Science.gov

Sample records for infections macrophage activation

  1. Alternatively activated macrophages in infection and autoimmunity

    PubMed Central

    Fairweather, DeLisa; Cihakova, Daniela

    2009-01-01

    Macrophages are innate immune cells that play an important role in activation of the immune response and wound healing. Pathogens that require T helper-type 2 (Th2) responses for effective clearance, such as parasitic worms, are strong inducers of alternatively activated or M2 macrophages. However, infections such as bacteria and viruses that require Th1-type responses may induce M2 as a strategy to evade the immune system. M2 are particularly efficient at scavenging self tissues following injury through receptors like the mannose receptor and scavenger receptor-A. Thus, M2 may increase autoimmune disease by presenting self tissue to T cells. M2 may also exacerbate immune complex (IC)-mediated pathology and fibrosis, a hallmark of autoimmune disease in women, due to the release of profibrotic factors such as interleukin (IL)-1β, transforming growth factor-β, fibronectin and matrix metalloproteinases. We have found that M2 comprise anywhere from 30% to 70% of the infiltrate during acute viral or experimental autoimmune myocarditis, and shifts in M2 populations correlate with increased IC-deposition, fibrosis and chronic autoimmune pathology. Thus, women may be at an increased risk of M2-mediated autoimmunity due to estrogen’s ability to increase Th2 responses. PMID:19819674

  2. The macrophage in HIV-1 infection: from activation to deactivation?

    PubMed

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  3. EGFR regulates macrophage activation and function in bacterial infection.

    PubMed

    Hardbower, Dana M; Singh, Kshipra; Asim, Mohammad; Verriere, Thomas G; Olivares-Villagómez, Danyvid; Barry, Daniel P; Allaman, Margaret M; Washington, M Kay; Peek, Richard M; Piazuelo, M Blanca; Wilson, Keith T

    2016-09-01

    EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.

  4. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-08-06

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated).

  5. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  6. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages.

    PubMed

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane--subdivided into P2Y and P2X subfamilies--whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection.

  7. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages

    PubMed Central

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H.; Enciso-Moreno, Jose A.; Hancock, Robert E. W.

    2015-01-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  8. Dynamics of lung macrophage activation in response to helminth infection

    USDA-ARS?s Scientific Manuscript database

    Most of our understanding of the development and phenotype of alternatively activated macrophages (AAM) has been obtained from studies investigating the response of bone marrow- and peritoneal-derived cells to IL-4 or IL-13 stimulation. Comparatively little is known about the development of the AAM...

  9. Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation.

    PubMed

    Bility, Moses T; Nio, Kouki; Li, Feng; McGivern, David R; Lemon, Stanley M; Feeney, Eoin R; Chung, Raymond T; Su, Lishan

    2016-12-21

    The immuno-pathogenic mechanisms of chronic hepatitis C virus (HCV) infection remain to be elucidated and pose a major hurdle in treating or preventing chronic HCV-induced advanced liver diseases such as cirrhosis. Macrophages are a major component of the inflammatory milieu in chronic HCV-induced liver disease, and are generally derived from circulating inflammatory monocytes; however very little is known about their role in liver diseases. To investigate the activation and role of macrophages in chronic HCV-induced liver fibrosis, we utilized a recently developed humanized mouse model with autologous human immune and liver cells, human liver and blood samples and cell culture models of monocyte/macrophage and/or hepatic stellate cell activation. We showed that M2 macrophage activation was associated with liver fibrosis during chronic HCV infection in the livers of both humanized mice and patients, and direct-acting antiviral therapy attenuated M2 macrophage activation and associated liver fibrosis. We demonstrated that supernatant from HCV-infected liver cells activated human monocytes/macrophages with M2-like phenotypes. Importantly, HCV-activated monocytes/macrophages promoted hepatic stellate cell activation. These results suggest a critical role for M2 macrophage induction in chronic HCV-associated immune dysregulation and liver fibrosis.

  10. Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability

    PubMed Central

    Chávez-Galán, Leslie; Vesin, Dominique; Martinvalet, Denis

    2016-01-01

    Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies. PMID:27833923

  11. Low Dose BCG Infection as a Model for Macrophage Activation Maintaining Cell Viability.

    PubMed

    Chávez-Galán, Leslie; Vesin, Dominique; Martinvalet, Denis; Garcia, Irene

    2016-01-01

    Mycobacterium bovis BCG, the current vaccine against tuberculosis, is ingested by macrophages promoting the development of effector functions including cell death and microbicidal mechanisms. Despite accumulating reports on M. tuberculosis, mechanisms of BCG/macrophage interaction remain relatively undefined. In vivo, few bacilli are sufficient to establish a mycobacterial infection; however, in vitro studies systematically use high mycobacterium doses. In this study, we analyze macrophage/BCG interactions and microenvironment upon infection with low BCG doses and propose an in vitro model to study cell activation without affecting viability. We show that RAW macrophages infected with BCG at MOI 1 activated higher and sustained levels of proinflammatory cytokines and transcription factors while MOI 0.1 was more efficient for early stimulation of IL-1β, MCP-1, and KC. Both BCG infection doses induced iNOS and NO in a dose-dependent manner and maintained nuclear and mitochondrial structures. Microenvironment generated by MOI 1 induced macrophage proliferation but not MOI 0.1 infection. In conclusion, BCG infection at low dose is an efficient in vitro model to study macrophage/BCG interactions that maintains macrophage viability and mitochondrial structures. This represents a novel model that can be applied to BCG research fields including mycobacterial infections, cancer immunotherapy, and prevention of autoimmunity and allergies.

  12. Functional Activity of Monocytes and Macrophages in HTLV-1 Infected Subjects

    PubMed Central

    Amorim, Camila F.; Souza, Anselmo S.; Diniz, Angela G.; Carvalho, Natália B.; Santos, Silvane B.; Carvalho, Edgar M.

    2014-01-01

    The Human T lymphotropic virus type-1 (HTLV-1) infects predominantly T cells, inducing proliferation and lymphocyte activation. Additionally, HTLV-1 infected subjects are more susceptible to other infections caused by other intracellular agents. Monocytes/macrophages are important cells in the defense against intracellular pathogens. Our aims were to determine the frequency of monocytes subsets, expression of co-stimulatory molecules in these cells and to evaluate microbicidal ability and cytokine and chemokine production by macrophages from HTLV-1 infected subjects. Participants were 23 HTLV-1 carriers (HC), 22 HAM/TSP patients and 22 healthy subjects (HS) not infected with HTLV-1. The frequencies of monocyte subsets and expression of co-stimulatory molecules were determined by flow cytometry. Macrophages were infected with L. braziliensis or stimulated with LPS. Microbicidal activity of macrophages was determined by optic microscopy. Cytokines/chemokines from macrophage supernatants were measured by ELISA. HAM/TSP patients showed an increase frequency of intermediate monocytes, but expression of co-stimulatory molecules was similar between the groups. Macrophages from HTLV-1 infected individuals were infected with L. braziliensis at the same ratio than macrophages from HS, and all the groups had the same ability to kill Leishmania parasites. However, macrophages from HTLV-1 infected subjects produced more CXCL9 and CCL5, and less IL-10 than cells from HS. While there was no correlation between IFN-γ and cytokine/chemokine production by macrophages, there was a correlation between proviral load and TNF and CXCL10. These data showed a dissociation between the inflammatory response and microbicidal ability of macrophages from HTLV-1 infected subjects. While macrophages ability to kill an intracellular pathogen did not differ among HTLV-1 infected subjects, these cells secreted high amount of chemokines even in unstimulated cultures. Moreover the increasing

  13. Guinea Pig Neutrophils Infected with Mycobacterium tuberculosis Produce Cytokines Which Activate Alveolar Macrophages in Noncontact Cultures▿

    PubMed Central

    Sawant, Kirti V.; McMurray, David N.

    2007-01-01

    The early influx of neutrophils to the site of infection may be an important step in host resistance against Mycobacterium tuberculosis. In this study, we investigated the effect of M. tuberculosis infection on the ability of guinea pig neutrophils to produce interleukin-8 (IL-8; CXCL8) and tumor necrosis factor alpha (TNF-α) and to activate alveolar macrophages. Neutrophils and alveolar macrophages were isolated from naïve guinea pigs, cultured together or alone, and infected with virulent M. tuberculosis for 3, 12, and 24 h. IL-8 protein production in cocultures, as measured by using an enzyme-linked immunosorbent assay, was found to be additive at 24 h and significantly greater in M. tuberculosis-infected cocultures than in uninfected cocultures and in cultures of the infected neutrophils or macrophages alone. The IL-8 mRNA levels, determined by real-time reverse transcription-PCR, were elevated at 24 h in infected cocultures and infected cells cultured alone. In order to elucidate the contributions of neutrophils and their soluble mediators to the activation of alveolar macrophages, neutrophils and alveolar macrophages were cultured in a contact-independent manner by using a Transwell insert system. Neutrophils were infected with virulent M. tuberculosis in the upper wells, and alveolar macrophages were cultured in the lower wells. The release of hydrogen peroxide from alveolar macrophages exposed to soluble products from infected neutrophils was significantly increased compared to that from unexposed alveolar macrophages. Significant up-regulation of IL-1β and TNF-α mRNA levels in alveolar macrophages was observed at 24 and 30 h, respectively, compared to those in cells not exposed to soluble neutrophil products. Treatment with anti-guinea pig TNF-α polyclonal antibody completely abolished the response of alveolar macrophages to neutrophil products. This finding suggests that TNF-α produced by infected neutrophils may be involved in the activation of

  14. A Role for Activated Macrophages in Resistance to Infection with Toxoplasma

    PubMed Central

    Remington, Jack S.; Krahenbuhl, James L.; Mendenhall, Joy W.

    1972-01-01

    Activated macrophages from mice which were chronically infected with Toxoplasma gondii or Besnoitia jellisoni, or which had received Freund complete adjuvant, had an enhanced capacity to to kill intracellular Toxoplasma. Enhanced killing by activated macrophages was demonstrated by decreased incorporation of isotopically labeled uridine by intracellular Toxoplasma and by inhibition of plaque formation. The latter resulted from lack of proliferation of the intracellular Toxoplasma which is normally followed by destruction of the host cell (macrophage) and secondary invasion and destruction of fibroblast monolayers. Images PMID:4637298

  15. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens.

  16. Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-γ production and infection control in mice.

    PubMed

    Gracey, Eric; Baglaenko, Yuriy; Prayitno, Nadia; Van Rooijen, Nico; Akram, Ali; Lin, Aifeng; Chiu, Basil; Inman, Robert D

    2015-12-01

    Protective immunity to the pathogen Chlamydia is dependent on a robust IFN-γ response generated by innate and adaptive lymphocytes. Here we assess the role of the macrophage in orchestrating a protective response in vivo to the murine pathogen, Chlamydia muridarum. During acute pulmonary and peritoneal infection, resident macrophages in both sites are infected with C. muridarum and adopt an inflammatory phenotype. In the lung, this activation is restricted to interstitial macrophages, which harbor higher levels of C. muridarum 16sRNA than alveolar macrophages. We examined innate and adaptive lymphocyte activation in the peritoneal cavity with macrophage depletion and with adoptive transfer of infected macrophages. These experiments demonstrate macrophage activation correlates with a protective IFN-γ response and effective control of C. muridarum. These studies suggest that a quantitative or qualitative alteration in macrophages may play a key role in the development of Chlamydia-associated diseases.

  17. Oral Colostrum Macrophage-activating Factor for Serious Infection and Chronic Fatigue Syndrome: Three Case Reports.

    PubMed

    Inui, Toshio; Kubo, Kentaro; Kuchiike, Daisuke; Uto, Yoshihiro; Nishikata, Takahito; Sakamoto, Norihiro; Mette, Martin

    2015-08-01

    Gc protein-derived macrophage-activating factor (GcMAF) immunotherapy has been steadily advancing over the last two decades. Oral colostrum macrophage-activating factor (MAF) produced from bovine colostrum has shown high macrophage phagocytic activity. GcMAF-based immunotherapy has a wide application for use in treating many diseases via macrophage activation or for use as supportive therapy. Three case studies demonstrate that oral colostrum MAF can be used for serious infection and chronic fatigue syndrome (CFS) without adverse effects. We demonstrate that colostrum MAF shows promising clinical results in patients with infectious diseases and for symptoms of fatigue, which is common in many chronic diseases. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization.

