Science.gov

Sample records for infection impairs toll-like

  1. Role of Toll-Like Receptors in Tuberculosis Infection

    PubMed Central

    Biyikli, Oguz Oben; Baysak, Aysegul; Ece, Gulfem; Oz, Adnan Tolga; Ozhan, Mustafa Hikmet; Berdeli, Afig

    2016-01-01

    Background One-third of the world’s population is infected with Mycobacterium tuberculosis. Investigation of Toll-like receptors (TLRs) has revealed new information regarding the immunopathogenesis of this disease. Toll-like receptors can recognize various ligands with a lipoprotein structure in the bacilli. Toll-like receptor 2 and TLR-4 have been identified in association with tuberculosis infection. Objectives The aim of our study was to investigate the relationship between TLR polymorphism and infection progress. Methods Twenty-nine patients with a radiologically, microbiologically, and clinically proven active tuberculosis diagnosis were included in this 25-month study. Toll-like receptor 2 and TLR-4 polymorphisms and allele distributions were compared between these 29 patients and 100 healthy control subjects. Peripheral blood samples were taken from all patients. Genotyping of TLR-2, TLR-4, and macrophage migration inhibitory factor was performed. The extraction step was completed with a Qiagen mini blood purification system kit (Qiagen, Ontario, Canada) using a peripheral blood sample. The genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism. Results In total, 19 of the 29 patients with tuberculosis infection had a TLR-2 polymorphism, and 20 of the 100 healthy subjects had a TLR-2 polymorphism (P < 0.001). The TLR-4 polymorphism and interferon-γ allele distributions were not statistically correlated. Conclusions Toll-like receptor 2 polymorphism is a risk factor for tuberculosis infection. The limiting factor in this study was the lack of investigation of the interferon-γ and tumor necrosis factor-α levels, which are important in the development of infection. Detection of lower levels of these cytokines in bronchoalveolar lavage specimens, especially among patients with TLR-2 defects, will provide new data that may support the results of this study. PMID:27942355

  2. Toll-like receptor sensing of human herpesvirus infection

    PubMed Central

    West, John A.; Gregory, Sean M.; Damania, Blossom

    2012-01-01

    Toll-like receptors (TLRs) are evolutionarily conserved pathogen sensors that constitute the first line of defense in the human immune system. Herpesviruses are prevalent throughout the world and cause significant disease in the human population. Sensing of herpesviruses via TLRs has only been documented in the last 10 years and our understanding of the relationship between these sentinels of the immune system and herpesvirus infection has already provided great insight into how the host cell responds to viral infection. This report will summarize the activation and modulation of TLR signaling in the context of human herpesvirus infections. PMID:23061052

  3. IKBKG (nuclear factor-κB essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function

    PubMed Central

    Salt, Bryn H.; Niemela, Julie E.; Pandey, Rahul; Hanson, Eric P.; Deering, Raquel P.; Quinones, Ralph; Jain, Ashish; Orange, Jordan S.; Gelfand, Erwin W.

    2011-01-01

    Background Patients with hypomorphic nuclear factor-κB essential modulator (NEMO) mutations have extensive phenotypic variability that can include atypical infectious susceptibility. Objective This study may provide important insight into immunologic mechanisms of host defense. Methods Immunologic evaluation, including studies of Toll-like receptor (TLR) function, was performed in a 6-month-old boy with normal ectodermal development who was diagnosed with Pneumocystis pneumonia and cytomegalovirus sepsis. Results Genomic and cDNA sequencing demonstrated a novel NEMO missense mutation, 337G->A, predicted to cause a D113N (aspartic acid to asparagine) substitution in the first coiled-coil region of the NEMO protein. Quantitative serum immunoglobulins, lymphocyte subset numbers, and mitogeninduced lymphocyte proliferation were essentially normal. The PBMC responses to TLR ligands were also surprisingly normal, whereas natural killer cell cytolytic activity, T-cell proliferative responses to specific antigens, and T-cell receptor–induced NF-κB activation were diminished. Conclusion Unlike the unique NEMO mutation described here, the most commonly reported mutations are clustered at the 3′ end in the tenth exon, which encodes a zinc finger domain. Because specific hypomorphic variants of NEMO are associated with distinctive phenotypes, this particular NEMO mutation highlights a dispensability of the region including amino acid 113 for TLR signaling and ectodysplasin A receptor function. This region is required for certain immunoreceptor functions as demonstrated by his susceptibility to infections as well as natural killer cell and T-cell defects. PMID:18179816

  4. Toll-like receptors in skin infections and inflammatory diseases.

    PubMed

    Lai, Yuping; Gallo, Richard L

    2008-09-01

    The skin is the ultimate example of the function of innate immunity, it alerts the host of danger by many systems including sensing pathogen-associated molecule patterns (PAMPs) through Toll-like receptors and other pattern recognition receptors (PRRs), yet normally provides defense without inflammation. The skin responds rapidly to invading microbes by producing antimicrobial peptides or other antimicrobial intermediates before cytokine release results in inflammation. To achieve maximal immune responses for clearing invading microbes, the activation of select PRRs in skin then initiates and shapes adaptive immune responses through the activation of dendritic cells and recruitment of T cell subsets. Importantly, cross-talk between TLRs can influence this system in several ways including augmenting or suppressing the immune response. As a consequence of their pivotal role, TLR responses need to be tightly controlled by associated negative regulators or negative feedback loops to prevent detrimental effects from TLRs overactivation. This review focuses on describing the involvement of TLRs in the development of skin infections and inflammatory diseases, and highlights the potential application of TLR agonists or antagonists in these skin diseases.

  5. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8⁺ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection.

    PubMed

    Bandyopadhyay, Syamdas; Kar Mahapatra, Santanu; Paul Chowdhury, Bidisha; Kumar Jha, Mukesh; Das, Shibali; Halder, Kuntal; Bhattacharyya Majumdar, Suchandra; Saha, Bhaskar; Majumdar, Subrata

    2015-01-01

    Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL.

  6. Toll-Like Receptor 2 Targeted Rectification of Impaired CD8+ T Cell Functions in Experimental Leishmania donovani Infection Reinstates Host Protection

    PubMed Central

    Bandyopadhyay, Syamdas; Kar Mahapatra, Santanu; Paul Chowdhury, Bidisha; Kumar Jha, Mukesh; Das, Shibali; Halder, Kuntal; Bhattacharyya Majumdar, Suchandra; Saha, Bhaskar; Majumdar, Subrata

    2015-01-01

    Leishmania donovani, a protozoan parasite, causes the disease visceral leishmanisis (VL), characterized by inappropriate CD8+ T-cell activation. Therefore, we examined whether the Toll-like Receptor 2 (TLR2) ligand Ara-LAM, a cell wall glycolipid from non-pathogenic Mycobacterium smegmatis, would restore CD8+ T-cell function during VL. We observed that by efficient upregulation of TLR2 signaling-mediated NF-κB translocation and MAPK signaling in CD8+ T-cells (CD25+CD28+IL-12R+IFN-γR+), Ara-LAM triggered signaling resulted in the activation of T-bet, which in turn, induced transcription favourable histone modification at the IFN-γ, perforin, granzyme-B promoter regions in CD8+ T-cells. Thus, we conclude that Ara-LAM induced efficient activation of effector CD8+ T-cells by upregulating the expression of IFN-γ, perforin and granzyme-B in an NF-κB and MAPK induced T-bet dependent manner in VL. PMID:26559815

  7. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection

    PubMed Central

    Noto, Michael J.; Boyd, Kelli L.; Burns, William J.; Varga, Matthew G.; Peek, Richard M.

    2015-01-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9−/− mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9−/− mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii. PMID:26238713

  8. Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection.

    PubMed

    Noto, Michael J; Boyd, Kelli L; Burns, William J; Varga, Matthew G; Peek, Richard M; Skaar, Eric P

    2015-10-01

    Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9(-/-) mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9(-/-) mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii.

  9. Arterial Catheterization and Infection: Toll-like receptors in defense against microorganisms and therapeutic implications

    PubMed Central

    Hambsch, Zakary J.; Kerfeld, Mitchell J.; Kirkpatrick, Daniel R.; McEntire, Dan M.; Reisbig, Mark D.; Youngblood, Charles F.; Agrawal, Devendra K.

    2015-01-01

    Radial artery catheterization has become a preferred route over femoral artery catheterization, in order to monitor the blood pressure of hemodynamically unstable patients or for repeated sampling of arterial blood gases. While the incidence of catheter-related infection is lower in the radial artery than the femoral artery, infection remains a major issue that requires attention. In this review of the literature, we discuss infectious complications of radial artery catheterization, with a focus on various risk factors and establishing the most common causative agents. We also critically review the role of the innate immune system involving Toll-like receptors (TLRs) in host-defense, with the goal of establishing a common pathway used by the innate immune system via TLRs to combat the pathogens that most commonly cause infection in radial artery catheterization. If this pathway can be therapeutically manipulated to preemptively attack pathogenic agents, immunomodulation may be an option in reducing the incidence of infection in this procedure. PMID:26271949

  10. Toll-like receptor 4 polymorphisms in dengue virus-infected children.

    PubMed

    Djamiatun, Kis; Ferwerda, Bart; Netea, Mihai G; van der Ven, André J A M; Dolmans, Wil M V; Faradz, Sultana M H

    2011-08-01

    Differential viral recognition by cells bearing Toll-like receptor 4 (TLR4) polymorphisms Asp299Gly and Thr399Ile may influence susceptibility and severity of dengue virus infection. In central Java, Indonesia, we investigated 201 children with dengue hemorrhagic fever (DHF) and 179 healthy controls. Patients and controls were mostly ethnic Javanese. A nearly complete cosegregation of the two mutations was observed. The TLR4 299/399 genotype was found in five patients and four controls. Prevalence of the TLR4 299/399 genotype did not differ significantly between controls and DHF patients or between patients with different severities of DHF. Also, vascular leakage in patients with different TLR4 genotypes did not differ. Thus, the 299/399 TLR4 haplotype has only minor influence on susceptibility and severity of complicated dengue virus infection.

  11. Toll-like receptor 4 deficiency impairs microglial phagocytosis of degenerating axons.

    PubMed

    Rajbhandari, Labchan; Tegenge, Million Adane; Shrestha, Shiva; Ganesh Kumar, Nishant; Malik, Adeel; Mithal, Aditya; Hosmane, Suneil; Venkatesan, Arun

    2014-12-01

    Microglia are rapidly activated in the central nervous system (CNS) in response to a variety of injuries, including inflammation, trauma, and stroke. In addition to modulation of the innate immune response, a key function of microglia is the phagocytosis of dying cells and cellular debris, which can facilitate recovery. Despite emerging evidence that axonal debris can pose a barrier to regeneration of new axons in the CNS, little is known of the cellular and molecular mechanisms that underlie clearance of degenerating CNS axons. We utilize a custom micropatterned microfluidic system that enables robust microglial-axon co-culture to explore the role of Toll-like receptors (TLRs) in microglial phagocytosis of degenerating axons. We find that pharmacologic and genetic disruption of TLR4 blocks induction of the Type-1 interferon response and inhibits phagocytosis of axon debris in vitro. Moreover, TLR4-dependent microglial clearance of unmyelinated axon debris facilitates axon outgrowth. In vivo, microglial phagocytosis of CNS axons undergoing Wallerian degeneration in a dorsal root axotomy model is impaired in adult mice in which TLR4 has been deleted. Since purinergic receptors can influence TLR4-mediated signaling, we also explored a role for the microglia P2 receptors and found that the P2X7R contributes to microglial clearance of degenerating axons. Overall, we identify TLR4 as a key player in axonal debris clearance by microglia, thus creating a more permissive environment for axonal outgrowth. Our findings have significant implications for the development of protective and regenerative strategies for the many inflammatory, traumatic, and neurodegenerative conditions characterized by CNS axon degeneration.

  12. Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    PubMed Central

    Gungor, Bilgi; Kahraman, Tamer; Gursel, Mayda; Yilmaz, Bilge

    2017-01-01

    Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4+ T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients. PMID:28170444

  13. Association of Toll-Like Receptor 3 and Toll-Like Receptor 9 Single Nucleotide Polymorphisms with Hepatitis C Virus Infection and Hepatic Fibrosis in Egyptian Patients.

    PubMed

    Zayed, Rania A; Omran, Dalia; Mokhtar, Doha A; Zakaria, Zinab; Ezzat, Sameera; Soliman, Mohamed A; Mobarak, Lamiaa; El-Sweesy, Hossam; Emam, Ghada

    2017-01-16

    Toll-like receptors (TLRs) are recognized as fundamental contributors to the immune system function against infections. Hepatitis C virus (HCV) infection represents a global health problem especially in Egypt having the highest HCV prevalence worldwide where HCV infection is a continuing epidemic. The aim of the present study was to investigate the possible association between genetic variation in TLR-3 and TLR-9 and HCV infection and hepatic fibrosis in chronic HCV-positive Egyptian patients. The present study included 100 naïve chronic HCV-positive patients and 100 age- and sex-matched healthy controls. Genotyping of TLR-3 (_7 C/A [rs3775296]), TLR-3 (c.1377C/T [rs3775290]) and TLR-9 (1237T/C [rs5743836]) were done by polymerase chain reaction restriction fragment length polymorphism technique. Frequency of polymorphic genotypes in TLR-3 (_7 C/A), TLR-3 (c.1377C/T) and TLR-9 (1237T/C) were not significantly different between studied HCV-positive patients and controls with P values 0.121, 0.112, and 0.683, respectively. TLR-3 c.1377 T-allele was associated with advanced stage of hepatic fibrosis (P = 0.003).

  14. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection.

    PubMed

    Darville, Toni; O'Neill, Joshua M; Andrews, Charles W; Nagarajan, Uma M; Stahl, Lynn; Ojcius, David M

    2003-12-01

    The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.

  15. Naturally occurring Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12) polymorphisms are not associated with Toxoplasma gondii infection in wild wood mice.

    PubMed

    Morger, Jennifer; Bajnok, Jaroslav; Boyce, Kellyanne; Craig, Philip S; Rogan, Michael T; Lun, Zhao-Rong; Hide, Geoff; Tschirren, Barbara

    2014-08-01

    Toxoplasma gondii is a highly successful parasite with a worldwide prevalence. Small rodents are the main intermediate hosts, and there is growing evidence that T. gondii modifies their behaviour. Chronically infected rodents show impaired learning capacity, enhanced activity, and, most importantly, a reduction of the innate fear towards cat odour. This modification of host behaviour ensures a successful transmission of T. gondii from rodents to felids, the definitive hosts of the parasite. Given the negative fitness consequences of this behavioural manipulation, as well as an increased mortality during the acute phase of infection, we expect rodents to evolve potent resistance mechanisms that prevent or control infection. Indeed, studies in laboratory mice have identified candidate genes for T. gondii resistance. Of particular importance appear to be the innate immune receptors Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12), which recognise T. gondii profilin and initiate immune responses against the parasite. Here we analyse the genetic diversity of TLR11 and TLR12 in a natural population of wood mice (Apodemus sylvaticus), and test for associations between TLR11 and TLR12 polymorphisms and T. gondii infection, as well as for epistatic interactions between TLR11 and TLR12 on infection status. We found that both TLR11 and TLR12 were polymorphic in wood mice, with four and nine amino acid haplotypes, respectively. However, we found no evidence that TLR11 or TLR12 genotypes or haplotypes were significantly associated with Toxoplasma infection. Despite the importance of TLR11 and TLR12 in T. gondii recognition and immune defence initiation, naturally occurring polymorphisms at TLR11 and TLR12 thus appear to play a minor role in mediating qualitative resistance to T. gondii in natural host populations of A. sylvaticus. This highlights the importance of assessing the role of candidate genes for parasite resistance identified in a laboratory setting in

  16. Divergent Functions of Toll-like Receptors during Bacterial Lung Infections

    PubMed Central

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L.; Downey, Gregory P.

    2014-01-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4+ T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain–like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs. PMID:25033332

  17. Divergent functions of Toll-like receptors during bacterial lung infections.

    PubMed

    Baral, Pankaj; Batra, Sanjay; Zemans, Rachel L; Downey, Gregory P; Jeyaseelan, Samithamby

    2014-10-01

    Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.

  18. Association of Toll-Like Receptor 3 Single-Nucleotide Polymorphisms and Hepatitis C Virus Infection

    PubMed Central

    Al-Anazi, Mashael R.; Matou-Nasri, Sabine; Abdo, Ayman A.; Sanai, Faisal M.; Alkahtani, Saad; Alarifi, Saud; Alkahtane, Abdullah A.; Al-Yahya, Hamad; Ali, Daoud; Alessia, Mohammed S.; Alshahrani, Bushra; Al-Ahdal, Mohammed N.

    2017-01-01

    Toll-like receptor 3 (TLR3) plays a key role in innate immunity by recognizing pathogenic, double-stranded RNAs. Thus, activation of TLR3 is a major factor in antiviral defense and tumor eradication. Although downregulation of TLR3 gene expression has been mainly reported in patients infected with hepatitis C virus (HCV), the influence of TLR3 genotype on the risk of HCV infection, HCV-related cirrhosis, and/or hepatocellular carcinoma (HCC) remains to be determined. Single-nucleotide polymorphisms (SNPs) within the TLR3 gene and their associations with HCV-related disease risk were investigated in a Saudi Arabian population in this study. Eight TLR3 SNPs were analyzed in 563 patients with HCV, which consisted of 437 patients with chronic HCV infections, 88 with HCV-induced liver cirrhosis, and 38 with HCC. A total of 599 healthy control subjects were recruited to the study. Among the eight TLR3 SNPs studied, the rs78726532 SNP was strongly associated with HCV infection when compared to that in healthy control subjects. The rs5743314 was also strongly associated with HCV-related liver disease progression (cirrhosis and HCC). In summary, these results indicate that distinct genetic variants of TLR3 SNPs are associated with HCV infection and HCV-mediated liver disease progression in the Saudi Arabian population. PMID:28127569

  19. Role of Toll-like receptors in Helicobacter pylori infection and immunity

    PubMed Central

    Smith, Sinéad M

    2014-01-01

    The gram-negative bacterium Helicobacter pylori (H. pylori) infects the stomachs of approximately half of the world’s population. Although infection induces an immune response that contributes to chronic gastric inflammation, the response is not sufficient to eliminate the bacterium. H. pylori infection causes peptic ulcers, gastric cancer and mucosa-associated lymphoid tissue lymphoma. Disease outcome is linked to the severity of the host inflammatory response. Gastric epithelial cells represent the first line of innate immune defence against H. pylori, and respond to infection by initiating numerous cell signalling cascades, resulting in cytokine induction and the subsequent recruitment of inflammatory cells to the gastric mucosa. Pathogen recognition receptors of the Toll-like receptor (TLR) family mediate many of these cell signalling events. This review discusses recent findings on the role of various TLRs in the recognition of H. pylori in distinct cell types, describes the TLRs responsible for the recognition of individual H. pylori components and outlines the influence of innate immune activation on the subsequent development of the adaptive immune response. The mechanistic identification of host mediators of H. pylori-induced pathogenesis has the potential to reveal drug targets and opportunities for therapeutic intervention or prevention of H. pylori-associated disease by means of vaccines or immunomodulatory therapy. PMID:25133016

  20. Toll-like receptors in prostate infection and cancer between bench and bedside

    PubMed Central

    Gambara, Guido; Cesaris, Paola; Nunzio, Cosimo; Ziparo, Elio; Tubaro, Andrea; Filippini, Antonio; Riccioli, Anna

    2013-01-01

    Toll-Like receptors (TLRs) are a family of evolutionary conserved transmembrane proteins that recognize highly conserved molecules in pathogens. TLR-expressing cells represent the first line of defence sensing pathogen invasion, triggering innate immune responses and subsequently priming antigen-specific adaptive immunity. In vitro and in vivo studies on experimental cancer models have shown both anti- and pro-tumoural activity of different TLRs in prostate cancer, indicating these receptors as potential targets for cancer therapy. In this review, we highlight the intriguing duplicity of TLR stimulation by pathogens: their protective role in cases of acute infections, and conversely their negative role in favouring hyperplasia and/or cancer onset, in cases of chronic infections. This review focuses on the role of TLRs in the pathophysiology of prostate infection and cancer by exploring the biological bases of the strict relation between TLRs and prostate cancer. In particular, we highlight the debated question of how reliable mutations or deregulated expression of TLRs are as novel diagnostic or prognostic tools for prostate cancer. So far, the anticancer activity of numerous TLR ligands has been evaluated in clinical trials only in organs other than the prostate. Here we review recent clinical trials based on the most promising TLR agonists in oncology, envisaging a potential application also in prostate cancer therapy. PMID:23551576

  1. Toll-Like Receptor 2 Is Required for Inflammatory Process Development during Leishmania infantum Infection

    PubMed Central

    Sacramento, Laís A.; da Costa, Jéssica L.; de Lima, Mikhael H. F.; Sampaio, Pedro A.; Almeida, Roque P.; Cunha, Fernando Q.; Silva, João S.; Carregaro, Vanessa

    2017-01-01

    Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2−/− mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2−/− neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection. PMID:28280488

  2. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with gram-positive bacteria.

    PubMed

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C; Beutler, Bruce

    2005-08-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C(16:1)) and oleate (C(18:1)), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1-a gene with numerous NF-kappaB elements in its promoter--is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria.

  3. A Toll-Like Receptor 2-Responsive Lipid Effector Pathway Protects Mammals against Skin Infections with Gram-Positive Bacteria

    PubMed Central

    Georgel, Philippe; Crozat, Karine; Lauth, Xavier; Makrantonaki, Evgenia; Seltmann, Holger; Sovath, Sosathya; Hoebe, Kasper; Du, Xin; Rutschmann, Sophie; Jiang, Zhengfan; Bigby, Timothy; Nizet, Victor; Zouboulis, Christos C.; Beutler, Bruce

    2005-01-01

    flake (flk), an N-ethyl-N-nitrosourea-induced recessive germ line mutation of C57BL/6 mice, impairs the clearance of skin infections by Streptococcus pyogenes and Staphylococcus aureus, gram-positive pathogens that elicit innate immune responses by activating Toll-like receptor 2 (TLR2) (K. Takeda and S. Akira, Cell. Microbiol. 5:143-153, 2003). Positional cloning and sequencing revealed that flk is a novel allele of the stearoyl coenzyme A desaturase 1 gene (Scd1). flake homozygotes show reduced sebum production and are unable to synthesize the monounsaturated fatty acids (MUFA) palmitoleate (C16:1) and oleate (C18:1), both of which are bactericidal against gram-positive (but not gram-negative) organisms in vitro. However, intradermal MUFA administration to S. aureus-infected mice partially rescues the flake phenotype, which indicates that an additional component of the sebum may be required to improve bacterial clearance. In normal mice, transcription of Scd1—a gene with numerous NF-κB elements in its promoter—is strongly and specifically induced by TLR2 signaling. Similarly, the SCD1 gene is induced by TLR2 signaling in a human sebocyte cell line. These observations reveal the existence of a regulated, lipid-based antimicrobial effector pathway in mammals and suggest new approaches to the treatment or prevention of infections with gram-positive bacteria. PMID:16040962

  4. Antagonistic effect of toll-like receptor signaling and bacterial infections on transplantation tolerance*

    PubMed Central

    Alegre, Maria-Luisa; Chen, Luqiu; Wang, Tongmin; Ahmed, Emily; Wang, Chyung-Ru; Chong, Anita

    2009-01-01

    The induction of donor-specific tolerance remains a major goal in the field of transplantation immunology. Therapies that target costimulatory molecules can induce tolerance to heart and pancreatic islet allografts in mouse models, but fail to do so following transplantation of skin or intestinal allografts. We have proposed that organs colonized by commensal bacteria such as skin, lung and intestine may be resistant to such therapies as a result of bacterial translocation at the time of transplantation, which may promote antigen-presenting cell (APC) maturation and the production of pro-inflammatory cytokines, consequently enhancing responses of alloreactive T cells. Our results indicate that the inability to sense signaling by most toll-like receptors (TLRs), as well as by interleukin (IL)-1R and IL-18R, as a result of genetic ablation of myeloid differentiation factor 88 (MyD88) promotes the acceptance of skin allografts. Conversely, TLR signals and infections by a model bacterium, Listeria monocytogenes (LM), at the time of transplantation can prevent the induction of transplantation tolerance. The effects of the TLR9 agonist CpG are MyD88-dependent, while the pro-rejection capacity of LM depends on the intracellular sensing of LM and the production of type I interferon (IFN). Therefore, transiently targeting these innate, pro-inflammatory pathways may have therapeutic value to promote transplantation tolerance. PMID:19424015

  5. The role of toll-like receptors (TLRs) in urinary tract infections (UTIs)

    PubMed Central

    Behzadi, Elham

    2016-01-01

    Introduction Urinary Tract Infections (UTIs) are caused by different types of microbial agents such as uropathogenic Escherichia coli (UPEC) and Candida albicans. The presence of strong physical barriers may prevent the breach of pathogens into the urinary tract. However, sometimes the pathogenic microorganisms may pass through the barriers and stimulate the innate and adaptive responses. Among a variety of innate immune responses, Toll-Like Receptors (TLRs) are one of the most unique and interesting molecules regarding UTIs. Thus, the authors have focused their attention on the role of TLRs in urinary tract defense against pathogenic microbial agents such as UPEC and C.albicans through this literature review. Material and methods Several papers regarding UTIs and TLRs including original and review articles were searched by PubMed and Google Scholar. They were studied and the most important aspects in association with the role of TLRs in UTIs were extracted. Additionally, this paper was prepared using the experience of the authors. Results The TLRs 2, 4 and 5 are the most functional molecules that contribute to urinary tract defense system and UTIs. It is incredible that TLRs are able to detect and recognize different parts of microbial components relating to the same pathogen. Besides, the flexibility of the TLR molecules may lead to identification of different types of microorganisms with different signaling pathways. Conclusions Our knowledge associated with TLRs and their activities against microbial causative agents of UTIs may help us to prevent, control and treat UTIs at a higher quality level. PMID:28127459

  6. Toll-like receptor 4-induced endoplasmic reticulum stress contributes to impairment of vasodilator action of insulin

    PubMed Central

    Jang, Hyun-Ju; Hwang, Daniel H.

    2015-01-01

    Impairment of vasodilator action of insulin is associated with endothelial dysfunction and insulin resistance. Activation of Toll-like receptor 4 (TLR4) induces proinflammatory response and endoplasmic reticulum (ER) stress. Saturated fatty acids (SFA) activate TLR4, which induces ER stress and endothelial dysfunction. Therefore, we determined whether TLR4-mediated ER stress is an obligatory step mediating SFA-induced endothelial dysfunction. Palmitate stimulated proinflammatory responses and ER stress, and this was suppressed by knockdown of TLR4 in primary human aortic endothelial cells (HAEC). Next, we examined the role of TLR4 in vasodilatory responses in intact vessels isolated from wild-type (WT, C57BL/6) and TLR4-KO mice after feeding high-fat (HFD) or normal chow diet (NCD) for 12 wk. Arterioles isolated from HFD WT mice exhibited impaired insulin-stimulated vasodilation compared with arterioles isolated from NCD WT mice. Deficiency of TLR4 was protective from HFD-induced impairment of insulin-stimulated vasodilation. There were no differences in acetylcholine (Ach)- or sodium nitroprusside (SNP)-stimulated vasodilation between the two groups. Furthermore, we examined whether ER stress is involved in SFA-induced impairment of vasodilator actions of insulin. Infusion of palmitate showed the impairment of vasodilatory response to insulin, which was ameliorated by coinfusion with tauroursodeoxycholic acid (TUDCA), an ER stress suppressor. Taken together, the results suggest that TLR4-induced ER stress may be an obligatory step mediating the SFA-mediated endothelial dysfunction. PMID:26522062

  7. Anti-viral role of toll like receptor 4 in hepatitis B virus infection: An in vitro study

    PubMed Central

    Das, Dipanwita; Sarkar, Neelakshi; Sengupta, Isha; Pal, Ananya; Saha, Debraj; Bandopadhyay, Manikankana; Das, Chandrima; Narayan, Jimmy; Singh, Shivram Prasad; Chakravarty, Runu

    2016-01-01

    AIM Toll like receptors plays a significant anti-viral role in different infections. The aim of this study was to look into the role of toll like receptor 4 (TLR4) in hepatitis B virus (HBV) infection. METHODS Real time PCR was used to analyze the transcription of TLR4 signaling molecules, cell cycle regulators and HBV DNA viral load after triggering the HepG2.2.15 cells with TLR4 specific ligand. Nuclear factor (NF)-κB translocation on TLR4 activation was analyzed using microscopic techniques. Protein and cell cycle analysis was done using Western Blot and FACS respectively. RESULTS The present study shows that TLR4 activation represses HBV infection. As a result of HBV suppression, there are several changes in host factors which include partial release in G1/S cell cycle arrest and changes in host epigenetic marks. Finally, it was observed that anti-viral action of TLR4 takes place through the NF-κB pathway. CONCLUSION The study shows that TLR4 activation in HBV infection brings about changes in hepatocyte microenvironment and can be used for developing a promising therapeutic target in future. PMID:28058014

  8. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination

    PubMed Central

    Arunachalam, Prabhu S.; Mishra, Ria; Badarinath, Krithika; Selvam, Deepak; Payeli, Sravan K.; Stout, Richard R.; Ranga, Udaykumar

    2016-01-01

    The delivery of plasmid DNA to the skin can target distinct subsets of dermal dendritic cells to confer a superior immune response. The needle-free immunization technology offers a reliable, safe and efficient means to administer intradermal (ID) injections. We report here that the ID injection of DNA vectors using an NF device (NF-ID) elicits a superior cell-mediated immune response, at much lesser DNA dosage, comparable in magnitude to the traditional intramuscular immunization. However, the humoral response is significantly impaired, possibly at the stage of B cell isotype switching. We found that the NF-ID administration deposits the DNA primarily on the epidermis resulting in a rapid loss of the DNA as well as the synthesized antigen due to the faster regeneration rate of the skin layers. Therefore, despite the immune-rich nature of the skin, the NF-ID immunization of DNA vectors may be limited by the impaired humoral response. Additional booster injections are required to augment the antibody response. As an alternative and a viable solution, we rescued the IgG response by coadministration of a Toll-like receptor 9 agonist, among other adjuvants examined. Our work has important implication for the optimization of the emerging needle-free technology for ID immunization. PMID:27658623

  9. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation.

    PubMed

    Costello, Derek A; Lyons, Anthony; Denieffe, Stephanie; Browne, Tara C; Cox, F Fionnuala; Lynch, Marina A

    2011-10-07

    The membrane glycoprotein CD200 is expressed on several cell types, including neurons, whereas expression of its receptor, CD200R, is restricted principally to cells of the myeloid lineage, including microglia. The interaction between CD200 and CD200R maintains microglia and macrophages in a quiescent state; therefore, CD200-deficient mice express an inflammatory phenotype exhibiting increased macrophage or microglial activation in models of arthritis, encephalitis, and uveoretinitis. Here, we report that lipopolysaccharide (LPS) and Pam(3)CysSerLys(4) exerted more profound effects on release of the proinflammatory cytokines, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNFα), in glia prepared from CD200(-/-) mice compared with wild type mice. This effect is explained by the loss of CD200 on astrocytes, which modulates microglial activation. Expression of Toll-like receptors 4 and 2 (TLR4 and -2) was increased in glia prepared from CD200(-/-) mice, and the evidence indicates that microglial activation, assessed by the increased numbers of CD11b(+) cells that stained positively for both MHCII and CD40, was enhanced in CD200(-/-) mice compared with wild type mice. These neuroinflammatory changes were associated with impaired long term potentiation (LTP) in CA1 of hippocampal slices prepared from CD200(-/-) mice. One possible explanation for this is the increase in TNFα in hippocampal tissue prepared from CD200(-/-) mice because TNFα application inhibited LTP in CA1. Significantly, LPS and Pam(3)CysSerLys(4), at concentrations that did not affect LTP in wild type mice, inhibited LTP in slices prepared from CD200(-/-) mice, probably due to the accompanying increase in TLR2 and TLR4. Thus, the neuroinflammatory changes that result from CD200 deficiency have a negative impact on synaptic plasticity.

  10. Toll-like receptor pre-stimulation protects mice against lethal infection with highly pathogenic influenza viruses.

    PubMed

    Shinya, Kyoko; Okamura, Tadashi; Sueta, Setsuko; Kasai, Noriyuki; Tanaka, Motoko; Ginting, Teridah E; Makino, Akiko; Eisfeld, Amie J; Kawaoka, Yoshihiro

    2011-03-04

    Since the beginning of the 20th century, humans have experienced four influenza pandemics, including the devastating 1918 'Spanish influenza'. Moreover, H5N1 highly pathogenic avian influenza (HPAI) viruses are currently spreading worldwide, although they are not yet efficiently transmitted among humans. While the threat of a global pandemic involving a highly pathogenic influenza virus strain looms large, our mechanisms to address such a catastrophe remain limited. Here, we show that pre-stimulation of Toll-like receptors (TLRs) 2 and 4 increased resistance against influenza viruses known to induce high pathogenicity in animal models. Our data emphasize the complexity of the host response against different influenza viruses, and suggest that TLR agonists might be utilized to protect against lethality associated with highly pathogenic influenza virus infection in humans.

  11. Differential modulation of avian β-defensin and Toll-like receptor expression in chickens infected with infectious bronchitis virus.

    PubMed

    Xu, Yang; Zhang, Tingting; Xu, Qianqian; Han, Zongxi; Liang, Shuling; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-11-01

    The host innate immune response either clears invading viruses or allows the adaptive immune system to establish an effective antiviral response. In this study, both pathogenic (passage 3, P3) and attenuated (P110) infectious bronchitis virus (IBV) strains were used to study the immune responses of chicken to IBV infection. Expression of avian β-defensins (AvBDs) and Toll-like receptors (TLRs) in 16 tissues of chicken were compared at 7 days PI. The results showed that P3 infection upregulated the expression of AvBDs, including AvBD2, 4, 5, 6, 9, and 12, while P110 infection downregulated the expression of AvBDs, including AvBD3, 4, 5, 6, and 9 in most tissues. Meanwhile, the expression level of several TLRs showed a general trend of upregulation in the tissues of P3-infected chickens, while they were downregulated in the tissues of P110-infected chickens. The result suggested that compared with the P110 strain, the P3 strain induced a more pronounced host innate immune response. Furthermore, we observed that recombinant AvBDs (including 2, 6, and 12) demonstrated obvious anti-viral activity against IBV in vitro. Our findings contribute to the proposal that IBV infection induces an increase in the messenger RNA (mRNA) expression of some AvBDs and TLRs, which suggests that AvBDs may play significant roles in the resistance of chickens to IBV replication.

  12. Effects of Toll-like receptor 3 on herpes simplex virus type-1-infected mouse neural stem cells.

    PubMed

    Sun, Xiuning; Shi, Lihong; Zhang, Haoyun; Li, Ruifang; Liang, Ruiwen; Liu, Zhijun

    2015-03-01

    In this study, we aimed to investigate the effect of herpes simplex virus type-1 (HSV-1) infection on the phosphorylation of interferon regulatory factor 3 (IRF3) and the expression of interferon-β (IFN-β), as well as to clarify the functions of toll-like receptor 3 (TLR3) in mouse neural stem cells (NSCs) infected with HSV-1. In HSV-1-infected cultured NSCs, immunofluorescence, reverse transcription - polymerase chain reaction, Western blot, and ELISA were performed to reveal the expression patterns of TLR3, IRF3, and IFN-β. Then, lentivirus-mediated RNA interference (RNAi) was used to block the expression of TLR3, and its effect on host resistance to HSV-1 infection was investigated. Under uninfected conditions, NSCs expressed TLR3 and phosphorylated IRF3, but after infection, the expression level of TLR3 was upregulated and the phosphorylation level of IRF3 in the nucleus was significantly enhanced, while IFN-β was also expressed. After TLR3 expression was blocked by lentivirus-mediated RNAi, IRF3 phosphorylation and IFN-β expression were downregulated. Therefore, HSV-1 upregulated the expression of TLR3 in NSCs and promoted nuclear translocation after IRF3 was phosphorylated to induce IFN-β expression. TLR3 exhibited an anti-HSV-1 infection capacity via innate immune functions.

  13. Acanthamoeba infection in lungs of mice expressed by toll-like receptors (TLR2 and TLR4).

    PubMed

    Derda, Monika; Wojtkowiak-Giera, Agnieszka; Kolasa-Wołosiuk, Agnieszka; Kosik-Bogacka, Danuta; Hadaś, Edward; Jagodziński, Paweł P; Wandurska-Nowak, Elżbieta

    2016-06-01

    Toll-like receptors (TLRs) play a key role in the innate immune responses to a variety of pathogens including parasites. TLRs are among the most highly conserved in the evolution of the receptor family, localized mainly on cells of the immune system and on other cells such as lung cells. The aim of this study was to determine for the first time the expression of TLR2 and TLR4 in the lung of Acanthamoeba spp. infected mice using quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemical (IHC) staining. The Acanthamoeba spp. were isolated from a patient with Acanthamoeba keratitis (AK) (strain Ac 55) and from environmental samples of water from Malta Lake (Poznań, Poland - strain Ac 43). We observed a significantly increased level of expression of TLR2 as well as TLR4 mRNA from 2 to 30 days post Acanthamoeba infection (dpi) in the lungs of mice infected with Ac55 (KP120880) and Ac43 (KP120879) strains. According to our observations, increased TLR2 and TLR4 expression in the pneumocytes, interstitial cells and epithelial cells of the bronchial tree may suggest an important role of these receptors in protective immunity against Acanthamoeba infection in the lung. Moreover, increased levels of TLR2 and TLR4 mRNA expression in infected Acanthamoeba mice may suggest the involvement of these TLRs in the recognition of this amoeba pathogen-associated molecular pattern (PAMP).

  14. Polymorphism in the promoter region of the Toll-like receptor 9 gene and cervical human papillomavirus infection.

    PubMed

    Oliveira, Lucas Boeno; Louvanto, Karolina; Ramanakumar, Agnihotram V; Franco, Eduardo L; Villa, Luisa L

    2013-08-01

    Polymorphism in the Toll-like receptor (TLR) 9 gene has been shown to have a significant role in some diseases; however, little is known about its possible role in the natural history of human papillomavirus (HPV) infections. We investigated the association between a single-nucleotide polymorphism (SNP) (rs5743836) in the promoter region of TLR9 (T1237C) and type-specific HPV infections. Specimens were derived from a cohort of 2462 women enrolled in the Ludwig-McGill Cohort Study. We randomly selected 500 women who had a cervical HPV infection detected at least once during the study as cases. We defined two control groups: (i) a random sample of 300 women who always tested HPV negative, and (ii) a sample of 234 women who were always HPV negative but had a minimum of ten visits during the study. TLR9 genotyping was performed using bidirectional PCR amplification of specific alleles. Irrespective of group, the WT homozygous TLR9 genotype (TT) was the most common form, followed by the heterozygous (TC) and the mutant homozygous (CC) forms. There were no consistent associations between polymorphism and infection risk, either overall or by type or species. Likewise, there were no consistently significant associations between polymorphism and HPV clearance or persistence. We concluded that this polymorphism in the promoter region of TLR9 gene does not seem to have a mediating role in the natural history of the HPV infection.

  15. Toll-like receptor 6 senses Mycobacterium avium and is required for efficient control of mycobacterial infection.

    PubMed

    Marinho, Fábio A V; de Paula, Rafaella R; Mendes, Aline C; de Almeida, Leonardo A; Gomes, Marco T R; Carvalho, Natália B; Oliveira, Fernanda S; Caliari, Marcelo V; Oliveira, Sergio C

    2013-09-01

    Mycobacterium avium has been reported to signal through both Toll-like receptor (TLR2) and TLR9. To investigate the role of TLR6 in innate immune responses to M. avium, TLR6, MyD88, TLR2, and TLR2/6 KO mice were infected with this pathogen. Bacterial burdens were higher in the lungs and livers of infected TLR6, TLR2, TLR2/6, and MyD88 KO mice compared with those in C57BL/6 mice, which indicates that TLR6 is required for the efficient control of M. avium infection. However, TLR6 KO spleen cells presented with normal M. avium induced IFN-γ responses as measured by ELISA and flow cytometry. In contrast, the production of IFN-γ in lung tissue was diminished in all studied KO mice. Furthermore, only MyD88 deficiency reduced granuloma areas in mouse livers. Moreover, we determined that TLR6 plays an important role in controlling bacterial growth within macrophages and in the production of TNF-α, IL-12, and IL-6 by M. avium infected DCs. Finally, the lack of TLR6 reduced activation of MAPKs and NF-κB in DCs. In summary, TLR6 is required for full resistance to M. avium and for the activation of DCs to produce proinflammatory cytokines.

  16. Analysis of the expression of toll-like receptors 2 and 4 and cytokine production during experimental Leishmania chagasi infection.

    PubMed

    Cezário, Glaucia Aparecida Gomes; de Oliveira, Larissa Ragozo Cardoso; Peresi, Eliana; Nicolete, Vanessa Cristina; Polettini, Jossimara; de Lima, Carlos Roberto Gonçalves; Gatto, Mariana; Calvi, Sueli Aparecida

    2011-08-01

    Toll-like receptors (TLRs) recognise pathogen-derived molecules and influence immunity to control parasite infections. This study aimed to evaluate the mRNA expression of TLRs 2 and 4, the expression and production of the cytokines interleukin (IL)-12, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-17, IL-10 and transforming growth factor (TGF)-β and the production of nitric oxide (NO) in the spleen of mice infected with Leishmania chagasi. It also aimed to evaluate any correlations between mRNA expression TLR2 and 4 and cytokines and NO production. Infection resulted in increased TLR2-4, IL-17, TNF-α and TGF-β mRNA expression during early infection, with decreased expression during late infection correlating with parasite load. IFN-γ and IL-12 mRNA expression decreased at the peak of parasitism. IL-10 mRNA expression increased throughout the entire time period analysed. Although TGF-β, TNF-α and IL-17 were highly produced during the initial phase of infection, IFN-γ and IL-12 exhibited high production during the final phase of infection. IL-10 and NO showed increased production throughout the evaluated time period. In the acute phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17, NO, IL-10 and TGF-β expression and parasite load. During the chronic phase of infection, there was a positive correlation between TLR2-4, TNF-α, IL-17 and TGF-β expression and parasite load. Our data suggest that infection by L. chagasi resulted in modulation of TLRs 2 and 4 and cytokines.

  17. Expression of Toll-like receptor 4 in lungs of immune-suppressed rat with Acinetobacter baumannii infection

    PubMed Central

    Wang, Yanmei; Zhang, Xiaohong; Feng, Xuanlin; Liu, Xiaoshu; Deng, Lei; Liang, Zong-An

    2016-01-01

    Toll-like receptor 4 (TLR4) is involved in the regulation of host responses to Acinetobacter baumannii (A. baumannii). The aim of the present study was to examine the function of TLR4 in lung inflammation in immune-suppressed rats with A. baumannii infection. A total of 72 Sprague-Dawley male rats were randomly divided into the control, A. baumannii infection and immune-suppressed infection groups. The immune-suppressed infection group was treated with 100 mg/kg hydrocortisone by subcutaneous injection every other day for 2 weeks prior to A. baumannii infection. Lung tissue was obtained on the 3rd and 7th day after tracheal inoculation with A. baumannii. The expression of TLR4 in bronchial and alveolar epithelial cells, and alveolar macrophage was examined using immunohistochemistry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid were detected using ELISA. The results showed that in the control group, the expression of TLR4 was upregulated in the bronchial and alveolar epithelial, and alveolar macrophages, and the levels of IL-6 and TNF-α were increased in the early phase of A. baumannii infection. On the 7th day, no significant difference in the levels of IL-6 and TNF-α was observed between the A. baumannii infection and control groups. Conversely, the expression of TLR4 was downregulated in the immune-suppressed group, and the levels of IL-6 and TNF-α were reduced on the 3rd day after infection. In the subsequent observation period, the expression of TLR4 was upregulated and the levels of IL-6 and TNF-α were increased. In conclusion, the results show a critical role of TLR4 in mediating effective immune response in the lung of rat with A. baumannii infection. PMID:27703512

  18. [Toll-like receptor 2 R753Q polymorphisms are associated with an increased risk of infective endocarditis].

    PubMed

    Bustamante, Juan; Tamayo, Eduardo; Flórez, Santiago; Telleria, Juan J; Bustamante, Elena; López, Javier; San Román, J Alberto; Alvarez, F Javier

    2011-11-01

    The ability to respond to the ligands of toll-like receptors (TLR) could be affected by single nucleotide polymorphisms in TLR codifying genes. The influence of the polymorphisms TLR2 (R753Q, R677W), TLR4 (D299G, T399I) and CD14 (C-159T) was consecutively studied in 65 patients with infective endocarditis. The control group (n=66) consisted of healthy volunteers. All the polymorphisms were genotyped by means of restriction analysis after their amplification. An association between endocarditis and variants of TLR2 R753Q (P <.001) was observed, but no association with other polymorphisms was found. The TLR2 R753Q co-dominant (odds ratio=13.33), recessive (odds ratio=9.12) and dominant (odds ratio=3.65) genotypes showed a positive association with the infective endocarditis phenotype. The polymorphism TLR2 R753Q was associated with a greater susceptibility towards the development of infective endocarditis. Further studies are required to validate these results and identify other genetic risk factors.

  19. TBX21 participates in innate immune response by regulating Toll-like receptor 2 expression in Streptococcus pneumoniae infections.

    PubMed

    Woo, C H; Shin, S G; Koh, S H; Lim, J H

    2014-10-01

    Nasopharyngeal carriage of Streptococcus pneumoniae (pneumococcus) plays an important role in the development of invasive diseases, and is also critically involved in setting up respiratory bacterial and viral infections. We previously reported that pneumococcus, one of the commonly carried bacteria in the nasopharynx, regulates non-typeable Haemophilus influenzae-induced inflammation by upregulating the expression of Toll-like receptor 2 (TLR2). However, the underlying molecular mechanisms by which TLR2 expression is regulated during pneumococcal infections have not yet been well characterized. TBX21 is an important transcription factor of adaptive immunity, but there is an increasing body of evidence pointing to a role in regulating innate immunity. The expression of TBX21 was reported in epithelial cells, but the expression and role of TBX21 in respiratory epithelium, especially for regulating TLR2, has not yet been studied. In this study, we found that pneumococcus upregulates TBX21 expression in the respiratory epithelium. The effect of pneumococcus on TBX21 expression was dependent on its cytoplasmic toxin, pneumolysin. In addition, epithelial TBX21 expression was not regulated by the gram-negative bacterium non-typeable Haemophilus influenzae, peptidoglycan or endotoxin. Deficiency of TBX21 in mice or knocking down TBX21 in epithelial cells suppressed pneumococcus-induced TLR2 expression, but not that of TLR4 or TLR9. These results indicate that the adaptive immune regulator TBX21 participates in regulating innate immune responses, through regulation of TLR2 expression during pneumococcal infections.

  20. Genetic variation of toll-like receptor genes and infection by Mycobacterium avium ssp. paratuberculosis in Holstein-Friesian cattle.

    PubMed

    Ruiz-Larrañaga, O; Manzano, C; Iriondo, M; Garrido, J M; Molina, E; Vazquez, P; Juste, R A; Estonba, A

    2011-07-01

    Toll-like receptors (TLR) are membrane proteins that play a key role in innate immunity, by recognizing pathogens and subsequently activating appropriate responses. Mutations in TLR genes are associated with susceptibility to inflammatory and infectious diseases in humans. In cattle, 3 members of the TLR family, TLR1, TLR2, and TLR4, are associated with Mycobacterium avium ssp. paratuberculosis infection, although the extent of this association for the TLR1 and TLR4 receptors has not yet been determined. Moreover, the causal variant in the TLR2 gene has not yet been unequivocally established. In this study, 24 single nucleotide polymorphisms (SNP) in the bovine TLR1, TLR2, and TLR4 genes were selected from the literature, databases, and in silico searches, for a population-based genetic association study of a Spanish Holstein-Friesian sample. Whereas previous results regarding the TLR1 gene were not corroborated, a risk haplotype was detected in TLR2; however, its low frequency indicates that this detected association should be interpreted with caution. In the case of the TLR4 gene, 3 tightly linked SNP were found to be associated with susceptibility to M. avium ssp. paratuberculosis infection. Moreover, one of these SNP, the SNP c.-226G>C, which is localized in the 5'UTR region of the TLR4 gene, has been reported to be able to alter TLR4 expression, raising the possibility that this mutation may contribute to the response of the individual to infection.

  1. Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice

    PubMed Central

    Iwanaga, Naoki; Seki, Masafumi; Fukudome, Kenji; Oshima, Kazuhiro; Miyazaki, Taiga; Izumikawa, Koichi; Yanagihara, Katsunori; Miyazaki, Yoshitsugu; Mukae, Hiroshi; Kohno, Shigeru

    2016-01-01

    Chronic lower respiratory tract infection with Pseudomonas aeruginosa is difficult to treat due to enhanced antibiotic resistance and decreased efficacy of drug delivery to destroyed lung tissue. To determine the potential for restorative immunomodulation therapies, we evaluated the effect of Toll-like receptor 4 (TLR4) stimulation on the host immune response to Pseudomonas infection in mice. We implanted sterile plastic tubes precoated with P. aeruginosa in the bronchi of mice, administered the TLR4/MD2 agonistic monoclonal antibody UT12 intraperitoneally every week, and subsequently analyzed the numbers of viable bacteria and inflammatory cells and the levels of cytokines. We also performed flow cytometry-based phagocytosis and opsonophagocytic killing assays in vitro using UT12-treated murine peritoneal neutrophils. UT12-treated mice showed significantly enhanced bacterial clearance, increased numbers of Ly6G+ neutrophils, and increased concentrations of macrophage inflammatory protein 2 (MIP-2) in the lungs (P < 0.05). Depletion of CD4+ T cells eliminated the ability of the UT12 treatment to improve bacterial clearance and promote neutrophil recruitment and MIP-2 production. Additionally, UT12-pretreated peritoneal neutrophils exhibited increased opsonophagocytic killing activity via activation of the serine protease pathway, specifically neutrophil elastase activity, in a TLR4-dependent manner. These data indicated that UT12 administration significantly augmented the innate immune response against chronic bacterial infection, in part by promoting neutrophil recruitment and bactericidal function. PMID:27091927

  2. The role of MAPK in CD4{sup +} T cells toll-like receptor 9-mediated signaling following HHV-6 infection

    SciTech Connect

    Chi, Jing; Wang, Fang; Li, Lingyun; Feng, Dongju; Qin, Jian; Xie, Fangyi; Zhou, Feng; Chen, Yun; Wang, Jinfeng; Yao, Kun

    2012-01-05

    Human herpesvirus-6 (HHV-6) is an important immunosuppressive and immunomodulatory virus that primarily infects immune cells (mainly CD4{sup +} T cells) and strongly suppresses the proliferation of infected cells. Toll-like receptors are pattern-recognition receptors essential for the development of an appropriate innate immune defense against infection. To understand the role of CD4{sup +} T cells in the innate response to HHV-6 infection and the involvement of TLRs, we used an in vitro infection model and observed that the infection of CD4{sup +} T cells resulted in the activation of JNK/SAPK via up-regulation of toll-like receptor 9 (TLR9). Associated with JNK activation, annexin V-PI staining indicated that HHV-6A was a strong inducer of apoptosis. Apoptotic response associated cytokines, IL-6 and TNF-{alpha} also induced by HHV-6A infection.

  3. Direct Detection of Microbial Infection Through Activation Coupling of the Toll-Like Receptors

    DTIC Science & Technology

    2007-11-02

    sensors of bacterial infection, as a means of constructing an early warning system by which a detectable signal could be generated. The project...infection by MCMV (a mouse equivalent of human cytomegalovirus), and eight mutations that create susceptibility to Listeria monocytogenes have been

  4. Expression Profiles of Toll-Like Receptors in the Differentiation of an Infection with Borrelia burgdorferi Sensu Lato Spirochetes.

    PubMed

    Dudek, Slawomir; Ziółko, Ewa; Kimsa-Dudek, Magdalena; Solarz, Krzysztof; Mazurek, Urszula; Wierzgoń, Aleksander; Kokot, Teresa; Muc-Wierzgoń, Małgorzata

    2017-04-01

    The similarity of Lyme borreliosis to other diseases and its complex pathogenesis present diagnostic and therapeutic difficulties. The changes that occur at the cellular and molecular levels after a Borrelia sp. infection still remain poorly understood. Therefore, the present study focused on the expression of TLR and TLR-signaling genes in human dermal fibroblasts in the differentiation of an infection with Borrelia burgdorferi sensu lato spirochetes. Normal human dermal fibroblasts were cultured with the spirochetes of Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii. Total RNA was extracted from the cells using TRIzol reagent. The analysis of the expression profiles of TLRs and TLR-related genes was performed using commercially available oligonucleotide microarrays of HG-U133A. The GeneSpring 12.0 platform and significance analysis of microarrays were used for the statistical analysis of microarray data. The analyses using the oligonucleotide microarray and QRT-PCR techniques permitted to identify the genes encoding TLR4 and TLR6 as specific for infection with B. afzelii and B. burgdorferi sensu stricto. In turn, TLR3 was only characteristic for an infection with B. burgdorferi sensu stricto. There were no changes in the TLR gene expression after infection with B. garinii. Our findings confirm that Borrelia has a major effect on fibroblast gene expression. Further characterization of changes in gene expression may lead to valuable insights into the role of the toll-like receptor in the pathogenesis of Lyme disease and may provide guidelines for the development of diagnostic markers for an infection with a particular Borrelia genospecies. Moreover, this will help to identify better treatment strategies for Lyme disease.

  5. Requirement of UNC93B1 reveals a critical role for Toll-Like Receptor 7 in host resistance to primary infection with Trypanosoma cruzi1,2

    PubMed Central

    Caetano, Braulia C.; Carmo, Bianca B.; Melo, Mariane B.; Cerny, Anna; dos Santos, Sara L.; Bartholomeu, Daniella C.; Golenbock, Douglas T.; Gazzinelli, Ricardo T.

    2011-01-01

    UNC93B1 associates with Toll-Like Receptor (TLR) 3, 7 and 9, mediating their translocation from the endoplasmic reticulum to the endolysosome, thus allowing proper activation by microbial nucleic acids. We found that the triple deficient ‘3d’ mice, which lack functional UNC93B1 as well as functional endossomal TLRs, are highly susceptible to infection with Trypanosoma cruzi. The enhanced parasitemia and mortality in 3d animals were associated with impaired pro-inflammatory response, including reduced levels of IL-12p40 and IFN-γ. Importantly, the phenotype of 3d mice was intermediary between MyD88−/− (highly susceptible) and TLR9−/− (less susceptible), indicating the involvement of an additional UN93B1-dependent-TLR(s) on host resistance to T. cruzi. Hence, our experiments also revealed that TLR7 is a critical innate immune receptor involved in recognition of parasite RNA, induction of IL-12p40 by dendritic cells, and consequent IFN-γ by T lymphocytes. Furthermore, we show that upon T. cruzi infection triple TLR3/7/9−/− mice had similar phenotype than 3d mice. These data imply that the nucleic acid-sensing TLRs are critical determinants of host resistance to primary infection with T. cruzi. PMID:21753151

  6. Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria

    PubMed Central

    Parkunan, Salai Madhumathi; Randall, C. Blake; Coburn, Phillip S.; Astley, Roger A.; Staats, Rachel L.

    2015-01-01

    Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2−/− mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88−/− and TRIF−/− mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4−/− eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease. PMID:26195555

  7. Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1

    PubMed Central

    Li, Yanyan; Xu, Qianqian; Zhang, Tingting; Gao, Mengying; Wang, Qiuling; Han, Zongxi; Shao, Yuhao

    2015-01-01

    The high morbidity and mortality in pigeons caused by pigeon paramyxovirus type 1 (PPMV-1) highlights the need for new insights into the host immune response and novel treatment approaches. Host defense peptides (HDPs) are key components of the innate immune system. In this study, three novel avian β-defensins (AvBDs 2, 7, and 10) were characterized in pigeons and shown to possess direct antiviral activity against PPMV-1 in vitro. In addition, we evaluated the mRNA expression of these AvBDs and other immune-related genes in tissues of 2-month-old infected pigeons at 3 and 7 days postinfection. We observed that the expression of AvBD2 in the cecal tonsil, lungs, and proventriculus, as well as the expression of AvBD10 in the spleen, lungs, proventriculus, and kidneys, was upregulated in infected pigeons. Similarly, the expression of both Toll-like receptor 3 (TLR3) and TLR7 was increased in the spleen, trachea, and proventriculus, while TLR15 expression was increased only in the lungs of infected pigeons. In addition, inducible nitric oxide synthase (iNOS) expression was upregulated in the spleen, the bursa of Fabricius, the trachea, and the proventriculus of infected pigeons. Furthermore, we observed a high correlation between the expression of AvBD2 and the expression of either TLR7 or TLR15, as well as between AvBD10 expression and either TLR3 or TLR7 expression in respective tissues. The results suggest that PPMV-1 infection can induce innate host responses characterized by the activation of TLRs, particularly TLR3 and TLR7, AvBDs (2 and 10), and iNOS in pigeons. PMID:26162868

  8. Host Avian Beta-Defensin and Toll-Like Receptor Responses of Pigeons following Infection with Pigeon Paramyxovirus Type 1.

    PubMed

    Li, Yanyan; Xu, Qianqian; Zhang, Tingting; Gao, Mengying; Wang, Qiuling; Han, Zongxi; Shao, Yuhao; Ma, Deying; Liu, Shengwang

    2015-09-01

    The high morbidity and mortality in pigeons caused by pigeon paramyxovirus type 1 (PPMV-1) highlights the need for new insights into the host immune response and novel treatment approaches. Host defense peptides (HDPs) are key components of the innate immune system. In this study, three novel avian β-defensins (AvBDs 2, 7, and 10) were characterized in pigeons and shown to possess direct antiviral activity against PPMV-1 in vitro. In addition, we evaluated the mRNA expression of these AvBDs and other immune-related genes in tissues of 2-month-old infected pigeons at 3 and 7 days postinfection. We observed that the expression of AvBD2 in the cecal tonsil, lungs, and proventriculus, as well as the expression of AvBD10 in the spleen, lungs, proventriculus, and kidneys, was upregulated in infected pigeons. Similarly, the expression of both Toll-like receptor 3 (TLR3) and TLR7 was increased in the spleen, trachea, and proventriculus, while TLR15 expression was increased only in the lungs of infected pigeons. In addition, inducible nitric oxide synthase (iNOS) expression was upregulated in the spleen, the bursa of Fabricius, the trachea, and the proventriculus of infected pigeons. Furthermore, we observed a high correlation between the expression of AvBD2 and the expression of either TLR7 or TLR15, as well as between AvBD10 expression and either TLR3 or TLR7 expression in respective tissues. The results suggest that PPMV-1 infection can induce innate host responses characterized by the activation of TLRs, particularly TLR3 and TLR7, AvBDs (2 and 10), and iNOS in pigeons.

  9. Chronic hyperosmotic stress inhibits renal Toll-Like Receptors expression in striped catfish (Pangasianodon hypophthalmus, Sauvage) exposed or not to bacterial infection.

    PubMed

    Schmitz, Mélodie; Baekelandt, Sébastien; Bequet, Sandrine; Kestemont, Patrick

    2017-03-24

    Toll-like Receptors (TLRs) are the first innate receptors in recognizing pathogen-associated molecular patterns. In fish, upregulation of toll-like receptors during infection has been largely demonstrated while the effects of abiotic stressors on their expression remain poorly investigated. In this study, striped catfish were submitted during 20 days to three salinity profiles (freshwater, low saline water, saline water), followed by injection of a bacterial strain of Edwardsiella ictaluri. The expression of TLRs 1, 3, 4, 5, 7, 9, 19, 21, and 22 was measured in kidney at different time points in non infected and infected striped catfish. Infection induced overexpression of TLRs 1, 3, 4, 5, 7, 21 and 22. With elevated salinity, the expression of all TLRs, except TLR5, was severely decreased, particularly after bacterial infection. The TLRs responsiveness of striped catfish facing bacterial disease and salinity stress and possible consequences on striped catfish immune response's efficiency are discussed.

  10. Association of Toll-Like Receptor 4 Gene Polymorphism and Expression with Urinary Tract Infection Types in Adults

    PubMed Central

    Yin, Xiaolin; Hou, Tianwen; Liu, Ying; Chen, Jing; Yao, Zhiyan; Ma, Cuiqing; Yang, Lijuan; Wei, Lin

    2010-01-01

    Background Innate immunity of which Toll-like receptor (TLR) 4 and CXCR1 are key elements plays a central role in the development of urinary tract infection (UTI). Although the relation between the genetics of TLR4 and CXCR1 and UTI is investigated partly, the polymorphisms and expression of TLR4 and CXCR1 in different types of UTI in adults are not extremely clear. Methodology/Principal Findings This study investigates the presence of TLR4 A (896) G and CXCR1 G (2608) C polymorphisms in 129 UTI patients using RFLP-PCR. Gene and allelic prevalence were compared with 248 healthy controls. Flow cytometry was used to detect TLR4 and CXCR1 expression in the monocytes of UTI patients and healthy controls. TLR4 (896) AG genotype and TLR4 (896) G allele had higher prevalence in UTI (especially in acute cystitis and urethritis) patients, whereas CXCR1 (2608) GC genotype and CXCR1 (2608) C allele had lower prevalence in UTI patients than controls. TLR4 expression was significantly lower in chronic UTI patients than in acute pyelonephritis or healthy controls. CXCR1 expression was similar in both controls and patients. TLR4 expression in chronic UTI patients after astragalus treatment was higher than pre-treatment. Conclusions The results indicate the relationship between the carrier status of TLR4 (896) G alleles and the development of UTI, especially acute cystitis and urethritis, in adults. TLR4 expression levels are correlated with chronic UTI. PMID:21151974

  11. AP1S3 Mutations Are Associated with Pustular Psoriasis and Impaired Toll-like Receptor 3 Trafficking

    PubMed Central

    Setta-Kaffetzi, Niovi; Simpson, Michael A.; Navarini, Alexander A.; Patel, Varsha M.; Lu, Hui-Chun; Allen, Michael H.; Duckworth, Michael; Bachelez, Hervé; Burden, A. David; Choon, Siew-Eng; Griffiths, Christopher E.M.; Kirby, Brian; Kolios, Antonios; Seyger, Marieke M.B.; Prins, Christa; Smahi, Asma; Trembath, Richard C.; Fraternali, Franca; Smith, Catherine H.; Barker, Jonathan N.; Capon, Francesca

    2014-01-01

    Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis. PMID:24791904

  12. Administration of a Toll-like receptor 9 agonist decreases the proviral reservoir in virologically suppressed HIV-infected patients.

    PubMed

    Winckelmann, Anni A; Munk-Petersen, Lærke V; Rasmussen, Thomas A; Melchjorsen, Jesper; Hjelholt, Thomas J; Montefiori, David; Østergaard, Lars; Søgaard, Ole S; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1:1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: -23.6-0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: -4.2-19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted.

  13. Dysregulation of Toll-Like Receptor 7 Compromises Innate and Adaptive T Cell Responses and Host Resistance to an Attenuated West Nile Virus Infection in Old Mice

    PubMed Central

    Xie, Guorui; Luo, Huanle; Pang, Lan; Peng, Bi-hung; Winkelmann, Evandro; McGruder, Brenna; Hesse, Joseph; Whiteman, Melissa; Campbell, Gerald; Milligan, Gregg N.; Cong, Yingzi; Barrett, Alan D.

    2015-01-01

    ABSTRACT The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), a mosquito-borne flavivirus, has induced severe neurological symptoms, mostly in the elderly population. No vaccines are available for human use. Recent work showed that an attenuated WNV, a nonstructural (NS) 4B-P38G mutant, induced no lethality but strong immune responses in young (6- to 10-week-old) mice. While studying protective efficacy, we found unexpectedly that old (21- to 22-month) mice were susceptible to WNV NS4B-P38G mutant infection but were protected from subsequent lethal wild-type WNV challenge. Compared to responses in young mice, the NS4B-P38G mutant triggered higher inflammatory cytokine and interleukin-10 (IL-10) production, a delayed γδ T cell expansion, and lower antibody and WNV-specific T cell responses in old mice. Toll-like receptor 7 (TLR7) is expressed on multiple types of cells. Impaired TLR7 signaling in old mice led to dendritic cell (DC) antigen-presenting function compromise and a reduced γδ T cell and regulatory T cell (Treg) expansion during NS4B-P38G mutant infection. R848, a TLR7 agonist, decreased host vulnerability in NS4B-P38G-infected old mice by enhancing γδ T cell and Treg expansion and the antigen-presenting capacity of DCs, thereby promoting T cell responses. In summary, our results suggest that dysregulation of TLR7 partially contributes to impaired innate and adaptive T cell responses and an enhanced vulnerability in old mice during WNV NS4B-P38G mutant infection. R848 increases the safety and efficacy during immunization of old mice with the WNV NS4B-P38G mutant. IMPORTANCE The elderly are known to have enhanced susceptibility to infections and an impaired capacity to respond to vaccination. West Nile virus (WNV), an emerging mosquito-borne flavivirus, has induced severe neurological symptoms more frequently in the elderly population. No vaccines are available

  14. Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice.

    PubMed

    Tsai, Tsung-Huang; Chen, Shu-Fen; Huang, Tai-Yu; Tzeng, Chun-Fu; Chiang, Ann-Shyn; Kou, Yu Ru; Lee, Tzong-Shyuan; Shyue, Song-Kun

    2011-01-01

    An overwhelming immune response, particularly from macrophages, with gram-negative bacteria-induced sepsis plays a critical role in survival of and organ damage in infected patients. Caveolin-1 (Cav-1), a major structure protein of caveolae, regulates many cellular functions. We examined the vital role of Cav-1 in the response of macrophages and mice to bacteria or LPS exposure. Deletion of Cav-1 decreased the expression of CD14 and CD36 during macrophage differentiation and suppressed their phagocytotic ability. As well, the ability to kill bacteria was inhibited in Cav-1 macrophages and mice peritoneal cavity, tissue, and plasma, which was partly attributed to hindered expression of iNOS induced by bacteria or LPS. Furthermore, deletion of Cav-1 attenuated the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and the activation of nuclear factor κB, all of which impeded the production of inflammatory cytokines in response to bacterial exposure in Cav-1 macrophages and mice. Thus, Cav-1 participates in the regulation of CD14, CD36, Toll-like receptor 4 and myeloid differentiation factor 88 protein expression and is crucial for the immune response of macrophages to bacterial infection. Cav-1 may be a therapeutic target in the treatment of sepsis.

  15. Administration of a Toll-Like Receptor 9 Agonist Decreases the Proviral Reservoir in Virologically Suppressed HIV-Infected Patients

    PubMed Central

    Winckelmann, Anni A.; Munk-Petersen, Lærke V.; Rasmussen, Thomas A.; Melchjorsen, Jesper; Hjelholt, Thomas J.; Montefiori, David; Østergaard, Lars; Søgaard, Ole S.; Tolstrup, Martin

    2013-01-01

    Toll-like receptor (TLR) agonists can reactivate HIV from latently infected cells in vitro. We aimed to investigate the TLR-9 agonist, CPG 7909's in vivo effect on the proviral HIV reservoir and HIV-specific immunity. This was a post-hoc analysis of a double-blind randomized controlled vaccine trial. HIV-infected adults were randomized 1∶1 to receive pneumococcal vaccines with or without 1 mg CPG 7909 as adjuvant at 0, 3 and 9 months. In patients on suppressive antiretroviral therapy we quantified proviral DNA at 0, 3, 4, 9, and 10 months (31 subjects in the CPG group and 37 in the placebo-adjuvant group). Furthermore, we measured HIV-specific antibodies, characterized T cell phenotypes and HIV-specific T cell immunity. We observed a mean reduction in proviral DNA in the CPG group of 12.6% (95% CI: −23.6–0.0) following each immunization whereas proviral DNA in the placebo-adjuvant group remained largely unchanged (6.7% increase; 95% CI: −4.2–19.0 after each immunization, p = 0.02). Among participants with additional cryo-preserved PBMCs, HIV-specific CD8+ T cell immunity as indicated by increased expression of degranulation marker CD107a and macrophage inflammatory protein 1β (MIP1β) tended to be up-regulated following immunization with CPG 7909 compared with placebo as adjuvant. Further, increasing proportion of HIV-specific CD107a and MIP1β-expressing CD8+ T cells were strongly correlated with decreasing proviral load. No changes were observed in T cell phenotype distribution, HIV-specific CD4+ T cell immunity, or HIV-specific antibodies. TLR9-adjuvanted pneumococcal vaccination decreased proviral load. Reductions in proviral load correlated with increasing levels of HIV specific CD8+ T cells. Further investigation into the potential effect of TLR9 agonists on HIV latency is warranted. PMID:23637967

  16. Histone deacetylase inhibitors decrease Toll-like receptor-mediated activation of proinflammatory gene expression by impairing transcription factor recruitment

    PubMed Central

    Bode, Konrad A; Schroder, Kate; Hume, David A; Ravasi, Timothy; Heeg, Klaus; Sweet, Matthew J; Dalpke, Alexander H

    2007-01-01

    Post-translational modifications of histone proteins are major mechanisms that modify chromatin structure and regulate gene expression in eukaryotes. Activation of histone acetyltransferases or inhibition of histone deacetylases (HDACs) is generally believed to allow chromatin to assume a more open state, permitting transcriptional activity. We report here the surprising observation that treatment of murine dendritic cells with the HDAC inhibitors trichostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA) in non-apoptotic concentrations strongly inhibited induction of both interleukin-12 protein p40 (IL-12p40) mRNA and protein upon stimulation of Toll-like receptors (TLRs). Moreover, TLR-mediated up-regulation of costimulatory molecules was also inhibited. Up-regulation of tumour necrosis factor-α mRNA and protein in response to TLR agonists was only affected upon prolonged exposure to HDAC inhibitors and regulation of IL-1β was not affected. Similar effects were apparent in murine and human macrophages. Regarding the mode of action, HDAC inhibition increased the acetylation status at the IL-12p40 locus. Nevertheless, IL-12p40 chromatin remodelling, binding of Rel-A and IRF1 to the IL-12p40 promoter and transcriptional activation were abrogated. In contrast, HDAC inhibitors had no effects on upstream nuclear factor-κB and mitogen-activated protein kinase activation. Thus HDACs positively regulate the expression of a subset of cytokine genes by enabling transcription factor recruitment. PMID:17635610

  17. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding

    PubMed Central

    McMillan, Ryan P.; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R.; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S.; Boutagy, Nabil E.; Mynatt, Randall L.; Frisard, Madlyn I.

