    PubMed Central

    Kim, Paul D.; Xia-Juan, Xia; Crump, Katie E.; Abe, Toshiharu; Hajishengallis, George

    2015-01-01

    Chronic periodontitis is a local inflammatory disease induced by a dysbiotic microbiota and leading to destruction of the tooth-supporting structures. Microbial nucleic acids are abundantly present in the periodontium, derived through release after phagocytic uptake of microbes and/or from biofilm-associated extracellular DNA. Binding of microbial DNA to its cognate receptors, such as Toll-like receptor 9 (TLR9), can trigger inflammation. In this study, we utilized TLR9 knockout (TLR9−/−) mice and wild-type (WT) controls in a murine model of Porphyromonas gingivalis-induced periodontitis and report the first in vivo evidence that TLR9 signaling mediates the induction of periodontal bone loss. P. gingivalis-infected WT mice exhibited significantly increased bone loss compared to that in sham-infected WT mice or P. gingivalis-infected TLR9−/− mice, which were resistant to bone loss. Consistent with this, the expression levels of interleukin 6 (IL-6), tumor necrosis factor (TNF), and receptor-activator of nuclear factor kappa B ligand (RANKL) were significantly elevated in the gingival tissues of the infected WT mice but not in infected TLR9−/− mice compared to their levels in controls. Ex vivo studies using splenocytes and bone marrow-derived macrophages revealed significantly diminished cytokine production in TLR9−/− cells relative to the cytokine production in WT cells in response to P. gingivalis, thereby implicating TLR9 in inflammatory responses to this organism. Intriguingly, compared to the cytokine production in WT cells, TLR9−/− cells exhibited significantly decreased proinflammatory cytokine production upon challenge with lipopolysaccharide (LPS) (TLR4 agonist) or Pam3Cys (TLR2 agonist), suggesting possible cross talk between TLR9, TLR4, and TLR2. Collectively, our results provide the first proof-of-concept evidence implicating TLR9-triggered inflammation in periodontal disease pathogenesis, thereby identifying a new potential

  14. Higher Expression of Toll-like Receptors 3, 7, 8, and 9 in Pityriasis Rosea

    PubMed Central

    El-Ela, Mostafa Abou; El-Komy, Mohamed; Hay, Rania Abdel; Hegazy, Rehab; Sharobim, Amin; Rashed, Laila; Amr, Khalda

    2017-01-01

    Background Pityriasis rosea (PR) is a common papulosquamous skin disease in which an infective agent may be implicated. Toll-like receptors (TLRs) play an important role in immune responses and in the pathophysiology of inflammatory skin diseases. Our aim was to determine the possible roles of TLRs 3, 7, 8, and 9 in the pathogenesis of PR. Methods Twenty-four PR patients and 24 healthy individuals (as controls) were included in this case control study. All recruits were subjected to routine laboratory investigations. Biopsies were obtained from one active PR lesion and from healthy skin of controls for the detection of TLR 3, 7, 8, and 9 gene expression using real-time polymerase chain reaction. Results This study included 24 patients (8 females and 16 males) with active PR lesions, with a mean age of 28.62 years. Twenty four healthy age- and sex-matched individuals were included as controls (8 females and 16 males, with a mean age of 30.83 years). The results of the routine laboratory tests revealed no significant differences between both groups. Significantly elevated expression of all studied TLRs were detected in PR patients relative to healthy controls (p < .001). Conclusions TLRs 3, 7, 8, and 9 might be involved in the pathogenesis of PR. PMID:28192646

  15. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  16. Intrinsic Toll-like receptor signalling drives regulatory function in B cells.

    PubMed

    Shen, Ping; Lampropoulou, Vicky; Stervbo, Ulrik; Hilgenberg, Ellen; Ries, Stefanie; Mecqinion, Aurelie; Fillatreau, Simon

    2013-01-01

    B cells can contribute to immunity through production of antibodies, presentation of antigen to T cells, and secretion of cytokines. B cell activation can result in various outcomes for the host. In general B cell responses are beneficial during infections, and deleterious during autoimmune diseases. However, B cells can also limit host defence against pathogens, and protect from autoimmune pathologies. B cells can therefore act both as drivers and as regulators of immunity. Understanding how these opposite functions are mediated shall stimulate the elaboration of novel approaches for manipulating the immune system. B cells might acquire distinct functional properties depending on their mode of activation. Antigen-specific B cell responses require triggering of B cell receptor (BCR) by antigen, and provision of helper signals by T cells. B cells also express various innate immune receptors, and can directly respond to microbial products. Here, we discuss how intrinsic signalling via Toll-like receptors contributes to the suppressive functions of B cells during autoimmune and infectious diseases.

  17. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases.

    PubMed

    García Bueno, B; Caso, J R; Madrigal, J L M; Leza, J C

    2016-05-01

    The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Toll-Like Receptor Signalling and the Control of Intestinal Barrier Function.

    PubMed

    Johnston, Daniel G W; Corr, Sinéad C

    2016-01-01

    Epithelial barrier function and innate immunity are fundamental to the pathogenesis of inflammatory and infectious disease. Along with plasma membranes, epithelial cells are the primary cellular determinant of epithelial barrier function. The mechanism by which polarized epithelia form a permeability barrier is of fundamental importance to the prevention of many infectious and inflammatory diseases. Moreover, epithelial cells express Toll-like receptors (TLRs) which upon recognition of conserved microbial factors such as lipopolysaccharide (LPS) induce epithelial responses including epithelial cell proliferation, secretion of secretory IgA into the lumen and production mucins and antimicrobial peptides, thereby promoting intestinal barrier function. Understanding gut barrier integrity and regulation of permeability is crucial to increase our understanding of the pathogenesis of intestinal disease. A variety of tests have been developed to assess this barrier, including assessing intestinal epithelial cell proliferation or death, intestinal tight junction status and the consequence of intestinal barrier integrity loss such as increased intestinal permeability and susceptibility to bacterial infection. Using a mouse model, this chapter describes some of the methods to assess the functional integrity of this epithelial barrier and the part played by a TLR signalling pathway.

  19. A trio of microRNAs that control Toll-like receptor signalling.

    PubMed

    Quinn, Susan R; O'Neill, Luke A

    2011-07-01

    Toll-like receptors (TLRs) in the host recognize conserved microbial products and defend against pathogenic attack by initiating an immune response via signalling pathways that lead to an increase in immune and inflammatory gene expression. TLR signalling must be stringently regulated in order to ensure sufficient clearance of pathogens and a timely return to homeostasis after infection. MicroRNAs (miRNAs) are a newly discovered class of gene regulators which bind to the 3' untranslated region of target mRNA and direct their post-transcriptional repression. They are global regulators potentially controlling up to 30% of the human genome. Several miRNAs have been shown to be up-regulated in response to TLR ligands, and many directly target components of the TLR signalling system, revealing a whole extra level of control of TLR signalling which is being extensively researched. The dysregulation of miRNAs may be involved in many inflammatory diseases and cancers and thus merits further investigation. In this review, we focus in on a trio of miRNA which have proven to be key in many immune and inflammatory pathways; miR-155, miR-21 and miR-146.

  20. Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms

    PubMed Central

    Yang, Ling; Seki, Ekihiro

    2012-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that distinguish conserved microbial products, also known as pathogen-associated molecular patterns (PAMPs), from host molecules. Liver is the first filter organ between the gastrointestinal tracts and the rest of the body through portal circulation. Thus, the liver is a major organ that must deal with PAMPs and microorganisms translocated from the intestine and to respond to the damage associated molecular patterns (DAMPs) released from injured organs. These PAMPs and DAMPs preferentially activate TLR signaling on various cell types in the liver inducing the production of inflammatory and fibrogenic cytokines that initiate and prolong liver inflammation, thereby leading to fibrosis. We summarize recent findings on the role of TLRs, ligands, and intracellular signaling in the pathophysiology of liver fibrosis due to different etiology, as well as to highlight the potential role of TLR signaling in liver fibrosis associated with hepatitis C infection, non-alcoholic and alcoholic steatoheoatitis, primary biliary cirrhosis, and cystic fibrosis. PMID:22661952

  1. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor–mediated inflammatory responses

    PubMed Central

    Krautkrämer, Martina

    2017-01-01

    Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms. PMID:27881733

  2. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses.

    PubMed

    Westphal, Andreas; Cheng, Weijia; Yu, Jinbo; Grassl, Guntram; Krautkrämer, Martina; Holst, Otto; Föger, Niko; Lee, Kyeong-Hee

    2017-01-01

    Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)- and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain-containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7(+) endosomal/phagosomal compartment. This specific Rab7(+) compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms. © 2016 Westphal et al.

  3. Chemotherapy-induced mucositis: the role of the gastrointestinal microbiome and toll-like receptors.

    PubMed

    Thorpe, Daniel W; Stringer, Andrea M; Gibson, Rachel J

    2013-01-01

    Alimentary mucositis is a major clinical problem. Patients with mucositis are at significantly increased risk of infection and are often hospitalized for prolonged periods. More importantly, these patients often have to undergo reductions in their cytotoxic therapy, which may lead to reduced survival. Unfortunately, there are very limited therapeutic options for mucositis and no effective prevention. The human gut microbiome is receiving increased attention as a key player in the pathogenesis of alimentary mucositis with recent literature suggesting that changes in bacteria lead to mucositis. The bacteria which are found throughout the gut are tightly regulated by the toll-like receptor (TLR) family which currently has 13 known members. TLRs play a critical role in gut homeostasis and bacterial regulation. Furthermore, TLRs play a critical role in the regulation of nuclear factor kappa B, a key regulator of alimentary mucositis. However to date, no research has clearly identified a link between TLRs and alimentary mucositis. This critical literature review seeks to correct this.

  4. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity. © 2014 Marine Biological Laboratory.

  5. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response.

    PubMed

    Paramo, Teresa; Tomasio, Susana M; Irvine, Kate L; Bryant, Clare E; Bond, Peter J

    2015-12-09

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the "membrane-like" nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics.

  6. Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response

    PubMed Central

    Paramo, Teresa; Tomasio, Susana M.; Irvine, Kate L.; Bryant, Clare E.; Bond, Peter J.

    2015-01-01

    Bacterial outer membrane lipopolysaccharide (LPS) potently stimulates the mammalian innate immune system, and can lead to sepsis, the primary cause of death from infections. LPS is sensed by Toll-like receptor 4 (TLR4) in complex with its lipid-binding coreceptor MD-2, but subtle structural variations in LPS can profoundly modulate the response. To better understand the mechanism of LPS-induced stimulation and bacterial evasion, we have calculated the binding affinity to MD-2 of agonistic and antagonistic LPS variants including lipid A, lipid IVa, and synthetic antagonist Eritoran, and provide evidence that the coreceptor is a molecular switch that undergoes ligand-induced conformational changes to appropriately activate or inhibit the receptor complex. The plasticity of the coreceptor binding cavity is shown to be essential for distinguishing between ligands, whilst similar calculations for a model bacterial LPS bilayer reveal the “membrane-like” nature of the protein cavity. The ability to predict the activity of LPS variants should facilitate the rational design of TLR4 therapeutics. PMID:26647780

  7. Discovery of toll-like receptor 13 exists in the teleost fish: Miiuy croaker (Perciformes, Sciaenidae).

    PubMed

    Wang, Yanjin; Bi, Xueyi; Chu, Qing; Xu, Tianjun

    2016-08-01

    Toll-like receptors (TLRs) play an indispensable role in the immune response for pathogen recognition and triggering not only innate immunity but also adaptive immunity. Here we report the TLR13 homologue, one member of TLRs, in Perciformes (especially Sciaenidae). And we used the miiuy croaker as represented species for further functional experiments. Former study reported the TLR13 only expressed in murine, and we are the first to report the teleost TLR13 (mmiTLR13). MmiTLR13 expressed highly in immune defense related tissues, such as the liver, spleen, and kidney, and Vibrio anguillarum or poly(I:C) infection showed the immune response of mmiTLR13. Further luciferase reporter assays showed the ability for activation of ISRE luciferase reporter, but it failed to active NF-κB. And further gene silence by short hairpin RNA (shRNA) confirmed the results. Immunofluorescence of mmiTLR13 presents the cytoplasmic distribution in Hela cell. In addition, the Toll/interleukin 1 receptor (TIR) domain of mammal TLR5 exhibits high identity with TLR13, which indicated the high homology between TLR5 and TLR13. These findings will lay the fundamental cornerstone for further research of teleost TLR13 and expand the horizon for better understand the teleost TLRs system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling.

    PubMed

    Garcia-Cattaneo, Alejandra; Gobert, François-Xavier; Müller, Mélanie; Toscano, Florent; Flores, Marcella; Lescure, Aurianne; Del Nery, Elaine; Benaroch, Philippe

    2012-06-05

    Toll-like receptor (TLR) 3 is an endosomal TLR that mediates immune responses against viral infections upon activation by its ligand double-stranded RNA, a replication intermediate of most viruses. TLR3 is expressed widely in the body and activates both the innate and adaptive immune systems. However, little is known about how TLR3 intracellular trafficking and maturation are regulated. Here we show that newly synthesized endogenous TLR3 is transported through the ER and Golgi apparatus to endosomes, where it is rapidly cleaved. TLR3 protein expression is up-regulated by its own ligand, leading to the accumulation of its cleaved form. In agreement with its proposed role as a transporter, UNC93B1 expression is required for TLR3 cleavage and signaling. Furthermore, TLR3 signaling and cleavage are sensitive to cathepsin inhibition. Cleavage occurs between aa 252 and 346, and results in a functional receptor that signals upon activation. A truncated form of TLR3 lacking the N-terminal 345 aa also signals from acidic compartments in response to ligand activation. Screening of the human cathepsin family by RNA interference identified cathepsins B and H as key mediators of TLR3 processing. Taken together, our data indicate that TLR3 proteolytic processing is essential for its function, and suggest a mechanism of tight control of TLR3 signaling and thus immunity.

  9. Microbe-inducible trafficking pathways that control Toll-like receptor signaling.

    PubMed

    Tan, Yunhao; Kagan, Jonathan C

    2017-01-01

    The receptors of the mammalian innate immune system are designed for rapid microbial detection, and are located in organelles that are conducive to serve these needs. However, emerging evidence indicates that the sites of microbial detection are not the sites of innate immune signal transduction. Rather, microbial detection triggers the movement of receptors to regions of the cell where factors called sorting adaptors detect active receptors and promote downstream inflammatory responses. These findings highlight the critical role that membrane trafficking pathways play in the initiation of innate immunity to infection. In this review, we describe pathways that promote the microbe-inducible endocytosis of Toll-like receptors (TLRs), and the microbe-inducible movement of TLRs between intracellular compartments. We highlight a new class of proteins called Transporters Associated with the eXecution of Inflammation (TAXI), which have the unique ability to transport TLRs and their microbial ligands to signaling-competent regions of the cell, and we discuss the means by which the subcellular sites of signal transduction are defined. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Bradykinin promotes Toll like receptor-4 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2012-12-01

    Bacterial infections are a potent mechanism for enzymatic generation of kinins such as bradykinin (BK), a universal mediator for inducing inflammatory reaction by associating with the B2 receptor and stimulating liberation of arachidonic acid and synthesis of prostaglandin E2 (PGE2). In this study we evaluate the role of bradykinin in regulating the expression of TLR4 receptor in human gingival fibroblasts. We examine the ability of bradykinin to modulate inflammatory response of human gingival fibroblasts to Gram-negative components and evaluated the role of Toll-like receptors (TLR)-4 in the co-operation between bradykinin and bacterial pathogens. We show that treatment with bradykinin promotes TLR4 receptor expression in human gingival fibroblasts (HGF) and amplifies inflammatory responses to the bacterial components of Gram-negative bacteria. The TLR4 expression induced by bradykinin was blocked with Hoe 140, a B2R antagonist. When HGF cells were incubated with BK resulted of an increased in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 synthesis. Bradykinin and lipopolysaccharide, a specific TLR4 ligand stimulated COX-2 expression. In other series of experiments we found that ERK, phosphatidylinositol-3 kinase, protein kinase C and NFkB are involved in BK promoted-increased in TLR4 expression. The results demonstrate that bradykinin up-regulates the expression of TLR4 and promotes an additive increase in inflammatory responses to lipopolysaccharides.