    PubMed

    Cousins, Scott W; Espinosa-Heidmann, Diego G; Miller, Daniel M; Pereira-Simon, Simone; Hernandez, Eleut P; Chien, Hsin; Meier-Jewett, Courtney; Dix, Richard D

    2012-01-01

    The neovascular (wet) form of age-related macular degeneration (AMD) leads to vision loss due to choroidal neovascularization (CNV). Since macrophages are important in CNV development, and cytomegalovirus (CMV)-specific IgG serum titers in patients with wet AMD are elevated, we hypothesized that chronic CMV infection contributes to wet AMD, possibly by pro-angiogenic macrophage activation. This hypothesis was tested using an established mouse model of experimental CNV. At 6 days, 6 weeks, or 12 weeks after infection with murine CMV (MCMV), laser-induced CNV was performed, and CNV severity was determined 4 weeks later by analysis of choroidal flatmounts. Although all MCMV-infected mice exhibited more severe CNV when compared with control mice, the most severe CNV developed in mice with chronic infection, a time when MCMV-specific gene sequences could not be detected within choroidal tissues. Splenic macrophages collected from mice with chronic MCMV infection, however, expressed significantly greater levels of TNF-α, COX-2, MMP-9, and, most significantly, VEGF transcripts by quantitative RT-PCR assay when compared to splenic macrophages from control mice. Direct MCMV infection of monolayers of IC-21 mouse macrophages confirmed significant stimulation of VEGF mRNA and VEGF protein as determined by quantitative RT-PCR assay, ELISA, and immunostaining. Stimulation of VEGF production in vivo and in vitro was sensitive to the antiviral ganciclovir. These studies suggest that chronic CMV infection may serve as a heretofore unrecognized risk factor in the pathogenesis of wet AMD. One mechanism by which chronic CMV infection might promote increased CNV severity is via stimulation of macrophages to make pro-angiogenic factors (VEGF), an outcome that requires active virus replication.

  19. Platelet-activating factor increases reactive oxygen species-mediated microbicidal activity of human macrophages infected with Leishmania (Viannia) braziliensis.

    PubMed

    Borges, Arissa Felipe; Morato, Camila Imai; Gomes, Rodrigo Saar; Dorta, Miriam Leandro; de Oliveira, Milton Adriano Pelli; Ribeiro-Dias, Fátima

    2017-09-29

    Platelet-activating factor (PAF) is produced by macrophages during inflammation and infections. We evaluated whether PAF is able to modulate the infection of human macrophages by Leishmania braziliensis, the main Leishmania sp. in Brazil. Monocyte-derived macrophages were incubated with promastigote forms in absence or presence of exogenous PAF. We observed that the treatment of macrophages with low concentrations of PAF prior to infection increased the phagocytosis of L. braziliensis. More importantly, exogenous PAF reduced the parasitism when it was added before, during or after infection. In addition, treatment with a PAF antagonist (PCA 4248) resulted in a significant increase of macrophage infection in a concentration-dependent manner, suggesting that endogenous PAF is important to control L. braziliensis infection. Mechanistically, while exogenous PAF increased production of reactive oxygen species (ROS) treatment with PCA 4248 reduced oxidative burst during L. braziliensis infection. The microbicidal effects of exogenous PAF were abolished when macrophages were treated with apocynin, an NADPH oxidase inhibitor. The data show that PAF promotes the production of ROS induced by L. braziliensis, suggesting that this lipid mediator may be relevant to control L. braziliensis infection in human macrophages. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    PubMed

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages.

  1. Delayed presence of alternatively activated macrophages during a Francisella tularensis infection.

    PubMed

    D'Elia, Riccardo V; Laws, Thomas R; Núñez, Alejandro; Taylor, Christopher; Clark, Graeme C

    2015-01-01

    Francisella tularensis is an intracellular bacterium that has the ability to multiply within the macrophage. The phenotype of a macrophage can determine whether the infection is cleared or the host succumbs to disease. Previously published data has suggested that F. tularensis LVS actively induces the alternative phenotype as a survival mechanism. In these studies we demonstrate that this is not the case for the more virulent strain of F. tularensis SCHU-S4. During an intranasal mouse model of infection, immuno-histochemistry identified that iNOS positive ("classical") macrophages are present at 72 h post-infection and remain high (supported by CCL-5 release) in numbers. In contrast, arginase/FIZZ-1 positive ("alternative") cells appear later and in low numbers during the development of the disease tularemia.

  2. Treponemal infection specifically enhances node T-cell regulation of macrophage activity.

    PubMed Central

    Tabor, D R; Bagasra, O; Jacobs, R F

    1986-01-01

    Hamsters experimentally inoculated in the inguinal region with Treponema pallidum subsp. endemicum develop considerable pathology at that site. We examined the cell populations from these inguinal lymph nodes to determine their intercellular responses to infection. In vitro, syphilitic-node T cells markedly suppressed C3b receptor-mediated ingestion (C3bMI) in syphilitic macrophages derived from sites both proximal and distal to the inoculation. This activity was more pronounced when node T cells rather than peritoneal T cells were used. When treponemal preparations or live treponemes were added to the coculture system, the suppression was specifically enhanced, whereas the addition of heterologous agents did not promote this effect. Syphilitic macrophages from either compartment cultured alone showed no significant inhibition of C3bMI. In parallel studies on syphilitic macrophages, we observed that the expression of Ia quickly became elevated and was sustained throughout the infection. Moreover, in vitro culturing of the syphilitic-node T cells with these macrophages did not alter this function. These observations suggest that the syphilitic node contains a subpopulation of T cells that can selectively suppress macrophage C3bMI activity and concurrently regulate their cellular response to treponemal infection. PMID:3531014

  3. Induction of Alternatively Activated Macrophages Enhances Pathogenesis during Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Page, Carly; Goicochea, Lindsay; Matthews, Krystal; Zhang, Yong; Klover, Peter; Holtzman, Michael J.; Hennighausen, Lothar

    2012-01-01

    Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1−/− mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6−/− double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA

  4. Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection.

    PubMed

    Page, Carly; Goicochea, Lindsay; Matthews, Krystal; Zhang, Yong; Klover, Peter; Holtzman, Michael J; Hennighausen, Lothar; Frieman, Matthew

    2012-12-01

    Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and cell-type-specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1(-/-) mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6(-/-) double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA

  5. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway.

    PubMed

    Padrão, Juliana da Cruz; Cabral, Gabriel Rabello de Abreu; da Silva, Maria de Fátima Sarro; Seabra, Sergio Henrique; DaMatta, Renato Augusto

    2014-10-01

    Classically activated macrophages produce nitric oxide (NO), which is a potent microbicidal agent. NO production is catalyzed by inducible nitric oxide synthase (iNOS), which uses arginine as substrate producing NO and citruline. However, it has been demonstrated that NO production is inhibited after macrophage infection of Toxoplasma gondii, the agent of toxoplasmosis, due to iNOS degradation. Three possible iNOS degradation pathways have been described in activated macrophages: proteasome, calpain and lysosomal. To identify the iNOS degradation pathway after T. gondii infection, J774-A1 macrophage cell line was activated with lipopolysaccharide and interferon-gamma for 24 h, treated with the following inhibitors, lactacystin (proteasome), calpeptin (calpain), or concanamycin A (lysosomal), and infected with the parasite. NO production and iNOS expression were evaluated after 2 and 6 h of infection. iNOS was degraded in J774-A1 macrophages infected with T. gondii. However, treatment with lactacystin maintained iNOS expression in J774-A1 macrophages infected for 2 h by T. gondii, and after 6 h iNOS was localized in aggresomes. iNOS was degraded after parasite infection of J774-A1 macrophages treated with calpeptin or concanamycin A. NO production confirmed iNOS expression profiles. These results indicate that T. gondii infection of J774-A1 macrophages caused iNOS degradation by the proteasome pathway.

  6. Downmodulation of the Inflammatory Response to Bacterial Infection by γδ T Cells Cytotoxic for Activated Macrophages

    PubMed Central

    Egan, Paul J.; Carding, Simon R.

    2000-01-01

    Although γδ T cells are involved in the regulation of inflammation after infection, their precise function is not known. Intraperitoneal infection of T cell receptor (TCR)-δ−/− mice with the intracellular bacterium Listeria monocytogenes resulted in the development of necrotic foci in the livers. In contrast, the peritoneal cavities of infected TCR-δ−/− mice contained an accumulation of low density activated macrophages and a reduced percentage of macrophages undergoing apoptosis. γδ T cell hybridomas derived from mice infected with Listeria were preferentially stimulated by low density macrophages from peritoneal exudates of infected mice. Furthermore, primary splenic γδ T cells isolated from Listeria-infected mice were cytotoxic for low density macrophages in vitro, and cytotoxicity was inhibited in the presence of antibodies to the γδ TCR. These results demonstrate a novel interaction between γδ T cells and activated macrophages in which γδ T cells are stimulated by terminally differentiated macrophages to acquire cytotoxic activity and which, in turn, induce macrophage cell death. This interaction suggests that γδ T cells regulate the inflammatory response to infection with intracellular pathogens by eliminating activated macrophages at the termination of the response. PMID:10859339

  7. Macrophage activation and polarization.

    PubMed

    Martinez, Fernando Oneissi; Sica, Antonio; Mantovani, Alberto; Locati, Massimo

    2008-01-01

    Macrophages are widely distributed immune system cells that play an indispensable role in homeostasis and defense. They can be phenotypically polarized by the microenvironment to mount specific functional programs. Polarized macrophages can be broadly classified in two main groups: classically activated macrophages (or M1), whose prototypical activating stimuli are IFNgamma and LPS, and alternatively activated macrophages (or M2), further subdivided in M2a (after exposure to IL-4 or IL-13), M2b (immune complexes in combination with IL-1beta or LPS) and M2c (IL-10, TGFbeta or glucocorticoids). M1 exhibit potent microbicidal properties and promote strong IL-12-mediated Th1 responses, whilst M2 support Th2-associated effector functions. Beyond infection M2 polarized macrophages play a role in resolution of inflammation through high endocytic clearance capacities and trophic factor synthesis, accompanied by reduced pro-inflammatory cytokine secretion. Similar functions are also exerted by tumor-associated macrophages (TAM), which also display an alternative-like activation phenotype and play a detrimental pro-tumoral role. Here we review the main functions of polarized macrophages and discuss the perspectives of this field.

  8. Monarch-1 Activation in Murine Macrophage Cell Line (J774 A.1) Infected with Iranian Strain of Leishmania major

    PubMed Central

    Fata, A; Mahmoudian, MR; Varasteh, A; Sankian, M

    2013-01-01

    Background Leishmania major is an intracellular parasite transmitted through the bite of the female phlebotomine sand flies. Leishmania major is able to escape the host immune defense and survive within macrophages. Modulation of the NF-κB (Nuclear Factor-Kappa B) activation and suppression of the pro-inflammatory cytokines by L. major are the main evasion mechanisms that remain to be explored. This study aims to examine the expression level of the Monarch-1 in L. major-infected macrophages, as a negative regulator of the NF-κB activation. Methods Murine macrophage cell line (J774 A.1) was infected by metacyclic form of Leishmania promastigotes at macrophage/parasite ratio of 1:10. After harvesting infected cells at different times, total RNA was extracted and converted to cDNA. Semi-quantitative RT-PCR was performed for Monarch-1 by specific primers. Hypoxanthine Phospho-Ribosyl Transferase (HPRT) was used as an internal control to adjust the amount of mRNA in each sample. Results Semiquantitive analysis of Monarch-1 mRNA expression level showed a significant expression increase within 6 to 30 hours after L. major infection of macrophages when compared to the control macrophages. Conclusion Monarch-1 expression level reveals a significant increase in the early phase of macrophage infection with L. major, which in turn may suppress IL-12 production in Leishmania infected macrophages and deeply influence the relationship between host and parasite. PMID:23914232

  9. Effects of Newcastle disease virus infection on the binding, phagocytic, and bactericidal activities of respiratory macrophages of the turkey.