    2015-01-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6–8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding. PMID:26084695

  18. Selective overexpression of Toll-like receptor-4 in skeletal muscle impairs metabolic adaptation to high-fat feeding.

    PubMed

    McMillan, Ryan P; Wu, Yaru; Voelker, Kevin; Fundaro, Gabrielle; Kavanaugh, John; Stevens, Joseph R; Shabrokh, Elika; Ali, Mostafa; Harvey, Mordecai; Anderson, Angela S; Boutagy, Nabil E; Mynatt, Randall L; Frisard, Madlyn I; Hulver, Matthew W

    2015-08-01

    Toll-like receptor-4 (TLR-4) is elevated in skeletal muscle of obese humans, and data from our laboratory have shown that activation of TLR-4 in skeletal muscle via LPS results in decreased fatty acid oxidation (FAO). The purpose of this study was to determine whether overexpression of TLR-4 in skeletal muscle alters mitochondrial function and whole body metabolism in the context of a chow and high-fat diet. C57BL/6J mice (males, 6-8 mo of age) with skeletal muscle-specific overexpression of the TLR-4 (mTLR-4) gene were created and used for this study. Isolated mitochondria and whole muscle homogenates from rodent skeletal muscle (gastrocnemius and quadriceps) were investigated. TLR-4 overexpression resulted in a significant reduction in FAO in muscle homogenates; however, mitochondrial respiration and reactive oxygen species (ROS) production did not appear to be affected on a standard chow diet. To determine the role of TLR-4 overexpression in skeletal muscle in response to high-fat feeding, mTLR-4 mice and WT control mice were fed low- and high-fat diets for 16 wk. The high-fat diet significantly decreased FAO in mTLR-4 mice, which was observed in concert with elevated body weight and fat, greater glucose intolerance, and increase in production of ROS and cellular oxidative damage compared with WT littermates. These findings suggest that TLR-4 plays an important role in the metabolic response in skeletal muscle to high-fat feeding.

  19. Toll-like receptor 4 is involved in the cell cycle modulation and required for effective human cytomegalovirus infection in THP-1 macrophages

    SciTech Connect

    Arcangeletti, Maria-Cristina; Germini, Diego; Rodighiero, Isabella; Mirandola, Prisco; De Conto, Flora; Medici, Maria-Cristina; Gatti, Rita; Chezzi, Carlo; Calderaro, Adriana

    2013-05-25

    Suitable host cell metabolic conditions are fundamental for the effective development of the human cytomegalovirus (HCMV) lytic cycle. Indeed, several studies have demonstrated the ability of this virus to interfere with cell cycle regulation, mainly by blocking proliferating cells in G1 or G1/S. In the present study, we demonstrate that HCMV deregulates the cell cycle of THP-1 macrophages (a cell line irreversibly arrested in G0) by pushing them into S and G2 phases. Moreover, we show that HCMV infection of THP-1 macrophages leads to Toll-like receptor 4 (TLR4) activation. Since various studies have indicated TLR4 to be involved in promoting cell proliferation, here we investigate the possible role of TLR4 in the observed HCMV-induced cell cycle perturbation. Our data strongly support TLR4 as a mediator of HCMV-triggered cell cycle activation in THP-1 macrophages favouring, in turn, the development of an efficient viral lytic cycle. - Highlights: ► We studied HCMV infection impact on THP-1 macrophage cell cycle. ► We analysed the role played by Toll-like receptor (TLR) 4 upon HCMV infection. ► HCMV pushes THP-1 macrophages (i.e. resting cells) to re-enter the cell cycle. ► TLR4 pathway inhibition strongly affects the effectiveness of HCMV replication. ► TLR4 pathway inhibition significantly decreases HCMV-induced cell cycle re-entry.

  20. Stimulation of Toll-like receptor 9 by chronic intraventricular unmethylated cytosine-guanine DNA infusion causes neuroinflammation and impaired spatial memory.

    PubMed

    Tauber, Simone C; Ebert, Sandra; Weishaupt, Jochen H; Reich, Arno; Nau, Roland; Gerber, Joachim

    2009-10-01

    Bacterial DNA contains a high frequency of unmethylated cytosine-guanine (CpG) motifs that have strong immunostimulatory properties; they are recognized by mammalian Toll-like receptor 9 (TLR9). Because accumulating data suggest that chronic inflammatory processes are involved in the pathogenesis of neurodegenerative diseases, we hypothesized that inflammatory responses stimulated by CpG DNA might contribute to neurodegeneration and brain dysfunction. To assess the effects of continuous CpG DNA exposure in the brain, C57BL/6 (n = 21) and TLR9-deficient mice (n = 15) were given intracerebroventricular infusions of CpG DNA or saline for 28 days. Spatial memory assessed weekly by Morris water maze demonstrated impairment in CpG-treated wild-type mice but not in TLR9-deficient or control-treated mice. Motor function was not affected. Immunohistochemical analysis revealed marked microglial activation and acute axonal damage surrounding the ventricles, ependymal disruption, and reactive astrogliosis within the hippocampal formation in the CpG-treated wild-type but not TLR9-deficient mice or saline-infused controls. These results suggest that the unfavorable effects of CpG DNA are dependent on TLR9 signaling and that exposure to bacterial DNA may contribute to impaired neural function, neuroinflammation, and subsequent neurodegeneration.

  1. Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rationale - Obesity is characterized by a chronic pro-inflammatory state that promotes insulin resistance in liver, adipose tissue, and skeletal muscle as well as impairing insulin action in vascular endothelium that contributes to endothelial dysfunction. Cadiovascular complications of obesity are ...

  2. Toll-Like Receptor 4-Defective C3H/HeJ Mice Are Not More Susceptible than Other C3H Substrains to Infection with Mycobacterium tuberculosis

    PubMed Central

    Kamath, Arati B.; Alt, Jennifer; Debbabi, Hajer; Behar, Samuel M.

    2003-01-01

    Mycobacterium tuberculosis produces a variety of molecules capable of activating Toll-like receptors, a family of pattern recognition receptors expressed by macrophages and a variety of other cells. To determine whether Toll-like receptor 4 (TLR4) was critical in resistance to M. tuberculosis infection, we compared the morbidity and mortality of TLR4-defective C3H/HeJ mice to those of TLR4-sufficient C3H mouse substrains. TLR4-defective C3H/HeJ mice and TLR4-sufficient C3H/HeSnJ, C3HeB/FeJ, and C3H/HeOuJ mice were infected by the aerosol route with M. tuberculosis. TLR4-defective C3H/HeJ mice had levels of cytokines in their bronchoalveolar lavage fluids and in vitro mycobacterial antigen-specific recall responses similar to those of other C3H mouse substrains. In addition, bacterial replication and long-term survival of mice following infection appeared to be independent of TLR4. Interestingly, C3HeB/FeJ mice were significantly more susceptible to M. tuberculosis infection, indicating that genetic heterogeneity among inbred C3H mouse substrains modifies resistance to infection. Therefore, cautious interpretation is required when the C3H/HeJ strain is used as a model of a TLR4-defective mouse strain, as there are significant allelic differences between C3H/HeJ and other C3H mouse substrains in response to M. tuberculosis infection. With this caveat, our data indicate that TLR4 may not be required for optimal immunity of mice to M. tuberculosis. PMID:12819102

  3. Antiviral role of Toll-like receptors and cytokines against the new 2009 H1N1 virus infection.

    PubMed

    Liu, Ye; Chen, Hong; Sun, Yajiao; Chen, Fuhui

    2012-02-01

    People are generally susceptible to the 2009 new mutate of H1N1 influenza due to lack of appropriate immunity. Influenza H1N1 2009 infection triggers a massive inflammatory response that contributes to fever, lung impairment or other tissue damage, eventually leading to death. Infection with pathogenic influenza virus H1N1 induces severe pulmonary immune pathology. To date, more than 10,000 cases worldwide have died of the disease. It still has strong infectious ability although the mortality of influenza isn't currently high. Therefore, to explore the pathogenesis of H1N1 influenza can help with the disease prevention, diagnosis and provide a theoretical basis and the new ideas of treatment. Laboratory confirmed cases of pandemic influenza H1N1 2009 were enrolled to collect general information on pre-clinical, clinical and laboratory data for analysis. Blood samples were obtained from patients with H1N1, healthy volunteers and patients with bacterial pneumonia. Serum were separated and collected. RT-PCR and ELISA methods were applied to detect the different expression of TLRs and cytokines. The young, pregnant and postpartum women and infant are highly susceptible to influenza H1N1 2009 infection; degree of susceptibility is not associated with BMI. Biochemical changes can be seen in the patients with influenza H1N1 2009 infection: ALT, AST, CK, LDH increased in varying degrees. TLR2, TLR3, TLR9 expression increased in the patients with influenza H1N1 2009 infection; no obvious changes of TLR4, TLR7, TLR8 can be detected. In pregnant and postpartum women group, only TLR9 expression increased. The expression of IL-2, IL-6, IFN-γ, TNF-α in the patients with influenza H1N1 2009 infection was significantly increased; while IL-10 expression decreased and IL-4 expression did not change. H1N1 influenza-infected pregnant and postpartum women group, only IL-2 and TNF-α expression expression increased, other cytokines decreased or didn't change. TLR2, TLR3, TLR9 are the

  4. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy.

    PubMed

    Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George; Sloan, Derek D; Murry, Jeffrey P

    2017-02-08

    Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist, GS-9620, induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5-2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are underway to determine if GS-9620 can target HIV reservoirs.IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is persistently

  5. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy

    PubMed Central

    Tsai, Angela; Irrinki, Alivelu; Kaur, Jasmine; Cihlar, Tomas; Kukolj, George

    2017-01-01

    ABSTRACT Antiretroviral therapy can suppress HIV replication to undetectable levels but does not eliminate latent HIV, thus necessitating lifelong therapy. Recent efforts to target this persistent reservoir have focused on inducing the expression of latent HIV so that infected cells may be recognized and eliminated by the immune system. Toll-like receptor (TLR) activation stimulates antiviral immunity and has been shown to induce HIV from latently infected cells. Activation of TLR7 leads to the production of several stimulatory cytokines, including type I interferons (IFNs). In this study, we show that the selective TLR7 agonist GS-9620 induced HIV in peripheral blood mononuclear cells (PBMCs) from HIV-infected individuals on suppressive antiretroviral therapy. GS-9620 increased extracellular HIV RNA 1.5- to 2-fold through a mechanism that required type I IFN signaling. GS-9620 also activated HIV-specific T cells and enhanced antibody-mediated clearance of HIV-infected cells. Activation by GS-9620 in combination with HIV peptide stimulation increased CD8 T cell degranulation, production of intracellular cytokines, and cytolytic activity. T cell activation was again dependent on type I IFNs produced by plasmacytoid dendritic cells. GS-9620 induced phagocytic cell maturation and improved effector-mediated killing of HIV-infected CD4 T cells by the HIV envelope-specific broadly neutralizing antibody PGT121. Collectively, these data show that GS-9620 can activate HIV production and improve the effector functions that target latently infected cells. GS-9620 may effectively complement orthogonal therapies designed to stimulate antiviral immunity, such as therapeutic vaccines or broadly neutralizing antibodies. Clinical studies are under way to determine if GS-9620 can target HIV reservoirs. IMPORTANCE Though antiretroviral therapies effectively suppress viral replication, they do not eliminate integrated proviral DNA. This stable intermediate of viral infection is

  6. Molecular cloning, characterization and expression analysis of Toll-like receptor 5M gene in Japanese sea perch (Lateolabrax japonicas) after bacterial infection.

    PubMed

    Wang, Chengyang; Zhao, Chao; Fu, Mingjun; Bao, Weiyang; Qiu, Lihua

    2016-09-01

    Toll-like receptor 5M belongs to Toll-like receptors (TLRs) family, which plays a crucial role in innate immunity due to its important role in the recognition of bacteria invasion and in the activation of immune related pathways downstream. In the present study, we firstly cloned the full-length cDNAs of TLR 5M (LjTLR 5M) from Japanese sea perch (Lateolabrax japonicas). The full-length cDNAs of LjTLR 5M include an open reading frame (ORF) of 2676 bp encoding a polypeptide of 891 amino acid residues. The deduced amino acid sequence analysis showed that LiTLR 5M contains LRRs (extracellular leucine rich repeats), transmembrane and TIR (Toll/interleukin-1 receptor) domain. Transcriptional expression analysis indicated that LiTLR 5M mRNAs were ubiquitously expressed in wide array of tissues and the peak level was observed in the head-kidney. The expression patterns of LjTLR 5M after Vibro harveyi and Streptococus agalactiae infection were detected by qRT-PCR, and the results showed that LjTLR 5M was significant up-regulated in spleen, liver and head-kidney. Additionally, the expression patterns of LjTLR 5M in infected spleen and head-kidney were further validated by in situ hybridization (ISH). In summary, these findings indicate that LjTLR 5M is significant induced after different bacterial infection and is involved in immune response. Furthermore, this study will provide foundational information for other TLRs research of L. japonicas against different bacterial pathogens invasion.

  7. MyD88-Dependent Immunity to a Natural Model of Vaccinia Virus Infection Does Not Involve Toll-Like Receptor 2

    PubMed Central

    Davies, Michael L.; Sei, Janet J.; Siciliano, Nicholas A.; Xu, Ren-Huan; Roscoe, Felicia; Sigal, Luis J.; Eisenlohr, Laurence C.

    2014-01-01

    ABSTRACT Although the pattern recognition receptor Toll-like receptor 2 (TLR2) is typically thought to recognize bacterial components, it has been described to alter the induction of both innate and adaptive immunity to a number of viruses, including vaccinia virus (VACV). However, many pathogens that reportedly encode TLR2 agonists may actually be artifactually contaminated during preparation, possibly with cellular debris or merely with molecules that sensitize cells to be activated by authentic TLR2 agonists. In both humans and mice, the most relevant natural route of infection with VACV is through intradermal infection of the skin. Therefore, we examined the requirement for TLR2 and its signaling adaptor MyD88 in protective immunity to VACV after intradermal infection. We find that although TLR2 may recognize virus preparations in vitro and have a minor role in preventing dissemination of VACV following systemic infection with large doses of virus, it is wholly disposable in both control of virus replication and induction of adaptive immunity following intradermal infection. In contrast, MyD88 is required for efficient induction of CD4 T cell and B cell responses and for local control of virus replication following intradermal infection. However, even MyD88 is not required to induce local inflammation, inflammatory cytokine production, or recruitment of cells that restrict virus from spreading systemically after peripheral infection. Thus, an effective antiviral response does require MyD88, but TLR2 is not required for control of a peripheral VACV infection. These findings emphasize the importance of studying relevant routes of infection when examining innate sensing mechanisms. IMPORTANCE Vaccinia virus (VACV) provides the backbone for some of the most widely used and successful viral vaccine vectors and is also related to the human pathogens Cantagalo virus and molluscum contagiosum virus that infect the skin of patients. Therefore, it is vital to understand

  8. Genetic variability in swine leukocyte antigen class II and Toll-like receptors affects immune responses to vaccination for bacterial infections in pigs.

    PubMed

    Shinkai, H; Arakawa, A; Tanaka-Matsuda, M; Ide-Okumura, H; Terada, K; Chikyu, M; Kawarasaki, T; Ando, A; Uenishi, H

    2012-12-01

    The genes encoding swine leukocyte antigen (SLA) and Toll-like receptor (TLR) are highly polymorphic in pig populations, and likely have influences on infection and the effects of vaccination. We explored the associations of different genotypes of SLA class II and of the genes TLR1, TLR4, TLR5, and TLR6 with antibody responses after vaccination against Erysipelothrix rhusiopathiae (ER) and Actinobacillus pleuropneumoniae (APP) serotypes 1, 2, and 5 in 191 Duroc pigs maintained under specific pathogen-free conditions. We demonstrated close relationships between SLA class II and ER antibody response and between TLR genes other than TLR4 and APP antibody responses. Pigs with specific haplotypes in SLA class II or TLR5 showed decreased antibody response to ER vaccination or increased responses to APP2 and APP5 vaccination, respectively. It might be possible to breed for responsiveness to vaccination and to implement new vaccine development strategies unaffected by genetic backgrounds of pigs.

  9. Contribution of Toll-like receptors to the control of hepatitis B virus infection by initiating antiviral innate responses and promoting specific adaptive immune responses

    PubMed Central

    Ma, Zhiyong; Zhang, Ejuan; Yang, Dongliang; Lu, Mengji

    2015-01-01

    It is well accepted that adaptive immunity plays a key role in the control of hepatitis B virus (HBV) infection. In contrast, the contribution of innate immunity has only received attention in recent years. Toll-like receptors (TLRs) sense pathogen-associated molecule patterns and activate antiviral mechanisms, including intracellular antiviral pathways and the production of antiviral effector interferons (IFNs) and pro-inflammatory cytokines. Experimental results from in vitro and in vivo models have demonstrated that TLRs mediate the activation of cellular signaling pathways and the production of antiviral cytokines, resulting in a suppression of HBV replication. However, HBV infection is associated with downregulation of TLR expression on host cells and blockade of the activation of downstream signaling pathways. In primary HBV infection, TLRs may slow down HBV infection, but contribute only indirectly to viral clearance. Importantly, TLRs may modulate HBV-specific T- and B-cell responses in vivo, which are essential for the termination of HBV infection. Thus, TLR agonists are promising candidates to act as immunomodulators for the treatment of chronic HBV infection. Antiviral treatment may recover TLR expression and function in chronic HBV infection and may increase the efficacy of therapeutic approaches based on TLR activation. A combined therapeutic strategy with antiviral treatment and TLR activation could facilitate the restoration of HBV-specific immune responses and thereby, achieve viral clearance in chronically infected HBV patients. PMID:25418467

  10. Pregnane X Receptor Regulates Pathogen-Induced Inflammation and Host Defense against an Intracellular Bacterial Infection through Toll-like Receptor 4

    PubMed Central

    Qiu, Zhijuan; Cervantes, Jorge L.; Cicek, Basak B.; Mukherjee, Subhajit; Venkatesh, Madhukumar; Maher, Leigh A.; Salazar, Juan C.; Mani, Sridhar; Khanna, Kamal M.

    2016-01-01

    The nuclear pregnane X receptor (PXR) plays a central role in regulating xenobiotic metabolism. We now report a novel role for PXR as a critical negative regulator of innate immunity after infection. Pxr−/− mice exhibited remarkably elevated pro-inflammatory cytokine and chemokine production following infection with Listeria monocytogenes (Lm). Despite the more robust innate immune response, Pxr−/− mice were highly susceptible to Lm infection. Surprisingly, disruption of the Toll-like receptor 4 (TLR4) but not TLR2 signaling restored the inflammation to normal levels and the ability to clear Lm in Pxr−/− mice. Mechanistically, the heightened inflammation in Pxr−/− mice resulted in the death of inflammatory monocytes that led to the enhanced susceptibility to Lm infection. These data demonstrated that PXR regulated pathogen-induced inflammation and host defense against Lm infection through modulating the TLR4 pathway. In summary, we discovered an apical role for PXR in regulating innate immunity. In addition, we uncovered a remarkable negative impact of the TLR4 pathway in controlling the quality of the inflammatory response and host defense against a gram-positive bacterial infection. PMID:27550658

  11. Distribution of bovine alpha-herpesviruses and expression of toll-like receptors in the respiratory system of experimentally infected calves.

    PubMed

    Marin, M S; Quintana, S; Leunda, M R; Odeón, A C; Pérez, S E

    2016-04-01

    This study provides an initial analysis of the toll-like receptors (TLRs) that might be implicated in alpha-herpesvirus infection of the bovine respiratory system. A significant variation in the expression of TLR3 and TLRs 7-9 during bovine herpesvirus type 1 (BoHV-1) and 5 (BoHV-5) acute infections and particularly an up-regulation during viral reactivation in respiratory tissues has been demonstrated. Furthermore, viral distribution in the respiratory tract of BoHV-1- and BoHV-5-infected calves at different stages of the infectious cycle was analysed. The wide distribution of BoHV DNA in the respiratory tract during acute infection was restricted during latent infection and the subsequent reactivation of BoHV-1 and BoHV-5. Overall, the findings presented here contribute to the knowledge on the replication and dissemination of bovine alpha-herpesviruses. Furthermore, some of the immune factors triggered in the host that determine the different outcomes of infection by two closely related pathogens of cattle have been elucidated.

  12. Toll-like receptors 3, 7 and 8 are upregulated in the placental caruncle and fetal spleen of Neospora caninum experimentally infected cattle.

    PubMed

    Marin, M S; Hecker, Y P; Quintana, S; Pérez, S E; Leunda, M R; Cantón, G J; Cobo, E R; Moore, D P; Odeón, A C

    2017-03-15

    Innate immune responses at the maternal-fetal interface are key in the pathogenesis of Neospora caninum, an obligate parasite that causes abortion in cattle. Herein, we determined the gene expression of endosomal Toll-like receptors (TLRs) in the placenta and fetuses from both non-infected pregnant heifers and pregnant heifers intravenously challenged with live tachyzoites of N. caninum on day 70 of gestation. On day 104 of pregnancy, mRNA expression of TLRs 3 and 8, as well as that of TLRs 7 and 9, was high in the spleen of fetuses from N. caninum-infected heifers. Gene expression levels of endosomal TLRs were also detectable in the placenta and the maternal caruncle from infected heifers, being TLRs 3, 7 and 8 particularly upregulated, mostly in the caruncle. Basal TLR levels were higher in fetal spleen than in placental tissues. This study provides novel information on how innate TLR responses are induced at the maternal-fetal interface of cattle in response to intracellular N. caninum.

  13. Toll like receptor 2 and CC chemokine receptor 5 cluster in the lipid raft enhances the susceptibility of Leishmania donovani infection in macrophages.

    PubMed

    Majumdar, Suchandra Bhattacharyya; Bhattacharya, Parna; Bhattacharjee, Surajit; Majumder, Saikat; Banerjee, Sayantan; Majumdar, Subrata

    2014-01-01

    In experimental visceral leishmaniasis the causative obligate protozoan parasite, L. donovani invades and multiplies inside of macrophages, one of the sentries of the mammalian immune system. The initial host-parasite interaction between the Leishmania promastigote and the macrophage takes place at the plasma membrane interface. To trace any possible interaction between Toll-like receptor 2 (TLR2) and CC chemokine receptor 5 (CCR5) during early Leishmania-macrophage interactions, it was observed that the expression of both TLR2 and CCR5 were significantly increased, along with their recruitment to the lipid raft. TLR2 silencing attenuates CCR5 expression and restricts L. donovani infection, indicating a regulatory role of TLR2 and CCR5 during infection. Silencing of CCR5 and TLR2 markedly reduced the number of intracellular parasites in macrophages by host protective cytokine responses, while raft disruption using beta-MCD affected TLR2/CCR5 cross-talk and resulted in a significant reduction in parasite invasion. In vivo RNA interference of TLR2 and CCR5 using shRNA plasmids rendered protection in Leishmania donovani-infected mice. Thus, this study for the first time demonstrates the importance of TLR2/CCR5 crosstalk as a significant determinant of Leishmania donovani entry in host macrophages.

  14. Interleukin-1 receptor but not Toll-like receptor 2 is essential for MyD88-dependent Th17 immunity to Coccidioides infection.

    PubMed

    Hung, Chiung-Yu; Jiménez-Alzate, María del Pilar; Gonzalez, Angel; Wüthrich, Marcel; Klein, Bruce S; Cole, Garry T

    2014-05-01

    Interleukin-17A (IL-17A)-producing CD4(+) T helper (Th17) cells have been shown to be essential for defense against pulmonary infection with Coccidioides species. However, we have just begun to identify the required pattern recognition receptors and understand the signal pathways that lead to Th17 cell activation after fungal infection. We previously reported that Card9(-/-) mice vaccinated with formalin-killed spherules failed to acquire resistance to Coccidioides infection. Here, we report that both MyD88(-/-) and Card9(-/-) mice immunized with a live, attenuated vaccine also fail to acquire protective immunity to this respiratory disease. Like Card9(-/-) mice, vaccinated MyD88(-/-) mice revealed a significant reduction in numbers of both Th17 and Th1 cells in their lungs after Coccidioides infection. Both Toll-like receptor 2 (TLR2) and IL-1 receptor type 1 (IL-1r1) upstream of MyD88 have been implicated in Th17 cell differentiation. Surprisingly, vaccinated TLR2(-/-) and wild-type (WT) mice showed similar outcomes after pulmonary infection with Coccidioides, while vaccinated IL-1r1(-/-) mice revealed a significant reduction in the number of Th17 cells in their infected lungs compared to WT mice. Thus, activation of both IL-1r1/MyD88- and Card9-mediated Th17 immunity is essential for protection against Coccidioides infection. Our data also reveal that the numbers of Th17 cells were reduced in IL-1r1(-/-) mice to a lesser extent than in MyD88(-/-) mice, raising the possibility that other TLRs are involved in MyD88-dependent Th17 immunity to coccidioidomycosis. An antimicrobial action of Th17 cells is to promote early recruitment of neutrophils to infection sites. Our data revealed that neutrophils are required for vaccine immunity to this respiratory disease.

  15. The Type II Secretion System of Legionella pneumophila Dampens the MyD88 and Toll-Like Receptor 2 Signaling Pathway in Infected Human Macrophages.

    PubMed

    Mallama, Celeste A; McCoy-Simandle, Kessler; Cianciotto, Nicholas P

    2017-04-01

    Previously, we reported that mutants of Legionella pneumophila lacking a type II secretion (T2S) system elicit higher levels of cytokines (e.g., interleukin-6 [IL-6]) following infection of U937 cells, a human macrophage-like cell line. We now show that this effect of T2S is also manifest upon infection of human THP-1 macrophages and peripheral blood monocytes but does not occur during infection of murine macrophages. Supporting the hypothesis that T2S acts to dampen the triggering of an innate immune response, we observed that the mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa B (NF-κB) pathways are more highly stimulated upon infection with the T2S mutant than upon infection with the wild type. By using short hairpin RNA to deplete proteins involved in specific pathogen-associated molecular pattern (PAMP) recognition pathways, we determined that the dampening effect of the T2S system was not dependent on nucleotide binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible protein I (RIG-I)-like receptors (RLRs), double-stranded RNA (dsRNA)-dependent protein kinase receptor (PKR), or TIR domain-containing adaptor inducing interferon beta (TRIF) signaling or an apoptosis-associated speck-like protein containing a CARD (ASC)- or caspase-4-dependent inflammasome. However, the dampening effect of T2S on IL-6 production was significantly reduced upon gene knockdown of myeloid differentiation primary response 88 (MyD88), TANK binding kinase 1 (TBK1), or Toll-like receptor 2 (TLR2). These data indicate that the L. pneumophila T2S system dampens the signaling of the TLR2 pathway in infected human macrophages. We also document the importance of PKR, TRIF, and TBK1 in cytokine secretion during L. pneumophila infection of macrophages.

  16. Expression of toll-like receptors 2 and 4 in subplacental trophoblasts from guinea pigs (Cavia porcellus) following infection with Campylobacter jejuni.

    PubMed

    Burrough, E R; DiVerde, K D; Sahin, O; Plummer, P J; Zhang, Q; Yaeger, M J

    2011-03-01

    Toll-like receptors 2 and 4 (TLR2 and TLR4) are well-characterized cell surface receptors that recognize specific pathogen-associated molecular patterns and play an important role in pathogen recognition and activation of the innate immune system. Variable expression of TLR2 and TLR4 has been described in trophoblasts from normal and diseased placentas; yet, there are limited data regarding trophoblast TLR expression in response to specific placental pathogens, and TLR expression in the guinea pig placenta has not been described. The guinea pig is an effective model for Campylobacter-induced abortion of small ruminants, and the authors have shown by immunohistochemistry that C jejuni localizes within syncytiotrophoblasts of the guinea pig subplacenta. The present study was designed to determine if the expression of either TLR2 or TLR4 would be affected in subplacental trophoblasts following infection with C jejuni. Immunohistochemistry for TLR2 and TLR4 was performed on placenta from guinea pigs that aborted following inoculation with C jejuni and from sham-inoculated controls. Quantitative assessment of TLR expression was performed, and mean immunoreactivity for TLR2 was significantly higher in subplacental trophoblasts from animals that aborted compared with uninfected controls (P = .0283), whereas TLR4 expression was not statistically different (P = .5909). These results suggest that abortion in guinea pigs following infection with C jejuni is associated with increased TLR2 expression in subplacental trophoblasts and may reveal a possible role for TLR2 in the pathogenesis of Campylobacter-induced abortion.

  17. Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection

    PubMed Central

    Baker, David G.; Woods, Tyson A.; Butchi, Niranjan B.; Morgan, Timothy M.; Taylor, R. Travis; Sunyakumthorn, Piyanate; Mukherjee, Piyali; Lubick, Kirk J.; Best, Sonja M.

    2013-01-01

    Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log10 increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses. PMID:23136362

  18. Toll-like receptor 7 suppresses virus replication in neurons but does not affect viral pathogenesis in a mouse model of Langat virus infection.

    PubMed

    Baker, David G; Woods, Tyson A; Butchi, Niranjan B; Morgan, Timothy M; Taylor, R Travis; Sunyakumthorn, Piyanate; Mukherjee, Piyali; Lubick, Kirk J; Best, Sonja M; Peterson, Karin E

    2013-02-01

    Toll-like receptor 7 (TLR7) recognizes guanidine-rich viral ssRNA and is an important mediator of peripheral immune responses to several ssRNA viruses. However, the role that TLR7 plays in regulating the innate immune response to ssRNA virus infections in specific organs such as the central nervous system (CNS) is not as clear. This study examined the influence of TLR7 on the neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus. TLR7 deficiency did not substantially alter the onset or incidence of LGTV-induced clinical disease; however, it did significantly affect virus levels in the CNS with a log(10) increase in virus titres in brain tissue from TLR7-deficient mice. This difference in virus load was also observed following intracranial inoculation, indicating a direct effect of TLR7 deficiency on regulating virus replication in the brain. LGTV-induced type I interferon responses in the CNS were not dependent on TLR7, being higher in TLR7-deficient mice compared with wild-type controls. In contrast, induction of pro-inflammatory cytokines including tumour necrosis factor, CCL3, CCL4 and CXCL13 were dependent on TLR7. Thus, although TLR7 is not essential in controlling LGTV pathogenesis, it is important in controlling virus infection in neurons in the CNS, possibly by regulating neuroinflammatory responses.

  19. A Functional Toll-Like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-borne Encephalitis Virus (TBEV) Infection

    PubMed Central

    Vene, Sirkka; Mickiene, Aukse; Lundkvist, Åke; Lindquist, Lars; Svensson, Lennart

    2011-01-01

    Background. Tick-borne encephalitis virus (TBEV) infections may be asymptomatic or cause severe symptoms in the central nervous system. A mutation in the chemokine receptor 5 gene has been associated with increased risk of TBE but explains only a limited number of cases. Investigations of further risk factors are needed. Method. To investigate the importance of the innate immune response, we analyzed 128 TBE patients, 77 patients with aseptic meningoencephalitis (AME) and 135 healthy controls, for 3mutations: 2 in the Toll-like receptor 3 (TLR3) gene and 1 in the 2′-5′-oligoadenylate synthetase (OAS1) gene. Results. Although no association was found between the mutation in the OAS1 gene and TBE, the genotype distribution ofrs3775291, a mutation in TLR3, differed significantly between TBE patients and controls; 61%, 32%, and 7% of the TBE patients were carriers of the wild-type, heterozygous, and mutant genotype of rs3775291, respectively. The corresponding percentages among healthy controls (n = 126) were 52%, 29%, and 19% (P = .02), and among AME patients (n = 75) were 47%, 32%, and 21% (P = .009). Additionally, the wild-type rs3775291 allele was more common among TBE patients than among healthy controls (allele frequency, .768 vs .663; P = .01). Conclusion. A functional TLR3 is a risk factor for TBEV infection. PMID:21216866

  20. The Association of Toll-Like Receptor 4 Polymorphism with Hepatitis C Virus Infection in Saudi Arabian Patients

    PubMed Central

    Al-Qahtani, Ahmed A.; Al-Anazi, Mashael R.; Al-Zoghaibi, Fahad; Abdo, Ayman A.; Sanai, Faisal M.; Khan, Mohammed Q.; Al-Ashgar, Hamad I.; Al-Ahdal, Mohammed N.

    2014-01-01

    Hepatitis C virus (HCV) is a single stranded RNA virus. It affects millions of people worldwide and is considered as a leading cause of liver diseases including cirrhosis and hepatocellular carcinoma. A recent study reported that TLR4 gene polymorphisms are good prognostic predictors and are associated with protection from liver fibrosis among Caucasians. This study aims to investigate the implication of genetic polymorphisms of TLR4 gene on the HCV infection in Saudi Arabian patients. Two SNPs in the TLR4 gene, rs4986790 (A/G) and rs4986791 (C/T), were genotyped in 450 HCV patients and 600 uninfected controls. The association analysis confirmed that both SNPs showed a significant difference in their distribution between HCV-infected patients and uninfected control subjects (P < 0.0001; OR = 0.404, 95% CI = 0.281–0.581) and (P < 0.0001; OR = 0.298, 95% CI = 0.201–0.443), respectively. More importantly, haplotype analysis revealed that four haplotypes, AC, GT, GC, and AT (rs4986790, rs4986791), were significantly associated with HCV infection when compared with control subjects. One haplotype AC was more prominently found when chronic HCV-infected patients were compared with cirrhosis/HCC patients (frequency = 94.7% and P = 0.04). Both TLR4 SNPs under investigation were found to be significantly implicated with HCV-infection among Saudi Arabian population. PMID:25177689

  1. Eimeria tenella: expression profiling of toll-like receptors and associated cytokines in the cecum of infected day-old and three-week old SPF chickens.

    PubMed

    Zhang, Lei; Liu, Renqiang; Ma, Liping; Wang, Yingwei; Pan, Baoliang; Cai, Jianping; Wang, Ming

    2012-04-01

    Coccidiosis is an economically important protozoan disease worldwide caused by Eimeria parasites. Toll-like receptors (TLRs), a family of highly conserved proteins, are involved in pathogen detection by initiating host responses, and play important roles in the reduction and clearance of pathogens. Little is known about the roles of chicken TLRs during Eimeria tenella infection. We detected the dynamic changes in the expression of TLRs and associated cytokines in the cecum of E. tenella-infected chickens during the early stage of infection. Day-old (Experiment 1) and three-week-old (Experiment 2) chickens were orally gavaged with 10,000 oocysts (30 chickens each experiment), and their cecum intraepithelial lymphocytes were collected at 3, 6, 12, 24, 48, and 72h post-infection (hpi). Expression profiling of TLR1LA, TLR4, TLR5, TLR7, TLR21, and IFN-α, IFN-β, IFN-γ, IL-1β, IL-12 genes were analyzed using quantitative real-time polymerase chain reaction. Almost all TLR transcripts were transiently increased at 3hpi in Experiment 1. In three-week-old chickens, TLR1LA, TLR4, TLR5, TLR7, and TLR21 expression was upregulated at 12hpi, and TLR1LA, TLR5, and TLR21 were highly expressed at 72hpi. In day-old chickens, IFN-α, IFN-β, IFN-γ, IL-1β, and IL-12 expression was significantly upregulated at 3hpi (156.1-1117.1-fold change), in comparison to the different peak level times and relatively small changes for these cytokines in the three-week-old chickens. Our results provide a valuable overview for the expression pattern of TLRs and associated cytokines during the early stage of E. tenella infection in chickens.

  2. Toll-like receptor 9-mediated protection of enterovirus 71 infection in mice is due to the release of danger-associated molecular patterns.

    PubMed

    Hsiao, Hung-Bo; Chou, Ai-Hsiang; Lin, Su-I; Chen, I-Hua; Lien, Shu-Pei; Liu, Chia-Chyi; Chong, Pele; Liu, Shih-Jen

    2014-10-01

    Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) with severe neurological symptoms. Antiviral type I interferon (alpha/beta interferon [IFN-α/β]) responses initiated from innate receptor signaling are inhibited by EV71-encoded proteases. It is less well understood whether EV71-induced apoptosis provides a signal to activate type I interferon responses as a host defensive mechanism. In this report, we found that EV71 alone cannot activate Toll-like receptor 9 (TLR9) signaling, but supernatant from EV71-infected cells is capable of activating TLR9. We hypothesized that TLR9-activating signaling from plasmacytoid dendritic cells (pDCs) may contribute to host defense mechanisms. To test our hypothesis, Flt3 ligand-cultured DCs (Flt3L-DCs) from both wild-type (WT) and TLR9 knockout (TLR9KO) mice were infected with EV71. More viral particles were produced in TLR9KO mice than by WT mice. In contrast, alpha interferon (IFN-α), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-alpha (TNF-α), IFN-γ, interleukin 6 (IL-6), and IL-10 levels were increased in Flt3L-DCs from WT mice infected with EV71 compared with TLR9KO mice. Seven-day-old TLR9KO mice infected with a non-mouse-adapted EV71 strain developed neurological lesion-related symptoms, including hind-limb paralysis, slowness, ataxia, and lethargy, but WT mice did not present with these symptoms. Lung, brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice exhibited significantly higher viral loads than equivalent tissues collected from WT mice. Histopathologic damage was observed in brain, small intestine, forelimb, and hind-limb tissues collected from TLR9KO mice infected with EV71. Our findings demonstrate that TLR9 is an important host defense molecule during EV71 infection. Importance: The host innate immune system is equipped with pattern recognition receptors (PRRs), which are useful for defending the host

  3. Infection mobilizes hematopoietic stem cells through cooperative NOD-like receptor and Toll-like receptor signaling.

    PubMed

    Burberry, Aaron; Zeng, Melody Y; Ding, Lei; Wicks, Ian; Inohara, Naohiro; Morrison, Sean J; Núñez, Gabriel

    2014-06-11

    Adult hematopoietic stem cells (HSCs) are maintained in specialized niches within the bone marrow under steady-state conditions and mobilize for extramedullary hematopoiesis during periods of stress such as bacterial infections. However, the underlying mechanisms are unclear. We show that systemic infection of mice with Escherichia coli, commonly associated with bacteremia in humans, mobilizes functional HSCs to the spleen. Accumulation of splenic HSCs (CD150+CD48-Lin(-/low)Sca1+cKit+) was diminished in TLR4-deficient and RIPK2-deficient mice, implicating TLRs and cytosolic NOD1/NOD2 signaling in the process. Accordingly, dual stimulation of NOD1 and TLR4 in radio-resistant cells alone was sufficient to mobilize HSCs, while TLR4 expression on HSCs was dispensable. Mechanistically, TLR4 and NOD1 synergistically induced granulocyte colony-stimulating factor (G-CSF), which was required for extramedullary HSC accumulation. Mobilized HSCs and progenitor cells gave rise to neutrophils and monocytes and contributed to limiting secondary infection.

  4. Polymorphisms at Locus 4p14 of Toll-Like Receptors TLR-1 and TLR-10 Confer Susceptibility to Gastric Carcinoma in Helicobacter pylori Infection

    PubMed Central

    Ravishankar Ram, M.; Goh, Khean Lee; Leow, Alex Hwong Ruey; Poh, Bee Hoon; Loke, Mun Fai; Harrison, Richard; Shankar, Esaki M.; Vadivelu, Jamuna

    2015-01-01

    Helicobacter pylori (H. pylori) -induced gastric inflammation impacts the functions of leptin- and ghrelin-producing cells in the gastroduodenum. Inflammation resulting from H. pylori sensing via Toll-like receptors (TLRs) and the associated downstream signaling largely remain ambiguous. Here, we investigated the role of gut hormones, pro-inflammatory cytokines and single nucleotide polymorphisms (SNPs) associated with TLR 4p14 in H. pylori disease in 30 subjects with non-ulcer dyspepsia (NUD), 40 with peptic ulcer disease (PUD) and 15 with gastric cancer (GC) subjects positive and negative for H. pylori infection. The level of pro-inflammatory cytokines was directly proportional to the severity of gastritis, and disease status influenced the levels of gut hormones and pro-inflammatory cytokines. TLR-1 SNPs rs4833095 and TLR-10 SNPs rs10004195 and were directly associated with H. pylori disease, and were up-regulated in the presence of H. pylori in a genotype-independent manner. We concluded that TLR-1 rs4833095 and TLR10 rs10004195 confer susceptibility to development of gastroduodenal disease, especially GC in H.pylori disease. PMID:26559190

  5. Cutting Edge: Roles of Toll-Like Receptor 4 and IL-23 in IL-17 Expression in Response to Klebsiella pneumoniae Infection1

    PubMed Central

    Happel, Kyle I.; Zheng, Mingquan; Young, Erana; Quinton, Lee J.; Lockhart, Euan; Ramsay, Alistair J.; Shellito, Judd E.; Schurr, Jill R.; Bagby, Gregory J.; Nelson, Steve; Kolls, Jay K.

    2010-01-01

    Local production of IL-17 is a significant factor in effective host defense against Gram-negative bacteria. However, the proximal events mediating IL-17 elaboration by T cells remain unclear. In this study, we show in vivo that intact Toll-like receptor 4 signaling in the lung is required for induction of both the p19 transcript of IL-23 and IL-17 protein elaboration in response to Klebsiella pneumoniae. Although IL-17 is widely considered a CD4+ T cell product, we also demonstrate significant in vitro IL-17 production by CD8+ T cells after culture in medium from dendritic cells exposed to these bacteria. The dominant portion of this IL-17-inducing activity for both CD4+ and CD8+ T cells is IL-23. These data demonstrate the critical signaling pathway for IL-17 induction in the host response to Gram-negative pulmonary infection and suggest a direct role for IL-23 in CD8+ T cell IL-17 production. PMID:12707317

  6. Toll-like receptor 4 signalling through MyD88 is essential to control Salmonella enterica serovar typhimurium infection, but not for the initiation of bacterial clearance.

    PubMed

    Talbot, Suzanne; Tötemeyer, Sabine; Yamamoto, Masahiro; Akira, Shizuo; Hughes, Katherine; Gray, David; Barr, Tom; Mastroeni, Pietro; Maskell, Duncan J; Bryant, Clare E

    2009-12-01

    Toll-like receptor-4 (TLR4) is important in protection against lethal Salmonella enterica serovar Typhimurium (S. Typhimurium) infection. Control of the early stages of sublethal S. Typhimurium infection in mice depends on TLR4-dependent activation of macrophages and natural killer (NK) cells to drive an inflammatory response. TLR4 signals through the adapter proteins Mal/MyD88 and TRIF-related adaptor molecule (TRAM)/TIR-domain-containing adaptor-inducing interferon-b (TRIF). In the mouse typhoid model we showed that TLR4 and MyD88, but not Mal or TRIF, are essential for the control of exponential S. Typhimurium growth. TRIF(-/-) mice have a higher bacterial load in comparison with wild-type mice during a sublethal infection because TRIF is important for bacterial killing during the first day of systemic disease. Minimal pro-inflammatory responses were induced by S. Typhimurium infection of macrophages from TLR4(-/-), MyD88(-/-) and TRIF(-/-) mice in vitro. Pro-inflammatory responses from Mal(-/-) macrophages were similar to those from wild-type cells. The pro-inflammatory responses of TRIF(-/-) macrophages were partially restored by the addition of interferon-gamma (IFN-gamma), and TRIF(-/-) mice produced markedly enhanced IFN-gamma levels, in comparison to wild-type mice, probably explaining why bacterial growth can be controlled in these mice. TLR4(-/-), MyD88(-/-), TRIF(-/-) and Mal(-/-) mice all initiated clearance of S. Typhimurium, suggesting that TLR4 signalling is not important in driving bacterial clearance in comparison to its critical role in controlling early bacterial growth in mouse typhoid.

  7. Genetic variations in toll-like receptor 4 in Mexican-Mestizo patients with intra-abdominal infection and/or pneumonia.

    PubMed

    Rodriguez-Osorio, Carlos A; Lima, Guadalupe; Herrera-Caceres, Jaime O; Villegas-Torres, Beatriz E; Zuñiga, Joaquin; Ponce-de-Leon, Sergio; Llorente, Luis; Sifuentes-Osornio, Jose

    2013-06-01

    Sepsis is a leading cause of death around the world, and 73-83% of all sepsis cases requiring attention in intensive care units are linked to intra-abdominal infection (IAI) or pneumonia. The activation of innate immunity is central to the manifestation of sepsis, and toll-like receptor (TLR) 4 plays an important role in this activation process. The 299G and 399I alleles of TLR4 have been linked with an increased risk of Gram-negative bacteria (GNB) infections and septic shock in some populations. This case-control study evaluated the prevalence of D299G/T399I polymorphisms in Mexican patients with IAI and/or pneumonia and in healthy controls. Genotyping revealed that 1 in 44 patients (2.3%; CI 95%: 0.05-12.0%) and 4 in 126 controls (3.2%; CI 95%: 0.9-7.9%) were heterozygous for both the D299G and T399l polymorphisms (OR: 0.71, CI 95%: 0.01-7.44, p = NS), confirming the co-segregation of these alleles in this population. Furthermore, the patients with a GNB infection and severe sepsis were not carriers of the risk alleles. In summary, this report shows that the frequency of the D299G and T399I polymorphisms in Mexican-Mestizos is lower than anticipated in comparison with other ethnic groups, emphasizing the variable distribution of TLR4 polymorphisms among different populations. Consequently, this study was not able to detect associations between TLR4 polymorphisms and sepsis in this population.

  8. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections.

    PubMed

    Ma, Yan; Han, Fei; Liang, Jinping; Yang, Jiali; Shi, Juan; Xue, Jing; Yang, Li; Li, Yong; Luo, Meihui; Wang, Yujiong; Wei, Jun; Liu, Xiaoming

    2016-03-01

    Pulmonary tuberculosis caused by a Mycobacterium infection remains a major public health problem in most part of the world, in part owing to the transmission of its pathogens between hosts including human, domestic and wild animals. To date, molecular mechanisms of the pathogenesis of TB are still incompletely understood. In addition to alveolar macrophages, airway epithelial cells have also been recently recognized as main targets for Mycobacteria infections. In an effort to understand the pathogen-host interaction between Mycobacteria and airway epithelial cells in domestic animals, in present study, we investigated the Toll-like receptor (TLR) signaling in bovine and sheep airway epithelial cells in response to an infection of Mycobacterium tuberculosis avirulent H37Ra stain or Mycobacterium bovis BCG vaccine strain, using primary air-liquid interface (ALI) bronchial epithelial culture models. Our results revealed a host and pathogen species-specific TLR-mediated recognition of pathogen-associated molecular patterns (PAMPs), induction and activation of TLR signaling pathways, and substantial induction of inflammatory response in bronchial epithelial cells in response to Mycobacteria infections between these two species. Interestingly, the activation TLR signaling in bovine bronchial epithelial cells induced by Mycobacteria infection was mainly through a myeloid differentiation factor 88 (MyD88)-independent TLR signaling pathway, while both MyD88-dependent and independent TLR signaling cascades could be induced in sheep epithelial cells. Equally noteworthy, a BCG infection was able to induce both MyD88-dependent and independent signaling in sheep and bovine airway epithelial cells, but more robust inflammatory responses were induced in sheep epithelial cells relative to the bovines; whereas an H37Ra infection displayed an ability to mainly trigger a MyD88-independent TLR signaling cascade in these two host species, and induce a more extent expression of

  9. Local Delivery of the Toll-Like Receptor 9 Ligand CpG Downregulates Host Immune and Inflammatory Responses, Ameliorating Established Leishmania (Viannia) panamensis Chronic Infection.

    PubMed

    Ehrlich, Allison K; Fernández, Olga L; Rodriguez-Pinto, Daniel; Castilho, Tiago M; Corral Caridad, Maria J; Goldsmith-Pestana, Karen; Saravia, Nancy Gore; McMahon-Pratt, Diane

    2017-03-01

    Infection by Leishmania (Viannia) panamensis, the predominant etiologic agent for cutaneous leishmaniasis in Colombia, is characterized by a chronic mixed inflammatory response. Current treatment options are plagued by toxicity, lengthy treatment regimens, and growing evidence of drug resistance. Immunotherapy, modulating the immune system to mount a protective response, may provide an alternate therapeutic approach. We investigated the ability of the Toll-like receptor 9 (TLR9) ligand CpG to modulate established disease in the L (V) panamensis mouse model. Treatment of established infection with a high dose (50 μg) of CpG ameliorated disease and lowered parasite burden. Interestingly, immediately after treatment there was a significant increase in transforming growth factor β (TGF-β) and concomitantly an increase in T regulatory cell (Treg) function. Although a general reduction in cell-mediated immune cytokine and chemokine (gamma interferon [IFN-γ], interleukin 10 [IL-10], IL-13, IL-6, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-4, and MIP-1α) responses of the treated mice was observed, certain chemokines (RANTES, monocyte chemoattractant protein 1[MCP-1], and IP-10) were increased. Further, in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis, CpG treatment similarly exhibited a dose-response effect on the production of IFN-γ, IL-17, IL-10, and IL-13, with reductions observed at higher doses. To further understand the underlying mechanisms and cell populations driving the CpG mediated response, we examined the ex vivo dose effects mediated by the TLR9(+) cell populations (dendritic cells, macrophages, and B cells) found to accumulate labeled CpG in vivo Notably, B cells altered the production of IL-17, IL-13, and IFN-γ, supporting a role for B cells functioning as antigen-presenting cells (APCs) and/or regulatory cells during infection. Interestingly, B cells have been previously demonstrated as a

  10. Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection.

    PubMed

    Cavalcante, Paola; Galbardi, Barbara; Franzi, Sara; Marcuzzo, Stefania; Barzago, Claudia; Bonanno, Silvia; Camera, Giorgia; Maggi, Lorenzo; Kapetis, Dimos; Andreetta, Francesca; Biasiucci, Amelia; Motta, Teresio; Giardina, Carmelo; Antozzi, Carlo; Baggi, Fulvio; Mantegazza, Renato; Bernasconi, Pia

    2016-04-01

    Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune

  11. Mouse Hepatitis Virus Infection Induces a Toll-Like Receptor 2-Dependent Activation of Inflammatory Functions in Liver Sinusoidal Endothelial Cells during Acute Hepatitis

    PubMed Central

    Bleau, Christian; Filliol, Aveline; Samson, Michel

    2016-01-01

    ABSTRACT Under physiological conditions, the liver sinusoidal endothelial cells (LSECs) mediate hepatic immune tolerance toward self or foreign antigens through constitutive expression of anti-inflammatory mediators. However, upon viral infection or Toll-like receptor 2 (TLR2) activation, LSECs can achieve proinflammatory functions, but their role in hepatic inflammation during acute viral hepatitis is unknown. Using the highly virulent mouse hepatitis virus type 3 (MHV3) and the attenuated variants 51.6-MHV3 and YAC-MHV3, exhibiting lower tropism for LSECs, we investigated in vivo and in vitro the consequence of LSEC infection on their proinflammatory profiles and the aggravation of acute hepatitis process. In vivo infection with virulent MHV3, in comparison to attenuated strains, resulted in fulminant hepatitis associated with higher hepatic viral load, tissue necrosis, and levels of inflammatory mediators and earlier recruitment of inflammatory cells. Such hepatic inflammatory disorders correlated with disturbed production of interleukin-10 (IL-10) and vascular factors by LSECs. We next showed in vitro that infection of LSECs by the virulent MHV3 strain altered their production of anti-inflammatory cytokines and promoted higher release of proinflammatory and procoagulant factors and earlier cell damage than infection by attenuated strains. This higher replication and proinflammatory activation in LSECs by the virulent MHV3 strain was associated with a specific activation of TLR2 signaling by the virus. We provide evidence that TLR2 activation of LSCEs by MHV3 is an aggravating factor of hepatic inflammation and correlates with the severity of hepatitis. Taken together, these results indicate that preservation of the immunotolerant properties of LSECs during acute viral hepatitis is imperative in order to limit hepatic inflammation and damage. IMPORTANCE Viral hepatitis B and C infections are serious health problems affecting over 350 million and 170 million

  12. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Merlini, Esther; Tincati, Camilla; Biasin, Mara; Saulle, Irma; Cazzaniga, Federico Angelo; d’Arminio Monforte, Antonella; Cappione, Amedeo J.; Snyder-Cappione, Jennifer; Clerici, Mario; Marchetti, Giulia Carla

    2016-01-01

    In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting

  13. Toll-like receptor 22 in Labeo rohita: molecular cloning, characterization, 3D modeling, and expression analysis following ligands stimulation and bacterial infection.

    PubMed

    Samanta, Mrinal; Swain, Banikalyan; Basu, Madhubanti; Mahapatra, Girishbala; Sahoo, Bikash R; Paichha, Mahismita; Lenka, Saswati S; Jayasankar, Pallipuram

    2014-09-01

    Toll-like receptors (TLRs) are a class of innate immune receptors that sense pathogens or their molecular signatures and activate signaling cascades to induce a quick and non-specific immune response in the host. Among various types of TLRs, TLR22 is exclusively present in teleosts and amphibians and is expected to play the distinctive role in innate immunity. This report describes molecular cloning, three-dimensional (3D) modeling, and expression analysis of TLR22 in rohu (Labeo rohita), the most commercially important freshwater fish species in the Indian subcontinent. The open reading frame (ORF) of rohu TLR22 (LrTLR22) comprised of 2,838 nucleotides (nt), encoding 946 amino acid (aa) residues with the molecular mass of ∼ 107.6 kDa. The secondary structure of deduced LrTLR22 exhibited the presence of signal peptide (1-22 aa), 18 leucine-rich repeat (LRR) regions (79-736 aa), and TIR domain (792-935 aa). The 3D model of LrTLR22-LRR regions together elucidated the horse-shoe-shaped structure having parallel β-strands at the concave surface and few α-helices at the convex surface. The TIR domain structure revealed alternate presence of five α-helices and β-sheets. Phylogenetically, LrTLR22 was closely related to common carp and exhibited significant similarity (92.2 %) and identity (86.1 %) in their amino acids. In rohu, TLR22 was constitutively expressed in all embryonic developmental stages, and tissue-specific analysis illustrated its expression in all examined tissues, highest was in liver and lowest in brain. In vivo modulation of TLR22 gene expression was analyzed by quantitative real-time PCR (qRT-PCR) assay following stimulation with lipopolysaccharide (LPS), synthetic double stranded RNA (polyinosinic-polycytidylic acid), and bacterial (Aeromonas hydrophila) RNA. Among these ligands, bacterial RNA most significantly (p < 0.05) induced TLR22 gene expression in most of the tested tissues. In A. hydrophila infection, induction of TLR22 gene expression

  14. Induction of Innate Immunity against Herpes Simplex Virus Type 2 Infection via Local Delivery of Toll-Like Receptor Ligands Correlates with Beta Interferon Production

    PubMed Central

    Gill, Navkiran; Deacon, Philip M.; Lichty, Brian; Mossman, Karen L.; Ashkar, Ali A.

    2006-01-01

    Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is not well-defined. Here we report that production of beta interferon (IFN-β) but not production of IFN-α, IFN-γ, or tumor necrosis factor alpha (TNF-α) strongly correlates with innate protection against HSV-2. Local delivery of poly(I:C) and CpG oligodeoxynucleotides induced significant production of IFN-β in the genital tract and provided complete protection against intravaginal (IVAG) HSV-2 challenge. There was no detectable IFN-β in mice treated with ligands for TLR4 or TLR2, and these mice were not protected against subsequent IVAG HSV-2 challenge. There was no correlation between levels of TNF-α or IFN-γ in the genital tract and protection against IVAG HSV-2 challenge following TLR ligand delivery. Both TNF-α−/− and IFN-γ−/− mice were protected against IVAG HSV-2 challenge following local delivery of poly(I:C). To confirm that type I interferon, particularly IFN-β, mediates innate protection, mice unresponsive to type I interferons (IFN-α/βR−/− mice) and mice lacking IFN regulatory factor-3 (IRF-3−/− mice) were treated with poly(I:C) and then challenged with IVAG HSV-2. There was no protection against HSV-2 infection following poly(I:C) treatment of IFN-α/βR−/− or IRF-3−/− mice. Local delivery of murine recombinant IFN-β protected C57BL/6 and IRF-3−/− mice against IVAG HSV-2 challenge. Results from these in vivo studies clearly suggest a strong correlation between IFN-β production and innate antiviral immunity against HSV-2. PMID:17005672

  15. Toll-like receptor 4 polymorphism impairing lipopolysaccharide signaling in Sus scrofa, and its restricted distribution among Japanese wild boar populations.

    PubMed

    Shinkai, Hiroki; Okumura, Naohiko; Suzuki, Rintaro; Muneta, Yoshihiro; Uenishi, Hirohide

    2012-04-01

    Toll-like receptor 4 (TLR4) responds to lipid A, the active moiety of lipopolysaccharide from gram-negative bacteria, in cooperation with myeloid differentiation protein-2 and plays a vital role in innate immunity. Polymorphisms in TLR4 are associated with changes in susceptibility to various infectious diseases. We previously found seven amino acid polymorphisms in Sus scrofa TLR4. In this study, we showed by luciferase reporter assay that an alteration from cysteine to tryptophan at position 506 (C506W) caused loss of ability to induce nuclear factor-κB activation after lipid A stimulation. This polymorphism was found only in Japanese wild boar (JWB) populations of S. scrofa. Genotyping of TLR4 in different JWB populations revealed that C506W polymorphism was under pressure from purifying selection in a local population (Tajima's D=-0.98; p<0.05). However, in another population, this polymorphism existed at a frequency such that homozygous animals with the W506 alleles seldom appeared. These findings suggest that the C506W polymorphism is under different types of pressure by natural selection between populations, which may reflect differences in residential pathogens or demographic factors.

  16. Mycobacterial signaling through toll-like receptors

    PubMed Central

    Basu, Joyoti; Shin, Dong-Min; Jo, Eun-Kyeong

    2012-01-01

    Studies over the past decade have helped to decipher molecular networks dependent on Toll-like receptor (TLR) signaling, in mycobacteria-infected macrophages. Stimulation of TLRs by mycobacteria and their antigenic components rapidly induces intracellular signaling cascades involved in the activation of nuclear factor-κB and mitogen-activated protein kinase pathways, which play important roles in orchestrating proinflammatory responses and innate defense through generation of a variety of antimicrobial effector molecules. Recent studies have provided evidence that mycobacterial TLR-signaling cross talks with other intracellular antimicrobial innate pathways, the autophagy process and functional vitamin D receptor (VDR) signaling. In this article we describe recent advances in the recognition, responses, and regulation of mycobacterial signaling through TLRs. PMID:23189273

  17. Natural killer cell intrinsic toll-like receptor MyD88 signaling contributes to IL-12-dependent IFN-γ production by mice during infection with Toxoplasma gondii.

    PubMed

    Ge, Yiyue; Chen, Jinling; Qiu, Xiaoyan; Zhang, Jie; Cui, Lunbiao; Qi, Yuhua; Liu, Xinjian; Qiu, Jingfan; Shi, Zhiyang; Lun, Zhaorong; Shen, Jilong; Wang, Yong

    2014-06-01

    Myeloid differentiation factor 88 (MyD88)-dependent IL-12 secretion by dendritic cells is critical for natural killer cell-mediated IFN-γ production and innate resistance to Toxoplasma gondii. Although MyD88(-/-) mice challenged with T. gondii have defective IL-12 responses and succumb to infection, administration of IL-12 to MyD88(-/-) mice fails to prevent acute mortality, suggesting that MyD88 may mediate signals within natural killer cells important for IL-12-dependent IFN-γ production and innate resistance to this parasite. In this study, we found that T. gondii antigens and IL-12 could synergistically trigger IFN-γ secretion by natural killer cells, which was dependent on toll-like receptor-MyD88 signaling. Further analysis showed that p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, c-Jun N-terminal kinase and NF-κB multiple pathways downstream of MyD88 contributed to IFN-γ production by natural killer cells. Moreover, the well-established toll-like receptor agonists, T. gondii profilin (Tgprofilin) and T. gondii heat shock protein 70 (TgHSP70) could evoke a similar IFN-γ secretory response in natural killer cells to that evoked by T. gondii antigens. In vivo adoptive transfer experiments showed that, upon challenge with T. gondii, NOD/SCID-β2 microglobulin null (NOD/SCID-β2m(-/-)) mice injected i.v. with MyD88(-/-) natural killer cells had reduced serum IFN-γ levels and increased splenic tachyzoite burdens compared with those injected i.v. with wild-type natural killer cells. Taken together, these findings demonstrate a critical role for natural killer cell intrinsic toll-like receptor-MyD88 signaling in IL-12-dependent early IFN-γ production and innate resistance to T. gondii.

  18. Is There a Link between Human Herpesvirus Infection and Toll-like Receptors in the Pathogenesis of Pityriasis Rosea? A Case-control Study.

    PubMed

    El-Ela, Mostafa Abou; Shaarawy, Eman; El-Komy, Mohamed; Fawzy, Marwa; Hay, Rania Abdel; Hegazy, Rehab; Sharobim, Amin; Moustafa, Nadine; Rashed, Laila; Sayed Amr, Khalda Sayed

    2016-12-01

    Human herpesvirus (HHV) 6 and 7 are involved in the pathogenesis of pityriasis rosea (PR). Our aim was to evaluate the role of the innate immune response in PR through the detection of Toll-like receptors (TLR) 2, 3, 4, 7, 8, and 9 expression in the skin of affected patients and to detect the possibility of being induced by HHV-6 and/or HHV-7 viral coexistence in these patients. Twenty-four patients with PR and 24 healthy controls were included in this case-control study. Biopsy was obtained from the PR lesion and from the healthy skin of controls for detection of HHV-6 and 7 as well as TLRs 2, 3, 4, 7, 8, and 9 gene expression using real-time polymerase chain reaction (PCR). Significantly elevated expression of all studied TLRs and significantly higher viral load of HHV-6 and 7 in PR cases were detected. A significant higher expression of TLR2 and 4 in HHV-7 positive cases and a significant positive correlation between TLR9 and HHV-7 viral load were documented. HHV6 and 7 may also be involved in the pathogenesis of PR via TLR pathways.

  19. Toll-like receptor 7 mediates pruritus.

    PubMed

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-12-01

    Toll-like receptors are typically expressed in immune cells to regulate innate immunity. We found that functional Toll-like receptor 7 (TLR7) was expressed in C-fiber primary sensory neurons and was important for inducing itch (pruritus), but was not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Our results indicate that TLR7 mediates itching and is a potential therapeutic target for anti-itch treatment in skin disease conditions.

  20. Dysregulation of toll-like receptor (TLR) 2 expression on monocytes and upregulation of the frequency of T cells expressing TLR2 in patients with chronic hepatitis C virus infection.

    PubMed

    Ronit, Andreas; Salem, Mohammad; Hartling, Hans J; Gaardbo, Julie C; Ullum, Henrik; Gerstoft, Jan; Nielsen, Susanne D

    2013-05-01

    Toll-like receptors (TLRs) initiate inflammatory responses that may play a role in disease progression in patients infected with hepatitis C virus (HCV). TLR2 and TLR4 surface expression were assessed on CD14(+) monocytes, CD4(+) and CD8(+) T cells in treatment naïve patients with chronic HCV infection with fibrosis, without fibrosis, co-infected with human immunodeficiency virus (HIV), and in healthy controls. Increased expression of TLR2 was found on monocytes in HCV-infected patients with fibrosis (p < 0.01), co-infected with HIV (p = 0.03), and possibly in patients without fibrosis (p = 0.07) when compared to controls. TLR2 positive CD4(+) and CD8(+) T cells were upregulated in patients with fibrosis only (p < 0.01). However, expression of TLR2 was not associated with T cell activation. TLR4 expression was similar in patients and healthy controls. In conclusion, TLR2 expression on monocytes and the frequency of T cells expressing TLR2 may contribute to disease progression in chronic HCV infection.

  1. Crosstalk between toll-like receptors and hypoxia-dependent pathways in health and disease.

    PubMed

    Crifo, Bianca; Taylor, Cormac T

    2016-02-01

    Toll-like receptors (TLRs) play an important role in shaping the host immune response to infection and inflammation. Tissue hypoxia is a common microenvironmental feature of infected and inflamed tissues. Furthermore, hypoxia significantly impacts the development of immune and inflammatory responses through the regulation of host innate and adaptive immunity. Here, we will discuss current knowledge in relation to the crosstalk that exists between toll-like receptor- and hypoxia-dependent signaling pathways in health and disease.

  2. Susceptibility of prostate epithelial cells to Chlamydia muridarum infection and their role in innate immunity by recruitment of intracellular Toll-like receptors 4 and 2 and MyD88 to the inclusion.

    PubMed

    Mackern-Oberti, Juan Pablo; Maccioni, Mariana; Cuffini, Cecilia; Gatti, Gerardo; Rivero, Virginia E

    2006-12-01

    Although Chlamydia infections are widespread throughout the world, data about immunopathogenesis of genitourinary tract infections in males are very limited. In the present work we present an in vitro model of male genital tract-derived epithelial cells, more precisely prostate epithelial cells (PEC), to analyze if they are susceptible and able to respond to Chlamydia muridarum infection. Our results demonstrate that rat PEC are susceptible to C. muridarum infection and respond to this pathogen by up-regulating different proinflammatory cytokine and chemokine genes that could participate in the recruitment and local activation of immune cells, therefore influencing innate and adaptive immune responses during Chlamydia infection. Moreover, we analyzed the expression of Toll-like receptor 4 (TLR4), TLR2, and related molecules on PEC and the effect of C. muridarum infection on their expression. Our results demonstrate that PEC express significant levels of TLR4, CD14, TLR2, and the adaptor molecule MyD88 and up-regulate these proteins in response to C. muridarum infection. Indeed, TLR4, CD14, TLR2, and the adaptor MyD88 are specifically recruited to the vicinity of the bacterial inclusion, suggesting that these TLRs are actively engaged in signaling from this intracellular location in these cells. This is, to our knowledge, the first time that an in vitro model of infection with Chlamydia of male tract-derived epithelial cells has been achieved, and it provides the opportunity to determine how these cells respond and participate in modulating innate and adaptive immune response during Chlamydia infections.

  3. Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4.

    PubMed

    Wong, Eric B; Mallet, Jean-François; Duarte, Jairo; Matar, Chantal; Ritz, Barry W

    2014-04-01

    Oral administration of bovine colostrum affects intestinal immunity, including an increased percentage of natural killer (NK) cells. However, effects on NK cell cytotoxic activity and resistance to infection as well as a potential mechanism remain unclear. Therefore, we investigated the effects of bovine colostrum (La Belle, Inc, Bellingham, WA) on the NK cytotoxic response to influenza infection and on toll-like receptor (TLR) activity in a primary intestinal epithelial cell culture. We hypothesized that colostrum would increase NK cell activity and that TLR-2 and TLR-4 blocking would reduce interleukin 6 production by epithelial cells in response to contact stimulation with colostrum. Four-month-old female C57BL/6 mice were supplemented with 1 g of colostrum per kilogram of body weight before and after infection with influenza A virus (H1N1). Animals were assessed for weight loss, splenic NK cell activity, and lung virus titers. Colostrum-supplemented mice demonstrated less reduction in body weight after influenza infection, indicating a less severe infection, increased NK cell cytotoxicity, and less virus burden in the lungs compared with controls. Colostrum supplementation enhanced NK cell cytotoxicity and improved the immune response to primary influenza virus infection in mice. To investigate a potential mechanism, a primary culture of small intestine epithelial cells was then stimulated with colostrum. Direct activation of epithelial cells resulted in increased interleukin 6 production, which was inhibited with TLR-2 and TLR-4 blocking antibodies. The interaction between colostrum and immunity may be dependent, in part, on the interaction of colostrum components with innate receptors at the intestinal epithelium, including TLR-2 and TLR-4.