  11. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants.

    PubMed

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-07-29

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.

  12. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    PubMed Central

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  13. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging.

    PubMed

    Qian, Feng; Guo, Xiuyang; Wang, Xiaomei; Yuan, Xiaoling; Chen, Shu; Malawista, Stephen E; Bockenstedt, Linda K; Allore, Heather G; Montgomery, Ruth R

    2014-02-01

    Aging is associated with a progressive decline in immune function (immunosenescence) resulting in an increased susceptibility to viral and bacterial infections. Here we show reduced expression of Toll-like receptor 1 (TLR1) in polymorphonuclear leukocytes (PMN) and an underlying age-dependent deficiency in PMN bioenergetics. In older (>65 years) adults, stimulation through TLR1 led to lower activation of integrins (CD11b and CD18), lower production of the chemokine IL-8, and lower levels of the phosphorylated signaling intermediate p38 MAP kinase than in PMN from younger donors (21-30 years). In addition, loss of CD62L, a marker of PMN activation, was reduced in PMN of older adults stimulated through multiple pathways. Rescue of PMN from apoptosis by stimulation with TLR1 was reduced in PMN from older adults. In seeking an explanation for effects of aging across multiple pathways, we examined PMN energy utilization and found that glucose uptake after stimulation through TLR1 was dramatically lower in PMN of older adults. Our results demonstrate a reduction in TLR1 expression and TLR1-mediated responses in PMN with aging, and reduced efficiency of bioenergetics in PMN. These changes likely contribute to reduced PMN efficiency in aging through multiple aspects of PMN function and suggest potential therapeutic opportunities.

  14. Toll-like receptors: the swiss army knife of immunity and vaccine development

    PubMed Central

    Dowling, Jennifer K; Mansell, Ashley

    2016-01-01

    Innate immune cells have a critical role in defense against infection and disease. Central to this is the broad specificity with which they can detect pathogen-associated patterns and danger-associated patterns via the pattern recognition receptors (PRRs) they express. Several families of PRRs have been identified including: Toll-like receptors (TLRs), C-type lectin-like receptors, retinoic acid-inducible gene-like receptors and nucleotide-binding oligomerization domain–like receptors. TLRs are one of the most largely studied families of PRRs. The binding of ligands to TLRs on antigen presenting cells (APCs), mainly dendritic cells, leads to APC maturation, induction of inflammatory cytokines and the priming of naive T cells to drive acquired immunity. Therefore, activation of TLRs promotes both innate inflammatory responses and the induction of adaptive immunity. Consequently, in the last two decades mounting evidence has inextricably linked TLR activation with the pathogenesis of immune diseases and cancer. It has become advantageous to harness these aspects of TLR signaling therapeutically to accelerate and enhance the induction of vaccine-specific responses and also target TLRs with the use of biologics and small molecule inhibitors for the treatment of disease. In these respects, TLRs may be considered a ‘Swiss Army' knife of the immune system, ready to respond in a multitude of infectious and disease states. Here we describe the latest advances in TLR-targeted therapeutics and the use of TLR ligands as vaccine adjuvants. PMID:27350884

  15. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update

    PubMed Central

    Peri, Francesco; Calabrese, Valentina

    2014-01-01

    Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E-MD-2-TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on non-classical TLR4 ligands with a chemical structure different from lipid A. PMID:24188011

  16. NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis

    PubMed Central

    2005-01-01

    Infection with Mycobacterium tuberculosis is one of the leading causes of death worldwide. Recognition of M. tuberculosis by pattern recognition receptors is crucial for activation of both innate and adaptive immune responses. In the present study, we demonstrate that nucleotide-binding oligomerization domain 2 (NOD2) and Toll-like receptors (TLRs) are two nonredundant recognition mechanisms of M. tuberculosis. CHO cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis. TLR2 knock-out mice displayed more than 50% defective cytokine production after stimulation with mycobacteria, whereas TLR4-defective mice also released 30% less cytokines compared to controls. Similarly, HEK293T cells transfected with NOD2 responded to stimulation with M. tuberculosis. The important role of NOD2 for the recognition of M. tuberculosis was demonstrated in mononuclear cells of individuals homozygous for the 3020insC NOD2 mutation, who showed an 80% defective cytokine response after stimulation with M. tuberculosis. Finally, the mycobacterial TLR2 ligand 19-kDa lipoprotein and the NOD2 ligand muramyl dipeptide synergized for the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2. Together, these results demonstrate that NOD2 and TLR pathways are nonredundant recognition mechanisms of M. tuberculosis that synergize for the induction of proinflammatory cytokines. PMID:16322770

  17. Treponema denticola activates mitogen-activated protein kinase signal pathways through Toll-like receptor 2.

    PubMed

    Ruby, John; Rehani, Kunal; Martin, Michael

    2007-12-01

    Treponema denticola, a spirochete indigenous to the oral cavity, is associated with host inflammatory responses to anaerobic polymicrobial infections of the root canal, periodontium, and alveolar bone. However, the cellular mechanisms responsible for the recognition of T. denticola by the innate immune system and the underlying cell signaling pathways that regulate the inflammatory response to T. denticola are currently unresolved. In this study, we demonstrate that T. denticola induces innate immune responses via the utilization of Toll-like receptor 2 (TLR2) but not TLR4. Assessment of TLR2/1 and TLR2/6 heterodimers revealed that T. denticola predominantly utilizes TLR2/6 for the induction of cellular responses. Analysis of the mitogen-activated protein kinase (MAPK) signaling pathway in T. denticola-stimulated monocytes identified a prolonged up-regulation of the MAPK extracellular signal-related kinase 1/2 (ERK1/2) and p38, while no discernible increase in phospho-c-Jun N-terminal kinase 1/2 (JNK1/2) levels was observed. With the aid of pharmacological inhibitors selectively targeting ERK1/2 via the mitogen-activated protein kinase/extracellular signal-related kinase 1/2 kinase and p38, we further demonstrate that ERK1/2 and p38 play a major role in T. denticola-mediated pro- and anti-inflammatory cytokine production.

  18. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-07

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.

  19. Activation of epidermal toll-like receptor 2 enhances tight junction function – Implications for atopic dermatitis and skin barrier repair

    PubMed Central

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y.; Ivanov, Andrei I.; Barnes, Kathleen C.; Gallo, Richard L.; Borkowski, Andrew W.; Yamasaki, Kenshi; Leung, Donald Y.; Georas, Steve N.; De Benedetto, Anna; Beck, Lisa A.

    2012-01-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier. PMID:23223142

  20. Effects of P-MAPA immunomodulator on Toll-like receptor 2, ROS, nitric oxide, MAPKp38 and IKK in PBMC and macrophages from dogs with visceral leishmaniasis.

    PubMed

    Melo, L M; Perosso, J; Almeida, B F M; Silva, K L O; Somenzari, M A; de Lima, V M F

    2014-02-01

    Leishmania (L.) chagasi is the etiologic agent of visceral leishmaniasis (VL) that can be transmitted to humans and dogs. VL in Brazil represents a serious public health problem; therefore, it is important to study new alternatives to treat infected dogs. In dogs, the therapeutic arsenal against canine VL is limited. The immunomodulator protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) improves immunocompetence when the immune system is impaired, but its dependence on Toll-like receptors (TLRs) and the mechanisms involved in immune response remain unclear. The in vitro action of P-MAPA on the expression of TLR2 and TLR4, reactive oxygen species (ROS), nitric oxide (NO) and p38 mitogen-activated protein kinase (p38 MAPK) and IKK phosphorylation was studied in mononuclear cells from peripheral blood and macrophages from healthy and Leishmania-infected dogs. The PBMC or macrophages were isolated and cultured with different concentrations of P-MAPA (20,100 and 200 μg/ml) in a humid environment at 37°C with 5% CO(2). Observation revealed that Leishmania-infected dogs showed a decrease in TLR2 in macrophages compared with healthy dogs and in induction with P-MAPA. ROS were increased in PBMCs from Leishmania spp.-infected dogs compared with healthy dogs and P-MAPA improved ROS production. NO production was increased in culture supernatant from macrophages stimulated by P-MAPA in both healthy and Leishmania spp. infected dogs. Treatment of macrophages from healthy dogs with immunomodulatory P-MAPA induced p38 MAPK and IKK phosphorylation, suggesting signal transduction by this pathway. These findings suggest that P-MAPA has potential as a therapeutic drug in the treatment of canine visceral leishmaniasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival*

    PubMed Central

    Wang, Hui; Flannery, Sinead M.; Dickhöfer, Sabine; Huhn, Stefanie; George, Julie; Kubarenko, Andriy V.; Lascorz, Jesus; Bevier, Melanie; Willemsen, Joschka; Pichulik, Tica; Schafmayer, Clemens; Binder, Marco; Manoury, Bénédicte; Paludan, Søren R.; Alarcon-Riquelme, Marta; Bowie, Andrew G.; Försti, Asta; Weber, Alexander N. R.

    2014-01-01

    Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3–9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point. PMID:24973222

  2. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival.

    PubMed

    Wang, Hui; Flannery, Sinead M; Dickhöfer, Sabine; Huhn, Stefanie; George, Julie; Kubarenko, Andriy V; Lascorz, Jesus; Bevier, Melanie; Willemsen, Joschka; Pichulik, Tica; Schafmayer, Clemens; Binder, Marco; Manoury, Bénédicte; Paludan, Søren R; Alarcon-Riquelme, Marta; Bowie, Andrew G; Försti, Asta; Weber, Alexander N R

    2014-08-15

    Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Grancalcin (GCA) modulates Toll-like receptor 9 (TLR9) mediated signaling through its direct interaction with TLR9.

    PubMed

    Kim, Tae Whan; Hong, Seunghee; Talukder, Amjad H; Pascual, Virginia; Liu, Yong-Jun

    2016-03-01

    Toll-like receptors (TLRs) are playing important roles in stimulating the innate immune response and intensifying adaptive immune response against invading pathogens. Appropriate regulation of TLR activation is important to maintain a balance between preventing tumor activation and inhibiting autoimmunity. Toll-like receptor 9 (TLR9) senses microbial DNA in the endosomes of plasmacytoid dendritic cells and triggers myeloid differentiation primary response gene 88 (MyD88) dependent nuclear factor kappa B (NF-κB) pathways and type I interferon (IFN) responses. However, mechanisms of how TLR9 signals are mediated and which molecules are involved in controlling TLR9 functions remain poorly understood. Here, we report that penta EF-hand protein grancalcin (GCA) interacts and binds with TLR9 in a yeast two-hybrid system and an overexpression system. Using siRNA-mediated knockdown experiments, we also revealed that GCA positively regulates type I IFN production, cytokine/chemokine production through nuclear localization of interferon regulatory factor 7 (IRF7), NF-κB activation, and mitogen-activated protein kinase (MAPK) activation in plasmacytoid dendritic cells. Our results indicate that heterodimerization of GCA and TLR9 is important for TLR9-mediated downstream signaling and might serve to fine tune processes against viral infection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  5. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  6. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage

    PubMed Central

    D’Atri, L. P.; Etulain, J.; Rivadeneyra, L.; Lapponi, M. J.; Centurion, M.; Cheng, K.; Yin, H.; Schattner, M.

    2015-01-01

    Summary Background In addition to their key role in hemostasis, platelets and megakaryocytes also regulate immune and inflammatory responses, in part through their expression of Toll-like receptors (TLRs). Among the TLRs, TLR3 recognizes double-stranded (ds) RNA associated with viral infection. Thrombocytopenia is a frequent complication of viral infection. However, the expression and functionality of TLR3 in megakaryocytes and platelets is not yet well understood. Objective To study the expression and functionality of TLR3 in the megakaryocytic lineage. Methods and Results RT-PCR, flow cytometric, and immunofluorescence assays showed that TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets. Immunoblotting assays showed that stimulation of megakaryocytes with two synthetic agonists of TLR3, Poly(I:C) and Poly(A:U), activated the NF-κB, PI3K/Akt, ERK1/2, and p38 pathways. TLR3-megakaryocyte activation resulted in reduced platelet production in vitro and IFN-β release through the PI3K/Akt and NF-κB signaling pathways. TLR3 ligands potentiated the aggregation mediated by classical platelet agonists. This effect was also observed for ATP release, but not for P-selectin or CD40L membrane exposure, indicating that TLR3 activation was not involved in alpha granule release. In addition, TLR3 agonists induced activation of the NF-κB, PI3K/Akt, and ERK1/2 pathways in platelets. Reduction of platelet production and platelet fibrinogen binding mediated by Poly(I:C) or Poly(A:U) were prevented by the presence of an inhibitor of TLR3/dsRNA complex. Conclusions Our findings indicate that functional TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets, and suggest a potential role for this receptor in the megakaryo/thrombopoiesis alterations that occur in viral infections. PMID:25594115

  7. The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes.

    PubMed

    Georgel, Philippe; Macquin, Cécile; Bahram, Seiamak

    2009-11-17

    Toll-Like Receptors (TLR) are critical elements of the innate arm of the vertebrate immune system. They constitute a multigenic family of receptors which collectively bind a diverse array of--exogeneous as well as endogeneous--ligands. An exponential burst of knowledge has defined their biological role in fight against infections and generation/modulation of auto-immune disorders. Hence, they could at least be conceptually recognized--despite being structurally unrelated - as innate counterparts to Major Histocompatibility Complex (MHC) molecules--equally recognizing antigenic ligands (albeit structurally more homogeneous i.e., peptides), again derived from self and/or non-self sources--preeminent this time in adaptive immunity. Our great disparities in face of infections and/or susceptibility to auto-immune diseases have provoked an intense search for genetic explanations, in part satisfied by the extraordinary MHC allelic repertoire. An equally in-depth and systematic analysis of TLR diversity is lacking despite numerous independent reports of a growing number of SNPs within these loci. The work described here aims at providing a preliminary picture of the allelic repertoire--and not purely SNPs--of all 10 human TLR coding sequences (with exception of TLR3) within a single cohort of up to 100 individuals. It appears from our work that TLR are unequally polymorphic: TLR2 (DNA alleles: 7/protein alleles: 3), 4 (4/3), 7 (6/3), 8 (9/2) and 9 (8/3) being comparatively least diverse whereas TLR1 (11/10), 5 (14/12), 6 (10/8) and 10 (15/10) show a substantial number of alleles. In addition to allelic assignment of a large number of SNPs, 10 new polymorphic positions were hereby identified. Hence this work depicts a first overview of the diversity of almost all human TLR genes, a prelude for large-scale population genetics as well as genetic association studies.

  8. Toll-like receptor 7 agonists are potent and rapid bronchodilators in guinea pigs

    PubMed Central

    Kaufman, Elad H.; Fryer, Allison D.; Jacoby, David B.