    PubMed

    Ficken, M D; Edwards, J F; Lay, J C

    1987-01-01

    Effects of Newcastle disease virus (NDV) infection on the binding, phagocytic, and bactericidal activities of turkey respiratory macrophages were studied. Respiratory macrophages of the turkey demonstrated the presence of immunoglobulin (Ig) G and complement receptors but lacked IgM receptors. Respiratory macrophages from NDV-infected turkeys showed little or no depression of binding of sheep erythrocyte-IgG complexes and sheep erythrocyte-IgM-complement complexes to their appropriate membrane receptors. In contrast, respiratory macrophages from NDV-infected turkeys showed significant (P less than or equal to 0.05) depression of phagocytosis of similar complexes. Bacterial killing by respiratory macrophages from NDV-infected turkeys was significantly (P less than or equal to 0.05) inhibited.

  10. Caspase-1 activation in macrophages infected with Yersinia pestis KIM requires the type III secretion system effector YopJ.

    PubMed

    Lilo, Sarit; Zheng, Ying; Bliska, James B

    2008-09-01

    Pathogenic Yersinia species utilize a type III secretion system (T3SS) to translocate effectors called Yersinia outer proteins (Yops) into infected host cells. Previous studies demonstrated a role for effector Yops in the inhibition of caspase-1-mediated cell death and secretion of interleukin-1beta (IL-1beta) in naïve macrophages infected with Yersinia enterocolitica. Naïve murine macrophages were infected with a panel of different Yersinia pestis and Yersinia pseudotuberculosis strains to determine whether Yops of these species inhibit caspase-1 activation. Cell death was measured by release of lactate dehydrogenase (LDH), and enzyme-linked immunosorbent assay for secreted IL-1beta was used to measure caspase-1 activation. Surprisingly, isolates derived from the Y. pestis KIM strain (e.g., KIM5) displayed an unusual ability to activate caspase-1 and kill infected macrophages compared to other Y. pestis and Y. pseudotuberculosis strains tested. Secretion of IL-1beta following KIM5 infection was reduced in caspase-1-deficient macrophages compared to wild-type macrophages. However, release of LDH was not reduced in caspase-1-deficient macrophages, indicating that cell death occurred independently of caspase-1. Analysis of KIM-derived strains defective for production of functional effector or translocator Yops indicated that translocation of catalytically active YopJ into macrophages was required for caspase-1 activation and cell death. Release of LDH and secretion of IL-1beta were not reduced when actin polymerization was inhibited in KIM5-infected macrophages, indicating that extracellular bacteria translocating YopJ could trigger cell death and caspase-1 activation. This study uncovered a novel role for YopJ in the activation of caspase-1 in macrophages.

  11. Enterococcus faecalis infection activates phosphatidylinositol 3-kinase signaling to block apoptotic cell death in macrophages.

    PubMed

    Zou, Jun; Shankar, Nathan

    2014-12-01

    Apoptosis is an intrinsic immune defense mechanism in the host response to microbial infection. Not surprisingly, many pathogens have evolved various strategies to manipulate this important pathway to benefit their own survival and dissemination in the host during infection. To our knowledge, no attempts have been made to explore the host cell survival signals modulated by the bacterium Enterococcus faecalis. Here, we show for the first time that during early stages of infection, internalized enterococci can prevent host cell (RAW264.7 cells, primary macrophages, and mouse embryonic fibroblasts [MEFs]) apoptosis induced by a wide spectrum of proapoptotic stimuli. Activation of caspase 3 and cleavage of the caspase 3 substrate poly(ADP-ribose) polymerase were inhibited in E. faecalis-infected cells, indicating that E. faecalis protects macrophages from apoptosis by inhibiting caspase 3 activation. This antiapoptotic activity in E. faecalis-infected cells was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which resulted in the increased expression of the antiapoptotic factor Bcl-2 and decreased expression of the proapoptotic factor Bax. Further analysis revealed that active E. faecalis physiology was important for inhibition of host cell apoptosis, and this feature seemed to be a strain-independent trait among E. faecalis isolates. Employing a mouse peritonitis model, we also determined that cells collected from the peritoneal lavage fluid of E. faecalis-infected mice showed reduced levels of apoptosis compared to cells from uninfected mice. These results show early modulation of apoptosis during infection and have important implications for enterococcal pathogenesis.

  12. Interleukin-17 is not required for classical macrophage activation in a pulmonary mouse model of Cryptococcus neoformans infection.

    PubMed

    Hardison, Sarah E; Wozniak, Karen L; Kolls, Jay K; Wormley, Floyd L

    2010-12-01

    Cryptococcus neoformans is an opportunistic fungal pathogen that causes disease in individuals with suppressed cell-mediated immunity. Recent studies in our laboratory have shown that increases in pulmonary Th1-type and interleukin-17A (IL-17A) cytokine production, classical macrophage activation, and sterilizing immunity are elicited in response to infection with a gamma interferon (IFN-γ)-producing C. neoformans strain, H99γ. IL-17A-treated macrophages, compared to IL-4-treated macrophages, have been demonstrated to exhibit increased microbicidal activity in vitro, a characteristic consistent with classical macrophage activation. The purpose of these studies is to determine the role of IL-17A in the induction of classically activated macrophages following infection with C. neoformans. Immunohistochemistry and real-time PCR were used to characterize the macrophage activation phenotype in lung tissues of mice treated with isotype control or anti-IL-17A antibodies and given an experimental pulmonary infection with C. neoformans strain H99γ. The pulmonary fungal burden was resolved, albeit more slowly, in mice depleted of IL-17A compared to the fungal burden in isotype control-treated mice. Nonetheless, no difference in classical macrophage activation was observed in IL-17A-depleted mice. Similarly, classical macrophage activation was evident in mice deficient in IL-17A or the IL-17 receptor A, which mediates IL-17A signaling, following pulmonary infection with wild-type C. neoformans strain H99 or H99γ. These studies suggest that IL-17A may play a role in the early immune response to C. neoformans but is not required for classical macrophage activation in mice experimentally infected with C. neoformans.

  13. Guanylate Binding Proteins Enable Rapid Activation of Canonical and Noncanonical Inflammasomes in Chlamydia-Infected Macrophages

    PubMed Central

    Finethy, Ryan; Jorgensen, Ine; Haldar, Arun K.; de Zoete, Marcel R.; Strowig, Till; Flavell, Richard A.; Yamamoto, Masahiro; Nagarajan, Uma M.; Miao, Edward A.

    2015-01-01

    Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections. PMID:26416908

  14. Guanylate binding proteins enable rapid activation of canonical and noncanonical inflammasomes in Chlamydia-infected macrophages.

    PubMed

    Finethy, Ryan; Jorgensen, Ine; Haldar, Arun K; de Zoete, Marcel R; Strowig, Till; Flavell, Richard A; Yamamoto, Masahiro; Nagarajan, Uma M; Miao, Edward A; Coers, Jörn

    2015-12-01

    Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1β (IL-1β) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1β transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections.

  15. The timing of TNF and IFN-γ signaling affects macrophage activation strategies during Mycobacterium tuberculosis infection

    PubMed Central

    Ray, J. Christian J.; Wang, Jian; Chan, John; Kirschnera, Denise E.

    2008-01-01

    During most infections, the population of immune cells known as macrophages are key to taking up and killing bacteria as an integral part of the immune response. However, during infection with Mycobacterium tuberculosis (Mtb), host macrophages serve as the preferred environment for mycobacterial growth. Further, killing of Mtb by macrophages is impaired unless they become activated. Activation is induced by stimulation from bacterial antigens and inflammatory cytokines derived from helper T cells. The key macrophage-activating cytokines in Mtb infection are tumor necrosis factor-α (TNF) and interferon (IFN)-γ. Due to differences in cellular sources and secretion pathways for TNF and IFN- γ, the possibility of heterogeneous cytokine distributions exists, suggesting that the timing of macrophage activation from these signals may affect activation kinetics and thus impact the outcome of Mtb infection. Here we use a mathematical model to show that negative feedback from production of nitric oxide (the key mediator of mycobacterial killing) that typically optimizes macrophage responses to activating stimuli may reduce effective killing of Mtb. Statistical sensitivity analysis predicts that if TNF and IFN-γ signals precede infection, the level of negative feedback may have a strong effect on how effectively macrophages kill Mtb. However, this effect is relaxed when IFN-γ or TNF + IFN-γ signals are received coincident with infection. Under these conditions, the model suggests that negative feedback induces fast responses and an initial overshoot of nitric oxide production for given doses of TNF and IFN-γ, favoring killing of Mtb. Together, our results suggest that direct entry of macrophages into a granuloma site (and not distal to it) from lung vascular sources represents a preferred host strategy for mycobacterial control. We examine implications of these results in establishment of latent Mtb infection. PMID:18321531

  16. Effects of pseudorabies virus infection upon cytotoxicity and antiviral activities of porcine alveolar macrophages.

    PubMed

    Iglesias, G; Pijoan, C; Molitor, T

    1992-10-01

    Alveolar macrophages (AM) infected with Pseudorabies virus (PRV) were compared to noninfected AM for cytotoxicity against foreign or transformed cells and production of interferon (IFN). Five PRV strains were used to infect AM including strains that are known to be highly virulent for pigs, i.e. strain 4892 and strain S-62 as well as strains that are regarded as mild or nonvirulent, i.e. BUK and Bartha. The multiplicity of infection ranged from 0.005 to 0.05 TCID50/cell. The target cells in the cytotoxicity assays were either chicken red blood cells, PRV-infected vero cells, or human myeloblastoma cells (K562 cell line). For the production of IFN, AM cultures were treated with polyinosinic:polycytidylic acid (Poly I:C) diluted in tissue culture media at a concentration of 5 micrograms/10(6) cells. Culture supernatants were collected at various times poststimulation and tested for antiviral activity using the Vesicular Stomatitis Virus replication inhibition test. Swine AM were able to lyse chicken red blood cells in an antibody-independent way but not in an antibody-dependent way, whereas lysis of PRV-infected vero cells was accomplished both ways. The cytotoxicity against chicken red blood cells was reduced in the PRV-infected AM as compared to noninfected cells, particularly in AM infected with virulent PRV strains. Specific 51Cr release values for AM infected with S-62 and 4892 strains were 14 and 19, while the noninfected AM had values of 36. Similarly, in the antibody-dependent cytotoxicity assay against PRV-infected vero cells there was no activity of AM against K562 cells. The production of IFN was readily stimulated with Poly I:C. The optimal time for supernatant collection was between 12 and 16 h poststimulation. The antiviral activity was abrogated by treatment of the supernatant with antiserum against human leukocyte IFN; it was therefore considered to be due to interferon-alpha (IFN alpha) released from the macrophages. The antiviral activity present in

  17. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection.

    PubMed

    Dai, Kai; Huang, Ling; Sun, Xiaomei; Yang, Lihua; Gong, Zuojiong

    2015-12-01

    Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.

  18. Immune Activity of BCG Infected Mouse Macrophages Treated with a Novel Recombinant Mouse Lactoferrin.

    PubMed

    O'Shea, Kelly M; Hwang, Shen-An; Actor, Jeffrey K

    2015-01-01

    Lactoferrin has been investigated for its adjuvant action to boost the BCG vaccine. Previous studies demonstrated that lactoferrin (LF) enhanced efficacy of the Bacillus Calmette-Guérin (BCG) vaccine to protect mice against the virulent Erdman Mycobacterium tuberculosis challenge. The studies here investigate the hypothesis that a novel CHO-derived recombinant mouse LF can modify cytokine production and antigen presentation molecules on macrophages. The mouse LF (rmLF) was examined for effects on bone marrow derived macrophage (BMM) activities when cultured with BCG. Comparisons were made to CHO-derived recombinant human LF (rhLF). Inflammatory cytokine responses were investigated, as were antigen presentation and associated co-stimulatory molecules. Cytokine responses were subsequently measured when these cells were co-cultured with naïve or BCG sensitized CD4+ lymphocytes. While overall responses were similar between mouse, human, and bovine forms, the homologous rmLF treated infected BMMs showed unique activation patterns of cytokine production. These results indicate that species-specific LF can have different effects on mouse macrophages exposed to BCG, thus potentially affecting adjuvant activity when used in models of vaccination in mice.