  4. Constitutive gene expression in monocytes from chronic HIV-1 infection overlaps with acute Toll-like receptor induced monocyte activation profiles.

    PubMed

    Gekonge, Bethsebah; Giri, Malavika S; Kossenkov, Andrew V; Nebozyhn, Michael; Yousef, Malik; Mounzer, Karam; Showe, Louise; Montaner, Luis J

    2012-01-01

    Elevated TLR expression/signalling in monocyte/macrophages has been shown to mediate systemic immune activation, a hallmark of progressive HIV-1 infection. Here we show, via differential gene expression comparisons, the presence of a constitutive in vivo TLR-like gene activation signature in steady-state circulating monocytes from chronically HIV-1 infected subjects. The TLR2-like gene signature was defined as an 82 gene subset of the 376 genes constitutively modulated in in vivo HIV-1 monocytes, based on their overlap with de novo TLR2-induced genes in uninfected subjects' monocytes following acute ex vivo stimulation with Staphylococcus Aureus Cowan (SAC). Additional comparison of in vivo gene networks with available datasets from acute TLR activations in M/M expanded the overlap to 151-gene concordance among the 376 differential genes with emphasis on ERK/MAPK, TNF/IL6 (NFκB) and p53 gene networks. TLR2 stimulation of monocytes from HIV-1 infected subjects resulted in further upregulation of inflammatory genes indicative of a sustained transcriptional potential upon stimulation. In summary, our data support the presence of a sustained TLR-like gene activation profile in circulating monocyte from steady-state viremia in HIV-1 infected subjects.

  5. Key role of Toll-like receptor 2 in the inflammatory response and major histocompatibility complex class ii downregulation in Brucella abortus-infected alveolar macrophages.

    PubMed

    Ferrero, Mariana C; Hielpos, M Soledad; Carvalho, Natalia B; Barrionuevo, Paula; Corsetti, Patricia P; Giambartolomei, Guillermo H; Oliveira, Sergio C; Baldi, Pablo C

    2014-02-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival.

  6. Signaling via Tumor Necrosis Factor Receptor 1 but Not Toll-Like Receptor 2 Contributes Significantly to Hydrosalpinx Development following Chlamydia muridarum Infection

    PubMed Central

    Dong, Xiaohua; Liu, Yuanjun; Chang, Xiaotong; Lei, Lei

    2014-01-01

    Chlamydial infection in the lower genital tract can lead to hydrosalpinx, which is accompanied by activation of both pattern recognition receptor TLR2- and inflammatory cytokine receptor TNFR1-mediated signaling pathways. In the current study, we compared the relative contributions of these two receptors to chlamydial induction of hydrosalpinx in mice. We found that mice with or without deficiencies in TLR2 or TNFR1 displayed similar time courses of live organism shedding from vaginal swabs, suggesting that these receptor-mediated signaling pathways are not required for controlling chlamydial lower genital infection. However, mice deficient in TNFR1 but not TLR2 developed significantly reduced hydrosalpinx. The decreased pathogenicity correlated with a significant reduction in interleukin-17 by in vitro-restimulated splenocytes of TNFR1-deficient mice. Although TLR2-deficient mice developed hydrosalpinx as severe as that of wild-type mice, peritoneal macrophages from mice deficient in TLR2 but not TNFR1 produced significantly reduced cytokines upon chlamydial stimulation, suggesting that reduced macrophage responses to chlamydial infection do not always lead to a reduction in hydrosalpinx. Thus, we have demonstrated that the signaling pathways triggered by the cytokine receptor TNFR1 play a more significant role in chlamydial induction of hydrosalpinx than those mediated by the pattern recognition receptor TLR2, which has laid a foundation for further revealing the chlamydial pathogenic mechanisms. PMID:24549331

  7. Toll-like Receptor-7 Mediates Pruritus

    PubMed Central

    Liu, Tong; Xu, Zhen-Zhong; Park, Chul-Kyu; Berta, Temugin; Ji, Ru-Rong

    2010-01-01

    Toll-like receptors (TLRs) are typically expressed in immune cells to regulate innate immunity. Here we report that functional TLR7 is expressed in C-fiber primary sensory neurons and important for inducing itch (pruritis) but not necessary for eliciting mechanical, thermal, inflammatory and neuropathic pain in mice. Thus, we have uncovered TLR7 as a novel itch mediator and a potential therapeutic target for anti-itch treatment in skin disease conditions. PMID:21037581

  8. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection.

    PubMed

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  9. Transcription of Toll-Like Receptors 2, 3, 4 and 9, FoxP3 and Th17 Cytokines in a Susceptible Experimental Model of Canine Leishmania infantum Infection

    PubMed Central

    Hosein, Shazia; Rodríguez-Cortés, Alhelí; Blake, Damer P.; Allenspach, Karin; Alberola, Jordi; Solano-Gallego, Laia

    2015-01-01

    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in

  10. Toll-like Receptors at the Ocular Surface

    PubMed Central

    Pearlman, Eric; Johnson, Angela; Adhikary, Gautam; Sun, Yan; Chinnery, Holly R.; Fox, Todd; Kester, Mark; Mcmenamin, Paul G.

    2012-01-01

    The Toll-like receptor (TLR) family of pathogen recognition molecules has an important role in recognizing microbial pathogens and microbial breakdown products. Activation of TLRs in the corneal epithelium induces CXC chemokine production and recruitment of neutrophils to the corneal stroma. Although essential for pathogen killing, neutrophils can cause extensive tissue damage, leading to visual impairment and blindness. In this review, we examine the role of TLRs in microbial keratitis and in noninfectious corneal inflammation, most commonly associated with contact lens wear. We present recent findings on TLR signaling pathways in the cornea, including MyD88- and TRIF-dependent responses and discuss the role of resident macrophages and dendritic cells. Finally, we examine the potential for targeting the TLR pathway as a potential therapeutic intervention for microbial keratitis and contact lens-associated corneal inflammation. PMID:18781257

  11. Novel drugs targeting Toll-like receptors for antiviral therapy

    PubMed Central

    Patel, Mira C; Shirey, Kari Ann; Pletneva, Lioubov M; Boukhvalova, Marina S; Garzino-Demo, Alfredo; Vogel, Stefanie N; Blanco, Jorge CG

    2014-01-01

    Toll-like receptors (TLRs) are sentinel receptors of the host innate immune system that recognize conserved ‘pathogen-associated molecular patterns’ of invading microbes, including viruses. The activation of TLRs establishes antiviral innate immune responses and coordinates the development of long-lasting adaptive immunity in order to control viral pathogenesis. However, microbe-induced damage to host tissues may release ‘danger-associated molecular patterns’ that also activate TLRs, leading to an overexuberant inflammatory response and, ultimately, to tissue damage. Thus, TLRs have proven to be promising targets as therapeutics for the treatment of viral infections that result in inflammatory damage or as adjuvants in order to enhance the efficacy of vaccines. Here, we explore recent advances in TLR biology with a focus on novel drugs that target TLRs (agonists and antagonists) for antiviral therapy. PMID:25620999

  12. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation.

  13. DIESEL EXHAUST ENHANCES TOLL-LIKE RECEPTOR 3 EXPRESSION AND SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Our previous studies have shown that prior exposure of respiratory epithelial cells to an aqueous-trapped solution of DE (DEas) enhances the susceptibility to Influenza infections. Here we examined the effect of DEas on the toll-like receptor 3 (TLR3) pathway, which is responsib...

  14. Toll-like receptors and cutaneous melanoma

    PubMed Central

    Coati, Ilaria; Miotto, Serena; Zanetti, Irene; Alaibac, Mauro

    2016-01-01

    Innate immune cells recognize highly conserved pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Previous studies have demonstrated that PRRs also recognize endogenous molecules, termed damage-associated molecular patterns (DAMPs) that are derived from damaged cells. PRRs include Toll-like receptors (TLRs), scavenger receptors, C-type lectin receptors and nucleotide oligomerization domain-like receptors. To date, 10 TLRs have been identified in humans and each receptor responds to a different ligand. The recognition of PAMPS or DAMPs by TLRs leads to the activation of signaling pathways and cellular responses with subsequent pro-inflammatory cytokine release, phagocytosis and antigen presentation. In the human skin, TLRs are expressed by keratinocytes and melanocytes: The main cells from which skin cancers arise. TLRs 1–6 and 9 are expressed in keratinocytes, while TLRs 2–5, 7, 9 and 10 have been identified in melanocytes. It is hypothesized that TLRs may present a target for melanoma therapies. In this review, the involvement of TLRs in the pathogenesis and treatment of melanoma was discussed. PMID:27900049

  15. Toll-Like Receptors of Deuterostome Invertebrates

    PubMed Central

    Satake, Honoo; Sekiguchi, Toshio

    2012-01-01

    Defensive systems against pathogens are responsible not only for survival or lifetime of an individual but also for the evolution of a species. Innate immunity is expected to be more important for invertebrates than mammals, given that adaptive immunity has not been acquired in the former. Toll-like receptors (TLRs) have been shown to play a crucial role in host defense of pathogenic microbes in innate immunity of mammals. Recent genome-wide analyses have suggested that TLR or their related genes are conserved in invertebrates. In particular, numerous TLR-related gene candidates were detected in deuterostome invertebrates, including a sea urchin (222 TLR-related gene candidates) and amphioxus (72 TLR-related gene candidates). Molecular phylogenetic analysis verified that most of sea urchin or amphioxus TLR candidates are paralogous, suggesting that these organisms expanded TLR-related genes in a species-specific manner. In contrast, another deuterostome invertebrate, the ascidian Ciona intestinalis, was found to possess only two TLR genes. Moreover, Ciona TLRs, Ci-TLR1 and Ci-TLR2, were shown to possess “hybrid” functionality of mammalian TLRs. Such functionality of Ci-TLRs could not be predicted by sequence comparison with vertebrate TLRs, indicating confounding evolutionary lineages of deuterostome invertebrate TLRs or their candidates. In this review article, we present recent advances in studies of TLRs or their candidates among deuterostome invertebrates, and provide insight into an evolutionary process of TLRs. PMID:22566918

  16. Role of Toll-like receptor 5 in the innate immune response to acute P. aeruginosa pneumonia

    PubMed Central

    Morris, Amy E.; Liggitt, H. Denny; Hawn, Thomas R.

    2009-01-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired pneumonia and an important pathogen in patients with chronic lung disease, such as cystic fibrosis and bronchiectasis. The contribution of Toll-like receptor 5 (TLR5) to the innate immune response to this organism is incompletely understood. We exposed wild-type and TLR5-deficient (Tlr5−/−) mice to aerosolized P. aeruginosa at low and high inocula and assessed bacterial clearance, lung inflammation, and cytokine production 4 and 24 h after infection. Bacterial clearance was impaired in Tlr5−/− mice after low-inoculum, but not high-inoculum, infection. Early bronchoalveolar accumulation of neutrophils was reduced in Tlr5−/− mice after low- and high-dose infection. Cytokine responses, including markedly impaired monocyte chemoattractant protein-1 production 4 h after low- and high-inoculum challenge, were selectively altered in Tlr5−/− mice. In contrast, there was no impairment of bacterial clearance, neutrophil recruitment, or monocyte chemoattractant protein-1 production in Tlr5−/− mice after infection with a nonflagellated isotypic strain of P. aeruginosa. Thus TLR5-mediated recognition of flagellin is involved in activating pulmonary defenses against P. aeruginosa and contributes to antibacterial resistance in a manner that is partially inoculum dependent. These data are the first to demonstrate a unique role for TLR5 in the innate immune response to P. aeruginosa lung infection. PMID:19801452

  17. Toll-like receptor signaling in primary immune deficiencies

    PubMed Central

    Maglione, Paul J.; Simchoni, Noa; Cunningham-Rundles, Charlotte

    2015-01-01

    Toll-like receptors (TLRs) recognize common microbial or host-derived macromolecules and have important roles in early activation of the immune system. Patients with primary immune deficiencies (PIDs) affecting TLR signaling can elucidate the importance of these proteins to the human immune system. Defects in interleukin-1 receptor-associated kinase (IRAK)-4 and myeloid differentiation factor 88 (MyD88) lead to susceptibility to infections with bacteria, while mutations in nuclear factor-κB essential modulator (NEMO) and other downstream mediators generally induce broader susceptibility to bacteria, viruses, and fungi. In contrast, TLR3 signaling defects are specific for susceptibility to herpes simplex virus type 1 (HSV-1) encephalitis. Other PIDs induce functional alterations of TLR signaling pathways, such as common variable immunodeficiency in which plasmacytoid dendritic cell (pDC) defects enhance defective responses of B cells to shared TLR agonists. Dampening of TLR responses is seen for TLRs 2 and 4 in chronic granulomatous disease (CGD) and X-linked agammaglobulinemia (XLA). Enhanced TLR responses, meanwhile, are seen for TLRs 5 and 9 in CGD, TLRs 4, 7/8, and 9 in XLA, TLRs 2 and 4 in hyper IgE syndrome, and for most TLRs in adenosine deaminase deficiency. PMID:25930993

  18. The Role of Toll-Like Receptors in Hematopoietic Malignancies

    PubMed Central

    Monlish, Darlene A.; Bhatt, Sima T.; Schuettpelz, Laura G.

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors that shape the innate immune system by identifying pathogen-associated molecular patterns and host-derived damage-associated molecular patterns. TLRs are widely expressed on both immune cells and non-immune cells, including hematopoietic stem and progenitor cells, effector immune cell populations, and endothelial cells. In addition to their well-known role in the innate immune response to acute infection or injury, accumulating evidence supports a role for TLRs in the development of hematopoietic and other malignancies. Several hematopoietic disorders, including lymphoproliferative disorders and myelodysplastic syndromes, which possess a high risk of transformation to leukemia, have been linked to aberrant TLR signaling. Furthermore, activation of TLRs leads to the induction of a number of proinflammatory cytokines and chemokines, which can promote tumorigenesis by driving cell proliferation and migration and providing a favorable microenvironment for tumor cells. Beyond hematopoietic malignancies, the upregulation of a number of TLRs has been linked to promoting tumor cell survival, proliferation, and metastasis in a variety of cancers, including those of the colon, breast, and lung. This review focuses on the contribution of TLRs to hematopoietic malignancies, highlighting the known direct and indirect effects of TLR signaling on tumor cells and their microenvironment. In addition, the utility of TLR agonists and antagonists as potential therapeutics in the treatment of hematopoietic malignancies is discussed. PMID:27733853

  19. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models.

    PubMed

    Weehuizen, Tassili A F; Prior, Joann L; van der Vaart, Thomas W; Ngugi, Sarah A; Nepogodiev, Sergey A; Field, Robert A; Kager, Liesbeth M; van 't Veer, Cornelis; de Vos, Alex F; Wiersinga, W Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis.

  20. MAP1S Protein Regulates the Phagocytosis of Bacteria and Toll-like Receptor (TLR) Signaling.

    PubMed

    Shi, Ming; Zhang, Yifan; Liu, Leyuan; Zhang, Tingting; Han, Fang; Cleveland, Joseph; Wang, Fen; McKeehan, Wallace L; Li, Yu; Zhang, Dekai

    2016-01-15

    Phagocytosis is a critical cellular process for innate immune defense against microbial infection. The regulation of phagocytosis process is complex and has not been well defined. An intracellular molecule might regulate cell surface-initiated phagocytosis, but the underlying molecular mechanism is poorly understood (1). In this study, we found that microtubule-associated protein 1S (MAP1S), a protein identified recently that is involved in autophagy (2), is expressed primarily in macrophages. MAP1S-deficient macrophages are impaired in the phagocytosis of bacteria. Furthermore, we demonstrate that MAP1S interacts directly with MyD88, a key adaptor of Toll-like receptors (TLRs), upon TLR activation and affects the TLR signaling pathway. Intriguingly, we also observe that, upon TLR activation, MyD88 participates in autophagy processing in a MAP1S-dependent manner by co-localizing with MAP1 light chain 3 (MAP1-LC3 or LC3). Therefore, we reveal that an intracellular autophagy-related molecule of MAP1S controls bacterial phagocytosis through TLR signaling.

  1. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterodimer.

    PubMed

    Kang, Jin Young; Nan, Xuehua; Jin, Mi Sun; Youn, Suk-Jun; Ryu, Young Hee; Mah, Shinjee; Han, Seung Hyun; Lee, Hayyoung; Paik, Sang-Gi; Lee, Jie-Oh

    2009-12-18

    Toll-like receptor 2 (TLR2) initiates potent immune responses by recognizing diacylated and triacylated lipopeptides. Its ligand specificity is controlled by whether it heterodimerizes with TLR1 or TLR6. We have determined the crystal structures of TLR2-TLR6-diacylated lipopeptide, TLR2-lipoteichoic acid, and TLR2-PE-DTPA complexes. PE-DTPA, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-diethylenetriaminepentaacetic acid, is a synthetic phospholipid derivative. Two major factors contribute to the ligand specificity of TLR2-TLR1 or TLR2-TLR6 heterodimers. First, the lipid channel of TLR6 is blocked by two phenylalanines. Simultaneous mutation of these phenylalanines made TLR2-TLR6 fully responsive not only to diacylated but also to triacylated lipopeptides. Second, the hydrophobic dimerization interface of TLR2-TLR6 is increased by 80%, which compensates for the lack of amide lipid interaction between the lipopeptide and TLR2-TLR6. The structures of the TLR2-lipoteichoic acid and the TLR2-PE-DTPA complexes demonstrate that a precise interaction pattern of the head group is essential for a robust immune response by TLR2 heterodimers.

  2. GENES, IN ADDITION TO TOLL-LIKE RECEPTOR 2, PLAY A ROLE IN ANTIBACTERIAL DEFENSE TO STREPTOCOCCAL PNEUMONIA

    EPA Science Inventory

    Streptococcus infection in human populations continues to be a major cause of morbidity and mortality. To evaluate the effect of genetic background and toll-like receptor 2 (TLR2) on antibacterial defense to streptococcal infection, eight genetically diverse strains of mic...

  3. Toll-like receptors recognize distinct proteinase-resistant glycoconjugates in Campylobacter jejuni and Escherichia coli.

    PubMed

    Phongsisay, Vongsavanh; Hara, Hiromitsu; Fujimoto, Shuji

    2015-03-01

    Campylobacter jejuni causes gastroenteritis and autoimmune neuropathy Guillain-Barré syndrome. The mechanism by which C. jejuni infection results in such the hyperimmunity is not completely understood. Host immunity plays an important role in the disease pathogenesis; however, little is known how immune system recognizes this human pathogen. In this study, we report that Toll-like receptors recognize distinct proteinase K-resistant glycoconjugates in C. jejuni and Escherichia coli. Lipopolysaccharide is solely proteinase-resistant glycoconjugate in E. coli. In contrast, C. jejuni possesses at least five different components that are resistant to proteinase digestion and are capable of inducing NF-κB activation through TLR2 and TLR4. Possession of multiple activators of Toll-like receptors may be the unique strategy of C. jejuni to trigger hyperimmunity.

  4. Methods to Investigate the Role of Toll-Like Receptors in Allergic Contact Dermatitis.

    PubMed

    Schmidt, Marc; Goebeler, Matthias; Martin, Stefan F

    2016-01-01

    Allergic contact disease is a common inflammatory skin disease resulting from hyperresponsiveness to harmless nonprotein substances such as metals, fragrances, or rubber. Recent research has highlighted a prominent role of Toll-like receptors, particularly TLR4 in contact allergen-induced innate immune activation that crucially contributes to the pathogenesis of this disease. Here we describe several methods to investigate the role of Toll-like receptors in contact allergen-induced pro-inflammatory responses. These include expansion of disease-relevant human primary cells including endothelial cells and keratinocytes and their manipulation of TLR signaling by transfection, retroviral infection and RNA interference, basic methods to induce contact hypersensitivity in mice, and protocols for adoptive transfer of hapten-stimulated dendritic cells and T cells from TLR-deficient mice to wild-type mice and vice versa wild-type mice to TLR-deficient mice in order to explore cell-specific roles of TLRs in contact hypersensitivity responses.

  5. Hepatitis B virus genome replication triggers toll-like receptor 3-dependent interferon responses in the absence of hepatitis B surface antigen

    PubMed Central

    Real, Catherine Isabell; Lu, Mengji; Liu, Jia; Huang, Xuan; Trippler, Martin; Hossbach, Markus; Deckert, Jochen; Jahn-Hofmann, Kerstin; Ickenstein, Ludger Markus; John, Matthias Johannes; Gibbert, Kathrin; Dittmer, Ulf; Vornlocher, Hans-Peter; Schirmbeck, Reinhold; Gerken, Guido; Schlaak, Joerg Friedrich; Broering, Ruth

    2016-01-01

    The hepatitis B virus (HBV) has been described as stealth virus subverting immune responses initially upon infection. Impaired toll-like receptor signaling by the HBV surface antigen (HBsAg) attenuates immune responses to facilitate chronic infection. This implies that HBV replication may trigger host innate immune responses in the absence of HBsAg. Here we tested this hypothesis, using highly replicative transgenic mouse models. An HBV replication-dependent expression of antiviral genes was exclusively induced in HBsAg-deficient mice. These interferon responses attributed to toll-like receptor 3 (TLR3)-activated Kupffer and liver sinusoidal endothelial cells and further controlled the HBV genome replication. However, activation of TLR3 with exogenous ligands indicated additional HBs-independent immune evasion events. Our data demonstrate that in the absence of HBsAg, hepatic HBV replication leads to Tlr3-dependent interferon responses in non-parenchymal liver cells. We hypothesize that HBsAg is a major HBV-mediated evasion mechanism controlling endogenous antiviral responses in the liver. Eradication of HBsAg as a therapeutic goal might facilitate the induction of endogenous antiviral immune responses in patients chronically infected with HBV. PMID:27121087

  6. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages.

    PubMed

    Park, Se-Ra; Kim, Dong-Jae; Han, Seung-Hyun; Kang, Min-Jung; Lee, Jun-Young; Jeong, Yu-Jin; Lee, Sang-Jin; Kim, Tae-Hyoun; Ahn, Sang-Gun; Yoon, Jung-Hoon; Park, Jong-Hwan

    2014-05-01

    Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.

  7. Alternate transcription of the Toll-like receptor signaling cascade

    PubMed Central

    Wells, Christine A; Chalk, Alistair M; Forrest, Alistair; Taylor, Darrin; Waddell, Nic; Schroder, Kate; Himes, S Roy; Faulkner, Geoffrey; Lo, Sandra; Kasukawa, Takeya; Kawaji, Hideya; Kai, Chikatoshi; Kawai, Jun; Katayama, Shintaro; Carninci, Piero; Hayashizaki, Yoshihide; Hume, David A; Grimmond, Sean M

    2006-01-01

    Background Alternate splicing of key signaling molecules in the Toll-like receptor (Tlr) cascade has been shown to dramatically alter the signaling capacity of inflammatory cells, but it is not known how common this mechanism is. We provide transcriptional evidence of widespread alternate splicing in the Toll-like receptor signaling pathway, derived from a systematic analysis of the FANTOM3 mouse data set. Functional annotation of variant proteins was assessed in light of inflammatory signaling in mouse primary macrophages, and the expression of each variant transcript was assessed by splicing arrays. Results A total of 256 variant transcripts were identified, including novel variants of Tlr4, Ticam1, Tollip, Rac1, Irak1, 2 and 4, Mapk14/p38, Atf2 and Stat1. The expression of variant transcripts was assessed using custom-designed splicing arrays. We functionally tested the expression of Tlr4 transcripts under a range of cytokine conditions via northern and quantitative real-time polymerase chain reaction. The effects of variant Mapk14/p38 protein expression on macrophage survival were demonstrated. Conclusion Members of the Toll-like receptor signaling pathway are highly alternatively spliced, producing a large number of novel proteins with the potential to functionally alter inflammatory outcomes. These variants are expressed in primary mouse macrophages in response to inflammatory mediators such as interferon-γ and lipopolysaccharide. Our data suggest a surprisingly common role for variant proteins in diversification/repression of inflammatory signaling. PMID:16507160

  8. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  9. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.

    PubMed

    Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha

    2012-09-06

    The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis.

  10. Innate immunity and toll-like receptors: clinical implications of basic science research.

    PubMed

    Abreu, Maria T; Arditi, Moshe

    2004-04-01

    Humans are constantly exposed to a wide variety of microorganisms that can cause infection. In self-defense, the human host has evolved complex protective mechanisms, and Toll-like receptors (TLRs) have emerged as a central point in defense. These receptors bind molecular structures that are expressed by microbes but are not expressed by the human host, eg, lipopolysaccharides (LPS) or double-stranded RNA (dsRNA). Activation of these receptors initiates an inflammatory cascade that attempts to clear the offending pathogen and set in motion a specific adaptive immune response. Defects in sensing of pathogens may predispose the host to recurrent infections. The relative rarity of these syndromes of defective innate immunity, however, speaks to the redundancy in sensing of pathogens by the innate immune system. More common, polymorphisms in TLR4 are associated with increased predisposition to severe and recurrent infections but protection against atherosclerotic disease due to diminished inflammation. Toll-like receptor signaling may also contribute to the pathophysiology of disease and injure the host by activating a deleterious immune response such as in sepsis or inflammatory bowel disease (IBD). The focus of this article is to describe the role of TLRs in the innate immune response in health and disease.

  11. Phosphorothioate 2' deoxyribose oligomers as microbicides that inhibit human immunodeficiency virus type 1 (HIV-1) infection and block Toll-like receptor 7 (TLR7) and TLR9 triggering by HIV-1.

    PubMed

    Fraietta, Joseph A; Mueller, Yvonne M; Do, Duc H; Holmes, Veronica M; Howett, Mary K; Lewis, Mark G; Boesteanu, Alina C; Alkan, Sefik S; Katsikis, Peter D

    2010-10-01

    Topical microbicides may prove to be an important strategy for preventing human immunodeficiency virus type 1 (HIV-1) transmission. We examined the safety and efficacy of sequence-nonspecific phosphorothioate 2' deoxyribose oligomers as potential novel microbicides. A short, 13-mer poly(T) phosphorothioate oligodeoxynucleotide (OPB-T) significantly inhibited infection of primary peripheral blood mononuclear cells (PBMC) by high-titer HIV-1(Ba-L) and simian immunodeficiency virus mac251 (SIV(mac251)). Continuous exposure of human vaginal and foreskin tissue explants to OPB-T showed no toxicity. An abasic 14-mer phosphorothioate 2' deoxyribose backbone (PDB) demonstrated enhanced anti-HIV-1 activity relative to OPB-T and other homo-oligodeoxynucleotide analogs. When PDB was used to pretreat HIV-1, PDB was effective against R5 and X4 isolates at a half-maximal inhibitory concentration (IC(50)) of <1 μM in both PBMC and P4-R5 MAGI cell infections. PDB also reduced HIV-1 infectivity following the binding of virus to target cells. This novel topical microbicide candidate exhibited an excellent in vitro safety profile in human PBMC and endocervical epithelial cells. PDB also retained activity in hydroxyethylcellulose gel at pH 4.4 and after transition to a neutral pH and was stable in this formulation for 30 days at room temperature. Furthermore, the compound displayed potent antiviral activity following incubation with a Lactobacillus strain derived from normal vaginal flora. Most importantly, PDB can inhibit HIV-1-induced alpha interferon production. Phosphorothioate 2' deoxyribose oligomers may therefore be promising microbicide candidates that inhibit HIV-1 infection and also dampen the inflammation which is critical for the initial spread of the virus.

  12. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  13. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals.

    PubMed

    Bulut, Yonca; Michelsen, Kathrin S; Hayrapetian, Linda; Naiki, Yoshikazu; Spallek, Ralf; Singh, Mahavir; Arditi, Moshe

    2005-06-03

    Although the Toll-like receptors used by Mycobacterium tuberculosis membrane and secreted factors are known, the pathways activated by M. tuberculosis heat shock proteins are not. An efficient immune response against the intracellular pathogen M. tuberculosis is critically dependent on rapid detection of the invading pathogen by the innate immune system and coordinated activation of the adaptive immune response. Macrophage phagocytosis of M. tuberculosis is accompanied by activation of the transcription factor NF-kappaB and secretion of inflammatory mediators that play an important role in granuloma formation and immune protection during M. tuberculosis infection. The interaction between M. tuberculosis and the various Toll-like receptors is complex, and it appears that distinct mycobacterial components may interact with different members of the Toll-like receptor family. Here we show that recombinant, purified, mycobacterial heat shock proteins 65 and 70 induce NF-kappaB activity in a dose-dependent manner in human endothelial cells. Furthermore, we show that whereas mycobacterial heat shock protein 65 signals exclusively through Toll-like receptor 4, heat shock protein 70 also signals through Toll-like receptor 2. Mycobacterial heat shock protein 65-induced NF-kappaB activation was MyD88-, TIRAP-, TRIF-, and TRAM-dependent and required the presence of MD-2. A better understanding of the recognition of mycobacterial heat shock proteins and their role in the host immune response to the pathogen may open the way to a better understanding of the immunological processes induced by this important human pathogen and the host-pathogen interactions and may help in the rational design of more effective vaccines or vaccine adjuvants.

  14. Recognition of herpes simplex viruses: toll-like receptors and beyond.

    PubMed

    Ma, Yijie; He, Bin

    2014-03-20

    Herpes simplex viruses (HSVs) are human pathogens that establish lytic and latent infections. Reactivation from latency occurs intermittently, which represents a lifelong source of recurrent infection. In this complex process, HSV triggers and neutralizes innate immunity. Therefore, a dynamic equilibrium between HSV and the innate immune system determines the outcome of viral infection. Detection of HSV involves pathogen recognition receptors that include Toll-like receptors, retinoic acid-inducible gene I-like receptors, and cytosolic DNA sensors. Moreover, innate components or pathways exist to sense membrane fusion upon viral entry into host cells. Consequently, this surveillance network activates downstream transcription factors, leading to the induction of type I interferon and inflammatory cytokines. Not surprisingly, with the capacity to establish chronic infection HSV has evolved strategies that modulate or evade innate immunity. In this review, we describe recent advances pertinent to the interplay of HSV and the induction of innate immunity mediated by pathogen recognition receptors or pathways.

  15. Functional polymorphisms in Toll-like receptor genes for innate immunity in farm animals.

    PubMed

    Novák, Karel

    2014-01-15

    The exploitation of the genetic factors affecting the health status of farm animals represents an alternative approach to controlling the diseases caused by microbial pathogens. The determination of innate immunity based on the genotype of the germplasm cells is a constraint for specificity but becomes an advantage in breeding schemes. The structural deviations among Toll-like receptors (TLRs), as the most frequently studied innate immunity components, have been documented at all levels, i.e., interspecific, inter- and intravarietal, in the main farm species. The current computational methods facilitate the prediction of the functional consequences of the observed mutations. Subsequently, these predictions can be verified through immunological responsiveness and population-wide association studies. The frequency and haplotype grouping of individual polymorphisms are used to track the origin and selection coefficient as independent indicators of functional changes. The Toll-like receptor variants associated with mastitis and mycobacterial infection have been identified in cattle, consequently, the targeting of these proteins in breeding could contribute to disease control. The range of infections affected by TLR polymorphisms suggests that the improvement of innate resistance is feasible in more species. Thus, the traditional breeds and wild populations should be regarded as the resources of genetic variability accessible for these purposes.

  16. Coxsackievirus B3 induces viral myocarditis by upregulating toll-like receptor 4 expression.

    PubMed

    Zhao, Zhao; Cai, Tian-Zhi; Lu, Yan; Liu, Wen-Jun; Cheng, Man-Li; Ji, Yu-Qiang

    2015-04-01

    In the present study, we investigated the potential pathogenesis of coxsackievirus B3 (CVB3)-induced viral myocarditis and the promising protective effect of silencing RNA (small interfering RNA, siRNA). One hundred and twenty mice were included in the study, and 30 mice were intraperitoneally inoculated with CVB3 to establish an acute viral myocarditis model. The survival rate was observed for the CVB3-infected mouse model (MOD), and myocardial injury was examined by HE (hematoxylin and eosin) staining assay. Real-time PCR (RT-PCR) and Western blot assay were selected to detect the toll-like receptor 4 (TLR4) expression in myocardial tissues. The TLR4 gene was silenced for the MOD mice, and the effects of this treatment were observed. The results indicate that the expression of TLR4 mRNA and the protein significantly and persistently increased during the progression of CVB3-induced myocarditis. The activities of cardiac enzymes including CK, LDH, AST, and CK-MB were also enhanced in CVB3-induced myocardial tissues. Interestingly, when the TLR4 gene was silenced, the CVB3-induced TLR4 production was significantly decreased and the severity of myocarditis was significantly lessened. In conclusion, CVB3 may induce viral myocarditis by upregulating toll-like receptor 4 expression. The viral myocarditis can be ameliorated by silencing the TLR4 gene in the CVB3 viral myocarditis model, which may be a feasible therapeutic method for treatment of viral myocarditis.

  17. Application potential of toll-like receptors in cancer immunotherapy

    PubMed Central

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-01-01

    Abstract Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also

  18. The role of toll-like receptors 2 and 4 in the pathogenesis of feline pyometra.

    PubMed

    Jursza, E; Kowalewski, M P; Boos, A; Skarzynski, D J; Socha, P; Siemieniuch, M J

    2015-03-01

    Pyometra is the most common uterine disease in queens. To protect itself from infection, the female reproductive tract possesses several immune mechanisms that are based on germline-encoded pattern recognition receptors (toll-like receptors [TLRs]). The aim of our study was to examine endometrial immunolocalization of TLR2/4, study the influence of lipopolysaccharide (LPS) and tumor necrosis factor (TNF) α on messenger RNA expression of both receptors in pyometric queens, and compare these patterns between estrous cycling queens and those hormonally treated with medroxyprogesterone acetate (MPA). Thirty-six queens, ranging in age from 7 months to 11 years, were allocated into seven groups (anestrus, estrus, mid-diestrus and late diestrus, short-term and long-term hormonally treated queens, and pyometric queens). At the messenger RNA level, the real-time polymerase chain reaction was applied, whereas at the TLR2/4 protein level, the expression was tested by immunohistochemistry. In queens at estrus, gene expression of TLR2 was upregulated after stimulation of endometrial explants by TNF (P < 0.001) and by TNF together with the LPS (P < 0.01). Moreover, gene expression of TLR2 was significantly upregulated after stimulation by TNF (P < 0.001) and LPS (P < 0.01) explants derived from queens that had been long-term hormonally treated with MPA. Endometrial gene expression of TLR4 was significantly upregulated after incubation of explants with TNF (P < 0.001) in queens at estrus and with LPS (P < 0.05) in queens short-term hormonally treated with MPA. Immunolocalization reported that TLR2/4 receptors are mainly localized in the surface and glandular epithelia. These data show that short-term and especially long-term administration of progesterone derivatives impairs TLRs in the endometrial epithelium, presumably enabling pathogens to break through this first natural barrier and thereby increase the risk of pyometra development.

  19. Toll-like receptors are key players in neurodegeneration.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Rodriguez-Galan, Maria C; Iribarren, Pablo

    2011-10-01

    The activation of innate immune response is initiated by engagement of pattern-recognition receptors (PPRs), such as Toll-like receptors (TLRs). These receptors are expressed in peripheral leukocytes and in many cell types in the central nervous system (CNS). The expression of TLRs in CNS was mainly studied in astrocytes and microglial cells. However, new evidence indicates that these receptors may play an important role in neuronal homeostasis. The expression of TLRs in the CNS is variable and can be modulated by multiple factors, including pro-inflammatory molecules, which are elevated in neurodegenerative diseases and can increase the expression of TLRs in CNS cells. Moreover, activation of TLRs induces the release of pro-inflammatory cytokines. Therefore, TLRs have been shown to play a role in several aspects of neurodegenerative diseases. Here we will discuss results reported in the recent literature concerning the participation of TLRs in neurodegenerative diseases.

  20. Toll-like receptors in antiviral innate immunity

    PubMed Central

    Lester, Sandra N.; Li, Kui

    2014-01-01

    Toll-like receptors (TLRs) are fundamental sensor molecules of the host innate immune system, which detect conserved molecular signatures of a wide range of microbial pathogens and initiate innate immune responses via distinct signaling pathways. Various TLRs are implicated in the early interplay of host cells with invading viruses, which regulates viral replication and/or host responses, ultimately impacting on viral pathogenesis. To survive the host innate defense mechanisms, many viruses have developed strategies to evade or counteract signaling through the TLR pathways, creating an advantageous environment for their propagation. Here we review the current knowledge of the roles TLRs play in antiviral innate immune responses, discuss examples of TLR-mediated viral recognition, and describe strategies used by viruses to antagonize the host antiviral innate immune responses. PMID:24316048

  1. Toll-like receptors as therapeutic targets for cancer.

    PubMed

    Holldack, Johanna

    2014-04-01

    Stimulation of Toll-like receptors (TLRs) to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3, 4, 7, 8 and 9 are all validated targets for cancer and a number of companies are developing agonists and vaccine adjuvants. TLR7 in particular has established proof-of-concept as a target in the topical treatment of bladder and skin cancers. However, the development of systemic treatments targeting TLR7 for most other cancers has proved difficult owing to cardiotoxicity or myelosuppression. Tantalisingly, recent animal data have demonstrated that a new class of modified TLR7 agonists can be administered systemically with a good toxicology profile, opening up this target in therapeutic interventions for systemic cancers.

  2. Toll-Like Receptors: Role in Dermatological Disease

    PubMed Central

    Hari, Aswin; Flach, Tracy L.; Shi, Yan; Mydlarski, P. Régine

    2010-01-01

    Toll-like receptors (TLRs) are a class of conserved receptors that recognize pathogen-associated molecular patterns (PAMPs) present in microbes. In humans, at least ten TLRs have been identified, and their recognition targets range from bacterial endotoxins to lipopeptides, DNA, dsRNA, ssRNA, fungal products, and several host factors. Of dermatological interest, these receptors are expressed on several skin cells including keratinocytes, melanocytes, and Langerhans cells. TLRs are essential in identifying microbial products and are known to link the innate and adaptive immune systems. Over the years, there have been significant advances in our understanding of TLRs in skin inflammation, cutaneous malignancies, and defence mechanisms. In this paper, we will describe the association between TLRs and various skin pathologies and discuss proposed TLR therapeutics. PMID:20847936

  3. Both Innate Immunity and Type 1 Humoral Immunity to Streptococcus pneumoniae Are Mediated by MyD88 but Differ in Their Relative Levels of Dependence on Toll-Like Receptor 2

    DTIC Science & Technology

    2005-01-01

    normal pathogen- specific IgG isotype response to Borrelia burgdorferi was ob- served in TLR2/ mice, although this was associated with a higher... Borrelia burgdorferi -infected mice. Infect. Immun. 72:3195–3203. 28. Lund, J., A. Sato, S. Akira, R. Medzhitov, and A. Iwasaki. 2003. Toll-like...Zachary, C. J. Kirschning, and J. J. Weis. 2002. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi

  4. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases

    PubMed Central

    Skevaki, C; Pararas, M; Kostelidou, K; Tsakris, A; Routsias, J G

    2015-01-01

    Toll-like receptors (TLRs) are the best-studied family of pattern-recognition receptors (PRRs), whose task is to rapidly recognize evolutionarily conserved structures on the invading microorganisms. Through binding to these patterns, TLRs trigger a number of proinflammatory and anti-microbial responses, playing a key role in the first line of defence against the pathogens also promoting adaptive immunity responses. Growing amounts of data suggest that single nucleotide polymorphisms (SNPs) on the various human TLR proteins are associated with altered susceptibility to infection. This review summarizes the role of TLRs in innate immunity, their ligands and signalling and focuses on the TLR SNPs which have been linked to infectious disease susceptibility. PMID:25560985

  5. CPG-7909 (PF-3512676, ProMune): toll-like receptor-9 agonist in cancer therapy.

    PubMed

    Murad, Yanal M; Clay, Timothy M; Lyerly, H Kim; Morse, Michael A

    2007-08-01

    Stimulation of toll-like receptor (TLR)9 activates human plasmacytoid dendritic cells and B cells, and induces potent innate immune responses in preclinical tumor models and in patients. CpG oligodeoxynucleotides (ODNs) are TLR9 agonists that show promising results as vaccine adjuvants and in the treatment of cancers, infections, asthma and allergy. PF-3512676 (ProMune) was developed as a TLR9 agonist for the treatment of cancer as monotherapy and as an adjuvant in combination with chemo- and immunotherapy. Phase I and II trials have tested this drug in several hematopoietic and solid tumors. Pfizer has initiated Phase III trials to test PF-3512676 in combination with standard chemotherapy for non-small-cell lung cancer.

  6. The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation

    PubMed Central

    Molteni, Monica; Gemma, Sabrina

    2016-01-01

    Toll-like receptor 4 (TLR4) belongs to the family of pattern recognition receptors (PRRs). They are highly conserved receptors that recognize conserved pathogen-associated molecular patterns (PAMPs), thus representing the first line of defense against infections. TLR4 has been long recognized as the sensing receptor for gram-negative lipopolysaccharide (LPS). In addition, it also binds endogenous molecules produced as a result of tissue injury. Hence, TLR4 represents a key receptor on which both infectious and noninfectious stimuli converge to induce a proinflammatory response. TLR4-mediated inflammation, triggered by exogenous or endogenous ligands, is also involved in several acute and chronic diseases, having a pivotal role as amplifier of the inflammatory response. This review focuses on the research progress about the role of TLR4 activation in infectious and noninfectious (e.g., sterile) inflammation and the effects of TLR4 signaling in some pathological conditions. PMID:27293318

  7. MicroRNAs: New Regulators of Toll-Like Receptor Signalling Pathways

    PubMed Central

    He, Xiaobing; Jing, Zhizhong; Cheng, Guofeng

    2014-01-01

    Toll-like receptors (TLRs), a critical family of pattern recognition receptors (PRRs), are responsible for the innate immune responses via signalling pathways to provide effective host defence against pathogen infections. However, TLR-signalling pathways are also likely to stringently regulate tissue maintenance and homeostasis by elaborate modulatory mechanisms. MicroRNAs (miRNAs) have emerged as key regulators and as an essential part of the networks involved in regulating TLR-signalling pathways. In this review, we highlight our understanding of the regulation of miRNA expression profiles by TLR-signalling pathways and the regulation of TLR-signalling pathways by miRNAs. We focus on the roles of miRNAs in regulating TLR-signalling pathways by targeting multiple molecules, including TLRs themselves, their associated signalling proteins and regulatory molecules, and transcription factors and functional cytokines induced by them, at multiple levels. PMID:24772440

  8. Lipopolysaccharides belonging to different Salmonella serovars are differentially capable of activating Toll-like receptor 4.

    PubMed

    Chessa, Daniela; Spiga, Luisella; De Riu, Nicola; Delaconi, Paola; Mazzarello, Vittorio; Ganau, Giulia; Rubino, Salvatore

    2014-11-01

    Salmonella enterica subsp. enterica serovar (serotype) Abortusovis is a member of the Enterobacteriaceae. This serotype is naturally restricted to ovine species and does not infect humans. Limited information is available about the immune response of sheep to S. Abortusovis. S. Abortusovis, like Salmonella enterica subsp. enterica serovar Typhi, causes a systemic infection in which, under natural conditions, animals are not able to raise a rapid immune response. Failure to induce the appropriate response allows pathogens to reach the placenta and results in an abortion. Lipopolysaccharides (LPSs) are pathogen-associated molecular patterns (PAMPs) that are specific to bacteria and are not synthesized by the host. Toll-like receptors (TLRs) are a family of receptors that specifically recognize PAMPs. As a first step, we were able to identify the presence of Toll-like receptor 4 (TLR4) on the ovine placenta by using an immunohistochemistry technique. To our knowledge, this is the first work describing the interaction between S. Abortusovis LPS and TLR4. Experiments using an embryonic cell line (HEK293) transfected with human and ovine TLR4s showed a reduction of interleukin 8 (IL-8) production by S. Abortusovis and Salmonella enterica subsp. enterica serovar Paratyphi upon LPS stimulation compared to Salmonella enterica subsp. enterica serovar Typhimurium. Identical results were observed using heat-killed bacteria instead of LPS. Based on data obtained with TLR4 in vitro stimulation, we demonstrated that the serotype S. Abortusovis is able to successfully evade the immune system whereas S. Typhimurium and other serovars fail to do so.

  9. Enterovirus 68 3C Protease Cleaves TRIF To Attenuate Antiviral Responses Mediated by Toll-Like Receptor 3

    PubMed Central

    Xiang, Zichun; Li, Linlin; Lei, Xiaobo; Zhou, Hongli; Zhou, Zhuo

    2014-01-01

    ABSTRACT Human enterovirus 68 (EV68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, there have been increasingly documented outbreaks of respiratory disease associated with EV68. As a globally emerging pathogen, EV68 infects both adults and children. However, the molecular basis of EV68 pathogenesis is unknown. Here we report that EV68 inhibits Toll-like receptor 3 (TLR3)-mediated innate immune responses by targeting the TIR domain-containing adaptor inducing beta interferon (TRIF). In infected HeLa cells, EV68 inhibits poly(I·C)-induced interferon regulatory factor 3 (IRF3) activation and beta interferon (IFN-β) expression. Further investigations revealed that TRIF, a critical adaptor downstream of TLR3, is targeted by EV68. When expressed alone, 3Cpro, an EV68-encoded protease, cleaves TRIF. 3Cpro mediates TRIF cleavage at Q312 and Q653, which are sites in the amino- and carboxyl-terminal domains, respectively. This cleavage relies on 3Cpro's cysteine protease activity. Cleavage of TRIF abolishes the capacity of TRIF to activate NF-κB and IFN-β signaling. These results suggest that control of TRIF by 3Cpro may be a mechanism by which EV68 subverts host innate immune responses. IMPORTANCE EV68 is a globally emerging pathogen, but the molecular basis of EV68 pathogenesis is unclear. Here we report that EV68 inhibits TLR3-mediated innate immune responses by targeting TRIF. Further investigations revealed that TRIF is cleaved by 3Cpro. These results suggest that control of TRIF by 3Cpro may be a mechanism by which EV68 impairs type I IFN production in response to TLR3 activation. PMID:24672048

  10. Bacterial lipopolysaccharide induces increased expression of toll-like receptor (TLR) 4 and downstream TLR signaling molecules in bovine mammary epithelial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine mammary epithelial cells contribute to the innate immune response to intramammary infections by recognizing pathogens through specialized pattern recognition receptors. Toll-like receptor 4 (TLR4) is one such receptor that binds and is activated by lipopolysaccharide (LPS), a component of the...

  11. Cathepsins are required for Toll-like receptor 9 responses

    SciTech Connect

    Matsumoto, Fumi; Saitoh, Shin-ichiroh; Fukui, Ryutaroh; Kobayashi, Toshihiko; Tanimura, Natsuko; Konno, Kazunori; Kusumoto, Yutaka; Akashi-Takamura, Sachiko; Miyake, Kensuke

    2008-03-14

    Toll-like receptors (TLR) recognize a variety of microbial products and activate defense responses. Pathogen sensing by TLR2/4 requires accessory molecules, whereas little is known about a molecule required for DNA recognition by TLR9. After endocytosis of microbes, microbial DNA is exposed and recognized by TLR9 in lysosomes. We here show that cathepsins, lysosomal cysteine proteases, are required for TLR9 responses. A cell line Ba/F3 was found to be defective in TLR9 responses despite enforced TLR9 expression. Functional cloning with Ba/F3 identified cathepsin B/L as a molecule required for TLR9 responses. The protease activity was essential for the complementing effect. TLR9 responses were also conferred by cathepsin S or F, but not by cathepsin H. TLR9-dependent B cell proliferation and CD86 upregulation were apparently downregulated by cathepsin B/L inhibitors. Cathepsin B inhibitor downregulated interaction of CpG-B with TLR9 in 293T cells. These results suggest roles for cathepsins in DNA recognition by TLR9.

  12. Comparative studies of Toll-like receptor signalling using zebrafish.

    PubMed

    Kanwal, Zakia; Wiegertjes, Geert F; Veneman, Wouter J; Meijer, Annemarie H; Spaink, Herman P

    2014-09-01

    Zebrafish model systems for infectious disease are increasingly used for the functional analysis of molecular pattern recognition processes. These studies benefit from the high conservation level of all innate immune factors in vertebrates. Zebrafish studies are strategically well positioned for this because of the ease of comparisons with studies in other fish species of which the immune system also has been intensively studied, but that are currently still less amendable to detailed genetic or microscopic studies. In this paper we focus on Toll-like receptor (TLR) signalling factors, which currently are the best characterized in mammalian systems. We review the knowledge on TLR signalling in the context of recent advances in zebrafish studies and discuss possibilities for future approaches that can complement studies in cell cultures and rodent models. A focus in these comparisons is the role of negative control mechanisms in immune responses that appear very important in a whole organism to keep adverse systemic responses in check. We also pay much attention to comparisons with studies in common carp that is highly related to zebrafish and that because of its large body mass can complement immune studies in zebrafish.

  13. A Toll-like receptor in horseshoe crabs.

    PubMed

    Inamori, Kei-ichiro; Ariki, Shigeru; Kawabata, Shun-ichiro

    2004-04-01

    Non-self-recognition of invading microbes relies on the pattern-recognition of pathogen-associated molecular patterns (PAMPs) derived from microbial cell-wall components. Insects and mammals conserve a signaling pathway of the innate immune system through cell-surface receptors called Tolls and Toll-like receptors (TLRs). Bacterial lipopolysaccharides (LPSs) are an important trigger of the horseshoe crab's innate immunity to infectious microorganisms. Horseshoe crabs' granular hemocytes respond specifically to LPS stimulation, inducing the secretion of various defense molecules from the granular hemocytes. Here, we show a cDNA which we named tToll, coding for a TLR identified from hemocytes of the horseshoe crab Tachypleus tridentatus. tToll is most closely related to Drosophila Toll in both domain architecture and overall length. Human TLRs have been suggested to contain numerous PAMP-binding insertions located in the leucine-rich repeats (LRRs) of their ectodomains. However, the LRRs of tToll contained no obvious PAMP-binding insertions. Furthermore, tToll was non-specifically expressed in horseshoe crab tissues. These observations suggest that tToll does not function as an LPS receptor on granular hemocytes.

  14. The evolution of vertebrate Toll-like receptors

    USGS Publications Warehouse

    Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.

    2005-01-01

    The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.

  15. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

  16. α-Synuclein Alters Toll-Like Receptor Expression

    PubMed Central

    Béraud, Dawn; Twomey, Margaret; Bloom, Benjamin; Mittereder, Andrew; Ton, Vy; Neitzke, Katherine; Chasovskikh, Sergey; Mhyre, Timothy R.; Maguire-Zeiss, Kathleen A.

    2011-01-01

    Parkinson's disease, an age-related neurodegenerative disorder, is characterized by the loss of dopamine neurons in the substantia nigra, the accumulation of α-synuclein in Lewy bodies and neurites, and neuroinflammation. While the exact etiology of sporadic Parkinson's disease remains elusive, a growing body of evidence suggests that misfolded α-synuclein promotes inflammation and oxidative stress resulting in neurodegeneration. α-Synuclein has been directly linked to microglial activation in vitro and increased numbers of activated microglia have been reported in an α-synuclein overexpressing mouse model prior to neuronal loss. However, the mechanism by which α-synuclein incites microglial activation has not been fully described. Microglial activation is governed in part, by pattern recognition receptors that detect foreign material and additionally recognize changes in homeostatic cellular conditions. Upon proinflammatory pathway initiation, activated microglia contribute to oxidative stress through release of cytokines, nitric oxide, and other reactive oxygen species, which may adversely impact adjacent neurons. Here we show that microglia are directly activated by α-synuclein in a classical activation pathway that includes alterations in the expression of toll-like receptors. These data suggest that α-synuclein can act as a danger-associated molecular pattern. PMID:21747756

  17. Mechanisms of disease: Toll-like receptors in cardiovascular disease.

    PubMed

    Frantz, Stefan; Ertl, Georg; Bauersachs, Johann

    2007-08-01

    The innate immune system detects highly conserved, relatively invariant structural motifs of pathogens. Toll-like receptors (TLRs) have been identified as the primary innate immune receptors. TLRs distinguish between different patterns of pathogens and activate a rapid innate immune response; however, TLRs can also be activated by host-derived molecules. In addition to being expressed in immune cells, TLRs are expressed in other tissues, such as those of the cardiovascular system. TLRs could, therefore, be a key link between cardiovascular disease development and the immune system. Indeed, evidence that TLR activation contributes to the development and progression of atherosclerosis, cardiac dysfunction in sepsis, and congestive heart failure, is convincing. Although much has been learned about TLR activation in cellular components of the cardiovascular system, the role individual TLR family members have in the pathophysiology of cardiovascular diseases and hence in clinical practice remains to be defined. Here we review the rapid progress that has been made in this field, which has improved our understanding of vascular as well as myocardial TLR function in basic and clinical science.

  18. Toll-like receptors in pathophysiology of liver diseases

    PubMed Central

    Kiziltas, Safak

    2016-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases. PMID:27917262

  19. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  20. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  1. The role of toll like receptors in pregnancy.

    PubMed

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-10-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy.

  2. The Role of Toll Like Receptors in Pregnancy

    PubMed Central

    Amirchaghmaghi, Elham; Taghavi, Seyed Abdolvahab; Shapouri, Farnaz; Saeidi, Shaghayegh; Rezaei, Abbas; Aflatoonian, Reza

    2013-01-01

    For many years, the innate immunity was of less interest than the adaptive immunity because it was perceived to have secondary importance in the functionality of the immune system. During the past decades, with the advancement of knowledge about innate immune system, interest in innate immunity has grown dramatically and thus its function has been extensively studied. Innate immunity plays fundamental roles in the initiation and induction of adaptive immune responses. It consists of several cells and receptors including natural killer (NK) cells, macrophages (MQs), dendritic cells (DCs) and pattern recognition receptors (PRRs). Two decades ago, Toll like receptors (TLRs) family was known as one of the important PRRs with unique functions especially in protection against invading pathogens. Since the female reproductive tract has access to the outside environment and has a unique interaction with different pathogens whether invading microorganisms or normal flora, allogenic sperm and semi allogenic fetus, it has an essential need for effective immune responses. It has therefore been suggested that TLRs may play important roles in the immune regulation of the female reproductive tract. In addition, it has been demonstrated that immune disturbance may be responsible for some adverse pregnancy outcomes such as preeclampsia (PE), recurrent spontaneous abortion (RSA) and intrauterine growth restriction (IUGR). Our focus in this review is to show the importance of TLRs in pregnancy with emphasis on the expression of these receptors in different tissues related to pregnancy. PMID:24520479

  3. Role of Toll-like receptors in diabetic nephropathy.

    PubMed

    Mudaliar, Harshini; Pollock, Carol; Panchapakesan, Usha

    2014-05-01

    Diabetic nephropathy is the leading cause of kidney failure and its increasing prevalence and incidence has imposed global socio-economic stress on healthcare systems worldwide. Although historically considered a metabolic disorder, recent studies have established that inflammatory responses are central to the pathogenesis of diabetic nephropathy. TLRs (Toll-like receptors) are a family of pattern recognition receptors responsible for the initiation of inflammatory and immune responses. The regulation of TLR2 and TLR4 have been implicated in the pathogenesis of various kidney diseases, and emerging evidence shows their involvement in the perpetuation of inflammation in the diabetic kidney. The present review focuses on the relative contributions of TLR2 and TLR4 in recognizing endogenous ligands relevant to diabetic nephropathy and their subsequent activation of NF-κB (nuclear factor κB), which results in the synthesis and secretion of pro-inflammatory cytokines and chemokines. Moreover, we discuss the pro-inflammatory signalling pathways of TLR2 and TLR4, in which their interruption or blockade may prove to be important therapeutic targets, potentially translated into clinical treatments for diabetic nephropathy. Currently, inhibitors to TLR2 and TLR4 are undergoing clinical trials in various inflammatory models of disease, but none in patients with diabetic nephropathy. Given the existing literature, there is a fundamental necessity to undertake trials in patients with diabetic nephropathy with a focus on renal end points.

  4. Phosphoinositide turnover in Toll-like receptor signaling and trafficking

    PubMed Central

    Tu Le, Oanh Thi; Ngoc Nguyen, Tu Thi; Lee, Sang Yoon

    2014-01-01

    Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368] PMID:24856829

  5. Toll-like receptor 7 mediates early innate immune responses to malaria.

    PubMed

    Baccarella, Alyssa; Fontana, Mary F; Chen, Eunice C; Kim, Charles C

    2013-12-01

    Innate immune recognition of malaria parasites is the critical first step in the development of the host response. At present, Toll-like receptor 9 (TLR9) is thought to play a central role in sensing malaria infection. However, we and others have observed that Tlr9(-/-) mice, in contrast to mice deficient in the downstream adaptor, Myeloid differentiation primary response gene 88 (MYD88), exhibit few deficiencies in immune function during early infection with the malaria parasite Plasmodium chabaudi, implying that another MYD88-dependent receptor also contributes to the antimalarial response. Here we use candidate-based screening to identify TLR7 as a key sensor of early P. chabaudi infection. We show that TLR7 mediates a rapid systemic response to infection through induction of cytokines such as type I interferons (IFN-I), interleukin 12, and gamma interferon. TLR7 is also required for induction of IFN-I by other species and strains of Plasmodium, including an etiological agent of human disease, P. falciparum, suggesting that malaria parasites harbor a common pathogen-associated molecular pattern (PAMP) recognized by TLR7. In contrast to the nonredundant requirement for TLR7 in early immune activation, sensing through both TLR7 and TLR9 was required for proinflammatory cytokine production and immune cell activation during the peak of parasitemia. Our findings indicate that TLR7 plays a central role in early immune activation during malaria infection, whereas TLR7 and TLR9 contribute combinatorially to immune responses as infection progresses.

  6. Structural characterisation of Toll-like receptor 1 (TLR1) and Toll-like receptor 6 (TLR6) in elephant and harbor seals.

    PubMed

    Woodman, Sally; Gibson, Amanda J; García, Ana Rubio; Contreras, Guillermo Sanchez; Rossen, John W; Werling, Dirk; Offord, Victoria

    2016-01-01

    Pinnipeds are a diverse clade of semi-aquatic mammals, which act as key indicators of ecosystem health. Their transition from land to marine environments provides a complex microbial milieu, making them vulnerable to both aquatic and terrestrial pathogens, thereby contributing to pinniped population decline. Indeed, viral pathogens such as influenza A virus and phocine distemper virus (PDV) have been identified as the cause of several of these mass mortality events. Furthermore, bacterial infection with mammalian Brucella sp. and methicillin-resistant Staphylococcus aureus strains have also been observed in marine mammals, posing further risk to both co-habiting endangered species and public health. During these disease outbreaks, mortality rates have varied amongst different pinniped species. Analyses of innate immune receptors at the host-pathogen interface have previously identified variants which may drive these species-specific responses. Through a combination of both sequence- and structure-based methods, this study characterises members of the Toll-like receptor (TLR) 1 superfamily from both harbour and elephant seals, identifying variations which will help us to understand these species-specific innate immune responses, potentially aiding the development of specific vaccine-adjuvants for these species.

  7. Toll-Like Receptors 2 and 4 Cooperate in the Control of the Emerging Pathogen Brucella microti

    PubMed Central

    Arias, Maykel A.; Santiago, Llipsy; Costas-Ramon, Santiago; Jaime-Sánchez, Paula; Freudenberg, Marina; Jiménez De Bagüés, Maria P.; Pardo, Julián

    2017-01-01

    Toll-like receptors (TLRs) recognize pathogen-derived molecules and play a critical role during the host innate and adaptive immune response. Brucella spp. are intracellular gram-negative bacteria including several virulent species, which cause a chronic zoonotic infection in a wide range of mammalian hosts known as brucellosis. A new Brucella species, Brucella microti, was recently isolated from wild rodents and found to be highly pathogenic in mice. Using this species-specific model, it was previously found that CD8+ T cells are required to control this infection. In order to find out the role of TLR-mediated responses in the control of this pathogen, the course of infection of B. microti was analyzed over 3 weeks in wild-type (WT) and TLR knock out (KO) mice including TLR2−/−, TLR4−/−, TLR9−/−, TLR2×4−/− and TLR2×4×9−/−. WT and single TLR2, TLR4 and TLR9 KO mice similarly control infection in liver and spleen. In contrast, bacterial clearance was delayed in TLR2×4−/− and TLR2×4×9−/− mice at 7 and 14 days post-infection. This defect correlated with impaired maturation and pro-inflammatory cytokine production in B. microti-infected dendritic cells from TLR2×4−/− and TLR2×4×9−/− mice. Finally, it was found that Tc cells from TLR2×4−/− and TLR2×4×9−/− mice showed reduced ability to inhibit growth of B. microti in macrophages, suggesting the involvement of TLR2 and 4 in the generation of specific Tc cells. Our findings indicate that TLR2 and TLR4 are required to control B. microti infection in mice and that this effect could be related to its participation in the maturation of dendritic cells and the generation of specific CD8+ Tc cells. PMID:28119856

  8. Transgenic cloned sheep overexpressing ovine toll-like receptor 4.

    PubMed

    Deng, Shoulong; Li, Guiguan; Zhang, Jinlong; Zhang, Xiaosheng; Cui, Maosheng; Guo, Yong; Liu, Guoshi; Li, Guangpeng; Feng, Jianzhong; Lian, Zhengxing

    2013-07-01

    An ovine fetal fibroblast cell line highly expressing TLR4 was established by inserting TLR4 into a reconstructive p3S-LoxP plasmid. Transgenic sheep overexpressing TLR4 were produced by transferring TLR4-transfected fetal fibroblasts into metaphase (M)II-stage enucleated oocytes (using SCNT). Because reconstructed embryos derived from MII-stage enucleated oocytes matured in vivo using a delayed-activated method had a higher pregnancy rate (18.52%) than that from MII-stage enucleated oocytes matured in vitro, the former procedure was used. Nine TLR4-transgenic live births were confirmed using polymerase chain reaction and Southern blot analysis. Increased expression of TLR4 at mRNA and protein levels in ear tissues of transgenic lambs were verified using reverse transcription polymerase chain reaction and immunohistochemistry, respectively. More toll-like receptor 4 protein was expressed by peripheral blood monocytes and/or macrophages collected from 3-month-old TLR4-transgenic than nontransgenic lambs at 0, 1, and 4 hours after lipopolysaccharide stimulation. Furthermore, interferon-γ and tumor necrosis factor α secreted by monocytes and/or macrophages of TLR4-transgenic lambs were significantly higher at 1 hour. Therefore, lipopolysaccharide-induced inflammatory responses from monocytes and/or macrophages occurred sooner in TLR4-transgenic lambs, consistent with an enhanced host immune response. In conclusion, transgenic sheep overexpressing TLR4 are a primary model to investigate the role of transgenic animals in disease resistance and have potential for breeding sheep with disease resistance.

  9. Microbiota regulates type 1 diabetes through Toll-like receptors

    PubMed Central

    Burrows, Michael P.; Volchkov, Pavel; Kobayashi, Koichi S.; Chervonsky, Alexander V.

    2015-01-01

    Deletion of the innate immune adaptor myeloid differentiation primary response gene 88 (MyD88) in the nonobese diabetic (NOD) mouse model of type 1 diabetes (T1D) results in microbiota-dependent protection from the disease: MyD88-negative mice in germ-free (GF), but not in specific pathogen-free conditions develop the disease. These results could be explained by expansion of particular protective bacteria (“specific lineage hypothesis”) or by dominance of negative (tolerizing) signaling over proinflammatory signaling (“balanced signal hypothesis”) in mutant mice. Here we found that colonization of GF mice with a variety of intestinal bacteria was capable of reducing T1D in MyD88-negative (but not wild-type NOD mice), favoring the balanced signal hypothesis. However, the receptors and signaling pathways involved in prevention or facilitation of the disease remained unknown. The protective signals triggered by the microbiota were revealed by testing NOD mice lacking MyD88 in combination with knockouts of several critical components of innate immune sensing for development of T1D. Only MyD88- and TIR-domain containing adapter inducing IFN β (TRIF) double deficient NOD mice developed the disease. Thus, TRIF signaling (likely downstream of Toll-like receptor 4, TLR4) serves as one of the microbiota-induced tolerizing pathways. At the same time another TLR (TLR2) provided prodiabetic signaling by controlling the microbiota, as reduction in T1D incidence caused by TLR2 deletion was reversed in GF TLR2-negative mice. Our results support the balanced signal hypothesis, in which microbes provide signals that both promote and inhibit autoimmunity by signaling through different receptors, including receptors of the TLR family. PMID:26216961

  10. Toll like receptor polymorphisms in allogeneic hematopoietic cell transplantation

    PubMed Central

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2014-01-01

    To assess the impact of the genetic variation in toll-like receptors (TLR) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT) we have investigated 29 single nucleotide polymorphisms (SNP) across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni corrected level P≤0.001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease free survival (DFS) (hazard ratio (HR) 1.47 (95% confidence interval (CI) 1.16–1.85); P=0.001). Further analysis stratified by donor sex due to confounding by sex, was suggestive for associations with overall survival (male donor: HR 1.41 (95% CI 1.09–1.83), P=0.010); female donor: (HR 2.78 (95% CI 1.43–5.41), P=0.003), DFS (male donor: HR 1.45 (95% CI 1.12–1.87), P=0.005; female donor: HR 2.34 (95% CI 1.18–4.65), P=0.015) and treatment related mortality (male donor: HR 1.49 (95% CI 1.09–2.04), P=0.012; female donor: HR 3.12 (95% CI 1.44–6.74), P=0.004). In conclusion our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT. PMID:25464115

  11. Toll-like receptor polymorphisms in allogeneic hematopoietic cell transplantation.

    PubMed

    Kornblit, Brian; Enevold, Christian; Wang, Tao; Spellman, Stephen; Haagenson, Mike; Lee, Stephanie J; Müller, Klaus

    2015-02-01

    To assess the impact of the genetic variation in toll-like receptors (TLRs) on outcome after allogeneic myeloablative conditioning hematopoietic cell transplantation (HCT), we investigated 29 single nucleotide polymorphisms across 10 TLRs in 816 patients and donors. Only donor genotype of TLR8 rs3764879, which is located on the X chromosome, was significantly associated with outcome at the Bonferroni-corrected level P ≤ .001. Male hemizygosity and female homozygosity for the minor allele were significantly associated with disease-free survival (hazard ratio [HR], 1.47 [95% confidence interval {CI}, 1.16 to 1.85]; P = .001). Further analysis stratified by donor sex due to confounding by sex was suggestive for associations with overall survival (male donor: HR, 1.41 [95% CI, 1.09 to 1.83], P = .010; female donor: HR, 2.78 [95% CI, 1.43 to 5.41], P = .003), disease-free survival (male donor: HR, 1.45 [95% CI, 1.12 to 1.87], P = .005; female donor: HR, 2.34 [95% CI, 1.18 to 4.65], P = .015), and treatment-related mortality (male donor: HR, 1.49 [95% CI, 1.09 to 2.04], P = .012; female donor: HR, 3.12 [95% CI, 1.44 to 6.74], P = .004). In conclusion, our findings suggest that the minor allele of TLR8 rs3764879 of the donor is associated with outcome after myeloablative conditioned allogeneic HCT.

  12. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  13. Expression of antimicrobial peptides and toll-like receptors is increased in tinea and pityriasis versicolor.

    PubMed

    Brasch, J; Mörig, A; Neumann, B; Proksch, E

    2014-03-01

    In superficial tinea and pityriasis versicolor, the causative fungi are for the most part confined to the stratum corneum which is barely reached by leukocytes. Therefore, a role of non-cellular components in the epidermal antifungal defence was suggested. To investigate the presence of such factors in these infections, the expression of human beta defensins 2 and 3 (hBD-2, hBD-3), RNase 7, psoriasin, toll-like receptors 2, 4 and 9 (TLR2, TLR4 and TLR9) and dectin 2 was analysed by use of immunostainings in skin biopsies. We found that hBD2, hBD3, psoriasin, RNase7, TLR2 and TLR4 were significantly more often expressed in distinct layers of lesional epidermis as compared with uninfected epidermis. In both infections but not in normal skin, hBD2 and hBD3 were commonly expressed within the stratum corneum and in the stratum granulosum. Similarly, psoriasin was seen more often in the upper skin layers of both infections as compared with normal skin. No significant differences between normal and infected skin were found for the expression of TLR9 and dectin 2. Our findings clearly show the expression of specific antimicrobial proteins and defence-related ligands in superficial tinea as well as in pityriasis versicolor, suggesting that these factors contribute to fungal containment.