    2011-01-01

    Background Respiratory tract viral infections result in asthma exacerbations. Toll-like receptor (TLR) 7 is a receptor for viral single-stranded RNA and is expressed at high levels in the lungs. Objective Because TLR7 polymorphisms are associated with asthma, we examined the effects of TLR7 agonists in guinea pig airways. Methods We induced bronchoconstriction in guinea pigs in vivo by means of electrical stimulation of the vagus nerve or intravenous administration of acetylcholine and measured the effect of a TLR7 agonist administered intravenously. We induced contraction of airway smooth muscle in segments of isolated guinea pig tracheas in vitro and measured the effect of TLR7 agonists, antagonists, and pharmacologic inhibitors of associated signaling pathways administered directly to the bath. Results TLR7 agonists acutely inhibited bronchoconstriction in vivo and relaxed contraction of airway smooth muscle in vitro within minutes of administration. Airway relaxation induced by the TLR7 agonist R837 (imiquimod) was partially blocked with a TLR7 antagonist and was also blocked by inhibitors of large-conductance, calcium-activated potassium channels; prostaglandin synthesis; and nitric oxide generation. Another TLR7 agonist, 21-mer single-stranded phosphorothioated polyuridylic acid (PolyUs), mediated relaxation that was completely blocked by a TLR7 antagonist. Conclusions These data demonstrate a novel protective mechanism to limit bronchoconstriction and maintain airflow during respiratory tract viral infections. The fast time frame is inconsistent with canonical TLR7 signaling. R837 mediates bronchodilation by means of TLR7-dependent and TLR7-independent mechanisms, whereas PolyUs does so through only the TLR7-dependent mechanism. TLR7-independent mechanisms involve prostaglandins and large-conductance, calcium-activated potassium channels, whereas TLR7-dependent mechanisms involve nitric oxide. TLR7 is an attractive therapeutic target for its ability to

  9. Regulation of toll-like receptor 3 activation by S100A9

    PubMed Central

    Tsai, Su-Yu; Segovia, Jesus A.; Chang, Te-Hung; Shil, Niraj K.; Pokharel, Swechha M.; Kannan, T.R.; Baseman, Joel B.; Defrêne, Joan; Pagé, Nathalie; Cesaro, Annabelle; Tessier, Philippe A.; Bose, Santanu

    2015-01-01

    Recognition of viral dsRNA by endosomal toll-like receptor 3 (TLR3) activates innate immune response during virus infection. Trafficking of TLR3 to the endo-lysosomal (EL) compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of Pathogen Associated Molecular Patterns (PAMP). PAMP detection results in activation of TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study we have identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form EL compartment. Drastic reduction in cytokine production was observed in S100A9 knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyIC (a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed co-localization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE since TLR3 could not be detected in the LE of polyIC treated S100A9 KO macrophages. Subsequently, TLR3 failed to co-localize with its agonist (i.e. biotin-labeled polyIC) in S100A9 deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC treated S100A9 KO mice. Thus, we have identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE. PMID:26385519

  10. Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    PubMed Central

    Pham Van, Linh; Bardel, Emilie; Gomez Alcala, Alejandro; Jeannin, Pascale; Akira, Shizuo; Bach, Jean-François; Thieblemont, Nathalie

    2010-01-01

    Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a

  11. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix

    PubMed Central

    Bishop, Christopher A.; Best, Michael; Rich, Celeste B.; Stone, Phillip J.

    2017-01-01

    Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis. PMID:28257481

  12. Role of Toll-Like Receptor Signaling in the Pathogenesis of Graft-versus-Host Diseases

    PubMed Central

    Tu, Sanfang; Zhong, Danli; Xie, Weixin; Huang, Wenfa; Jiang, Yangyang; Li, Yuhua

    2016-01-01

    Graft-versus-host disease (GVHD) and infection are major complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the leading causes of morbidity and mortality in HSCT patients. Recent work has demonstrated that the two complications are interdependent. GVHD occurs when allo-reactive donor T lymphocytes are activated by major histocompatibility antigens or minor histocompatibility antigens on host antigen-presenting cells (APCs), with the eventual attack of recipient tissues or organs. Activation of APCs is important for the priming of GVHD and is mediated by innate immune signaling pathways. Current evidence indicates that intestinal microbes and innate pattern-recognition receptors (PRRs) on host APCs, including both Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), are involved in the pathogenesis of GVHD. Patients undergoing chemotherapy and/or total body irradiation before allo-HSCT are susceptible to aggravated gastrointestinal epithelial cell damage and the subsequent translocation of bacterial components, followed by the release of endogenous dangerous molecules, termed pathogen-associated molecular patterns (PAMPs), which then activate the PRRs on host APCs to trigger local or systemic inflammatory responses that modulate T cell allo-reactivity against host tissues, which is equivalent to GVHD. In other words, infection can, to some extent, accelerate the progression of GVHD. Therefore, the intestinal flora’s PAMPs can interact with TLRs to activate and mature APCs, subsequently activate donor T cells with the release of pro-inflammatory cytokines, and eventually, induce GVHD. In the present article, we summarize the current perspectives on the understanding of different TLR signaling pathways and their involvement in the occurrence of GVHD. PMID:27529218

  13. Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess.

    PubMed

    Kielian, Tammy; Haney, Anessa; Mayes, Patrick M; Garg, Sarita; Esen, Nilufer

    2005-11-01

    Toll-like receptor 2 (TLR2) is a pattern recognition receptor (PRR) that plays an important role in innate immune recognition of conserved structural motifs on a wide array of pathogens, including Staphylococcus aureus. To ascertain the functional significance of TLR2 in the context of central nervous system (CNS) parenchymal infection, we evaluated the pathogenesis of S. aureus-induced experimental brain abscess in TLR2 knockout (KO) and wild-type (WT) mice. The expression of several proinflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor alpha, and macrophage inflammatory protein-2, was significantly attenuated in brain abscesses of TLR2 KO mice compared to WT mice during the acute phase of infection. Conversely, interleukin-17 (IL-17), a cytokine produced by activated and memory T cells, was significantly elevated in lesions of TLR2 KO mice, suggesting an association between innate and adaptive immunity in brain abscess. Despite these differences, brain abscess severity in TLR2 KO and WT animals was similar, with comparable mortality rates, bacterial titers, and blood-brain barrier permeability, implying a role for alternative PRRs. Expression of the phagocytic PRRs macrophage scavenger receptor type AI/AII and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was increased in brain abscesses of both TLR2 KO and WT mice compared to uninfected animals. However, LOX-1 induction in brain abscesses of TLR2 KO mice was significantly attenuated compared to WT animals, revealing that the TLR2-dependent signal(s) influence LOX-1 expression. Collectively, these findings reveal the complex nature of gram-positive bacterial recognition in the CNS which occurs, in part, through engagement of TLR2 and highlight the importance of receptor redundancy for S. aureus detection in the CNS.

  14. Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress*

    PubMed Central

    Okla, Meshail; Wang, Wei; Kang, Inhae; Pashaj, Anjeza; Carr, Timothy; Chung, Soonkyu

    2015-01-01

    Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation. PMID:26370079

  15. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis.

    PubMed

    Fels Elliott, Daffolyn Rachael; Perner, Juliane; Li, Xiaodun; Symmons, Martyn F; Verstak, Brett; Eldridge, Matthew; Bower, Lawrence; O'Donovan, Maria; Gay, Nick J; Fitzgerald, Rebecca C

    2017-05-01

    Esophageal adenocarcinoma (EAC) develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR) pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5) tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett's esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05) tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples), including uterine endometrioid carcinoma (188/320, 58.8%), cutaneous melanoma (377/988, 38.2%), colorectal adenocarcinoma (402/1519, 26.5%), and stomach adenocarcinoma (151/579, 26.1%). TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8%) of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients.

  16. Impact of mutations in Toll-like receptor pathway genes on esophageal carcinogenesis

    PubMed Central

    Fels Elliott, Daffolyn Rachael; Perner, Juliane; Li, Xiaodun; Symmons, Martyn F.; Verstak, Brett; Bower, Lawrence; O’Donovan, Maria; Fitzgerald, Rebecca C.

    2017-01-01

    Esophageal adenocarcinoma (EAC) develops in an inflammatory microenvironment with reduced microbial diversity, but mechanisms for these influences remain poorly characterized. We hypothesized that mutations targeting the Toll-like receptor (TLR) pathway could disrupt innate immune signaling and promote a microenvironment that favors tumorigenesis. Through interrogating whole genome sequencing data from 171 EAC patients, we showed that non-synonymous mutations collectively affect the TLR pathway in 25/171 (14.6%, PathScan p = 8.7x10-5) tumors. TLR mutant cases were associated with more proximal tumors and metastatic disease, indicating possible clinical significance of these mutations. Only rare mutations were identified in adjacent Barrett’s esophagus samples. We validated our findings in an external EAC dataset with non-synonymous TLR pathway mutations in 33/149 (22.1%, PathScan p = 0.05) tumors, and in other solid tumor types exposed to microbiomes in the COSMIC database (10,318 samples), including uterine endometrioid carcinoma (188/320, 58.8%), cutaneous melanoma (377/988, 38.2%), colorectal adenocarcinoma (402/1519, 26.5%), and stomach adenocarcinoma (151/579, 26.1%). TLR4 was the most frequently mutated gene with eleven mutations in 10/171 (5.8%) of EAC tumors. The TLR4 mutants E439G, S570I, F703C and R787H were confirmed to have impaired reactivity to bacterial lipopolysaccharide with marked reductions in signaling by luciferase reporter assays. Overall, our findings show that TLR pathway genes are recurrently mutated in EAC, and TLR4 mutations have decreased responsiveness to bacterial lipopolysaccharide and may play a role in disease pathogenesis in a subset of patients. PMID:28531216

  17. Sam68 is a regulator of Toll-like receptor signaling

    PubMed Central

    Tomalka, Jeffrey A; de Jesus, Tristan J; Ramakrishnan, Parameswaran

    2017-01-01

    Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling. PMID:27374795

  18. Toll-like receptor 6 drives interleukin-17A expression during experimental hypersensitivity pneumonitis

    PubMed Central

    Fong, Daniel J; Hogaboam, Cory M; Matsuno, Yosuke; Akira, Shizuo; Uematsu, Satoshi; Joshi, Amrita D

    2010-01-01

    Hypersensitivity pneumonitis (HP) is a T-cell-driven disease that is histologically characterized by diffuse mononuclear cell infiltrates and loosely formed granulomas in the lungs. We have previously reported that interleukin-17A (IL-17A) contributes to the development of experimental HP, and that the pattern recognition receptor Toll-like receptor 6 (TLR6) might be a factor in the initiation of this response. Using a well-established murine model of Saccharopolyspora rectivirgula-induced HP, we investigated the role of TLR6 in the immunopathogenesis of this disease. In the absence of TLR6 signalling, mice that received multiple challenges with S. rectivirgula-antigen (SR-Ag) had significantly less lung inflammation compared with C57BL/6 mice (wild-type; WT) similarly challenged with SR-Ag. Flow cytometric analysis of whole lung samples from SR-Ag-challenged mice showed that TLR6−/− mice had a decreased CD4+ : CD8+ T-cell ratio compared with WT mice. Cytokine analysis at various days after the final SR-Ag challenge revealed that whole lungs from TLR6−/− mice contained significantly less IL-17A than lungs from WT mice with HP. The IL-17A-driving cytokines IL-21 and IL-23 were also expressed at lower levels in SR-Ag-challenged TLR6−/− mice, when compared with SR-Ag-challenged WT mice. Other pro-inflammatory cytokines, namely interferon-γ and RANTES, were also found to be regulated by TLR6 signalling. Anti-TLR6 neutralizing antibody treatment of dispersed lung cells significantly impaired SR-Ag-induced IL-17A and IL-6 generation. Together, these results indicate that TLR6 plays a pivotal role in the development and severity of HP via its role in IL-17A production. PMID:20070409

  19. Sam68 is a regulator of Toll-like receptor signaling.

    PubMed

    Tomalka, Jeffrey A; de Jesus, Tristan J; Ramakrishnan, Parameswaran

    2017-01-01

    Recognition of pathogens by Toll-like receptors (TLR) activate multiple signaling cascades and expression of genes tailored to mount a primary immune response, inflammation, cell survival and apoptosis. Although TLR-induced activation of pathways, such as nuclear factor kappaB (NF-κB) and mitogen-activated protein kinases (MAPK), has been well studied, molecular entities controlling quantitative regulation of these pathways during an immune response remain poorly defined. We identified Sam68 as a novel regulator of TLR-induced NF-κB and MAPK activation. We found that TLR2 and TLR3 are totally dependent, whereas TLR4 is only partially dependent on Sam68 to induce the activation of NF-κB c-Rel. Absence of Sam68 greatly decreased TLR2- and TLR3-induced NF-κB p65 activation, whereas TLR4-induced p65 activation in a Sam68-independent manner. In contrast, Sam68 appeared to be a negative regulator of MAPK pathways because absence of Sam68 enhanced TLR2-induced activation of extracellular signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK). Interestingly, TLR2- and TLR3-induced gene expression showed a differential requirement of Sam68. Absence of Sam68 impaired TLR2-induced gene expression, suggesting that Sam68 has a critical role in myeloid differentiation primary response gene 88-dependent TLR2 signaling. TLR3-induced gene expression that utilize Toll/Interleukin-1 receptor-domain-containing adapter-inducing beta interferon pathway, depend only partially on Sam68. Our findings suggest that Sam68 may function as an immune rheostat that balances the activation of NF-κB p65 and c-Rel, as well as MAPK, revealing a potential novel target to manipulate TLR signaling.

  20. Association of Toll-like receptor 10 and susceptibility to Crohn's disease independent of NOD2.

    PubMed

    Abad, C; González-Escribano, M F; Diaz-Gallo, L M; Lucena-Soto, J M; Márquez, J L; Leo, E; Crivell, C; Gómez-García, M; Martín, J; Núñez-Roldán, A; García-Lozano, J R

    2011-12-01

    Impaired innate inflammatory response has a key role in the Crohn's disease (CD) pathogenesis. The aim of this study was to investigate the possible role of the TLR10-TLR1-TLR6 gene cluster in CD susceptibility. A total of 508 CD patients (284, cohort 1 and 224, cohort 2) and 576 controls were included. TLR10-TLR1-TLR6 cluster single-nucleotide polymorphisms genotyping, NOD2 mutations and TLR10 mRNA quantification were performed using TaqMan assays. Nucleotide-binding oligomerization domain containing 2 (NOD2) and Toll-like receptor (TLR) loci interaction was analyzed by logistic regression and multifactor-dimensionality reduction (MDR). Entropy-based analysis was used to interpret combination effects. One TLR10 haplotype (TLR10(GGGG)) was found associated with CD susceptibility in both cohorts, individuals with two copies had approximately twofold more risk of CD susceptibility than individuals having no copies (odds ratio=1.89, P-value=0.0002). No differences in the mRNA levels were observed among the genotypes. The strongest model for predicting CD risk according to the MDR analysis was a two-locus model including NOD2 mutations and TLR10(GGGG) haplotype (P(c)<0.0001). The interaction gain attributed to the combination of both genes was negative (IG=-2.36%), indicating redundancy or independent effects. Our results support association of the TLR10 gene with CD susceptibility. The effect of TLR10 would be independent of NOD2, suggesting different signaling pathways for both genes.

  1. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  2. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  3. Glucose activation of islets of Langerhans up-regulates Toll-like receptor 5: possible mechanism of protection.