  19. DDT inhibits the functional activation of murine macrophages and decreases resistance to infection by Mycobacterium microti.

    PubMed

    Nuñez G, María Andrea; Estrada, Iris; Calderon-Aranda, Emma S

    2002-06-05

    DDT is still widely used in several parts of the world to control malaria, typhoid and dengue vectors, even though its use was banned in many countries based on toxicity data in wild life species. DDT has been shown to have immunotoxic effects in mice and to increase susceptibility to intracellular pathogens such as Mycobacterium leprae. However, little is known about the mechanisms underlying this effect. Activated macrophages play an important defensive role against intracellular pathogens, therefore our objective was to evaluate the effect of in vitro exposure to technical grade DDT (a mixture of three forms: 1,1,1-thricloro-2,2-bis(p-chlorophenyl)ethane (p,p'-DDT) (85%), o,p'-DDT (15%) and o,o'-DDT (trace amounts)), p,p'-DDT, 1,1-dicloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane on the functional activation of J774A.1 macrophages and their capability to limit growth of intracellular pathogens, using Mycobacterium microti as a model. We evaluated cytotoxicity and the effect on cell proliferation of 2.5, 5.0 and 10 microg/ml of DDT compounds. Functional macrophage activity (NO(*) and O(2)(-) production, and mRNA expression of TNF-alpha, IL-1beta and iNO synthase) and the ability of treated cells to limit infection by M. microti in IFN-gamma-activated macrophages were evaluated in cells exposed to 2.5 microg/ml of DDT compounds. Doses of 5 and 10 microg/ml induced direct cytotoxic effects precluding meaningful analysis of the above parameters, whereas 2.5 microg/ml of all DDT compounds inhibited macrophage activity and reduced their ability to limit the intracellular growth of M. microti without inducing cytotoxicity. Technical grade DDT and p,p'-DDE were the more potent compounds. Therefore, exposure to DDT compounds could represent an important risk for infection development by those intracellular pathogens against which NO(*) and/or O(2)(-) production represent the main immune protective mechanism.

  20. Intracellular activity of tedizolid phosphate and ACH-702 versus Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2014-01-01

    Background Due to the emergency of multidrug-resistant strains of Mycobacterium tuberculosis, is necessary the evaluation of new compounds. Findings Tedizolid, a novel oxazolidinone, and ACH-702, a new isothiazoloquinolone, were tested against M. tuberculosis infected THP-1 macrophages. These two compounds significantly decreased the number of intracellular mycobacteria at 0.25X, 1X, 4X and 16X the MIC value. The drugs were tested either in nanoparticules or in free solution. Conclusion Tedizolid and ACH-702 have a good intracellular killing activity comparable to that of rifampin or moxifloxacin. PMID:24708819

  1. Expression and Bactericidal Activity of Nitric Oxide Synthase in Brucella suis-Infected Murine Macrophages

    PubMed Central

    Gross, Antoine; Spiesser, Sandra; Terraza, Annie; Rouot, Bruno; Caron, Emmanuelle; Dornand, Jacques

    1998-01-01

    We examined the expression and activity of inducible nitric oxide synthase (iNOS) in both gamma interferon (IFN-γ)-treated and untreated murine macrophages infected with the gram-negative bacterium Brucella suis. The bacteria were opsonized with a mouse serum containing specific antibrucella antibodies (ops-Brucella) or with a control nonimmune serum (c-Brucella). The involvement of the produced NO in the killing of intracellular B. suis was evaluated. B. suis survived and replicated within J774A.1 cells. Opsonization with specific antibodies increased the number of phagocytized bacteria but lowered their intramacrophage development. IFN-γ enhanced the antibrucella activity of phagocytes, with this effect being greater in ops-Brucella infection. Expression of iNOS, interleukin-6, and tumor necrosis factor alpha (TNF-α) mRNAs was induced in both c-Brucella- and ops-Brucella-infected cells and was strongly potentiated by IFN-γ. In contrast to that of cytokine mRNAs, iNOS mRNA expression was independent of opsonization. Similar levels of iNOS mRNAs were expressed in IFN-γ-treated cells infected with c-Brucella or ops-Brucella; however, expression of iNOS protein and production of NO were detected only in IFN-γ-treated cells infected with ops-Brucella. These discrepencies between iNOS mRNA and protein levels were not due to differences in TNF-α production. The iNOS inhibitor Nω-nitro-l-arginine methyl ester increased B. suis multiplication specifically in IFN-γ-treated cells infected with ops-Brucella, demonstrating a microbicidal effect of the NO produced. This observation was in agreement with in vitro experiments showing that B. suis was sensitive to NO killing. Together our data indicate that in B. suis-infected murine macrophages, the posttranscriptional regulation of iNOS necessitates an additive signal triggered by macrophage Fcγ receptors. They also support the possibility that in mice, NO favors the elimination of Brucella, providing that IFN-γ and

  2. Lymphocyte and macrophage phenotypes in chronic hepatitis C infection. Correlation with disease activity.

    PubMed Central

    Khakoo, S. I.; Soni, P. N.; Savage, K.; Brown, D.; Dhillon, A. P.; Poulter, L. W.; Dusheiko, G. M.

    1997-01-01

    The pathogenesis of chronic hepatitis C and the mechanisms underlying progressive liver disease in patients with chronic hepatitis C infection are poorly understood. To demonstrate which inflammatory cells might be responsible for the necroinflammatory damage in chronic hepatitis C infection, we have correlated the phenotype of the intrahepatic lymphocytes and macrophages with histological activity in liver biopsy and explant specimens from 19 patients with chronic hepatitis C infection. In all stages of disease, more CD8+ than CD4+ lymphocytes were found. However, histologically active versus histologically mild hepatitis was associated with a trend toward greater parenchymal concentrations of CD4+ lymphocytes (0.71 +/- 0.27 per 10(4) microns 2 versus 0.35 +/- 0.15; not significant), significantly less parenchymal CD8+ lymphocytes (0.90 +/- 0.1 versus 1.70 +/- 0.3; t = 2.32, P = 0.03) and a greater parenchymal CD4/CD8 ratio (4.1 +/- 2.8 versus 0.91 +/- 0.3; t = 1.65, P = 0.07). No difference was found in the number of cells containing cytotoxic granules between the two groups. Greater numbers of CD4+ lymphocytes were found in liver biopsy specimens with little or no staining for hepatitis C virus antigen (1.47 +/- 0.88 versus 0.27 +/- 0.27; t = 2.28, P < 0.05). No significant differences were found in the macrophage subsets between the three stages of disease. Our data suggest that active histological disease in chronic hepatitis C infection may be associated with an increase in CD4+ lymphocytes and suggest that CD4+ T cells may play an important role in the hepatic injury in these patients. Images Figure 2 PMID:9060834

  3. NF-κB activation is critical for bacterial lipoprotein tolerance-enhanced bactericidal activity in macrophages during microbial infection

    PubMed Central

    Liu, Jinghua; Xiang, Jing; Li, Xue; Blankson, Siobhan; Zhao, Shuqi; Cai, Junwei; Jiang, Yong; Redmond, H. Paul; Wang, Jiang Huai

    2017-01-01

    Tolerance to bacterial components represents an essential regulatory mechanism during bacterial infection. Bacterial lipoprotein (BLP)-induced tolerance confers protection against microbial sepsis by attenuating inflammatory responses and augmenting antimicrobial activity in innate phagocytes. It has been well-documented that BLP tolerance-attenuated proinflammatory cytokine production is associated with suppressed TLR2 signalling pathway; however, the underlying mechanism(s) involved in BLP tolerance-enhanced antimicrobial activity is unclear. Here we report that BLP-tolerised macrophages exhibited accelerated phagosome maturation and enhanced bactericidal activity upon bacterial infection, with upregulated expression of membrane-trafficking regulators and lysosomal enzymes. Notably, bacterial challenge resulted in a strong activation of NF-κB pathway in BLP-tolerised macrophages. Importantly, activation of NF-κB pathway is critical for BLP tolerance-enhanced antimicrobial activity, as deactivation of NF-κB in BLP-tolerised macrophages impaired phagosome maturation and intracellular killing of the ingested bacteria. Finally, activation of NF-κB pathway in BLP-tolerised macrophages was dependent on NOD1 and NOD2 signalling, as knocking-down NOD1 and NOD2 substantially inhibited bacteria-induced activation of NF-κB and overexpression of Rab10 and Acp5, two membrane-trafficking regulators and lysosomal enzymes contributed to BLP tolerance-enhanced bactericidal activity. These results indicate that activation of NF-κB pathway is essential for BLP tolerance-augmented antimicrobial activity in innate phagocytes and depends primarily on both NOD1 and NOD2. PMID:28079153

  4. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    PubMed

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  5. Metabolism Supports Macrophage Activation

    PubMed Central

    Langston, P. Kent; Shibata, Munehiko; Horng, Tiffany

    2017-01-01

    Macrophages are found in most tissues of the body, where they have tissue- and context-dependent roles in maintaining homeostasis as well as coordinating adaptive responses to various stresses. Their capacity for specialized functions is controlled by polarizing signals, which activate macrophages by upregulating transcriptional programs that encode distinct effector functions. An important conceptual advance in the field of macrophage biology, emerging from recent studies, is that macrophage activation is critically supported by metabolic shifts. Metabolic shifts fuel multiple aspects of macrophage activation, and preventing these shifts impairs appropriate activation. These findings raise the exciting possibility that macrophage functions in various contexts could be regulated by manipulating their metabolism. Here, we review the rapidly evolving field of macrophage metabolism, discussing how polarizing signals trigger metabolic shifts and how these shifts enable appropriate activation and sustain effector activities. We also discuss recent studies indicating that the mitochondria are central hubs in inflammatory macrophage activation. PMID:28197151

  6. Cellular interactions in bovine tuberculosis: release of active mycobacteria from infected macrophages by antigen‐stimulated T cells

    PubMed Central

    Liébana, E; Aranaz, A; Aldwell, F E; McNair, J; Neill, S D; Smyth, A J; Pollock, J M

    2000-01-01

    The outcome of Mycobacterium bovis infections depends on the interactions of infected macrophages with T lymphocytes. Several studies in humans and in mouse models have suggested an important role for cytotoxicity in the protective immune response to mycobacterial infections, and both CD4+ and CD8+ T cells have been shown to elicit appropriate cytolytic activity. The present study investigated in vitro interactions of T cells with M. bovis‐infected macrophages in bovine tuberculosis. The results showed that following interaction with antigen‐stimulated peripheral blood mononuclear cells (PBMC) from infected cattle, there was an increased presence of M. bovis in the extracellular compartment of infected macrophage cultures, as measured by incorporation of [3H]uracil into mycobacterial RNA. Furthermore, out of a panel of T‐cell clones from infected cattle, it was found that a higher proportion of CD8+ clones produced an increase in the number of metabolically active extracellular M. bovis organisms compared with CD4+ clones. Finally, a positive correlation between percentage of antigen‐dependent release of mycobacteria and total uracil uptake by M. bovis within culture systems was detected. This could be regarded as an indication of preferential intracellular control of mycobacteria by activated macrophages. PMID:10651937

  7. Tim-3 induces Th2-biased immunity and alternative macrophage activation during Schistosoma japonicum infection.

    PubMed

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang; Chen, Qijun

    2015-08-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4(+) and CD8(+) T cells, NK1.1(+) cells, and CD11b(+) cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8(+) T cells or CD11b(+) cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b(+) cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection.