  14. A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling.

    PubMed

    Nilsen, Nadra J; Vladimer, Gregory I; Stenvik, Jørgen; Orning, M Pontus A; Zeid-Kilani, Maria V; Bugge, Marit; Bergstroem, Bjarte; Conlon, Joseph; Husebye, Harald; Hise, Amy G; Fitzgerald, Katherine A; Espevik, Terje; Lien, Egil

    2015-02-06

    Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.

  15. Identification and optimization of pteridinone Toll-like receptor 7 (TLR7) agonists for the oral treatment of viral hepatitis.

    PubMed

    Roethle, Paul A; McFadden, Ryan M; Yang, Hong; Hrvatin, Paul; Hui, Hon; Graupe, Michael; Gallagher, Brian; Chao, Jessica; Hesselgesser, Joseph; Duatschek, Paul; Zheng, Jim; Lu, Bing; Tumas, Daniel B; Perry, Jason; Halcomb, Randall L

    2013-09-26

    Pteridinone-based Toll-like receptor 7 (TLR7) agonists were identified as potent and selective alternatives to the previously reported adenine-based agonists, leading to the discovery of GS-9620. Analogues were optimized for the immunomodulatory activity and selectivity versus other TLRs, based on differential induction of key cytokines including interferon α (IFN-α) and tumor necrosis factor α (TNF-α). In addition, physicochemical properties were adjusted to achieve desirable in vivo pharmacokinetic and pharmacodynamic properties. GS-9620 is currently in clinical evaluation for the treatment of chronic hepatitis B (HBV) infection.

  16. Role of Toll-like receptor (TLR) 2 in experimental Bacillus cereus endophthalmitis.

    PubMed

    Novosad, Billy D; Astley, Roger A; Callegan, Michelle C

    2011-01-01

    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2(-/-) mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to10(8) CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2(-/-) eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2(-/-) eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2(-/-) eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the

  17. Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis

    PubMed Central

    Novosad, Billy D.; Astley, Roger A.; Callegan, Michelle C.

    2011-01-01

    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial

  18. Nitric oxide increases susceptibility of toll-like receptor-activated macrophages to spreading Listeria monocytogenes

    PubMed Central

    Cole, Caroline; Thomas, Stacey; Filak, Holly; Henson, Peter M.; Lenz, Laurel L.

    2012-01-01

    SUMMARY Toll-like receptor (TLR) stimulation activates macrophages to resist intracellular pathogens. Yet, the intracellular bacterium Listeria monocytogenes (Lm) causes lethal infections in spite of innate immune cell activation. Lm uses direct cell-cell spread to disseminate within its host. Here, we have shown that TLR-activated macrophages killed cell-free Lm but failed to prevent infection by spreading Lm. Instead, TLR signals increased the efficiency of Lm spread from “donor” to “recipient” macrophages. This enhancement required nitric oxide (NO) production by nitric oxide synthase-2 (NOS2). NO increased Lm escape from secondary vacuoles in recipient cells and delayed maturation of phagosomes containing membrane-like particles that mimic Lm-containing pseudopods. NO also promoted Lm spread during systemic in vivo infection, as inhibition of NOS2 with 1400W reduced spread-dependent Lm burdens in mouse livers. These findings reveal a mechanism by which pathogens capable of cell-cell spread can avoid the consequences of innate immune cell activation by TLR stimuli. PMID:22542147

  19. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.

    PubMed

    Carty, Michael; Goodbody, Rory; Schröder, Martina; Stack, Julianne; Moynagh, Paul N; Bowie, Andrew G

    2006-10-01

    Toll-like receptors discriminate between different pathogen-associated molecules and activate signaling cascades that lead to immune responses. The specificity of Toll-like receptor signaling occurs by means of adaptor proteins containing Toll-interleukin 1 receptor (TIR) domains. Activating functions have been assigned to four TIR adaptors: MyD88, Mal, TRIF and TRAM. Here we characterize a fifth TIR adaptor, SARM, as a negative regulator of TRIF-dependent Toll-like receptor signaling. Expression of SARM blocked gene induction 'downstream' of TRIF but not of MyD88. SARM associated with TRIF, and 'knockdown' of endogenous SARM expression by interfering RNA led to enhanced TRIF-dependent cytokine and chemokine induction. Thus, the fifth mammalian TIR adaptor SARM is a negative regulator of Toll-like receptor signaling.

  20. Toll-like receptor agonists partially restore the production of pro-inflammatory cytokines and type I interferon in Sézary syndrome

    PubMed Central

    Manfrere, Kelly C. G.; Torrealba, Marina P.; Miyashiro, Denis R.; Oliveira, Luanda M. S.; de Carvalho, Gabriel C.; Lima, Josenilson F.; Branco, Anna Claudia C. C.; Pereira, Nátalli Z.; Pereira, Juliana; Sanches, José A.; Sato, Maria N.

    2016-01-01

    Sézary syndrome (SS) carries a poor prognosis, and infections represent the most frequent cause of death in SS patients. Toll-like receptors (TLRs) are a family of innate immune receptors that induce protective immune responses against infections. We sought to evaluate the ability of TLR agonists to induce inflammatory cytokine, Th2 cytokine, and type I interferon (IFN-I) production by peripheral blood mononuclear cells (PBMC) of untreated SS patients. We detected impaired IL-6, IL-10 and IL-13 secretion by PBMC induced by the agonists for TLR5, TLR3, TLR7 and TLR9 in SS patients, while it was partially recovered by TLR2/TLR4 and TLR7/8 agonists TNF secretion was restored following stimulation with TLR2/TLR4 agonists. IFN-γ was scarcely produced upon TLR activation in SS cells, albeit TLR 7/8 (CL097) enhanced their secretion at lower levels than the control group. TLR9 agonist efficiently induced IFN-I in SS patients, although this positive regulation was not observed for other cytokines, in direct contrast to the broad activity of CL097. Among the TLR agonists, TLR4 was able to induce pro-inflammatory, IL-10 and Th2 secretion, while TLR7-8 agonist induced the inflammatory cytokines, IFN-I and IFN-γ. These findings reveal a dysfunctional cytokine response upon both extracellular and intracellular TLR activation in SS patients, which was partially restored by TLRs agonists. PMID:27780938

  1. Herpes virus entry mediator synergizes with Toll-like receptor mediated neutrophil inflammatory responses

    PubMed Central

    Haselmayer, Philipp; Tenzer, Stefan; Kwon, Byoung S; Jung, Gundram; Schild, Hansjörg; Radsak, Markus P

    2006-01-01

    In microbial infections polymorphnuclear neutrophils (PMN) constitute a major part of the innate host defence, based upon their ability to rapidly accumulate in inflamed tissues and clear the site of infection from microbial pathogens by their potent effector mechanisms. The recently described transmembrane receptor herpes virus entry mediator (HVEM) is a member of the tumour necrosis factor receptor super family and is expressed on many haematopoietic cells, including T cells, B cells, natural killer cells, monocytes and PMN. Interaction of HVEM with the natural ligand LIGHT on T cells has a costimulatory effect, and increases the bactericidal activity of PMN. To further characterize the function of HVEM on PMN, we evaluated the effect of receptor ligation on human PMN effector functions using an agonistic monoclonal antibody. Here we demonstrate that activation of HVEM causes activation of neutrophil effector functions, including respiratory burst, degranulation and release of interleukin-8 in synergy with ligands for Toll-like receptors or GM-CSF. In addition, stimulation via HVEM enhanced neutrophil phagocytic activity of complement opsonized, but not of non-opsonized, particles. In conclusion, these results indicate a new, as yet unknown, participation of HVEM in the innate immune response and points to a new link between innate and adaptive immunity. PMID:17067315

  2. Novel Toll-like receptor-4 antagonist (+)-naloxone protects mice from inflammation-induced preterm birth

    PubMed Central

    Chin, Peck Yin; Dorian, Camilla L.; Hutchinson, Mark R.; Olson, David M.; Rice, Kenner C.; Moldenhauer, Lachlan M.; Robertson, Sarah A.

    2016-01-01

    Toll-like receptor 4 (TLR4) activation by bacterial infection, or by sterile inflammatory insult is a primary trigger of spontaneous preterm birth. Here we utilize mouse models to investigate the efficacy of a novel small molecule TLR4 antagonist, (+)-naloxone, the non-opioid isomer of the opioid receptor antagonist (−)-naloxone, in infection-associated preterm birth. Treatment with (+)-naloxone prevented preterm delivery and alleviated fetal demise in utero elicited by i.p. LPS administration in late gestation. A similar effect with protection from preterm birth and perinatal death, and partial correction of reduced birth weight and postnatal mortality, was conferred by (+)-naloxone administration after intrauterine administration of heat-killed E. coli. Local induction by E. coli of inflammatory cytokine genes Il1b, Il6, Tnf and Il10 in fetal membranes was suppressed by (+)-naloxone, and cytokine expression in the placenta, and uterine myometrium and decidua, was also attenuated. These data demonstrate that inhibition of TLR4 signaling with the novel TLR4 antagonist (+)-naloxone can suppress the inflammatory cascade of preterm parturition, to prevent preterm birth and perinatal death. Further studies are warranted to investigate the utility of small molecule inhibition of TLR-driven inflammation as a component of strategies for fetal protection and delaying preterm birth in the clinical setting. PMID:27819333

  3. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human.

    PubMed

    Belinda, Loh Wei-Ching; Wei, Wang Xiao; Hanh, Bui Thi Hong; Lei, Luan Xiao; Bow, Ho; Ling, Ding Jeak

    2008-03-01

    Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human.

  4. Toll-like receptor agonists promote prolonged triglyceride storage in macrophages.

    PubMed

    Huang, Ying-ling; Morales-Rosado, Joel; Ray, Jessica; Myers, Timothy G; Kho, Terry; Lu, Mingfang; Munford, Robert S

    2014-01-31

    Macrophages in infected tissues may sense microbial molecules that significantly alter their metabolism. In a seeming paradox, these critical host defense cells often respond by increasing glucose catabolism while simultaneously storing fatty acids (FA) as triglycerides (TAG) in lipid droplets. We used a load-chase strategy to study the mechanisms that promote long term retention of TAG in murine and human macrophages. Toll-like receptor (TLR)1/2, TLR3, and TLR4 agonists all induced the cells to retain TAG for ≥3 days. Prolonged TAG retention was accompanied by the following: (a) enhanced FA uptake and FA incorporation into TAG, with long lasting increases in acyl-CoA synthetase long 1 (ACSL1) and diacylglycerol acyltransferase-2 (DGAT2), and (b) decreases in lipolysis and FA β-oxidation that paralleled a prolonged drop in adipose triglyceride lipase (ATGL). TLR agonist-induced TAG storage is a multifaceted process that persists long after most early pro-inflammatory responses have subsided and may contribute to the formation of "lipid-laden" macrophages in infected tissues.

  5. Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice

    SciTech Connect

    Cao Canxiang; Yang Qingwu . E-mail: yangqwmlys@hotmail.com; Lv Fenglin; Cui Jie; Fu Huabin; Wang Jingzhou

    2007-02-09

    Inflammatory reaction plays an important role in cerebral ischemia-reperfusion injury, however, its mechanism is still unclear. Our study aims to explore the function of Toll-like receptor 4 (TLR4) in the process of cerebral ischemia-reperfusion. We made middle cerebral artery ischemia-reperfusion model in mice with line embolism method. Compared with C3H/OuJ mice, scores of cerebral water content, cerebral infarct size and neurologic impairment in C3H/Hej mice were obviously lower after 6 h ischemia and 24 h reperfusion. Light microscopic and electron microscopic results showed that cerebral ischemia-reperfusion injury in C3H/Hej mice was less serious than that in C3H/OuJ mice. TNF-{alpha} and IL-6 contents in C3H/HeJ mice were obviously lower than that in C3H/OuJ mice with ELISA. The results showed that TLR4 participates in the process of cerebral ischemia-reperfusion injury probably through decrease of inflammatory cytokines. TLR4 may become a new target for prevention of cerebral ischemia-reperfusion injury. Our study suggests that TLR4 is one of the mechanisms of cerebral ischemia-reperfusion injury besides its important role in innate immunity.

  6. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  7. Starring role of toll-like receptor-4 activation in the gut-liver axis

    PubMed Central

    Carotti, Simone; Guarino, Michele Pier Luca; Vespasiani-Gentilucci, Umberto; Morini, Sergio

    2015-01-01

    Since the introduction of the term “gut-liver axis”, many studies have focused on the functional links of intestinal microbiota, barrier function and immune responses to liver physiology. Intestinal and extra-intestinal diseases alter microbiota composition and lead to dysbiosis, which aggravates impaired intestinal barrier function via increased lipopolysaccharide translocation. The subsequent increased passage of gut-derived product from the intestinal lumen to the organ wall and bloodstream affects gut motility and liver biology. The activation of the toll-like receptor 4 (TLR-4) likely plays a key role in both cases. This review analyzed the most recent literature on the gut-liver axis, with a particular focus on the role of TLR-4 activation. Findings that linked liver disease with dysbiosis are evaluated, and links between dysbiosis and alterations of intestinal permeability and motility are discussed. We also examine the mechanisms of translocated gut bacteria and/or the bacterial product activation of liver inflammation and fibrogenesis via activity on different hepatic cell types. PMID:26600967

  8. Toll-like receptor 2 senses hepatitis C virus core protein but not infectious viral particles

    PubMed Central

    Hoffmann, Marco; Zeisel, Mirjam B.; Jilg, Nikolaus; Paranhos-Baccalà, Glaucia; Stoll-Keller, Françoise; Wakita, Takaji; Hafkemeyer, Peter; Blum, Hubert E.; Barth, Heidi; Henneke, Philipp; Baumert, Thomas F.

    2009-01-01

    Toll-like receptors (TLRs) are pathogen recognition molecules activating the innate immune system. Cell surface expressed TLRs, such as TLR2 and TLR4 have been shown to play an important role in human host defenses against viruses through sensing of viral structural proteins. In this study, we aimed to elucidate whether TLR2 and TLR4 participate in inducing antiviral immunity against hepatitis C virus by sensing viral structural proteins. We studied TLR2 and TLR4 activation by cell-culture derived infectious virions (HCVcc) and serum-derived virions in comparison to purified recombinant HCV structural proteins and enveloped virus-like particles. Incubation of TLR2 or TLR4 transfected cell lines with recombinant core protein resulted in activation of TLR2-dependent signaling. In contrast, neither infectious virions nor enveloped HCV-like particles triggered TLR2 and TLR4 signaling. These findings suggest that monomeric HCV core protein but not intact infectious particles are sensed by TLR2. Impairment of core-TLR interaction in infectious viral particles may contribute to escape from innate antiviral immune responses. PMID:20375602

  9. Hypoxia attenuates inflammatory mediators production induced by Acanthamoeba via Toll-like receptor 4 signaling in human corneal epithelial cells

    SciTech Connect

    Pan, Hong; Wu, Xinyi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Hypoxia attenuates Acanthamoeba-induced the production of IL-8 and IFN-{beta}. Black-Right-Pointing-Pointer Hypoxia inhibits TLR4 expression in a time-dependent manner in HCECs. Black-Right-Pointing-Pointer Hypoxia inhibits Acanthamoeba-induced the activation of NF-{kappa}B and ERK1/2 in HCECs. Black-Right-Pointing-Pointer Hypoxia decreases Acanthamoeba-induced inflammatory response via TLR4 signaling. Black-Right-Pointing-Pointer LPS-induced the secretion of IL-6 and IL-8 is abated by hypoxia via TLR4 signaling. -- Abstract: Acanthamoeba keratitis (AK) is a vision-threatening corneal infection that is intimately associated with contact lens use which leads to hypoxic conditions on the corneal surface. However, the effect of hypoxia on the Acanthamoeba-induced host inflammatory response of corneal epithelial cells has not been studied. In the present study, we investigated the effect of hypoxia on the Acanthamoeba-induced production of inflammatory mediators interleukin-8 (IL-8) and interferon-{beta} (IFN-{beta}) in human corneal epithelial cells and then evaluated its effects on the Toll-like receptor 4 (TLR4) signaling, including TLR4 and myeloid differentiation primary response gene (88) (MyD88) expression as well as the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-{kappa}B) and extracellular signal-regulated kinases 1/2 (ERK1/2). We then studied the effect of hypoxia on a TLR4-specific inflammatory response triggered by the TLR4 ligand lipopolysaccharide (LPS). Our data showed that hypoxia significantly decreased the production of IL-8 and IFN-{beta}. Furthermore, hypoxia attenuated Acanthamoeba-triggered TLR4 expression as well as the activation of NF-{kappa}B and ERK1/2, indicating that hypoxia abated Acanthamoeba-induced inflammatory responses by affecting TLR4 signaling. Hypoxia also inhibited LPS-induced IL-6 and IL-8 secretion, myeloid differentiation primary response gene (88

  10. Functional interaction of heat shock protein 90 and Beclin 1 modulates Toll-like receptor-mediated autophagy

    PubMed Central

    Xu, Congfeng; Liu, Jin; Hsu, Li-Chung; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2011-01-01

    Autophagy is one of the downstream effector mechanisms for elimination of intracellular microbes following activation of the Toll-like receptors (TLRs). Although the detailed molecular mechanism for this cellular process is still unclear, Beclin 1, a key molecule for autophagy, has been suggested to play a role. Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the stability of signaling proteins. Herein, we show that Hsp90 forms a complex with Beclin 1 through an evolutionarily conserved domain to maintain the stability of Beclin 1. In monocytic cells, geldanamycin (GA), an Hsp90 inhibitor, effectively promoted proteasomal degradation of Beclin 1 in a concentration-dependent (EC50 100 nM) and time-dependent (t50 2 h) manner. In contrast, KNK437/Hsp inhibitor I had no effect. Hsp90 specifically interacted with Beclin 1 but not with other adapter proteins in the TLR signalsome. Treatment of cells with GA inhibited TLR3- and TLR4-mediated autophagy. In addition, S. typhimurium infection-induced autophagy was blocked by GA treatment. This further suggested a role of the Hsp90/Beclin 1 in controlling autophagy in response to microbial infections. Taken together, our data revealed that by maintaining the homeostasis of Beclin 1, Hsp90 plays a novel role in TLR-mediated autophagy.—Xu, C., Liu, J., Hsu, L. -C., Luo, Y., Xiang, R., Chuang, T. -H. Functional interaction of Hsp90 and Beclin 1 modulates Toll-like receptor-mediated autophagy. PMID:21543763

  11. Toll-like receptor-based immuno-analysis of pathogenic microorganisms.

    PubMed

    Cho, Il-Hoon; Jeon, Jin-Woo; Paek, Sung-Ho; Kim, Dong-Hyung; Shin, Hee-Sung; Ha, Un-Hwan; Seo, Sung-Kyu; Paek, Se-Hwan

    2012-11-20

    In this study, a novel mammalian cell receptor-based immuno-analytical method was developed for the detection of food-poisoning microorganisms by employing toll-like receptors (TLRs) as sensing elements. Upon infection with bacterium, the host cells respond by expressing TLRs, particularly TLR1, TLR2, and TLR4, on the outer membrane surfaces. To demonstrate the potential of using this method for detection of foodborne bacteria, we initially selected two model sensing systems, expression of TLR1 on a cell line, A549, for Escherichia coli and TLR2 on a cell line, RAW264.7, for Shigella sonnei (S. sonnei). Each TLR was detected using antibodies specific to the respective marker. We also found that the addition of immunoassay for the pathogen captured by the TLRs on the mammalian cells significantly enhanced the detection capability. A dual-analytical system for S. sonnei was constructed and successfully detected an extremely low number (about 3.2 CFU per well) of the pathogenic bacterium 5.1 h after infection. This detection time was 2.5 h earlier than the time required for detection using the conventional immunoassay. To endow the specificity of detection, the target bacterium was immuno-magnetically concentrated by a factor of 50 prior to infection. This further shortened the response to approximately 3.4 h, which was less than half of the time needed when the conventional method was used. Such enhanced performance could basically result from synergistic effects of bacterial dose increase and subsequent autocrine signaling on TLRs' up-regulation upon infection with live bacterium. This TLR-based immuno-sensing approach may also be expanded to monitor infection of the body, provided scanning of the signal is feasible.

  12. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants.

    PubMed

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-07-29

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections.

  13. Toll-like receptor 2 activation depends on lipopeptide shedding by bacterial surfactants

    PubMed Central

    Hanzelmann, Dennis; Joo, Hwang-Soo; Franz-Wachtel, Mirita; Hertlein, Tobias; Stevanovic, Stefan; Macek, Boris; Wolz, Christiane; Götz, Friedrich; Otto, Michael; Kretschmer, Dorothee; Peschel, Andreas

    2016-01-01

    Sepsis caused by Gram-positive bacterial pathogens is a major fatal disease but its molecular basis remains elusive. Toll-like receptor 2 (TLR2) has been implicated in the orchestration of inflammation and sepsis but its role appears to vary for different pathogen species and clones. Accordingly, Staphylococcus aureus clinical isolates differ substantially in their capacity to activate TLR2. Here we show that strong TLR2 stimulation depends on high-level production of phenol-soluble modulin (PSM) peptides in response to the global virulence activator Agr. PSMs are required for mobilizing lipoproteins, the TLR2 agonists, from the staphylococcal cytoplasmic membrane. Notably, the course of sepsis caused by PSM-deficient S. aureus is similar in wild-type and TLR2-deficient mice, but TLR2 is required for protection of mice against PSM-producing S. aureus. Thus, a crucial role of TLR2 depends on agonist release by bacterial surfactants. Modulation of this process may lead to new therapeutic strategies against Gram-positive infections. PMID:27470911

  14. Bradykinin promotes Toll like receptor-4 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2012-12-01

    Bacterial infections are a potent mechanism for enzymatic generation of kinins such as bradykinin (BK), a universal mediator for inducing inflammatory reaction by associating with the B2 receptor and stimulating liberation of arachidonic acid and synthesis of prostaglandin E2 (PGE2). In this study we evaluate the role of bradykinin in regulating the expression of TLR4 receptor in human gingival fibroblasts. We examine the ability of bradykinin to modulate inflammatory response of human gingival fibroblasts to Gram-negative components and evaluated the role of Toll-like receptors (TLR)-4 in the co-operation between bradykinin and bacterial pathogens. We show that treatment with bradykinin promotes TLR4 receptor expression in human gingival fibroblasts (HGF) and amplifies inflammatory responses to the bacterial components of Gram-negative bacteria. The TLR4 expression induced by bradykinin was blocked with Hoe 140, a B2R antagonist. When HGF cells were incubated with BK resulted of an increased in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 synthesis. Bradykinin and lipopolysaccharide, a specific TLR4 ligand stimulated COX-2 expression. In other series of experiments we found that ERK, phosphatidylinositol-3 kinase, protein kinase C and NFkB are involved in BK promoted-increased in TLR4 expression. The results demonstrate that bradykinin up-regulates the expression of TLR4 and promotes an additive increase in inflammatory responses to lipopolysaccharides.

  15. Toll-like receptors: the swiss army knife of immunity and vaccine development

    PubMed Central

    Dowling, Jennifer K; Mansell, Ashley

    2016-01-01

    Innate immune cells have a critical role in defense against infection and disease. Central to this is the broad specificity with which they can detect pathogen-associated patterns and danger-associated patterns via the pattern recognition receptors (PRRs) they express. Several families of PRRs have been identified including: Toll-like receptors (TLRs), C-type lectin-like receptors, retinoic acid-inducible gene-like receptors and nucleotide-binding oligomerization domain–like receptors. TLRs are one of the most largely studied families of PRRs. The binding of ligands to TLRs on antigen presenting cells (APCs), mainly dendritic cells, leads to APC maturation, induction of inflammatory cytokines and the priming of naive T cells to drive acquired immunity. Therefore, activation of TLRs promotes both innate inflammatory responses and the induction of adaptive immunity. Consequently, in the last two decades mounting evidence has inextricably linked TLR activation with the pathogenesis of immune diseases and cancer. It has become advantageous to harness these aspects of TLR signaling therapeutically to accelerate and enhance the induction of vaccine-specific responses and also target TLRs with the use of biologics and small molecule inhibitors for the treatment of disease. In these respects, TLRs may be considered a ‘Swiss Army' knife of the immune system, ready to respond in a multitude of infectious and disease states. Here we describe the latest advances in TLR-targeted therapeutics and the use of TLR ligands as vaccine adjuvants. PMID:27350884

  16. Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling.

    PubMed

    Garcia-Cattaneo, Alejandra; Gobert, François-Xavier; Müller, Mélanie; Toscano, Florent; Flores, Marcella; Lescure, Aurianne; Del Nery, Elaine; Benaroch, Philippe

    2012-06-05

    Toll-like receptor (TLR) 3 is an endosomal TLR that mediates immune responses against viral infections upon activation by its ligand double-stranded RNA, a replication intermediate of most viruses. TLR3 is expressed widely in the body and activates both the innate and adaptive immune systems. However, little is known about how TLR3 intracellular trafficking and maturation are regulated. Here we show that newly synthesized endogenous TLR3 is transported through the ER and Golgi apparatus to endosomes, where it is rapidly cleaved. TLR3 protein expression is up-regulated by its own ligand, leading to the accumulation of its cleaved form. In agreement with its proposed role as a transporter, UNC93B1 expression is required for TLR3 cleavage and signaling. Furthermore, TLR3 signaling and cleavage are sensitive to cathepsin inhibition. Cleavage occurs between aa 252 and 346, and results in a functional receptor that signals upon activation. A truncated form of TLR3 lacking the N-terminal 345 aa also signals from acidic compartments in response to ligand activation. Screening of the human cathepsin family by RNA interference identified cathepsins B and H as key mediators of TLR3 processing. Taken together, our data indicate that TLR3 proteolytic processing is essential for its function, and suggest a mechanism of tight control of TLR3 signaling and thus immunity.

  17. Repurposed transcriptomic data facilitate discovery of innate immunity toll-like receptor (TLR) Genes across Lophotrochozoa.

    PubMed

    Halanych, Kenneth M; Kocot, Kevin M

    2014-10-01

    The growing volume of genomic data from across life represents opportunities for deriving valuable biological information from data that were initially collected for another purpose. Here, we use transcriptomes collected for phylogenomic studies to search for toll-like receptor (TLR) genes in poorly sampled lophotrochozoan clades (Annelida, Mollusca, Brachiopoda, Phoronida, and Entoprocta) and one ecdysozoan clade (Priapulida). TLR genes are involved in innate immunity across animals by recognizing potential microbial infection. They have an extracellular leucine-rich repeat (LRR) domain connected to a transmembrane domain and an intracellular toll/interleukin-1 receptor (TIR) domain. Consequently, these genes are important in initiating a signaling pathway to trigger defense. We found at least one TLR ortholog in all but two taxa examined, suggesting that a broad array of lophotrochozoans may have innate immune systems similar to those observed in vertebrates and arthropods. Comparison to the SMART database confirmed the presence of both the LRR and the TIR protein motifs characteristic of TLR genes. Because we looked at only one transcriptome per species, discovery of TLR genes was limited for most taxa. However, several TRL-like genes that vary in the number and placement of LRR domains were found in phoronids. Additionally, several contigs contained LRR domains but lacked TIR domains, suggesting they were not TLRs. Many of these LRR-containing contigs had other domains (e.g., immunoglobin) and are likely involved in innate immunity.

  18. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging.

    PubMed

    Qian, Feng; Guo, Xiuyang; Wang, Xiaomei; Yuan, Xiaoling; Chen, Shu; Malawista, Stephen E; Bockenstedt, Linda K; Allore, Heather G; Montgomery, Ruth R

    2014-02-01

    Aging is associated with a progressive decline in immune function (immunosenescence) resulting in an increased susceptibility to viral and bacterial infections. Here we show reduced expression of Toll-like receptor 1 (TLR1) in polymorphonuclear leukocytes (PMN) and an underlying age-dependent deficiency in PMN bioenergetics. In older (>65 years) adults, stimulation through TLR1 led to lower activation of integrins (CD11b and CD18), lower production of the chemokine IL-8, and lower levels of the phosphorylated signaling intermediate p38 MAP kinase than in PMN from younger donors (21-30 years). In addition, loss of CD62L, a marker of PMN activation, was reduced in PMN of older adults stimulated through multiple pathways. Rescue of PMN from apoptosis by stimulation with TLR1 was reduced in PMN from older adults. In seeking an explanation for effects of aging across multiple pathways, we examined PMN energy utilization and found that glucose uptake after stimulation through TLR1 was dramatically lower in PMN of older adults. Our results demonstrate a reduction in TLR1 expression and TLR1-mediated responses in PMN with aging, and reduced efficiency of bioenergetics in PMN. These changes likely contribute to reduced PMN efficiency in aging through multiple aspects of PMN function and suggest potential therapeutic opportunities.

  19. Toll-like Receptor 4 (TLR4) modulation by synthetic and natural compounds: an update

    PubMed Central

    Peri, Francesco; Calabrese, Valentina

    2014-01-01

    Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E-MD-2-TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on non-classical TLR4 ligands with a chemical structure different from lipid A. PMID:24188011

  20. Chemotherapy-induced mucositis: the role of the gastrointestinal microbiome and toll-like receptors.

    PubMed

    Thorpe, Daniel W; Stringer, Andrea M; Gibson, Rachel J

    2013-01-01

    Alimentary mucositis is a major clinical problem. Patients with mucositis are at significantly increased risk of infection and are often hospitalized for prolonged periods. More importantly, these patients often have to undergo reductions in their cytotoxic therapy, which may lead to reduced survival. Unfortunately, there are very limited therapeutic options for mucositis and no effective prevention. The human gut microbiome is receiving increased attention as a key player in the pathogenesis of alimentary mucositis with recent literature suggesting that changes in bacteria lead to mucositis. The bacteria which are found throughout the gut are tightly regulated by the toll-like receptor (TLR) family which currently has 13 known members. TLRs play a critical role in gut homeostasis and bacterial regulation. Furthermore, TLRs play a critical role in the regulation of nuclear factor kappa B, a key regulator of alimentary mucositis. However to date, no research has clearly identified a link between TLRs and alimentary mucositis. This critical literature review seeks to correct this.

  1. NOD2 and Toll-Like Receptors Are Nonredundant Recognition Systems of Mycobacterium tuberculosis

    PubMed Central

    2005-01-01

    Infection with Mycobacterium tuberculosis is one of the leading causes of death worldwide. Recognition of M. tuberculosis by pattern recognition receptors is crucial for activation of both innate and adaptive immune responses. In the present study, we demonstrate that nucleotide-binding oligomerization domain 2 (NOD2) and Toll-like receptors (TLRs) are two nonredundant recognition mechanisms of M. tuberculosis. CHO cell lines transfected with human TLR2 or TLR4 were responsive to M. tuberculosis. TLR2 knock-out mice displayed more than 50% defective cytokine production after stimulation with mycobacteria, whereas TLR4-defective mice also released 30% less cytokines compared to controls. Similarly, HEK293T cells transfected with NOD2 responded to stimulation with M. tuberculosis. The important role of NOD2 for the recognition of M. tuberculosis was demonstrated in mononuclear cells of individuals homozygous for the 3020insC NOD2 mutation, who showed an 80% defective cytokine response after stimulation with M. tuberculosis. Finally, the mycobacterial TLR2 ligand 19-kDa lipoprotein and the NOD2 ligand muramyl dipeptide synergized for the induction of cytokines, and this synergism was lost in cells defective in either TLR2 or NOD2. Together, these results demonstrate that NOD2 and TLR pathways are nonredundant recognition mechanisms of M. tuberculosis that synergize for the induction of proinflammatory cytokines. PMID:16322770

  2. Toll-Like Receptors in Liver Fibrosis: Cellular Crosstalk and Mechanisms

    PubMed Central

    Yang, Ling; Seki, Ekihiro

    2012-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors that distinguish conserved microbial products, also known as pathogen-associated molecular patterns (PAMPs), from host molecules. Liver is the first filter organ between the gastrointestinal tracts and the rest of the body through portal circulation. Thus, the liver is a major organ that must deal with PAMPs and microorganisms translocated from the intestine and to respond to the damage associated molecular patterns (DAMPs) released from injured organs. These PAMPs and DAMPs preferentially activate TLR signaling on various cell types in the liver inducing the production of inflammatory and fibrogenic cytokines that initiate and prolong liver inflammation, thereby leading to fibrosis. We summarize recent findings on the role of TLRs, ligands, and intracellular signaling in the pathophysiology of liver fibrosis due to different etiology, as well as to highlight the potential role of TLR signaling in liver fibrosis associated with hepatitis C infection, non-alcoholic and alcoholic steatoheoatitis, primary biliary cirrhosis, and cystic fibrosis. PMID:22661952

  3. Higher Expression of Toll-like Receptors 3, 7, 8, and 9 in Pityriasis Rosea

    PubMed Central

    El-Ela, Mostafa Abou; El-Komy, Mohamed; Hay, Rania Abdel; Hegazy, Rehab; Sharobim, Amin; Rashed, Laila; Amr, Khalda

    2017-01-01

    Background Pityriasis rosea (PR) is a common papulosquamous skin disease in which an infective agent may be implicated. Toll-like receptors (TLRs) play an important role in immune responses and in the pathophysiology of inflammatory skin diseases. Our aim was to determine the possible roles of TLRs 3, 7, 8, and 9 in the pathogenesis of PR. Methods Twenty-four PR patients and 24 healthy individuals (as controls) were included in this case control study. All recruits were subjected to routine laboratory investigations. Biopsies were obtained from one active PR lesion and from healthy skin of controls for the detection of TLR 3, 7, 8, and 9 gene expression using real-time polymerase chain reaction. Results This study included 24 patients (8 females and 16 males) with active PR lesions, with a mean age of 28.62 years. Twenty four healthy age- and sex-matched individuals were included as controls (8 females and 16 males, with a mean age of 30.83 years). The results of the routine laboratory tests revealed no significant differences between both groups. Significantly elevated expression of all studied TLRs were detected in PR patients relative to healthy controls (p < .001). Conclusions TLRs 3, 7, 8, and 9 might be involved in the pathogenesis of PR. PMID:28192646

  4. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition

    PubMed Central

    Voogdt, Carlos G. P.; Bouwman, Lieneke I.; Kik, Marja J. L.; Wagenaar, Jaap A.; van Putten, Jos P. M.

    2016-01-01

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions. PMID:26738735

  5. Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition.

    PubMed

    Voogdt, Carlos G P; Bouwman, Lieneke I; Kik, Marja J L; Wagenaar, Jaap A; van Putten, Jos P M

    2016-01-07

    Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.

  6. Anaerobic Infections in Children with Neurological Impairments.

    ERIC Educational Resources Information Center

    Brook, Itzhak

    1995-01-01

    Children with neurological impairments are prone to develop serious infection with anaerobic bacteria. The most common anaerobic infections are decubitus ulcers; gastrostomy site wound infections; pulmonary infections (aspiration pneumonia, lung abscesses, and tracheitis); and chronic suppurative otitis media. The unique microbiology of each of…

  7. Activation of epidermal toll-like receptor 2 enhances tight junction function – Implications for atopic dermatitis and skin barrier repair

    PubMed Central

    Kuo, I-Hsin; Carpenter-Mendini, Amanda; Yoshida, Takeshi; McGirt, Laura Y.; Ivanov, Andrei I.; Barnes, Kathleen C.; Gallo, Richard L.; Borkowski, Andrew W.; Yamasaki, Kenshi; Leung, Donald Y.; Georas, Steve N.; De Benedetto, Anna; Beck, Lisa A.

    2012-01-01

    Atopic dermatitis (AD) is characterized by epidermal tight junction (TJ) defects and a propensity for Staphylococcus aureus (S. aureus) skin infections. S. aureus is sensed by many pattern recognition receptors including toll-like receptor (TLR) 2. We hypothesized that an effective innate immune response will include skin barrier repair and that this response is impaired in AD subjects. S. aureus-derived peptidoglycan (PGN) and synthetic TLR2 agonists enhanced TJ barrier and increased expression of TJ proteins, CLDN1, CLDN23, occludin and ZO-1 in primary human keratinocytes. A TLR2 agonist enhanced skin barrier recovery in human epidermis wounded by tape-stripping. Tlr2−/− mice had a delayed and incomplete barrier recovery following tape-stripping. AD subjects had reduced epidermal TLR2 expression as compared to nonatopic (NA) subjects, which inversely correlated (r= 0.654, P= 0.0004) with transepidermal water loss (TEWL). These observations indicate that TLR2 activation enhances skin barrier in murine and human skin and is an important part of a wound repair response. Reduced epidermal TLR2 expression observed in AD patients may play a role in their incompetent skin barrier. PMID:23223142

  8. Effects of P-MAPA immunomodulator on Toll-like receptor 2, ROS, nitric oxide, MAPKp38 and IKK in PBMC and macrophages from dogs with visceral leishmaniasis.

    PubMed

    Melo, L M; Perosso, J; Almeida, B F M; Silva, K L O; Somenzari, M A; de Lima, V M F

    2014-02-01

    Leishmania (L.) chagasi is the etiologic agent of visceral leishmaniasis (VL) that can be transmitted to humans and dogs. VL in Brazil represents a serious public health problem; therefore, it is important to study new alternatives to treat infected dogs. In dogs, the therapeutic arsenal against canine VL is limited. The immunomodulator protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) improves immunocompetence when the immune system is impaired, but its dependence on Toll-like receptors (TLRs) and the mechanisms involved in immune response remain unclear. The in vitro action of P-MAPA on the expression of TLR2 and TLR4, reactive oxygen species (ROS), nitric oxide (NO) and p38 mitogen-activated protein kinase (p38 MAPK) and IKK phosphorylation was studied in mononuclear cells from peripheral blood and macrophages from healthy and Leishmania-infected dogs. The PBMC or macrophages were isolated and cultured with different concentrations of P-MAPA (20,100 and 200 μg/ml) in a humid environment at 37°C with 5% CO(2). Observation revealed that Leishmania-infected dogs showed a decrease in TLR2 in macrophages compared with healthy dogs and in induction with P-MAPA. ROS were increased in PBMCs from Leishmania spp.-infected dogs compared with healthy dogs and P-MAPA improved ROS production. NO production was increased in culture supernatant from macrophages stimulated by P-MAPA in both healthy and Leishmania spp. infected dogs. Treatment of macrophages from healthy dogs with immunomodulatory P-MAPA induced p38 MAPK and IKK phosphorylation, suggesting signal transduction by this pathway. These findings suggest that P-MAPA has potential as a therapeutic drug in the treatment of canine visceral leishmaniasis.

  9. A Coding IRAK2 Protein Variant Compromises Toll-like receptor (TLR) Signaling and Is Associated with Colorectal Cancer Survival*

    PubMed Central

    Wang, Hui; Flannery, Sinead M.; Dickhöfer, Sabine; Huhn, Stefanie; George, Julie; Kubarenko, Andriy V.; Lascorz, Jesus; Bevier, Melanie; Willemsen, Joschka; Pichulik, Tica; Schafmayer, Clemens; Binder, Marco; Manoury, Bénédicte; Paludan, Søren R.; Alarcon-Riquelme, Marta; Bowie, Andrew G.; Försti, Asta; Weber, Alexander N. R.

    2014-01-01

    Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3–9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point. PMID:24973222

  10. A coding IRAK2 protein variant compromises Toll-like receptor (TLR) signaling and is associated with colorectal cancer survival.

    PubMed

    Wang, Hui; Flannery, Sinead M; Dickhöfer, Sabine; Huhn, Stefanie; George, Julie; Kubarenko, Andriy V; Lascorz, Jesus; Bevier, Melanie; Willemsen, Joschka; Pichulik, Tica; Schafmayer, Clemens; Binder, Marco; Manoury, Bénédicte; Paludan, Søren R; Alarcon-Riquelme, Marta; Bowie, Andrew G; Försti, Asta; Weber, Alexander N R

    2014-08-15

    Within innate immune signaling pathways, interleukin-1 receptor-associated kinases (IRAKs) fulfill key roles downstream of multiple Toll-like receptors and the interleukin-1 receptor. Although human IRAK4 deficiency was shown to lead to severe immunodeficiency in response to pyogenic bacterial infection during childhood, little is known about the role of human IRAK2. We here identified a non-synonymous IRAK2 variant, rs35060588 (coding R214G), as hypofunctional in terms of NF-κB signaling and Toll-like receptor-mediated cytokine induction. This was due to reduced ubiquitination of TRAF6, a key step in signal transduction. IRAK2 rs35060588 occurs in 3-9% of individuals in different ethnic groups, and our studies suggested a genetic association of rs35060588 with colorectal cancer survival. This for the first time implicates human IRAK2 in a human disease and highlights the R214G IRAK2 variant as a potential novel and broadly applicable biomarker for disease or as a therapeutic intervention point.

  11. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  12. Expression and functionality of Toll-like receptor 3 in the megakaryocytic lineage

    PubMed Central

    D’Atri, L. P.; Etulain, J.; Rivadeneyra, L.; Lapponi, M. J.; Centurion, M.; Cheng, K.; Yin, H.; Schattner, M.

    2015-01-01

    Summary Background In addition to their key role in hemostasis, platelets and megakaryocytes also regulate immune and inflammatory responses, in part through their expression of Toll-like receptors (TLRs). Among the TLRs, TLR3 recognizes double-stranded (ds) RNA associated with viral infection. Thrombocytopenia is a frequent complication of viral infection. However, the expression and functionality of TLR3 in megakaryocytes and platelets is not yet well understood. Objective To study the expression and functionality of TLR3 in the megakaryocytic lineage. Methods and Results RT-PCR, flow cytometric, and immunofluorescence assays showed that TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets. Immunoblotting assays showed that stimulation of megakaryocytes with two synthetic agonists of TLR3, Poly(I:C) and Poly(A:U), activated the NF-κB, PI3K/Akt, ERK1/2, and p38 pathways. TLR3-megakaryocyte activation resulted in reduced platelet production in vitro and IFN-β release through the PI3K/Akt and NF-κB signaling pathways. TLR3 ligands potentiated the aggregation mediated by classical platelet agonists. This effect was also observed for ATP release, but not for P-selectin or CD40L membrane exposure, indicating that TLR3 activation was not involved in alpha granule release. In addition, TLR3 agonists induced activation of the NF-κB, PI3K/Akt, and ERK1/2 pathways in platelets. Reduction of platelet production and platelet fibrinogen binding mediated by Poly(I:C) or Poly(A:U) were prevented by the presence of an inhibitor of TLR3/dsRNA complex. Conclusions Our findings indicate that functional TLR3 is expressed in CD34+ cells, megakaryocytes, and platelets, and suggest a potential role for this receptor in the megakaryo/thrombopoiesis alterations that occur in viral infections. PMID:25594115

  13. Toll-like receptor 2 modulates the proinflammatory milieu in Staphylococcus aureus-induced brain abscess.

    PubMed

    Kielian, Tammy; Haney, Anessa; Mayes, Patrick M; Garg, Sarita; Esen, Nilufer

    2005-11-01

    Toll-like receptor 2 (TLR2) is a pattern recognition receptor (PRR) that plays an important role in innate immune recognition of conserved structural motifs on a wide array of pathogens, including Staphylococcus aureus. To ascertain the functional significance of TLR2 in the context of central nervous system (CNS) parenchymal infection, we evaluated the pathogenesis of S. aureus-induced experimental brain abscess in TLR2 knockout (KO) and wild-type (WT) mice. The expression of several proinflammatory mediators, including inducible nitric oxide synthase, tumor necrosis factor alpha, and macrophage inflammatory protein-2, was significantly attenuated in brain abscesses of TLR2 KO mice compared to WT mice during the acute phase of infection. Conversely, interleukin-17 (IL-17), a cytokine produced by activated and memory T cells, was significantly elevated in lesions of TLR2 KO mice, suggesting an association between innate and adaptive immunity in brain abscess. Despite these differences, brain abscess severity in TLR2 KO and WT animals was similar, with comparable mortality rates, bacterial titers, and blood-brain barrier permeability, implying a role for alternative PRRs. Expression of the phagocytic PRRs macrophage scavenger receptor type AI/AII and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was increased in brain abscesses of both TLR2 KO and WT mice compared to uninfected animals. However, LOX-1 induction in brain abscesses of TLR2 KO mice was significantly attenuated compared to WT animals, revealing that the TLR2-dependent signal(s) influence LOX-1 expression. Collectively, these findings reveal the complex nature of gram-positive bacterial recognition in the CNS which occurs, in part, through engagement of TLR2 and highlight the importance of receptor redundancy for S. aureus detection in the CNS.

  14. Role of Toll-Like Receptor Signaling in the Pathogenesis of Graft-versus-Host Diseases

    PubMed Central

    Tu, Sanfang; Zhong, Danli; Xie, Weixin; Huang, Wenfa; Jiang, Yangyang; Li, Yuhua

    2016-01-01

    Graft-versus-host disease (GVHD) and infection are major complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and the leading causes of morbidity and mortality in HSCT patients. Recent work has demonstrated that the two complications are interdependent. GVHD occurs when allo-reactive donor T lymphocytes are activated by major histocompatibility antigens or minor histocompatibility antigens on host antigen-presenting cells (APCs), with the eventual attack of recipient tissues or organs. Activation of APCs is important for the priming of GVHD and is mediated by innate immune signaling pathways. Current evidence indicates that intestinal microbes and innate pattern-recognition receptors (PRRs) on host APCs, including both Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), are involved in the pathogenesis of GVHD. Patients undergoing chemotherapy and/or total body irradiation before allo-HSCT are susceptible to aggravated gastrointestinal epithelial cell damage and the subsequent translocation of bacterial components, followed by the release of endogenous dangerous molecules, termed pathogen-associated molecular patterns (PAMPs), which then activate the PRRs on host APCs to trigger local or systemic inflammatory responses that modulate T cell allo-reactivity against host tissues, which is equivalent to GVHD. In other words, infection can, to some extent, accelerate the progression of GVHD. Therefore, the intestinal flora’s PAMPs can interact with TLRs to activate and mature APCs, subsequently activate donor T cells with the release of pro-inflammatory cytokines, and eventually, induce GVHD. In the present article, we summarize the current perspectives on the understanding of different TLR signaling pathways and their involvement in the occurrence of GVHD. PMID:27529218

  15. Systemic Toll-Like Receptor Stimulation Suppresses Experimental Allergic Asthma and Autoimmune Diabetes in NOD Mice

    PubMed Central

    Pham Van, Linh; Bardel, Emilie; Gomez Alcala, Alejandro; Jeannin, Pascale; Akira, Shizuo; Bach, Jean-François; Thieblemont, Nathalie

    2010-01-01

    Background Infections may be associated with exacerbation of allergic and autoimmune diseases. Paradoxically, epidemiological and experimental data have shown that some microorganisms can also prevent these pathologies. This observation is at the origin of the hygiene hypothesis according to which the decline of infections in western countries is at the origin of the increased incidence of both Th1-mediated autoimmune diseases and Th2-mediated allergic diseases over the last decades. We have tested whether Toll-like receptor (TLR) stimulation can recapitulate the protective effect of infectious agents on allergy and autoimmunity. Methods and Findings Here, we performed a systematic study of the disease-modifying effects of a set of natural or synthetic TLR agonists using two experimental models, ovalbumin (OVA)-induced asthma and spontaneous autoimmune diabetes, presenting the same genetic background of the non obese diabetic mouse (NOD) that is highly susceptible to both pathologies. In the same models, we also investigated the effect of probiotics. Additionally, we examined the effect of the genetic invalidation of MyD88 on the development of allergic asthma and spontaneous diabetes. We demonstrate that multiple TLR agonists prevent from both allergy and autoimmunity when administered parenterally. Probiotics which stimulate TLRs also protect from these two diseases. The physiological relevance of these findings is further suggested by the major acceleration of OVA-induced asthma in MyD88 invalidated mice. Our results strongly indicate that the TLR-mediated effects involve immunoregulatory cytokines such as interleukin (IL)-10 and transforming growth factor (TGF)-β and different subsets of regulatory T cells, notably CD4+CD25+FoxP3+ T cells for TLR4 agonists and NKT cells for TLR3 agonists. Conclusions/Significance These observations demonstrate that systemic administration of TLR ligands can suppress both allergic and autoimmune responses. They provide a

  16. The heterogeneous allelic repertoire of human toll-like receptor (TLR) genes.

    PubMed

    Georgel, Philippe; Macquin, Cécile; Bahram, Seiamak

    2009-11-17

    Toll-Like Receptors (TLR) are critical elements of the innate arm of the vertebrate immune system. They constitute a multigenic family of receptors which collectively bind a diverse array of--exogeneous as well as endogeneous--ligands. An exponential burst of knowledge has defined their biological role in fight against infections and generation/modulation of auto-immune disorders. Hence, they could at least be conceptually recognized--despite being structurally unrelated - as innate counterparts to Major Histocompatibility Complex (MHC) molecules--equally recognizing antigenic ligands (albeit structurally more homogeneous i.e., peptides), again derived from self and/or non-self sources--preeminent this time in adaptive immunity. Our great disparities in face of infections and/or susceptibility to auto-immune diseases have provoked an intense search for genetic explanations, in part satisfied by the extraordinary MHC allelic repertoire. An equally in-depth and systematic analysis of TLR diversity is lacking despite numerous independent reports of a growing number of SNPs within these loci. The work described here aims at providing a preliminary picture of the allelic repertoire--and not purely SNPs--of all 10 human TLR coding sequences (with exception of TLR3) within a single cohort of up to 100 individuals. It appears from our work that TLR are unequally polymorphic: TLR2 (DNA alleles: 7/protein alleles: 3), 4 (4/3), 7 (6/3), 8 (9/2) and 9 (8/3) being comparatively least diverse whereas TLR1 (11/10), 5 (14/12), 6 (10/8) and 10 (15/10) show a substantial number of alleles. In addition to allelic assignment of a large number of SNPs, 10 new polymorphic positions were hereby identified. Hence this work depicts a first overview of the diversity of almost all human TLR genes, a prelude for large-scale population genetics as well as genetic association studies.

  17. Regulation of toll-like receptor 3 activation by S100A9

    PubMed Central

    Tsai, Su-Yu; Segovia, Jesus A.; Chang, Te-Hung; Shil, Niraj K.; Pokharel, Swechha M.; Kannan, T.R.; Baseman, Joel B.; Defrêne, Joan; Pagé, Nathalie; Cesaro, Annabelle; Tessier, Philippe A.; Bose, Santanu

    2015-01-01

    Recognition of viral dsRNA by endosomal toll-like receptor 3 (TLR3) activates innate immune response during virus infection. Trafficking of TLR3 to the endo-lysosomal (EL) compartment arising from fusion of late endosome (LE) with lysosome is required for recognition and detection of Pathogen Associated Molecular Patterns (PAMP). PAMP detection results in activation of TLR3-dependent signaling cascade. Existing knowledge about the mechanism(s) and cellular factor(s) governing TLR3 trafficking is limited. In the current study we have identified intracellular S100A9 protein as a critical regulator of TLR3 trafficking. S100A9 was required for maturation of TLR3 containing early endosome (EE) into LE, the compartment that fuses with lysosome to form EL compartment. Drastic reduction in cytokine production was observed in S100A9 knockout (KO) primary macrophages following RNA virus infection and treatment of cells with polyIC (a dsRNA mimetic that acts as a TLR3 agonist). Mechanistic studies revealed co-localization and interaction of S100A9 with TLR3 following polyIC treatment. S100A9-TLR3 interaction was critical for maturation of TLR3 containing EE into LE since TLR3 could not be detected in the LE of polyIC treated S100A9 KO macrophages. Subsequently, TLR3 failed to co-localize with its agonist (i.e. biotin-labeled polyIC) in S100A9 deficient macrophages. The in vivo physiological role of S100A9 was evident from loss of cytokine production in polyIC treated S100A9 KO mice. Thus, we have identified intracellular S100A9 as a regulator of TLR3 signaling and demonstrated that S100A9 functions during pre-TLR3 activation stages by facilitating maturation of TLR3 containing EE into LE. PMID:26385519

  18. Toll-like receptor 2 activation and serum amyloid A regulate smooth muscle cell extracellular matrix

    PubMed Central

    Bishop, Christopher A.; Best, Michael; Rich, Celeste B.; Stone, Phillip J.

    2017-01-01

    Smooth muscle cells contribute to extracellular matrix remodeling during atherogenesis. De-differentiated, synthetic smooth muscle cells are involved in processes of migration, proliferation and changes in expression of extracellular matrix components, all of which contribute to loss of homeostasis accompanying atherogenesis. Elevated levels of acute phase proteins, including serum amyloid A (SAA), are associated with an increased risk for atherosclerosis. Although infection with periodontal and respiratory pathogens via activation of inflammatory cell Toll-like receptor (TLR)2 has been linked to vascular disease, little is known about smooth muscle cell TLR2 in atherosclerosis. This study addresses the role of SAA and TLR2 activation on smooth muscle cell matrix gene expression and insoluble elastin accumulation. Cultured rat aortic smooth muscle cells were treated with SAA or TLR2 agonists and the effect on expression of matrix metallopeptidase 9 (MMP9) and tropoelastin studied. SAA up-regulated MMP9 expression. Tropoelastin is an MMP9 substrate and decreased tropoelastin levels in SAA-treated cells supported the concept of extracellular matrix remodeling. Interestingly, SAA-induced down-regulation of tropoelastin was not only evident at the protein level but at the level of gene transcription as well. Contributions of proteasomes, nuclear factor κ B and CCAAT/enhancer binding protein β on regulation of MMP9 vs. tropoleastin expression were revealed. Effects on Mmp9 and Eln mRNA expression persisted with long-term SAA treatment, resulting in decreased insoluble elastin accumulation. Interestingly, the SAA effects were TLR2-dependent and TLR2 activation by bacterial ligands also induced MMP9 expression and decreased tropoelastin expression. These data reveal a novel mechanism whereby SAA and/or infection induce changes in vascular elastin consistent with atherosclerosis. PMID:28257481

  19. Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress*

    PubMed Central

    Okla, Meshail; Wang, Wei; Kang, Inhae; Pashaj, Anjeza; Carr, Timothy; Chung, Soonkyu

    2015-01-01

    Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation. PMID:26370079

  20. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle

    PubMed Central

    Hussey, Sophie E.; Lum, Helen; Alvarez, Andrea; Cipriani, Yolanda; Garduño-Garcia, José de Jesús; Anaya, Luis; Dube, John; Musi, Nicolas

    2014-01-01

    Aims/hypothesis Insulin-sensitive tissues (muscle, liver) of individuals with obesity and type 2 diabetes mellitus are in a state of low-grade inflammation, characterised by increased Toll-like receptor (TLR) expression and TLR-driven signalling. However, the cause of this mild inflammatory state is unclear. We tested the hypothesis that a prolonged mild increase in plasma NEFA will increase TLR expression and TLR-driven signalling (nuclear factor κB [NFκB] and mitogen-activated kinase [MAPK]) and impair insulin action in muscle of lean healthy individuals. Methods Twelve lean, normal-glucose-tolerant participants were randomised to receive a 48 h infusion (30 ml/h) of saline or Intralipid followed by a euglycaemic–hyperinsulinaemic clamp. Vastus lateralis muscle biopsies were performed before and during the clamp. Results Lipid infusion impaired insulin-stimulated IRS-1 tyrosine phosphorylation and reduced peripheral insulin sensitivity (p < 0.01). The elevation in circulating NEFA increased expression of TLR3, TLR4 and TLR5, and several MAPK (MAPK8, MAP4K4, MAP2K3) and inhibitor of κB kinase-NFκB (CHUK [IKKA], c-REL [REL] and p65 [RELA, NFKB3,p65]) signalling genes (p < 0.05). The lipid infusion also increased extracellular signal-regulated kinase (ERK) phosphorylation (p < 0.05) and tended to reduce the content of nuclear factor of light polypeptide gene enhancer in B cells inhibitor α (p = 0.09). The muscle content of most diacyglycerol, ceramide and acylcarnitine species was unaffected. In summary, insulin resistance induced by prolonged low-dose lipid infusion occurs together with increased TLR-driven inflammatory signalling and impaired insulin-stimulated IRS-1 tyrosine phosphorylation. Conclusions/interpretation A sustained, mild elevation in plasma NEFA is sufficient to increase TLR expression and TLR-driven signalling (NFκB and MAPK) in lean individuals. The activation of this pathway by NEFA may be involved in the pathogenesis of insulin

  1. Toll-like receptor 8 and 9 polymorphisms in Crimean-Congo hemorrhagic fever.

    PubMed

    Engin, Aynur; Arslan, Serdal; Kizildag, Sibel; Oztürk, Hasret; Elaldi, Nazif; Dökmetas, Ilyas; Bakir, Mehmet

    2010-11-01

    Crimean-Congo hemorrhagic fever (CCHF) is an acute viral hemorrhagic fever. The clinical course and outcome of the CCHF infection are different in humans. Toll-like receptors (TLRs) are a family of pathogen recognition receptors. TLR8 and TLR9 contribute to the recognition of viruses. We investigated frequency of TLR8 Met1Val, TLR8 -129C/G, TLR9 -1486T/C and TLR9 2458G/A polymorphisms in CCHF patients and healthy controls. Our study was conducted between June 1 and August 31, 2007 in Cumhuriyet University Hospital, Turkey. TLR genotypes were detected using the PCR-RFLP assay in 85 CCHF patients and 171 healthy controls. We found that heterozygous plus homozygous mutant genotypes frequency for TLR8 Met1Val and for TLR9 -1486T/C were significantly higher in CCHF patients than controls (p = 0.038 and p = 0.009, respectively). The frequency of TLR8 -129G/G genotype in the fatal CCHF patients was significantly higher than that of the non-fatal patients (p = 0.026). The frequency of TLR9 -1486C/C genotype was significantly higher in fatal CCHF patients than in healthy controls (p = 0.009) and in patients with severe disease compared to non-severe disease (p = 0.044). Our findings suggest that TLR8 Met1Val, TLR8 -129C/G, and TLR9 -1486T/C polymorphisms are important on clinical course of CCHF disease.

  2. Mycobacterium tuberculosis Hip1 Dampens Macrophage Proinflammatory Responses by Limiting Toll-Like Receptor 2 Activation▿

    PubMed Central

    Madan-Lala, Ranjna; Peixoto, Katia Vitorello; Re, Fabio; Rengarajan, Jyothi

    2011-01-01

    Mycobacterium tuberculosis is a highly successful human pathogen that evades host innate immunity by interfering with macrophage functions. In addition to avoiding macrophage microbicidal activities, M. tuberculosis triggers secretion of proinflammatory cytokines and chemokines in macrophages. The levels of proinflammatory cytokines induced by clinical M. tuberculosis isolates are thought to play an important role in determining tuberculosis disease progression and severity, but the mechanisms by which M. tuberculosis modulates the magnitude of inflammatory responses remain unclear. Here we show that M. tuberculosis restricts robust macrophage activation and dampens proinflammatory responses through the cell envelope-associated serine hydrolase Hip1 (hydrolase important for pathogenesis 1). By transcriptionally profiling macrophages infected with either wild-type or hip1 mutant bacteria, we found that the hip1 mutant induced earlier and significantly higher levels of several proinflammatory cytokines and chemokines. We show that increased activation of Toll-like receptor 2 (TLR2)- and MyD88-dependent signaling pathways mediates the enhanced cytokine secretion induced by the hip1 mutant. Thus, Hip1 restricts the onset and magnitude of proinflammatory cytokines by limiting TLR2-dependent activation. We also show that Hip1 dampens TLR2-independent activation of the inflammasome and limits secretion of interleukin-18 (IL-18). Dampening of TLR2 signaling does not require viable M. tuberculosis or phagocytosis but does require Hip1 catalytic activity. We propose that M. tuberculosis restricts proinflammatory responses by masking cell surface interactions between TLR2 agonists on M. tuberculosis and TLR2 on macrophages. This strategy may allow M. tuberculosis to evade early detection by host immunity, delay the onset of adaptive immune responses, and accelerate disease progression. PMID:21947769

  3. Leishmania pifanoi proteoglycolipid complex P8 induces macrophage cytokine production through Toll-like receptor 4.

    PubMed

    Whitaker, Shanta M; Colmenares, Maria; Pestana, Karen Goldsmith; McMahon-Pratt, Diane

    2008-05-01

    The P8 proteoglycolipid complex (P8 PGLC) is a glyconjugate expressed by Leishmania mexicana complex parasites. We previously have shown that vaccination with P8 PGLC provides protection against cutaneous leishmaniasis in susceptible BALB/c mice. However, the biological importance of this complex remains unknown. Here we show that P8 PGLC localizes to the surface of Leishmania pifanoi amastigotes and that upon exposure to macrophages, P8 PGLC binds and induces inflammatory cytokine and chemokine mRNAs such as tumor necrosis factor alpha and RANTES early after stimulation. Our studies indicate that cytokine and chemokine induction is dependent upon Toll-like receptor 4 (TLR4). Interestingly, key inflammatory cytokines and chemokines (such as interleukin-6 [IL-6], macrophage inflammatory protein 1beta, and beta interferon [IFN-beta]) that can be induced through TLR4 activation were not induced or only slightly upregulated by P8 PGLC. Activation by P8 PGLC does not occur in the presence of TLR4 alone and requires both CD14 and myeloid differentiation protein 2 for signaling; this requirement may be responsible for the limited TLR4 response. This is the first characterization of a TLR4 ligand for Leishmania. In vitro experiments indicate that L. pifanoi amastigotes induce lower levels of cytokines in macrophages in the absence of TLR4; however, notably higher IL-10/IFN-gamma ratios were found for TLR4-deficient mice than for BALB/c mice. Further, increased levels of parasites persist in BALB/c mice deficient in TLR4. Taken together, these results suggest that TLR4 recognition of Leishmania pifanoi amastigotes is important for the control of infection and that this is mediated, in part, through the P8 PGLC.

  4. Age-related changes in expression and function of Toll-like receptors in human skin.

    PubMed

    Iram, Nousheen; Mildner, Michael; Prior, Marion; Petzelbauer, Peter; Fiala, Christian; Hacker, Stefan; Schöppl, Alice; Tschachler, Erwin; Elbe-Bürger, Adelheid

    2012-11-01

    Toll-like receptors (TLRs) initiate innate immune responses and direct subsequent adaptive immunity. They play a major role in cutaneous host defense against micro-organisms and in the pathophysiology of several inflammatory skin diseases. To understand the role of TLRs in the acquisition of immunological competence, we conducted a comprehensive study to evaluate TLR expression and function in the developing human skin before and after birth and compared it with adults. We found that prenatal skin already expresses the same spectrum of TLRs as adult skin. Strikingly, many TLRs were significantly higher expressed in prenatal (TLRs 1-5) and infant and child (TLRs 1 and 3) skin than in adult skin. Surprisingly, neither dendritic cell precursors in prenatal skin nor epidermal Langerhans cells and dermal dendritic cells in adult skin expressed TLRs 3 and 6, whereas the staining pattern and intensity of both TLRs in fetal basal keratinocytes was almost comparable to those of adults. Stimulation of primary human keratinocytes from fetal, neonatal and adult donors with selected TLR agonists revealed that the synthetic TLR3 ligand poly (I:C) specifically, mimicking viral double-stranded RNA, induced a significantly enhanced secretion of CXCL8/IL8, CXCL10/IP-10 and TNFα in fetal and neonatal keratinocytes compared with adult keratinocytes. This study demonstrates quantitative age-specific modifications in TLR expression and innate skin immune reactivity in response to TLR activation. Thus, antiviral innate immunity already in prenatal skin may contribute to protect the developing human body from viral infections in utero in a scenario where the adaptive immune system is not yet fully functional.

  5. Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population

    PubMed Central

    2013-01-01

    Background The control of Mycobacterium tuberculosis (Mtb) infection begins with the recognition of mycobacterial structural components by toll like receptors (TLRs) and other pattern recognition receptors. Our objective was to determine the influence of TLRs polymorphisms in the susceptibility to develop tuberculosis (TB) in Amerindian individuals from a rural area of Oaxaca, Mexico with high TB incidence. Methods We carried out a case–control association community based study, genotyping 12 polymorphisms of TLR2, TLR4, TLR6 and TLR9 genes in 90 patients with confirmed pulmonary TB and 90 unrelated exposed but asymptomatic household contacts. Results We found a significant increase in the frequency of the allele A of the TLR9 gene polymorphism rs352139 (A>G) in the group of TB patients (g.f. = 0.522) when compared with controls (g.f. = 0.383), (Pcorr = 0.01, OR = 1.75). Under the recessive model (A/G + A/A vs G/G) this polymorphism was also significantly associated with TB (Pcorr = 0.01, OR= 2.37). The association of the SNP rs352139 was statistically significant after adjustment by age, gender and comorbidities by regression logistic analysis (Dominant model: p value = 0.016, OR = 2.31; Additive model: p value = 0.023, OR = 1.68). The haplotype GAA of TLR9 SNPs was also associated with TB susceptibility (Pcorr = 0.02). Differences in the genotype or allele frequencies of TLR2, TLR4 and TLR6 polymorphisms between TB patients and healthy contacts were not detected. Conclusions Our study suggests that the allele A of the intronic polymorphism rs352139 on TLR9 gene might contribute to the risk of developing TB in Mexican Amerindians. PMID:24053111

  6. Toll-like receptor responses to Peste des petits ruminants virus in goats and water buffalo.

    PubMed

    Dhanasekaran, Sakthivel; Biswas, Moanaro; Vignesh, Ambothi R; Ramya, R; Raj, Gopal Dhinakar; Tirumurugaan, Krishnaswamy G; Raja, Angamuthu; Kataria, Ranjit S; Parida, Satya; Elankumaran, Subbiah; Subbiah, Elankumaran

    2014-01-01

    Ovine rinderpest or goat plague is an economically important and contagious viral disease of sheep and goats, caused by the Peste des petits ruminants virus (PPRV). Differences in susceptibility to goat plague among different breeds and water buffalo exist. The host innate immune system discriminates between pathogen associated molecular patterns and self antigens through surveillance receptors known as Toll like receptors (TLR). We investigated the role of TLR and cytokines in differential susceptibility of goat breeds and water buffalo to PPRV. We examined the replication of PPRV in peripheral blood mononuclear cells (PBMC) of Indian domestic goats and water buffalo and demonstrated that the levels of TLR3 and TLR7 and downstream signalling molecules correlation with susceptibility vs resistance. Naturally susceptible goat breeds, Barbari and Tellichery, had dampened innate immune responses to PPRV and increased viral loads with lower basal expression levels of TLR 3/7. Upon stimulation of PBMC with synthetic TLR3 and TLR7 agonists or PPRV, the levels of proinflammatory cytokines were found to be significantly higher while immunosuppressive interleukin (IL) 10 levels were lower in PPRV resistant Kanni and Salem Black breeds and water buffalo at transcriptional level, correlating with reduced viralloads in infected PBMC. Water buffalo produced higher levels of interferon (IFN) α in comparison with goats at transcriptional and translational levels. Pre-treatment of Vero cells with human IFNα resulted in reduction of PPRV replication, confirming the role of IFNα in limiting PPRV replication. Treatment with IRS66, a TLR7 antagonist, resulted in the reduction of IFNα levels, with increased PPRV replication confirming the role of TLR7. Single nucleotide polymorphism analysis of TLR7 of these goat breeds did not show any marked nucleotide differences that might account for susceptibility vs resistance to PPRV. Analyzing other host genetic factors might provide

  7. Effect of smoking on the genetic makeup of toll-like receptors 2 and 6

    PubMed Central

    Kohailan, Muhammad; Alanazi, Mohammad; Rouabhia, Mahmoud; Alamri, Abdullah; Parine, Narasimha Reddy; Alhadheq, Abdullah; Basavarajappa, Santhosh; Abdullah Al-Kheraif, Abdul Aziz; Semlali, Abdelhabib

    2016-01-01

    Background Cigarette smoking is a major risk factor for lung cancer, asthma, and oral cancer, and is central to the altered innate immune responsiveness to infection. Many hypotheses have provided evidence that cigarette smoking induces more genetic changes in genes involved in the development of many cigarette-related diseases. This alteration may be from single-nucleotide polymorphisms (SNPs) in innate immunity genes, especially the toll-like receptors (TLRs). Objective In this study, the genotype frequencies of TLR2 and TLR6 in smoking and nonsmoking population were examined. Methods Saliva samples were collected from 177 smokers and 126 nonsmokers. The SNPs used were rs3804100 (1350 T/C, Ser450Ser) and rs3804099 (597 T/C, Asn199Asn) for TLR2 and rs3796508 (979 G/A, Val327Met) and rs5743810 (745 T/C, Ser249Pro) for TLR6. Results Results showed that TLR2 rs3804100 has a significant effect in short-term smokers (OR =2.63; P=0.04), and this effect is not observed in long-term smokers (>5 years of smoking). Therefore, this early mutation may be repaired by the DNA repair system. For TLR2 rs3804099, the variation in genotype frequencies between the smokers and control patients was due to a late mutation, and its protective role appears only in long-term smokers (OR =0.40, P=0.018). In TLR6 rs5743810, the TT genotype is significantly higher in smokers than in nonsmokers (OR =6.90). The effect of this SNP is observed in long-term smokers, regardless of the smoking regime per day. Conclusion TLR2 (rs3804100 and rs3804099) and TLR6 (rs5743810) can be used as a potential index in the diagnosis and prevention of more diseases caused by smoking. PMID:27920557

  8. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses

    PubMed Central

    Dar, Asif Amin; Patil, Rushikesh Sudam; Chiplunkar, Shubhada Vivek

    2014-01-01

    The tumor microenvironment is an important aspect of cancer biology that contributes to tumor initiation, tumor progression and responses to therapy. The composition and characteristics of the tumor microenvironment vary widely and are important in determining the anti-tumor immune response. Successful immunization requires activation of both innate and adaptive immunity. Generally, immune system is compromised in patients with cancer due to immune suppression, loss of tumor antigen expression and dysfunction of antigen presenting cells (APC). Thus, therapeutic immunization leading to cancer regression remains a significant challenge. Certain cells of the immune system, including dendritic cells (DCs) and gamma delta (γδ) T cells are capable of driving potent anti-tumor responses. The property of MHC-unrestricted cytotoxicity, high potential of cytokine release, tissue tropism and early activation in infections and malignant disease makes γδ T cells as an emerging candidate for immunotherapy. Various strategies are being developed to enhance anti-tumor immune responses of γδ T cells and DCs one of them is the use of novel adjuvants like toll like receptors (TLR) agonists, which enhance γδ T cell function directly or through DC activation, which has ability to prime γδ T cells. TLR agonists are being used clinically either alone or in combination with tumor antigens and has shown initial success in both enhancing immune responses and eliciting anti-tumor activity. TLR activated γδ T cells and DCs nurture each other’s activation. This provides a potent base for first line of defense and manipulation of the adaptive response against pathogens and cancer. The available data provides a strong rationale for initiating combinatorial therapy for the treatment of diseases and this review will summarize the application of adjuvants (TLRs) for boosting immune response of γδ T cells to treat cancer and infectious diseases and their use in combinatorial therapy

  9. Racial Variation in Toll-like Receptor Variants Among Women With Pelvic Inflammatory Disease

    PubMed Central

    Taylor, Brandie D.; Darville, Toni; Ferrell, Robert E.; Ness, Roberta B.; Haggerty, Catherine L.