    PubMed

    Weile, C; Josefsen, K; Buschard, K

    2011-11-01

    Toll-like receptors are pattern-recognition receptors of the innate immune system that are activated during viral, bacterial or other infections, as well as during disease progression of type 1 and type 2 diabetes. Toll-like receptor 5 (TLR-5) specifically recognizes bacterial infection through binding of flagellin from pathogenic bacteria such as Salmonella and Listeria species. We have found that the expression of TLR5 is up-regulated by glucose activation of isolated islets of Langerhans, in contrast to other investigated TLRs (TLR-2, -3, -4, -6 and -9. Stimulation of islets with 10 mm glucose increased the levels of TLR5 mRNA 10-fold (P=0·03) and the TLR-5 protein levels twofold (P=0·04). Furthermore, the protein level of downstream signalling molecule myeloid differentiation primary response gene 88 (MyD88) increased 1·6-fold (P=0·01). Activation of TLR-5 in islets lead to a marked reduction of both stimulated and basal secretion of insulin, as well as an increase in production of nitric oxide, proinflammatory cytokines, anti-inflammatory heat-shock protein and major histocompatibility complex (MHC) class I transporter. We observe no effects of TLR-5 activation on islet survival. We suggest that this regulation by TLR-5 might be beneficial during serious infection such as sepsis by limiting the activity of beta cells during peaks of insulin demand to counteract beta cell damage. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.

  4. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle.

    PubMed

    Hussey, Sophie E; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-03-01

    Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3, p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of inhibitor of kappa Bα (p = 0.09). The muscle content of most diacylglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin resistance in humans. ClinicalTrials.gov NCT01740817.

  5. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle

    PubMed Central

    Hussey, Sophie E.; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, José de Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-01-01

    Aims/hypothesis Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Methods Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic–hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Results Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3,p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of nuclear factor of light polypeptide gene enhancer in B cells inhibitor α (p = 0.09). The muscle content of most diacyglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. Conclusions/interpretation A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin

  6. Racial Variation in Toll-like Receptor Variants Among Women With Pelvic Inflammatory Disease

    PubMed Central

    Taylor, Brandie D.; Darville, Toni; Ferrell, Robert E.; Ness, Roberta B.; Haggerty, Catherine L.

    2013-01-01

    Background. Racial disparities exist in gynecological diseases. Variations in Toll-like receptor (TLR) genes may alter signaling following microbial recognition. Methods. We explored genotypic differences in 6 functional variants in 4 TLR genes (TLR1, TLR2, TLR4, TLR6) and the adaptor molecule TIRAP between 205 African American women and 51 white women with clinically suspected pelvic inflammatory disease (PID). A permutated P < .007 was used to assess significance. Associations between race and endometritis and/or upper genital tract infection (UGTI) were explored. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results. The TT genotype for TLR1 rs5743618, the GG genotype for TLR1 rs4833095, the CC genotype for TLR2 rs3804099, the TLR6 rs5743810 T allele, and the CC genotype for TIRAP rs8177374 significantly differed between races (P < .007). African American race was associated with endometritis and/or UGTI (OR, 4.2 [95% CI, 2.0–8.7]; P = .01). Among African Americans, the TLR6 rs5743810 T allele significantly decreased endometritis and/or UGTI (OR, 0.4 [95% CI, .2–.9]; P = .04). Additionally, rs5743618, rs4833095, and rs8177374 increased endometritis and/or UGTI, albeit not significantly. Conclusions. Among women with PID, TLR variants that increase inflammation are associated with African American race and may mediate the relationship between race and endometritis and/or UGTI. PMID:23255565

  7. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways.

    PubMed

    Zhang, Jie; Kong, Xianghui; Zhou, Chuanjiang; Li, Li; Nie, Guoxing; Li, Xuejun

    2014-12-01

    Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.

  8. Toll-Like Receptor Responses to Peste des petits ruminants Virus in Goats and Water Buffalo

    PubMed Central

    Dhanasekaran, Sakthivel; Biswas, Moanaro; Vignesh, Ambothi R.; Ramya, R.; Raj, Gopal Dhinakar; Tirumurugaan, Krishnaswamy G.; Raja, Angamuthu; Kataria, Ranjit S.; Parida, Satya; Subbiah, Elankumaran

    2014-01-01

    Ovine rinderpest or goat plague is an economically important and contagious viral disease of sheep and goats, caused by the Peste des petits ruminants virus (PPRV). Differences in susceptibility to goat plague among different breeds and water buffalo exist. The host innate immune system discriminates between pathogen associated molecular patterns and self antigens through surveillance receptors known as Toll like receptors (TLR). We investigated the role of TLR and cytokines in differential susceptibility of goat breeds and water buffalo to PPRV. We examined the replication of PPRV in peripheral blood mononuclear cells (PBMC) of Indian domestic goats and water buffalo and demonstrated that the levels of TLR3 and TLR7 and downstream signalling molecules correlation with susceptibility vs resistance. Naturally susceptible goat breeds, Barbari and Tellichery, had dampened innate immune responses to PPRV and increased viral loads with lower basal expression levels of TLR 3/7. Upon stimulation of PBMC with synthetic TLR3 and TLR7 agonists or PPRV, the levels of proinflammatory cytokines were found to be significantly higher while immunosuppressive interleukin (IL) 10 levels were lower in PPRV resistant Kanni and Salem Black breeds and water buffalo at transcriptional level, correlating with reduced viralloads in infected PBMC. Water buffalo produced higher levels of interferon (IFN) α in comparison with goats at transcriptional and translational levels. Pre-treatment of Vero cells with human IFNα resulted in reduction of PPRV replication, confirming the role of IFNα in limiting PPRV replication. Treatment with IRS66, a TLR7 antagonist, resulted in the reduction of IFNα levels, with increased PPRV replication confirming the role of TLR7. Single nucleotide polymorphism analysis of TLR7 of these goat breeds did not show any marked nucleotide differences that might account for susceptibility vs resistance to PPRV. Analyzing other host genetic factors might provide

  9. Toll-like receptor 4 signalling pathway activation in a rat model of Acanthamoeba Keratitis.

    PubMed

    Ren, M Y; Wu, X Y

    2011-01-01

    The pathogenesis of Acanthamoeba keratitis (AK) is complicated. In our previous studies, TLR4 was found involved in the process of infection by Acanthamoeba in human corneal cells. The purpose of this study was to investigate the role of Toll-like receptor 4 (TLR4) signalling pathway in Wistar rats challenged with Acanthamoeba. The rat model of AK was established. Corneas were collected and analysed by real-time PCR to assess the mRNA levels of TLR 2, 4, myeloid differentiation protein (MyD)88, nuclear factor (NF)-κB, extracellular signal-regulated kinase (ERK), interleukin (IL)-8, tumour necrosis factor (TNF)-α and interferon (IFN) -β. Immunocytochemistry and Western blot were conducted to examine the proteins of TLR2, TLR4, p-Erk1/2 and p-IκB. Specific inhibitors PDTC and U0126 were used to pretreat the animals to determine the exact receptor and signalling pathway involved in pathogenesis. Expressions of TLR4, MyD88, all three cytokines, NF-κB, p-IκB and p-Erk1/2 were increased in Acanthamoeba-treated rat corneas. PDTC inhibited the production of IL-8 and TNF-α, while U0126 inhibited the synthesis of IFN-β. TLR4 was involved in sensing the challenge of Acanthamoeba and inducing production of cytokines through TLR4-NF-κB and TLR4-Erk1/2 pathways in corneas of Wistar rats. © 2010 Blackwell Publishing Ltd.

  10. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential

    PubMed Central

    Hanke, Mark L.; Kielian, Tammy

    2014-01-01

    The discovery of mammalian Toll-like receptors (TLRs), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the Toll/interleukin (IL)-1 receptor (TIR) domain. Upon stimulation with their cognate ligands, TLR signaling elicits the production of cytokines, enzymes, and other inflammatory mediators that can impact several aspects of central nervous system (CNS) homeostasis and pathology. For example, TLR signaling plays a crucial role in initiating host defense responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also impact non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. Also, recent studies have implicated TLR involvement during neurogenesis and learning and memory in the absence of any underlying infectious etiology. Due to their presence and immune regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which likely depend on the context of tissue homeostasis or pathology. Therefore, any potential therapeutic manipulation of TLRs will require an understanding of the signals governing specific CNS disorders to achieve

  11. Effect of smoking on the genetic makeup of toll-like receptors 2 and 6.

    PubMed

    Kohailan, Muhammad; Alanazi, Mohammad; Rouabhia, Mahmoud; Alamri, Abdullah; Parine, Narasimha Reddy; Alhadheq, Abdullah; Basavarajappa, Santhosh; Abdullah Al-Kheraif, Abdul Aziz; Semlali, Abdelhabib

    2016-01-01

    Cigarette smoking is a major risk factor for lung cancer, asthma, and oral cancer, and is central to the altered innate immune responsiveness to infection. Many hypotheses have provided evidence that cigarette smoking induces more genetic changes in genes involved in the development of many cigarette-related diseases. This alteration may be from single-nucleotide polymorphisms (SNPs) in innate immunity genes, especially the toll-like receptors (TLRs). In this study, the genotype frequencies of TLR2 and TLR6 in smoking and nonsmoking population were examined. Saliva samples were collected from 177 smokers and 126 nonsmokers. The SNPs used were rs3804100 (1350 T/C, Ser450Ser) and rs3804099 (597 T/C, Asn199Asn) for TLR2 and rs3796508 (979 G/A, Val327Met) and rs5743810 (745 T/C, Ser249Pro) for TLR6. Results showed that TLR2 rs3804100 has a significant effect in short-term smokers (OR =2.63; P=0.04), and this effect is not observed in long-term smokers (>5 years of smoking). Therefore, this early mutation may be repaired by the DNA repair system. For TLR2 rs3804099, the variation in genotype frequencies between the smokers and control patients was due to a late mutation, and its protective role appears only in long-term smokers (OR =0.40, P=0.018). In TLR6 rs5743810, the TT genotype is significantly higher in smokers than in nonsmokers (OR =6.90). The effect of this SNP is observed in long-term smokers, regardless of the smoking regime per day. TLR2 (rs3804100 and rs3804099) and TLR6 (rs5743810) can be used as a potential index in the diagnosis and prevention of more diseases caused by smoking.

  12. Toll-like receptor responses to Peste des petits ruminants virus in goats and water buffalo.

    PubMed

    Dhanasekaran, Sakthivel; Biswas, Moanaro; Vignesh, Ambothi R; Ramya, R; Raj, Gopal Dhinakar; Tirumurugaan, Krishnaswamy G; Raja, Angamuthu; Kataria, Ranjit S; Parida, Satya; Elankumaran, Subbiah; Subbiah, Elankumaran

    2014-01-01

    Ovine rinderpest or goat plague is an economically important and contagious viral disease of sheep and goats, caused by the Peste des petits ruminants virus (PPRV). Differences in susceptibility to goat plague among different breeds and water buffalo exist. The host innate immune system discriminates between pathogen associated molecular patterns and self antigens through surveillance receptors known as Toll like receptors (TLR). We investigated the role of TLR and cytokines in differential susceptibility of goat breeds and water buffalo to PPRV. We examined the replication of PPRV in peripheral blood mononuclear cells (PBMC) of Indian domestic goats and water buffalo and demonstrated that the levels of TLR3 and TLR7 and downstream signalling molecules correlation with susceptibility vs resistance. Naturally susceptible goat breeds, Barbari and Tellichery, had dampened innate immune responses to PPRV and increased viral loads with lower basal expression levels of TLR 3/7. Upon stimulation of PBMC with synthetic TLR3 and TLR7 agonists or PPRV, the levels of proinflammatory cytokines were found to be significantly higher while immunosuppressive interleukin (IL) 10 levels were lower in PPRV resistant Kanni and Salem Black breeds and water buffalo at transcriptional level, correlating with reduced viralloads in infected PBMC. Water buffalo produced higher levels of interferon (IFN) α in comparison with goats at transcriptional and translational levels. Pre-treatment of Vero cells with human IFNα resulted in reduction of PPRV replication, confirming the role of IFNα in limiting PPRV replication. Treatment with IRS66, a TLR7 antagonist, resulted in the reduction of IFNα levels, with increased PPRV replication confirming the role of TLR7. Single nucleotide polymorphism analysis of TLR7 of these goat breeds did not show any marked nucleotide differences that might account for susceptibility vs resistance to PPRV. Analyzing other host genetic factors might provide

  13. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses

    PubMed Central

    Dar, Asif Amin; Patil, Rushikesh Sudam; Chiplunkar, Shubhada Vivek

    2014-01-01

    The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other’s activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy

  14. Age-related changes in expression and function of Toll-like receptors in human skin.

    PubMed

    Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid

    2012-11-01

    Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional.

  15. Mycobacterium tuberculosis Hip1 Dampens Macrophage Proinflammatory Responses by Limiting Toll-Like Receptor 2 Activation▿

    PubMed Central

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-01-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression. PMID:21947769

  16. [Association between toll-like receptors 2 and 5 polymorphisms and neonatal sepsis].

    PubMed

    Wang, Xiao-Lei; Zhang, Le; Li, Ya-Wen; Hou, Hong-Mei; Sun, Hai-Bin

    2015-12-01

    To study the association between single nucleotide polymorphisms(SNP) in toll-like receptors (TLR) 2 and 5 genes and the susceptibility to neonatal sepsis. One hundred and fourteen newborn infants who were diagnosed with clinical sepsis (case group) between May 2011 and January 2014 and 172 newborn infants without infection(control group) were enrolled in this study. The polymorphisms of TLR2 (rs5743708 and rs3804099) and TLR5 (rs5744105) were analyzed using a SNaPshot multiplex reaction to compare the genotypic and allelic frequencies between two groups. The relationship between TLR genotypes and susceptibility to sepsis was analyzed by logistic regression models. Significant differences in genotypic frequencies of TLR2 rs3804099 (C/T) and TLR5 rs5744105 (C/G) were found between the two groups (P<0.05), but there was no significant difference in allelic frequencies of all the SNPs above between the two groups (P>0.05). The genotype on TLR2 rs5743708 was GG and no mutation was found in both groups. In regression models, birth weight (OR=3.065; P<0.05) and gestational age (OR=3.301; P<0.05) were closely associated with neonatal sepsis. Sex (OR=1.107, P>0.05), polymorphisms in rs3804099 (OR=0.876; P>0.05) and polymorphisms in rs5744105 (OR=0.820; P>0.05) genes were not risk factors for neonatal sepsis. TLR2 and 5 polymorphisms (rs5743708, rs3804099 and rs5744105) may not serve as the susceptible gene for sepsis in newborn infants.

  17. Age-related changes in expression and function of Toll-like receptors in human skin

    PubMed Central

    Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid

    2012-01-01

    Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional. PMID:23034637

  18. Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population

    PubMed Central

    2013-01-01

    Background The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence. Methods We carried out a case–control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts. Results We found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected. Conclusions Our study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians. PMID:24053111

  19. Effect of smoking on the genetic makeup of toll-like receptors 2 and 6

    PubMed Central

    Kohailan, Muhammad; Alanazi, Mohammad; Rouabhia, Mahmoud; Alamri, Abdullah; Parine, Narasimha Reddy; Alhadheq, Abdullah; Basavarajappa, Santhosh; Abdullah Al-Kheraif, Abdul Aziz; Semlali, Abdelhabib

    2016-01-01

    Background Cigarette smoking is a major risk factor for lung cancer, asthma, and oral cancer, and is central to the altered innate immune responsiveness to infection. Many hypotheses have provided evidence that cigarette smoking induces more genetic changes in genes involved in the development of many cigarette-related diseases. This alteration may be from single-nucleotide polymorphisms (SNPs) in innate immunity genes, especially the toll-like receptors (TLRs). Objective In this study, the genotype frequencies of TLR2 and TLR6 in smoking and nonsmoking population were examined. Methods Saliva samples were collected from 177 smokers and 126 nonsmokers. The SNPs used were rs3804100 (1350 T/C, Ser450Ser) and rs3804099 (597 T/C, Asn199Asn) for TLR2 and rs3796508 (979 G/A, Val327Met) and rs5743810 (745 T/C, Ser249Pro) for TLR6. Results Results showed that TLR2 rs3804100 has a significant effect in short-term smokers (OR =2.63; P=0.04), and this effect is not observed in long-term smokers (>5 years of smoking). Therefore, this early mutation may be repaired by the DNA repair system. For TLR2 rs3804099, the variation in genotype frequencies between the smokers and control patients was due to a late mutation, and its protective role appears only in long-term smokers (OR =0.40, P=0.018). In TLR6 rs5743810, the TT genotype is significantly higher in smokers than in nonsmokers (OR =6.90). The effect of this SNP is observed in long-term smokers, regardless of the smoking regime per day. Conclusion TLR2 (rs3804100 and rs3804099) and TLR6 (rs5743810) can be used as a potential index in the diagnosis and prevention of more diseases caused by smoking. PMID:27920557

  20. Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential.