  8. Tim-3 Induces Th2-Biased Immunity and Alternative Macrophage Activation during Schistosoma japonicum Infection

    PubMed Central

    Hou, Nan; Piao, Xianyu; Liu, Shuai; Wu, Chuang

    2015-01-01

    T cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) has been regarded as an important regulatory factor in both adaptive and innate immunity. Recently, Tim-3 was reported to be involved in Th2-biased immune responses in mice infected with Schistosoma japonicum, but the exact mechanism behind the involvement of Tim-3 remains unknown. The present study aims to understand the role of Tim-3 in the immune response against S. japonicum infection. Tim-3 expression was determined by flow cytometry, and increased Tim-3 expression was observed on CD4+ and CD8+ T cells, NK1.1+ cells, and CD11b+ cells from the livers of S. japonicum-infected mice. However, the increased level of Tim-3 was lower in the spleen than in the liver, and no increase in Tim-3 expression was observed on splenic CD8+ T cells or CD11b+ cells. The schistosome-induced upregulation of Tim-3 on natural killer (NK) cells was accompanied by reduced NK cell numbers in vitro and in vivo. Tim-3 antibody blockade led to upregulation of inducible nitric oxide synthase and interleukin-12 (IL-12) mRNA in CD11b+ cells cocultured with soluble egg antigen and downregulation of Arg1 and IL-10, which are markers of M2 macrophages. In summary, we observed schistosome-induced expression of Tim-3 on critical immune cell populations, which may be involved in the Th2-biased immune response and alternative activation of macrophages during infection. PMID:25987707

  9. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    USDA-ARS?s Scientific Manuscript database

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  10. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection

    PubMed Central

    English, Bevin C.; Murray, Davina Hocking; Lee, Young Nam; Coady, Alison; Sil, Anita

    2016-01-01

    Summary Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth, but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis. PMID:26288377

  11. Macrophage cell death and transcriptional response are actively triggered by the fungal virulence factor Cbp1 during H. capsulatum infection.

    PubMed

    Isaac, Dervla T; Berkes, Charlotte A; English, Bevin C; Hocking Murray, Davina; Lee, Young Nam; Coady, Alison; Sil, Anita

    2015-12-01

    Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.

  12. The predominance of alternatively activated macrophages following challenge with cell wall peptide-polysaccharide after prior infection with Sporothrix schenckii.

    PubMed

    Alegranci, Pamela; de Abreu Ribeiro, Livia Carolina; Ferreira, Lucas Souza; Negrini, Thais de Cássia; Maia, Danielle Cardoso Geraldo; Tansini, Aline; Gonçalves, Amanda Costa; Placeres, Marisa Campos Polesi; Carlos, Iracilda Zeppone

    2013-08-01

    Sporotrichosis is a subcutaneous mycosis that is caused by the dimorphic fungus Sporothrix schenckii. This disease generally occurs within the skin and subcutaneous tissues, causing lesions that can spread through adjacent lymphatic vessels and sometimes leading to systemic diseases in immunocompromised patients. Macrophages are crucial for proper immune responses against a variety of pathogens. Furthermore, macrophages can play different roles in response to different microorganisms and forms of activation, and they can be divided into "classic" or "alternatively" activated populations, as also known as M1 and M2 macrophages. M1 cells can lead to tissue injury and contribute to pathogenesis, whereas M2 cells promote angiogenesis, tissue remodeling, and repair. The aim of this study was to investigate the roles of M1 and M2 macrophages in a sporotrichosis model. Toward this end, we performed phenotyping of peritoneal exudate cells and evaluated the concomitant production of several immunomediators, including IL-12, IL-10, TGF-β, nitric oxide, and arginase-I activity, which were stimulated ex vivo with cell wall peptide-polysaccharide. Our results showed the predominance of the M2 macrophage population, indicated by peaks of arginase-I activity as well as IL-10 and TGF-β production during the 6th and 8th weeks after infection. These results were consistent with cellular phenotyping that revealed increases in CD206-positive cells over this period. This is the first report of the participation of M2 macrophages in sporotrichosis infections.

  13. The role of macrophage activation and of Bcg-encoded macrophage function(s) in the control of Mycobacterium avium infection in mice.

    PubMed Central

    Appelberg, R; Sarmento, A M

    1990-01-01

    Following the intraperitoneal inoculation of 2.5 x 10(8) colony-forming units of Mycobacterium avium strain ATCC 25291, there was bacillary growth in the liver, spleen and peritoneal cavity of C57BL/6, C57BL/10, DBA/1 and BALB/c mice whereas DBA/2, C3H/He, CBA/Ca and CD-1 mice controlled the infection showing constant or slightly decreasing numbers of viable bacteria in the liver and spleen and effective clearance of the bacilli from the peritoneal cavities. The acquisition of non-specific resistance (NSR) to Listeria monocytogenes during the infection by M. avium was high in C57BL/6, BALB/c and C3H/He mice and negligible in DBA/2 and CD-1 mice. The magnitude of the acquisition of NSR was reduced in T cell-deficient mice and was directly proportional to the dose of the inoculum of M. avium. The production of hydrogen peroxide by phorbol myristate acetate-stimulated peritoneal macrophages of M. avium-infected mice was higher in C57BL/6 and BALB/c mice than in CD-1, DBA/2 and C3H/He animals. BALB/c. Bcgr (C.D2) mice, unlike their congenic strain BALB/c, restricted bacterial growth following the intravenous inoculation of 2.5 x 10(8) CFU of M. avium as efficiently as DBA/2 mice. C.D2 and BALB/c peritoneal macrophages from infected mice produced similar amounts of H2O2 but BALB/c mice developed higher levels of NSR to listeria than C.D2 mice. The production of nitrite by peritoneal macrophages from infected mice was found to be enhanced in DBA/2 and C3H/He but not in BALB/c, C57BL/6, DC-1 and C.D2 mice. Resident peritoneal macrophages from C.D2 mice were more bacteriostatic in vitro for M. avium than macrophages from BALB/c mice. The same relative differences between the two macrophage populations were observed when the cells were activated with lymphokines. The results show that the populations were observed when the cells were activated with lymphokines. The results show that the resistance to M. avium infection in mice is under the control of the Bcg gene and that

  14. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.

    PubMed

    Borborema, Samanta Etel Treiger; Schwendener, Reto Albert; Osso, João Alberto; de Andrade, Heitor Franco; do Nascimento, Nanci

    2011-10-01

    Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were ≥10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was ≥40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. Antiviral activity of derivatized dextrans on HIV-1 infection of primary macrophages and blood lymphocytes.

    PubMed

    Seddiki, N; Mbemba, E; Letourneur, D; Ylisastigui, L; Benjouad, A; Saffar, L; Gluckman, J C; Jozefonvicz, J; Gattegno, L

    1997-11-28

    The present study demonstrates at the molecular level that dextran derivatives carboxymethyl dextran benzylamine (CMDB) and carboxymethyl dextran benzylamine sulfonate (CMDBS), characterized by a statistical distribution of anionic carboxylic groups, hydrophobic benzylamide units, and/or sulfonate moieties, interact with HIV-1 LAI gp120 and V3 consensus clades B domain. Only limited interaction was observed with carboxy-methyl dextran (CMD) or dextran (D) under the same conditions. CMDBS and CMDB (1 microM) strongly inhibited HIV-1 infection of primary macrophages and primary CD4+ lymphocytes by macrophage-tropic and T lymphocyte-tropic strains, respectively, while D or CMD had more limited effects on M-tropic infection of primary macrophages and exert no inhibitory effect on M- or T-tropic infection of primary lymphocytes. CMDBS and CMDB (1 microM) had limited but significant effect on oligomerized soluble recombinant gp120 binding to primary macrophages while they clearly inhibit (> 50%) such binding to primary lymphocytes. In conclusion, the inhibitory effect of CMDB and the CMDBS, is observed for HIV M- and T-tropic strain infections of primary lymphocytes and macrophages which indicates that these compounds interfere with steps of HIV replicative cycle which neither depend on the virus nor on the cell.

  16. Lysis of herpesvirus-infected cells by macrophages activated with free or liposome-encapsulated lymphokine produced by a murine T cell hybridoma.

    PubMed Central

    Koff, W C; Showalter, S D; Seniff, D A; Hampar, B

    1983-01-01

    Thioglycolate-induced mouse peritoneal macrophages were activated in vitro by the lymphokine designated macrophage-activating factor (MAF) produced by a murine T cell hybridoma to lyse herpes simplex virus type 2 (HSV-2)-infected murine target cells. Comparison of uninfected BALB/c 10E2 cells with HSV-2-infected 10E2 cells showed that macrophages activated with MAF selectively destroyed HSV-2-infected cells and left uninfected cells unharmed, as measured by an 18-h 51Cr-release assay. In contrast, macrophages treated with medium were as efficient as MAF-activated macrophages in suppressing the production of HSV-2 from virus-infected cells. These findings suggest that macrophages must attain an activated state to lyse HSV-2-infected cells. Finally, incubation of macrophages with liposomes containing MAF was shown to be a highly efficient method for activation of macrophages against HSV-2 infected cells. The ability to selectively destroy herpesvirus-infected cells in vitro by macrophages activated with liposome-encapsulated MAF suggests that the therapeutic efficacy of this treatment in vivo should be evaluated. PMID:6358037

  17. Effects of Activated Macrophages on Nocardia asteroides

    PubMed Central

    Filice, Gregory A.; Beaman, Blaine L.; Remington, Jack S.

    1980-01-01

    The mechanism(s) of host resistance against Nocardia asteroides has not been well defined. Since disease due to N. asteroides frequently occurs in patients with impaired cell-mediated immunity, we studied the interaction of N. asteroides with activated and control mouse peritoneal macrophages. Activated macrophages were from mice infected with Toxoplasma gondii or injected with Corynebacterium parvum. N. asteroides in the early stationary phase (>99% in the coccobacillary form) was used for challenge of macrophage monolayers. Growth of two strains of N. asteroides was markedly inhibited in activated macrophages, whereas N. asteroides grew well in control macrophages. Quantitation of macrophage-associated N. asteroides indicated that activated macrophages killed 40 to 50% of N. asteroides within 6 h (P < 0.002). In control macrophage preparations, it appeared as if Nocardia filaments extended from within macrophages to the outside, and many of these filaments appeared to have extended to and then grown through neighboring macrophages. In activated macrophage preparations, Nocardia remained in the coccobacillary form in most macrophages. Control macrophage monolayers were almost completely overgrown with and destroyed by Nocardia 20 h after challenge, whereas activated macrophage monolayers remained intact. Nocardia that grew in control macrophages were not acid-alcohol fast or only weakly so, whereas the few Nocardia that grew in activated macrophages were strongly acid-alcohol fast. Our results indicate that activated macrophages may be important in host defense against N. asteroides. Images Fig. 1 PMID:6991421

  18. Macrophage infection models for Mycobacterium tuberculosis.

    PubMed

    Johnson, Benjamin K; Abramovitch, Robert B

    2015-01-01

    Mycobacterium tuberculosis colonizes, survives, and grows inside macrophages. In vitro macrophage infection models, using both primary macrophages and cell lines, enable the characterization of the pathogen response to macrophage immune pressure and intracellular environmental cues. We describe methods to propagate and infect primary murine bone marrow-derived macrophages and J774 and THP-1 macrophage-like cell lines. We also present methods on the characterization of M. tuberculosis intracellular survival and the preparation of infected macrophages for imaging.

  19. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    PubMed Central

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1β. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1β and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  20. Effect of transcription factor GATA-2 on phagocytic activity of alveolar macrophages from Pneumocystis carinii-infected hosts.