    2013-01-01

    Background. Racial disparities exist in gynecological diseases. Variations in Toll-like receptor (TLR) genes may alter signaling following microbial recognition. Methods. We explored genotypic differences in 6 functional variants in 4 TLR genes (TLR1, TLR2, TLR4, TLR6) and the adaptor molecule TIRAP between 205 African American women and 51 white women with clinically suspected pelvic inflammatory disease (PID). A permutated P < .007 was used to assess significance. Associations between race and endometritis and/or upper genital tract infection (UGTI) were explored. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Results. The TT genotype for TLR1 rs5743618, the GG genotype for TLR1 rs4833095, the CC genotype for TLR2 rs3804099, the TLR6 rs5743810 T allele, and the CC genotype for TIRAP rs8177374 significantly differed between races (P < .007). African American race was associated with endometritis and/or UGTI (OR, 4.2 [95% CI, 2.0–8.7]; P = .01). Among African Americans, the TLR6 rs5743810 T allele significantly decreased endometritis and/or UGTI (OR, 0.4 [95% CI, .2–.9]; P = .04). Additionally, rs5743618, rs4833095, and rs8177374 increased endometritis and/or UGTI, albeit not significantly. Conclusions. Among women with PID, TLR variants that increase inflammation are associated with African American race and may mediate the relationship between race and endometritis and/or UGTI. PMID:23255565

  10. Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways.

    PubMed

    Zhang, Jie; Kong, Xianghui; Zhou, Chuanjiang; Li, Li; Nie, Guoxing; Li, Xuejun

    2014-12-01

    Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.

  11. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  12. Combating Drug Abuse by Targeting Toll-Like Receptor 4 (TLR4)

    DTIC Science & Technology

    2013-10-01

    to preserve the desired effects of   3   opioids ( pain -relief) while diminishing unwanted effects (analgesic tolerance and reward...significant progress anticipated in the coming project period. 15. SUBJECT TERMS toll like receptor 4 (TLR4); TLR4 agonists non- opioid (+)-naloxone and...naltrexone; drug abuse; glial activation; therapeutic approach to treating drug abuse; opioids ; cocaine 16. SECURITY CLASSIFICATION OF: 17

  13. Mapping of the toll like receptor family in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Toll Like Receptors (TLRs) are key elements of the innate response to pathogens. They recognize Pathogen Associated Molecular Patterns (PAMPs) and activate the host defense responses. As such, they are candidate genes for disease resistance. In teleost, eight homologs of the endothermic vertebra...

  14. The role of Toll-like receptors and vitamin D in diabetes mellitus type 1--a review.

    PubMed

    Adamczak, D M; Nowak, J K; Frydrychowicz, M; Kaczmarek, M; Sikora, J

    2014-08-01

    It is widely accepted that type 1 diabetes mellitus (T1DM) is an autoimmune disease resulting from an interaction between immunologic, genetic and environmental factors. However, the exact mechanism leading to the development of T1DM remains incomplete. There is a large body of evidence pointing towards the important role of toll-like receptor (TLR) activation and vitamin D deficiency in T1DM pathogenesis. In this article, we review the available data on the influence of TLRs' level of activation and vitamin D status on the risk of the development of T1DM in humans and rodent models. We also summarize the current information regarding the interactions between TLRs' level of activation, vitamin D status and various environmental factors, such as enteroviral infections, the gut microbiota and breastfeeding substitution, among others. Our results stipulate that vitamin D seems to protect against T1DM by reducing the TLRs' level of activation.

  15. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: Implications for vaccines

    PubMed Central

    Zhu, Qing; Egelston, Colt; Vivekanandhan, Aravindhan; Uematsu, Satoshi; Akira, Shizuo; Klinman, Dennis M.; Belyakov, Igor M.; Berzofsky, Jay A.

    2008-01-01

    Toll-like receptors (TLRs) may need to cooperate with each other to be effective in detecting imminent infection and trigger immune responses. Understanding is still limited about the intracellular mechanism of this cooperation. We found that when certain TLRs are involved, dendritic cells (DCs) establish unidirectional intracellular cross-talk, in which the MyD88-independent TRIF-dependent pathway amplifies the MyD88-dependent DC function through a JNK-dependent mechanism. The amplified MyD88-dependent DC function determines the induction of the T cell response to a given vaccine in vivo. Therefore, our study revealed an underlying TLR mechanism governing the functional, nonrandom interplay among TLRs for recognition of combinatorial ligands that may be dangerous to the host, providing important guidance for design of novel synergistic molecular vaccine adjuvants. PMID:18845682

  16. From The Cover: Induction of antiviral immunity requires Toll-like receptor signaling in both stromal and dendritic cell compartments

    NASA Astrophysics Data System (ADS)

    Sato, Ayuko; Iwasaki, Akiko

    2004-11-01

    Pattern recognition by Toll-like receptors (TLRs) is known to be important for the induction of dendritic cell (DC) maturation. DCs, in turn, are critically important in the initiation of T cell responses. However, most viruses do not infect DCs. This recognition system poses a biological problem in ensuring that most viral infections be detected by pattern recognition receptors. Furthermore, it is unknown what, if any, is the contribution of TLRs expressed by cells that are infected by a virus, versus TLRs expressed by DCs, in the initiation of antiviral adaptive immunity. Here we address these issues using a physiologically relevant model of mucosal infection with herpes simplex virus type 2. We demonstrate that innate immune recognition of viral infection occurs in two distinct stages, one at the level of the infected epithelial cells and the other at the level of the noninfected DCs. Importantly, both TLR-mediated recognition events are required for the induction of effector T cells. Our results demonstrate that virally infected tissues instruct DCs to initiate the appropriate class of effector T cell responses and reveal the critical importance of the stromal cells in detecting infectious agents through their own pattern recognition receptors. mucosal immunity | pattern recognition | viral infection

  17. Toll-like Receptor 1 Polymorphisms Affect Innate Immune Responses and Outcomes in Sepsis

    PubMed Central

    Wurfel, Mark M.; Gordon, Anthony C.; Holden, Tarah D.; Radella, Frank; Strout, Jeanna; Kajikawa, Osamu; Ruzinski, John T.; Rona, Gail; Black, R. Anthony; Stratton, Seth; Jarvik, Gail P.; Hajjar, Adeline M.; Nickerson, Deborah A.; Rieder, Mark; Sevransky, Jonathan; Maloney, James P.; Moss, Marc; Martin, Greg; Shanholtz, Carl; Garcia, Joe G. N.; Gao, Li; Brower, Roy; Barnes, Kathleen C.; Walley, Keith R.; Russell, James A.; Martin, Thomas R.

    2008-01-01

    Rationale: Polymorphisms affecting Toll-like receptor (TLR)–mediated responses could predispose to excessive inflammation during an infection and contribute to an increased risk for poor outcomes in patients with sepsis. Objectives: To identify hypermorphic polymorphisms causing elevated TLR-mediated innate immune cytokine and chemokine responses and to test whether these polymorphisms are associated with increased susceptibility to death, organ dysfunction, and infections in patients with sepsis. Methods: We screened single-nucleotide polymorphisms (SNPs) in 43 TLR-related genes to identify variants affecting TLR-mediated inflammatory responses in blood from healthy volunteers ex vivo. The SNP associated most strongly with hypermorphic responses was tested for associations with death, organ dysfunction, and type of infection in two studies: a nested case–control study in a cohort of intensive care unit patients with sepsis, and a case–control study using patients with sepsis, patients with sepsis-related acute lung injury, and healthy control subjects. Measurements and Main Results: The SNP demonstrating the most hypermorphic effect was the G allele of TLR1−7202A/G (rs5743551), which associated with elevated TLR1-mediated cytokine production (P < 2 × 10−20). TLR1−7202G marked a coding SNP that causes higher TLR1-induced NF-κB activation and higher cell surface TLR1 expression. In the cohort of patients with sepsis TLR1−7202G predicted worse organ dysfunction and death (odds ratio, 1.82; 95% confidence interval, 1.07–3.09). In the case-control study TLR1−7202G was associated with sepsis-related acute lung injury (odds ratio, 3.40; 95% confidence interval, 1.59–7.27). TLR1−7202G also associated with a higher prevalence of gram-positive cultures in both clinical studies. Conclusions: Hypermorphic genetic variation in TLR1 is associated with increased susceptibility to organ dysfunction, death, and gram-positive infection in sepsis. PMID

  18. Origin of Toll-like receptor-mediated innate immunity.

    PubMed

    Kanzok, Stefan M; Hoa, Ngo T; Bonizzoni, Mariangela; Luna, Coralia; Huang, Yaming; Malacrida, Anna R; Zheng, Liangbiao

    2004-04-01

    Toll-related receptors (TLR) have been found in four animal phyla: Nematoda, Arthropoda, Echinodermata, and Chordata. No TLR has been identified thus far in acoelomates. TLR genes play a pivotal role in the innate immunity in both fruit fly and mammals. The prevailing view is that TLR-mediated immunity is ancient. The two pseudocoelomate TLRs, one each from Caenorhabditis elegans and Strongyloides stercoralis, were distinct from the coelomate ones. Further, the only TLR gene (Tol-1) in Ca. elegans did not appear to play a role in innate immunity. We argue that TLR-mediated innate immunity developed only in the coelomates, after they split from pseudocoelomates and acoelomates. We hypothesize that the function of TLR-mediated immunity is to prevent microbial infection in the body cavity present only in the coelomates. Phylogenetic analysis showed that almost all arthropod TLRs form a separate cluster from the mammalian counterparts. We further hypothesize that TLR-mediated immunity developed independently in the protostomia and deuterostomia coelomates.

  19. Is there any relationship between Toll-like receptor 3 c.1377C/T and -7C/A polymorphisms and susceptibility to Crimean Congo hemorrhagic fever?

    PubMed

    Engin, Aynur; Arslan, Serdal; Özbilüm, Nil; Bakir, Mehmet

    2016-10-01

    Crimean-Congo hemorrhagic fever (CCHF) is an infectious disease that is caused by CCHF virus. A family of transmembrane receptors called as Toll-like receptors (TLRs) selectively acts in recognizing a wide range of microbial components and endogenous molecules released by damaged tissue and have been preserved throughout evolution. TLRs initiate some signaling cascades which activate the innate immune system. Mainly four TLRs act in protection against viral infections; TLR3 is one of them. TLR3 identifies dsRNA. By producing inflammatory cytokines and type I interferons, it generates an antiviral immune response. Proper response to TLR ligands may be impaired by single nucleotide polymorphisms (SNPs) within TLR genes in some indviduals, and this can cause varied susceptibility to infections. In the present work, polymerase chain reaction-based restriction fragment length polymorphism is used to analyze the frequencies of TLR3 (c.1377C/T and -7C/A) polymorphisms in 149 CCHF patients and 171 healthy adults as controls, in Cumhuriyet University, Sivas/Turkey. We also investigated the relation between these polymorphisms and severity or mortality of CCHF disease. This is the first study investigating the TLR3 SNPs in patients with CCHF. In the present study, the frequency of the TLR3 (c.1377C/T and -7A/C) genotypes in fatal and non-fatal cases were comparable, however, the homozygous mutant (TT) genotype frequency of TLR3 c.1377C/T in CCHF patients was significantly higher than that of the healthy controls. In conclusion, presence of TLR3 c.1377 TT genotype may have a role in the susceptibility to CCHF. J. Med. Virol. 88:1690-1696, 2016. © 2016 Wiley Periodicals, Inc.

  20. Association of Single Nucleotide Polymorphisms in Toll-like Receptors with Acinetobacter baumanii Infectionin a Chinese Population

    PubMed Central

    HE, Lei; LIN, Maohu; FAN, Wensheng; LIU, Yunxi; SUO, Jijiang; XING, Yubin; JIA, Ning

    2016-01-01

    Background: During recent years, infection of Acinetobacter baumanii showed a rapid growth in hospitals and community. Toll-like receptors (TLRs) are the most important pattern recognition receptors, which play a critical role during recognizing invading pathogens by the natural immune system. Our objective was to determine the associations of TLRs polymorphisms with the susceptibility to A. baumanii infection in a Chinese population. Methods: We carried out a case-control study, genotyping 13 polymorphisms of TLR-2, TLR-4, TLR-5 and TLR-9 genes on 423 A. baumanii-infected patients and 385 exposed controls. Thirteen SNPs at the TLR-2 (rs3804099, rs7656411 and rs76112010), TLR-4 (rs1927914, rs10759932 and rs11536889), TLR-5 (rs1341987, rs1640827, rs1861172, rs2241097, rs5744174 and rs17163737) and TLR9 (rs187084) genes were analyzed. SNP genotyping was performed using an improved multiplex ligation detection reaction (iMLDR) technique. Results: The SNP of TLR-9, rs187084, was related to A. baumanii-infection significantly under recessive model (G/G, to A/A + G/A, P = 0.0064, OR = 0.59, 95% CI = 0.40–0.86) after adjustment with age. Besides, the haplotype GCG of TLR-4 was significantly associated with A. baumanii infection (P = 0.027). Conclusion: TLR-4 and TLR-9 may be related to the susceptibility to A. baumanii infection in a Chinese population. PMID:27057517

  1. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    PubMed Central

    Waldhuber, Anna; Snyder, Greg A.; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-01-01

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters. PMID:26938564

  2. Molecular cloning, characterization and expression of goose Toll-like receptor 5.

    PubMed

    Fang, Qiang; Pan, Zhiming; Geng, Shizhong; Kang, Xilong; Huang, Jinlin; Sun, Xiaolin; Li, Qiuchun; Cai, Yinqiang; Jiao, Xinan

    2012-10-01

    Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that are vital to activation of the innate immune system in response to invading pathogens through their recognition of pathogen-associated molecular patterns (PAMPs). TLR5 is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the goose TLR5 gene using rapid amplification of cDNA ends (RACE). The open reading frame (ORF) of goose TLR5 cDNA is 2583 bp in length and encodes an 860 amino acid protein. The entire coding region of the TLR5 gene was successfully amplified from genomic DNA and contained a single exon. The putative amino acid sequence of goose TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat (LRR) domains, a leucine-rich repeat C-terminal (LRR-CT) domain, a transmembrane domain and an intracellular Toll-interleukin-1 receptor (TIR) domain. The amino acid sequence of goose TLR5 shared 50.5% identity with human (Homo sapiens), 49.8% with mouse (Mus musculus) and 82.7% with chicken (Gallus gallus). The goose TLR5 gene was highly expressed in the spleen, liver and brain; moderately expressed in PBMCs, kidney, lung, heart, bone marrow, small intestine and large intestine; and minimally expressed in the cecum. HEK293 cells transfected with goose TLR5 and NF-κB-luciferase containing plasmids significantly responded to flagellin from Salmonella typhimurium indicating that it is a functional TLR5 homologue. In response to infection with S. enterica serovar Enteritidis (SE), the level of TLR5 mRNA significantly increased over the control in PBMCs at 1 d post infection (p.i.) and was slightly elevated in the spleen at 1 d or 3 d p.i. IL-6 was expressed below control levels in PBMCs but was upregulated in the spleen. In contrast to IL-6, an evident decrease in the expression level of IL-8 was observed in both PBMCs and spleens at 1 d or 3 d p.i. SE challenge also resulted in an increase in the mRNA expression of IL-18 and IFN-γ in PBMCs

  3. Association of toll-like receptor 4 polymorphisms with type 2 diabetes mellitus.

    PubMed

    Jiang, Zhao-Shun; Wang, Su-Xia; Jia, Hong-Xia; Wang, Jing; Liu, Yuan-Tao

    2013-02-01

    Type 2 diabetes mellitus (T2DM) is characterized by a chronic low-grade inflammatory state. Toll-like receptor 4 (TLR4) is a critical mediator of innate immunity. Polymorphisms in TLR4 gene have been shown to be associated with impaired inflammatory response. Here, we investigated the association of TLR4 polymorphisms with T2DM. Four TLR4 polymorphisms (+986A/G, +1196C/T, +3725G/C, and +11367G/C) were genotyped in a total number of 822 T2DM patients and 835 healthy controls. Results showed that the +986A/G and +1196C/T polymorphisms did not exist in the Han Chinese population. The prevalence of TLR4 +3725GC and CC genotypes were significantly decreased in T2DM cases than in controls (odds ratio (OR) = 0.62, 95 % confidence interval (CI) = 0.50-0.78, p = 3.48 × 10(-5), and OR = 0.36, 95 % CI = 0.22-0.59, p = 1.55 × 10(-5), respectively). Also, the frequency of TLR4 +3725C allele was significantly lower in T2DM patients (p = 2.46 × 10(-9)). When analyzing the TLR4 +11367G/C polymorphism, the +11367CC genotype revealed lower numbers in patients compared to healthy controls (OR = 0.46, 95 % CI = 0.27-0.78, p = 0.0032). Analysis of the clinical features on the control subjects demonstrated no correlations between these TLR4 polymorphisms and sex, age, body mass index, etc. (p > 0.05). In conclusion, these data indicate that TLR4 +3725G/C and +11367G/C polymorphisms may be novel protective factors against T2DM in the Chinese population.

  4. Acute ethanol administration inhibits Toll-like receptor 4 signaling pathway in rat intestinal epithelia.

    PubMed

    Zhou, Chao; Zhao, Ji; Li, Jing; Wang, Haiying; Tang, Chengwei

    2013-05-01

    Excess alcohol intake, as in binge drinking, increases susceptibility to microbial pathogens. Alcohol impairs macrophage function by suppression of the Toll-like receptor 4 (TLR4) pathway. This study investigated the effects of acute ethanol intake on the TLR4 pathway in rat intestinal epithelia, which usually encounters luminal antigens at first and participates in the development of intestinal immunity. Twenty Wistar rats were randomly assigned to an ethanol group given ethanol as a 25% (v/v) solution in water at 7.5 g/kg, or a control group given saline, by oral gavage daily for 3 days. The epithelial histology and ultrastructure, the intestinal microflora, peripheral and portal venous plasma lipopolysaccharide (LPS) levels, and somatostatin (SST) levels in the peripheral plasma and small intestine were evaluated. Somatostatin receptor 2 (SSTR2), TLR4, TANK binding kinase-1 (TBK1), activated nuclear factor-κB (NF-κB), interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in the intestinal mucosa were assayed. LPS responsiveness with or without SST pretreatment was assayed in vitro by quantification of TLR4, TBK1, activated NF-κB, IFN-γ and TNF-α in isolated intestinal epithelia. Mucosal damage was observed in the ethanol group by light and electron microscopy. Escherichia coli cultures were unchanged in rat intestine of the ethanol group compared with controls, but lactobacilli cultures were reduced (p < 0.05). LPS levels increased in peripheral and portal venous plasma (p < 0.05), but mucosal TLR4, TBK1, nuclear NF-κB, IFN-γ and TNF-α were unchanged in the ethanol group. LPS treatment in vitro up-regulated the level of TLR4, TBK1 and nuclear NF-κB as well as the production of IFN-γ and TNF-α in isolated intestinal epithelia in the control (p < 0.05), but not the ethanol group. The stimulatory effects of LPS on intestinal epithelia isolated from the control group were significantly inhibited by SST pretreatment (p < 0.05). The

  5. Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies.

    PubMed

    Ménager, Pauline; Roux, Pascal; Mégret, Françoise; Bourgeois, Jean-Pierre; Le Sourd, Anne-Marie; Danckaert, Anne; Lafage, Mireille; Préhaud, Christophe; Lafon, Monique

    2009-02-01

    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3(-/-) mice -- in which brain tissue was less severely infected -- had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV-induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit.

  6. Priming by lipopolysaccharide exaggerates acute lung injury and mortality in responses to peptidoglycan through up-regulation of Toll-like receptor-2 expression in mice.

    PubMed

    Matsuda, Naoyuki; Yamazaki, Hiromi; Takano, Ken-ichi; Matsui, Kazuhiro; Takano, Yasuo; Kemmotsu, Osamu; Hattori, Yuichi

    2008-03-01

    Invasive infection mixed with Gram-positive and Gram-negative bacteria often results in severe sepsis and septic shock, the prognosis of which is extremely poor and the mortality is high. Here, we hypothesized that lipopolysaccharide (LPS) from Gram-negative bacteria may exert a priming effect on the innate immune response to peptidoglycan (PepG) from Gram-positive bacteria and if so, examined the molecular mechanism of this priming. We found that mice who underwent intratracheal instillation with PepG (5 mg/kg) following prior administration of LPS (5 mg/kg) had a marked decline in survival as compared with the animals given each bacterial cell wall component alone. Furthermore, blood gas exchange impairment and pulmonary vascular hyperpermeability were greatly enhanced in mice given PepG after LPS stimulation, indicating a severe development of acute lung injury. LPS significantly up-regulated the expression levels of Toll-like receptor (TLR)-2 mRNA and protein in mouse lungs. Translocation of TLR-2 to the membranes was also increased by LPS stimulation. This was supported by immunohistochemical examination showing that TLR-2 expression was changed from the cytoplasm to the luminal surface of bronchiolar epithelial cells following LPS stimulation. We also demonstrated an LPS-induced increase in TLR-2 mRNA expression in type-II pneumocytes by reverse transcription-polymerase chain reaction following laser-assisted microdissection. In vivo transfection of nuclear factor-kappaB (NF-kappaB) oligonucleotides strongly prevented the up-regulation of TLR-2 after LPS stimulation at pulmonary cellular and tissue levels. We conclude that the priming effect of LPS on PepG-induced lung injury and death is preceded by NF-kappaB-mediated up-regulation of TLR-2.

  7. Contribution of toll-like receptor signaling pathways to breast tumorigenesis and treatment

    PubMed Central

    Kidd, La Creis R; Rogers, Erica N; Yeyeodu, Susan T; Jones, Dominique Z; Kimbro, K Sean

    2013-01-01

    Mounting evidence indicates that anomalies in the inflammatory and immune response pathways are essential to tumorigenesis. However, tumor-based innate immunity initiated by transformed breast epithelia tissues has received much less attention. This review summarizes published reports on the role of the toll-like receptor signaling pathway on breast cancer risk, disease progression, survival, and disease recurrence. Specifically, we discuss the underlying biological mechanisms that contribute to the tumorigenic and/or anti-tumorigenic properties of toll-like receptors and their associated agonists in relation to breast tumorigenesis and cancer treatment. Further, we use results from preclinical, clinical, and population-based studies as prompts for the exploration of new and more effective breast cancer therapies. As the knowledge base of innate immunity’s involvement in breast cancer progression increases, current and new immune-modifying strategies will be refined to effectively treat breast cancer. PMID:24648757

  8. Toll-like receptor 8: augmentation of innate immunity in platinum resistant ovarian carcinoma

    PubMed Central

    Brueseke, Taylor J; Tewari, Krishnansu S

    2013-01-01

    Ovarian cancer is the most deadly gynecologic cancer, with 15,000 anticipated deaths within the United States alone in 2012, and new treatment strategies are needed. Ovarian cancer tumors are known to host an immunosuppressive microenvironment. This suppression may be reversible via activation of the innate immune response. Toll-like receptor 8 activates innate immunity while simultaneously inhibiting the effects of regulatory T cells within the ovarian cancer tumors. VTX-2337 is a novel small molecule ligand of Toll-like receptor 8 and is currently the subject of a Phase II randomized, double-blind, placebo-controlled trial Gynecologic Oncology Group (GOG)-3003 for patients with recurrent platinum-resistant ovarian cancer. We look forward to the results of this trial as support for the paradigm of process therapy in the treatment of ovarian cancer. PMID:23723721

  9. Activation of Toll-like receptor 3 induces apoptosis of oral squamous carcinoma cells in vitro and in vivo.

    PubMed

    Luo, Qingqiong; Hu, Shuiqing; Yan, Ming; Sun, Zujun; Chen, Wantao; Chen, Fuxiang

    2012-08-01

    Toll-like receptors are well known as molecular sensors of pathogen-associated molecular patterns. They control activation of the innate immune response and subsequently shape the adaptive immune response. Recent publications have demonstrated that Toll-like receptors also play important roles in multiple human cancers, yet their function in oral squamous cell carcinoma remains unclear. In this study, we showed that both oral squamous cell carcinoma cell lines and tissues from oral squamous carcinoma patients express relatively high levels of Toll-like receptor 3. We also found that synthetic dsRNA-polyinosinic-polycytidilic acid, a Toll-like receptor 3 ligand, induced apoptosis of oral squamous carcinoma cells mainly via Toll-like receptor 3, through interferon-β production and activation of caspases 3 and 9. Moreover, in an oral squamous cell carcinoma xenograft mouse model, we demonstrated for the first time that activation of Toll-like receptor 3 inhibited oral squamous cell carcinoma tumor growth in vivo. Therefore, the direct proapoptotic activity of Toll-like receptor 3 in human oral squamous carcinoma cells may make this protein a viable therapeutic target in the treatment of oral squamous cell carcinoma.

  10. Interaction between Cannabinoid System and Toll-Like Receptors Controls Inflammation

    PubMed Central

    2016-01-01

    Since the discovery of the endocannabinoid system consisting of cannabinoid receptors, endogenous ligands, and biosynthetic and metabolizing enzymes, interest has been renewed in investigating the promise of cannabinoids as therapeutic agents. Abundant evidence indicates that cannabinoids modulate immune responses. An inflammatory response is triggered when innate immune cells receive a danger signal provided by pathogen- or damage-associated molecular patterns engaging pattern-recognition receptors. Toll-like receptor family members are prominent pattern-recognition receptors expressed on innate immune cells. Cannabinoids suppress Toll-like receptor-mediated inflammatory responses. However, the relationship between the endocannabinoid system and innate immune system may not be one-sided. Innate immune cells express cannabinoid receptors and produce endogenous cannabinoids. Hence, innate immune cells may play a role in regulating endocannabinoid homeostasis, and, in turn, the endocannabinoid system modulates local inflammatory responses. Studies designed to probe the interaction between the innate immune system and the endocannabinoid system may identify new potential molecular targets in developing therapeutic strategies for chronic inflammatory diseases. This review discusses the endocannabinoid system and Toll-like receptor family and evaluates the interaction between them. PMID:27597805

  11. Association of Toll-like receptors 2, 3, and 4 genes polymorphisms with periapical pathosis risk

    PubMed Central

    Özan, Ülkü; Ocak, Zeynep; Özan, Fatih; Oktay, Elif-Aybala; Şahman, Halil; Yikilgan, İhsan; Oruçoğlu, Hasan; Er, Kürşat

    2016-01-01

    Background The aim of this study was to investigate the role of gene variations of Toll-like receptors (TLR) 2, 3, and 4 on genetic susceptibility to periapical pathosis. Material and Methods One hundred patients were included in the study and divided into two groups as follows; Control Group (n=50) that have root canal treatment and no periapical lesion, Patient Group (n=50) that have root canal treatment and periapical lesion. TLR2 Arg753Gln, TLR3 (c.1377C/T) and TLR4 Asp299Gly and Thr399Ile polymorphisms were genotyped by using PCR-RFLP. Genotypical analysis of control and patient groups were investigated to disclose whether there is any association between periapical lesions and gene variations. Results There are no significant statistical differences between control and patient groups according to TLR 2 and 4 gene sequence. On the contrary, CC allele detected 74% for TLR 3 in patient group, and this difference was found to be statistically significant (p < 0.005). Conclusions According to these results, it can be suggested that patients with Toll-like receptor 3 gene polymorphisms could be susceptible to periapical pathosis. Key words:Toll-like receptors, periapical pathosis, endodontics. PMID:27031066

  12. Detection of Neu1 sialidase activity in regulating Toll-like receptor activation.

    PubMed

    Amith, Schammim R; Jayanth, Preethi; Finlay, Trisha; Franchuk, Susan; Gilmour, Alanna; Abdulkhalek, Samar; Szewczuk, Myron R

    2010-09-07

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative

  13. Serine dipeptide lipids of Porphyromonas gingivalis inhibit osteoblast differentiation: Relationship to Toll-like receptor 2.

    PubMed

    Wang, Yu-Hsiung; Nemati, Reza; Anstadt, Emily; Liu, Yaling; Son, Young; Zhu, Qiang; Yao, Xudong; Clark, Robert B; Rowe, David W; Nichols, Frank C

    2015-12-01

    Porphyromonas gingivalis is a periodontal pathogen strongly associated with loss of attachment and supporting bone for teeth. We have previously shown that the total lipid extract of P. gingivalis inhibits osteoblast differentiation through engagement of Toll-like receptor 2 (TLR2) and that serine dipeptide lipids of P. gingivalis engage both mouse and human TLR2. The purpose of the present investigation was to determine whether these serine lipids inhibit osteoblast differentiation in vitro and in vivo and whether TLR2 engagement is involved. Osteoblasts were obtained from calvaria of wild type or TLR2 knockout mouse pups that also express the Col2.3GFP transgene. Two classes of serine dipeptide lipids, termed Lipid 654 and Lipid 430, were tested. Osteoblast differentiation was monitored by cell GFP fluorescence and osteoblast gene expression and osteoblast function was monitored as von Kossa stained mineral deposits. Osteoblast differentiation and function were evaluated in calvarial cell cultures maintained for 21 days. Lipid 654 significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation and this inhibition was dependent on TLR2 engagement. Lipid 430 also significantly inhibited GFP expression, osteoblast gene expression and mineral nodule formation but these effects were only partially attributed to engagement of TLR2. More importantly, Lipid 430 stimulated TNF-α and RANKL gene expression in wild type cells but not in TLR2 knockout cells. Finally, osteoblast cultures were observed to hydrolyze Lipid 654 to Lipid 430 and this likely occurs through elevated PLA2 activity in the cultured cells. In conclusion, our results show that serine dipeptide lipids of P. gingivalis inhibit osteoblast differentiation and function at least in part through engagement of TLR2. The Lipid 430 serine class also increased the expression of genes that could increase osteoclast activity. We conclude that Lipid 654 and Lipid 430 have the potential

  14. A Role for Toll-like Receptor 3 Variants in Host Susceptibility to Enteroviral Myocarditis and Dilated Cardiomyopathy*

    PubMed Central

    Gorbea, Carlos; Makar, Kimberly A.; Pauschinger, Matthias; Pratt, Gregory; Bersola, Jeathrina L. F.; Varela, Jacquelin; David, Ryan M.; Banks, Lori; Huang, Chien-Hua; Li, Hua; Schultheiss, Heinz-Peter; Towbin, Jeffrey A.; Vallejo, Jesús G.; Bowles, Neil E.

    2010-01-01

    The innate antiviral response is mediated, at least in part, by Toll-like receptors (TLRs). TLR3 signaling is activated in response to viral infection, and the absence of TLR3 in mice significantly increases mortality after infection with enteroviruses that cause myocarditis and/or dilated cardiomyopathy. We screened TLR3 in patients diagnosed with enteroviral myocarditis/cardiomyopathy and identified a rare variant in one patient as well as a significantly increased occurrence of a common polymorphism compared with controls. Expression of either variant resulted in significantly reduced TLR3-mediated signaling after stimulation with synthetic double-stranded RNA. Furthermore, Coxsackievirus B3 infection of cell lines expressing mutated TLR3 abrogated activation of the type I interferon pathway, leading to increased viral replication. TLR3-mediated type I interferon signaling required cellular autophagy and was suppressed by 3-methyladenine and bafilomycin A1, by inhibitors of lysosomal proteolysis, and by reduced expression of Beclin 1, Atg5, or microtubule-associated protein 1 light chain 3β (MAP1LC3β). However, TLR3-mediated signaling was restored upon exogenous expression of Beclin 1 or a variant MAP1LC3β fusion protein refractory to RNA interference. These data suggest that individuals harboring these variants may have a blunted innate immune response to enteroviral infection, leading to reduced viral clearance and an increased risk of cardiac pathology. PMID:20472559

  15. Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell Infiltration and Homing

    PubMed Central

    Town, Terrence; Bai, Fengwei; Wang, Tian; Kaplan, Amber T.; Qian, Feng; Montgomery, Ruth R.; Anderson, John F.; Flavell, Richard A.; Fikrig, Erol

    2009-01-01

    SUMMARY West Nile virus (WNV), a mosquito-transmitted single-stranded RNA (ssRNA) flavivirus, causes human disease of variable severity. We investigated Toll-like receptor 7-deficient (Tlr7−/−) and myeloid differentiation factor 88-deficient (Myd88−/−) mice, which both have defective recognition of ssRNA, and found increased viremia and susceptibility to lethal WNV infection. Despite increased tissue concentrations of most innate cytokines, CD45+ leukocytes and CD11b+ macrophages failed to home to WNV-infected cells and infiltrate into target organs of Tlr7−/− mice. Tlr7−/− mice and macrophages had reduced interleukin-12 (IL-12) and IL-23 responses after WNV infection, and mice deficient in IL-12 p40 and IL-23 p40 (Il12b−/−) or IL-23 p19 (Il23a−/−), but not IL-12 p35 (Il12a−/−), responded similarly to Tlr7−/− mice, with increased susceptibility to lethal WNV encephalitis. Collectively, these results demonstrate that TLR7 andIL-23-dependent WNV responses representa vital host defense mechanism that operates by affecting immune cell homing to infected target cells. PMID:19200759

  16. Role of Cytokines and Toll-Like Receptors in the Immunopathogenesis of Guillain-Barré Syndrome

    PubMed Central

    Nyati, Kishan Kumar; Prasad, Kashi Nath

    2014-01-01

    Guillain-Barré syndrome (GBS) is an autoimmune disease of the peripheral nervous system, mostly triggered by an aberrant immune response to an infectious pathogen. Although several infections have been implicated in the pathogenesis of GBS, not all such infected individuals develop this disease. Moreover, infection with a single agent might also lead to different subtypes of GBS emphasizing the role of host factors in the development of GBS. The host factors regulate a broad range of inflammatory processes that are involved in the pathogenesis of autoimmune diseases including GBS. Evidences suggest that systemically and locally released cytokines and their involvement in immune-mediated demyelination and axonal damage of peripheral nerves are important in the pathogenesis of GBS. Toll-like receptors (TLRs) link innate and adaptive immunity through transcription of several proinflammatory cytokines. TLR genes may increase susceptibility to microbial infections; an attenuated immune response towards antigen and downregulation of cytokines occurs due to mutation in the gene. Herein, we discuss the crucial role of host factors such as cytokines and TLRs that activate the immune response and are involved in the pathogenesis of the disease. PMID:25614713

  17. Sleep Deprivation and Divergent Toll-like Receptor-4 Activation of Cellular Inflammation in Aging

    PubMed Central

    Carroll, Judith E.; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C.; Yokomizo, Megumi; Seeman, Teresa E.; Irwin, Michael R.

    2015-01-01

    Objectives: Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Design, Setting, and Participants: Community-dwelling adults (n = 70) who were categorized as younger (25–39 y old, n = 21) and older (60–84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00–07:00), and recovery. Measurement and Results: Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Conclusion: Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. Citation: Carroll JE, Carrillo C, Olmstead R, Witarama T, Breen EC, Yokomizo M, Seeman TE, Irwin MR. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging. SLEEP

  18. Targeting Toll-Like Receptors: Promising Therapeutic Strategies for the Management of Sepsis-Associated Pathology and Infectious Diseases

    PubMed Central

    Savva, Athina; Roger, Thierry

    2013-01-01

    Toll-like receptors (TLRs) are pattern recognition receptors playing a fundamental role in sensing microbial invasion and initiating innate and adaptive immune responses. TLRs are also triggered by danger signals released by injured or stressed cells during sepsis. Here we focus on studies developing TLR agonists and antagonists for the treatment of infectious diseases and sepsis. Positioned at the cell surface, TLR4 is essential for sensing lipopolysaccharide of Gram-negative bacteria, TLR2 is involved in the recognition of a large panel of microbial ligands, while TLR5 recognizes flagellin. Endosomal TLR3, TLR7, TLR8, TLR9 are specialized in the sensing of nucleic acids produced notably during viral infections. TLR4 and TLR2 are favorite targets for developing anti-sepsis drugs, and antagonistic compounds have shown efficient protection from septic shock in pre-clinical models. Results from clinical trials evaluating anti-TLR4 and anti-TLR2 approaches are presented, discussing the challenges of study design in sepsis and future exploitation of these agents in infectious diseases. We also report results from studies suggesting that the TLR5 agonist flagellin may protect from infections of the gastrointestinal tract and that agonists of endosomal TLRs are very promising for treating chronic viral infections. Altogether, TLR-targeted therapies have a strong potential for prevention and intervention in infectious diseases, notably sepsis. PMID:24302927

  19. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur.

    PubMed

    Baroni, Adone; Orlando, Manuela; Donnarumma, Giovanna; Farro, Pietro; Iovene, Maria Rosaria; Tufano, Maria Antonietta; Buommino, Elisabetta

    2006-01-01

    Toll-like receptors (TLRs) are crucial players in the innate immune response to microbial invaders. The lipophilic yeast Malassezia furfur has been implicated in the triggering of scalp lesions in psoriasis. The aim of the present study was to assess the role of TLRs in the defence against M. furfur infection. The expression of the myeloid differentiation factor 88 (MyD88) gene, which is involved in the signalling pathway of many TLRs, was also analysed. In addition, a possible correlation of antimicrobial peptides of the beta-defensin family to TLRs was tested. Human keratinocytes infected with M. furfur and a variety of M. furfur-positive psoriatic skin biopsies were analysed by RT-PCR, for TLRs, MyD88, human beta-defensin 2 (HBD-2), HBD-3 and interleukin-8 (IL-8) mRNA expression. When keratinocytes were infected with M. furfur, an up-regulation for TLR2, MyD88, HBD-2, HBD-3 and IL-8 mRNA was demonstrated, compared to the untreated cells. The same results were obtained when psoriatic skin biopsies were analysed. The M. furfur-induced increase in HBD-2 and IL-8 gene expression is inhibited by anti-TLR2 neutralising antibodies, suggesting that TLR2 is involved in the M. furfur-induced expression of these molecules. These findings suggest the importance of TLRs in skin protection against fungi and the importance of keratinocytes as a component of innate immunity.

  20. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

    PubMed Central

    Bahk, Young Yil; Pak, Jhang Ho

    2016-01-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases. PMID:27853127

  1. Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells.

    PubMed

    Bahk, Young Yil; Pak, Jhang Ho

    2016-10-01

    Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-κB-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

  2. Toll-like receptor-4 agonist in post-haemorrhage pneumonia: role of dendritic and natural killer cells.

    PubMed

    Roquilly, Antoine; Broquet, Alexis; Jacqueline, Cedric; Gautreau, Laetitia; Segain, Jean Pierre; de Coppet, Pierre; Caillon, Jocelyne; Altare, Frédéric; Josien, Regis; Asehnoune, Karim

    2013-11-01

    Haemorrhage-induced immunosuppression has been linked to nosocomial infections. We assessed the impact of monophosphoryl lipid A, a Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon-biased Toll-like receptor-4 agonist currently used as a vaccine adjuvant in humans, on post-haemorrhage susceptibility to infection. We used a mouse model of post-haemorrhage pneumonia induced by methicillin-susceptible Staphylococcus aureus. Monophosphoryl lipid A was administered intravenously after haemorrhage and before pneumonia onset. Haemorrhage altered survival rate, increased lung damage (neutrophil accumulation, oedema and cytokine release) and altered the functions of dendritic and natural killer cells. Here, we show that monophosphoryl lipid A decreased systemic dissemination of S. aureus and dampened inflammatory lung lesions. Monophosphoryl lipid A partially restored the capacity for antigen presentation and the transcriptional activity in dendritic cells. Monophosphoryl lipid A did not restore the interferon-γ mRNA but prevented interleukin-10 mRNA overexpression in natural killer cells compared with untreated mice. Ex vivo monophosphoryl lipid A-stimulated dendritic cells or natural killer cells harvested from haemorrhaged animals were adoptively transferred into mice undergoing post-haemorrhage pneumonia. Stimulated dendritic cells (but not stimulated natural killer cells) improved the survival rate compared with mice left untreated. In vivo depletion of natural killer cells decreased survival rate of monophosphoryl lipid A-treated mice. Dendritic and natural killer cells are critically involved in the beneficial effects of monophosphoryl lipid A within post-haemorrhage pneumonia.

  3. Pathogen-mediated inflammatory atherosclerosis is mediated in part via Toll-like receptor 2-induced inflammatory responses.

    PubMed

    Hayashi, Chie; Madrigal, Andres G; Liu, Xinyan; Ukai, Takashi; Goswami, Sulip; Gudino, Cynthia V; Gibson, Frank C; Genco, Caroline A

    2010-01-01

    Studies in humans have established that polymorphisms in genes encoding the innate immune Toll-like receptors (TLRs) are associated with inflammatory atherosclerosis. In hyperlipidemic mice, TLR2 and TLR4 have been reported to contribute to atherosclerosis progression. Human and mouse studies support a role for the oral pathogen Porphyromonas gingivalis in atherosclerosis, although the mechanisms by which this pathogen stimulates inflammatory atherosclerosis via innate immune system activation is not known. Using a genetically defined apolipoprotein E-deficient (ApoE(-/-)) mouse model we demonstrate that pathogen-mediated inflammatory atherosclerosis occurs via both TLR2-dependent and TLR2-independent mechanisms. P. gingivalis infection in mice possessing functional TLR2 induced the accumulation of macrophages as well as inflammatory mediators including CD40, IFN-gamma and the pro-inflammatory cytokines IL-1 beta, IL-6 and tumor necrosis factor-alpha in atherosclerotic lesions. The expression of these inflammatory mediators was reduced in atherosclerotic lesions from P. gingivalis-infected TLR2-deficient (TLR2(-/-)) mice. These studies provide a mechanistic link between an innate immune receptor and pathogen-accelerated atherosclerosis by a clinically and biologically relevant bacterial pathogen.

  4. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (Tupaia belangeri chinensis).

    PubMed

    Yu, Dandan; Wu, Yong; Xu, Ling; Fan, Yu; Peng, Li; Xu, Min; Yao, Yong-Gang

    2016-07-01

    In mammals, the toll-like receptors (TLRs) play a major role in initiating innate immune responses against pathogens. Comparison of the TLRs in different mammals may help in understanding the TLR-mediated responses and developing of animal models and efficient therapeutic measures for infectious diseases. The Chinese tree shrew (Tupaia belangeri chinensis), a small mammal with a close relationship to primates, is a viable experimental animal for studying viral and bacterial infections. In this study, we characterized the TLRs genes (tTLRs) in the Chinese tree shrew and identified 13 putative TLRs, which are orthologs of mammalian TLR1-TLR9 and TLR11-TLR13, and TLR10 was a pseudogene in tree shrew. Positive selection analyses using the Maximum likelihood (ML) method showed that tTLR8 and tTLR9 were under positive selection, which might be associated with the adaptation to the pathogen challenge. The mRNA expression levels of tTLRs presented an overall low and tissue-specific pattern, and were significantly upregulated upon Hepatitis C virus (HCV) infection. tTLR4 and tTLR9 underwent alternative splicing, which leads to different transcripts. Phylogenetic analysis and TLR structure prediction indicated that tTLRs were evolutionarily conserved, which might reflect an ancient mechanism and structure in the innate immune response system. Taken together, TLRs had both conserved and unique features in the Chinese tree shrew.

  5. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity.

    PubMed

    Modhiran, Naphak; Watterson, Daniel; Muller, David A; Panetta, Adele K; Sester, David P; Liu, Lidong; Hume, David A; Stacey, Katryn J; Young, Paul R

    2015-09-09

    Complications arising from dengue virus infection include potentially fatal vascular leak, and severe disease has been linked with excessive immune cell activation. An understanding of the triggers of this activation is critical for the development of appropriately targeted disease control strategies. We show here that the secreted form of the dengue virus nonstructural protein 1 (NS1) is a pathogen-associated molecular pattern (PAMP). Highly purified NS1 devoid of bacterial endotoxin activity directly activated mouse macrophages and human peripheral blood mononuclear cells (PBMCs) via Toll-like receptor 4 (TLR4), leading to the induction and release of proinflammatory cytokines and chemokines. In an in vitro model of vascular leak, treatment with NS1 alone resulted in the disruption of endothelial cell monolayer integrity. Both NS1-mediated activation of PBMCs and NS1-induced vascular leak in vitro were inhibited by a TLR4 antagonist and by anti-TLR4 antibody treatment. The importance of TLR4 activation in vivo was confirmed by the reduction in capillary leak by a TLR4 antagonist in a mouse model of dengue virus infection. These results pinpoint NS1 as a viral toxin counterpart of the bacterial endotoxin lipopolysaccharide (LPS). Similar to the role of LPS in septic shock, NS1 might contribute to vascular leak in dengue patients, which highlights TLR4 antagonists as a possible therapeutic option.

  6. Bovine viral diarrhea virus type 2 impairs macrophage responsiveness to toll-like receptor ligation with the exception of toll-like receptor 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine viral diarrhea virus (BVDV) is a member of the Flaviviradae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. In addition, BVDV isolates are further separated into species, BVDV1 and 2...

  7. Sterile inflammation as a factor in human male infertility: Involvement of Toll like receptor 2, biglycan and peritubular cells

    PubMed Central

    Mayer, C.; Adam, M.; Glashauser, L.; Dietrich, K.; Schwarzer, J.U.; Köhn, F.-M.; Strauss, L.; Welter, H.; Poutanen, M.; Mayerhofer, A.

    2016-01-01

    Changes in the wall of seminiferous tubules in men with impaired spermatogenesis imply sterile inflammation of the testis. We tested the hypothesis that the cells forming the wall of seminiferous tubules, human testicular peritubular cells (HTPCs), orchestrate inflammatory events and that Toll like receptors (TLRs) and danger signals from the extracellular matrix (ECM) of this wall are involved. In cultured HTPCs we detected TLRs, including TLR2. A TLR-2 ligand (PAM) augmented interleukin 6 (IL-6), monocyte chemo-attractant protein-1 (MCP-1) and pentraxin 3 (PTX3) in HTPCs. The ECM-derived proteoglycan biglycan (BGN) is secreted by HTPCs and may be a TLR2-ligand at HTPCs. In support, recombinant human BGN increased PTX3, MCP-1 and IL-6 in HTPCs. Variable endogenous BGN levels in HTPCs derived from different men and differences in BGN levels in the tubular wall in infertile men were observed. In testes of a systemic mouse model for male infertility, testicular sterile inflammation and elevated estradiol (E2) levels, BGN was also elevated. Hence we studied the role of E2 in HTPCs and observed that E2 elevated the levels of BGN. The anti-estrogen ICI 182,780 blocked this action. We conclude that TLR2 and BGN contribute to sterile inflammation and infertility in man. PMID:27849015

  8. The protective effect of the anti-Toll-like receptor 9 antibody against acute cytokine storm caused by immunostimulatory DNA

    PubMed Central

    Murakami, Yusuke; Fukui, Ryutaro; Motoi, Yuji; Shibata, Takuma; Saitoh, Shin-Ichiroh; Sato, Ryota; Miyake, Kensuke

    2017-01-01

    Toll-like Receptor 9 (TLR9) is an innate immune receptor recognizing microbial DNA. TLR9 is also activated by self-derived DNA, such as mitochondrial DNA, in a variety of inflammatory diseases. We show here that TLR9 activation in vivo is controlled by an anti-TLR9 monoclonal Ab (mAb). A newly established mAb, named NaR9, clearly detects endogenous TLR9 expressed in primary immune cells. The mAb inhibited TLR9-dependent cytokine production in vitro by bone marrow-derived macrophages and conventional dendritic cells. Furthermore, NaR9 treatment rescued mice from fulminant hepatitis caused by administering the TLR9 ligand CpGB and D-(+)-galactosamine. The production of proinflammatory cytokines induced by CpGB and D-(+)-galactosamine was significantly impaired by the mAb. These results suggest that a mAb is a promising tool for therapeutic intervention in TLR9-dependent inflammatory diseases. PMID:28266597

  9. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice.

    PubMed

    Liu, Zhenghui; Zhao, Shutao; Chen, Qiaoyuan; Yan, Keqin; Liu, Peng; Li, Nan; Cheng, C Yan; Lee, Will M; Han, Daishu

    2015-03-01

    The mammalian testis is an immunoprivileged site where male germ cell antigens are immunologically tolerated under physiological conditions. However, some pathological conditions can disrupt the immunoprivileged status and induce autoimmune orchitis, an etiological factor of male infertility. Mechanisms underlying autoimmune orchitis induction are largely unknown. The present study investigated the roles of Toll-like receptor 2 (TLR2) and TLR4 in mediating the induction of experimental autoimmune orchitis (EAO) in mice after immunization with male germ cell antigens emulsified with complete Freund adjuvant. Wild-type mice developed severe EAO after three immunizations, which was characterized by leukocyte infiltration, autoantibody production, and impaired spermatogenesis. Tlr2 or Tlr4 deficient mice showed relatively low susceptibility to EAO induction compared with wild-type mice. Notably, Tlr2 and Tlr4 double knockout mice were almost completely protected from EAO induction. Moreover, we demonstrated that TLR2 was crucial in mediating autoantibody production in response to immunization. The results imply that TLR2 and TLR4 cooperatively mediate EAO induction.

  10. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells.

    PubMed

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-03-08

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator.

  11. Knockdown of toll-like receptor 4 signaling pathways ameliorate bone graft rejection in a mouse model of allograft transplantation

    PubMed Central

    Hsieh, Jeng-Long; Shen, Po-Chuan; Wu, Po-Ting; Jou, I-Ming; Wu, Chao-Liang; Shiau, Ai-Li; Wang, Chrong-Reen; Chong, Hao-Earn; Chuang, Shu-Han; Peng, Jia-Shiou; Chen, Shih-Yao

    2017-01-01

    Non-union occurring in structural bone grafting is a major problem in allograft transplantation because of impaired interaction between the host and graft tissue. Activated toll-like receptor (TLR) induces inflammatory cytokines and chemokines and triggers cell-mediated immune responses. The TLR-mediated signal pathway is important for mediating allograft rejection. We evaluated the effects of local knockdown of the TLR4 signaling pathway in a mouse segmental femoral graft model. Allografts were coated with freeze-dried lentiviral vectors that encoded TLR4 and myeloid differentiation primary response gene 88 (MyD88) short-hairpin RNA (shRNA), which were individually transplanted into the mice. They were assessed morphologically, radiographically, and histologically for tissue remodeling. Union occurred in autografted but not in allografted mice at the graft and host junctions after 4 weeks. TLR4 and MyD88 expression was up-regulated in allografted mice. TLR4 and MyD88 shRNAs inhibited TLR4 and MyD88 expression, which led to better union in the grafted sites. More regulatory T-cells in the draining lymph nodes suggested inflammation suppression. Local inhibition of TLR4 and MyD88 might reduce immune responses and ameliorate allograft rejection. PMID:28393847

  12. Phylogeny of Toll-Like Receptor Signaling: Adapting the Innate Response

    PubMed Central

    Roach, Jeffrey M.; Racioppi, Luigi; Jones, Corbin D.; Masci, Anna Maria

    2013-01-01

    The Toll-like receptors represent a largely evolutionarily conserved pathogen recognition machinery responsible for recognition of bacterial, fungal, protozoan, and viral pathogen associated microbial patterns and initiation of inflammatory response. Structurally the Toll-like receptors are comprised of an extracellular leucine rich repeat domain and a cytoplasmic Toll/Interleukin 1 receptor domain. Recognition takes place in the extracellular domain where as the cytoplasmic domain triggers a complex signal network required to sustain appropriate immune response. Signal transduction is regulated by the recruitment of different intracellular adaptors. The Toll-like receptors can be grouped depending on the usage of the adaptor, MyD88, into MyD88-dependent and MyD88 independent subsets. Herein, we present a unique phylogenetic analysis of domain regions of these receptors and their cognate signaling adaptor molecules. Although previously unclear from the phylogeny of full length receptors, these analyses indicate a separate evolutionary origin for the MyD88-dependent and MyD88-independent signaling pathway and provide evidence of a common ancestor for the vertebrate and invertebrate orthologs of the adaptor molecule MyD88. Together these observations suggest a very ancient origin of the MyD88-dependent pathway Additionally we show that early duplications gave rise to several adaptor molecule families. In some cases there is also strong pattern of parallel duplication between adaptor molecules and their corresponding TLR. Our results further support the hypothesis that phylogeny of specific domains involved in signaling pathway can shed light on key processes that link innate to adaptive immune response. PMID:23326591

  13. Differential regulation of toll-like receptor-2, toll-like receptor-4, CD16 and human leucocyte antigen-DR on peripheral blood monocytes during mild and severe dengue fever

    PubMed Central

    Azeredo, Elzinandes L; Neves-Souza, Patrícia C; Alvarenga, Allan R; Reis, Sônia R N I; Torrentes-Carvalho, Amanda; Zagne, Sonia-Maris O; Nogueira, Rita M R; Oliveira-Pinto, Luzia M; Kubelka, Claire F

    2010-01-01

    Dengue fever (DF), a public health problem in tropical countries, may present severe clinical manifestations as result of increased vascular permeability and coagulation disorders. Dengue virus (DENV), detected in peripheral monocytes during acute disease and in in vitro infection, leads to cytokine production, indicating that virus–target cell interactions are relevant to pathogenesis. Here we investigated the in vitro and in vivo activation of human peripheral monocytes after DENV infection. The numbers of CD14+ monocytes expressing the adhesion molecule intercellular adhesion molecule 1 (ICAM-1) were significantly increased during acute DF. A reduced number of CD14+ human leucocyte antigen (HLA)-DR+ monocytes was observed in patients with severe dengue when compared to those with mild dengue and controls; CD14+ monocytes expressing toll-like receptor (TLR)2 and TLR4 were increased in peripheral blood from dengue patients with mild disease, but in vitro DENV-2 infection up-regulated only TLR2. Increased numbers of CD14+ CD16+ activated monocytes were found after in vitro and in vivo DENV-2 infection. The CD14high CD16+ monocyte subset was significantly expanded in mild dengue, but not in severe dengue. Increased plasma levels of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and interleukin (IL)-18 in dengue patients were inversely associated with CD14high CD16+, indicating that these cells might be involved in controlling exacerbated inflammatory responses, probably by IL-10 production. We showed here, for the first time, phenotypic changes on peripheral monocytes that were characteristic of cell activation. A sequential monocyte-activation model is proposed in which DENV infection triggers TLR2/4 expression and inflammatory cytokine production, leading eventually to haemorrhagic manifestations, thrombocytopenia, coagulation disorders, plasmatic leakage and shock development, but may also produce factors that act in order to control both intense

  14. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy.

    PubMed

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-03-01

    Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.

  15. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators

    PubMed Central

    Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles

    2016-01-01

    This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029

  16. Toll-like receptors in the pathogenesis of autoimmune diseases: recent and emerging translational developments

    PubMed Central

    Duffy, Laura; O’Reilly, Steven C

    2016-01-01

    Autoinflammatory diseases are defined as the loss of self-tolerance in which an inflammatory response to self-antigens occurs, which are a significant global burden. Toll-like receptors are key pattern recognition receptors, which integrate signals leading to the activation of transcription factors and ultimately proinflammatory cytokines. Recently, it has become apparent that these are at the nexus of autoinflammatory diseases making them viable and attractive drug targets. The aim of this review was to evaluate the role of innate immunity in autoinflammatory conditions alongside the role of negative regulation while suggesting possible therapeutic targets. PMID:27579291

  17. Selection, Preparation, and Evaluation of Small-Molecule Inhibitors of Toll-Like Receptor 4

    PubMed Central

    2010-01-01

    Toll-like receptor 4 (TLR4), a membrane-spanning receptor protein that functions in complex with its accessory protein MD-2, is an intriguing target for therapeutic development. Herein, we report the identification of a series of novel TLR4 inhibitors and the development of a robust, enantioselective synthesis using an unprecedented Mannich type reaction to functionalize a pyrazole ring. In silico and cellular assay results demonstrated that compound 1 and its analogues selectively block TLR4 activation in live cells. Animal model tests showed that 1 and its derivatives could potentiate morphine-induced analgesia in vivo, presumably by attenuating the opioid-induced TLR4 activation. PMID:20824192

  18. Disseminated cysticercosis: clinical spectrum, Toll-like receptor-4 gene polymorphisms and role of albendazole

    PubMed Central

    Qavi, Abdul; Garg, Ravindra Kumar; Malhotra, Hardeep Singh; Jain, Amita; Kumar, Neeraj; Malhotra, Kiran Preet; Srivastava, Pradeep Kumar; Verma, Rajesh; Sharma, Praveen Kumar

    2016-01-01

    Abstract In this study, we describe clinical and imaging spectrum, and the natural course of patients with disseminated cysticercosis. How albendazole affects the course of disease has also been evaluated. We assessed the Toll-like receptor-4 gene polymorphisms, to know the reason for the apparently higher prevalence of disseminated cysticercosis in India. Sixty consecutive patients with disseminated cysticercosis were enrolled. Sixty age-and-sex-matched healthy controls were also enrolled for the purpose of genetic study. Twenty patients, who gave consent, were treated with albendazole along with corticosteroids. Forty patients did not give consent for antiparasitic therapy. Assessment for Toll-like receptor-4 gene polymorphisms (Asp299Gly and Thr399Ile genes) was done. Patients were followed for 6 months. We also performed a literature search of cases published in English language using PubMed electronic database and analyzed 56 cases thus available. There was an increased risk (6.63 fold and 4.61 fold) of disseminated cysticercosis in the presence of Asp299Gly and Thr399Ile polymorphisms in Toll-like receptor-4, respectively. The allelic frequency of Gly (11% vs. 3%, P = 0.024, odds ratio [OR] = 3.52) and Ile alleles (11% vs. 2%, P = 0.009, OR = 4.738) in disseminated cysticercosis was high. Albendazole resulted in complete disappearance of all cerebral lesions in 35% (7/20) patients and reduction in lesion load in remaining 65% (13/20) patients. No significant change in number of cysticercal lesion was noted in patients who did not receive albendazole. No major adverse reaction following antiparasitic treatment was noted. Three deaths were recorded in patients who did not receive antiparasitic treatment. Of the 56 cases reported in PubMed, 33 patients received antiparasitic treatment with follow-up data available for 31 patients. Most (24) of these patients received albendazole. A significant clinical and/or imaging improvements, on follow up, were observed in

  19. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  20. Innate immunity, Toll-like receptors, and atherosclerosis: mouse models and methods.

    PubMed

    Sorrentino, Rosalinda; Arditi, Moshe

    2009-01-01

    Chronic inflammation and aberrant lipid metabolism represent hallmarks of atherosclerosis. Innate immunity critically depends upon Toll-like receptor (TLR) signalling. Recent data directly implicate signalling by TLR4 and TLR2 in the pathogenesis of atherosclerosis. The role that TLRs play in the pathogenesis of atherosclerosis can be assessed by using several animal models, which provide a double genetic deficiency in TLRs and molecules implicated in the lipid metabolism, such as ApoE or LDL receptor. Furthermore, a more recent technique, such as the bone marrow transplantation (BMT), can be a useful and straightforward method to elucidate the role of stromal versus hematopoietic cells in the acceleration of the atheroma.

  1. Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida).

    PubMed

    Davidson, Charis R; Best, Natalie M; Francis, Joseph W; Cooper, Edwin L; Wood, Todd Charles

    2008-01-01

    Toll-like receptors (TLRs) are an important part of the innate immunity system and are found throughout the animal kingdom, but have not yet been reported in annelids. We searched shotgun reads of the genomes of the leech Helobdella and polychaete Capitella for TLR homologs. We found 105 TLR homologs in Capitella and 16 in Helobdella. The deduced phylogeny of these sequences, together with TLRs from other animal phyla, reveals three major clades. One clade consists of a mixture of both vertebrates and invertebrates, including sequences from Capitella and Helobdella, while the other two clades contain only invertebrate TLRs.

  2. Functional Toll-like receptor 4 expressed in lactotrophs mediates LPS-induced proliferation in experimental pituitary hyperplasia

    SciTech Connect

    Sabatino, María Eugenia; Sosa, Liliana del Valle; Petiti, Juan Pablo; Mukdsi, Jorge Humberto; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Gutiérrez, Silvina; Torres, Alicia Inés; De Paul, Ana Lucía

    2013-11-15

    Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K

  3. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells.

    PubMed

    Redfern, Rachel L; Reins, Rose Y; McDermott, Alison M

    2011-03-01

    The ability of the ocular surface to respond to pathogens is in part attributed to toll-like receptors (TLRs) that recognize conserved motifs on various microbes. This study examines TLR expression on various ocular surface cells, if TLR agonists can modulate the expression of antimicrobial peptides (AMPs), human beta defensins (hBD) and cathelicidin (hCAP-18/LL-37) which maybe functionally active against Pseudomonas aeruginosa (PA) and if TLR agonists or AMPs can modulate TLR mRNA expression. TLR1-10 mRNA expression was examined in corneal epithelial, corneal stromal cells and conjunctival epithelial cells by RT-PCR. To confirm protein expression flow cytometry or immunostaining was performed for selected TLRs on some cell cultures. Ocular surface cells were cultured with a range of TLR agonists and then hBD-1, 2, 3, or hCAP-18 mRNA and protein expression was determined by RT-PCR and immunoblotting. In some experiments, cells were cultured with a cocktail of agonists for TLR3, 5 and 6/2 and the antimicrobial activity of the culture media was tested against PA. TLR mRNA expression was also examined in primary human corneal epithelial cells (HCEC) treated with either 3 μg/ml of hBD-2, 5 μg/ml of LL-37 or TLR4, 5 and 9 agonists. Overall, the ocular surface cells expressed mRNA for most of the TLRs but some differences were found. TLR2 was not detected in corneal fibroblasts, TLR4 was not detected in primary cultured or freshly isolated HCEC, TLR5 was not detected in conjunctival epithelial cells (IOBA-NHC) and corneal fibroblasts, TLR7 was not detected in freshly isolated HCEC and TLR10 was not detected in HCEC and IOBA-NHC. TLR8 mRNA was not expressed by any of the samples tested. Immunostaining of cadaver corneas revealed TLR5 and 9 expression throughout the cornea while TLR3 was significantly expressed only in the epithelium. Flow cytometry and immunostaining revealed cultured fibroblasts expressed TLR9 but had no significant TLR3 expression. hBD-2 expression

  4. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Part II.

    PubMed

    Kosik-Bogacka, D I; Wojtkowiak-Giera, A; Kolasa, A; Czernomysy-Furowicz, D; Lanocha, N; Wandurska-Nowak, E; Salamatin, R; Jagodzinski, P P

    2013-10-01

    Toll-like receptors in the gastrointestinal tract can influence intestinal homeostasis and play a role in the repair and restitution of intestinal epithelium following tissue damage. In our previous study a statistically significant increase in the level of TLR4 and TLR2 gene expression was observed in rats in early stages of hymenolepidosis. Moreover, the immunopositive cell number and the intensity of immunohistochemical staining (indicating the presence of TLRs within intestinal epithelial cells) increased over the infection period. In this paper, we determined changes in the expression of TLR2 and TLR4 and the number of anaerobic intestinal commensal bacteria in Hymenolepis diminuta infected rats. In the isolated jejunum of infected rats at 16 days post infection (dpi), the expression of TLR4 and TLR2 was significantly higher than uninfected rats. In the colon, a statistically significantly increased expression of TLR2 was observed from 16 to 40 dpi, and TLR4 from 16 to 60 dpi. The jejunum and colon of infected rats contained Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Enterococcus, Streptococcus, Staphylococcus, Bacillus, Lactobacillus) and Candida. The total number of intestinal bacteria was higher in H. diminuta infected rats, but the observed microbiota had only minor effects on the expression of TLR2 and TLR4. Toll-like receptors play a role in maintaining epithelial barrier function in response to enteric pathogens and parasites. In our study, the alteration of TLR2 and TLR4 expression in the infected rats indicates the potential role of the innate immune system in the pathomechanism of this infection.

  5. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production.

    PubMed

    Yang, Jin-Young; Kim, Min-Soo; Kim, Eugene; Cheon, Jae Hee; Lee, Yong-Soo; Kim, Yeji; Lee, Su-Hyun; Seo, Sang-Uk; Shin, Seung-Ho; Choi, Sun Shim; Kim, Bumseok; Chang, Sun-Young; Ko, Hyun-Jeong; Bae, Jin-Woo; Kweon, Mi-Na

    2016-04-19

    Metagenomic studies show that diverse resident viruses inhabit the healthy gut; however, little is known about the role of these viruses in the maintenance of gut homeostasis. We found that mice treated with antiviral cocktail displayed more severe dextran sulfate sodium (DSS)-induced colitis compared with untreated mice. DSS-induced colitis was associated with altered enteric viral abundance and composition. When wild-type mice were reconstituted with Toll-like receptor 3 (TLR3) or TLR7 agonists or inactivated rotavirus, colitis symptoms were significantly ameliorated. Mice deficient in both TLR3 and TLR7 were more susceptible to DSS-induced experimental colitis. In humans, combined TLR3 and TLR7 genetic variations significantly influenced the severity of ulcerative colitis. Plasmacytoid dendritic cells isolated from inflamed mouse colon produced interferon-β in a TLR3 and TLR7-dependent manner. These results imply that recognition of resident viruses by TLR3 and TLR7 is required for protective immunity during gut inflammation.

  6. High mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling promotes progression of gastric cancer.

    PubMed

    Yue, Yanqiu; Zhou, Tao; Gao, Yanjing; Zhang, Zongli; Li, Li; Liu, Lin; Shi, Wenna; Su, Lihui; Cheng, Baoquan

    2017-03-01

    High mobility group box 1 and toll-like receptor 4/myeloid differentiation factor 88 signaling pathway have been indicated to have oncogenic effects in many cancers. However, the role of high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling pathway in the development of gastric cancer remains unclear. In this study, we demonstrated that high mobility group box 1, toll-like receptor 4, and myeloid differentiation factor 88 were overexpressed in gastric cancer tumors compared with the adjacent non-tumor tissues. The overexpression of high mobility group box 1, toll-like receptor 4, and myeloid differentiation factor 88 were correlated with tumor-node-metastasis stage (p = 0.0068, p = 0.0063, p = 0.0173) and lymph node metastasis (p = 0.0272, p = 0.0382, and p = 0.0495). Furthermore, we observed that knockdown of high mobility group box 1 by high mobility group box 1-small interfering RNA suppressed the expression of toll-like receptor 4 and myeloid differentiation factor 88. Blockage of high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling by high mobility group box 1-small interfering RNA resulted in elevation of apoptotic ratio and inhibition of cell growth, migration, and invasion by upregulating Bax expression and downregulating Bcl-2, matrix metalloproteinase-2, nuclear factor kappa B/p65 expression, and the nuclear translocation of nuclear factor kappa B/p65 in gastric cancer cells. Our findings suggest that high mobility group box 1/toll-like receptor 4/myeloid differentiation factor 88 signaling pathway may contribute to the development and progression of gastric cancer via the nuclear factor kappa B pathway and it also represents a novel potential therapeutic target for gastric cancer.