    PubMed

    Hanke, Mark L; Kielian, Tammy

    2011-11-01

    The discovery of mammalian TLRs (Toll-like receptors), first identified in 1997 based on their homology with Drosophila Toll, greatly altered our understanding of how the innate immune system recognizes and responds to diverse microbial pathogens. TLRs are evolutionarily conserved type I transmembrane proteins expressed in both immune and non-immune cells, and are typified by N-terminal leucine-rich repeats and a highly conserved C-terminal domain termed the TIR [Toll/interleukin (IL)-1 receptor] domain. Upon stimulation with their cognate ligands, TLR signalling elicits the production of cytokines, enzymes and other inflammatory mediators that can have an impact on several aspects of CNS (central nervous system) homoeostasis and pathology. For example, TLR signalling plays a crucial role in initiating host defence responses during CNS microbial infection. Furthermore, TLRs are targets for many adjuvants which help shape pathogen-specific adaptive immune responses in addition to triggering innate immunity. Our knowledge of TLR expression and function in the CNS has greatly expanded over the last decade, with new data revealing that TLRs also have an impact on non-infectious CNS diseases/injury. In particular, TLRs recognize a number of endogenous molecules liberated from damaged tissues and, as such, influence inflammatory responses during tissue injury and autoimmunity. In addition, recent studies have implicated TLR involvement during neurogenesis, and learning and memory in the absence of any underlying infectious aetiology. Owing to their presence and immune-regulatory role within the brain, TLRs represent an attractive therapeutic target for numerous CNS disorders and infectious diseases. However, it is clear that TLRs can exert either beneficial or detrimental effects in the CNS, which probably depend on the context of tissue homoeostasis or pathology. Therefore any potential therapeutic manipulation of TLRs will require an understanding of the signals

  1. Contributions of Unique Intracellular Domains to Switchlike Biosensing by Toll-like Receptor 4*

    PubMed Central

    Daringer, Nichole M.; Schwarz, Kelly A.; Leonard, Joshua N.

    2015-01-01

    Toll-like receptors (TLRs) mediate immune recognition of both microbial infections and tissue damage. Aberrant TLR signaling promotes disease; thus, understanding the regulation of TLR signaling is of medical relevance. Although downstream mediators of TLR signaling have been identified, the detailed mechanism by which ligand binding-mediated dimerization induces downstream signaling remains poorly understood. Here, we investigate this question for TLR4, which mediates responsiveness to bacterial LPS and drives inflammatory disease. TLR4 exhibits structural and functional features that are unique among TLRs, including responsiveness to a wide variety of ligands. However, the connection between these structural features and the regulation of signaling is not clear. Here, we investigated how the unique intracellular structures of TLR4 contribute to receptor signaling. Key conclusions include the following. 1) The unique intracellular linker of TLR4 is important for achieving LPS-inducible signaling via Toll/IL-1 receptor (TIR) domain-containing adapter-inducing interferon-β (TRIF) but less so for signaling via myeloid differentiation primary response 88 (MyD88). 2) Membrane-bound TLR4 TIR domains were sufficient to induce signaling. However, introducing long, flexible intracellular linkers neither induced constitutive signaling nor ablated LPS-inducible signaling. Thus, the initiation of TLR4 signaling is regulated by a mechanism that does not require tight geometric constraints. Together, these observations necessitate refining the model of TLR4 signal initiation. We hypothesize that TLR4 may interact with an inhibitory partner in the absence of ligand, via both TIR and extracellular domains of TLR4. In this speculative model, ligand binding induces dissociation of the inhibitory partner, triggering spontaneous, switchlike TIR domain homodimerization to initiate downstream signaling. PMID:25694428

  2. Toll-like receptor 8 and 9 polymorphisms in Crimean-Congo hemorrhagic fever.

    PubMed

    Engin, Aynur; Arslan, Serdal; Kizildag, Sibel; Oztürk, Hasret; Elaldi, Nazif; Dökmetas, Ilyas; Bakir, Mehmet

    2010-11-01

    Crimean-Congo hemorrhagic fever (CCHF) is an acute viral hemorrhagic fever. The clinical course and outcome of the CCHF infection are different in humans. Toll-like receptors (TLRs) are a family of pathogen recognition receptors. TLR8 and TLR9 contribute to the recognition of viruses. We investigated frequency of TLR8 Met1Val, TLR8 -129C/G, TLR9 -1486T/C and TLR9 2458G/A polymorphisms in CCHF patients and healthy controls. Our study was conducted between June 1 and August 31, 2007 in Cumhuriyet University Hospital, Turkey. TLR genotypes were detected using the PCR-RFLP assay in 85 CCHF patients and 171 healthy controls. We found that heterozygous plus homozygous mutant genotypes frequency for TLR8 Met1Val and for TLR9 -1486T/C were significantly higher in CCHF patients than controls (p = 0.038 and p = 0.009, respectively). The frequency of TLR8 -129G/G genotype in the fatal CCHF patients was significantly higher than that of the non-fatal patients (p = 0.026). The frequency of TLR9 -1486C/C genotype was significantly higher in fatal CCHF patients than in healthy controls (p = 0.009) and in patients with severe disease compared to non-severe disease (p = 0.044). Our findings suggest that TLR8 Met1Val, TLR8 -129C/G, and TLR9 -1486T/C polymorphisms are important on clinical course of CCHF disease.

  3. The role of toll-like receptor mediated signalling in the pathogenesis of multiple myeloma.

    PubMed

    Abdi, Jahangir; Engels, Ferdi; Garssen, Johan; Redegeld, Frank

    2011-11-01

    Toll-like receptors are critical structures in sensing the invading pathogens via conserved moieties termed pathogen associated molecular patterns and in directing the innate and adaptive immune responses. Studies have shown that Toll-like receptors are not limited to normal immune cells but are expressed on tumour cells as well, including those of lymphoid neoplasms particularly B-cell malignancies, multiple myeloma and chronic lymphocytic leukemia. Neoplastic plasma cells in multiple myeloma usually show a different pattern of Toll-like receptor expression compared to normal B cells. These receptors on multiple myeloma cells, have been indicated to have a role in their proliferation, differentiation and survival, probably through induction of autocrine IL-6 secretion, and in their immunomodulatory functions. Moreover, it is speculated that these molecules may contribute to osteolytic lesions through activation of osteoclasts, and to angiogenesis through induction of pro-angiogenic factors. Knowledge on Toll-like receptor signalling in the biology of malignant plasma cells or their cellular microenvironment may give new insights into pathogenesis of multiple myeloma and may open new avenues for the therapy of this disease. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  5. Mapping of the toll like receptor family in channel catfish, Ictalurus punctatus

    USDA-ARS?s Scientific Manuscript database

    The Toll Like Receptors (TLRs) are key elements of the innate response to pathogens. They recognize Pathogen Associated Molecular Patterns (PAMPs) and activate the host defense responses. As such, they are candidate genes for disease resistance. In teleost, eight homologs of the endothermic vertebra...

  6. Burn Enhances Toll-Like Receptor Induced Responses by Circulating Leukocytes

    DTIC Science & Technology

    2012-04-30

    lipoproteins of Mycobacterium tuberculosis . Cell Immunol 2009; 258: 29-37. [10] Cairns B, Maile R, Barnes CM, Frelinger JA and Meyer AA. Increased Toll...like receptors in the pathogenesis of human disease. Nat Immunol 2004; 5: 975-979. [21] Medzhitov R, Preston-Hurlburt P and Janeway CA Jr. A human

  7. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines

    PubMed Central

    Zhu, Qing; Egelston, Colt; Vivekanandhan, Aravindhan; Uematsu, Satoshi; Akira, Shizuo; Klinman, Dennis M.; Belyakov, Igor M.; Berzofsky, Jay A.

    2008-01-01

    Toll-like receptors (TLRs) may need to cooperate with each other to be effective in detecting imminent infection and trigger immune responses. Understanding is still limited about the intracellular mechanism of this cooperation. We found that when certain TLRs are involved, dendritic cells (DCs) establish unidirectional intracellular cross-talk, in which the MyD88-independent TRIF-dependent pathway amplifies the MyD88-dependent DC function through a JNK-dependent mechanism. The amplified MyD88-dependent DC function determines the induction of the T cell response to a given vaccine in vivo. Therefore, our study revealed an underlying TLR mechanism governing the functional, nonrandom interplay among TLRs for recognition of combinatorial ligands that may be dangerous to the host, providing important guidance for design of novel synergistic molecular vaccine adjuvants. PMID:18845682

  8. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1--a review.

    PubMed

    Adamczak, D M; Nowak, J K; Frydrychowicz, M; Kaczmarek, M; Sikora, J

    2014-08-01

    It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an interaction between immunologic, genetic and environmental factors. However, the exact mechanism leading to the development of T1DM remains incomplete. There is a large body of evidence pointing towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM pathogenesis. In this article, we review the available data on the influence of TLRs' level of activation and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also summarize the current information regarding the interactions between TLRs' level of activation, vitamin D status and various environmental factors, such as enteroviral infections, the gut microbiota and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect against T1DM by reducing the TLRs' level of activation.

  9. Origin of Toll-like receptor-mediated innate immunity.

    PubMed

    Kanzok, Stefan M; Hoa, Ngo T; Bonizzoni, Mariangela; Luna, Coralia; Huang, Yaming; Malacrida, Anna R; Zheng, Liangbiao

    2004-04-01

    Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

  10. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development.

    PubMed

    Zurolo, Emanuele; Iyer, Anand; Maroso, Mattia; Carbonell, Caterina; Anink, Jasper J; Ravizza, Teresa; Fluiter, Kees; Spliet, Wim G M; van Rijen, Peter C; Vezzani, Annamaria; Aronica, Eleonora

    2011-04-01

    Recent evidence in experimental models of seizures and in temporal lobe epilepsy support an important role of high-mobility group box 1 and toll-like receptor 4 signalling in the mechanisms of hyperexcitability leading to the development and perpetuation of seizures. In this study, we investigated the expression and cellular distribution of toll-like receptors 2 and 4, and of the receptor for advanced glycation end products, and their endogenous ligand high-mobility group box 1, in epilepsy associated with focal malformations of cortical development. Immunohistochemistry showed increased expression of toll-like receptors 2 and 4 and receptor for advanced glycation end products in reactive glial cells in focal cortical dysplasia, cortical tubers from patients with the tuberous sclerosis complex and in gangliogliomas. Toll-like receptor 2 was predominantly detected in cells of the microglia/macrophage lineage and in balloon cells in focal cortical dysplasia, and giant cells in tuberous sclerosis complex. The toll-like receptor 4 and receptor for advanced glycation end products were expressed in astrocytes, as well as in dysplastic neurons. Real-time quantitative polymerase chain reaction confirmed the increased receptors messenger RNA level in all pathological series. These receptors were not detected in control cortex specimens. In control cortex, high-mobility group box 1 was ubiquitously detected in nuclei of glial and neuronal cells. In pathological specimens, protein staining was instead detected in the cytoplasm of reactive astrocytes or in tumour astrocytes, as well as in activated microglia, predictive of its release from glial cells. In vitro experiments in human astrocyte cultures showed that nuclear to cytoplasmic translocation of high-mobility group box 1 was induced by interleukin-1β. Our findings provide novel evidence of intrinsic activation of these pro-inflammatory signalling pathways in focal malformations of cortical development, which could

  11. Systems analysis identifies an essential role for SHANK-associated RH domain-interacting protein (SHARPIN) in macrophage Toll-like receptor 2 (TLR2) responses

    PubMed Central

    Zak, Daniel E.; Schmitz, Frank; Gold, Elizabeth S.; Diercks, Alan H.; Peschon, Jacques J.; Valvo, Joe S.; Niemistö, Antti; Podolsky, Irina; Fallen, Shannon G.; Suen, Rosa; Stolyar, Tetyana; Johnson, Carrie D.; Kennedy, Kathleen A.; Hamilton, M. Kristina; Siggs, Owen M.; Beutler, Bruce; Aderem, Alan

    2011-01-01

    Precise control of the innate immune response is essential to ensure host defense against infection while avoiding inflammatory disease. Systems-level analyses of Toll-like receptor (TLR)-stimulated macrophages suggested that SHANK-associated RH domain-interacting protein (SHARPIN) might play a role in the TLR pathway. This hypothesis was supported by the observation that macrophages derived from chronic proliferative dermatitis mutation (cpdm) mice, which harbor a spontaneous null mutation in the Sharpin gene, exhibited impaired IL-12 production in response to TLR activation. Systems biology approaches were used to define the SHARPIN-regulated networks. Promoter analysis identified NF-κB and AP-1 as candidate transcription factors downstream of SHARPIN, and network analysis suggested selective attenuation of these pathways. We found that the effects of SHARPIN deficiency on the TLR2-induced transcriptome were strikingly correlated with the effects of the recently described hypomorphic L153P/panr2 point mutation in Ikbkg [NF-κB Essential Modulator (NEMO)], suggesting that SHARPIN and NEMO interact. We confirmed this interaction by co-immunoprecipitation analysis and furthermore found it to be abrogated by panr2. NEMO-dependent signaling was affected by SHARPIN deficiency in a manner similar to the panr2 mutation, including impaired p105 and ERK phosphorylation and p65 nuclear localization. Interestingly, SHARPIN deficiency had no effect on IκBα degradation and on p38 and JNK phosphorylation. Taken together, these results demonstrate that SHARPIN is an essential adaptor downstream of the branch point defined by the panr2 mutation in NEMO. PMID:21709223

  12. Toll-like Receptor 1 Polymorphisms Affect Innate Immune Responses and Outcomes in Sepsis

    PubMed Central

    Wurfel, Mark M.; Gordon, Anthony C.; Holden, Tarah D.; Radella, Frank; Strout, Jeanna; Kajikawa, Osamu; Ruzinski, John T.; Rona, Gail; Black, R. Anthony; Stratton, Seth; Jarvik, Gail P.; Hajjar, Adeline M.; Nickerson, Deborah A.; Rieder, Mark; Sevransky, Jonathan; Maloney, James P.; Moss, Marc; Martin, Greg; Shanholtz, Carl; Garcia, Joe G. N.; Gao, Li; Brower, Roy; Barnes, Kathleen C.; Walley, Keith R.; Russell, James A.; Martin, Thomas R.