    PubMed

    Lasbury, Mark E; Tang, Xing; Durant, Pamela J; Lee, Chao-Hung

    2003-09-01

    Alveolar macrophages from Pneumocystis carinii-infected hosts are defective in phagocytosis (W. Chen, J. W. Mills, and A. G. Harmsen, Int. J. Exp. Pathol. 73:709-720, 1992; H. Koziel et al., J. Clin. Investig. 102:1332-1344, 1998). Experiments were performed to determine whether this defect is specific for P. carinii organisms. The results showed that these macrophages were unable to phagocytose both P. carinii organisms and fluorescein isothiocyanate (FITC)-conjugated latex beads, indicating that alveolar macrophages from P. carinii-infected hosts have a general defect in phagocytosis. To determine whether this defect correlates with the recently discovered down-regulation of the GATA-2 transcription factor gene during P. carinii infection, alveolar macrophages from dexamethasone-suppressed or healthy rats were treated with anti-GATA-2 oligonucleotides and then assayed for phagocytosis. Aliquots of the alveolar macrophages were also treated with the sense oligonucleotides as the control. Cells treated with the antisense oligonucleotides were found to have a 46% reduction in phagocytosis of P. carinii organisms and a 65% reduction in phagocytosis of FITC-latex beads compared to those treated with the sense oligonucleotides. To determine whether the defect in phagocytosis in alveolar macrophages from P. carinii-infected hosts can be corrected by overexpression of GATA-2, a plasmid containing the rat GATA-2 gene in the sense orientation driven by the cytomegalovirus (CMV) promoter was introduced into alveolar macrophages from P. carinii-infected rats. Aliquots of the same cells transfected with a plasmid containing GATA-2 in the antisense orientation relative to the CMV promoter served as the control. Alveolar macrophages treated with the sense GATA-2 expression construct were found to increase their phagocytic activity by 66% in phagocytosis of P. carinii organisms and by 280% in phagocytosis of FITC-latex beads compared to those that received the antisense GATA-2

  1. Macrophage polarization and HIV-1 infection.

    PubMed

    Cassol, Edana; Cassetta, Luca; Alfano, Massimo; Poli, Guido

    2010-04-01

    Polarization of MP into classically activated (M1) and alternatively activated (M2a, M2b, and M2c) macrophages is critical in mediating an effective immune response against invading pathogens. However, several pathogens use these activation pathways to facilitate dissemination and pathogenesis. Viruses generally induce an M1-like phenotype during the acute phase of infection. In addition to promoting the development of Th1 responses and IFN production, M1 macrophages often produce cytokines that drive viral replication and tissue damage. As shown for HIV-1, polarization can also alter macrophage susceptibility to infection. In vitro polarization into M1 cells prevents HIV-1 infection, and M2a polarization inhibits viral replication at a post-integration level. M2a cells also express high levels of C-type lectins that can facilitate macrophage-mediated transmission of HIV-1 to CD4(+) T cells. Macrophages are particularly abundant in mucosal membranes and unlike DCs, do not usually migrate to distal tissues. As a result, macrophages are likely to contribute to HIV-1 pathogenesis in mucosal rather than lymphatic tissues. In vivo polarization of MP is likely to span a spectrum of activation phenotypes that may change the permissivity to and alter the outcome of HIV-1 and other viral infections.

  2. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    PubMed

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  3. Hepatic cells' mitotic and peritoneal macrophage phagocytic activities during Trypanosoma musculi infection in zinc-deficient mice.

    PubMed Central

    Humphrey, P. A.; Ashraf, M.; Lee, C. M.

    1997-01-01

    The effects of zinc deficiency on hepatic cell mitotic and peritoneal macrophage phagocytic activities were examined in mice infected with Trypanosoma musculi or immunized with parasitic products. On a full-complement or pair-fed diet, infected and homogenate-inoculated mice showed mitotic activity gains of 7.9% to 80.3% and 6.5% to 99.0%, respectively. Infected and homogenate-inoculated mice on a zinc-deficient diet showed 21.8% to 95.7% and 17.2% to 65.2%, respectively, more dividing liver cells compared with controls. In comparison to controls, macrophages isolated from infected and homogenate-immunized mice on full-complement or pair-fed diets had phagocytized 13.4% to 31.4% more latex particles from day 50 to 80. In the zinc-deficient group, macrophages isolated from infected mice had significant numbers of phagocytized latex particles (1.8% to 38.5%) from day 20 to day 80 compared with controls. The homogenate-immunized mice also had increased numbers (18.6 to 30.8%) of phagocytized latex particles. PMID:9145631

  4. Haemophilus ducreyi infection induces activation of the NLRP3 inflammasome in nonpolarized but not in polarized human macrophages.

    PubMed

    Li, Wei; Katz, Barry P; Bauer, Margaret E; Spinola, Stanley M

    2013-08-01

    Recognition of microbial infection by certain intracellular pattern recognition receptors leads to the formation of a multiprotein complex termed the inflammasome. Inflammasome assembly activates caspase-1 and leads to cleavage and secretion of the proinflammatory cytokines interleukin-1 beta (IL-1β) and IL-18, which help control many bacterial pathogens. However, excessive inflammation mediated by inflammasome activation can also contribute to immunopathology. Here, we investigated whether Haemophilus ducreyi, a Gram-negative bacterium that causes the genital ulcer disease chancroid, activates inflammasomes in experimentally infected human skin and in monocyte-derived macrophages (MDM). Although H. ducreyi is predominantly extracellular during human infection, several inflammasome-related components were transcriptionally upregulated in H. ducreyi-infected skin. Infection of MDM with live, but not heat-killed, H. ducreyi induced caspase-1- and caspase-5-dependent processing and secretion of IL-1β. Blockage of H. ducreyi uptake by cytochalasin D significantly reduced the amount of secreted IL-1β. Knocking down the expression of the inflammasome components NLRP3 and ASC abolished IL-1β production. Consistent with NLRP3-dependent inflammasome activation, blocking ATP signaling, K(+) efflux, cathepsin B activity, and lysosomal acidification all inhibited IL-1β secretion. However, inhibition of the production and function of reactive oxygen species did not decrease IL-1β production. Polarization of macrophages to classically activated M1 or alternatively activated M2 cells abrogated IL-1β secretion elicited by H. ducreyi. Our study data indicate that H. ducreyi induces NLRP3 inflammasome activation via multiple mechanisms and suggest that the heterogeneity of macrophages within human lesions may modulate inflammasome activation during human infection.

  5. Pattern of disease after murine hepatitis virus strain 3 infection correlates with macrophage activation and not viral replication.

    PubMed Central

    Pope, M; Rotstein, O; Cole, E; Sinclair, S; Parr, R; Cruz, B; Fingerote, R; Chung, S; Gorczynski, R; Fung, L

    1995-01-01

    Murine hepatitis virus strain (MHV-3) produces a strain-dependent pattern of disease which has been used as a model for fulminant viral hepatitis. This study was undertaken to examine whether there was a correlation between macrophage activation and susceptibility or resistance to MHV-3 infection. Peritoneal macrophages were isolated from resistant A/J and susceptible BALB/cJ mice and, following stimulation with MHV-3 or lipopolysaccharide (LPS), analyzed for transcription of mRNA and production of interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta (TGF-beta), mouse fibrinogen-like protein (musfiblp), tissue factor (TF), leukotriene B4, and prostaglandin E2 (PGE2). Macrophages from BALB/cJ mice produced greater amounts of IL-1, TNF-alpha, TGF-beta, leukotriene B4, and musfiblp following MHV-3 infection than macrophages from resistant A/J mice, whereas in response to LPS, equivalent amounts of IL-1, TNF-alpha, TGF-beta, and TF were produced by macrophages from both strains of mice. Levels of mRNA of IL-1, TNF-alpha, and musfiblp were greater and more persistent in BALB/cJ than in A/J macrophages, whereas the levels and kinetics of IL-1, TNF-alpha, and TF mRNA following LPS stimulation were identical in macrophages from both strains of mice. Levels of production of PGE2 by MHV-3-stimulated macrophages from resistant and susceptible mice were equivalent; however, the time course for induction of PGE2, differed, but the total quantity of PGE2 produced was insufficient to inhibit induction of musfiblp, a procoagulant known to correlate with development of fulminant hepatic necrosis in susceptible mice. These results demonstrate marked differences in production of inflammatory mediators to MHV-3 infection in macrophages from resistant A/J and susceptible BALB/cJ mice, which may explain the marked hepatic necrosis and fibrin deposition and account for the lethality of MHV-3 in susceptible mice. PMID:7636967

  6. Methamphetamine Enhances HIV Infection of Macrophages

    PubMed Central

    Liang, Hao; Wang, Xu; Chen, Hui; Song, Li; Ye, Li; Wang, Shi-Hong; Wang, Yan-Jian; Zhou, Lin; Ho, Wen-Zhe

    2008-01-01

    Epidemiological studies have demonstrated that the use of methamphetamine (meth), a sympathomimetic stimulant, is particularly common among patients infected with HIV. However, there is a lack of direct evidence that meth promotes HIV infection of target cells. This study examined whether meth is able to enhance HIV infection of macrophages, the primary target site for the virus. Meth treatment resulted in a significant and dose-dependent increase of HIV reverse transcriptase activity in human blood monocyte-derived macrophages. Dopamine D1 receptor antagonists (SCH23390 and SKF83566) blocked this meth-mediated increase in the HIV infectivity of macrophages. Investigation of the underlying mechanisms of meth action showed that meth up-regulated the expression of the HIV entry co-receptor CCR5 on macrophages. Additionally, meth inhibited the expression of endogenous interferon-α and signal transducer and activator of transcription-1 in macrophages. These findings provide direct in vitro evidence to support the possibility that meth may function as a cofactor in the immunopathogenesis of HIV infection and may lead to the future development of innate immunity-based intervention for meth users with HIV infection. PMID:18458095

  7. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection.

    PubMed

    Mukherjee, Madhuchhanda; Basu Ball, Writoban; Das, Pijush K

    2014-10-01

    Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.

  8. Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism

    PubMed Central

    Vendrame, Celia Maria Vieira; Carvalho, Marcia Dias Teixeira; Tempone, Andre Gustavo

    2014-01-01

    Leishmania (Leishmania) amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF)-I on interactions between L. (L.) amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS) exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-β antibodies. Our results suggest that in L. (L.) amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms. PMID:25294956

  9. Interleukin-2 from Adaptive T Cells Enhances Natural Killer Cell Activity against Human Cytomegalovirus-Infected Macrophages.

    PubMed

    Wu, Zeguang; Frascaroli, Giada; Bayer, Carina; Schmal, Tatjana; Mertens, Thomas

    2015-06-01

    Control of human cytomegalovirus (HCMV) requires a continuous immune surveillance, thus HCMV is the most important viral pathogen in severely immunocompromised individuals. Both innate and adaptive immunity contribute to the control of HCMV. Here, we report that peripheral blood natural killer cells (PBNKs) from HCMV-seropositive donors showed an enhanced activity toward HCMV-infected autologous macrophages. However, this enhanced response was abolished when purified NK cells were applied as effectors. We demonstrate that this enhanced PBNK activity was dependent on the interleukin-2 (IL-2) secretion of CD4(+) T cells when reexposed to the virus. Purified T cells enhanced the activity of purified NK cells in response to HCMV-infected macrophages. This effect could be suppressed by IL-2 blocking. Our findings not only extend the knowledge on the immune surveillance in HCMV-namely, that NK cell-mediated innate immunity can be enhanced by a preexisting T cell antiviral immunity-but also indicate a potential clinical implication for patients at risk for severe HCMV manifestations due to immunosuppressive drugs, which mainly suppress IL-2 production and T cell responsiveness. Human cytomegalovirus (HCMV) is never cleared by the host after primary infection but instead establishes a lifelong latent infection with possible reactivations when the host's immunity becomes suppressed. Both innate immunity and adaptive immunity are important for the control of viral infections. Natural killer (NK) cells are main innate effectors providing a rapid response to virus-infected cells. Virus-specific T cells are the main adaptive effectors that are critical for the control of the latent infection and limitation of reinfection. In this study, we found that IL-2 secreted by adaptive CD4(+) T cells after reexposure to HCMV enhances the activity of NK cells in response to HCMV-infected target cells. This is the first direct evidence that the adaptive T cells can help NK cells to act

  10. NK cells are strongly activated by Lassa and Mopeia virus-infected human macrophages in vitro but do not mediate virus suppression.