  7. Toll-like receptor 3 increases allergic and irritant contact dermatitis.

    PubMed

    Nakamura, Naomi; Tamagawa-Mineoka, Risa; Ueta, Mayumi; Kinoshita, Shigeru; Katoh, Norito

    2015-02-01

    There is increasing recognition of the role of Toll-like receptor 3 (TLR3) in noninfectious inflammatory diseases, but the function of TLR3 in inflammatory skin diseases is unclear. We investigated the functions of TLR3 in allergic and irritant contact dermatitis (ICD). The contact hypersensitivity (CHS) response was lower in Toll-like receptor 3 knockout (Tlr3 KO) mice, and was greater in TLR3 transgenic (Tg) mice than in wild-type (WT) mice after challenge with 2,4,6-trinitro-1-chlorobenzene. Adoptive transfer of immunized lymph node cells from Tlr3 KO mice induced CHS in WT recipients. In contrast, adoptive transfer of those from WT mice did not fully induce CHS in Tlr3 KO recipients. The ICD reaction following croton oil application was lower in Tlr3 KO mice, and was greater in TLR3 Tg mice than in WT mice. Maturation, migration, and antigen presentation of dendritic cells and proliferation of lymphocytes between WT mice and Tlr3 KO mice were comparable. These results show that TLR3 enhances antigen-independent skin inflammation in the elicitation phase of allergic contact dermatitis and in ICD.

  8. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome.

    PubMed

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures.

  9. Patents for Toll-like receptor ligands as radiation countermeasures for acute radiation syndrome

    PubMed Central

    Singh, Vijay K; Pollard, Harvey B

    2015-01-01

    Acute radiation exposure induces apoptosis of tissues in the hematopoietic, digestive, cutaneous, cardiovascular and nervous systems; extensive apoptosis of these tissues ultimately leads to acute radiation syndrome. A novel strategy for developing radiation countermeasures has been to imitate the genetic mechanisms acquired by radiation-resistant tumors. Two mechanisms that underlie this ability of tumor cells are the p53 and NF-κB pathways. The loss of p53 function results in the inactivation of pro-apoptotic control mechanisms, while constitutive activation of NF-κB results in the up-regulation of anti-apoptotic genes. Various Toll-like receptor ligands are capable of up regulating the NF-κB pathway, which increases radio-resistance and reduces radiation-induced apoptosis in various tissues. Several Toll-like receptor ligands have been patented and are currently under development as radiation countermeasures for acute radiation syndrome. Ongoing studies suggest that a few of these attractive agents are progressing well along the US FDA approval pathway to become radiation countermeasures. PMID:26135043

  10. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation.

    PubMed

    He, YingYing; Lawlor, Nathan T; Newburg, David S

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2'-fucosyllactose attenuate TLR4 signaling; 3'-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling.

  11. Human Milk Components Modulate Toll-Like Receptor–Mediated Inflammation12

    PubMed Central

    He, YingYing; Lawlor, Nathan T

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2′-fucosyllactose attenuate TLR4 signaling; 3′-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. PMID:26773018

  12. Non-LPS components of Chlamydia pneumoniae stimulate cytokine production through Toll-like receptor 2-dependent pathways.

    PubMed

    Netea, Mihai G; Kullberg, Bart Jan; Galama, Jochem M D; Stalenhoef, Anton F H; Dinarello, Charles A; Van der Meer, Jos W M

    2002-04-01

    Recent studies suggest that infection with Chlamydia pneumoniae is associated with atherosclerosis, and that cytokines play an important role in the initiation and progression of Chlamydia-induced inflammation. When freshly isolated peripheral blood mononuclear cells (PBMC) were stimulated for 24 h with sonicated C. pneumoniae, significant amounts of the pro-inflammatory cytokines TNF-alpha and IL-1beta and of the anti-inflammatory cytokine IL-10 were released into the supernatant. The addition of serum increased cytokine release induced by C. pneumonia two- to fivefold (p < 0.01). This effect was not due to complement, mannose-binding lectin (MBL) or lipopolysaccharide-binding protein (LBP). Incubation of PBMC with either anti-Toll-like receptor 4 (TLR4) or anti-CD14 blocking antibodies did not influence the production of cytokines induced by Chlamydia. The induction of cytokines by C. pneumoniae in macrophages from C3H / HeJ mice, known to have a defective TLR4, was identical to that measured in control macrophages from C3H / HeN mice. In contrast, incubation of PBMC with an anti-TLR2 blocking antibody significantly inhibited the production of TNF by 67 % and of IL-1beta by 72 %. In conclusion, C. pneumoniae stimulates cytokine production in a serum-dependent manner, but independently of complement, MBL and LBP. C. pneumoniae induces the pro-inflammatory cytokines TNF and IL-1beta through TLR2, but not TLR4 and CD14.

  13. The Role of Interleukin-1β in Direct and Toll-Like Receptor 4-Mediated Neutrophil Activation and Survival

    PubMed Central

    Prince, Lynne R.; Allen, Lucy; Jones, Elizabeth C.; Hellewell, Paul G.; Dower, Steven K.; Whyte, Moira K.B.; Sabroe, Ian

    2004-01-01

    The regulation of systemic and local neutrophil activation is crucial to the clearance of infections and the successful resolution of inflammation without progress to tissue damage or disseminated inflammatory reactions. Using purified lipopolysaccharide (pLPS) and highly purified neutrophils, we have previously shown that Toll-like receptor 4 signaling is a potent neutrophil activator, but a poor stimulator of survival. In the presence of peripheral blood mononuclear cells (PBMCs), however, pLPS becomes a potent neutrophil survival factor. Interleukin (IL)-1β has been identified as an important neutrophil activator and prosurvival cytokine, and is produced in abundance by LPS-stimulated PBMCs. We now show that IL-1β fails to activate highly purified neutrophils or enhance their survival, but in the presence of PBMCs, IL-1β induces neutrophil survival. We hypothesized that LPS-primed neutrophils might become responsive to IL-1β, but were unable to demonstrate this. Moreover, IL-1ra failed to prevent pLPS + PBMC-dependent neutrophil survival. In studies of IL-1R1−/− mice, we found that LPS was still able to mediate neutrophil survival, and neutrophil survival was enhanced by the addition of monocytic cells. Thus an important paradigm of neutrophil regulation needs to be viewed in the context of a cellular network in which actions of IL-1β on neutrophils are indirect and mediated by other cells. PMID:15509550

  14. Toll-like receptors in the gonads and reproductive tract: emerging roles in reproductive physiology and pathology.

    PubMed

    Girling, Jane E; Hedger, Mark P

    2007-01-01

    Interactions between the immune system and reproductive system have important consequences for fertility and reproductive health in general. There is increasing evidence that many of the interactions between the immune and reproductive systems involve the Toll-like receptors (TLRs). While there is no doubt that TLRs are important in providing protection against infection in the reproductive tract, there is increasing evidence for the involvement of TLRs in more basic pathology and physiology of reproduction. In the female, TLRs have been implicated in critical aspects of ovarian, endometrial and placental function, as well as in ovarian cancer, pelvic inflammatory disease, intrauterine growth restriction, pre-eclampsia and preterm birth. In the male, TLRs appear to play a role in the control of testicular steroidogenesis and spermatogenesis in disease and, potentially, during normal function, as well. Recent studies also have begun to highlight the role of various TLRs in the aetiology of prostatitis and prostatic cancer. Given the nascent state of knowledge concerning this important area, it is clear that more studies are needed, which should provide valuable new insights into the biology of the TLRs and reproductive function in general.

  15. Vanadate from Air Pollutant Inhibits Hrs-Dependent Endosome Fusion and Augments Responsiveness to Toll-Like Receptors

    PubMed Central

    Zelnikar, Mojca; Benčina, Mojca; Jerala, Roman; Manček-Keber, Mateja

    2014-01-01

    There is a well-established association between exposure to air pollutants and pulmonary injuries. For example, metals found in ROFA (residual oil fly ash) increase susceptibility of mice as well as humans to microbial infections. In our research, we have found that vanadate substantially increased the response of several Toll-like receptors (TLRs) to stimulation with their ligands. Although vanadate caused generation of reactive oxygen species (ROS), the addition of ROS scavenger N-acetyl cysteine (NAC) had no effect on augmented lipopolysaccharide (LPS) stimulation. We further showed that vanadate inhibits endosome fusion. This effect was determined by measuring the size of endosomes, NF-κB activity and TLR4 degradation in Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) overexpressed cells. Moreover, we identified the role of Hrs phosphorylation in these processes. Based on our findings, we can conclude that vanadate potentiates TLR4 activity by increasing Hrs phosphorylation status, reducing the size of Hrs/TLR4-positive endosomes and impacting TLR4 degradation, thus contributing to the detrimental effects of air pollutants on human health. PMID:24901993

  16. Effects of lentiviral short hairpin RNA silencing of Toll-like receptor 4 on the lens epithelial cell line HLEC.

    PubMed

    Yu, H T; Lu, P R

    2016-06-03

    The aim of this study was to observe the proliferation of, and cell-cycle changes in, the human lens epithelial cell line HLEC after Toll-like receptor 4 (TLR4) gene silencing. HLEC cells were transfected with four TLR4-short hairpin RNA (shRNA) lentiviral vectors or the control lentivirus (pGCL-GFP-shRP-1, -2, -3, -4, NC). TLR4 silencing was verified in these cells 96 h post-transfection using real-time polymerase chain reaction and western blot. We also observed the change in number of pGCL-GFP-shRP-4-transfected HLEC cells with silenced TLR4 (multiplicity of infection = 10). Cell proliferation was analyzed 48 h after transfection by a standard Cell Counting Kit-8 (CCK-8) assay, and the cell cycle changes were detected by flow cytometry. The number of cells with silenced TLR4 decreased with time. The decrease in TLR4 expression led to decelerated cell proliferation. Cells with silenced TLR4 (for 48 h) were arrested in the G1 phase; that is, the cell cycle was prolonged and cell division was decelerated. Lentivirus-mediated RNA interference effectively silenced TLR4 expression in HLEC cells, which decelerated their proliferation rate and extended the cell cycle.

  17. Antiviral Responses of Human Fallopian Tube Epithelial Cells to Toll-like Receptor 3 Agonist Poly(I:C)

    PubMed Central

    Ghosh, Mimi; Schaefer, Todd M.; Fahey, John V.; Wright, Jacqueline A.; Wira, Charles R.

    2009-01-01

    Objective To examine the expression of toll-like receptors (TLR) by primary human Fallopian tube epithelial cells (FTEC) and to determine whether exposure to the TLR3 agonist poly(I:C) would induce an antiviral response. Design Tissue culture study. Setting University Medical Center. Patient(s) Pre-menopausal women undergoing hysterectomy. Intervention(s) Primary human FTEC were grown to confluence and high transepithelial resistance and treated with TLR agonists. Conditioned media was collected and RNA was extracted and analyzed for the expression of cytokines, chemokines and antimicrobial genes. Main Outcome Measure(s) RNA was analyzed by real-time RT-PCR and protein levels were assessed by ELISA. Result(s) The FTEC were demonstrated to express TLR1-9 but not 10. Treatment of FTEC with TLR3 agonist poly(I:C) resulted in increased expression of IL-8, TNF-α, human β-defensin 2, interferon beta, and interferon stimulated genes myxovirus resistance gene 1, 2′,5′-oligoadenylate synthetase, and protein kinase R. Additionally, FTEC exposed to poly(I:C) also resulted in the induction of TLR 2, 3, and 7. Conclusion(s) Our results suggest that FTEC are sensitive to viral infection and/or exposure to viral dsRNA and can respond by secreting proinflammatory cytokines that mediate the initiation of an inflammatory response as well as expressing genes that can directly inhibit viral replication. PMID:17669408

  18. Possible evidence of systemic lupus erythematosus and periodontal disease association mediated by Toll-like receptors 2 and 4.

    PubMed

    Marques, C P C; Maor, Y; de Andrade, M S; Rodrigues, V P; Benatti, B B

    2016-02-01

    Toll-like receptors (TLRs) participate in the innate immune response and trigger the immune responses of the body. Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown aetiology, characterized by an excessive autoimmune response in the body affecting the connective tissues. The disease is possibly triggered by both environmental aetiological factors and pathological organic processes such as exposure to sunlight, chronic infectious processes and genetic factors. Conversely, periodontal disease is an infectious disease caused by microorganisms in the oral cavity, resulting in a chronic inflammatory process which continuously stimulates the immune response, thus causing damage to the periodontal tissues. The expression of both TLR-2 and TLR-4 receptors are increased in both SLE and periodontal disease. Periodontitis might trigger excessive activation of immune response occurring in SLE by maintaining a high expression of TLRs, leading in turn to the acceleration of the onset and progression of autoimmune reactions. In addition, periodontal treatment is able to reduce the expression of these receptors and therefore the symptoms of SLE. Here we discuss the possible interaction between SLE and periodontitis, and suggest further studies evaluating common features in both factors that could explored, due to morbidity and mortality of SLE and the high incidence of periodontal infections around the world.

  19. Investigation of 1377C/T polymorphism of the Toll-like receptor 3 among patients with chronic hepatitis B.

    PubMed

    Goktas, Emine Firat; Bulut, Cemal; Goktas, Mustafa Tugrul; Ozer, Erdem Kamil; Karaca, Ragip Ozgur; Kinikli, Sami; Demiroz, Ali Pekcan; Bozkurt, Atilla

    2016-07-01

    The immunopathogenesis of chronic hepatitis B (CHB) has not been clarified yet. Toll-like receptors (TLR) are a receptor family that initiates immunity with exogenous-endogenous ligands and plays a role in the pathogenesis of infections. In this study, we aimed to investigate the frequency of TLR 3 1377C/T (rs3775290) polymorphism and its role in patients with CHB. We included 50 healthy individuals as control group and 73 active and 43 inactive hepatitis B patients. All DNA samples were isolated from blood samples. For the detection of TLR 3 1377C/T single-nucleotide polymorphism, restriction fragment length polymorphism was used. A statistically significant difference was determined in Hepatitis B virus (HBV) DNA levels of CHB patients with the CC, CT, and TT genotypes (p = 0.013). The highest levels of HBV DNA were detected in individuals with TT genotypes. Additionally, the frequency of CC genotype was higher in the active CHB patients compared with that of the inactive CHB patients (p = 0.044). No statistically significant difference in TLR 3 1377C/T polymorphism was detected between healthy controls and the hepatitis B patients (p = 0.342). In conclusion, HBV DNA level was higher in the individuals with TT genotype, and CC genotype was more frequent in the active CHB patients. These results suggest a possible association between CHB and TLR 3 gene (1377C/T) polymorphism.

  20. The role of innate immunity in the pathogenesis of asthma: evidence for the involvement of Toll-like receptor signaling.

    PubMed

    Schröder, Nicolas W J; Arditi, Moshe

    2007-01-01

    Infectious diseases have a major impact on both the development and the severity of asthma. The rise in incidence of asthma in industrialized countries over the last decades has been attributed to increased hygiene standards as well as the concomitant usage of antibiotics, which together lower the incidence of infections. Although this point of view is supported by both clinical studies and experimental approaches in mice, an increasing body of evidence suggests that certain infectious diseases may predispose for the development of asthma, thus challenging the ;hygiene hypothesis' in its classical form. Toll-like receptors (TLRs) are centrally involved in orchestrating immune responses towards various micro-organisms. Because of this, it is tempting to speculate that signaling through TLRs may be involved in mechanisms provoking Th1- or Th2-biased immune responses and may, therefore, be an important factor in either preventing or promoting allergic airway disease. This review summarizes clinical and experimental data from mouse models focused on the impact of TLR-signaling on allergic asthma.

  1. Cultured Mesenchymal Stem Cells Stimulate an Immune Response by Providing Immune Cells with Toll-Like Receptor 2 Ligand.

    PubMed

    Weinstock, Ada; Pevsner-Fischer, Meirav; Porat, Ziv; Selitrennik, Michael; Zipori, Dov

    2015-12-01

    Mesenchymal stem cells (MSCs) serve as supporting and regulatory cells, by providing tissues with multiple factors and are also known for their immunosuppressive capabilities. Our laboratory had previously shown that MSCs expressed toll-like receptor (TLR) 2 and are activated by its ligand Pam3Cys. TLR2 is an important component of the innate immune system, as it recognizes bacterial lipopeptides, thus priming a pro-inflammatory immune response. This study showed that Pam3Cys attached extensively to cells of both wild-type and TLR2 deficient cultured MSCs, thus, independently of TLR2. The TLR2 independent binding occurred through the adsorption of the palmitoyl moieties of Pam3Cys. It was further showed that Pam3Cys was transferred from cultured MSCs to immune cells. Moreover, Pam3Cys provided to the immune cells induced a pro-inflammatory response in vitro and in vivo. Overall, it is demonstrated herein that a TLR2 ligand bound to MSCs also through a TLR2 independent mechanism. Furthermore, the ligand incorporated by MSCs is subsequently released to stimulate an immune response both in vitro and in vivo. It is thus suggested that during bacterial infection, stromal cells may retain a reservoir of the TLR2 ligands, in a long-term manner, and release them slowly to maintain an immune response.

  2. Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors

    PubMed Central

    Laayouni, Hafid; Oosting, Marije; Luisi, Pierre; Ioana, Mihai; Alonso, Santos; Ricaño-Ponce, Isis; Trynka, Gosia; Zhernakova, Alexandra; Plantinga, Theo S.; Cheng, Shih-Chin; van der Meer, Jos W. M.; Popp, Radu; Sood, Ajit; Thelma, B. K.; Wijmenga, Cisca; Joosten, Leo A. B.; Bertranpetit, Jaume; Netea, Mihai G.

    2014-01-01

    Recent historical periods in Europe have been characterized by severe epidemic events such as plague, smallpox, or influenza that shaped the immune system of modern populations. This study aims to identify signals of convergent evolution of the immune system, based on the peculiar demographic history in which two populations with different genetic ancestry, Europeans and Rroma (Gypsies), have lived in the same geographic area and have been exposed to similar environments, including infections, during the last millennium. We identified several genes under evolutionary pressure in European/Romanian and Rroma/Gipsy populations, but not in a Northwest Indian population, the geographic origin of the Rroma. Genes in the immune system were highly represented among those under strong evolutionary pressures in Europeans, and infections are likely to have played an important role. For example, Toll-like receptor 1 (TLR1)/TLR6/TLR10 gene cluster showed a strong signal of adaptive selection. Their gene products are functional receptors for Yersinia pestis, the agent of plague, as shown by overexpression studies showing induction of proinflammatory cytokines such as TNF, IL-1β, and IL-6 as one possible infection that may have exerted evolutionary pressures. Immunogenetic analysis showed that TLR1, TLR6, and TLR10 single-nucleotide polymorphisms modulate Y. pestis–induced cytokine responses. Other infections may also have played an important role. Thus, reconstruction of evolutionary history of European populations has identified several immune pathways, among them TLR1/TLR6/TLR10, as being shaped by convergent evolution in two human populations with different origins under the same infectious environment. PMID:24550294

  3. Convergent evolution in European and Rroma populations reveals pressure exerted by plague on Toll-like receptors.

    PubMed

    Laayouni, Hafid; Oosting, Marije; Luisi, Pierre; Ioana, Mihai; Alonso, Santos; Ricaño-Ponce, Isis; Trynka, Gosia; Zhernakova, Alexandra; Plantinga, Theo S; Cheng, Shih-Chin; van der Meer, Jos W M; Popp, Radu; Sood, Ajit; Thelma, B K; Wijmenga, Cisca; Joosten, Leo A B; Bertranpetit, Jaume; Netea, Mihai G

    2014-02-18

    Recent historical periods in Europe have been characterized by severe epidemic events such as plague, smallpox, or influenza that shaped the immune system of modern populations. This study aims to identify signals of convergent evolution of the immune system, based on the peculiar demographic history in which two populations with different genetic ancestry, Europeans and Rroma (Gypsies), have lived in the same geographic area and have been exposed to similar environments, including infections, during the last millennium. We identified several genes under evolutionary pressure in European/Romanian and Rroma/Gipsy populations, but not in a Northwest Indian population, the geographic origin of the Rroma. Genes in the immune system were highly represented among those under strong evolutionary pressures in Europeans, and infections are likely to have played an important role. For example, Toll-like receptor 1 (TLR1)/TLR6/TLR10 gene cluster showed a strong signal of adaptive selection. Their gene products are functional receptors for Yersinia pestis, the agent of plague, as shown by overexpression studies showing induction of proinflammatory cytokines such as TNF, IL-1β, and IL-6 as one possible infection that may have exerted evolutionary pressures. Immunogenetic analysis showed that TLR1, TLR6, and TLR10 single-nucleotide polymorphisms modulate Y. pestis-induced cytokine responses. Other infections may also have played an important role. Thus, reconstruction of evolutionary history of European populations has identified several immune pathways, among them TLR1/TLR6/TLR10, as being shaped by convergent evolution in two human populations with different origins under the same infectious environment.

  4. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  5. Rb/E2F1 Regulates the Innate Immune Receptor Toll-Like Receptor 3 in Epithelial Cells

    PubMed Central

    Taura, Manabu; Suico, Mary Ann; Koyama, Kosuke; Komatsu, Kensei; Miyakita, Rui; Matsumoto, Chizuru; Kudo, Eriko; Kariya, Ryusho; Goto, Hiroki; Kitajima, Shunsuke; Takahashi, Chiaki; Shuto, Tsuyoshi; Nakao, Mitsuyoshi

    2012-01-01

    Tumor suppressor genes regulate the antiviral host defense through molecular mechanisms that are not yet well explored. Here, we show that the tumor suppressor retinoblastoma (Rb) protein positively regulates Toll-like receptor 3 (TLR3) expression, the sensing receptor for viral double-stranded RNA and poly(I·C). TLR3 expression was lower in Rb knockout (Rb−/−) mouse embryonic fibroblasts (MEF) and in mammalian epithelial cells transfected with Rb small-interfering RNA (siRNA) than in control cells. Consequently, induction of cytokines interleukin-8 and beta interferon after poly(I·C) stimulation was impaired in Rb−/− MEF and Rb siRNA-transfected cells compared to controls. TLR3 promoter analysis showed that Rb modulates the transcription factor E2F1, which directly binds to the proximal promoter of TLR3. Exogenous addition of E2F1 decreased TLR3 promoter activity, while Rb dose dependently curbed the effect of E2F1. Interestingly, poly(I·C) increased the Rb expression, and the poly(I·C)-induced TLR3 expression was impaired in Rb-depleted cells, suggesting the importance of Rb in TLR3 induction by poly(I·C). Together, these data indicated that E2F1 suppresses TLR3 transcription, but during immune stimulation, Rb is upregulated to block the inhibitory effect of E2F1 on TLR3, highlighting a role of Rb-E2F1 axis in the innate immune response in epithelial cells. PMID:22310660

  6. Heme-Mediated Induction of CXCL10 and Depletion of CD34+ Progenitor Cells Is Toll-Like Receptor 4 Dependent

    PubMed Central

    Dickinson-Copeland, Carmen M.; Wilson, Nana O.; Liu, Mingli; Driss, Adel; Salifu, Hassana; Adjei, Andrew A.; Wilson, Michael; Gyan, Ben; Oduro, Daniel; Badu, Kingsley; Botchway, Felix; Anderson, Winston; Bond, Vincent; Bacanamwo, Methode; Singh, Shailesh; Stiles, Jonathan K.

    2015-01-01

    Plasmodium falciparum infection can cause microvascular dysfunction, cerebral encephalopathy and death if untreated. We have previously shown that high concentrations of free heme, and C-X-C motif chemokine 10 (CXCL10) in sera of malaria patients induce apoptosis in microvascular endothelial and neuronal cells contributing to vascular dysfunction, blood-brain barrier (BBB) damage and mortality. Endothelial progenitor cells (EPC) are microvascular endothelial cell precursors partly responsible for repair and regeneration of damaged BBB endothelium. Studies have shown that EPC’s are depleted in severe malaria patients, but the mechanisms mediating this phenomenon are unknown. Toll-like receptors recognize a wide variety of pathogen-associated molecular patterns generated by pathogens such as bacteria and parasites. We tested the hypothesis that EPC depletion during malaria pathogenesis is a function of heme-induced apoptosis mediated by CXCL10 induction and toll-like receptor (TLR) activation. Heme and CXCL10 concentrations in plasma obtained from malaria patients were elevated compared with non-malaria subjects. EPC numbers were significantly decreased in malaria patients (P < 0.02) and TLR4 expression was significantly elevated in vivo. These findings were confirmed in EPC precursors in vitro; where it was determined that heme-induced apoptosis and CXCL10 expression was TLR4-mediated. We conclude that increased serum heme mediates depletion of EPC during malaria pathogenesis. PMID:26555697

  7. Genetic Association and Expression Studies Indicate a Role of Toll-Like Receptor 8 in Pulmonary Tuberculosis

    PubMed Central

    Davila, Sonia; Hibberd, Martin L.; Hari Dass, Ranjeeta; Wong, Hazel E. E.; Sahiratmadja, Edhyana; Bonnard, Carine; Alisjahbana, Bachti; Szeszko, Jeffrey S.; Balabanova, Yanina; Drobniewski, Francis; van Crevel, Reinout; van de Vosse, Esther; Nejentsev, Sergey; Ottenhoff, Tom H. M.; Seielstad, Mark

    2008-01-01

    Despite high rates of exposure, only 5–10% of people infected with Mycobacterium tuberculosis will develop active tuberculosis (TB) disease, suggesting a significant role for genetic variation in the human immune response to this infection. Here, we studied TB association and expression of 18 genes involved in the Toll-like receptor (TLR) pathways. Initially, we genotyped 149 sequence polymorphisms in 375 pulmonary TB patients and 387 controls from Indonesia. We found that four polymorphisms in the TLR8 gene on chromosome X showed evidence of association with TB susceptibility in males, including a non-synonymous polymorphism rs3764880 (Met1Val; P = 0.007, odds ratio (OR) = 1.8, 95% c.i. = 1.2–2.7). We genotyped these four TLR8 polymorphisms in an independent collection of 1,837 pulmonary TB patients and 1,779 controls from Russia and again found evidence of association in males (for rs3764880 P = 0.03, OR = 1.2, 95% c.i. = 1.02–1.48). Combined evidence for association is P = 1.2×10−3–6×10−4. In addition, a quantitative PCR analysis indicated that TLR8 transcript levels are significantly up-regulated in patients during the acute phase of disease (P = 9.36×10−5), relative to baseline levels following successful chemotherapy. A marked increase in TLR8 protein expression was also observed directly in differentiated macrophages upon infection with M. bovis bacille Calmette-Guérin (BCG). Taken together, our results provide evidence, for the first time, of a role for the TLR8 gene in susceptibility to pulmonary TB across different populations. PMID:18927625

  8. Application potential of toll-like receptors in cancer immunotherapy: Systematic review.

    PubMed

    Shi, Ming; Chen, Xi; Ye, Kangruo; Yao, Yuanfei; Li, Yu

    2016-06-01

    Toll-like receptors (TLRs), as the most important pattern recognition receptors in innate immunity, play a pivotal role in inducing immune response through recognition of microbial invaders or specific agonists. Recent studies have suggested that TLRs could serve as important regulators in the development of a variety of cancer. However, increasing evidences have shown that TLRs may display quite opposite outcomes in cancer development. Although several potential therapeutic Toll-like receptor ligands have been found, the mechanism and therapy prospect of TLRs in cancer development has to be further elucidated to accelerate the clinical application. By performing a systematic review of the present findings on TLRs in cancer immunology, we attempted to evaluate the therapeutic potential of TLRs in cancer therapy and elucidate the potential mechanism of cancer progress regulated by TLR signaling and the reported targets on TLRs for clinical application. An electronic databases search was conducted in PubMed, Chinese Scientific Journal Database, and Chinese Biomedical Literature Database from their inception to February 1, 2016. The following keywords were used to search the databases: Toll-like receptors, cancer therapy, therapeutic target, innate immunity. Of 244 studies that were identified, 97 nonrelevant studies were excluded. In total, 147 full-text articles were assessed, and from these, 54 were excluded as they did not provide complete key information. Thus, 93 studies were considered eligible and included in the analysis. According to the data from the included trials, 14 TLR ligands (77.8%) from 82 studies have been demonstrated to display antitumor property in various cancers, whereas 4 ligands (22.2%) from 11 studies promote tumors. Among them, only 3 TLR ligands have been approved for cancer therapy, and 9 ligands were in clinical trials. In addition, the potential mechanism of recently reported targets on TLRs for clinical application was also evaluated

  9. Toll-like receptor 2 ligands promote microglial cell death by inducing autophagy.

    PubMed

    Arroyo, Daniela S; Soria, Javier A; Gaviglio, Emilia A; Garcia-Keller, Constanza; Cancela, Liliana M; Rodriguez-Galan, Maria C; Wang, Ji Ming; Iribarren, Pablo

    2013-01-01

    Microglial cells are phagocytes in the central nervous system (CNS) and become activated in pathological conditions, resulting in microgliosis, manifested by increased cell numbers and inflammation in the affected regions. Thus, controlling microgliosis is important to prevent pathological damage to the brain. Here, we evaluated the contribution of Toll-like receptor 2 (TLR2) to microglial survival. We observed that activation of microglial cells with peptidoglycan (PGN) from Staphylococcus aureus and other TLR2 ligands results in cell activation followed by the induction of autophagy and autophagy-dependent cell death. In C57BL/6J mice, intracerebral injection of PGN increased the autophagy of microglial cells and reduced the microglial/macrophage cell number in brain parenchyma. Our results demonstrate a novel role of TLRs in the regulation of microglial cell activation and survival, which are important for the control of microgliosis and associated inflammatory responses in the CNS.

  10. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments.

    PubMed

    Joosten, Leo A B; Abdollahi-Roodsaz, Shahla; Dinarello, Charles A; O'Neill, Luke; Netea, Mihai G

    2016-06-01

    In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.

  11. Mapping toll-like receptor signaling pathway genes of Zhikong scallop ( Chlamys farreri) with FISH

    NASA Astrophysics Data System (ADS)

    Zhao, Bosong; Zhao, Liang; Liao, Huan; Cheng, Jie; Lian, Shanshan; Li, Xuan; Huang, Xiaoting; Bao, Zhenmin

    2015-12-01

    Toll-like receptor (TLR) signaling pathway plays a pivotal role in the innate immune system. Studies on TLR signaling pathway genes in Zhikong scallop ( Chlamys farreri) have mainly focused on sequence analysis and expression profiling, no research has been carried out on their localization. The chromosomal position of TLR signaling pathway genes can be valuable for assemblying scallop genome and analysizing gene regulatory networks. In the present study, five key TLR signaling pathway genes ( CfTLR, CfMyd88, CfTRAF6, CfNFκB, and CfIκB) containing bacterial artificial chromosomes (BACs) were isolated and physically mapped through fluorescence in situ hybridization on five non-homologous chromosome pairs, showing a similar distribution to another five model species. The isolation and mapping of these key immune genes of C. farreri will aid to the research on innate immunity, assignment of interested genes to chromosomes, and integration of physical, linkage and cytogenetic maps of this species.

  12. The emerging role of Toll-like receptor 4 in myocardial inflammation

    PubMed Central

    Yang, Y; Lv, J; Jiang, S; Ma, Z; Wang, D; Hu, W; Deng, C; Fan, C; Di, S; Sun, Y; Yi, W

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern recognition receptors involved in cardiovascular diseases. Notably, numerous studies have demonstrated that TLR4 activates the expression of several of pro-inflammatory cytokine genes that play pivotal roles in myocardial inflammation, particularly myocarditis, myocardial infarction, ischemia-reperfusion injury, and heart failure. In addition, TLR4 is an emerging target for anti-inflammatory therapies. Given the significance of TLR4, it would be useful to summarize the current literature on the molecular mechanisms and roles of TLR4 in myocardial inflammation. Thus, in this review, we first introduce the basic knowledge of the TLR4 gene and describe the activation and signaling pathways of TLR4 in myocardial inflammation. Moreover, we highlight the recent progress of research on the involvement of TLR4 in myocardial inflammation. The information reviewed here may be useful to further experimental research and to increase the potential of TLR4 as a therapeutic target. PMID:27228349

  13. The role of Toll-like receptors in retinal ischemic diseases

    PubMed Central

    Xu, Wen-Qin; Wang, Yu-Sheng

    2016-01-01

    Toll-like receptors (TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands. Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases, including ischemia-reperfusion injury, glaucoma, diabetic retinopathy (DR) and retinopathy of prematurity (ROP). TLRs can be expressed in multiple cells in the retina, such as glial cells, retinal pigment epithelium (RPE), as well as photoreceptor cells and endothelium cells. Activation of TLRs in retina could initiate a complex signal transduction cascade, induce the production of inflammatory cytokines and regulate the level of co-stimulatory molecules, which play prominent roles in the pathogenesis of retinal ischemic diseases. In this review, we summarized current studies about the relationship between TLRs and ischemic retinopathy. A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions. PMID:27672603

  14. The role of Toll-like receptors in retinal ischemic diseases.

    PubMed

    Xu, Wen-Qin; Wang, Yu-Sheng

    2016-01-01

    Toll-like receptors (TLRs) are commonly referred to a series of evolutionary conserved receptors which recognize and respond to various microbes and endogenous ligands. Growing evidence has demonstrated that the expression of TLRs in the retina is regulated during retinal ischemic diseases, including ischemia-reperfusion injury, glaucoma, diabetic retinopathy (DR) and retinopathy of prematurity (ROP). TLRs can be expressed in multiple cells in the retina, such as glial cells, retinal pigment epithelium (RPE), as well as photoreceptor cells and endothelium cells. Activation of TLRs in retina could initiate a complex signal transduction cascade, induce the production of inflammatory cytokines and regulate the level of co-stimulatory molecules, which play prominent roles in the pathogenesis of retinal ischemic diseases. In this review, we summarized current studies about the relationship between TLRs and ischemic retinopathy. A greater understanding of the effect of TLRs on ischemic injuries may contribute to the development of specific TLR targeted therapeutic strategies in these conditions.

  15. Toll-like receptor modulation in cardiovascular disease: a target for intervention?

    PubMed

    Földes, Gábor; von Haehling, Stephan; Anker, Stefan D

    2006-08-01

    Toll-like receptors (TLRs) form a family of pattern recognition receptors that have emerged as key mediators of innate immunity. These receptors sense invading microbes and initiate the immune response. TLR-mediated inflammation is an important pathogenic link between innate immunity and a diverse panel of clinical disorders. Among the processes in which TLRs play a role are cardiovascular disorders such as cardiac ischaemia, coronary artery disease, ventricular remodelling, cancer angiogenesis or transplant rejection. From these, many important opportunities for disease modification through TLR signalling manipulation can be imagined. Their role as potential targets for therapeutic intervention is just beginning to be appreciated and this article reviews the current status of these treatment strategies for cardiovascular disease.

  16. Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants

    PubMed Central

    Maisonneuve, Charles; Bertholet, Sylvie; Philpott, Dana J.; De Gregorio, Ennio

    2014-01-01

    Innate immunity confers an immediate nonspecific mechanism of microbial recognition through germ line-encoded pattern recognition receptors (PRRs). Of these, Toll-like receptors (TLRs) and nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) have shaped our current understanding of innate regulation of adaptive immunity. It is now recognized that PRRs are paramount in instructing an appropriate adaptive immune response. Their ligands have been the focus of adjuvant research with the goal of generating modern vaccine combinations tailored to specific pathogens. In this review we will highlight the recent findings in the field of adjuvant research with a particular focus on the potential of TLR and NLR ligands as adjuvants and their influence on adaptive immune responses. PMID:25136133

  17. Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys.

    PubMed

    Gopinath, V P; Biswas, Moanaro; Raj, Gopal Dhinakar; Raja, A; Kumanan, A K; Elankumaran, Subbiah

    2011-09-01

    Toll-like receptors (TLRs), a family of transmembrane and cytosolic proteins, detect microbial patterns, initiating innate immune responses in various organisms. Although they are abundant, genetic characterization and functional differences of TLRs in economically important avian species such as chickens and turkeys have not been investigated in detail. In this study, the putative TLR5 coding region from turkey genome was sequenced, and its homology to other vertebrate species was analyzed. Secondary structure analysis revealed protein motifs typical of the chicken TLR5 protein structure, with 97% amino acid identity between them. mRNA expression profiling in adult turkeys revealed abundant TLR5 expression in a broad range of tissues. Stimulation with the TLR5 ligand flagellin resulted in the production of the inflammatory mediators interleukin (IL)-1beta, IL-6, and nitric oxide in peripheral blood mononuclear cells. To our knowledge, this is the first complete turkey TLR5 coding DNA sequence reported in sequence databases.

  18. Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cui, Jian; Cheng, Yuanyuan; Belov, Katherine

    2015-03-01

    The Tasmanian devil is an endangered marsupial species that has survived several historical bottlenecks and now has low genetic diversity. Here we characterize the Toll-like receptor (TLR) genes and their diversity in the Tasmanian devil. TLRs are a key innate immune gene family found in all animals. Ten TLR genes were identified in the Tasmanian devil genome. Unusually low levels of diversity were found in 25 devils from across Tasmania. We found two alleles at TLR2, TLR3 and TLR6. The other seven genes were monomorphic. The insurance population, which safeguards the species from extinction, has successfully managed to capture all of these TLR alleles, but concerns remain for the long-term survival of this species.

  19. Toll-like receptor signaling is functional in immune cells of the endangered Tasmanian devil.

    PubMed

    Patchett, Amanda L; Latham, Roger; Brettingham-Moore, Kate H; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2015-11-01

    Devil facial tumour disease (DFTD) is a fatally transmissible cancer that threatens the Tasmanian devil population. As Tasmanian devils do not produce an immune response against DFTD cells, an effective vaccine will require a strong adjuvant. Activation of innate immune system cells through toll-like receptors (TLRs) could provide this stimulation. It is unknown whether marsupials, including Tasmanian devils, express functional TLRs. We isolated RNA from peripheral blood mononuclear cells and, with PCR, detected transcripts for TLRs 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13. Stimulation of the mononuclear cells with agonists to these TLRs increased the expression of downstream TLR signaling products (IL1α, IL6, IL12A and IFNβ). Our data provide the first evidence that TLR signaling is functional in the mononuclear cells of the Tasmanian devil. Future DFTD vaccination trials will incorporate TLR agonists to enhance the immune response against DFTD.

  20. Ubiquitination and de-ubiquitination: role in regulation of signaling by Toll-like receptors.

    PubMed

    Lowe, Emily L; Doherty, Terence M; Karahashi, Hisae; Arditi, Moshe

    2006-01-01

    Signaling by Toll-like receptors (TLRs) has attracted accelerating attention over the past decade because of the central role of TLR signaling in both innate and adaptive immunity. In addition, TLR signaling is now increasingly implicated in a remarkably wide range of diseases that are either caused, or accompanied, by dysregulated inflammation. Much has been learned about the basic signaling framework and participants, as well as how signaling is turned off and fine-tuned. Here, we summarize key aspects of TLR signaling, focusing on interaction with the anti-inflammatory TGF-beta signaling network. We propose that ubiquitination and de-ubiquitination of TLR pathway components may be a mechanism by which predominantly anti-inflammatory input is integrated into the host response to fine-tune inflammation in accordance with the needs of host defenses.

  1. Toll-Like Receptor 4 Activation in Cancer Progression and Therapy

    PubMed Central

    Oblak, Alja; Jerala, Roman

    2011-01-01

    Cancer immunotherapy has been the focus of intense research since the late 19th century when Coley observed that bacterial components can contribute to cancer regression by eliciting an antitumor immune response. Successful activation and maturation of tumor-specific immune cells is now known to be mediated by bacterial endotoxin, which activates Toll-like receptor 4 (TLR4). TLR4 is expressed on a variety of immune as well as tumor cells, but its activation can have opposing effects. While TLR4 activation can promote antitumor immunity, it can also result in increased tumor growth and immunosuppression. Nevertheless, TLR4 engagement by endotoxin as well as by endogenous ligands represents notable contribution to the outcome of different cancer treatments, such as radiation or chemotherapy. Further research of the role and mechanisms of TLR4 activation in cancer may provide novel antitumor vaccine adjuvants as well as TLR4 inhibitors that could prevent inflammation-induced carcinogenesis. PMID:22110526

  2. DAT isn’t all that: cocaine reward and reinforcement requires Toll Like Receptor 4 signaling

    PubMed Central

    Northcutt, A.L.; Hutchinson, M.R.; Wang, X.; Baratta, M.V.; Hiranita, T.; Cochran, T.A.; Pomrenze, M.B.; Galer, E.L.; Kopajtic, T.A.; Li, C.M.; Amat, J.; Larson, G.; Cooper, D.C.; Huang, Y.; O’Neill, C.E.; Yin, H.; Zahniser, N.R.; Katz, J.L.; Rice, K.C.; Maier, S.F.; Bachtell, R.K.; Watkins, L.R.

    2014-01-01

    The initial reinforcing properties of drugs of abuse, such as cocaine, are largely attributed to their ability to activate the mesolimbic dopamine system. Resulting increases in extracellular dopamine in the nucleus accumbens (NAc) are traditionally thought to result from cocaine’s ability to block dopamine transporters (DATs). Here we demonstrate that cocaine also interacts with the immunosurveillance receptor complex, Toll-Like Receptor 4 (TLR4), on microglial cells to initiate central innate immune signaling. Disruption of cocaine signaling at TLR4 suppresses cocaine-induced extracellular dopamine in the NAc, as well as cocaine conditioned place preference and cocaine self-administration. These results provide a novel understanding of the neurobiological mechanisms underlying cocaine reward/reinforcement that includes a critical role for central immune signaling, and offer a new target for medication development for cocaine abuse treatment. PMID:25644383

  3. The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan.

    PubMed

    Pellegrini, Andrea; Guiñazu, Natalia; Giordanengo, Laura; Cano, Roxana Carolina; Gea, Susana

    2011-12-01

    Trypanosoma cruzi, the causal agent of Chagas disease, is an intracellular protozoan parasite that predominantly invades macrophages and cardiomyocytes, leading to persistent infection. Several members of the Toll-like receptor family are crucial for innate immunity to infection and are involved in maintaining tissue homeostasis. This review focuses on recent experimental findings of the innate and adaptive immune response in controlling the parasite and/or in generating heart and liver tissue injury. We also describe the importance of the host's genetic background in the outcome of the disease and emphasize the importance of studying the response to specific parasite antigens. Understanding the dual participation of the immune response may contribute to the design of new therapies for Chagas disease.

  4. Toll Like Receptor 4 Affects the Cerebral Biochemical Changes Induced by MPTP Treatment.

    PubMed

    Conte, Carmela; Roscini, Luca; Sardella, Roccaldo; Mariucci, Giuseppina; Scorzoni, Stefania; Beccari, Tommaso; Corte, Laura

    2017-02-01

    The etiology and pathogenesis of Parkinson's disease (PD) are still unclear. However, multiple lines of evidence suggest a critical role of the toll like receptor 4 (TLR4) in inflammatory response and neuronal death. Neuroinflammation may be associated with the misfolding and aggregation of proteins accompanied by a change in their secondary structure. Recent findings also suggest that biochemical perturbations in cerebral lipid content could contribute to the pathogenesis of central nervous system (CNS) disorders, including PD. Thus, it is of great importance to determine the biochemical changes that occur in PD. In this respect, Fourier Transform Infrared (FTIR) spectroscopy represents a useful tool to detect molecular alterations in biological systems in response to stress stimuli. By relying upon FTIR approach, this study was designed to elucidate the potential role of TLR4 in biochemical changes induced by methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin in a mouse model of PD. The analysis of the FTIR spectra was performed in different brain regions of both wild type (WT) and toll like receptor 4-deficient (TLR4(-/-)) mice. It revealed that each brain region exhibited a characteristic molecular fingerprint at baseline, with no significant differences between genotypes. Conversely, WT and TLR4(-/-) mice showed differential biochemical response to MPTP toxicity, principally related to lipid and protein composition. These differences appeared to be characteristic for each brain area. Furthermore, the present study showed that WT mice resulted more vulnerable than TLR4(-/-) animals to striatal dopamine (DA) depletion following MPTP treatment. These results support the hypothesis of a possible involvement of TLR4 in biochemical changes occurring in neurodegeneration.

  5. BURN-INDUCED ACUTE LUNG INJURY REQUIRES A FUNCTIONAL TOLL-LIKE RECEPTOR 4

    PubMed Central

    Krzyzaniak, Michael; Cheadle, Gerald; Peterson, Carrie; Loomis, William; Putnam, James; Wolf, Paul; Baird, Andrew; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul

    2014-01-01

    The role of the Toll-like receptor 4 (TLR4), a component of the innate immune system, in the development of burn-induced acute lung injury (ALI) has not been completely defined. Recent data suggested that an intact TLR4 plays a major role in the development of organ injury in sterile inflammation. We hypothesized that burn-induced ALI is a TLR4-dependent process. Male C57BL/6J (TLR4 wild-type [WT]) and C57BL/10ScN (TLR4 knockout [KO]) mice were subjected to a 30% total body surface area steam burn. Animals were killed at 6 and 24 h after the insult. Lung specimens were harvested for histological examination after hematoxylin-eosin staining. In addition, lung myeloperoxidase (MPO) and intercellular adhesion molecule 1 immunostaining was performed. Lung MPO was measured by an enzymatic assay. Total lung keratinocyte-derived chemoattractant (IL-8) content was measured by enzyme-linked immunosorbent assay. Western blot was performed to quantify phosphorylated IκBα, phosphorylated nuclear factor κB p65 (NF-κBp65), and high mobility group box 1 expression. Acute lung injury, characterized by thickening of the alveolar-capillary membrane, hyaline membrane formation, intraalveolar hemorrhage, and neutrophil infiltration, was seen in WT but not KO animals at 24 h. Myeloperoxidase and intercellular adhesion molecule 1 immunostaining of KO animals was also similar to sham but elevated in WT animals. In addition, a reduction in MPO enzymatic activity was observed in KO mice as well as a reduction in IL-8 levels compared with their WT counterparts. Burn-induced ALI develops within 24 h after the initial thermal insult in our model. Toll-like receptor 4 KO animals were clearly protected and had a much less severe lung injury. Our data suggest that burn-induced ALI is a TLR4-dependent process. PMID:21330948

  6. The potential role of Toll-like receptors in programming of vascular dysfunction

    PubMed Central

    Thompson, Jennifer A.; Webb, R. Clinton

    2014-01-01

    The developmental origins of metabolic syndrome have been established through the consistent observation that small-for-gestational age and large-for-gestational age fetuses have an increased risk for hypertension and related metabolic disorders later in life. These phenotypes have been reproduced in various species subjected to a range of intrauterine insults and ongoing research is directed towards understanding the underlying molecular mechanisms. Current evidence suggests that the creation of a pro-inflammatory and pro-oxidant intrauterine milieu is a common thread among prenatal factors that impact upon fetal size. Furthermore, studies demonstrate that a shift in fetal redox status consequent to environmental cues persists after birth and drives the progression of vascular dysfunction and hypertension in postnatal life. Toll-like receptor signaling has emerged as a key link between inflammation and oxidative stress and pathogenic contributor to hypertension, insulin resistance and obesity, in both human patients and animal models of disease. Thus, Toll-like receptor activation and dysregulation of its signaling components represent potential molecular underpinnings of programmed hypertension and related disorders in those subjected to sub-optimal intrauterine conditions, yet their contributions to developmental programming remain unexplored. We propose that danger signals mobilized by the placenta or fetal tissues during complicated pregnancy activate the fetal innate immune system through TLRs and thereby potentiate the generation of reactive oxygen species and orchestrate fetal adaptive responses, including changes in gene expression which later translate to vascular dysfunction. Further, we suggest that after birth, continual activation of TLR signaling propagates vascular oxidative stress and thereby accelerates the advancement of hypertension and heart failure. PMID:23485061

  7. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL

    PubMed Central

    Kassem, Ali; Lindholm, Catharina; Lerner, Ulf H

    2016-01-01

    Severe Staphylococcus aureus (S. aureus) infections pose an immense threat to population health and constitute a great burden for the health care worldwide. Inter alia, S. aureus septic arthritis is a disease with high mortality and morbidity caused by destruction of the infected joints and systemic bone loss, osteoporosis. Toll-Like receptors (TLRs) are innate immune cell receptors recognizing a variety of microbial molecules and structures. S. aureus recognition via TLR2 initiates a signaling cascade resulting in production of various cytokines, but the mechanisms by which S. aureus causes rapid and excessive bone loss are still unclear. We, therefore, investigated how S. aureus regulates periosteal/endosteal osteoclast formation and bone resorption. S. aureus stimulation of neonatal mouse parietal bone induced ex vivo bone resorption and osteoclastic gene expression. This effect was associated with increased mRNA and protein expression of receptor activator of NF-kB ligand (RANKL) without significant change in osteoprotegerin (OPG) expression. Bone resorption induced by S. aureus was abolished by OPG. S. aureus increased the expression of osteoclastogenic cytokines and prostaglandins in the parietal bones but the stimulatory effect of S. aureus on bone resorption and Tnfsf11 mRNA expression was independent of these cytokines and prostaglandins. Stimulation of isolated periosteal osteoblasts with S. aureus also resulted in increased expression of Tnfsf11 mRNA, an effect lost in osteoblasts from Tlr2 knockout mice. S. aureus stimulated osteoclastogenesis in isolated periosteal cells without affecting RANKL-stimulated resorption. In contrast, S. aureus inhibited RANKL-induced osteoclast formation in bone marrow macrophages. These data show that S. aureus enhances bone resorption and periosteal osteoclast formation by increasing osteoblast RANKL production through TLR2. Our study indicates the importance of using different in vitro approaches for studies of how S

  8. Cloning, sequence analysis and expression profiles of Toll-like receptor 7 from Chinese giant salamander Andrias davidianus.

    PubMed

    Huang, Lili; Fan, Yuding; Zhou, Yong; Jiang, Nan; Liu, Wenzhi; Meng, Yan; Zeng, Lingbing

    2015-06-01

    The Chinese giant salamander, Andrias davidianus, is the largest extant amphibian species in the world, which is of significance due to its specific position in the evolutionary history of vertebrates. Currently, limited information about the innate immune system of this animal is known. In this study, the toll-like receptor 7 (TLR7), designated CgsTLR7, was cloned from Chinese giant salamander, A. davidianus. The full-length cDNA of CgsTLR7 is 3747 bp, with an open reading frame of 3150 bp, encoding 1049 amino acids. The TLR family motifs, including the leucine-rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain are conserved in CgsTLR7, which includes 19 LRRs and a TIR domain. The predicted amino acid sequence of CgsTLR7 has 71%, 65%, 63% and 55% identity with turtle, chicken, human and fugu TLR7 homologues, respectively. Phylogenetic analysis showed that CgsTLR7 is closest to that of frog TLR7 among the examined species. Quantitative real-time PCR analysis revealed broad expression of CgsTLR7 in tissues from apparently healthy Chinese giant salamanders with the highest expression in the liver and the lowest expression in the intestine. The mRNA expression was up-regulated and reached a peak level in the kidney, liver and spleen at 12 h, 24 h and 48 h after infecting the animals with the giant salamander iridovirus (GSIV), respectively. These results suggest that CgsTLR7 has a conserved gene structure and might play an important role in immune regulation against viral infections in the Chinese giant salamander.

  9. Single nucleotide polymorphisms in toll-like receptor genes and case-control association studies with bovine tuberculosis

    PubMed Central

    Bhaladhare, Ashish; Sharma, Deepak; Kumar, Amit; Sonwane, Arvind; Chauhan, Anuj; Singh, Ranvir; Kumar, Pushpendra; Yadav, Ramji; Baqir, Mohd; Bhushan, Bharat; Prakash, Om

    2016-01-01

    Aim: Toll-like receptor 2 (TLR2) and TLR4 genes play critical roles in host recognition of Mycobacterium bovis infection and initiation of innate and adaptive immune response. The present study was aimed at exploring the association of seven single nucleotide polymorphisms (SNPs) in TLR2 and TLR4 genes with susceptibility/resistance against bovine tuberculosis (bTB) infection in cattle. Materials and Methods: A case-control resource population of 35 positive and 45 negative animals was developed after screening with single intradermal tuberculin test for bTB. Resource population was screened for SNPs in TLR2 and TLR4 genes using polymerase chain reaction-restriction fragment length polymorphism. The PROC LOGISTIC procedure of SAS 9.3 was used to find an association of allelic and genotypic frequencies with bTB. Results: In TLR2 gene, two of SNPs under study (rs55617172 and rs68268253) revealed polymorphism while in the case of TLR4 gene all four SNPs under investigation (rs8193041, rs207836014, rs8193060, and rs8193069) were found to be polymorphic in case-control population. SNP locus rs55617172 in TLR2 gene was found significantly (p<0.01) associated with susceptibility/resistance to TB in cattle. Conclusion: These findings indicate the presence of SNPs in TLR2 and TLR4 genes in our resource population. Upon validation in independent, large resource population and following biological characterization, SNP rs55617172 can be incorporated in marker panel for selection of animals with greater resistance to bTB. PMID:27284220

  10. Toll-like receptors 2 and 4 contribute to sepsis-induced depletion of spleen dendritic cells.

    PubMed

    Pène, Frédéric; Courtine, Emilie; Ouaaz, Fatah; Zuber, Benjamin; Sauneuf, Bertrand; Sirgo, Gonzalo; Rousseau, Christophe; Toubiana, Julie; Balloy, Viviane; Chignard, Michel; Mira, Jean-Paul; Chiche, Jean-Daniel

    2009-12-01

    Depletion of dendritic cells (DC) in secondary lymphoid organs is a hallmark of sepsis-induced immune dysfunction. In this setting, we investigated if Toll-like receptor (TLR)-dependent signaling might modulate the maturation process and the survival of DC. Using a model of sublethal polymicrobial sepsis induced by cecal ligation and puncture, we investigated the quantitative and functional features of spleen DC in wild-type, TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. By 24 h, a decrease in the relative percentage of CD11c(high) spleen DC occurred in wild-type mice but was prevented in TLR2(-/-), TLR4(-/-), and TLR2(-/-) TLR4(-/-) mice. In wild-type mice, sepsis dramatically affected both CD11c(+) CD8alpha(+) and CD11c(+) CD8alpha(-) subsets. In all three types of knockout mice studied, the CD11c(+) CD8alpha(+) subset followed a depletion pattern similar to that for wild-type mice. In contrast, the loss of CD11c(+) CD8alpha(-) cells was attenuated in TLR2(-/-) and TLR4(-/-) mice and completely prevented in TLR2(-/-) TLR4(-/-) mice. Accordingly, apoptosis of spleen DC was increased in septic wild-type mice and inhibited in knockout mice. In addition we characterized the functional features of spleen DC obtained from septic mice. As shown by increased expression of major histocompatibility complex class II and CD86, polymicrobial sepsis induced maturation of DC, with subsequent increased capacity to prime T lymphocytes, similarly in wild-type and knockout mice. In response to CpG DNA stimulation, production of interleukin-12 was equally impaired in DC obtained from wild-type and knockout septic mice. In conclusion, although dispensable for the DC maturation process, TLR2 and TLR4 are involved in the mechanisms leading to depletion of spleen DC following polymicrobial sepsis.

  11. CCL-34, a synthetic toll-like receptor 4 activator, modulates differentiation and maturation of myeloid dendritic cells

    PubMed Central

    Fu, Shu-Ling; Lin, Chun-Cheng; Hsu, Ming-Ling; Liu, Sheng-Hung; Huang, Yu-Chuen; Chen, Yu-Jen

    2016-01-01

    CCL-34, a synthetic α-galactosylceramide analog, has been reported as an activator of toll-like receptor 4 (TLR4) in macrophages. TLR4 is highly expressed in dendritic cell (DC) and several TLR4 agonists are known to trigger DC maturation. We herein evaluated the effect of CCL-34 on DC maturation. Human CD14+ monocyte-derived immature DC were treated with CCL-34, its inactive structural analog CCL-44, or LPS to assess the DC maturation. CCL-34 induced DC maturation according to their characteristically dendrite-forming morphology, CD83 expression and IL-12p70 production. The allostimulatory activity of DC on proliferation of naive CD4+CD45+RA+ T cells and their secretion of interferon-γ was increased by CCL-34. Phagocytosis, an important function of immature DC, was reduced after CCL-34 treatment. All these effects related to DC maturation were evidently induced by positive control LPS but not by CCL-44 treatment. TLR4 neutralization impaired human DC maturation triggered by CCL-34. The induction of IL-12, a hallmark of DC maturation, by CCL-34 and LPS was only evident in TLR4-competent C3H/HeN, but not in TLR4-defective C3H/HeJ mice. CCL-34 could further elicit the antigen presentation capability in mice inoculated with doxorubicin-treated colorectal cancer cells. In summary, CCL-34 triggers DC maturation via a TLR4-dependent manner, which supports its potential application as an immunostimulator. PMID:26883191

  12. Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity.

    PubMed

    Kragstrup, T W; Andersen, T; Holm, C; Schiøttz-Christensen, B; Jurik, A G; Hvid, M; Deleuran, B

    2015-05-01

    Spondyloarthritis (SpA) is a group of immune mediated inflammatory diseases affecting joints, gut, skin and entheses. The inflammatory process involves activation of Toll-like receptor (TLR)-2 and TLR-4 and production of cytokines and chemokines such as monocyte chemoattractant protein 1 (CCL2/MCP-1). This proinflammatory chemokine recruits monocytes to sites of inflammation and is central in the development of several immune-mediated inflammatory diseases. Interleukin (IL)-19 is a member of the IL-10 family of cytokines. IL-19-deficient mice are more susceptible to innate-mediated colitis and develop more severe inflammation in response to injury. In this work, we studied inducers of IL-19 production and effect of IL-19 on the production of CCL2/MCP-1 and proinflammatory cytokines in peripheral blood mononuclear cells (PBMCs) from healthy controls (HCs) and in PBMCs and synovial fluid mononuclear cells (SFMCs) from SpA patients. Further, we measured IL-19 in plasma from HCs and in plasma and synovial fluid from SpA patients. Constitutive IL-19 expression was present in both PBMCs and SFMCs and the secretion of IL-19 was increased by TLR-2 and TLR-4 ligands. Neutralizing IL-19 in HC PBMCs and SpA SFMCs resulted in increased production of CCL-2/MCP-1. IL-19 concentrations were decreased in synovial fluid compared with plasma and associated inversely with disease activity in SpA. SpA SFMCs produced less IL-19 in response to LPS compared with HC PBMCs. These findings indicate that IL-19 production is diminished in SpA. Taken together, impaired IL-19 control of the innate immune system might be involved in the pathogenesis of SpA.

  13. Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration.

    PubMed

    Zareparsi, Sepideh; Buraczynska, Monika; Branham, Kari E H; Shah, Sapna; Eng, Donna; Li, Mingyao; Pawar, Hemant; Yashar, Beverly M; Moroi, Sayoko E; Lichter, Paul R; Petty, Howard R; Richards, Julia E; Abecasis, Gonçalo R; Elner, Victor M; Swaroop, Anand

    2005-06-01

    Age-related macular degeneration (AMD) is a genetically heterogeneous disease that leads to progressive and irreversible vision loss among the elderly. Inflammation, oxidative damage, cholesterol metabolism and/or impaired function of retinal pigment epithelium (RPE) have been implicated in AMD pathogenesis. We examined toll-like receptor 4 (TLR4) as a candidate gene for AMD susceptibility because: (i) the TLR4 gene is located on chromosome 9q32-33, a region exhibiting evidence of linkage to AMD in three independent reports; (ii) the TLR4-D299G variant is associated with reduced risk of atherosclerosis, a chronic inflammatory disease with subendothelial accumulation; (iii) the TLR4 is not only a key mediator of proinflammatory signaling pathways but also linked to regulation of cholesterol efflux and (iv) the TLR4 participates in phagocytosis of photoreceptor outer segments by the RPE. We examined D299G and T399I variants of TLR4 in a sample of 667 unrelated AMD patients and 439 unrelated controls, all of Caucasian ancestry. Multiple logistic regression demonstrated an increased risk of AMD in carriers of the G allele at TLR4 residue 299 (odds ratio=2.65, P=0.025), but lack of an independent effect by T399I variant. TLR4-D299G showed an additive effect on AMD risk (odds ratio=4.13, P=0.002) with allelic variants of apolipoprotein E (APOE) and ATP-binding cassette transporter-1 (ABCA1), two genes involved in cholesterol efflux. Interestingly, the effect of TLR4, APOE and ABCA1 variants on AMD susceptibility was opposite to that of association with atherosclerosis risk. Our data provide evidence of a link between multiple diverse mechanisms underlying AMD pathogenesis.

  14. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation

    PubMed Central

    2014-01-01

    Background Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund’s adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. Results In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48–96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. Conclusion Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4

  15. Expression and activation of toll-like receptor 3 and toll-like receptor 4 on human corneal epithelial and conjunctival fibroblasts

    PubMed Central

    2014-01-01

    Background Toll-like receptors (TLRs) are recognized as important contributors to the initiation and modulation of the inflammatory response in the eye. This study investigated the precise expression patterns and functionality of TLRs in human corneal epithelial cells (HCE) and in conjunctival fibroblasts (HCF). Methods The cell surface expression of TLRs 2-4, TLR7 and TLR9 in HCE and HCF was examined by flow cytometry with or without stimulation with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). The mRNA expression of the TLRs was determined by real-time PCR. The protein content levels of interleukin (IL)-6, IL-8, IL-1β and tumor necrosis factor-α (TNF-α) were measured in HCE and HCF using multiplex fluorescent bead immunoassay (FBI). Results The surface expression of TLR3 and TLR4 was detected on both HCE and HCF. Following incubation with LPS, the percentage of HCE cells staining for TLR4 decreased from 10.18% to 0.62% (P < 0.001). Incubation with poly I:C lowered the percentage of HCE cells positive for TLR3 from 10.44% to 2.84% (P < 0.001). The mRNA expression of TLRs2, 4, 7 and 9 was detected in HCE only. Activation of HCE with LPS complex elicited protein secretion up to 4.51 ± 0.85-fold higher levels of IL-6 (P < 0.05), 2.5 ± 0.36-fold IL-8 (P > 0.05), 4.35 ± 1.12-fold IL-1β (P > 0.05) and 29.35 ± 2.3-fold TNFα (P < 0.05) compared to cells incubated in medium. Conclusions HCF and HCE both express TLRs that respond to specific ligands by increasing cytokine expression. Following activation, the surface expression of TLR3 and TLR4 on HCE is decreased, thus creating a negative feedback loop, mitigating the effect of TLR activation. PMID:24491080

  16. Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9

    PubMed Central

    Lee, Linda M.; Ji, Ming; Sinha, Meenal; Dong, Matthew B.; Ren, Xin; Wang, Yanli; Lowell, Clifford A.; Ghosh, Sankar; Locksley, Richard M.; DeFranco, Anthony L.

    2016-01-01

    Excessive type 2 helper T cell responses to environmental antigens can cause immunopathology such as asthma and allergy, but how such immune responses are induced remains unclear. We studied this process in the airways by immunizing mice intranasally with the antigen ovalbumin together with either of two Toll-like receptor (TLR) ligands. We found the TLR5 ligand flagellin promoted a type 2 helper T cell response, whereas, a TLR9 ligand CpG oligodeoxyribonucleotide (ODN) promoted a type 1 helper T cell response. CpG ODN induced mRNA encoding interleukin (IL)-12 p40, whereas, flagellin caused IL-33 secretion and induced mRNAs encoding IL-1 and thymic stromal lymphopoietin (TSLP). By using mice deficient in the TLR and IL-1R signaling molecule, myeloid differentiation primary response 88 (MyD88), in conventional dendritic cells (cDCs) and alveolar macrophages (AMs), and by cell sorting different lung populations after 2 hours of in vivo stimulation, we characterized the cell types that rapidly produced inflammatory cytokines in response to TLR stimulation. CpG ODN was likely recognized by TLR9 on cDCs and AMs, which made mRNA encoding IL-12. IL-12 was necessary for the subsequent innate and adaptive interferon-γ production. In contrast, flagellin stimulated multiple cells of hematopoietic and non-hematopoietic origin, including AMs, DCs, monocytes, and lung epithelial cells. AMs were largely responsible for IL-1α, whereas lung epithelial cells made TSLP. Multiple hematopoietic cells, including AMs, DCs, and monocytes contributed to other cytokines, including IL-1β and TNFα. MyD88-dependent signals, likely through IL-1R and IL-33R, and MyD88-independent signals, likely from TSLP, were necessary in cDCs for promotion of the early IL-4 response by CD4 T cells in the draining lymph node. Thus, the cell types that responded to TLR ligands were a critical determinant of the innate cytokines produced and the character of the resulting adaptive immune response in the

  17. Toll-Like Receptor 3 Signalling Up-Regulates Expression of the HIV Co-Receptor G-Protein Coupled Receptor 15 on Human CD4+ T Cells

    PubMed Central

    Kiene, Miriam; Rethi, Bence; Jansson, Marianne; Dillon, Stephanie; Lee, Eric; Lantto, Rebecka; Wilson, Cara; Pöhlmann, Stefan; Chiodi, Francesca

    2014-01-01

    Background Many HIV-2 and SIV isolates, as well as some HIV-1 strains, can use the orphan 7-transmembrane receptor GPR15 as co-receptor for efficient entry into host cells. GPR15 is expressed on central memory and effector memory CD4+ T cells in healthy individuals and a subset of these cells is susceptible to HIV-1 and SIV infection. However, it has not been determined whether GPR15 expression is altered in the context of HIV-1 infection. Results Here, we show that GPR15 expression in CD4+ T cells is markedly up-regulated in some HIV-1 infected individuals compared to the rest of the infected patients and to healthy controls. Infection of the PM1 T cell line with primary HIV-1 isolates was found to up-regulate GPR15 expression on the infected cells, indicating that viral components can induce GPR15 expression. Up-regulation of GPR15 expression on CD4+ T cells was induced by activation of Toll-like receptor 3 signalling via TIR-domain-containing adapter-inducing interferon-β (TRIF) and was more prominent on gut-homing compared to lymph node-homing CD4+ T cells. Conclusion These results suggest that infection-induced up-regulation of GPR15 expression could increase susceptibility of CD4+ T cells to HIV infection and target cell availability in the gut in some infected individuals. PMID:24558379

  18. Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4.

    PubMed

    Llitjos, Jean-François; Auffray, Cédric; Alby-Laurent, Fanny; Rousseau, Christophe; Merdji, Hamid; Bonilla, Nelly; Toubiana, Julie; Belaïdouni, Nadia; Mira, Jean-Paul; Lucas, Bruno; Chiche, Jean-Daniel; Pène, Frédéric

    2016-08-01

    Severe sepsis remains a frequent and dreaded complication in cancer patients. Beyond the often fatal short-term outcome, the long-term sequelae of severe sepsis may also impact directly on the prognosis of the underlying malignancy in survivors. The immune system is involved in all stages of tumour development, in the detection of transforming and dying cells and in the prevention of tumour growth and dissemination. In fact, the profound and sustained immune defects induced by sepsis may constitute a privileged environment likely to favour tumour growth. We investigated the impact of sepsis on malignant tumour growth in a double-hit animal model of polymicrobial peritonitis, followed by subcutaneous inoculation of MCA205 fibrosarcoma cells. As compared to their sham-operated counterparts, post-septic mice exhibited accelerated tumour growth. This was associated with intratumoural accumulation of CD11b(+) Ly6G(high) polymorphonuclear cells (PMNs) that could be characterized as granulocytic myeloid-derived suppressor cells (G-MDSCs). Depletion of granulocytic cells in post-septic mice inhibited the sepsis-enhanced tumour growth. Toll-like receptor (TLR)-4 (Tlr4) and Myd88 deficiencies prevented sepsis-induced expansion of G-MDSCs and tumour growth. Our results demonstrate that the myelosuppressive environment induced by severe bacterial infections promotes malignant tumour growth, and highlight a critical role of CD11b(+) Ly6G(high) G-MDSCs under the control of TLR-dependent signalling. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  19. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina.

    PubMed

    Ariyadi, B; Isobe, N; Yoshimura, Y

    2014-03-01

    We previously reported that bacterial lipopolysaccharide (LPS), a ligand of Toll-like receptor 4 (TLR4), induced mucin mRNA to enhance the mucosal barrier in the hen vagina. The aim of this study was to determine the intracellular signaling molecules for that mucin induction, and the effect of molting and estrogen on their expression. The expression of TLR4, its adaptor molecules, and transcriptional factors in the vaginal mucosa of laying and molting hens treated with or without estradiol was examined by reverse-transcription PCR. The expression of mucin in the cultured mucosal tissue stimulated by LPS together with inhibitors of transcriptional factors was analyzed by quantitative reverse-transcription PCR. The expression of TLR4, its adaptor molecule, namely, myeloid differentiation factor 88 (MyD88) or Toll-interleukin 1 receptor domain-containing adaptor-inducing IFN-β (TRIF), and transcriptional factors, namely, cFos and cJun, declined in molting hens compared with that in laying hens, and were upregulated by estradiol. In vagina of laying hens, mucin expression was upregulated by LPS, whereas it was suppressed by inhibitors of transcriptional factors, namely, ALLN (an inhibitor of IκB proteolysis), BAY-117085 (an NFκB inhibitor), U0126 [a mitogen-activated protein kinase (MAPK) inhibitor], and transhinone IIA [an activated protein 1 (AP-1) inhibitor]. These results suggest that a MyD88-dependent pathway downstream of TLR4 and transcriptional factors of NFκB and AP-1 participate in the induction of mucin expression by LPS in the vaginal mucosa. These signaling functions may decline during molting owing to the decline in the level of circulating estrogen. Such mucin expression system may play a role in the mucosal barrier against infection in the vaginal mucosa.