    2008-01-01

    Rationale: Polymorphisms affecting Toll-like receptor (TLR)–mediated responses could predispose to excessive inflammation during an infection and contribute to an increased risk for poor outcomes in patients with sepsis. Objectives: To identify hypermorphic polymorphisms causing elevated TLR-mediated innate immune cytokine and chemokine responses and to test whether these polymorphisms are associated with increased susceptibility to death, organ dysfunction, and infections in patients with sepsis. Methods: We screened single-nucleotide polymorphisms (SNPs) in 43 TLR-related genes to identify variants affecting TLR-mediated inflammatory responses in blood from healthy volunteers ex vivo. The SNP associated most strongly with hypermorphic responses was tested for associations with death, organ dysfunction, and type of infection in two studies: a nested case–control study in a cohort of intensive care unit patients with sepsis, and a case–control study using patients with sepsis, patients with sepsis-related acute lung injury, and healthy control subjects. Measurements and Main Results: The SNP demonstrating the most hypermorphic effect was the G allele of TLR1−7202A/G (rs5743551), which associated with elevated TLR1-mediated cytokine production (P < 2 × 10−20). TLR1−7202G marked a coding SNP that causes higher TLR1-induced NF-κB activation and higher cell surface TLR1 expression. In the cohort of patients with sepsis TLR1−7202G predicted worse organ dysfunction and death (odds ratio, 1.82; 95% confidence interval, 1.07–3.09). In the case-control study TLR1−7202G was associated with sepsis-related acute lung injury (odds ratio, 3.40; 95% confidence interval, 1.59–7.27). TLR1−7202G also associated with a higher prevalence of gram-positive cultures in both clinical studies. Conclusions: Hypermorphic genetic variation in TLR1 is associated with increased susceptibility to organ dysfunction, death, and gram-positive infection in sepsis. PMID

  13. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  14. Is there any relationship between Toll-like receptor 3 c.1377C/T and -7C/A polymorphisms and susceptibility to Crimean Congo hemorrhagic fever?

    PubMed

    Engin, Aynur; Arslan, Serdal; Özbilüm, Nil; Bakir, Mehmet

    2016-10-01

    Crimean-Congo hemorrhagic fever (CCHF) is an infectious disease that is caused by CCHF virus. A family of transmembrane receptors called as Toll-like receptors (TLRs) selectively acts in recognizing a wide range of microbial components and endogenous molecules released by damaged tissue and have been preserved throughout evolution. TLRs initiate some signaling cascades which activate the innate immune system. Mainly four TLRs act in protection against viral infections; TLR3 is one of them. TLR3 identifies dsRNA. By producing inflammatory cytokines and type I interferons, it generates an antiviral immune response. Proper response to TLR ligands may be impaired by single nucleotide polymorphisms (SNPs) within TLR genes in some indviduals, and this can cause varied susceptibility to infections. In the present work, polymerase chain reaction-based restriction fragment length polymorphism is used to analyze the frequencies of TLR3 (c.1377C/T and -7C/A) polymorphisms in 149 CCHF patients and 171 healthy adults as controls, in Cumhuriyet University, Sivas/Turkey. We also investigated the relation between these polymorphisms and severity or mortality of CCHF disease. This is the first study investigating the TLR3 SNPs in patients with CCHF. In the present study, the frequency of the TLR3 (c.1377C/T and -7A/C) genotypes in fatal and non-fatal cases were comparable, however, the homozygous mutant (TT) genotype frequency of TLR3 c.1377C/T in CCHF patients was significantly higher than that of the healthy controls. In conclusion, presence of TLR3 c.1377 TT genotype may have a role in the susceptibility to CCHF. J. Med. Virol. 88:1690-1696, 2016. © 2016 Wiley Periodicals, Inc.

  15. Promising Role of Toll-Like Receptor 8 Agonist in Concert with Prostratin for Activation of Silent HIV

    PubMed Central

    Schlaepfer, E.

    2016-01-01

    ABSTRACT The persistence of latently HIV-infected cells in patients under combined antiretroviral treatment (cART) remains the major hurdle for HIV eradication. Thus far, individual compounds have not been sufficiently potent to reactivate latent virus and guarantee its elimination in vivo. Thus, we hypothesized that transcriptional enhancers, in concert with compounds triggering the innate immune system, are more efficient in reversing latency by creating a Th1 supportive milieu that acts against latently HIV-infected cells at various levels. To test our hypothesis, we screened six compounds on a coculture of latently infected cells (J-lat) and monocyte-derived dendritic cells (MDDCs). The protein kinase C (PKC) agonist prostratin, with a Toll-like receptor 8 (TLR8) agonist, resulted in greater reversion of HIV latency than any single compound. This combinatorial approach led to a drastic phenotypic and functional maturation of the MDDCs. Tumor necrosis factor (TNF) and cell-cell interactions were crucial for the greater reversion observed. Similarly, we found a greater potency of the combination of prostratin and TLR8 agonist in reversing HIV latency when applying it to primary cells of HIV-infected patients. Thus, we demonstrate here the synergistic interplay between TLR8-matured MDDCs and compounds acting directly on latently HIV-infected cells, targeting different mechanisms of latency, by triggering various signaling pathways. Moreover, TLR8 triggering may reverse exhaustion of HIV-specific cytotoxic T lymphocytes that might be essential for killing or constraining the latently infected cells. IMPORTANCE Curing HIV is the Holy Grail. The so-called “shock and kill” strategy relies on drug-mediated reversion of HIV latency and the subsequent death of those cells under combined antiretroviral treatment. So far, no compound achieves efficient reversal of latency or eliminates this latent reservoir. The compounds may not target all of the latency mechanisms in

  16. Combination antiretroviral therapy (cART) restores HIV-1 infection-mediated impairment of JAK-STAT signaling pathway.

    PubMed

    Liu, Man-Qing; Zhao, Min; Kong, Wen-Hua; Tang, Li; Wang, Fang; Zhu, Ze-Rong; Wang, Xia; Qiu, Hong-Yan; Zhou, Dun-Jin; Wang, Xu; Ho, Wen-Zhe; Zhou, Wang

    2017-04-04

    JAK-STAT signaling pathway has a crucial role in host innate immunity against viral infections, including HIV-1. We therefore examined the impact of HIV-1 infection and combination antiretroviral therapy (cART) on JAK-STAT signaling pathway. Compared to age-matched healthy donors (n = 18), HIV-1-infected subjects (n = 18) prior to cART had significantly lower expression of toll-like receptors (TLR-1/4/6/7/8/9), the IFN regulatory factors (IRF-3/7/9), and the antiviral factors (OAS-1, MxA, A3G, PKR, and Tetherin). Three months' cART partially restores the impaired functions of JAK-STAT-mediated antiviral immunity. We also found most factors had significantly positive correlations (p < 0.05) between each two factors in JAK-STAT pathway in healthy donors (98.25%, 168/171), but such significant positive associations were only found in small part of HIV-1-infected subjects (43.86%, 75/171), and stably increased during the cART (57.31%, 98/171 after 6 months' cART). With regard to the restoration of some HIV-1 restriction factors, HIV-1-infected subjects who had CD4+ T cell counts > 350//μl responded better to cART than those with the counts < 350/μl. These findings indicate that the impairment of JAK-STAT pathway may play a role in the immunopathogenesis of HIV-1 disease.

  17. Association of Single Nucleotide Polymorphisms in Toll-like Receptors with Acinetobacter baumanii Infectionin a Chinese Population

    PubMed Central

    HE, Lei; LIN, Maohu; FAN, Wensheng; LIU, Yunxi; SUO, Jijiang; XING, Yubin; JIA, Ning

    2016-01-01

    Background: During recent years, infection of Acinetobacter baumanii showed a rapid growth in hospitals and community. Toll-like receptors (TLRs) are the most important pattern recognition receptors, which play a critical role during recognizing invading pathogens by the natural immune system. Our objective was to determine the associations of TLRs polymorphisms with the susceptibility to A. baumanii infection in a Chinese population. Methods: We carried out a case-control study, genotyping 13 polymorphisms of TLR-2, TLR-4, TLR-5 and TLR-9 genes on 423 A. baumanii-infected patients and 385 exposed controls. Thirteen SNPs at the TLR-2 (rs3804099, rs7656411 and rs76112010), TLR-4 (rs1927914, rs10759932 and rs11536889), TLR-5 (rs1341987, rs1640827, rs1861172, rs2241097, rs5744174 and rs17163737) and TLR9 (rs187084) genes were analyzed. SNP genotyping was performed using an improved multiplex ligation detection reaction (iMLDR) technique. Results: The SNP of TLR-9, rs187084, was related to A. baumanii-infection significantly under recessive model (G/G, to A/A + G/A, P = 0.0064, OR = 0.59, 95% CI = 0.40–0.86) after adjustment with age. Besides, the haplotype GCG of TLR-4 was significantly associated with A. baumanii infection (P = 0.027). Conclusion: TLR-4 and TLR-9 may be related to the susceptibility to A. baumanii infection in a Chinese population. PMID:27057517

  18. Host defence during Klebsiella pneumonia relies on haematopoietic-expressed Toll-like receptors 4 and 2.

    PubMed

    Wieland, C W; van Lieshout, M H P; Hoogendijk, A J; van der Poll, T

    2011-04-01

    In this study, the relative roles of Toll-like receptor (TLR)2 and TLR4 were investigated independently and together. Moreover, we studied the role of haematopoietic compartment in anti-Klebsiella host defence. We infected TLR2 and TLR4 single-, and TLR2×4 double knockout (KO) animals with different doses of Klebsiella pneumoniae. In addition, bone marrow chimeric mice were created and infected. TLR4 played a more prominent role in antibacterial defence than TLR2, considering that only TLR4 KO mice demonstrated enhanced bacterial growth in lungs and spleen 24 h after infection with 3×10³ colony-forming units of Klebsiella compared with wild-type (WT) mice. In late-stage infection or after exposure to a higher infectious dose, bacterial counts in lungs of TLR2 KO animals were elevated compared with WT mice and TLR2×4 KO animals were more susceptible to infection than TLR4 KO mice. TLR signalling in cells of haematopoietic origin is of primary importance in host defence against K. pneumoniae. These data suggest that: 1) TLR4 drives the antibacterial host response after induction of pneumonia with relatively low Klebsiella doses; 2) TLR2 becomes involved at a later phase of the infection and/or upon exposure to higher bacterial burdens; and 3) haematopoietic TLR2 and TLR4 are important for an adequate host response during Klebsiella pneumonia.

  19. Molecular cloning, characterization and expression of goose Toll-like receptor 5.

    PubMed

    Fang, Qiang; Pan, Zhiming; Geng, Shizhong; Kang, Xilong; Huang, Jinlin; Sun, Xiaolin; Li, Qiuchun; Cai, Yinqiang; Jiao, Xinan

    2012-10-01

    Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that are vital to activation of the innate immune system in response to invading pathogens through their recognition of pathogen-associated molecular patterns (PAMPs). TLR5 is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the goose TLR5 gene using rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of goose TLR5 cDNA is 2583 bp in length and encodes an 860 amino acid protein. The entire coding region of the TLR5 gene was successfully amplified from genomic DNA and contained a single exon. The putative amino acid sequence of goose TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat (LRR) domains, a leucine-rich repeat C-terminal (LRR-CT) domain, a transmembrane domain and an intracellular Toll-interleukin-1 receptor (TIR) domain. The amino acid sequence of goose TLR5 shared 50.5% identity with human (Homo sapiens), 49.8% with mouse (Mus musculus) and 82.7% with chicken (Gallus gallus). The goose TLR5 gene was highly expressed in the spleen, liver and brain; moderately expressed in PBMCs, kidney, lung, heart, bone marrow, small intestine and large intestine; and minimally expressed in the cecum. HEK293 cells transfected with goose TLR5 and NF-κB-luciferase containing plasmids significantly responded to flagellin from Salmonella typhimurium indicating that it is a functional TLR5 homologue. In response to infection with S. enterica serovar Enteritidis (SE), the level of TLR5 mRNA significantly increased over the control in PBMCs at 1 d post infection (p.i.) and was slightly elevated in the spleen at 1 d or 3 d p.i. IL-6 was expressed below control levels in PBMCs but was upregulated in the spleen. In contrast to IL-6, an evident decrease in the expression level of IL-8 was observed in both PBMCs and spleens at 1 d or 3 d p.i. SE challenge also resulted in an increase in the mRNA expression of IL-18 and IFN-γ in PBMCs

  20. The TRIPS (Toll-like receptors in immuno-inflammatory pathogenesis) Hypothesis: a novel postulate to understand schizophrenia.

    PubMed

    Venkatasubramanian, Ganesan; Debnath, Monojit

    2013-07-01

    Mounting evidence indicates that immune activation and/or immuno-inflammatory reactions during neurodevelopment apparently contribute to the pathogenesis and progression of schizophrenia. One of the important environmental factors that is known to trigger immune activation/inflammatory responses during early pregnancy is prenatal infection. Recent understanding from animal studies suggests that prenatal infection induced maternal immune activation (MIA)/inflammation in congruence with oxidative/nitrosative stress can lead to neurodevelopmental damage and behavioral abnormalities in the offspring. Although the underlying precise mechanistic processes of MIA/inflammation are yet to be completely elucidated, it is being increasingly recognized that Toll-like receptors (TLRs) that form the first line of defense against invading microorganisms could participate in the prenatal infection induced immune insults. Interestingly, some of the TLRs, especially TLR3 and TLR4 that modulate neurodevelopment, neuronal survival and neuronal plasticity by regulating the neuro-immune cross-talk in the developing and adult brain could also be affected by prenatal infection. Importantly, sustained activation of TLR3/TLR4 due to environmental factors including infection and stress has been found to generate excessive reactive oxygen species (ROS)/reactive nitrogen species (RNS) as well as pro-inflammatory mediators during embryogenesis, which result into neuronal damage by necrosis/apoptosis. In recent times, ROS/RNS and immuno-inflammatory mediators are being increasingly linked to progressive brain changes in schizophrenia. Although a significant role of TLR3/TLR4 in neurodegeneration is gaining certainty, their importance in establishing a causal link between prenatal infection and immuno-inflammatory, oxidative and nitrosative stress (IO&NS) responses and influence on adult presentation of schizophrenia is yet to be ascertained. We review here the current knowledge generated from

  1. Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia.

    PubMed

    Zhou, Chao; Zhao, Ji; Li, Jing; Wang, Haiying; Tang, Chengwei

    2013-05-01

    Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The

  2. Association of toll-like receptor 4 polymorphisms with type 2 diabetes mellitus.

    PubMed

    Jiang, Zhao-Shun; Wang, Su-Xia; Jia, Hong-Xia; Wang, Jing; Liu, Yuan-Tao

    2013-02-01

    Type 2 diabetes mellitus (T2DM) is characterized by a chronic low-grade inflammatory state. Toll-like receptor 4 (TLR4) is a critical mediator of innate immunity. Polymorphisms in TLR4 gene have been shown to be associated with impaired inflammatory response. Here, we investigated the association of TLR4 polymorphisms with T2DM. Four TLR4 polymorphisms (+986A/G, +1196C/T, +3725G/C, and +11367G/C) were genotyped in a total number of 822 T2DM patients and 835 healthy controls. Results showed that the +986A/G and +1196C/T polymorphisms did not exist in the Han Chinese population. The prevalence of TLR4 +3725GC and CC genotypes were significantly decreased in T2DM cases than in controls (odds ratio (OR) = 0.62, 95 % confidence interval (CI) = 0.50-0.78, p = 3.48 × 10(-5), and OR = 0.36, 95 % CI = 0.22-0.59, p = 1.55 × 10(-5), respectively). Also, the frequency of TLR4 +3725C allele was significantly lower in T2DM patients (p = 2.46 × 10(-9)). When analyzing the TLR4 +11367G/C polymorphism, the +11367CC genotype revealed lower numbers in patients compared to healthy controls (OR = 0.46, 95 % CI = 0.27-0.78, p = 0.0032). Analysis of the clinical features on the control subjects demonstrated no correlations between these TLR4 polymorphisms and sex, age, body mass index, etc. (p > 0.05). In conclusion, these data indicate that TLR4 +3725G/C and +11367G/C polymorphisms may be novel protective factors against T2DM in the Chinese population.

  3. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    PubMed Central

    Waldhuber, Anna; Snyder, Greg A.; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-01-01

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters. PMID:26938564

  4. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli.