    PubMed

    Russier, Marion; Reynard, Stéphanie; Tordo, Noël; Baize, Sylvain

    2012-07-01

    Lassa virus (LASV) and Mopeia virus (MOPV) are closely related Arenaviruses. LASV causes hemorrhagic fever, whereas MOPV is not pathogenic. Both viruses display tropism for APCs such as DCs and macrophages. During viral infections, NK cells are involved in the clearance of infected cells and promote optimal immune responses by interacting with APCs. We used an in vitro model of human NK and APC coculture to study the role of NK cells and to characterize their interactions with APCs during LASV and MOPV infections. As expected, NK cells alone were neither infected nor activated by LASV and MOPV, and infected DCs did not activate NK cells. By contrast, LASV- and MOPV-infected macrophages activated NK cells, as shown by the upregulation of CD69, NKp30, and NKp44, the downregulation of CXCR3, and an increase in NK-cell proliferation. NK cells acquired enhanced cytotoxicity, as illustrated by the increase in granzyme B (GrzB) expression and killing of K562 targets, but did not produce IFN-γ. Contact between NK cells and infected macrophages and type I IFNs were essential for activation; however, NK cells could not kill infected cells and control infection. Overall, these findings show that MOPV- as well as pathogenic LASV-infected macrophages mediate NK-cell activation.

  11. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection.

    PubMed

    Hardbower, Dana M; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A; Verriere, Thomas; Lewis, Nuruddeen D; Chaturvedi, Rupesh; Piazuelo, M Blanca; Wilson, Keith T

    2016-10-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.

  12. Reduced expression of IL-12 p35 by SJL/J macrophages responding to Theiler's virus infection is associated with constitutive activation of IRF-3

    SciTech Connect

    Dahlberg, Angela; Auble, Mark R.; Petro, Thomas M. . E-mail: tpetro@unmc.edu

    2006-09-30

    Macrophages responding to viral infections may contribute to autoimmune demyelinating diseases (ADD). Macrophages from ADD-susceptible SJL/J mice responding to Theiler's Virus (TMEV) infection, the TLR7 agonist loxoribine, or the TLR4 agonist-LPS expressed less IL-12 p35 but more IL-12/23 p40 and IFN-{beta} than macrophages from ADD-resistant B10.S mice. While expression of IRF-1 and -7 was similar between B10.S and SJL/J TMEV-infected macrophages, SJL/J but not B10.S macrophages exhibited constitutively active IRF-3. In contrast to overexpressed IRF-1, IRF-5, and IRF-7, which stimulated p35 promoter reporter activity, overexpressed IRF-3 repressed p35 promoter activity in response to TMEV infection, loxoribine, IFN-{gamma}/LPS, but not IFN-{gamma} alone. IRF-3 lessened but did not eliminate IRF-1-stimulated p35 promoter activity. Repression by IRF-3 required bp -172 to -122 of the p35 promoter. The data suggest that pre-activated IRF-3 is a major factor in the differences in IL-12 production between B10.S and SJL/J macrophages responding to TMEV.

  13. HIV-1-Infected and/or Immune Activated Macrophages Regulate Astrocyte SDF-1 Production Through IL-1β

    PubMed Central

    PENG, HUI; ERDMANN, NATHAN; WHITNEY, NICHOLAS; DOU, HUANGYU; GORANTLA, SANTHI; GENDELMAN, HOWARD E.; GHORPADE, ANUJA; ZHENG, JIALIN

    2007-01-01

    Stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HTV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1β following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1β receptor antagonist (IL-1Ra) and IL-1β siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1β mRNA expression. These observations provide direct evidence that IL-1β, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD. PMID:16944452

  14. Studies of macrophage function during Trichinella spiralis infection in mice.

    PubMed Central

    Wing, E J; Krahenbuhl, J L; Remington, J S

    1979-01-01

    Studies were made to investigate the quantitative and functional changes which occur in peritoneal macrophage populations obtained from mice infected orally with Trichinella spiralis larvae. C57BL/6 mice infected with T. spiralis larvae became parasitized with adult worms which were rejected from the intestine from 14 to 20 days after infection. Infected mice developed a striking increase in peritoneal exudate cells, composed largely of macrophages, which was maximal at from 16 to 18 days after infection. T. spiralis larvae and eosinophils were not seen in the peritoneal exudates. Macrophages from mice infected more than 11 days earlier inhibited DNA synthesis of syngeneic and allogeneic tumour cells, a property atributed to activated macrophages. In addition, macrophages from T. spiralis-infected mice had the functional ability to kill EL-4 tumour cells as measured by 51Cr release. Unlike activated macrophages, however, macrophages from infected mice did not develop the ability to inhibit multiplication of the intracellular pathogen Toxoplasma gondii. These studies demonstrate that T. spiralis infection in mice induces changes in macrophage function that differ from changes associated with infections by intracellular pathogens. PMID:437839

  15. Antibodies Against Glycolipids Enhance Antifungal Activity of Macrophages and Reduce Fungal Burden After Infection with Paracoccidioides brasiliensis.

    PubMed

    Bueno, Renata A; Thomaz, Luciana; Muñoz, Julian E; da Silva, Cássia J; Nosanchuk, Joshua D; Pinto, Márcia R; Travassos, Luiz R; Taborda, Carlos P

    2016-01-01

    Paracoccidioidomycosis is a fungal disease endemic in Latin America. Polyclonal antibodies to acidic glycosphingolipids (GSLs) from Paracoccidioides brasiliensis opsonized yeast forms in vitro increasing phagocytosis and reduced the fungal burden of infected animals. Antibodies to GSL were active in both prophylactic and therapeutic protocols using a murine intratracheal infection model. Pathological examination of the lungs of animals treated with antibodies to GSL showed well-organized granulomas and minimally damaged parenchyma compared to the untreated control. Murine peritoneal macrophages activated by IFN-γ and incubated with antibodies against acidic GSLs more effectively phagocytosed and killed P. brasiliensis yeast cells as well as produced more nitric oxide compared to controls. The present work discloses a novel target of protective antibodies against P. brasiliensis adding to other well-studied mediators of the immune response to this fungus.

  16. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages

    PubMed Central

    2012-01-01

    Background Antibody opsonization of Plasmodium falciparum-infected erythrocytes (IE) plays a crucial role in anti-malarial immunity by promoting clearance of blood-stage infection by monocytes and macrophages. The effects of phagocytosis of opsonized IE on macrophage pro-inflammatory cytokine responses are poorly understood. Methods Phagocytic clearance, cytokine response and intracellular signalling were measured using IFN-γ-primed human monocyte-derived macrophages (MDM) incubated with opsonized and unopsonized trophozoite-stage CS2 IE, a chondroitin sulphate-binding malaria strain. Cytokine secretion was measured by bead array or ELISA, mRNA using quantitative PCR, and activation of NF-κB by Western blot and electrophoretic mobility shift assay. Data were analysed using the Mann–Whitney U test or the Wilcoxon signed rank test as appropriate. Results Unopsonized CS2 IE were not phagocytosed whereas IE opsonized with pooled patient immune serum (PPS) were (Phagocytic index (PI)=18.4, [SE 0.38] n=3). Unopsonized and opsonized IE induced expression of TNF, IL-1β and IL-6 mRNA by MDM and activated NF-κB to a similar extent. Unopsonized IE induced secretion of IL-6 (median= 622 pg/ml [IQR=1,250-240], n=9) but no IL-1β or TNF, whereas PPS-opsonized IE induced secretion of IL-1β (18.6 pg/mL [34.2-14.4]) and TNF (113 pg/ml [421–17.0]) and increased IL-6 secretion (2,195 pg/ml [4,658-1,095]). Opsonized, but not unopsonized, CS2 IE activated caspase-1 cleavage and enzymatic activity in MDM showing that Fc receptor-mediated phagocytosis activates the inflammasome. MDM attached to IgG-coated surfaces however secreted IL-1β in response to unopsonized IE, suggesting that internalization of IE is not absolutely required to activate the inflammasome and stimulate IL-1β secretion. Conclusions It is concluded that IL-6 secretion from MDM in response to CS2 IE does not require phagocytosis, whereas secretion of TNF and IL-1β is dependent on Fcγ receptor

  17. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages.

    PubMed

    Zhou, Jingling; Ludlow, Louise E; Hasang, Wina; Rogerson, Stephen J; Jaworowski, Anthony

    2012-10-09

    Antibody opsonization of Plasmodium falciparum-infected erythrocytes (IE) plays a crucial role in anti-malarial immunity by promoting clearance of blood-stage infection by monocytes and macrophages. The effects of phagocytosis of opsonized IE on macrophage pro-inflammatory cytokine responses are poorly understood. Phagocytic clearance, cytokine response and intracellular signalling were measured using IFN-γ-primed human monocyte-derived macrophages (MDM) incubated with opsonized and unopsonized trophozoite-stage CS2 IE, a chondroitin sulphate-binding malaria strain. Cytokine secretion was measured by bead array or ELISA, mRNA using quantitative PCR, and activation of NF-κB by Western blot and electrophoretic mobility shift assay. Data were analysed using the Mann-Whitney U test or the Wilcoxon signed rank test as appropriate. Unopsonized CS2 IE were not phagocytosed whereas IE opsonized with pooled patient immune serum (PPS) were (Phagocytic index (PI)=18.4, [SE 0.38] n=3). Unopsonized and opsonized IE induced expression of TNF, IL-1β and IL-6 mRNA by MDM and activated NF-κB to a similar extent. Unopsonized IE induced secretion of IL-6 (median= 622 pg/ml [IQR=1,250-240], n=9) but no IL-1β or TNF, whereas PPS-opsonized IE induced secretion of IL-1β (18.6 pg/mL [34.2-14.4]) and TNF (113 pg/ml [421-17.0]) and increased IL-6 secretion (2,195 pg/ml [4,658-1,095]). Opsonized, but not unopsonized, CS2 IE activated caspase-1 cleavage and enzymatic activity in MDM showing that Fc receptor-mediated phagocytosis activates the inflammasome. MDM attached to IgG-coated surfaces however secreted IL-1β in response to unopsonized IE, suggesting that internalization of IE is not absolutely required to activate the inflammasome and stimulate IL-1β secretion. It is concluded that IL-6 secretion from MDM in response to CS2 IE does not require phagocytosis, whereas secretion of TNF and IL-1β is dependent on Fcγ receptor-mediated phagocytosis; for IL-1β, this occurs by

  18. Brief Report: Macrophage Activation in HIV-Infected Adolescent Males Contributes to Differential Bone Loss by Sex: Adolescent Trials Network Study 021.

    PubMed

    Ruan, Alexandra; Tobin, Nicole H; Mulligan, Kathleen; Rollie, Adrienne; Li, Fan; Sleasman, John; Aldrovandi, Grace M

    2016-08-01

    Accumulating evidence suggests that rates of low bone mass are greater in HIV-infected males than females. Of 11 biomarkers assessed by sex and HIV-status, HIV-infected males had increased levels of soluble CD14 which inversely correlated with bone mineral content and bone mineral density measures, suggesting macrophage activation as a possible mechanism of differential bone loss.

  19. Alendronate augments interleukin-1{beta} release from macrophages infected with periodontal pathogenic bacteria through activation of caspase-1

    SciTech Connect

    Deng Xue; Tamai, Riyoko; Endo, Yasuo; Kiyoura, Yusuke

    2009-02-15

    Nitrogen-containing bisphosphonates (NBPs) are anti-bone-resorptive drugs with inflammatory side effects that include osteomyelitis and osteonecrosis of the jaw. Oral bacteria have been considered to be a trigger for these NBP-associated jaw bone diseases. The present study examined the effects of alendronate (a typical NBP) and clodronate (a non-NBP) on the production of proinflammatory cytokines by macrophages infected with Porphyromonas gingivalis and Tannerella forsythia, which are important pathogens of periodontal diseases. Pretreatment with alendronate augmented IL-1{beta}, but not TNF{alpha}, production by macrophages infected with P. gingivalis or T. forsythia. This augmentation of IL-1{beta} production was inhibited by clodronate. Furthermore, caspase-1, a promoter of IL-1{beta} production, was activated by treatment with alendronate, and caspase-1 inhibitor reduced the production of IL-1{beta} induced by alendronate and P. gingivalis. These results suggest that NBPs augment periodontal pathogenic bacteria-induced IL-1{beta} release via caspase-1 activation, and this phenomenon may contribute to the development of NBP-associated inflammatory side effects including jaw osteomyelitis. Co-treatment with clodronate may prevent and/or reduce these inflammatory effects induced by NBPs.