  20. Preconditioning of Microglia by α-Synuclein Strongly Affects the Response Induced by Toll-like Receptor (TLR) Stimulation

    PubMed Central

    Gonzalez-Rey, Elena; Lachaud, Christian C.; Guilliams, Tim; Fernandez-Montesinos, Rafael; Benitez-Rondan, Alicia; Robledo, Gema; Hmadcha, Abdelkrim; Delgado, Mario; Dobson, Christopher M.; Pozo, David

    2013-01-01

    In recent years, it has become accepted that α-synuclein (αSyn) has a key role in the microglia-mediated neuroinflammation, which accompanies the development of Parkinson’s disease and other related disorders, such as Dementia with Lewy Bodies and Alzheimer’s disease. Nevertheless, the cellular and molecular mechanisms underlying its pathological actions, especially in the sporadic forms of the diseases, are not completely understood. Intriguingly, several epidemiological and animal model studies have revealed a link between certain microbial infections and the onset or progression of sporadic forms of these neurodegenerative disorders. In this work, we have characterized the effect of toll-like receptor (TLR) stimulation on primary murine microglial cultures and analysed the impact of priming cells with extracellular wild-type (Wt) αSyn on the subsequent TLR stimulation of cells with a set of TLR ligands. By assaying key interleukins and chemokines we report that specific stimuli, in particular Pam3Csk4 (Pam3) and single-stranded RNA40 (ssRNA), can differentially affect the TLR2/1- and TLR7-mediated responses of microglia when pre-conditioned with αSyn by augmenting IL-6, MCP-1/CCL2 or IP-10/CXCL10 secretion levels. Furthermore, we report a skewing of αSyn-primed microglia stimulated with ssRNA (TLR7) or Pam3 (TLR2/1) towards intermediate but at the same time differential, M1/M2 phenotypes. Finally, we show that the levels and intracellular location of activated caspase-3 protein change significantly in αSyn-primed microglia after stimulation with these particular TLR agonists. Overall, we report a remarkable impact of non-aggregated αSyn pre-sensitization of microglia on TLR-mediated immunity, a phenomenon that could contribute to triggering the onset of sporadic α-synuclein-related neuropathologies. PMID:24236103

  1. Characterization and functional analysis of toll-like receptor 4 in Chinese soft-shelled turtle Pelodiscus sinensis.

    PubMed

    Zhou, Yingshan; Liang, Quan; Li, Weifen; Gu, Yuanxing; Liao, Xun; Fang, Weihuan; Li, Xiaoliang

    2016-10-01

    Mammalian Toll-like receptor 4 (TLR4) recognizes lipopolysaccharide (LPS) in initiating the innate immune responses. Early studies indicate that turtles are more resistant to LPS challenge than mammals. It remains unknown if turtles express TLR4 and why they are more resistant to LPS. In this study, TLR4 gene from Chinese soft-shelled turtle, Pelodiscus sinensis, was cloned and characterized. The full length cDNA of turtle TLR4 (tTLR4) consists of 3396 base pairs with an 2499-bp open reading frame, encoding 833 amino acids. Phylogenetic and syntenic analyses suggest that tTLR4 is to be orthologous to human TLR4. Its mRNA expression was up-regulated in spleen and blood of turtles upon Aeromonas hydrophila infection. Stimulation of turtle peripheral blood monocytes with LPS significantly upregulated tTLR4 mRNA and inflammation-related gene expression, such as Interleukin-1β (IL-1β) and cyclooxygenase-2 (COX-2). In tTLR4-expressing HEK293 cells, higher concentration of LPS exposure could enhance the activity of the NF-κB promoter, but not the INF-β promoter. Such activity required co-expression of turtle myeloid differentiation factor 2 (tMD2) and cluster of differentiation 14 (tCD14). These results provide evidence for a functional TLR4 in reptiles and, together with the syntenic analysis, support the idea that the TLR4 receptor for LPS recognition may have arisen after reptiles.

  2. TAK1 contributes to the enhanced responsiveness of LTB(4)-treated neutrophils to Toll-like receptor ligands.

    PubMed

    Gaudreault, Éric; Paquet-Bouchard, Carine; Fiola, Stéphanie; Le Bel, Manon; Lacerte, Patricia; Shio, Marina Tiemi; Olivier, Martin; Gosselin, Jean

    2012-11-01

    Pattern-recognition receptors such as Toll-like receptors (TLRs) are essential sensors implicated in the early and efficient innate immune response against pathogens. We have previously demonstrated that leukotriene B(4)(LTB(4)) has the capacity to enhance leukocyte responses to TLR9 ligands and to control viral infection. In this report, we provide evidence that LTB(4) treatment of human neutrophils leads to a potentiation in proinflammatory cytokine secretion induced by various myeloid differentiation factor 88-dependent TLR agonists. LTB(4) failed to enhance TLR mRNA levels as well as expression of TLR2 and TLR4 receptors, suggesting that LTB(4) acts through intracellular mechanism(s) to potentiate neutrophil responses to TLR ligands. We found that while IRAK can be activated by LTB(4), this process is dispensable to LTB(4) to potentiate neutrophil responses to TLR ligands since pretreatment of neutrophils with IRAK1/4 inhibitor did not affect its potentiating effects. However, our data clearly show that LTB(4) treatment of neutrophils led to the phosphorylation of downstream signaling molecules, TAK1 and p38, a process found essential to observe an increased secretion of cytokines by neutrophils activated with TLR ligands. Pretreatment of neutrophils with TAK1 or p38 kinase inhibitors strongly repressed the effect of LTB(4) on cytokine synthesis by neutrophils stimulated with LTA, LPS or CpG. The same pattern was observed in agonist-treated human embryonic kidney 293 cells transfected with TAK1-targeting siRNA where secretion of IL-8 was significantly reduced to basal levels. These results indicate that TAK1 and p38 kinases appear to be central in the 'priming effect' of LTB(4) on neutrophils to enhance response to TLR ligands.

  3. Leishmania pifanoi Proteoglycolipid Complex P8 Induces Macrophage Cytokine Production through Toll-Like Receptor 4▿

    PubMed Central

    Whitaker, Shanta M.; Colmenares, Maria; Pestana, Karen Goldsmith; McMahon-Pratt, Diane

    2008-01-01

    The P8 proteoglycolipid complex (P8 PGLC) is a glyconjugate expressed by Leishmania mexicana complex parasites. We previously have shown that vaccination with P8 PGLC provides protection against cutaneous leishmaniasis in susceptible BALB/c mice. However, the biological importance of this complex remains unknown. Here we show that P8 PGLC localizes to the surface of Leishmania pifanoi amastigotes and that upon exposure to macrophages, P8 PGLC binds and induces inflammatory cytokine and chemokine mRNAs such as tumor necrosis factor alpha and RANTES early after stimulation. Our studies indicate that cytokine and chemokine induction is dependent upon Toll-like receptor 4 (TLR4). Interestingly, key inflammatory cytokines and chemokines (such as interleukin-6 [IL-6], macrophage inflammatory protein 1β, and beta interferon [IFN-β]) that can be induced through TLR4 activation were not induced or only slightly upregulated by P8 PGLC. Activation by P8 PGLC does not occur in the presence of TLR4 alone and requires both CD14 and myeloid differentiation protein 2 for signaling; this requirement may be responsible for the limited TLR4 response. This is the first characterization of a TLR4 ligand for Leishmania. In vitro experiments indicate that L. pifanoi amastigotes induce lower levels of cytokines in macrophages in the absence of TLR4; however, notably higher IL-10/IFN-γ ratios were found for TLR4-deficient mice than for BALB/c mice. Further, increased levels of parasites persist in BALB/c mice deficient in TLR4. Taken together, these results suggest that TLR4 recognition of Leishmania pifanoi amastigotes is important for the control of infection and that this is mediated, in part, through the P8 PGLC. PMID:18299340

  4. Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists

    PubMed Central

    Manrique, Soraya Zorro; Dominguez, Ana L.; Mirza, Noweeda; Spencer, Christopher D.; Bradley, Judy M.; Finke, James H.; Lee, James J.; Pease, Larry R.; Gendler, Sandra J.; Cohen, Peter A.

    2016-01-01

    Many cancers both evoke and subvert endogenous anti-tumor immunity. However, immunosuppression can be therapeutically reversed in subsets of cancer patients by treatments such as checkpoint inhibitors or Toll-like receptor agonists (TLRa). Moreover, chemotherapy can leukodeplete immunosuppressive host elements, including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). We hypothesized that chemotherapy-induced leukodepletion could be immunopotentiated by co-administering TLRa to emulate a life-threatening infection. Combining CpG (ODN 1826) or CpG+poly(I:C) with cyclophosphamide (CY) resulted in uniquely well-tolerated therapeutic synergy, permanently eradicating advanced mouse tumors including 4T1 (breast), Panc02 (pancreas) and CT26 (colorectal). Definitive treatment required endogenous CD8+ and CD4+ IFNγ-producing T-cells. Tumor-specific IFNγ-producing T-cells persisted during CY-induced leukopenia, whereas Tregs were progressively eliminated, especially intratumorally. Spleen-associated MDSCs were cyclically depleted by CY+TLRa treatment, with residual monocytic MDSCs requiring only continued exposure to CpG or CpG+IFNγ to effectively attack malignant cells while sparing non-transformed cells. Such tumor destruction occurred despite upregulated tumor expression of Programmed Death Ligand-1, but could be blocked by clodronate-loaded liposomes to deplete phagocytic cells or by nitric oxide synthase inhibitors. CY+TLRa also induced tumoricidal myeloid cells in naive mice, indicating that CY+TLRa's immunomodulatory impacts occurred in the complete absence of tumor-bearing, and that tumor-induced MDSCs were not an essential source of tumoricidal myeloid precursors. Repetitive CY+TLRa can therefore modulate endogenous immunity to eradicate advanced tumors without vaccinations or adoptive T-cell therapy. Human blood monocytes could be rendered similarly tumoricidal during in vitro activation with TLRa+IFNγ, underscoring the potential

  5. Toll-like receptor 4 regulates lipopolysaccharide-induced inflammation and lactation insufficiency in a mouse model of mastitis.

    PubMed

    Glynn, Danielle J; Hutchinson, Mark R; Ingman, Wendy V

    2014-05-01

    Lactation mastitis is a debilitating inflammatory breast disease in postpartum women. Disease severity is associated with markers of inflammation rather than bacterial load, suggesting that immune-signaling pathways activated in the host are important in the disease pathology. The role of the innate pattern recognition receptor toll-like receptor 4 (TLR4) in progression and resolution of mastitislike disease was investigated in a mouse model. Lipopolysaccharide in Matrigel (10 μg/10 μl) was administered into the teat canal of lactating Tlr4 null mutant and wild-type mice to induce a localized area of inflammation. Mastitis induction resulted in a marked influx of RB6-positive neutrophils and F4/80-positive macrophages, which was higher in Tlr4(-/-) mice compared to wild-type mice. Tlr4 null mutation resulted in an altered immune-signaling fingerprint following induction of mastitis, with attenuated serum cytokines, including CXCL1, CCL2, interleukin 1 beta, and tumor necrosis factor alpha compared to wild-type mice. In both genotypes, the localized area of inflammation had resolved after 7 days, and milk protein was evident. However, the mammary glands of wild-type mice exhibited reduced capacity for milk production, with decreased percent area populated with glandular epithelium and decreased abundance of nuclear phosphorylated signal transducer and activator of transcription 5 compared to Tlr4 null mice. This study demonstrates that inflammatory pathways activated in the host are critically important in mastitis disease progression and suggests that lactation insufficiency associated with mastitis may be a consequence of TLR4-mediated inflammation, rather than the bacterial infection itself.

  6. Lactobacillus rhamnosus GG increases Toll-like receptor 3 gene expression in murine small intestine ex vivo and in vivo.

    PubMed

    Aoki-Yoshida, A; Saito, S; Fukiya, S; Aoki, R; Takayama, Y; Suzuki, C; Sonoyama, K

    2016-06-01

    Administration of Lactobacillus rhamnosus GG (LGG) has been reported to be therapeutically effective against acute secretory diarrhoea resulting from the structural and functional intestinal mucosal lesions induced by rotavirus infection; however, the underlying mechanisms remain to be completely elucidated. Because Toll-like receptor 3 (TLR3) plays a key role in the innate immune responses following the recognition of rotavirus, the present study examined whether LGG influences TLR3 gene expression in murine small intestine ex vivo and in vivo. We employed cultured intestinal organoids derived from small intestinal crypts as an ex vivo tissue model. LGG supplementation increased TLR3 mRNA levels in the intestinal organoids, as estimated by quantitative real-time polymerase chain reaction. Likewise, single and 7-day consecutive daily administrations of LGG increased TLR3 mRNA levels in the small intestine of C57BL/6N mice. The mRNA levels of other TLRs were not substantially altered both ex vivo and in vivo. In addition, LGG supplementation increased the mRNA levels of an antiviral type 1 interferon, interferon-α (IFN-α), and a neutrophil chemokine, CXCL1, upon stimulation with a synthetic TLR3 ligand, poly(I:C) in the intestinal organoids. LGG administration did not alter IFN-α and CXCL1 mRNA levels in the small intestine in vivo. Supplementation of other bacterial strains, Bifidobacterium bifidum and Lactobacillus paracasei, failed to increase TLR3 and poly(I:C)-stimulated CXCL1 mRNA levels ex vivo. We propose that upregulation of TLR3 gene expression may play a pivotal role in the therapeutic efficacy of LGG against rotavirus-associated diarrhoea. In addition, we demonstrated that intestinal organoids may be a promising ex vivo tissue model for investigating host-pathogen interactions and the antiviral action of probiotics in the intestinal epithelium.

  7. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  8. ROLE OF TOLL LIKE RECEPTORS ON PULMONARY INFLAMMATORY RESPONSES TO SIZE FRACTIONATED COMBUSTION AND AMBIENT AIR PARTICLES.

    EPA Science Inventory

    C3H/HeJ mice feature a single point mutation in the Toll like receptor 4 gene which renders these animals resistant to a number of pro-inflammatory agents including lipopolysaccharide and ozone. This study compared pulmonary inflammatory responses in endotoxin resistant (C3H/HeJ...

  9. Toll-like receptor signaling increases production of 1,25-dihydroxyvitamin D3 in bovine macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Activation of macrophages can occur through Toll-like receptor (TLR) recognition of pathogen associated molecular patterns (PAMP). Recently, it has been discovered that TLR signaling can increase 1alpha-hydroxylase (Cyp27B1) expression in human and mouse macrophages. The enzymatic activity of 1alp...

  10. Toll-Like Receptor 4 Is a Regulator of Monocyte and Electroencephalographic Responses to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Clegern, William C.; Schmidt, Michelle A.

    2011-01-01

    Study Objectives: Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. Design, Measurements and Results: TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. Conclusion

  11. Red blood cell alloimmunization is influenced by the delay between Toll-like receptor agonist injection and transfusion.

    PubMed

    Elayeb, Rahma; Tamagne, Marie; Bierling, Philippe; Noizat-Pirenne, France; Vingert, Benoît

    2016-02-01

    Murine models of red blood cell transfusion show that inflammation associated with viruses or methylated DNA promotes red blood cell alloimmunization. In vaccination studies, the intensity of antigen-specific responses depends on the delay between antigen and adjuvant administration, with a short delay limiting immune responses. In mouse models of alloimmunization, the delay between the injection of Toll-like receptor agonists and transfusion is usually short. In this study, we hypothesized that the timing of Toll-like receptor 3 agonist administration affects red blood cell alloimmunization. Poly(I:C), a Toll-like receptor 3 agonist, was administered to B10BR mice at various time points before the transfusion of HEL-expressing red blood cells. For each time point, we measured the activation of splenic HEL-presenting dendritic cells, HEL-specific CD4(+) T cells and anti-HEL antibodies in serum. The phenotype of activated immune cells depended on the delay between transfusion and Toll-like receptor-dependent inflammation. The production of anti-HEL antibodies was highest when transfusion occurred 7 days after agonist injection. The proportion of HEL-presenting CD8α(+) dendritic cells producing interleukin-12 was highest in mice injected with poly(I:C) 3 days before transfusion. Although the number of early-induced HEL-specific CD4(+) T cells was similar between groups, a high proportion of these cells expressed CD134, CD40 and CD44 in mice injected with poly(I:C) 7 days before transfusion. This study clearly shows that the delay between transfusion and Toll-like receptor-induced inflammation influences the immune response to transfused red blood cells.

  12. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum.

    PubMed

    O'Connell, Catherine M; AbdelRahman, Yasser M; Green, Erin; Darville, Hillary K; Saira, Kazima; Smith, Bennett; Darville, Toni; Scurlock, Amy M; Meyer, Christopher R; Belland, Robert J

    2011-03-01

    We previously demonstrated that plasmid-deficient Chlamydia muridarum retains the ability to infect the murine genital tract but does not elicit oviduct pathology because it fails to activate Toll-like receptor 2 (TLR2). We derived a plasmid-cured derivative of the human genital isolate Chlamydia trachomatis D/UW-3/Cx, strain CTD153, which also fails to activate TLR2, indicating this virulence phenotype is associated with plasmid loss in both C. trachomatis and C. muridarum. As observed with plasmid-deficient C. muridarum, CTD153 displayed impaired accumulation of glycogen within inclusions. Transcriptional profiling of the plasmid-deficient strains by using custom microarrays identified a conserved group of chromosomal loci, the expression of which was similarly controlled in plasmid-deficient C. muridarum strains CM972 and CM3.1 and plasmid-deficient C. trachomatis CTD153. However, although expression of glycogen synthase, encoded by glgA, was greatly reduced in CTD153, it was unaltered in plasmid-deficient C. muridarum strains. Thus, additional plasmid-associated factors are required for glycogen accumulation by this chlamydial species. Furthermore, in C. trachomatis, glgA and other plasmid-responsive chromosomal loci (PRCLs) were transcriptionally responsive to glucose limitation, indicating that additional regulatory elements may be involved in the coordinated expression of these candidate virulence effectors. Glucose-limited C. trachomatis displayed reduced TLR2 stimulation in an in vitro assay. During human chlamydial infection, glucose limitation may decrease chlamydial virulence through its effects on plasmid-responsive chromosomal genes.

  13. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ

    PubMed Central

    Okuyama, Hiromi; Tominaga, Akira; Fukuoka, Satoshi; Taguchi, Takahiro; Kusumoto, Yutaka; Ono, Shiro

    2017-01-01

    Th17 cells and the cytokine they produce, interleukin (IL)-17, play an important role in tumor progression in humans and in mice. IL-6 and IL-23 are critical cytokines for the differentiation and propagation of Th17 cells, respectively. Bacterial lipopolysaccharides (LPS) are known to stimulate immune cells to produce such inflammatory cytokines. Contrary to Escherichia coli (E. coli) LPS, LPS from Spirulina has low toxicity and barely induces in vivo production of IL-6 and IL-23 in mice. We examined the antitumor effects of Spirulina LPS compared to E. coli LPS in an MH134 hepatoma model. Administration of Spirulina LPS suppressed tumor growth in C3H/HeN mice, but not in Toll-like receptor 4 (TLR4)-mutant C3H/HeJ mice, by reducing serum levels of IL-17 and IL-23, while increasing interferon (IFN)-γ levels. The antitumor activity and IFN-γ production were mediated by T cells. Moreover, in vitro experiments showed that Spirulina LPS impaired the antigen-presenting function that supports the generation of IL-17-producing cells in a toll-like receptor (TLR)4-dependent manner. Of note, injection of anti-IL-17 antibody in tumor-bearing C3H/HeN mice in the absence of Spirulina LPS markedly suppressed tumor growth and augmented IFN-γ responses. Thus, our results support the notion that IFN-γ and IL-17/IL-23 mutually regulate Th17 and Th1 responses in tumor-bearing hosts, and Spirulina LPS modulates the balance of the IFN-γ-IL-17/IL-23 axis towards IFN-γ production, which leads to tumor inhibition. Furthermore, Spirulina LPS effectively inhibited the spontaneous development of mammary tumors. This study has important implications for the exploitation of TLR-based immunomodulators for cancer immunotherapy. PMID:28075473

  14. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ.

    PubMed

    Okuyama, Hiromi; Tominaga, Akira; Fukuoka, Satoshi; Taguchi, Takahiro; Kusumoto, Yutaka; Ono, Shiro

    2017-02-01

    Th17 cells and the cytokine they produce, interleukin (IL)-17, play an important role in tumor progression in humans and in mice. IL-6 and IL-23 are critical cytokines for the differentiation and propagation of Th17 cells, respectively. Bacterial lipopolysaccharides (LPS) are known to stimulate immune cells to produce such inflammatory cytokines. Contrary to Escherichia coli (E. coli) LPS, LPS from Spirulina has low toxicity and barely induces in vivo production of IL-6 and IL-23 in mice. We examined the antitumor effects of Spirulina LPS compared to E. coli LPS in an MH134 hepatoma model. Administration of Spirulina LPS suppressed tumor growth in C3H/HeN mice, but not in Toll-like receptor 4 (TLR4)-mutant C3H/HeJ mice, by reducing serum levels of IL-17 and IL-23, while increasing interferon (IFN)-γ levels. The antitumor activity and IFN-γ production were mediated by T cells. Moreover, in vitro experiments showed that Spirulina LPS impaired the antigen-presenting function that supports the generation of IL-17-producing cells in a toll-like receptor (TLR)4-dependent manner. Of note, injection of anti-IL-17 antibody in tumor-bearing C3H/HeN mice in the absence of Spirulina LPS markedly suppressed tumor growth and augmented IFN-γ responses. Thus, our results support the notion that IFN-γ and IL-17/IL-23 mutually regulate Th17 and Th1 responses in tumor-bearing hosts, and Spirulina LPS modulates the balance of the IFN-γ-IL-17/IL-23 axis towards IFN-γ production, which leads to tumor inhibition. Furthermore, Spirulina LPS effectively inhibited the spontaneous development of mammary tumors. This study has important implications for the exploitation of TLR-based immunomodulators for cancer immunotherapy.

  15. Toll-Like Receptor 4 Wild Type Homozygozity of Polymorphisms +896 and +1196 Is Associated with High Gastrin Serum Levels and Peptic Ulcer Risk.

    PubMed

    Pohjanen, Vesa-Matti; Koivurova, Olli-Pekka; Huhta, Heikki; Helminen, Olli; Mäkinen, Johanna M; Karhukorpi, Jari M; Joensuu, Tapio; Koistinen, Pentti O; Valtonen, Jarno M; Niemelä, Seppo E; Karttunen, Riitta A; Karttunen, Tuomo J

    2015-01-01

    Toll-like receptor 4 is a part of the innate immune system and recognizes Helicobacter pylori lipopolysaccharide. The goal of this study was to analyze the role of Toll-like receptor 4 polymorphisms +896 (rs4986790) and +1196 (rs4986791) in the pathogenesis of Helicobacter pylori related gastroduodenal diseases in relation to gastric secretion and inflammation. Toll-like receptor 4 polymorphisms, serum gastrin-17 and pepsinogen I and II concentrations were determined, and gastroscopies with histopathological analyses were performed to 216 dyspeptic patients. As genotype controls, 179 controls and 61 gastric cancer patients were studied. In our study, the Toll-like receptor 4 +896 and +1196 polymorphisms were in total linkage disequilibrium. The homozygous wild types displayed higher gastrin-17 serum concentrations than the mutants (p = 0.001) and this effect was independent of Helicobacter pylori. The homozygous wild types also displayed an increased risk for peptic ulcers (OR: 4.390). Toll-like receptor 4 genotypes did not show any association with Helicobacter pylori positivity or the features of gastric inflammation. Toll-like receptor 4 expression was seen in gastrin and somatostatin expressing cells of antral mucosa by immunohistochemistry. Our results suggest a role for Toll-like receptor 4 in gastric acid regulation and that the Toll-like receptor 4 +896 and +1196 wild type homozygozity increases peptic ulcer risk via gastrin secretion.

  16. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus)

    PubMed Central

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations. PMID:27760133

  17. Flagellin a toll-like receptor 5 agonist as an adjuvant in chicken vaccines.

    PubMed

    Gupta, Shishir Kumar; Bajwa, Preety; Deb, Rajib; Chellappa, Madhan Mohan; Dey, Sohini

    2014-03-01

    Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.

  18. The evolution of bat nucleic acid-sensing Toll-like receptors.

    PubMed

    Escalera-Zamudio, Marina; Zepeda-Mendoza, M Lisandra; Loza-Rubio, Elizabeth; Rojas-Anaya, Edith; Méndez-Ojeda, Maria L; Arias, Carlos F; Greenwood, Alex D

    2015-12-01

    We characterized the nucleic acid-sensing Toll-like receptors (TLR) of a New World bat species, the common vampire bat (Desmodus rotundus), and through a comparative molecular evolutionary approach searched for general adaptation patterns among the nucleic acid-sensing TLRs of eight different bats species belonging to three families (Pteropodidae, Vespertilionidae and Phyllostomidae). We found that the bat TLRs are evolving slowly and mostly under purifying selection and that the divergence pattern of such receptors is overall congruent with the species tree, consistent with the evolution of many other mammalian nuclear genes. However, the chiropteran TLRs exhibited unique mutations fixed in ligand-binding sites, some of which involved nonconservative amino acid changes and/or targets of positive selection. Such changes could potentially modify protein function and ligand-binding properties, as some changes were predicted to alter nucleic acid binding motifs in TLR 9. Moreover, evidence for episodic diversifying selection acting specifically upon the bat lineage and sublineages was detected. Thus, the long-term adaptation of chiropterans to a wide variety of environments and ecological niches with different pathogen profiles is likely to have shaped the evolution of the bat TLRs in an order-specific manner. The observed evolutionary patterns provide evidence for potential functional differences between bat and other mammalian TLRs in terms of resistance to specific pathogens or recognition of nucleic acids in general.

  19. Improved Chemotherapeutic Activity by Morus alba Fruits through Immune Response of Toll-Like Receptor 4

    PubMed Central

    Chang, Bo Yoon; Kim, Seon Beom; Lee, Mi Kyeong; Park, Hyun; Kim, Sung Yeon

    2015-01-01

    Morus alba L. fruits have long been used in traditional medicine by many cultures. Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and immunomodulatory actions. However, their mechanism of macrophage activation and anti-cancer effects remain unclear. The present study investigated the molecular mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly increased. These results indicate the indirect anti-cancer activity of MFE through improved immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential anti-tumor immunomodulatory candidate chemotherapy agent. PMID:26473845

  20. Immune Adjuvant Effect of Molecularly-defined Toll-Like Receptor Ligands

    PubMed Central

    Toussi, Deana N.; Massari, Paola

    2014-01-01

    Vaccine efficacy is optimized by addition of immune adjuvants. However, although adjuvants have been used for over a century, to date, only few adjuvants are approved for human use, mostly aimed at improving vaccine efficacy and antigen-specific protective antibody production. The mechanism of action of immune adjuvants is diverse, depending on their chemical and molecular nature, ranging from non-specific effects (i.e., antigen depot at the immunization site) to specific activation of immune cells leading to improved host innate and adaptive responses. Although the detailed molecular mechanism of action of many adjuvants is still elusive, the discovery of Toll-like receptors (TLRs) has provided new critical information on immunostimulatory effect of numerous bacterial components that engage TLRs. These ligands have been shown to improve both the quality and the quantity of host adaptive immune responses when used in vaccine formulations targeted to infectious diseases and cancer that require both humoral and cell-mediated immunity. The potential of such TLR adjuvants in improving the design and the outcomes of several vaccines is continuously evolving, as new agonists are discovered and tested in experimental and clinical models of vaccination. In this review, a summary of the recent progress in development of TLR adjuvants is presented. PMID:26344622

  1. γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis

    PubMed Central

    Moriwaki, Sawako; Into, Takeshi; Suzuki, Keiko; Miyauchi, Mutsumi; Takata, Takashi; Shibayama, Keigo; Niida, Shumpei

    2016-01-01

    Chronic inflammation-associated bone destruction, which is observed in rheumatoid arthritis (RA) and periodontitis, is mediated by excessive osteoclastogenesis. We showed previously that γ-glutamyltranspeptidase (GGT), an enzyme involved in glutathione metabolism, acts as an endogenous activator of such pathological osteoclastogenesis, independent of its enzymatic activity. GGT accumulation is clinically observed in the joints of RA patients, and, in animals, the administration of recombinant GGT to the gingival sulcus as an in vivo periodontitis model induces an increase in the number of osteoclasts. However, the underlying mechanisms of this process remain unclear. Here, we report that Toll-like receptor 4 (TLR4) recognizes GGT to activate inflammation-associated osteoclastogenesis. Unlike lipopolysaccharide, GGT is sensitive to proteinase K treatment and insensitive to polymyxin B treatment. TLR4 deficiency abrogates GGT-induced osteoclastogenesis and activation of NF-κB and MAPK signaling in precursor cells. Additionally, GGT does not induce osteoclastogenesis in cells lacking the signaling adaptor MyD88. The administration of GGT to the gingival sulcus induces increased osteoclastogenesis in wild-type mice, but does not induce it in TLR4-deficient mice. Our findings elucidate a novel mechanism of inflammation-associated osteoclastogenesis, which involves TLR4 recognition of GGT and subsequent activation of MyD88-dependent signaling. PMID:27775020

  2. Acute kidney injury: what part do toll-like receptors play?

    PubMed Central

    Vallés, Patricia G; Lorenzo, Andrea Gil; Bocanegra, Victoria; Vallés, Roberto

    2014-01-01

    The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. Toll-like receptors (TLRs) are the first identified and best studied family of pattern recognition receptors. TLRs are expressed on a variety of cell types, including epithelial cells, endothelia, dendritic cells, monocytes/macrophages, and B- and T-cells. TLRs initiate innate immune responses and concurrently shape the subsequent adaptive immune response. They are sensors of both pathogens, through the exogenous pathogen-associated molecular patterns (PAMPs), and tissue injury, through the endogenous danger-associated molecular patterns (DAMPs). TLR signaling is critical in defending against invading microorganisms; however, sustained receptor activation is also implicated in the pathogenesis of inflammatory diseases. Ischemic kidney injury involves early TLR-driven immunopathology, and the resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, the activation of TLRs also has been implicated in epithelial repair. This review focuses on the role of TLRs and their endogenous ligands within the inflammatory response of acute kidney injury. PMID:24971030

  3. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling.

    PubMed

    Yeh, Da-Wei; Huang, Li-Rung; Chen, Ya-Wen; Huang, Chi-Ying F; Chuang, Tsung-Hsien

    2016-01-01

    Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.

  4. Toll-like receptor polymorphisms, inflammatory and infectious diseases, allergies, and cancer.

    PubMed

    Medvedev, Andrei E

    2013-09-01

    Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research.

  5. Peptides targeting Toll-like receptor signalling pathways for novel immune therapeutics.

    PubMed

    Gomariz, R P; Gutiérrez-Cañas, I; Arranz, A; Carrión, M; Juarranz, Y; Leceta, J; Martínez, C

    2010-01-01

    Toll-like receptors (TLRs) are a family of key proteins that permit mammals to detect microbes and endogenous molecules, which are present in body fluids, cell membranes and cytoplasm. They confer mechanisms to the host for maintaining homeostasis, activating innate immunity and inducing signals that lead to the activation of adaptive immunity. TLR signalling induces the expression of pro-inflammatory and anti-viral genes through different and intricate pathways. However, persistent signalling can be dangerous and all members of the TLR family are involved in the pathogenesis of acute and chronic inflammation, autoimmunity, allergy, cancer and aging. The pharmaceutical industry has begun intensive work developing novel immunotherapeutic approaches based on both activation and inhibition of TLR triggering. Further, clinical trials are pending to evaluate TLR agonists as novel vaccine adjuvants and for the treatment of infectious diseases, allergic diseases and asthma. Since systemic, metabolic and neuroendocrine changes are elicited by inflammation, TLR activity is susceptible of regulation by hormones and neuroendocrine factors. Neuroendocrine mediators are important players in modulating different phases of TLR regulation contributing to the endogenous control of homeostasis through local, regional and systemic routes. Vasoactive intestinal peptide (VIP) is an important signal molecule of the neuroendocrine-immune network that has recently emerged as a potential candidate for the treatment of inflammatory and autoimmune disorders by controlling innate and adaptive immunity. This review shows current advances in the understanding of TLR modulation by VIP that could contribute to the use of this natural peptide as a therapeutic tool.

  6. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    PubMed

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit

    2016-03-01

    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.

  7. Toll-like receptor 3 gene polymorphisms in South African Blacks with type 1 diabetes.

    PubMed

    Pirie, F J; Pegoraro, R; Motala, A A; Rauff, S; Rom, L; Govender, T; Esterhuizen, T M

    2005-08-01

    Type 1 diabetes is the consequence of exposure of genetically susceptible individuals to specific environmental precipitants. The innate immune system provides the initial response to exogenous antigen and links with the adaptive immune system. The aim of this study was to assess the role of polymorphisms occurring in the cytoplasmic region of toll-like receptor (TLR) 3 gene and immediate 5' sequence, in subjects of Zulu descent with type 1 diabetes in KwaZulu-Natal, South Africa. Seventy-nine subjects with type 1 diabetes and 74 healthy normal glucose tolerant gender-matched control subjects were studied. Parts of exon 4 and exon 3/intron 3 of the TLR3 gene were studied by polymerase chain reaction, direct sequencing and restriction enzyme digestion with Bts 1. Of the nine polymorphisms studied, a significant association with type 1 diabetes was found for the major allele in the 2593 C/T polymorphism and for the minor alleles in the 2642 C/A and 2690 A/G polymorphisms, which were found to be in complete linkage disequilibrium. Correction of the P-values for the number of alleles studied, however, rendered the results no longer significant. These results suggest that polymorphisms in the TLR3 gene, which is part of the innate immune system, may be associated with type 1 diabetes in this population.

  8. Effects of age, gender, and immunosuppressive agents on in vivo toll-like receptor pathway responses.

    PubMed

    Khan, Niamat; Summers, Colin W; Helbert, Matthew R; Arkwright, Peter D

    2010-04-01

    Toll-like receptors (TLRs) are important in the initiation of immune responses in both health and disease. How TLR activity alters with age, gender, and also with immunosuppressive agents is still largely unexplored. We studied TLR activity in 49 healthy individuals as well as in 26 patients receiving immunosuppressive drugs. TLR activity did not alter significantly between the ages of 2 and 67 years. However, females had twice the TLR7 ligand-induced interferon-I response of males (OR [95% CI] 2.7 [1.4-5.1]), whereas TLR3 and four activities were not significantly different between the sexes. The T-cell immunosuppressant agents cyclosporine, tacrolimus, and azathioprine, as well as low dose glucocorticosteroids did not significantly alter TLR pathway responses. In contrast, high dose glucocorticosteroids reduced in vivo TLR responses by 70%-90%. We suggest that gender differences in TLR responses may help to explain the female preponderance of some autoimmune disorders. Furthermore, an understanding the effects of immunosuppressive agents on TLR-pathway activity should allow more focused therapy for autoimmune disorders.

  9. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement.

    PubMed

    Cheng, Wei-Erh; Ying Chang, Miao; Wei, Jyun-Yan; Chen, Yen-Jen; Maa, Ming-Chei; Leu, Tzeng-Horng

    2015-06-15

    Berberine is an isoquinoline with anti-inflammatory activity. We previously demonstrated that there was a loop of signal amplification between nuclear factor kappa B and Src for macrophage mobility triggered by the engagement of Toll-like receptors (TLRs). The simultaneous suppression of lipopolysaccharide (LPS)-mediated upregulation of inducible nitric oxide synthase, cyclooxygenase 2, and cell mobility in berberine-treated macrophages suggested Src might be a target of berberine. Indeed, th reduced migration, greatly suppressed Src induction in both protein and RNA transcript by berberine were observed in macrophages exposed to LPS, peptidoglycan, polyinosinic-polycytidylic acid, and CpG-oligodeoxynucleotides. In addition to Src induction, berberine also inhibited LPS-mediated Src activation in Src overexpressing macrophages and S-nitroso-N-acetylpenicillamine (a nitric oxide donor) could partly restore it. Moreover, berberine suppressed Src activity in fibronectin-stimulated macrophages and in v-Src transformed cells. These results implied that by effectively reducing Src expression and activity, berberine inhibited TLR-mediated cell motility in macrophages.

  10. A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species

    PubMed Central

    Vaure, Céline; Liu, Yuanqing

    2014-01-01

    Toll-like receptors (TLRs) belong to the pattern recognition receptor (PRR) family, a key component of the innate immune system. TLRs detect invading pathogens and initiate an immediate immune response to them, followed by a long-lasting adaptive immune response. Activation of TLRs leads to the synthesis of pro-inflammatory cytokines and chemokines and the expression of co-stimulatory molecules. TLR4 specifically recognizes bacterial lipopolysaccharide, along with several other components of pathogens and endogenous molecules produced during abnormal situations, such as tissue damage. Evolution across species can lead to substantial diversity in the TLR4’s affinity and specificity to its ligands, the TLR4 gene and cellular expression patterns and tissue distribution. Consequently, TLR4 functions vary across different species. In recent years, the use of synthetic TLR agonists as adjuvants has emerged as a realistic therapeutic goal, notably for the development of vaccines against poorly immunogenic targets. Given that an adjuvanted vaccine must be assessed in pre-clinical animal models before being tested in humans, the extent to which an animal model represents and predicts the human condition is of particular importance. This review focuses on the current knowledge on the critical points of divergence between human and the mammalian species commonly used in vaccine research and development (non-human primate, mouse, rat, rabbit, swine, and dog), in terms of molecular, cellular, and functional properties of TLR4. PMID:25071777

  11. Toll-Like Receptor 7 Agonists: Chemical Feature Based Pharmacophore Identification and Molecular Docking Studies

    PubMed Central

    Sun, Lidan; Zhang, Liangren; Sun, Gang; Wang, Zhanli; Yu, Yongchun

    2013-01-01

    Chemical feature based pharmacophore models were generated for Toll-like receptors 7 (TLR7) agonists using HypoGen algorithm, which is implemented in the Discovery Studio software. Several methods tools used in validation of pharmacophore model were presented. The first hypothesis Hypo1 was considered to be the best pharmacophore model, which consists of four features: one hydrogen bond acceptor, one hydrogen bond donor, and two hydrophobic features. In addition, homology modeling and molecular docking studies were employed to probe the intermolecular interactions between TLR7 and its agonists. The results further confirmed the reliability of the pharmacophore model. The obtained pharmacophore model (Hypo1) was then employed as a query to screen the Traditional Chinese Medicine Database (TCMD) for other potential lead compounds. One hit was identified as a potent TLR7 agonist, which has antiviral activity against hepatitis virus in vitro. Therefore, our current work provides confidence for the utility of the selected chemical feature based pharmacophore model to design novel TLR7 agonists with desired biological activity. PMID:23526932

  12. Role of toll-like receptor 4 in the inflammation reaction surrounding silicone prosthesis.

    PubMed

    Auquit-Auckbur, Isabelle; Caillot, Frédérique; Arnoult, Christophe; Menard, Jean-François; Drouot, Laurent; Courville, Philippe; Tron, François; Musette, Philippe

    2011-05-01

    The inflammation which occurs around the silicone prosthesis is a complex process that can provoke the failure of the device and compromise the health of the implanted patient. Toll-like receptors (TLRs), which are transmembrane proteins, are now known to act in the innate immune response and in endogenous inflammation. The aim of our study was to assess the role of TLR4 in the foreign body reaction to a silicone shell prosthesis. Disks of shell silicone prosthesis were implanted in the subcutaneous tissue of C57BL6-TLR4-/- and C57BL6-WT mice. At day 14, inflammatory cell infiltrate and vessel sections around the prosthesis were less numerous in TLR4-/- than in WT mice. A histomorphometric analysis showed that the capsule around the implant was 1.96-fold less thick in depleted TLR4 than in wild-type mice. In addition, vascular endothelial growth factor and transforming growth factor 1 were underexpressed in the surrounding tissue of the prosthesis in TLR4-/- mice. Our study suggests, from this foreign body response model against silicone in mice, that TLR4 plays a key role in the reaction process around silicone implants.

  13. Molecular Regulation of Toll-like Receptors in Asthma and COPD

    PubMed Central

    Zuo, Li; Lucas, Kurt; Fortuna, Christopher A.; Chuang, Chia-Chen; Best, Thomas M.

    2015-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) have both been historically associated with significant morbidity and financial burden. These diseases can be induced by several exogenous factors, such as pathogen-associated molecular patterns (PAMPs) (e.g., allergens and microbes). Endogenous factors, including reactive oxygen species, and damage-associated molecular patterns (DAMPs) recognized by toll-like receptors (TLRs), can also result in airway inflammation. Asthma is characterized by the dominant presence of eosinophils, mast cells, and clusters of differentiation (CD)4+ T cells in the airways, while COPD typically results in the excessive formation of neutrophils, macrophages, and CD8+ T cells in the airways. In both asthma and COPD, in the respiratory tract, TLRs are the primary proteins of interest associated with the innate and adaptive immune responses; hence, multiple treatment options targeting TLRs are being explored in an effort to reduce the severity of the symptoms of these disorders. TLR-mediated pathways for both COPD and asthma have their similarities and differences with regards to cell types and the pro-inflammatory cytotoxins present in the airway. Because of the complex TLR cascade, a variety of treatments have been used to minimize airway hypersensitivity and promote bronchodilation. Although unsuccessful at completely alleviating COPD and severe asthmatic symptoms, new studies are focused on possible targets within the TLR cascade to ameliorate airway inflammation. PMID:26617525

  14. Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis.

    PubMed

    McGettrick, Anne F; O'Neill, Luke A J

    2007-10-01

    Toll-like receptors (TLRs) play a critical role in the induction of the immune response to invading pathogens. The detection of pathogens by TLRs initiates a signalling cascade that results in the activation of transcription factors such as nuclear factor (NF)-kappaB and interferon regulatory factors leading to the production of pro-inflammatory cytokines and type 1 interferons. Five cytoplasmic adaptors, MyD88, Mal, Trif, TRAM and SARM, are utilized by the TLRs to activate these signalling pathways. Through the years the main focus of research has been on the activation and function of TLRs in monocytic cells. This review discusses several additional roles of TLRs. TLR activation plays a role in influencing the differentiation of haematopoietic stem cells. Their activation also prevents apoptosis in neutrophils following pathogen invasion. B cells and T cells proliferation and differentiation is influenced by TLR activation and the possible therapeutic benefits of using TLR ligands for the treatment of chronic lymphocytic leukaemia will also be discussed.

  15. Toll-like Receptors in the Vascular System: Sensing the Dangers Within

    PubMed Central

    McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study. PMID:26721702

  16. Toll-like receptor 4 decoy, TOY, attenuates gram-negative bacterial sepsis.

    PubMed

    Jung, Keehoon; Lee, Jung-Eun; Kim, Hak-Zoo; Kim, Ho Min; Park, Beom Seok; Hwang, Seong-Ik; Lee, Jie-Oh; Kim, Sun Chang; Koh, Gou Young

    2009-10-09

    Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2 complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy receptor (TOY) using 'the Hybrid leucine-rich repeats (LRR) technique'. TOY contains the MD-2 binding ectodomain of TLR4, the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated LPS-triggered NF-kappaB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of other novel decoy receptor proteins.

  17. Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling

    PubMed Central

    Yeh, Da-Wei; Huang, Li-Rung; Chen, Ya-Wen; Huang, Chi-Ying F.

    2016-01-01

    Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells. PMID:28116318

  18. Discovery of Imidazoquinolines with Toll-Like Receptor 7/8 Independent Cytokine Induction

    PubMed Central

    2012-01-01

    Toll-like receptors (TLRs) are key targets in the design of immunomodulating agents for use as vaccine adjuvants and anticancer treatments. The imidazoquinolines, imiquimod and resiquimod, have been shown to activate TLR-7 and -8, which in turn induce cytokine production as part of the innate immune response. Herein, we report the synthesis and discovery of a C7-methoxycarbonyl derivative of imiquimod that stimulates cytokine production but is devoid of TLR-7/8 activity. Data are presented that shows that this analogue not only induces IL-12p40 and TNF production, similar to that of imiquimod and resiquimod, but greatly enhances the production of IL-1β, a key cytokine involved in the activation of CD4 T cells. It is further demonstrated that TLR-7/8 activation can be recovered by the addition of a C2-alkyl substituent to this newly discovered analogue. The results support the existence of an alternative mechanism of action by which imidazoquinolines can stimulate cytokine production. PMID:22837811

  19. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis.

    PubMed

    Gabrilovich, M I; Walrath, J; van Lunteren, J; Nethery, D; Seifu, M; Kern, J A; Harding, C V; Tuscano, L; Lee, H; Williams, S D; Mackay, W; Tomashefski, J F; Silver, R F

    2013-09-01

    In this study, we hypothesized that the granulomatous disorder sarcoidosis is not caused by a single pathogen, but rather results from abnormal responses of Toll-like receptors (TLRs) to conserved bacterial elements. Unsorted bronchoalveolar lavage (BAL) cells from patients with suspected pulmonary sarcoidosis and healthy non-smoking control subjects were stimulated with representative ligands of TLR-2 (in both TLR-2/1 and TLR-2/6 heterodimers) and TLR-4. Responses were determined by assessing resulting production of tumour necrosis factor (TNF)-α and interleukin (IL)-6. BAL cells from patients in whom sarcoidosis was confirmed displayed increased cytokine responses to the TLR-2/1 ligand 19-kDa lipoprotein of Mycobacterium tuberculosis (LpqH) and decreased responses to the TLR-2/6 agonist fibroblast stimulating ligand-1 (FSL)-1. Subsequently, we evaluated the impact of TLR-2 gene deletion in a recently described murine model of T helper type 1 (Th1)-associated lung disease induced by heat-killed Propionibacterium acnes. As quantified by blinded scoring of lung pathology, P. acnes-induced granulomatous pulmonary inflammation was markedly attenuated in TLR-2(-/-) mice compared to wild-type C57BL/6 animals. The findings support a potential role for disordered TLR-2 responses in the pathogenesis of pulmonary sarcoidosis.

  20. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    PubMed

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  1. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5

    PubMed Central

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; del Val, Margarita; Aramburu, José

    2012-01-01

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses. PMID:22312110

  2. Modulation of Adult Mesenchymal Stem Cells Activity by Toll-Like Receptors: Implications on Therapeutic Potential

    PubMed Central

    DelaRosa, Olga; Lombardo, Eleuterio

    2010-01-01

    Mesenchymal stem cells (MSCs) are of special interest as therapeutic agents in the settings of both chronic inflammatory and autoimmune diseases. Toll-like receptors (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases due to the permanent exposure of the immune system to TLR-specific stimuli. Therefore, MSCs employed in therapy can be potentially exposed to TLR ligands, which may modulate MSC therapeutic potential in vivo. Recent results demonstrate that MSCs are activated by TLR ligands leading to modulation of the differentiation, migration, proliferation, survival, and immunosuppression capacities. However inconsistent results among authors have been reported suggesting that the source of MSCs, TLR stimuli employed or culture conditions play a role. Notably, activation by TLR ligands has not been reported to modulate the “immunoprivileged” phenotype of MSCs which is of special relevance regarding the use of allogeneic MSC-based therapies. In this review, we discuss the available data on the modulation of MSCs activity through TLR signalling. PMID:20628526

  3. Toll-Like Receptor Polymorphisms, Inflammatory and Infectious Diseases, Allergies, and Cancer

    PubMed Central

    2013-01-01

    Toll-like receptors (TLRs) are germ-line-encoded innate immune sensors that recognize conserved microbial structures and host alarmins and signal expression of MHC proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These processes activate immediate and early mechanisms of innate host defense, as well as initiate and orchestrate adaptive immune responses. Several single-nucleotide polymorphisms (SNPs) within the TLR genes have been associated with altered susceptibility to infectious, inflammatory, and allergic diseases, and have been found to play a role in tumorigenesis. Critical advances in our understanding of innate immune functions and genome-wide association studies (GWAS) have uncovered complex interactions of genetic polymorphisms within TLRs and environmental factors. However, conclusions obtained in the course of such analyses are restricted by limited power of many studies that is likely to explain controversial findings. Further, linkages to certain ethnic backgrounds, gender, and the presence of multigenic effects further complicate the interpretations of how the TLR SNPs affect immune responses. For many TLRs, the molecular mechanisms by which SNPs impact receptor functions remain unknown. In this review, I have summarized current knowledge about the TLR polymorphisms, their impact on TLR signaling, and associations with various inflammatory, infectious, allergic diseases and cancers, and discussed the directions of future scientific research. PMID:23675778

  4. Candida albicans phospholipomannan triggers inflammatory responses of human keratinocytes through Toll-like receptor 2.

    PubMed

    Li, Min; Chen, Qing; Shen, Yongnian; Liu, Weida

    2009-07-01

    The Toll-like receptors (TLRs) play an important role in the recognition of Candida albicans components and activation of innate immunity. Phospholipomannan (PLM), a glycolipid, is expressed at the surface of C. albicans cell wall, which acts as a member of the pathogen-associated molecular patterns family. In this study, we sought to clarify whether C. albicans-native PLM could induce an inflammation response in human keratinocytes and to determine the underlying mechanisms. Exposure of cultured human primary keratinocytes to PLM led to the increased gene expression and secretion of proinflammatory cytokines (IL-6) and chemokines (IL-8). PLM hydrolysed with beta-d-mannoside mannohydrolase failed to induce gene expression and secretion of IL-6 and IL-8. PLM up-regulated the mRNA and protein levels of TLR2, whereas the mRNA level of TLR4 was not altered. Keratinocytes challenged with PLM resulted in the activation of NF-kappaB and mitogen-activated protein kinase (MAPKs) including p38. Anti-TLR2 neutralizing antibody, NFkappaB and p38MAPK inhibitors blocked the PLM-induced secretion of IL-6, IL-8 in keratinocytes, but no such effect was observed in pretreatment with anti-TLR4-neutralizing antibody and lipopolysaccharide inhibitor (polymyxin B). These data suggest C. albicans-native PLM may contribute to the inflammatory responses of cutaneous candidiasis in the TLR2-NF-kappaB and p38MAPK signalling pathway dependent manner.

  5. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity

    PubMed Central

    Tenor, Jennifer L; Aballay, Alejandro

    2008-01-01

    Pathogen recognition through Toll-like receptors (TLRs) is crucial in order to mount an appropriate immune response against microorganisms. On the basis of a lack of evidence indicating that Caenorhabditis elegans uses TLRs to elicit an immune response and on the absence of genes encoding Rel-like transcription factors in its genome, it is believed that TLR-mediated immunity arose after coelomates split from pseudocoelomates and acoelomates. Here, we show that C. elegans tol-1(nr2033) mutants are killed by the human pathogen Salmonella enterica, which causes a significant pharyngeal invasion in the absence of TOL-1-mediated immunity. We also show that TOL-1 is required for the correct expression of ABF-2, which is a defensin-like molecule expressed in the pharynx, and heat-shock protein 16.41, which is also expressed in the pharynx and is part of a HSP family of proteins required for C. elegans immunity. The results indicate that TOL-1 has a direct role in defence response to certain Gram-negative bacteria and indicate that part of the TLR-mediated immunity might be evolutionarily conserved. PMID:17975555

  6. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity.

    PubMed

    Tenor, Jennifer L; Aballay, Alejandro

    2008-01-01

    Pathogen recognition through Toll-like receptors (TLRs) is crucial in order to mount an appropriate immune response against microorganisms. On the basis of a lack of evidence indicating that Caenorhabditis elegans uses TLRs to elicit an immune response and on the absence of genes encoding Rel-like transcription factors in its genome, it is believed that TLR-mediated immunity arose after coelomates split from pseudocoelomates and acoelomates. Here, we show that C. elegans tol-1(nr2033) mutants are killed by the human pathogen Salmonella enterica, which causes a significant pharyngeal invasion in the absence of TOL-1-mediated immunity. We also show that TOL-1 is required for the correct expression of ABF-2, which is a defensin-like molecule expressed in the pharynx, and heat-shock protein 16.41, which is also expressed in the pharynx and is part of a HSP family of proteins required for C. elegans immunity. The results indicate that TOL-1 has a direct role in defence response to certain Gram-negative bacteria and indicate that part of the TLR-mediated immunity might be evolutionarily conserved.

  7. Kidney Expression of Toll Like Receptors in Lupus Nephritis: Quantification and Clinicopathological Correlations

    PubMed Central

    Miranda, Francesca; Bombardieri, Michele; Valesini, Guido

    2016-01-01

    Objective. The study aimed at locating and quantifying Toll Like Receptor (TLR) 3, 7, 8, and 9 expression in kidney of patients with lupus nephritis (LN) and correlating them with clinicopathological features. Methods. Kidney sections from 26 LN patients and 4 controls were analyzed by immunohistochemistry using anti-human TLR3, TLR7, TLR8, and TLR9 polyclonal antibodies; the number of TLR-positive nuclei/mm2 was evaluated on digitalized images. Results. Compared to controls, LN showed a significantly higher amount of glomerular and tubulointerstitial TLR9 (p = 0.003 and p = 0.007), whole and tubulointerstitial TLR3 (p = 0.026 and p = 0.031), and a higher tubulointerstitial TLR7 (p = 0.022). TLR9 positively correlated with activity index (p = 0.0063) and tubular TLR7 with chronicity index (p = 0.026). TLR9 positively correlated with Renal-SLEDAI (p = 0.01). Conclusions. This is the first study quantifying kidney expressions of TLRs in LN patients; the results show an overexpression of TLR3, TLR7, and TLR9 and demonstrate a correlation with clinicopathological indices supporting a role of these mediators in the pathogenesis of LN. PMID:27635115

  8. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy.

    PubMed

    Apetoh, Lionel; Ghiringhelli, François; Tesniere, Antoine; Obeid, Michel; Ortiz, Carla; Criollo, Alfredo; Mignot, Grégoire; Maiuri, M Chiara; Ullrich, Evelyn; Saulnier, Patrick; Yang, Huan; Amigorena, Sebastian; Ryffel, Bernard; Barrat, Franck J; Saftig, Paul; Levi, Francis; Lidereau, Rosette; Nogues, Catherine; Mira, Jean-Paul; Chompret, Agnès; Joulin, Virginie; Clavel-Chapelon, Françoise; Bourhis, Jean; André, Fabrice; Delaloge, Suzette; Tursz, Thomas; Kroemer, Guido; Zitvogel, Laurence

    2007-09-01

    Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.

  9. Network Analysis of Neurodegenerative Disease Highlights a Role of Toll-Like Receptor Signaling

    PubMed Central

    Nguyen, Thanh-Phuong; Morine, Melissa J.

    2014-01-01

    Despite significant advances in the study of the molecular mechanisms altered in the development and progression of neurodegenerative diseases (NDs), the etiology is still enigmatic and the distinctions between diseases are not always entirely clear. We present an efficient computational method based on protein-protein interaction network (PPI) to model the functional network of NDs. The aim of this work is fourfold: (i) reconstruction of a PPI network relating to the NDs, (ii) construction of an association network between diseases based on proximity in the disease PPI network, (iii) quantification of disease associations, and (iv) inference of potential molecular mechanism involved in the diseases. The functional links of diseases not only showed overlap with the traditional classification in clinical settings, but also offered new insight into connections between diseases with limited clinical overlap. To gain an expanded view of the molecular mechanisms involved in NDs, both direct and indirect connector proteins were investigated. The method uncovered molecular relationships that are in common apparently distinct diseases and provided important insight into the molecular networks implicated in disease pathogenesis. In particular, the current analysis highlighted the Toll-like receptor signaling pathway as a potential candidate pathway to be targeted by therapy in neurodegeneration. PMID:24551850

  10. Human platelets express Toll-like receptor 3 and respond to poly I:C.

    PubMed

    Anabel, Antonio-Santos; Eduardo, Pérez-Campos; Pedro Antonio, Hernández-Cruz; Carlos, Solórzano-Mata; Juana, Narváez-Morales; Honorio, Torres-Aguilar; Nicolás, Villegas-Sepúlveda; Sergio Roberto, Aguilar-Ruiz

    2014-12-01

    Platelets functions in hemostasis have been widely studied. Currently, growing evidence shows that platelets have also a role in the immune innate response. Recently, protein expression of Toll-like receptors (TLR's) 2, 4, 7, 8, and 9, and the presence of TLRs 1 and 6 mRNA in human platelets was described. Up to now the functionality of TLR-2, 4 and 9 in human platelets has been demonstrated. Due to the relevance of TLRs functions to PAMPS (pathogen-associated molecular patterns) recognizing, we evaluated the presence of TLR3 in human platelets founding low percentages of platelets expressing surface or intracellular TLR3 protein. The activation with thrombin induced an increase in the percentage of platelets expressing surface TLR3 and higher levels of TLR3 expression in the whole population. Human platelets responded to poly I:C by increasing [Ca(2+)]i, the percentages of cells expressing TLR4 and CD62P, and by releasing CXCL4 and IL-1β in comparison to unstimulated platelets. These results demonstrate that human platelets express TLR3 and are capable of responding to poly I:C, suggesting that these cells might influence the immune innate response when detecting viral dsRNA.

  11. Conservation of toll-like receptor signaling pathways in teleost fish

    USGS Publications Warehouse

    Purcell, M.K.; Smith, K.D.; Aderem, A.; Hood, L.; Winton, J.R.; Roach, J.C.

    2006-01-01

    In mammals, toll-like receptors (TLR) recognize ligands, including pathogen-associated molecular patterns (PAMPs), and respond with ligand-specific induction of genes. In this study, we establish evolutionary conservation in teleost fish of key components of the TLR-signaling pathway that act as switches for differential gene induction, including MYD88, TIRAP, TRIF, TRAF6, IRF3, and IRF7. We further explore this conservation with a molecular phylogenetic analysis of MYD88. To the extent that current genomic analysis can establish, each vertebrate has one ortholog to each of these genes. For molecular tree construction and phylogeny inference, we demonstrate a methodology for including genes with only partial primary sequences without disrupting the topology provided by the high-confidence full-length sequences. Conservation of the TLR-signaling molecules suggests that the basic program of gene regulation by the TLR-signaling pathway is conserved across vertebrates. To test this hypothesis, leukocytes from a model fish, rainbow trout (Oncorhynchus mykiss), were stimulated with known mammalian TLR agonists including: Diacylated and triacylated forms of lipoprotein, flagellin, two forms of LPS, synthetic double-stranded RNA, and two imidazoquinoline compounds (loxoribine and R848). Trout leukocytes responded in vitro to a number of these agonists with distinct patterns of cytokine expression that correspond to mammalian responses. Our results support the key prediction from our phylogenetic analyses that strong selective pressure of pathogenic microbes has preserved both TLR recognition and signaling functions during vertebrate evolution. ?? 2005 Elsevier Inc. All rights reserved.

  12. Identification of a Toll-like receptor 1 in guinea fowl (Agelastes niger).

    PubMed

    Wu, Yanhua; Ruan, Wenke; Cui, Defeng; Li, Huanrong

    2012-10-01

    Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns, thus playing important roles in host defense. This study determined the first sequence of a TLR1 type 1 in the guinea fowl (GFTLR1). The open reading frame of GFTLR1 type 1 contains 2,115 nucleotides and encodes 705 amino acids. Amino acid analysis indicated that GFTLR1 type 1 shares 92.3 % homology with the green jungle fowl, 92.1 % with the chicken, 90.4 % with the turkey, and 84.4 % with Cooper's hawk. Genetic patterns were identified within the TLR1 type 1 of the chicken and the guinea fowl. GFTLR1 type 1 was found to have 92 polymorphic amino acid sites, of which 16 were in the leucine-rich repeat (LRR) domain, 3 in a C-terminal LRR domain, and 6 in a Toll/interleukin-1 receptor domain. The data showed that avian TLR1 type 1 genes are under purifying selection and highly conserved, because dN/dS was less than 1.

  13. Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

    PubMed Central

    Hellmuth, Isabell; Freund, Isabel; Schlöder, Janine; Seidu-Larry, Salifu; Thüring, Kathrin; Slama, Kaouthar; Langhanki, Jens; Kaloyanova, Stefka; Eigenbrod, Tatjana; Krumb, Matthias; Röhm, Sandra; Peneva, Kalina; Opatz, Till; Jonuleit, Helmut; Dalpke, Alexander H.; Helm, Mark

    2017-01-01

    A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern-recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single-stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccines have been reported to exhibit synergistic effects. Here, we describe a concept to chemically combine three therapeutic functions in one RNA bioconjugate. This consists in the simultaneous TLR7 stimulation by ssRNA and smTLRa as well as the therapeutic function of the RNA itself, e.g., as a vaccinating or knockdown agent. We have hence synthesized bioconjugates of mRNA and siRNA containing covalently attached smTLRa and tested their function in TLR7 stimulation. Strikingly, the bioconjugates displayed decreased rather than synergistically increased stimulation. The decrease was distinct from the antagonistic action of an siRNA bearing a Gm motive, as observed by direct comparison of the effects in the presence of otherwise stimulatory RNA. In summary, these investigations showed that TRL7 activation can be impeded by bioconjugation of small molecules to RNA. PMID:28392787

  14. The innate immune system, toll-like receptors and dermal wound healing: A review.

    PubMed

    Portou, M J; Baker, D; Abraham, D; Tsui, J

    2015-08-01

    Wound healing is a complex physiological process comprised of discrete but inter-related and overlapping stages, requiring exact timing and regulation to successfully progress, yet occurs spontaneously in response to injury. It is characterised by four phases, coagulation, inflammation, proliferation and remodelling. Each phase is predominated by particular cell types, cytokines and chemokines. The innate immune system represents the first line of defence against invading microorganisms. It is entirely encoded with the genome, and comprised of a cellular response with specificity provided by pattern recognition receptors (PRRs) such as toll-like receptors (TLRs). TLRs are activated by exogenous microbial pathogen associated molecular patterns (PAMPs), initiating an immune response through the production of pro-inflammatory cytokines and further specialist immune cell recruitment. TLRs are also activated by endogenous molecular patterns termed damage associated molecular patterns (DAMPs). These ligands, usually shielded from the immune system, act as alarm signals alerting the immune system to damage and facilitate the normal wound healing process. TLRs are expressed by cells essential to wound healing such as keratinocytes and fibroblasts, however the specific role of TLRs in this process remains controversial. This article reviews the current knowledge on the potential role of TLRs in dermal wound healing where inflammation arising from pathogenic activation of these receptors appears to play a role in chronic ulceration associated with diabetes, scar hypertrophy and skin fibrosis.

  15. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage.

    PubMed

    Borkowski, Andrew W; Kuo, I-Hsin; Bernard, Jamie J; Yoshida, Takeshi; Williams, Michael R; Hung, Nai-Jung; Yu, Benjamin D; Beck, Lisa A; Gallo, Richard L

    2015-02-01

    UV damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates Toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase the expression of genes associated with permeability barrier repair. Here, we sought to test whether skin barrier repair after UVB damage is dependent on the activation of TLR3. We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These observations were shown to have functional relevance as Tlr3-/- mice displayed a delay in skin barrier repair following UVB damage. Combined, these data further validate the conclusion that recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier repair.

  16. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage

    PubMed Central

    Borkowski, Andrew W.; Kuo, I-Hsin; Bernard, Jamie J.; Yoshida, Takeshi; Williams, Michael R.; Hung, Nai-Jung; Yu, Benjamin D.; Beck, Lisa A.; Gallo, Richard L.

    2014-01-01

    Ultraviolet (UV) damage to the skin leads to the release of noncoding RNA (ncRNA) from necrotic keratinocytes that activates toll-like receptor 3 (TLR3). This release of ncRNA triggers inflammation in the skin following UV damage. Recently, TLR3 activation was also shown to aid wound repair and increase expression of genes associated with permeability barrier repair. Here, we sought to test if skin barrier repair after UVB damage is dependent on the activation of TLR3. We observed that multiple ncRNAs induced expression of skin barrier repair genes, that the TLR3 ligand Poly (I:C) also induced expression and function of tight junctions, and that the ncRNA U1 acts in a TLR3-dependent manner to induce expression of skin barrier repair genes. These observations were shown to have functional relevance as Tlr3−/− mice displayed a delay in skin barrier repair following UVB damage. Combined, these data further validate the conclusion that recognition of endogenous RNA by TLR3 is an important step in the program of skin barrier repair. PMID:25118157

  17. Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4.

    PubMed

    Bachtell, Ryan; Hutchinson, Mark R; Wang, Xiaohui; Rice, Kenner C; Maier, Steven F; Watkins, Linda R

    2015-01-01

    There is growing recognition that glial proinflammatory activation importantly contributes to the rewarding and reinforcing effects of a variety of drugs of abuse, including cocaine, methamphetamine, opioids, and alcohol. It has recently been proposed that glia are recognizing, and becoming activated by, such drugs as a CNS immunological response to these agents being xenobiotics; that is, substances foreign to the brain. Activation of glia, primarily microglia, by various drugs of abuse occurs via toll like receptor 4 (TLR4). The detection of such xenobiotics by TLR4 results in the release of glial neuroexcitatory and neurotoxic substances. These glial products of TLR4 activation enhance neuronal excitability within brain reward circuitry, thereby enhancing their rewarding and reinforcing effects. Indeed, selective pharmacological blockade of TLR4 activation, such as with the non-opioid TLR4 antagonist (+)-naltrexone, suppresses a number of indices of drug reward/reinforcement. These include: conditioned place preference, self-administration, drugprimed reinstatement, incubation of craving, and elevations of nucleus accumbens shell dopamine. Notably, TLR4 blockade fails to alter self-administration of food, indicative of a selective effect on drugs of abuse. Genetic disruption of TLR4 signaling recapitulates the effects of pharmacological TLR4 blockade, providing converging lines of evidence of a central importance of TLR4. Taken together, multiple lines of evidence converge to raise TLR4 as a promising therapeutic target for drug abuse.

  18. The molecular structure of the Toll-like receptor 3 ligand-binding domain

    PubMed Central

    Bell, Jessica K.; Botos, Istvan; Hall, Pamela R.; Askins, Janine; Shiloach, Joseph; Segal, David M.; Davies, David R.

    2005-01-01

    Innate immunity is the first line of defense against invading pathogens. Toll-like receptors (TLRs) act as sentinels of the innate immune system, sensing a variety of ligands from lipopolysaccharide to flagellin to dsRNA through their ligand-binding domain that is composed of leucine-rich repeats (LRRs). Ligand binding initiates a signaling cascade that leads to the up-regulation of inflammation mediators. In this study, we have expressed and crystallized the ectodomain (ECD) of human TLR3, which recognizes dsRNA, a molecular signature of viruses, and have determined the molecular structure to 2.4-Å resolution. The overall horseshoe-shaped structure of the TLR3-ECD is formed by 23 repeating LRRs that are capped at each end by specialized non-LRR domains. The extensive β-sheet on the molecule's concave surface forms a platform for several modifications, including insertions in the LRRs and 11 N-linked glycans. The TLR3-ECD structure indicates how LRR loops can establish distinct pathogen recognition receptors. PMID:16043704

  19. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis.

    PubMed

    Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E

    2015-08-01

    Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.

  20. Toll like receptor 2 and 4 polymorphisms in malaria endemic populations of India.

    PubMed

    Bali, Prerna; Pradhan, Sabyasachi; Sharma, Divya; Adak, Tridibes

    2013-02-01

    Toll like receptors (TLRs) play a pivotal role in recognizing the invading malaria parasite Plasmodium, thus genetic makeup of the exposed population can be of utmost importance for its predisposition to malaria. In this study 264 malaria patients from seven different eco epidemiological regions of India were genotyped for TLR2 and TLR4 polymorphisms using DNA sequencing methods. No variation was observed at residue positions 677 and 753 in TLR2 whereas residue positions 299 and 399 in TLR4 were highly polymorphic. The GC haplotype (Asp299Gly/Thr399Thr) was observed at the highest frequency in populations of East Singhbhum, Vizianagaram and North Goa and absent in Kolkata, Dakshin Kannada and Nicobar district. All polymorphisms were in Hardy Weinberg equilibrium. Populations of Kolkata, Nicobar district, Sundergarh and Dakshin Kannada were observed to be closely related. TLR2 polymorphism was absent in the Indian population and an overall heterogeneous pattern of TLR4 polymorphism can be attributed to genetic drift. However it can be inferred that GC haplotype is under the process of natural selection in the Indian population and one of the factors contributing to its selection could be predominance of Plasmodium falciparum in these regions.