    PubMed

    Waldhuber, Anna; Snyder, Greg A; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-02-29

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters.

  5. Toll-like receptor 8: augmentation of innate immunity in platinum resistant ovarian carcinoma

    PubMed Central

    Brueseke, Taylor J; Tewari, Krishnansu S

    2013-01-01

    Ovarian cancer is the most deadly gynecologic cancer, with 15,000 anticipated deaths within the United States alone in 2012, and new treatment strategies are needed. Ovarian cancer tumors are known to host an immunosuppressive microenvironment. This suppression may be reversible via activation of the innate immune response. Toll-like receptor 8 activates innate immunity while simultaneously inhibiting the effects of regulatory T cells within the ovarian cancer tumors. VTX-2337 is a novel small molecule ligand of Toll-like receptor 8 and is currently the subject of a Phase II randomized, double-blind, placebo-controlled trial Gynecologic Oncology Group (GOG)-3003 for patients with recurrent platinum-resistant ovarian cancer. We look forward to the results of this trial as support for the paradigm of process therapy in the treatment of ovarian cancer. PMID:23723721

  6. The Expression and Functions of Toll-Like Receptors in Atherosclerosis

    PubMed Central

    Cole, Jennifer E.; Georgiou, Ektoras; Monaco, Claudia

    2010-01-01

    Inflammation drives atherosclerosis. Both immune and resident vascular cell types are involved in the development of atherosclerotic lesions. The phenotype and function of these cells are key in determining the development of lesions. Toll-like receptors are the most characterised innate immune receptors and are responsible for the recognition of exogenous conserved motifs on pathogens, and, potentially, some endogenous molecules. Both endogenous and exogenous TLR agonists may be present in atherosclerotic plaques. Engagement of toll-like receptors on immune and resident vascular cells can affect atherogenesis as signalling downstream of these receptors can elicit proinflammatory cytokine release, lipid uptake, and foam cell formation and activate cells of the adaptive immune system. In this paper, we will describe the expression of TLRs on immune and resident vascular cells, highlight the TLR ligands that may act through TLRs on these cells, and discuss the consequences of TLR activation in atherosclerosis. PMID:20652007

  7. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment

    PubMed Central

    Kidd, La Creis R; Rogers, Erica N; Yeyeodu, Susan T; Jones, Dominique Z; Kimbro, K Sean

    2013-01-01

    Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity’s involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer. PMID:24648757

  8. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies.

    PubMed

    Ménager, Pauline; Roux, Pascal; Mégret, Françoise; Bourgeois, Jean-Pierre; Le Sourd, Anne-Marie; Danckaert, Anne; Lafage, Mireille; Préhaud, Christophe; Lafon, Monique

    2009-02-01

    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3(-/-) mice -- in which brain tissue was less severely infected -- had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV-induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit.

  9. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    PubMed

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  10. Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors.

    PubMed

    Ohto, Umeharu

    2017-01-01

    Toll-like receptors (TLRs) play a central role in innate immunity as pathogen sensors. During the last decade, structural analyses of TLRs have revealed the mechanisms of ligand recognition and signal transduction. Each TLR recognizes its cognate ligand in a different manner, whereas signal transduction is achieved by a common mechanism. In this review, the mechanisms of ligand recognition and signal transduction by TLRs are summarized based on recent structural information.

  11. Activation of Toll-like receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo.

    PubMed

    Luo, Qingqiong; Hu, Shuiqing; Yan, Ming; Sun, Zujun; Chen, Wantao; Chen, Fuxiang

    2012-08-01

    Toll-like receptors are well known as molecular sensors of pathogen-associated molecular patterns. They control activation of the innate immune response and subsequently shape the adaptive immune response. Recent publications have demonstrated that Toll-like receptors also play important roles in multiple human cancers, yet their function in oral squamous cell carcinoma remains unclear. In this study, we showed that both oral squamous cell carcinoma cell lines and tissues from oral squamous carcinoma patients express relatively high levels of Toll-like receptor 3. We also found that synthetic dsRNA-polyinosinic-polycytidilic acid, a Toll-like receptor 3 ligand, induced apoptosis of oral squamous carcinoma cells mainly via Toll-like receptor 3, through interferon-β production and activation of caspases 3 and 9. Moreover, in an oral squamous cell carcinoma xenograft mouse model, we demonstrated for the first time that activation of Toll-like receptor 3 inhibited oral squamous cell carcinoma tumor growth in vivo. Therefore, the direct proapoptotic activity of Toll-like receptor 3 in human oral squamous carcinoma cells may make this protein a viable therapeutic target in the treatment of oral squamous cell carcinoma.

  12. Toll-like receptor 4 dependent responses to lung injury in a murine model of pulmonary contusion

    PubMed Central

    Hoth, J. Jason; Wells, Jonathan D.; Brownlee, Noel A.; Hiltbold, Elizabeth M.; Meredith, J. Wayne; McCall, Charles E.; Yoza, Barbara K.

    2010-01-01

    Blunt chest trauma resulting in pulmonary contusion with an accompanying acute inflammatory response is a common but poorly understood injury. We previously demonstrated that toll-like receptor 2 participates in the inflammatory response to lung injury. We hypothesized that the toll-like receptor 4, in a MyD88-dependent manner, may also participate in the response to lung injury. To investigate this, we used a model of pulmonary contusion in the mouse that is similar to that observed clinically in humans and evaluated post injury lung function, pulmonary neutrophil recruitment and the systemic innate immune response. Comparisons were made between wild type mice and mice deficient in toll like receptor 4 or MyD88. We found toll-like receptor 4 dependent responses to pulmonary contusion that include hypoxemia, edema, and neutrophil infiltration. Increased expression of interleukin 6 and chemokine (C-X-C motif) ligand-1 in the bronchoalveolar lavage and serum was also dependent on TLR4 activation. We further demonstrated that these responses to pulmonary contusion were dependent on MyD88, an adapter protein in the signal transduction pathway mediated by toll-like receptors. These results show that toll-like receptors have a primary role in the response to acute lung injury. Lung inflammation and systemic innate immune responses are dependent on toll-like receptor activation by pulmonary contusion. PMID:18665044

  13. Priming by lipopolysaccharide exaggerates acute lung injury and mortality in responses to peptidoglycan through up-regulation of Toll-like receptor-2 expression in mice.

    PubMed

    Matsuda, Naoyuki; Yamazaki, Hiromi; Takano, Ken-ichi; Matsui, Kazuhiro; Takano, Yasuo; Kemmotsu, Osamu; Hattori, Yuichi

    2008-03-01

    Invasive infection mixed with Gram-positive and Gram-negative bacteria often results in severe sepsis and septic shock, the prognosis of which is extremely poor and the mortality is high. Here, we hypothesized that lipopolysaccharide (LPS) from Gram-negative bacteria may exert a priming effect on the innate immune response to peptidoglycan (PepG) from Gram-positive bacteria and if so, examined the molecular mechanism of this priming. We found that mice who underwent intratracheal instillation with PepG (5 mg/kg) following prior administration of LPS (5 mg/kg) had a marked decline in survival as compared with the animals given each bacterial cell wall component alone. Furthermore, blood gas exchange impairment and pulmonary vascular hyperpermeability were greatly enhanced in mice given PepG after LPS stimulation, indicating a severe development of acute lung injury. LPS significantly up-regulated the expression levels of Toll-like receptor (TLR)-2 mRNA and protein in mouse lungs. Translocation of TLR-2 to the membranes was also increased by LPS stimulation. This was supported by immunohistochemical examination showing that TLR-2 expression was changed from the cytoplasm to the luminal surface of bronchiolar epithelial cells following LPS stimulation. We also demonstrated an LPS-induced increase in TLR-2 mRNA expression in type-II pneumocytes by reverse transcription-polymerase chain reaction following laser-assisted microdissection. In vivo transfection of nuclear factor-kappaB (NF-kappaB) oligonucleotides strongly prevented the up-regulation of TLR-2 after LPS stimulation at pulmonary cellular and tissue levels. We conclude that the priming effect of LPS on PepG-induced lung injury and death is preceded by NF-kappaB-mediated up-regulation of TLR-2.

  14. Identification of single nucleotide polymorphisms in the bovine Toll-like receptor 1 gene and association with health traits in cattle.

    PubMed

    Russell, Christopher D; Widdison, Stephanie; Leigh, James A; Coffey, Tracey J

    2012-03-14

    Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1) has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) within the bovine TLR1 gene (boTLR1) are associated with clinical mastitis (CM).Selected boTLR1 SNPs were analysed within a Holstein Friesian herd. Significant associations were found for the tagging SNP -79 T > G and the 3'UTR SNP +2463 C > T. We observed favourable linkage of reduced CM with increased milk fat and protein, indicating selection for these markers would not be detrimental to milk quality. Furthermore, we present evidence that some of these boTLR1 SNPs underpin functional variation in bovine TLR1. Animals with the GG genotype (from the tag SNP -79 T > G) had significantly lower boTLR1 expression in milk somatic cells when compared with TT or TG animals. In addition, stimulation of leucocytes from GG animals with the TLR1-ligand Pam3csk4 resulted in significantly lower levels of CXCL8 mRNA and protein.SNPs in boTLR1 were significantly associated with CM. In addition we have identified a bovine population with impaired boTLR1 expression and function. This may have additional implications for animal health and warrants further investigation to determine the suitability of identified SNPs as markers for disease susceptibility.

  15. Identification of single nucleotide polymorphisms in the bovine Toll-like receptor 1 gene and association with health traits in cattle

    PubMed Central

    2012-01-01

    Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1) has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) within the bovine TLR1 gene (boTLR1) are associated with clinical mastitis (CM). Selected boTLR1 SNPs were analysed within a Holstein Friesian herd. Significant associations were found for the tagging SNP -79 T > G and the 3'UTR SNP +2463 C > T. We observed favourable linkage of reduced CM with increased milk fat and protein, indicating selection for these markers would not be detrimental to milk quality. Furthermore, we present evidence that some of these boTLR1 SNPs underpin functional variation in bovine TLR1. Animals with the GG genotype (from the tag SNP -79 T > G) had significantly lower boTLR1 expression in milk somatic cells when compared with TT or TG animals. In addition, stimulation of leucocytes from GG animals with the TLR1-ligand Pam3csk4 resulted in significantly lower levels of CXCL8 mRNA and protein. SNPs in boTLR1 were significantly associated with CM. In addition we have identified a bovine population with impaired boTLR1 expression and function. This may have additional implications for animal health and warrants further investigation to determine the suitability of identified SNPs as markers for disease susceptibility. PMID:22417166

  16. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells.

    PubMed

    Kobayashi, Yoshihisa; Iwata, Arifumi; Suzuki, Kotaro; Suto, Akira; Kawashima, Saki; Saito, Yukari; Owada, Takayoshi; Kobayashi, Midori; Watanabe, Norihiko; Nakajima, Hiroshi

    2013-03-26

    Although innate immune responses are necessary for the initiation of acquired immune responses and the subsequent successful elimination of pathogens, excessive responses occasionally result in lethal endotoxic shock accompanied by a cytokine storm. B and T lymphocyte attenuator (BTLA), a coinhibitory receptor with similarities to cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, is expressed in not only B and T cells but also dendritic cells (DCs) and macrophages (Mϕs). Recently, several studies have reported that BTLA-deficient (BTLA(-/-)) mice show enhanced pathogen clearance compared with WT mice in early phase of infections. However, the roles of BTLA expressed on innate cells in overwhelming and uncontrolled immune responses remain unclear. Here, we found that BTLA(-/-) mice were highly susceptible to LPS-induced endotoxic shock. LPS-induced TNF-α and IL-12 production in DCs and Mϕs was significantly enhanced in BTLA(-/-) mice. BTLA(-/-) DCs also produced high levels of TNF-α on stimulation with Pam3CSK4 but not poly(I:C) or CpG, suggesting that BTLA functions as an inhibitory molecule on Toll-like receptor signaling at cell surface but not endosome. Moreover, BTLA(-/-) DCs showed enhanced MyD88- and toll/IL-1R domain-containing adaptor inducing IFN (TRIF)-dependent signaling on LPS stimulation, which is associated with impaired accumulation of Src homology 2-containing protein tyrosine phosphatase in lipid rafts. Finally, we found that an agonistic anti-BTLA antibody rescued mice from LPS-induced endotoxic shock, even if the antibody was given to mice that had developed a sign of endotoxic shock. These results suggest that BTLA directly inhibits LPS responses in DCs and Mϕs and that agonistic agents for BTLA might have therapeutic potential for LPS-induced endotoxic shock.

  17. B and T lymphocyte attenuator inhibits LPS-induced endotoxic shock by suppressing Toll-like receptor 4 signaling in innate immune cells

    PubMed Central

    Kobayashi, Yoshihisa; Iwata, Arifumi; Suzuki, Kotaro; Suto, Akira; Kawashima, Saki; Saito, Yukari; Owada, Takayoshi; Kobayashi, Midori; Watanabe, Norihiko; Nakajima, Hiroshi

    2013-01-01

    Although innate immune responses are necessary for the initiation of acquired immune responses and the subsequent successful elimination of pathogens, excessive responses occasionally result in lethal endotoxic shock accompanied by a cytokine storm. B and T lymphocyte attenuator (BTLA), a coinhibitory receptor with similarities to cytotoxic T-lymphocyte antigen (CTLA)-4 and programmed death (PD)-1, is expressed in not only B and T cells but also dendritic cells (DCs) and macrophages (Mϕs). Recently, several studies have reported that BTLA-deficient (BTLA−/−) mice show enhanced pathogen clearance compared with WT mice in early phase of infections. However, the roles of BTLA expressed on innate cells in overwhelming and uncontrolled immune responses remain unclear. Here, we found that BTLA−/− mice were highly susceptible to LPS-induced endotoxic shock. LPS-induced TNF-α and IL-12 production in DCs and Mϕs was significantly enhanced in BTLA−/− mice. BTLA−/− DCs also produced high levels of TNF-α on stimulation with Pam3CSK4 but not poly(I:C) or CpG, suggesting that BTLA functions as an inhibitory molecule on Toll-like receptor signaling at cell surface but not endosome. Moreover, BTLA−/− DCs showed enhanced MyD88- and toll/IL-1R domain-containing adaptor inducing IFN (TRIF)-dependent signaling on LPS stimulation, which is associated with impaired accumulation of Src homology 2-containing protein tyrosine phosphatase in lipid rafts. Finally, we found that an agonistic anti-BTLA antibody rescued mice from LPS-induced endotoxic shock, even if the antibody was given to mice that had developed a sign of endotoxic shock. These results suggest that BTLA directly inhibits LPS responses in DCs and Mϕs and that agonistic agents for BTLA might have therapeutic potential for LPS-induced endotoxic shock. PMID:23479601

  18. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  19. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  20. Toll-like receptors in bony fish: from genomics to function.