  1. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne

    PubMed Central

    2013-01-01

    Background Acne is a common disorder of the human pilosebaceous unit, yet the mechanisms underlying hyperkeratinisation and subsequent inflammation (comedogenesis) remain to be determined, although cutaneous pathogens are implicated. Previously, it was reported that the release of the cytokine interleukin-1α (IL-1α) by keratinocytes of the sebaceous duct was pivotal in the life cycle of the comedone, mediating both its development and its spontaneous resolution. Toll-like receptors are a family of molecules that recognise pathogen associated molecular patterns (PAMPs) presented by microorganisms, initiating a signalling cascade terminating in the release of antimicrobial compounds and cytokines. Methods We used ex vivo sebaceous gland and primary monolayer keratinocyte culture, alongside ELISAs, immunohistochemistry, Western blotting and RT-PCR to investigate the contribution of TLR activation to acne pathogenesis. Results We found TLR2 to be expressed in basal and infundibular keratinocytes, and sebaceous glands, and its activation provoked the release of IL-1α from primary human keratinocytes in vitro. The exposure of microdissected human sebaceous glands to PAMPs specific for TLR2 in vitro resulted in a pattern of IL-1α like cornification after seven days of exposure. Conclusions TLR activation and secretion of IL-1α from keratinocytes may be initiating steps in comedogenesis and, therefore, critical to the pathophysiology of acne. PMID:24011352

  2. Toll-like receptor 9 deficiency impacts sensory and motor behaviors.

    PubMed

    Khariv, Veronika; Pang, Kevin; Servatius, Richard J; David, Brian T; Goodus, Matthew T; Beck, Kevin D; Heary, Robert F; Elkabes, Stella

    2013-08-01

    Toll-like receptors (TLRs) mediate the induction of the innate immune system in response to pathogens, injury and disease. However, they also play non-immune roles and are expressed in the central nervous system (CNS) during prenatal and postnatal stages including adulthood. Little is known about their roles in the CNS in the absence of pathology. Several members of the TLR family have been implicated in the development of neural and cognitive function although the contribution of TLR9 to these processes has not been well defined. The current studies were undertaken to determine whether developmental TLR9 deficiency affects motor, sensory or cognitive functions. We report that TLR9 deficient (TLR9(-/-)) mice show a hyper-responsive sensory and motor phenotype compared to wild type (TLR9(+/+)) controls. This is indicated by hypersensitivity to thermal stimuli in the hot plate paw withdrawal test, enhanced motor-responsivity under anxious conditions in the open field test and greater sensorimotor reactivity in the acoustic startle response. Prepulse inhibition (PPI) of the acoustic startle response was also enhanced, which indicates abnormal sensorimotor gating. In addition, subtle, but significant, gait abnormalities were noted in the TLR9(-/-) mice on the horizontal balance beam test with higher foot slip numbers than TLR9(+/+) controls. In contrast, spatial learning and memory, assessed by the Morris water maze, was similar in the TLR9(-/-) and TLR9(+/+) mice. These findings support the notion that TLR9 is important for the appropriate development of sensory and motor behaviors.

  3. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit toll-like receptor 2 and 4 signaling.

    PubMed

    Kandasamy, Pitchaimani; Numata, Mari; Berry, Karin Zemski; Fickes, Rachel; Leslie, Christina C; Murphy, Robert C; Voelker, Dennis R

    2016-06-01

    The pulmonary surfactant phospholipid, 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG), potently inhibits toll-like receptor (TLR)2 and TLR4 signaling from the cell surface of macrophages. Analogs of POPG that vary in polar head group length, hydroxylation, and alkyl branching were synthesized using a phospholipase D-catalyzed transphosphatidylation reaction and a 1-palmitoyl-2-oleoyl phosphatidylcholine substrate. Lipid analogs with C3 and C4 alkyl head group length (POP-propanol and POP-butanol) are less effective than POPG as TLR2 and TLR4 antagonists. However, adding a hydroxyl group at the alkyl chain 3- or 4-position (POP-propanediols or POP-butanediols) greatly increased their inhibitory effects against TLR2 and TLR4. POP-2',2'-dimethylpropanediol is a weak inhibitor of TLR2 and TLR4 activation that results in arachidonic acid release, but an effective inhibitor of TLR4 activation that results in TNF-α production. Addition of an amino group at the alkyl-2 position (POP-2'-aminopropanediol) completely abolished the antagonism of TLRs 2 and 4. Multiple analogs strongly bind to the TLR4 coreceptors, cluster of differentiation 14 (CD14) and myeloid differentiation 2, but competition for di[3-deoxy-D-manno-octulosonyl]-lipid A binding to CD14 is the best predictor of biological activity at the cellular level. Collectively, these findings identify new compounds for antagonizing TLR2 and TLR4 activation and define structural properties of POPG analogs for discriminating between two TLR systems.

  4. [Structural Analyses of Toll-like Receptor Sensing Single-stranded Nucleic Acids and Its Application].

    PubMed

    Shimizu, Toshiyuki

    2016-01-01

    Toll-like receptors (TLRs) are a family of pattern-recognition receptors that recognize microbial components and initiate subsequent immune responses. TLR7 and TLR8 recognize single-stranded (ss)RNA and initiate innate immune responses. Moreover, several small-molecule compounds have been identified as TLR7 and TLR8 activators. We determined the crystal structures of unliganded and ligand-induced activated human TLR8 dimers. Upon ligand stimulation, the TLR8 dimer was reorganized such that the two C-termini were brought into proximity. Ligand binding induces reorganization of the TLR8 dimer, which enables downstream signaling processes. To elucidate how TLR8 recognizes its natural ligand, ssRNA, as well as how the receptor can be activated by ssRNA that is structurally and chemically very different from the chemical ligands, we performed crystallographic studies of TLR8 in complex with ssRNA. TLR8 recognizes, at distinct sites, uridine and small oligonucleotides derived from the degradation of ssRNA. Uridine bound the site on the dimerization interface where small chemical ligands are recognized, whereas short oligonucleotides bound a newly identified site. Based on structural information, new compounds have been developed. We describe the crystal structure of a newly developed agonist, C2-butyl furo[2,3-c]quinolone.

  5. The Yin and Yang of Toll-like Receptors in Cancer

    PubMed Central

    Pradere, Jean-Philippe; Dapito, Dianne H.; Schwabe, Robert F.

    2014-01-01

    Recognition of non-self molecular patterns by pattern recognition receptors is a cornerstone of innate immunity. Toll-like receptors (TLRs) exert a key role in recognizing pathogen-associated molecular patterns (PAMPs) but have also been implicated in the recognition of damage-associated molecular patterns (DAMPs). As such, TLRs regulate a wide range of biological responses including inflammatory and immune responses during carcinogenesis. The high expression of TLRs by antigen-presenting cells, including dendritic cells, and their ability to induce anti-tumor mediators such as type I interferon has led to efforts to utilize TLR agonists in tumor therapy in order to convert the often tolerant immune response towards anti-tumor responses. However, TLRs are also increasingly recognized as regulators of tumor-promoting inflammation and promoters of tumor survival signals. Here, we will review in detail the dichotomous role of TLRs in tumor biology, focusing on relevant TLR-dependent pro- and anti-tumor pathways, and discuss clinical applications of TLR-targeted therapies for tumor prevention and treatment. PMID:23934186

  6. Toll-like receptor signalling in regenerative myogenesis: friend and foe.

    PubMed

    Hindi, Sajedah M; Kumar, Ashok

    2016-06-01

    Skeletal muscle regeneration in normal and diseased muscle is regulated by multiple factors and cells present in the injured muscle micro-environment. In addition to muscle progenitor cells, several immunocytes participate in the regenerative response. Among them, macrophages are one of the most important components of the immune response that governs the step-wise progression of muscle regeneration. The initial role of macrophages is to phagocytose muscle cell debris and later, through their transition to an anti-inflammatory phenotype, they promote regeneration. However, in several genetic muscle disorders, continuous muscle injury disrupts the balance between pro-inflammatory and anti-inflammatory macrophages, leading to an overall inflammatory milieu and inhibition of muscle regeneration. Accumulating evidence suggests that Toll-like receptor (TLR)-mediated signalling plays an important role in the regulation of macrophage phenotypes during regenerative myogenesis in response to both acute and chronic muscle injury. Here, we discuss the role of TLR signalling in regulating macrophage phenotypes and skeletal muscle regeneration in healthy and diseased muscle. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Regulation of Wound Healing and Organ Fibrosis by Toll-like Receptors

    PubMed Central

    Huebener, Peter; Schwabe, Robert F.

    2013-01-01

    Chronic injury often triggers maladaptive wound healing responses leading to the development of tissue fibrosis and subsequent organ malfunction. Inflammation is a key component of the wound healing process and promotes the development of organ fibrosis. Here, we review the contribution of Toll-like receptors (TLRs) to wound healing with a particular focus on their role in liver, lung, kidney, skin and myocardial fibrosis. We discuss the role of TLRs on distinct cell populations that participate in the repair process following tissue injury, and the contribution of exogenous and endogenous TLR ligands to the wound healing response. Systemic review of the literature shows that TLRs promote tissue repair and fibrosis in many settings, albeit with profound differences between organs. In particular, TLRs exert a pronounced effect on fibrosis in organs with higher exposure to bacterial TLR ligands, such as the liver. Targeting TLR signaling at the ligand or receptor level may represent a novel strategy for the prevention of maladaptive wound healing and fibrosis in chronically injured organs. PMID:23220258

  8. Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15

    PubMed Central

    Wang, Jinlan; Chang, Fen

    2016-01-01

    Toll-like receptors (TLRs) play important role in the innate immune system. TLR15 is reported to have a unique role in defense against pathogens, but its structural and evolution characterizations are still poorly understood. In this study, we identified 57 completed TLR15 genes from avian and reptilian genomes. TLR15 clustered into an individual clade and was closely related to family 1 on the phylogenetic tree. Unlike the TLRs in family 1 with the broken asparagine ladders in the middle, TLR15 ectodomain had an intact asparagine ladder that is critical to maintain the overall shape of ectodomain. The conservation analysis found that TLR15 ectodomain had a highly evolutionarily conserved region on the convex surface of LRR11 module, which is probably involved in TLR15 activation process. Furthermore, the protein–protein docking analysis indicated that TLR15 TIR domains have the potential to form homodimers, the predicted interaction interface of TIR dimer was formed mainly by residues from the BB-loops and αC-helixes. Although TLR15 mainly underwent purifying selection, we detected 27 sites under positive selection for TLR15, 24 of which are located on its ectodomain. Our observations suggest the structural features of TLR15 which may be relevant to its function, but which requires further experimental validation. PMID:27257554

  9. The Toll-Like Receptor Agonist Imiquimod Is Active against Prions

    PubMed Central

    Beringue, Vincent; Soubigou, Flavie; Pang, Yanhong; Desban, Nathalie; Massacrier, Catherine; Morel, Yannis; Paturel, Carine; Contesse, Marie-Astrid; Bouaziz, Serge; Sanyal, Suparna; Galons, Hervé; Blondel, Marc; Voisset, Cécile

    2013-01-01

    Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI+] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo in a transgenic mouse model for prion diseases. In order to facilitate structure-activity relationship studies, we conducted a new synthetic pathway which provides a more efficient means of producing new IQ chemical derivatives, the activity of which was tested against both yeast and mammalian prions. The comparable antiprion activity of IQ and its chemical derivatives in the above life forms further emphasizes the conservation of prion controlling mechanisms throughout evolution. Interestingly, this study also demonstrated that the antiprion activity of IQ and IQ-derived compounds is independent from their ability to stimulate TLRs. Furthermore, we found that IQ and its active chemical derivatives inhibit the protein folding activity of the ribosome (PFAR) in vitro. PMID:23977222

  10. Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus).

    PubMed

    Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette

    2016-01-01

    The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.

  11. Allergic rhinitis and genetic components: focus on Toll-like receptors (TLRs) gene polymorphism

    PubMed Central

    Gao, Zhiwei; Rennie, Donna C; Senthilselvan, Ambikaipakan

    2010-01-01

    Allergic rhinitis represents a global health issue affecting 10% to 25% of the population worldwide. Over the years, studies have found that allergic diseases, including allergic rhinitis, are associated with immunological responses to antigens driven by a Th2-mediated immune response. Because Toll-like receptors (TLRs) are involved in both innate and adaptive immune responses to a broad variety of antigens, the association between polymorphisms of TLRs and allergic diseases has been the focus in many animal and human studies. Although the etiology of allergic rhinitis is still unknown, extensive research over the years has confirmed that the underlying causes of allergic diseases are due to many genetic and environmental factors, along with the interactions among them, which include gene–environment, gene–gene, and environment–environment interactions. Currently, there is great inconsistency among studies mainly due to differences in genetic background and unique gene–environment interactions. This paper reviews studies focusing on the association between TLR polymorphisms and allergic diseases, including allergic rhinitis, which would help researchers better understand the role of TLR polymorphisms in the development of allergic rhinitis, and ultimately lead to more efficient therapeutic interventions being developed. PMID:23776356

  12. Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease.

    PubMed

    Kim, Sokho; Park, Surim; Kim, Bumseok; Kwon, Jungkee

    2016-06-09

    Recently, a possible link between toll-like receptor 7 (TLR7) and liver disease was suggested, although it was limited to fibrosis. Based on this report, we investigated whether TLR7 has a pivotal role in non-alcoholic fatty liver disease (NAFLD). The TLR7 signaling pathway, which is activated by imiquimod (TLR7 ligand) naturally, induced autophagy and released insulin-like growth factor 1 (IGF-1) into medium from hepatocytes. Lipid accumulation induced by unsaturated fatty acid (UFA; arachidonic acid:oleic acid = 1:1) in hepatocytes, was attenuated in TLR7 and autophagy activation. Interestingly, TLR7 activation attenuated UFA-induced lipid peroxidation products, such as malondialdehyde (MDA) and 4-Hydroxy-2-Nonenal (4-HNE). To clarify a possible pathway between TLR7 and lipid peroxidation, we treated hepatocytes with MDA and 4-HNE. MDA and 4-HNE induced 2-folds lipid accumulation in UFA-treated hepatocytes via blockade of the TLR7 signaling pathway's IGF-1 release compared to only UFA-treated hepatocytes. In vivo experiments carried out with TLR7 knockout mice produced results consistent with in vitro experiments. In conclusion, TLR7 prevents progression of NAFLD via induced autophagy and released IGF-1 from liver. These findings suggest a new therapeutic strategy for the treatment of NAFLD.

  13. Toll-like receptor 7 affects the pathogenesis of non-alcoholic fatty liver disease

    PubMed Central

    Kim, Sokho; Park, Surim; Kim, Bumseok; Kwon, Jungkee

    2016-01-01

    Recently, a possible link between toll-like receptor 7 (TLR7) and liver disease was suggested, although it was limited to fibrosis. Based on this report, we investigated whether TLR7 has a pivotal role in non-alcoholic fatty liver disease (NAFLD). The TLR7 signaling pathway, which is activated by imiquimod (TLR7 ligand) naturally, induced autophagy and released insulin-like growth factor 1 (IGF-1) into medium from hepatocytes. Lipid accumulation induced by unsaturated fatty acid (UFA; arachidonic acid:oleic acid = 1:1) in hepatocytes, was attenuated in TLR7 and autophagy activation. Interestingly, TLR7 activation attenuated UFA-induced lipid peroxidation products, such as malondialdehyde (MDA) and 4-Hydroxy-2-Nonenal (4-HNE). To clarify a possible pathway between TLR7 and lipid peroxidation, we treated hepatocytes with MDA and 4-HNE. MDA and 4-HNE induced 2-folds lipid accumulation in UFA-treated hepatocytes via blockade of the TLR7 signaling pathway’s IGF-1 release compared to only UFA-treated hepatocytes. In vivo experiments carried out with TLR7 knockout mice produced results consistent with in vitro experiments. In conclusion, TLR7 prevents progression of NAFLD via induced autophagy and released IGF-1 from liver. These findings suggest a new therapeutic strategy for the treatment of NAFLD. PMID:27279075

  14. Toll-like receptors (TLRs) in aquatic animals: signaling pathways, expressions and immune responses.

    PubMed

    Rauta, Pradipta R; Samanta, Mrinal; Dash, Hirak R; Nayak, Bismita; Das, Surajit

    2014-01-01

    The innate system's recognition of non-self and danger signals is mediated by a limited number of germ-line encoded pattern recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are single, non-catalytic, membrane-spanning PRRs present in invertebrates and vertebrates. They act by specifically recognizing PAMPs of a variety of microbes and activate signaling cascades to induce innate immunity. A large number of TLRs have been identified in various aquatic animals of phyla Cnidaria, Annelida, Mollusca, Arthropoda, Echinodermata and Chordata. TLRs of aquatic and warm-blooded higher animals exhibit some distinctive features due to their diverse evolutionary lineages. However, majority of them share conserve signaling pathways in pathogen recognition and innate immunity. Functional analysis of novel TLRs in aquatic animals is very important in understanding the comparative immunology between warm-blooded and aquatic animals. In additions to innate immunity, recent reports have highlighted the additional roles of TLRs in adaptive immunity. Therefore, vaccines against many critical diseases of aquatic animals may be made more effective by supplementing TLR activators which will stimulate dendritic cells. This article describes updated information of TLRs in aquatic animals and their structural and functional relationship with warm-blooded animals.

  15. Molecular cloning and functional analysis of duck Toll-like receptor 5.

    PubMed

    Xiong, Dan; Pan, Zhiming; Kang, Xilong; Wang, Jing; Song, Li; Jiao, Xinan

    2014-08-01

    Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In this study, we cloned the single-exon TLR5 gene of the Maya breed of Common Shelduck (Tadorna tadorna). The TLR5 open reading frame is 2580 bp in length and encodes an 859-amino acid protein. The putative amino acid sequence of duck TLR5 consisted of a signal peptide sequence, 11 leucine-rich repeat domains, a leucine-rich repeat C-terminal domain, a transmembrane domain, and an intracellular Toll-interleukin-1 receptor domain. The duck TLR5 gene was highly expressed in the lung, bone marrow, spleen, and liver; moderately expressed in kidney, small intestine, large intestine, and brain. A plasmid expressing duck TLR5 was constructed and transfected into HEK293T cells, and expression was confirmed by indirect immunofluorescence assay. HEK293T cells transfected with duck TLR5- and NF-κB-luciferase-containing plasmids significantly responded to flagellin from Salmonella typhimurium, indicating that it is a functional TLR5 homolog.

  16. Endothelial cell Toll-like receptor 4 regulates fibrosis associated angiogenesis in liver

    PubMed Central

    Jagavelu, K; Routray, C; Shergill, U; O’Hara, SP; Faubion, W; Shah, VH

    2010-01-01

    Angiogenesis defines the growth of new blood vessels from pre-existing vascular endothelial networks and corresponds with the wound healing process that is typified by the process of liver fibrosis. Liver fibrosis is also associated with increased endotoxin within the gut lumen and its associated portal circulation. However, the interrelationship of gut endotoxin and its receptor, Toll-like receptor 4 (TLR4), with liver fibrosis and associated angiogenesis remains incompletely defined. RESULT Here we provide evidence, using complementary genetic, molecular, and pharmacologic approaches that the pattern recognition receptor that recognizes endotoxin, TLR4, expressed on liver endothelial cells (LEC), regulates angiogenic responses both in vitro and in vivo. Mechanistic studies reveal a key role for a cognate TLR4 effector protein, MyD88 in this process which culminates in extracellular protease production that regulates LEC invasive capacity, a key step in angiogenesis. Furthermore TLR4 dependent angiogenesis in vivo corresponds with fibrosis in complementary liver models of fibrosis. CONCLUSION These studies provide evidence that the TLR4 pathway in LEC regulates angiogenesis through its MyD88 effector protein by regulating extracellular protease production and that this process is linked to the development of liver fibrosis. PMID:20564354

  17. Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors

    PubMed Central

    Wang, Jinlan; Zhang, Zheng; Liu, Jing; Zhao, Jing; Yin, Deling

    2016-01-01

    Toll-like receptors (TLRs) are crucial components of innate immunity that specifically recognize diverse pathogen-associated molecular patterns from pathogens. The continuous hydrogen-bond network (asparagine ladder) formed among the asparagine residues on the concave surfaces of neighboring leucine-rich repeat modules assists in stabilizing the overall shape of TLR ectodomains responsible for ligand recognition. Analysis of 28 types of vertebrate TLRs showed that their ectodomains possessed three types of architectures: a single-domain architecture with an intact asparagine ladder, a three-domain architecture with the ladder interrupted in the middle, and a trans-three-domain architecture with the ladder broken in both termini. Based on a phylogenetic analysis, the three vertebrate TLR architectures arose during early evolution. The 1428 vertebrate TLRs can be divided into eight families based on sequence and structural differences. TLRs ligand specificities are affected by their ectodomain architectures. Three-domain TLRs bind hydrophobic ligands, whereas single-domain and trans-three-domain TLRs mainly recognize hydrophilic ligands. Analysis of 39 vertebrate genomes suggested that the number of single-domain TLR genes in terrestrial vertebrate genomes decreased by half compared to aquatic vertebrate genomes. Single-domain TLR genes underwent stronger purifying selective pressures than three-domain TLR genes in mammals. Overall, ectodomain architecture influences the sequence and functional evolution of vertebrate TLRs. PMID:27216145

  18. Association between toll-like receptors expression and major depressive disorder.

    PubMed

    Hung, Yi-Yung; Kang, Hong-Yo; Huang, Kai-Wei; Huang, Tiao-Lai

    2014-12-15

    Accumulating evidences suggest that Toll-like receptors (TLRs) were involved in the pathophysiology of major depressive disorder. TLR4 was thought to be associated with major depressive disorder in animal model, but the others were still unknown. In order to examine TLR1-9 mRNA expression levels in peripheral blood and their relationships with the psychopathology of major depressive disorder, 30 patients with major depressive disorder were compared with 29 healthy controls. The 17-item Hamilton Depression Rating Scale (HAMD-17) was used to assess the severity of major depression. The mRNA expression levels of TLRs were examined in parallel with a housekeeping gene using real-time polymerase chain reaction (RT-PCR). Analysis of covariance with age and body mass index adjustment revealed a significantly higher expression of TLR3, 4, 5 and 7 mRNA but lower expression of TLR1 and 6 in patients with major depressive disorder as compared with healthy controls. Multiple linear regression analysis revealed that TLR4 was an independent risk factor relating to severity of major depression. These findings suggest that TLRs, especially TLR4, may be involved in the psychopathology of major depression.

  19. Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment

    PubMed Central

    Celhar, Teja; Fairhurst, Anna-Marie

    2014-01-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the loss of tolerance to self-nuclear antigens. The symptoms of SLE, progression of pathology and the array of autoantibodies present in the serum differ significantly from patient to patient, which calls for a personalized approach to treatment. SLE is polygenic and strongly influenced by gender, ethnicity, and environmental factors. Data from genome-wide association studies suggests that polymorphisms in as many as 100 genes contribute to SLE susceptibility. Recent research has focused on genes associated with Toll-like receptors (TLRs), type I interferons, immune regulation pathways, and immune-complex clearance. TLR7 and TLR9 have been extensively studied using lupus-prone mouse models. In multiple systems overexpression of TLR7 drives disease progression but interestingly, a loss of TLR9 results in an almost identical phenotype. While TLR7 overexpression has been linked to human SLE, the possible role of TLR9 in human disease remains elusive. In the present review, we focus on TLR polymorphisms and TLR expression in SLE patients and discuss their potential as biomarkers for individualized treatment. PMID:25538618

  20. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2.

    PubMed

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer; Lee, Seung-Jae

    2016-06-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target.

  1. Thrombomodulin promotes diabetic wound healing by regulating toll-like receptor 4 expression.

    PubMed

    Cheng, Tsung-Lin; Lai, Chao-Han; Chen, Po-Ku; Cho, Chia-Fong; Hsu, Yun-Yan; Wang, Kuan-Chieh; Lin, Wei-Ling; Chang, Bi-Ing; Liu, Shi-Kai; Wu, Yu-Ting; Hsu, Chao-Kai; Shi, Guey-Yueh; Wu, Hua-Lin

    2015-06-01

    Keratinocyte-expressed thrombomodulin (TM) and the released soluble TM (sTM) have been demonstrated to promote wound healing. However, the effects of high glucose on TM expression in keratinocytes and the role of TM in diabetic ulcer remain unclear. In this study, we demonstrated that expressions of TM and Toll-like receptor 4 (TLR4) were both downregulated in high-glucose cultured human keratinocytes and in skin keratinocytes of diabetic patients. In addition, the wound-triggered upregulation of TM and sTM production was abolished in both high-glucose cultured human keratinocytes and streptozotocin-induced diabetic mouse skin. Furthermore, supplementation of recombinant sTM could increase TLR4 expression and promote cutaneous wound healing in both high-glucose cultured human keratinocytes and diabetic mice. However, in Tlr4-deleted mice, which exhibited delayed wound healing, the therapeutic benefit of recombinant sTM was abrogated. Moreover, our results showed that tumor necrosis factor-α (TNF-α) expression in keratinocytes was dose-dependently upregulated by glucose, and TNF-α treatment downregulated the expression of TM and TLR4. Taken together, high-glucose environment reduces the expression of TM and TLR4 in keratinocytes possibly through the action of TNF-α, and recombinant sTM can increase the TLR4 expression and promote wound healing under diabetic condition.

  2. Role of Toll-like receptors in the development of sepsis.

    PubMed

    Tsujimoto, Hironori; Ono, Satoshi; Efron, Philip A; Scumpia, Philip O; Moldawer, Lyle L; Mochizuki, Hidetaka

    2008-03-01

    The outcome of sepsis and septic shock has not significantly improved in recent decades despite the development of numerous drugs and supportive care therapies. To reduce sepsis-related mortality, a better understanding of molecular mechanism(s) associated with the development of sepsis and sepsis-related organ injury is essential. There is increasing evidence that Toll-like receptors (TLRs) play a key role in the mediation of systemic responses to invading pathogens during sepsis. However, the role of TLRs in the development of sepsis and in sepsis-related organ injury remains debatable. In this review, we focus on the biological significance of TLRs during sepsis. Medline was searched for pertinent publications relating to TLRs, with emphasis on their clinical and pathophysiological importance in sepsis. In addition, a summary of the authors' own experimental data from this field was set in the context of current knowledge regarding TLRs. In both animal models and human sepsis, TLRs are highly expressed on monocytes/macrophages, and this TLR expression may not simply be a ligand-specific response in such an environment. The fact that TLR signaling enables TLRs to recognize harmful mediators induced by invading pathogens may be associated with a positive feedback loop for the inflammatory response among different cell populations. This mechanism(s) may contribute to the organ dysfunction and mortality that occurs in sepsis. A better understanding of TLR biology may unveil novel therapeutic approaches for sepsis.

  3. Induction of cytokines and chemokines by Toll-like receptor signaling: strategies for control of inflammation.

    PubMed

    Zeytun, Ahmet; Chaudhary, Anu; Pardington, Paige; Cary, R; Gupta, Goutam

    2010-01-01

    Recognition of the pathogen-associated molecular pattern (PAMP) by host Toll-like receptors (TLR) is an important component of the innate immune response for countering against invading viruses, bacteria, and fungi. Upon PAMP recognition, the TLR induces intracellular signaling cascades that involve adapter, signalosome, and transcription factor complexes and result in the production of both pro- and anti-inflammatory cytokines and chemokines. An inflammatory response for a short duration can be beneficial because it helps to clear the infectious agent. However, prolonged inflammation can be detrimental because it may cause host toxicity and tissue damage. Indeed, excessive production of inflammatory cytokines and chemokines via TLR pathways is often associated with many inflammatory and autoimmune diseases. Therefore, fine control of inflammation in the TLR pathway is highly desirable for effective host defense. In this article, we review intrinsic control mechanisms that include a balance between pro-inflammatory and anti-inflammatory cytokines and chemokines, production of host effectors, and regulation at the level of adapter, signalosome, and transcription factor complexes in the TLR pathways. We also discuss how understanding of the TLR signaling steps leads to the development of small-molecule drugs that can interfere with the formation of active adapter, signalosome, and adapter complexes.

  4. Characterization of Toll-like receptors 1-10 in spotted hyenas.

    PubMed

    Flies, Andrew S; Maksimoski, Matthew T; Mansfield, Linda S; Weldele, Mary L; Holekamp, Kay E

    2014-06-01

    Previous research has shown that spotted hyenas (Crocuta crocuta) regularly survive exposure to deadly pathogens such as rabies, canine distemper virus, and anthrax, suggesting that they have robust immune defenses. Toll-like receptors (TLRs) recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses. TLR genes are evolutionarily conserved, and assessing TLR expression in various tissues can provide insight into overall immunological organization and function. Studies of the hyena immune system have been minimal thus far due to the logistical and ethical challenges of sampling and preserving the immunological tissues of this and other long-lived, wild species. Tissue samples were opportunistically collected from captive hyenas humanely euthanized for a separate study. We developed primers to amplify partial sequences for TLRs 1-10, sequenced the amplicons, compared sequence identity to those in other mammals, and quantified TLR expression in lymph nodes, spleens, lungs, and pancreases. Results show that hyena TLR DNA and protein sequences are similar to TLRs in other mammals, and that TLRs 1-10 were expressed in all tissues tested. This information will be useful in the development of new assays to understand the interactions among the hyena immune system, pathogens, and the microbial communities that inhabit hyenas.

  5. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni.

    PubMed

    Pila, Emmanuel A; Tarrabain, Mahmoud; Kabore, Alethe L; Hanington, Patrick C

    2016-03-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  6. A Novel Toll-Like Receptor (TLR) Influences Compatibility between the Gastropod Biomphalaria glabrata, and the Digenean Trematode Schistosoma mansoni

    PubMed Central

    Pila, Emmanuel A.; Tarrabain, Mahmoud; Kabore, Alethe L.; Hanington, Patrick C.

    2016-01-01

    Schistosomiasis, a devastating disease caused by parasitic flatworms of the genus Schistosoma, affects over 260 million people worldwide especially in tropical and sub-tropical regions. Schistosomes must undergo their larval development within specific species of snail intermediate hosts, a trait that is shared among almost all digenean trematodes. This unique and long-standing host-parasite relationship presents an opportunity to study both the importance of conserved immunological features in novel immunological roles, as well as new immunological adaptations that have arisen to combat a very specific type of immunological challenge. While it is well supported that the snail immune response is important for protecting against schistosome infection, very few specific snail immune factors have been identified and even fewer have been functionally characterized. Here, we provide the first functional report of a snail Toll-like receptor, which we demonstrate as playing an important role in the cellular immune response of the snail Biomphalaria glabrata following challenge with Schistosoma mansoni. This TLR (BgTLR) was identified as part of a peptide screen of snail immune cell surface proteins that differed in abundance between B. glabrata snails that differ in their compatibility phenotype to challenge by S. mansoni. The S. mansoni-resistant strain of B. glabrata (BS-90) displayed higher levels of BgTLR compared to the susceptible (M-line) strain. Transcript expression of BgTLR was found to be very responsive in BS-90 snails when challenged with S. mansoni, increasing 27 fold relative to β-actin (non-immune control gene); whereas expression in susceptible M-line snails was not significantly increased. Knockdown of BgTLR in BS-90 snails via targeted siRNA oligonucleotides was confirmed using a specific anti-BgTLR antibody and resulted in a significant alteration of the resistant phenotype, yielding patent infections in 43% of the normally resistant snails, which

  7. Role of Thr399Ile and Asp299Gly polymorphisms of toll-like receptor-4 gene in acute dental abscess

    PubMed Central

    Miri-Moghaddam, Ebrahim; Baghaee, Elnaz; Bazi, Ali; Garme, Yasaman

    2017-01-01

    Background Apical Periodontitis (AP) is an inflammatory disease that affects the tissues surrounding the root end of a tooth. The disease which is caused by endodontic infections presents in different clinical ways including development of an acute abscess. Recent studies have provided information suggesting role of a multitude of factors in pathogenesis of acute apical abscess (AAA). In this case-control study, our goal was to evaluate the frequency and potential role of two common polymorphisms of toll like receptor-4 (TLR-4) gene; Thr399Ile (1196 C>T) and Asp299Gly (+896 A>G), in 50 patients with AAA as cases and 50 patients with asymptomatic apical periodontitis (AAP) as controls. Material and Methods Saliva sample containing mucosal epithelial cells was used for DNA extraction. Polymorphisms were detected by Tetra-ARMS (Amplification Refractory Mutation System) PCR method. Statistical analyses were carried out in SPSS 21 software. Results Homozygous wild type (CC) and heterozygous (CT) genotypes of Thr399Ile polymorphism were detected in 84% and 16% of AAA patients respectively. In controls, respective ratios were 94% (CC) and 6% (CT). Observed difference was not statistically significant (P>0.05) for distribution of these genotypes. The mutant homozygous (TT) genotype of this polymorphism was identified in neither of the participants. Overall, T allele frequency was obtained 8% in AAA and 3% in AAP (OR=2.6, 95% CI; 0. 6-10.6, p>0.05). For Asp299Gly polymorphism, no individual was detected with the mutant allele in case or control groups. Conclusions Our results indicated a possible role for Thr399Ile polymorphism in acute presentations of abscess in AAA. However, the impact of this polymorphism needs to be more assessed in future studies. Key words:Genetic polymorphism, periapical abscess, periapical periodontitis, toll-like receptor 4. PMID:28210435

  8. Presence of toll like receptor-2 in spleen, lymph node and thymus of Swiss albino mice and its modulation by Staphylococcus aureus and bacterial lipopolysaccharide. .

    PubMed

    Ghosh, Chandrayee; Prakash, Nune Ravi; Manna, Sunil Kumar; Bishayi, Biswadev

    2015-02-01

    Toll-like receptors (TLR) are a family of pattern recognition receptors identifying pathogen associated molecular patterns (PAMPs). They play a critical role in the innate immune response during the initial interaction between the infecting microorganism and phagocytic cells. Here, we verified the presence of TLR-2 in spleen, lymph node and thymus of Swiss albino mice and their modulation after infection with Staphylococcus aureus and Lipopolysaccharide (LPS) challenge. It was seen that TLR-2 gene transcribed to its respective mRNA on S. aureus infection, in thymus, spleen and lymph node of mice but their levels and mode of expression varied. When challenged with LPS no prominent changes in the expression of TLR-2 receptor was observed but its expression increased gradually with time in the thymus, spleen and lymph node of S. aureus infected mice. TLR-2 expression was also found enhanced in infected splenic macrophages. By studying the serum cytokine profile the functionality of the receptor was measured. The results indicate the presence of TLR-2 in thymus, spleen and lymph node of Swiss albino strain of mice and that they are modulated by S. aureus.

  9. Malaria primes the innate immune response due to interferon-gamma induced enhancement of toll-like receptor expression and function.

    PubMed

    Franklin, Bernardo S; Parroche, Peggy; Ataíde, Marco Antonio; Lauw, Fanny; Ropert, Catherine; de Oliveira, Rosane B; Pereira, Dhelio; Tada, Mauro Shugiro; Nogueira, Paulo; da Silva, Luiz Hildebrando Pereira; Bjorkbacka, Harry; Golenbock, Douglas T; Gazzinelli, Ricardo T

    2009-04-07

    Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated "priming," we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNgamma-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9(-/-), IL12(-/-) and to a greater extent, IFNgamma(-/-) mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNgamma responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.

  10. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4.

    PubMed

    Tarkowski, Andrej; Bjersing, Jan; Shestakov, Andrey; Bokarewa, Maria I

    2010-06-01

    Toll-like receptors (TLRs) are a family of cellular structures activated by recognition of pathogen associated molecular sequences. The activation of TLRs triggers a variety of intracellular mechanisms aiming to protect the host from the invading microorganisms. Lipopolysaccharide (LPS) is the main ligand for TLR4. Here we show that resistin, a cystein-rich protein believed to regulate carbohydrate metabolism, competes with LPS for binding to TLR4. Binding of recombinant resistin to human myeloid and epithelial cells was assessed by flow cytometry and its co-precipitation with TLR4 was demonstrated. Antibodies against TLR4 abolished resistin binding to human leucocytes and cytokine production by peripheral blood mononuclear cells in response to resistin stimulation. In contrast, isotype-matched murine IgG or TLR2 antibodies were unable to prevent binding of resistin to the cells. Similarly, TLR4-dependent pattern of resistin binding was observed in epithelial cell line HEK293 (human epithelial kidney cell), where TLR4 transfected, but not myeloid differentiation factor 2/CD14-transfected, TLR2 transfected or HEKnull cells, responded functionally to resistin stimulation. Intracellular signalling of resistin was assessed using inhibitors of transcription factors mitogen activated protein kinases, nuclear factor-kappaB, phosphoinositide 3-kinase and siRNA targeting TLR4 and human myeloid differentiation factor 88. Results demonstrate that TLR4 serves as a receptor for the pro-inflammatory effects of resistin in human cells. This may partly explain the multifunctional role of resistin in chronic inflammation, atherosclerosis and insulin resistance.

  11. Targeting Toll-like receptor 4 prevents cobalt-mediated inflammation.

    PubMed

    Lawrence, Helen; Mawdesley, Amy Elizabeth; Holland, James Patrick; Kirby, John Andrew; Deehan, David John; Tyson-Capper, Alison Jane

    2016-02-16

    Cobalt-chrome alloy is a widely used biomaterial in joint replacements, dental implants and spinal rods. Although it is an effective and biocompatible material, adverse reactions to metal debris (ARMD) have arisen in a minority of patients, particularly in those with metal-on-metal bearing hip replacements. There is currently no treatment for ARMD and once progressive, early revision surgery of the implant is necessary. Therapeutic agents to prevent, halt or reverse ARMD would therefore be advantageous. Cobalt ions activate Toll-like receptor 4 (TLR4), an innate immune receptor responsible for inflammatory responses to bacterial lipopolysaccharide (LPS) resulting in the production of pro-inflammatory cytokines and chemokines. We hypothesised that anti-TLR4 neutralising antibodies, reported to inhibit TLR4-mediated inflammation, could prevent the inflammatory response to cobalt ions in an in vitro macrophage cell culture model. This study shows that a monoclonal anti-TLR4 antibody inhibited cobalt-mediated increases in pro-inflammatory IL8, CCL20 and IL1A expression, as well as IL-8 secretion. In contrast, a polyclonal antibody did not prevent the effect of cobalt ions on either IL-8 or IL1A expression, although it did have a small effect on the CCL20 response. Interestingly, both antibodies inhibited cobalt-mediated neutrophil migration although the greater effect was observed with the monoclonal antibody. In summary our data shows that a monoclonal anti-TLR4 antibody can inhibit cobalt-mediated inflammatory responses while a polyclonal antibody only inhibits the effect of specific cytokines. Anti-TLR4 antibodies have therapeutic potential in ARMD although careful antibody design is required to ensure that the LPS response is preserved.

  12. Evidence of activation of the Toll-like receptor-4 proinflammatory pathway in patients with schizophrenia

    PubMed Central

    García-Bueno, Borja; Gassó, Patricia; MacDowell, Karina S.; Callado, Luis F.; Mas, Sergi; Bernardo, Miguel; Lafuente, Amalia; Meana, J. Javier; Leza, Juan C.

    2016-01-01

    Background Alterations in the innate immune/inflammatory system may underlie the pathophysiology of schizophrenia, but we do not understand the mechanisms involved. The main agents of innate immunity are the Toll-like receptors (TLRs), which detect molecular patterns associated with damage and pathogens. The TLR first reported was TLR4, and it is still the most studied one. Methods We aimed to describe putative modifications to the TLR4 proinflammatory pathway using 2 different strategies in 2 cohorts of patients with schizophrenia and matched controls: 1) quantification of protein and mRNA expression in postmortem prefrontal cortex samples from 30 patients with schizophrenia and 30 controls, and 2) identification of single nucleotide polymorphisms associated with the risk of schizophrenia using whole blood samples from 214 patients with schizophrenia and 216 controls. Results We found evidence of alterations in the expression of the initial elements of the TLR4 signalling pathway (TLR4, Myeloid differentiation primary response gene 88 [MyD88] and nuclear factor-κ B [NF-κB]) in the PFC of patients with schizophrenia. These alterations seem to depend on the presence/absence of antipsychotic treatment at death. Moreover, a polymorphism within the MyD88 gene was significantly associated with schizophrenia risk. Limitations The use of 2 different approaches in 2 different cohorts, the lack of a complementary neuropsychiatric group, the possible confounding effects of antipsychotic treatment and suicide are the main limitations of our study. Conclusion The evidence from this dual approach suggests there is an altered innate immune response in patients with chronic schizophrenia in which the TLR4 proinflammatory pathway could be affected. Improved understanding of the stimuli and mechanisms responsible for this response could lead to improved schizophrenia treatment and better control of the side effects of current antipsychotics. PMID:27070349

  13. The activation of liver X receptors inhibits toll-like receptor-9-induced foam cell formation.

    PubMed

    Sorrentino, Rosalinda; Morello, Silvana; Chen, Shuang; Bonavita, Eduardo; Pinto, Aldo

    2010-04-01

    Toll-like receptors (TLRs) are related to foam cell formation (FCF), key event in the establishment/progression of atherosclerosis. The activation of TLR2 and TLR4 can increase FCF. The aim of this study was to evaluate the role of TLR9 in FCF. Murine macrophages were treated with CpG-ODN, TLR9 agonist, and oxidized particles of LDL (Paz-PC) and FCF was analyzed by means of Oil Red O staining. The administration of CpG-ODN plus Paz-PC onto macrophages increased the amount of lipid droplets, correlated to increased levels of tumor necrosis factor (TNF)-alpha, IFNbeta, and IP-10. The underlying mechanism by which TLR9 ligation influenced Paz-PC in the FCF was NF-kappaB- and IRF7-dependent, as observed by higher levels of phosphorylated IkappaBalpha, increased nuclear translocation of the p65 subunit, lower levels of the total IKKalpha protein and higher release of interferon-dependent cytokines, such as IP-10. Liver X receptors (LXRs) regulate lipid cellular transport and negatively modulate TLR-dependent signaling pathways. Indeed, the addition of GW3965, synthetic LXRs agonist, significantly reduced FCF after CpG-ODN plus Paz-PC stimulation. In this condition, we observed decreased levels of the nuclear translocation of the p65 subunit, related to the higher presence of LXRalpha into the nucleus. TNF-alpha, IP-10, and IFNbeta levels were reduced by the administration of GW3965 following CpG-ODN and Paz-PC treatment. In conclusion, the activation of TLR9 facilitates the formation of foam cells in an NF-kappaB- and IRF7-dependent manner, countered by the activation of LXRs. This study further support LXRs as potential anti-atherosclerotic target.

  14. Stabilized immune modulatory RNA compounds as agonists of Toll-like receptors 7 and 8

    PubMed Central

    Lan, Tao; Kandimalla, Ekambar R.; Yu, Dong; Bhagat, Lakshmi; Li, Yukui; Wang, Daqing; Zhu, FuGang; Tang, Jimmy X.; Putta, Mallikarjuna R.; Cong, YanPing; Trombino, Anthony F.; Sullivan, Tim; Agrawal, Sudhir

    2007-01-01

    Viral and synthetic single-stranded RNAs are the ligands for Toll-like receptor (TLR)7 and TLR8. However, single-stranded RNA is rapidly degraded by ubiquitous RNases, and the studies reported to date have used RNA with lipid carriers. To overcome nuclease susceptibility of RNA, we have synthesized several RNAs incorporating a range of chemical modifications. The present study describes one pool of RNA compounds, referred to as stabilized immune modulatory RNA (SIMRA) compounds, in which two RNA segments are attached through their 3′ ends. SIMRA compounds showed greater stability in human serum compared with linear RNA and activated human TLR8, but not TLR7, in HEK293 cells without using lipid carriers. Interestingly, another set of SIMRA compounds containing 7-deazaguanosine substituted for natural guanosine activated human TLR7 and TLR8. Additionally, TLR7- and TLR8-activating compounds, but not the compounds that activated only TLR8, stimulated mouse immune cells in vitro and in vivo and produced dose-dependent T helper 1-type cytokines. Both types of compounds activated human peripheral blood mononuclear cells, but only TLR7- and TLR8-activating compounds activated plasmacytoid dendritic cells and produced high levels of IFN-α. In monkeys, s.c. administration of both types of SIMRA compounds induced transient changes in peripheral blood monocytes and neutrophils, and activated T lymphocytes, monocytes, and NK cells. Both types of compounds induced IFN-γ-inducible protein 10, but only the 7-deazaguanosine-containing compound that activated both TLR7 and TLR8 induced IFN-α in monkeys. This is a comprehensive study of RNA-based compounds containing structures and synthetic stimulatory motifs in mouse, monkey, and human systems without using lipid carriers. PMID:17698957

  15. Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer.

    PubMed

    Seya, Tsukasa; Akazawa, Takashi; Uehori, Junji; Matsumoto, Misako; Azuma, Ichiro; Toyoshima, Kumao

    2003-01-01

    The potentiation of immune responses to tumor-associated antigen (Ag) is a pivotal issue in immunotherapy for cancer and thus requires the use of adjuvants, which are involved in efficient antibody (Ab) production and killer cell induction. The efficacy for tumor regression of a number of adjuvants that have been applied to immunotherapy in humans and tumor-bearing animal models has been tested without understanding of the function of adjuvants. Recent findings on the function of Toll-like receptors (TLRs) and their adaptors facilitated the elucidation of the molecular basis of adjuvant activity. TLR signaling was found to induce interferons (IFNs), chemokines and proinflammatory cytokines and mature dendritic cells (DCs) for enhanced efficiency in antigen presentation. The mediators then play a crucial role in the organization of acquired immunity and, together with matured DCs, activate cytotoxic T cells (CTL) and NK cells. These TLR outputs vary among adjuvants, which may depend on adjuvant-specific selection of appropriate sets of TLRs and their adaptors. Here we review how a variety of host immune responses are induced by an individual adjuvant to confer an adjuvant-specific anti-tumor immunity. We elaborate specifically on two adjuvants, BCG-cell wall skeleton and double-stranded RNA (dsRNA). The former activates TLR2/4 on DCs and induces tumor-specific CTL allowing general application to patients with surgically dissected cancer and improving prognosis, while the latter activates TLR3 on DCs to release type 1 IFN that induces tumor cell apoptosis and NK-mediated tumor cytotoxicity.

  16. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses.

    PubMed

    Tomchuck, Suzanne L; Zwezdaryk, Kevin J; Coffelt, Seth B; Waterman, Ruth S; Danka, Elizabeth S; Scandurro, Aline B

    2008-01-01

    Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration, and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was initially established by reverse transcription-polymerase chain reaction assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including nuclear factor kappaB, AKT, and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines, and related TLR gene products as established from cDNA array, immunoassay, and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines, and chemokines measured identify these receptors as critical players in the clinically established immunomodulation observed for hMSCs. Lastly, hMSC migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSC migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies.

  17. Toll-Like Receptors on Human Mesenchymal Stem Cells Drive their Migration and Immunomodulating Responses

    PubMed Central

    Tomchuck, Suzanne L.; Zwezdaryk, Kevin J.; Coffelt, Seth B.; Waterman, Ruth S.; Danka, Elizabeth S.; Scandurro, Aline B.

    2009-01-01

    Adult human bone marrow-derived mesenchymal stem cells (hMSCs) are under study as therapeutic delivery agents that assist in the repair of damaged tissues. To achieve the desired clinical outcomes for this strategy requires a better understanding of the mechanisms that drive the recruitment, migration and engraftment of hMSCs to the targeted tissues. It is known that hMSCs are recruited to sites of stress or inflammation to fulfill their repair function. It is recognized that toll-like receptors (TLRs) mediate stress responses of other bone marrow-derived cells. This study explored the role of TLRs in mediating stress responses of hMSCs. Accordingly, the presence of TLRs in hMSCs was established initially by RT-PCR assays. Flow cytometry and fluorescence immunocytochemical analyses confirmed these findings. The stimulation of hMSCs with TLR agonists led to the activation of downstream signaling pathways, including NF-κB, AKT and MAPK. Consequently, activation of these pathways triggered the induction and secretion of cytokines, chemokines and related TLR gene products as established from cDNA array, immunoassay and cytokine antibody array analyses. Interestingly, the unique patterns of affected genes, cytokines and chemokines measured, identify these receptors as critical players in the clinically established immunomodulation, observed for hMSCs. Lastly, hMSCs migration was promoted by TLR ligand exposure as demonstrated by transwell migration assays. Conversely, disruption of TLRs by neutralizing TLR antibodies compromised hMSCs migration. This study defines a novel TLR-driven stress and immune modulating response for hMSCs that is critical to consider in the design of stem cell-based therapies. PMID:17916800

  18. Anti-radiation damage effect of polyethylenimine as a toll-like receptor 5 targeted agonist.

    PubMed

    Hu, Zhiqiang; Xing, Yaling; Qian, Yuanyu; Chen, Xiaojuan; Tu, Jian; Ren, Lening; Wang, Kai; Chen, Zhongbin

    2013-03-01

    A number of agents are now available for use in protecting against ionizing radiation. These radiation-protective agents, however, have many adverse effects. Efforts have been made to develop new radiation-protective agents for medical application. Here, we investigated whether a compound, polyethylenimine (PEI), which activates Toll-like receptor 5 (TLR5)-mediated NF-kB signaling pathways, could have an anti-radiation effect on a mouse model. First, a cell-based screening model for an agonist of TLR5-mediated NF-kB pathway was established and then validated by activation of TLR5-mediated NF-kB luciferase reporter activity with a known TLR5 agonist, flagellin. We found that PEI induced dose-dependent activation of the TLR5-mediated NF-kB pathway, indicating that PEI is indeed a TLR5 agonist. Furthermore, the anti-radiation effect of polyethylenimine was assessed using a γ-ray total body irradiation (TBI) mouse model. Compared with the irradiation control, both survival time and survival rate were significantly improved in mice that received either a low dose of polyethylenimine (P= 0.019) or a high dose of polyethylenimine (P< 0.001). We also observed a positive correlation between animal body weight and survival time in mice that received a low dose of polyethylenimine, a high dose of polyethylenimine and amifostine, over a period of 30 days, r= 0.42 (P< 0.02), 0.72 (P< 0.0001) and 0.95 (P< 0.0001), respectively, while a negative correlation between animal body weight and survival time was observed in the irradiation control (r= -0.89; P< 0.0001). These results indicate that polyethylenimine is a new TLR5 agonist with potential application in offering protection for patients receiving radiotherapy or in radiation-related accidents.

  19. Immunostimulatory bioactivity of algal polysaccharides from Chlorella pyrenoidosa activates macrophages via Toll-like receptor 4.

    PubMed

    Hsu, Hsien-Yeh; Jeyashoke, Narumon; Yeh, Chin-Hsi; Song, Yuan-Jaw; Hua, Kuo-Feng; Chao, Louis Kuoping

    2010-01-27

    Much research suggests that a dietary supplement of Chlorella pyrenoidosa may be helpful to human health, but the molecular mechanism involved remains unclear. The aim of this research was to investigate the effects of certain hot-water-soluble polysaccharides from Chlorella pyrenoidosa (CWSP) on cytokine production, human leukocyte antigen (HLA) expression, and costimulatory molecule expression in macrophages. We demonstrated that CWSP induced IL-1beta secretion in macrophages via Toll-like receptor 4 (TLR4) mediated protein kinase signaling pathways. In addition, CWSP also stimulated the cell surface expression of HLA-DA, -DB, and -DC, and HLA-DR, -DP, and -DQ as well as the expression of costimulatory family molecules such as CD80 and CD86 in macrophages. Furthermore, we demonstrated that preinjection of C57BL/6J mice with CWSP increased lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha and IL-1beta secretion into serum in vivo. This outcome was consistent with the corresponding outcome for cells treated with CWSP in vitro. Our current results provide support for the possible use of CWSP as a modulation agent of immune responses in humans and certain animal species. Finally, in using GC-MS to analyze the polysaccharides, we found that the major monosaccharides of CWSP were rhamnose (31.8%), glucose (20.42%), galactose (10.28%), mannose (5.23%), and xylose (1.27%). This study is the first to report the molecular mechanism of immune-modulated signal transduction in vitro from the polysaccharides of Chlorella pyrenoidosa.

  20. Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera).

    PubMed

    Wiens, Matthias; Korzhev, Michael; Perovic-Ottstadt, Sanja; Luthringer, Bérengère; Brandt, David; Klein, Stefanie; Müller, Werner E G

    2007-03-01

    During evolution and with the emergence of multicellular animals, the need arose to ward off foreign organisms that threaten the integrity of the animal body. Among many different receptors that participate in the recognition of microbial invaders, toll-like receptors (TLRs) play an essential role in mediating the innate immune response. After binding distinct microbial components, TLRs activate intracellular signaling cascades that result in an induced expression of diverse antimicrobial molecules. Because sponges (phylum Porifera) are filter feeders, they are abundantly exposed to microorganisms that represent a potential threat. Here, we describe the identification, cloning, and deduced protein sequence from 3 major elements of the poriferan innate response (to bacterial lipopeptides): the TLR, the IL-1 receptor-associated kinase-4-like protein (IRAK-4l), and a novel effector caspase from the demosponge Suberites domuncula. Each molecule shares significant sequence similarity with its homologues in higher Metazoa. Sequence homologies were found in particular within the family-specific domains toll/interleukin-1 receptor/resistance (TLR family), Ser/Thr/Tyr kinase domain (IRAK family), and CASc (caspase family). In addition, in situ hybridization and immunohistological analyses revealed an abundance of SDTLR (TLR) transcripts in epithelial layers of the sponge surface (exopinacoderm and endopinacoderm). Furthermore, it is shown that both SDTLR and SDIRAK-4 like (IRAK) are expressed constitutively, regardless of treatment with synthetic triacyl lipopeptide Pam(3)Cys-Ser-(Lys)(4). In contrast, SDCASL (caspase) expression is highly Pam(3)Cys-Ser-(Lys)(4) inducible. However, blocking of the lipopeptide with recombinant TLR prior to its application completely prevented the induced expression of this poriferan caspase. These results underscore that the phylogenetically oldest extant metazoan phylum is provided already with the signaling pathways of the antimicrobial

  1. Role of gut microbiota and Toll-like receptors in nonalcoholic fatty liver disease

    PubMed Central

    Miura, Kouichi; Ohnishi, Hirohide

    2014-01-01

    Emerging data have shown a close association between compositional changes in gut microbiota and the development of nonalcoholic fatty liver disease (NAFLD). The change in gut microbiota may alter nutritional absorption and storage. In addition, gut microbiota are a source of Toll-like receptor (TLR) ligands, and their compositional change can also increase the amount of TLR ligands delivered to the liver. TLR ligands can stimulate liver cells to produce proinflammatory cytokines. Therefore, the gut-liver axis has attracted much interest, particularly regarding the pathogenesis of NAFLD. The abundance of the major gut microbiota, including Firmicutes and Bacteroidetes, has been considered a potential underlying mechanism of obesity and NAFLD, but the role of these microbiota in NAFLD remains unknown. Several reports have demonstrated that certain gut microbiota are associated with the development of obesity and NAFLD. For instance, a decrease in Akkermansia muciniphila causes a thinner intestinal mucus layer and promotes gut permeability, which allows the leakage of bacterial components. Interventions to increase Akkermansia muciniphila improve the metabolic parameters in obesity and NAFLD. In children, the levels of Escherichia were significantly increased in nonalcoholic steatohepatitis (NASH) compared with those in obese control. Escherichia can produce ethanol, which promotes gut permeability. Thus, normalization of gut microbiota using probiotics or prebiotics is a promising treatment option for NAFLD. In addition, TLR signaling in the liver is activated, and its downstream molecules, such as proinflammatory cytokines, are increased in NAFLD. To data, TLR2, TLR4, TLR5, and TLR9 have been shown to be associated with the pathogenesis of NAFLD. Therefore, gut microbiota and TLRs are targets for NAFLD treatment. PMID:24966608

  2. Cardiolipins Act as a Selective Barrier to Toll-Like Receptor 4 Activation in the Intestine

    PubMed Central

    Coats, Stephen R.; Hashim, Ahmed; Paramonov, Nikolay A.; Curtis, Michael A.

    2016-01-01

    ABSTRACT Intestinal homeostasis mechanisms must protect the host intestinal tissue from endogenous lipopolysaccharides (LPSs) produced by the intestinal microbiota. In this report, we demonstrate that murine intestinal fecal lipids effectively block Toll-like receptor 4 (TLR4) responses to naturally occurring Bacteroidetes sp. LPS. Cardiolipin (CL) represents a significant proportion of the total intestinal and fecal lipids and, furthermore, potently antagonizes TLR4 activation by reducing LPS binding at the lipopolysaccharide binding protein (LBP), CD14, and MD-2 steps of the TLR4 signaling pathway. It is further demonstrated that intestinal lipids and CL are less effective at neutralizing more potent Enterobacteriaceae-type LPS, which is enriched in feces obtained from mice with dextran sodium sulfate (DSS)-treated inflammatory bowel disease. The selective inhibition of naturally occurring LPS structures by intestinal lipids may represent a novel homeostasis mechanism that blocks LPS activation in response to symbiotic but not dysbiotic microbial communities. IMPORTANCE The guts of animals harbor a variety of Gram-negative bacteria associated with both states of intestinal health and states of disease. Environmental factors, such as dietary habits, can drive the microbial composition of the host animal's intestinal bacterial community toward a more pathogenic state. Both beneficial and harmful Gram-negative bacteria are capable of eliciting potentially damaging inflammatory responses from the host intestinal tissues via a lipopolysaccharide (LPS)-dependent pathway. Physical mucosal barriers and antibodies produced by the intestinal immune system protect against the undesired inflammatory effects of LPS, although it is unknown why some bacteria are more effective at overcoming the protective barriers than others. This report describes the discovery of a lipid-type protective barrier in the intestine that reduces the deleterious effects of LPSs from beneficial

  3. Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization.

    PubMed

    Youn, Hyung S; Lee, Jun K; Choi, Yong J; Saitoh, Shin I; Miyake, Kensuke; Hwang, Daniel H; Lee, Joo Y

    2008-01-15

    Toll-like receptors (TLRs) play a critical role in induction of innate immune and inflammatory responses by recognizing invading pathogens or non-microbial endogenous molecules. TLRs have two major downstream signaling pathways, MyD88- and TRIF-dependent pathways leading to the activation of NFkappaB and IRF3 and the expression of inflammatory mediators. Deregulation of TLR activation is known to be closely linked to the increased risk of many chronic diseases. Cinnamaldehyde (3-phenyl-2-propenal) has been reported to inhibit NFkappaB activation induced by pro-inflammatory stimuli and to exert anti-inflammatory and anti-bacterial effects. However, the underlying mechanism has not been clearly identified. Our results showed that cinnamaldehyde suppressed the activation of NFkappaB and IRF3 induced by LPS, a TLR4 agonist, leading to the decreased expression of target genes such as COX-2 and IFNbeta in macrophages (RAW264.7). Cinnamaldehyde did not inhibit the activation of NFkappaB or IRF3 induced by MyD88-dependent (MyD88, IKKbeta) or TRIF-dependent (TRIF, TBK1) downstream signaling components. However, oligomerization of TLR4 induced by LPS was suppressed by cinnamaldehyde resulting in the downregulation of NFkappaB activation. Further, cinnamaldehyde inhibited ligand-independent NFkappaB activation induced by constitutively active TLR4 or wild-type TLR4. Our results demonstrated that the molecular target of cinnamaldehyde in TLR4 signaling is oligomerization process of receptor, but not downstream signaling molecules suggesting a novel mechanism for anti-inflammatory activity of cinnamaldehyde.

  4. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation.

    PubMed

    Hoshino, Katsuaki; Kaisho, Tsuneyasu; Iwabe, Tomio; Takeuchi, Osamu; Akira, Shizuo

    2002-10-01

    Toll-like receptor (TLR) can activate dendritic cells (DC) through common signaling pathways requiring a cytoplasmic adapter, MyD88. However, the signaling is differentially regulated among TLR family members. TLR4 can activate MyD88-deficient bone marrow-derived DC (BMDC), and lead to induction of IFN-inducible genes and up-regulation of co-stimulatory molecules such as CD40, implying that the MyD88-independent signaling pathway functions downstream of TLR4. Because these effects can also be induced by type I IFN, we have analyzed whether type I IFN is involved in TLR4-induced responses. In response to lipopolysaccharide (LPS), IFN-beta gene expression was augmented in both wild-type and MyD88-deficient BMDC. Expression of all IFN-inducible genes except immune-responsive gene 1 (IRG1) was abolished and CD40 up-regulation was decreased in LPS-stimulated BMDC lacking either IFN-alpha/beta receptor (IFN-alpha/betaR) or signal transducer and activator of transcription 1 (STAT-1). Similar to the LPS response, TLR9 signaling can also induce expression of IFN-beta and IFN-inducible genes, and up-regulation of CD40. However, all these effects were MyD88 dependent. Thus, in TLR4 signaling, IFN-beta expression can be induced either by the MyD88-dependent or -independent pathway, whereas, in TLR9 signaling, it is dependent on MyD88. In CpG DNA-stimulated DC, expression of IFN-inducible genes except IRG1 was dependent on type I IFN signaling as in LPS-stimulated DC. However, in contrast to TLR4 signaling, TLR9 signaling requires type I IFN signaling for CD40 up-regulation. Taken together, this study demonstrates differential involvement of type I IFN in TLR4- and TLR9-induced effects on DC.

  5. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    PubMed Central

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  6. Neuroprotection of donepezil against morphine-induced apoptosis is mediated through Toll-like receptors.

    PubMed

    Shafie, Alireza; Moradi, Farshid; Izadpanah, Esmael; Mokarizadeh, Aram; Moloudi, Mohammad Raman; Nikzaban, Mehrnoush; Hassanzadeh, Kambiz

    2015-10-05

    Previously, we had shown that donepezil provides anti-apoptotic effects associated with the prevention of morphine tolerance to the analgesic effect. In this regard, the present study aimed to evaluate the molecular mechanisms involved in this effect considering the possible role of Toll-like receptor (TLR) 2,4, and the balance between pre-apoptotic and anti-apoptotic Bcl family proteins. To this end, male Wistar rats received daily morphine in combination with either normal saline or donepezil (0.5, 1, or 1.5 mg/kg, ip). The analgesic effect was assessed by the plantar test apparatus. The latency was recorded when the animal responded to the light stimulus. On the 15th day, when no significant difference was observed between morphine and saline groups in terms of analgesia, the frontal cortex and lumbar spinal cord of the animals were dissected. Then, TLR2 and 4, Bcl2, and Bax mRNA fold changes were calculated using Real-time PCR method. The results indicated no significant analgesic effect in the morphine group compared with the saline treated animals after 15 days of injection, while daily co-administration of donepezil with morphine preserved significant analgesia. Moreover, Quantitative PCR showed that morphine significantly increased TLRs and Bax gene expressions and decreased the anti-apoptotic Bcl2. In contrast, donepezil prevented these morphine induced changes in the mentioned gene expressions. Taken together, the results suggest that the neuroprotective effects of donepezil in attenuating morphine-induced tolerance and apoptosis are mediated by preventing morphine-induced changes in TLR2 and 4 gene expressions.

  7. Toll-like receptor-4 pathway is required for the pathogenesis of human chronic endometritis

    PubMed Central

    JU, JINFEN; LI, LIANGPENG; XIE, JINGYAN; WU, YAN; WU, XI; LI, WEIHON

    2014-01-01

    Toll-like receptor (TLR) signal transduction is a central component of the primary innate immune response to pathogenic challenge. TLR4, a member of the TLR family, is highly expressed in the endometrial cells of the uterus and could thus be a key link between human chronic endometritis (CE) and the immune system. However, the exact biological function of TLR4 in human CE remains largely unexplored. The present study aimed to examine the role of TLR4 in human CE. A comprehensive expression and activation analysis of TLR4 in the endometrial cells of the uterus from patients with human CE (n=25) and normal endometrial (NE) tissue (n=15) was performed. Western blot analyses demonstrated that compared with NE, the protein expression TLR4 markedly increased in human CE. Endometrial tissue scrapings were also used for total RNA extraction and were transcribed and amplified by reverse transcription quantitative polymerase chain reaction. The results showed that significant upregulation of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and downregulation of IL-10 mRNA was observed in CE compared with the NE group. Furthermore, the protein of the signaling adapter myeloid differentiation factor-88 and the accessory molecules (TNF receptor associated factor 6 and transforming growth factor-β-activated kinase 1) were also detected in all the assayed tissues. Of note, differential expression (CE versus NE) was observed by immunoblotting at each level of the nuclear factor-κB signaling cascade, including inhibitor κBα and P65 (all P<0.05). The altered TLR4 and its corresponding downstream signaling molecules in CE cells may be of relevance for the progression of the human CE. These findings indicate that the evaluation of expression patterns of TLR4 holds promise for the treatment of human CE. PMID:25371751

  8. Lipopolysaccharide and toll-like receptor 4 in dogs with congenital portosystemic shunts.

    PubMed

    Tivers, M S; Lipscomb, V J; Smith, K C; Wheeler-Jones, C P D; House, A K

    2015-12-01

    Surgical attenuation of a congenital portosystemic shunt (CPSS) results in increased portal vein perfusion, liver growth and clinical improvement. Portal lipopolysaccharide (LPS) is implicated in liver regeneration via toll-like receptor (TLR) 4 mediated cytokine activation. The aim of this study was to investigate factors associated with LPS in dogs with CPSS. Plasma LPS concentrations were measured in the peripheral and portal blood using a limulus amoebocyte lysate (LAL) assay. LPS concentration was significantly greater in the portal blood compared to peripheral blood in dogs with CPSS (P = 0.046) and control dogs (P = 0.002). LPS concentrations in the peripheral (P = 0.012) and portal (P = 0.005) blood of dogs with CPSS were significantly greater than those of control dogs. The relative mRNA expression of cytokines and TLRs was measured in liver biopsies from dogs with CPSS using quantitative PCR. TLR4 expression significantly increased following partial CPSS attenuation (P = 0.020). TLR4 expression was significantly greater in dogs that tolerated complete CPSS attenuation (P = 0.011) and those with good portal blood flow on pre-attenuation (P = 0.004) and post-attenuation (P = 0.015) portovenography. Serum interleukin (IL)-6 concentration was measured using a canine specific ELISA and significantly increased 24 h following CPSS attenuation (P < 0.001). Portal LPS was increased in dogs with CPSS, consistent with decreased hepatic clearance. TLR4 mRNA expression was significantly associated with portal blood flow and increased following surgery. These findings support the concept that portal LPS delivery is important in the hepatic response to surgical attenuation. Serum IL-6 significantly increased following surgery, consistent with LPS stimulation via TLR4, although this increase might be non-specific.

  9. Potentiation and tolerance of toll-like receptor priming in human endothelial cells.

    PubMed

    Koch, Stephen R; Lamb, Fred S; Hellman, Judith; Sherwood, Edward R; Stark, Ryan J

    2017-02-01

    Repeated challenge of lipopolysaccharide (LPS) alters the response to subsequent LPS exposures via modulation of toll-like receptor 4 (TLR4). Whether activation of other TLRs can modulate TLR4 responses, and vice versa, remains unclear. Specifically with regards to endothelial cells, a key component of innate immunity, the impact of TLR cross-modulation is unknown. We postulated that TLR2 priming (via Pam3Csk4) would inhibit TLR4-mediated responses while TLR3 priming (via Poly I:C) would enhance subsequent TLR4-inflammatory signaling. We studied human umbilical vein endothelial cells (HUVECs) and neonatal human dermal microvascular endothelial cells (HMVECs). Cells were primed with a combination of Poly I:C (10 μg/ml), Pam3Csk4 (10 μg/ml), or LPS (100 ng/ml), then washed and allowed to rest. They were then rechallenged with either Poly I:C, Pam3Csk4 or LPS. Endothelial cells showed significant tolerance to repeated LPS challenge. Priming with Pam3Csk4 also reduced the response to secondary LPS challenge in both cell types, despite a reduced proinflammatory response to Pam3Csk4 in HMVECs compared to HUVECs. Poly I:C priming enhanced inflammatory and interferon producing signals upon Poly I:C or LPS rechallenge, respectively. Poly I:C priming induced interferon regulatory factor 7, leading to enhancement of interferon production. Finally, both Poly I:C and LPS priming induced significant changes in receptor-interacting serine/threonine-protein kinase 1 activity. Pharmacological inhibition of receptor-interacting serine/threonine-protein kinase 1 or interferon regulatory factor 7 reduced the potentiated phenotype of TLR3 priming on TLR4 rechallenge. These results demonstrate that in human endothelial cells, prior activation of TLRs can have a significant impact on subsequent exposures and may contribute to the severity of the host response.

  10. Local Interleukin-1-Driven Joint Pathology Is Dependent on Toll-Like Receptor 4 Activation

    PubMed Central

    Abdollahi-Roodsaz, Shahla; Joosten, Leo A.B.; Koenders, Marije I.; van den Brand, Ben T.; van de Loo, Fons A.J.; van den Berg, Wim B.

    2009-01-01

    Toll-like receptors (TLRs) may contribute to the pathogenesis of chronic inflammatory destructive diseases through the recognition of endogenous ligands produced on either inflammation or degeneration of the extracellular matrix. The presence of endogenous TLR agonists has been reported in rheumatoid joints.