    PubMed

    Palti, Yniv

    2011-12-01

    Receptors that recognize conserved pathogen molecules are the first line of cellular innate immunity defense. Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in mammals. Key features of the fish TLRs and the factors involved in their signaling cascade have high structural similarity to the mammalian TLR system. However, the fish TLRs also exhibit very distinct features and large diversity which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Six non-mammalian TLRs were identified in fish. TLR14 shares sequence and structural similarity with TLR1 and 2, and the other five (TLR19, 20, 21, 22 and 23) form a cluster of novel TLRs. TLR4 was lost from the genomes of most fishes, and the TLR4 genes found in zebrafish do not recognize the mammalian agonist LPS and are likely paralogous and not orthologous to mammalian TLR4 genes. TLR6 and 10 are also absent from all fish genomes sequenced to date. Of the at least 16 TLR types identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S and TLR22. The common carp TLR2 was shown to recognize the synthetic triacylated lipopeptide Pam(3)CSK(4) and lipopeptides from gram positive bacteria. The membrane-bound TLR5 (TLR5M) signaling in response to flagellin in rainbow trout is amplified through interaction with the soluble form (TLR5S) in a positive loop feedback. In Fugu, TLR3 is localized to the endoplasmic reticulum (ER) and recognizes relatively short dsRNA, while TLR22 has a surveillance function like the human cell-surface TLR3. Genome and gene duplications have been major contributors to the teleost's rich evolutionary history and genomic diversity. Duplicate or multi-copy TLR genes were identified for TLR3 and 7 in common carp, TLR4b, 5, 8 and 20 in zebrafish, TLR8a in rainbow trout and TLR22 in rainbow trout and Atlantic salmon. The main task for current and near

  1. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  2. Detection of Neu1 sialidase activity in regulating Toll-like receptor activation.

    PubMed

    Amith, Schammim R; Jayanth, Preethi; Finlay, Trisha; Franchuk, Susan; Gilmour, Alanna; Abdulkhalek, Samar; Szewczuk, Myron R

    2010-09-07

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative

  3. Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins

    PubMed Central

    2010-01-01

    Background Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip), exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR)2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (Osp)A. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-α) and Interleukin (IL)-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293) transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity. Results In the absence of any serum and in the presence of 10% delipidated FBS, production of Mip-induced TNF-α and IL-8 in PMA-differentiated THP-1 cells were similar whereas they were significantly decreased in the presence of 10% FBS suggesting an inhibiting role of lipids present in FBS. In the presence of 10% human serum, the concentrations of TNF-α and IL-8 were 2 to 5 times lower than in the presence of 10% FBS suggesting the presence of more potent inhibitor(s) in human serum than in FBS. Similar results were obtained in primary human differentiated macrophages. Different lipid components of human serum were then tested (total lipoproteins, HDL, LDL, VLDL, triglyceride emulsion, apolipoprotein (apo)A-I, B, E2, and E3). The most efficient inhibitors were LDL, VLDL, and apoB that reduced the mean concentration of TNF-α release in Mip-induced macrophages to 24, 20, and 2%, respectively (p < 0.0001). These lipid components were also able to prevent TLR1/2 induced

  4. Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    PubMed Central

    Ménager, Pauline; Roux, Pascal; Mégret, Françoise; Bourgeois, Jean-Pierre; Le Sourd, Anne-Marie; Danckaert, Anne; Lafage, Mireille; Préhaud, Christophe; Lafon, Monique

    2009-01-01

    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit. PMID:19247444

  5. A Role for Toll-like Receptor 3 Variants in Host Susceptibility to Enteroviral Myocarditis and Dilated Cardiomyopathy*

    PubMed Central

    Gorbea, Carlos; Makar, Kimberly A.; Pauschinger, Matthias; Pratt, Gregory; Bersola, Jeathrina L. F.; Varela, Jacquelin; David, Ryan M.; Banks, Lori; Huang, Chien-Hua; Li, Hua; Schultheiss, Heinz-Peter; Towbin, Jeffrey A.; Vallejo, Jesús G.; Bowles, Neil E.

    2010-01-01

    The innate antiviral response is mediated, at least in part, by Toll-like receptors (TLRs). TLR3 signaling is activated in response to viral infection, and the absence of TLR3 in mice significantly increases mortality after infection with enteroviruses that cause myocarditis and/or dilated cardiomyopathy. We screened TLR3 in patients diagnosed with enteroviral myocarditis/cardiomyopathy and identified a rare variant in one patient as well as a significantly increased occurrence of a common polymorphism compared with controls. Expression of either variant resulted in significantly reduced TLR3-mediated signaling after stimulation with synthetic double-stranded RNA. Furthermore, Coxsackievirus B3 infection of cell lines expressing mutated TLR3 abrogated activation of the type I interferon pathway, leading to increased viral replication. TLR3-mediated type I interferon signaling required cellular autophagy and was suppressed by 3-methyladenine and bafilomycin A1, by inhibitors of lysosomal proteolysis, and by reduced expression of Beclin 1, Atg5, or microtubule-associated protein 1 light chain 3β (MAP1LC3β). However, TLR3-mediated signaling was restored upon exogenous expression of Beclin 1 or a variant MAP1LC3β fusion protein refractory to RNA interference. These data suggest that individuals harboring these variants may have a blunted innate immune response to enteroviral infection, leading to reduced viral clearance and an increased risk of cardiac pathology. PMID:20472559

  6. Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell Infiltration and Homing

    PubMed Central

    Town, Terrence; Bai, Fengwei; Wang, Tian; Kaplan, Amber T.; Qian, Feng; Montgomery, Ruth R.; Anderson, John F.; Flavell, Richard A.; Fikrig, Erol

    2009-01-01

    SUMMARY West Nile virus (WNV), a mosquito-transmitted single-stranded RNA (ssRNA) flavivirus, causes human disease of variable severity. We investigated Toll-like receptor 7-deficient (Tlr7−/−) and myeloid differentiation factor 88-deficient (Myd88−/−) mice, which both have defective recognition of ssRNA, and found increased viremia and susceptibility to lethal WNV infection. Despite increased tissue concentrations of most innate cytokines, CD45+ leukocytes and CD11b+ macrophages failed to home to WNV-infected cells and infiltrate into target organs of Tlr7−/− mice. Tlr7−/− mice and macrophages had reduced interleukin-12 (IL-12) and IL-23 responses after WNV infection, and mice deficient in IL-12 p40 and IL-23 p40 (Il12b−/−) or IL-23 p19 (Il23a−/−), but not IL-12 p35 (Il12a−/−), responded similarly to Tlr7−/− mice, with increased susceptibility to lethal WNV encephalitis. Collectively, these results demonstrate that TLR7 andIL-23-dependent WNV responses representa vital host defense mechanism that operates by affecting immune cell homing to infected target cells. PMID:19200759

  7. Role of Cytokines and Toll-Like Receptors in the Immunopathogenesis of Guillain-Barré Syndrome

    PubMed Central

    Nyati, Kishan Kumar; Prasad, Kashi Nath

    2014-01-01

    Guillain-Barré syndrome (GBS) is an autoimmune disease of the peripheral nervous system, mostly triggered by an aberrant immune response to an infectious pathogen. Although several infections have been implicated in the pathogenesis of GBS, not all such infected individuals develop this disease. Moreover, infection with a single agent might also lead to different subtypes of GBS emphasizing the role of host factors in the development of GBS. The host factors regulate a broad range of inflammatory processes that are involved in the pathogenesis of autoimmune diseases including GBS. Evidences suggest that systemically and locally released cytokines and their involvement in immune-mediated demyelination and axonal damage of peripheral nerves are important in the pathogenesis of GBS. Toll-like receptors (TLRs) link innate and adaptive immunity through transcription of several proinflammatory cytokines. TLR genes may increase susceptibility to microbial infections; an attenuated immune response towards antigen and downregulation of cytokines occurs due to mutation in the gene. Herein, we discuss the crucial role of host factors such as cytokines and TLRs that activate the immune response and are involved in the pathogenesis of the disease. PMID:25614713

  8. Subclinical Congenital Cytomegalovirus Infection and Hearing Impairment

    ERIC Educational Resources Information Center

    Dahle, Arthur J.; And Others

    1974-01-01

    When the hearing sensitivity of children with subclinical congenital cytomegalovirus infection was evaluated and compared with that of a group of matched control subjects, nine of the 18 infected subjects were found to have some hearing loss, ranging from slight high-frequency impairments to a severe-to-profound unilateral loss. (MYS)

  9. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  10. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway.

    PubMed

    Jiang, Ninghong; Xie, Feng; Guo, Qisang; Li, Ming-Qing; Xiao, Jingjing; Sui, Long

    2017-06-01

    Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.

  11. Toll-like receptors (TLR) 2 and 4 expression of keratinocytes from patients with localized and disseminated dermatophytosis.

    PubMed

    Oliveira, Cristiane Beatriz de; Vasconcellos, Cídia; Sakai-Valente, Neusa Y; Sotto, Mirian Nacagami; Luiz, Fernanda Guedes; Belda Júnior, Walter; Sousa, Maria da Gloria Teixeira de; Benard, Gil; Criado, Paulo Ricardo

    2015-01-01

    There are few studies on the role of innate immune response in dermatophytosis. An investigation was conducted to define the involvement of Toll-Like Receptors (TLRs) 2 and 4 in localized (LD) and disseminated (DD) dermatophytosis due to T. rubrum. Fifteen newly diagnosed patients, eight patients with LD and seven with DD, defined by involvement of at least three body segments were used in this study. Controls comprised twenty skin samples from healthy individuals undergoing plastic surgery. TLR2 and TLR4 were quantified in skin lesions by immunohistochemistry. A reduced expression of TLR4 in the lower and upper epidermis of both LD and DD patients was found compared to controls; TLR2 expression was preserved in the upper and lower epidermis of all three groups. As TLR4 signaling induces the production of inflammatory cytokines and neutrophils recruitment, its reduced expression likely contributed to the lack of resolution of the infection and the consequent chronic nature of the dermatophytosis. As TLR2 expression acts to limit the inflammatory process and preserves the epidermal structure, its preserved expression may also contribute to the persistent infection and limited inflammation that are characteristic of dermatophytic infections.

  12. Targeting Toll-Like Receptors: Promising Therapeutic Strategies for the Management of Sepsis-Associated Pathology and Infectious Diseases

    PubMed Central

    Savva, Athina; Roger, Thierry

    2013-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis. PMID:24302927

  13. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur.

    PubMed

    Baroni, Adone; Orlando, Manuela; Donnarumma, Giovanna; Farro, Pietro; Iovene, Maria Rosaria; Tufano, Maria Antonietta; Buommino, Elisabetta

    2006-01-01

    Toll-like receptors (TLRs) are crucial players in the innate immune response to microbial invaders. The lipophilic yeast Malassezia furfur has been implicated in the triggering of scalp lesions in psoriasis. The aim of the present study was to assess the role of TLRs in the defence against M. furfur infection. The expression of the myeloid differentiation factor 88 (MyD88) gene, which is involved in the signalling pathway of many TLRs, was also analysed. In addition, a possible correlation of antimicrobial peptides of the beta-defensin family to TLRs was tested. Human keratinocytes infected with M. furfur and a variety of M. furfur-positive psoriatic skin biopsies were analysed by RT-PCR, for TLRs, MyD88, human beta-defensin 2 (HBD-2), HBD-3 and interleukin-8 (IL-8) mRNA expression. When keratinocytes were infected with M. furfur, an up-regulation for TLR2, MyD88, HBD-2, HBD-3 and IL-8 mRNA was demonstrated, compared to the untreated cells. The same results were obtained when psoriatic skin biopsies were analysed. The M. furfur-induced increase in HBD-2 and IL-8 gene expression is inhibited by anti-TLR2 neutralising antibodies, suggesting that TLR2 is involved in the M. furfur-induced expression of these molecules. These findings suggest the importance of TLRs in skin protection against fungi and the importance of keratinocytes as a component of innate immunity.

  14. Double-Stranded RNA Interacts With Toll-Like Receptor 3 in Driving the Acute Inflammatory Response Following Lung Contusion.

    PubMed

    Suresh, Madathilparambil V; Thomas, Bivin; Machado-Aranda, David; Dolgachev, Vladislov A; Kumar Ramakrishnan, Sadeesh; Talarico, Nicholas; Cavassani, Karen; Sherman, Matthew A; Hemmila, Mark R; Kunkel, Steven L; Walter, Nils G; Hogaboam, Cory M; Raghavendran, Krishnan

    2016-11-01

    Lung contusion is a major risk factor for the development of acute respiratory distress syndrome. We set to determine the role of toll-like receptor 3 and the binding of double-stranded RNA in the pathogenesis of sterile injury following lung contusion. Toll-like receptor 3 expression was analyzed in postmortem lung samples from patients with lung contusion. Unilateral lung contusion was induced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice. Subsequently, lung injury and inflammation were evaluated. Apoptotic indices, phagocytic activity, and phenotypic characterization of the macrophages were determined. Double-stranded RNA in bronchoalveolar lavage and serum samples following lung contusion was measured. A toll-like receptor 3/double-stranded RNA ligand inhibitor was injected into wild-type mice prior to lung contusion. Toll-like receptor 3 expression was higher in patients and wild-type mice with lung contusion. The degree of lung injury, inflammation, and macrophage apoptosis was reduced in toll-like receptor 3 (-/-), TIR-domain-containing adapter-inducing interferon-β (-/-), and wild-type mice with toll-like receptor 3 antibody neutralization. Alveolar macrophages from toll-like receptor 3 (-/-) mice had a lower early apoptotic index, a predominant M2 phenotype and increased surface translocation of toll-like receptor 3 from the endosome to the surface. When compared with viral activation pathways, lung injury in lung contusion demonstrated increased p38 mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 phosphorylation with inflammasome activation without a corresponding increase in nuclear factor-κB or type-1 interferon production. Additionally, pretreatment with toll-like receptor 3/double-stranded RNA ligand inhibitor led to a reduction in injury, inflammation, and macrophage apoptosis. We conclude that the interaction of double-stranded RNA from injured cells with

  15. Plasmacytoid dendritic cells and Toll-like receptor 7-dependent signalling promote efficient protection of mice against highly virulent influenza A virus.

    PubMed

    Kaminski, Michael M; Ohnemus, Annette; Cornitescu, Marius; Staeheli, Peter

    2012-03-01

    Types I and III interferons (IFNs) elicit protective antiviral immune responses during influenza virus infection. Although many cell types can synthesize IFN in response to virus infection, it remains unclear which IFN sources contribute to antiviral protection in vivo. We found that mice carrying functional alleles of the Mx1 influenza virus resistance gene partially lost resistance to infection with a highly pathogenic H7N7 influenza A virus strain if Toll-like receptor 7 (TLR7) signalling was compromised. This effect was achieved by deleting either the TLR7 gene or the gene encoding the TLR7 adaptor molecule MyD88. A similar decrease of influenza virus resistance was observed when animals were deprived of plasmacytoid dendritic cells (pDCs) at day 1 post-infection. Our results provide in vivo proof that pDCs contribute to the protection of the lung against influenza A virus infections, presumably via signals from TLR7.

  16. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cedric; Gautreau, Laetitia; Segain, Jean Pierre; de Coppet, Pierre; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Asehnoune, Karim

    2013-11-01

    Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus. Monophosphoryl lipid A was administered intravenously after haemorrhage and before pneumonia onset. Haemorrhage altered survival rate, increased lung damage (neutrophil accumulation, oedema and cytokine release) and altered the functions of dendritic and natural killer cells. Here, we show that monophosphoryl lipid A decreased systemic dissemination of S. aureus and dampened inflammatory lung lesions. Monophosphoryl lipid A partially restored the capacity for antigen presentation and the transcriptional activity in dendritic cells. Monophosphoryl lipid A did not restore the interferon-γ mRNA but prevented interleukin-10 mRNA overexpression in natural killer cells compared with untreated mice. Ex vivo monophosphoryl lipid A-stimulated dendritic cells or natural killer cells harvested from haemorrhaged animals were adoptively transferred into mice undergoing post-haemorrhage pneumonia. Stimulated dendritic cells (but not stimulated natural killer cells) improved the survival rate compared with mice left untreated. In vivo depletion of natural killer cells decreased survival rate of monophosphoryl lipid A-treated mice. Dendritic and natural killer cells are critically involved in the beneficial effects of monophosphoryl lipid A within post-haemorrhage pneumonia.

  17. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    PubMed

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  18. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inf