  20. Type I IFN Inhibits Alternative Macrophage Activation during Mycobacterium tuberculosis Infection and Leads to Enhanced Protection in the Absence of IFN-γ Signaling

    PubMed Central

    Sousa, Jeremy; McNab, Finlay W.; Torrado, Egídio; Cardoso, Filipa; Machado, Henrique; Castro, Flávia; Cardoso, Vânia; Gaifem, Joana; Wu, Xuemei; Appelberg, Rui; Castro, António Gil; O’Garra, Anne; Saraiva, Margarida

    2016-01-01

    Tuberculosis causes ∼1.5 million deaths every year, thus remaining a leading cause of death from infectious diseases in the world. A growing body of evidence demonstrates that type I IFN plays a detrimental role in tuberculosis pathogenesis, likely by interfering with IFN-γ–dependent immunity. In this article, we reveal a novel mechanism by which type I IFN may confer protection against Mycobacterium tuberculosis infection in the absence of IFN-γ signaling. We show that production of type I IFN by M. tuberculosis–infected macrophages induced NO synthase 2 and inhibited arginase 1 gene expression. In vivo, absence of both type I and type II IFN receptors led to strikingly increased levels of arginase 1 gene expression and protein activity in infected lungs, characteristic of alternatively activated macrophages. This correlated with increased lung bacterial burden and pathology and decreased survival compared with mice deficient in either receptor. Increased expression of other genes associated with alternatively activated macrophages, as well as increased expression of Th2-associated cytokines and decreased TNF expression, were also observed. Thus, in the absence of IFN-γ signaling, type I IFN suppressed the switching of macrophages from a more protective classically activated phenotype to a more permissive alternatively activated phenotype. Together, our data support a model in which suppression of alternative macrophage activation by type I IFN during M. tuberculosis infection, in the absence of IFN-γ signaling, contributes to host protection. PMID:27849167

  1. MyD88-Dependent Signaling Influences Fibrosis and Alternative Macrophage Activation during Staphylococcus aureus Biofilm Infection

    PubMed Central

    Hanke, Mark L.; Angle, Amanda; Kielian, Tammy

    2012-01-01

    Bacterial biofilms represent a significant therapeutic challenge based on their ability to evade host immune and antibiotic-mediated clearance. Recent studies have implicated IL-1β in biofilm containment, whereas Toll-like receptors (TLRs) had no effect. This is intriguing, since both the IL-1 receptor (IL-1R) and most TLRs impinge on MyD88-dependent signaling pathways, yet the role of this key adaptor in modulating the host response to biofilm growth is unknown. Therefore, we examined the course of S. aureus catheter-associated biofilm infection in MyD88 knockout (KO) mice. MyD88 KO animals displayed significantly increased bacterial burdens on catheters and surrounding tissues during early infection, which coincided with enhanced dissemination to the heart and kidney compared to wild type (WT) mice. The expression of several proinflammatory mediators, including IL-6, IFN-γ, and CXCL1 was significantly reduced in MyD88 KO mice, primarily at the later stages of infection. Interestingly, immunofluorescence staining of biofilm-infected tissues revealed increased fibrosis in MyD88 KO mice concomitant with enhanced recruitment of alternatively activated M2 macrophages. Taken in the context of previous studies with IL-1β, TLR2, and TLR9 KO mice, the current report reveals that MyD88 signaling is a major effector pathway regulating fibrosis and macrophage polarization during biofilm formation. Together these findings represent a novel example of the divergence between TLR and MyD88 action in the context of S. aureus biofilm infection. PMID:22879997

  2. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: independent of apoptosis, linked to necrosis, dispensable for innate host defense.

    PubMed

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJ(KIM)) strains have high cytotoxic activity. In addition, YopJ(KIM)-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJ(KIM)-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJ(KIM)-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJ(KIM). Wild-type and

  3. YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense

    PubMed Central

    Zheng, Ying; Lilo, Sarit; Mena, Patricio; Bliska, James B.

    2012-01-01

    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic

  4. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds to activated and infected brain macrophages in areas of synaptic degeneration

    PubMed Central

    Venneti, Sriram; Wang, Guoji; Wiley, Clayton A.

    2008-01-01

    HIV encephalitis (HIVE) is characterized by neurodegeneration mediated by toxins derived from infected and activated brain macrophages. Since the peripheral benzodiazepine receptor (PBR) is abundant on brain macrophages, we hypothesized that [3H]DAA1106, a new PBR ligand, can label infected and activated brain macrophages in HIVE. Using cell culture and postmortem brain tissues from HIVE and a macaque model of HIVE, we show that [3H]DAA1106 binds with high affinity to activated and infected macrophages in regions of synaptic damage. Further, binding affinity reflected by lower KD (dissociation constant) values and the Bmax (total number of binding sites) to KD ratios reflective of ligand-binding potential, were significantly higher with [3H]DAA1106 compared to the extensively characterized PBR ligand [3H](R)-PK11195. These data suggest that DAA1106 binds with high affinity to activated and infected brain macrophages and possesses binding characteristics beneficial for in vivo use in the detection and clinical monitoring of HIVE using positron emission tomography. PMID:17920902

  5. Conditioned medium from persistently RSV-infected macrophages alters transcriptional profile and inflammatory response of non-infected macrophages.

    PubMed

    Rivera-Toledo, Evelyn; Salido-Guadarrama, Iván; Rodríguez-Dorantes, Mauricio; Torres-González, Laura; Santiago-Olivares, Carlos; Gómez, Beatriz

    2017-02-15

    Cells susceptible to persistent viral infections undergo important changes in their biological functions as a consequence of the expression of viral gene products that are capable of altering the gene expression profile of the host cell. Previously, we reported that persistence of the RSV genome in a mouse macrophage cell line induces important alterations in cell homeostasis, including constitutive expression of IFN-β and other pro-inflammatory cytokines. Here, we postulated that changes in the homeostasis of non-infected macrophages could be induced by soluble factors secreted by persistently RSV- infected macrophages. To test this hypothesis, non-infected mouse macrophages were treated with conditioned medium (CM) collected from cultures of persistently RSV-infected macrophages. Total RNA was extracted and a microarray-based gene expression analysis was performed. Non-infected macrophages, treated under similar conditions with CM obtained from cultures of non-infected macrophages, were used as a control to establish differential gene expression between the two conditions. Results showed that CM from the persistently RSV-infected cultures altered expression of a total of 95 genes in non-infected macrophages, resulting in an antiviral gene-transcription profile along with inhibition of the inflammatory response, since some inflammatory genes were down-regulated, including Nlrp3 and Il-1 β, both related to the inflammasome pathway. However, down-regulation of Nlrp3 and Il-1 β was reversible upon acute RSV infection. Additionally, we observed that the inflammatory response, evaluated by secreted IL-1 β, a final product of the inflammasome activity, was enhanced during acute RSV infection in macrophages treated with CM from persistently RSV-infected cultures, compared to that in macrophages treated with the control CM. This suggests that soluble factors secreted during RSV persistence may induce an exacerbated inflammatory response in non-infected cells.

  6. Macrophage migration inhibitory factor homolog from Plasmodium yoelii modulates monocyte recruitment and activation in spleen during infection

    PubMed Central

    Zhang, Yanhui; Miura, Kazutoyo; Li, Jian; Tullo, Gregory; Zhu, Feng; Hong, Lingxian; Lin, Tianlong; Su, Xin-zhuan; Long, Carole

    2012-01-01

    Macrophage migration inhibitory factor (MIF) has been shown to be involved in the pathogenesis of severe malaria. Malaria parasites express an MIF homolog that may play a role in regulating host immune responses and a recent study showed that overexpression of MIF reduced parasitemia in a mouse malaria model. Another recent study showed migration of monocytes to the spleen contributed to the control of blood stage infection. However, there are few papers describing the effect of MIF on monocyte recruitment/activation during the infection. We generated recombinant P. yoelii MIF (rPyMIF) and investigated its function on purified mouse CD11b+ cells in vitro and monocyte responses in vivo. The result shows that rPyMIF protein bound to mouse CD11b+ cells and inhibited their random migration in vitro. On the other hand, rPyMIF did not induce cytokine release from the cells directly or modulate LPS-induced cytokine release. Mice immunized with rPyMIF showed transient, but significantly lower parasitemia than the control mice at day 3 after lethal Py17XL challenge. The total number of CD11b+ cells in the spleens was significantly higher in rPyMIF-immunized group. Further investigation revealed that there were significantly higher numbers of recruited and activated monocytes in the spleens of rPyMIF immunization group on day 3. These results indicate that PyMIF potentially modulates monocyte recruitment and activation during infection of P. yoelii erythrocytic stages. PMID:22015474

  7. Human β defensin-3 induces chemokines from monocytes and macrophages: diminished activity in cells from HIV-infected persons.

    PubMed

    Petrov, Velizar; Funderburg, Nicholas; Weinberg, Aaron; Sieg, Scott

    2013-12-01

    Human β defensin-3 (hBD-3) is an antimicrobial peptide with diverse functionality. We investigated the capacity of hBD-3 and, for comparison, Pam3CSK4 and LL-37 to induce co-stimulatory molecules and chemokine expression in monocytes. These stimuli differentially induced CD80 and CD86 on the surface of monocytes and each stimulant induced a variety of chemokines including monocyte chemoattractant protein 1 (MCP-1), Gro-α, macrophage-derived chemokine (MDC) and macrophage inflammatory protein 1β (MIP1β), while only hBD-3 and Pam3CSK4 significantly induced the angiogenesis factor, vascular endothelial growth factor (VEGF). Human BD-3 induced similar chemokines in monocyte-derived macrophages and additionally induced expression of Regulated upon activation normal T-cell expressed and presumably secreted (RANTES) in these cells. Comparison of monocytes from HIV(+) and HIV(-) donors indicated that monocytes from HIV(+) donors were more likely to spontaneously express certain chemokines (MIP-1α, MIP-1β and MCP-1) and less able to increase expression of other molecules in response to hBD-3 (MDC, Gro-α and VEGF). Chemokine receptor expression (CCR5, CCR2 and CXCR2) was relatively normal in monocytes from HIV(+) donors compared with cells from HIV(-) donors with the exception of diminished expression of the receptor for MDC, CCR4, which was reduced in the patrolling monocyte subset (CD14(+)  CD16(++) ) of HIV(+) donors. These observations implicate chemokine induction by hBD-3 as a potentially important mechanism for orchestrating cell migration into inflamed tissues. Alterations in chemokine production or their receptors in monocytes of HIV-infected persons could influence cell migration and modify the effects of hBD-3 at sites of inflammation.

  8. Activation of ERK1/2 and TNF-α production are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages.

    PubMed

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan

    2016-04-01

    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNF-α production via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNF-α production in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  9. Trypanosoma cruzi: modification of macrophage function during infection

    PubMed Central

    1977-01-01

    Infection of mice with Trypanosoma cruzi and subsequent intraperitoneal challenge with heat-killed trypanosomes elicits peritoneal macrophages which display in vitro microbicidal activity against trypomastigotes of T. cruzi. These cells also display other activated properties including rapid spreading, intense membrane activity, secretion of high levels of plasminogen activator, and ingestion mediated by the C3 receptor. An intravenous infection with BCG, followed by an intraperitoneal challenge with mycobacterial antigens brings about macrophages with similar properties. These criteria of macrophage activation were compared in normal and BCG- or T. cruzi-immune mice, with or without an intraperitoneal challenge with specific or unrelated antigens. Trypanocidal activity is displayed by both BCG- and T. cruzi-immune macrophages after intraperitoneal challenge with either antigen. Resident-immune macrophages from both T. cruzi- and BCG-infected mice show a trypanostatic, rather than trypanocidal activity. Macrophages from noninfected mice, challenged with the same antigens, show neither trypanostatic nor trypanocidal activity. Increased secretion of plasminogen activator shows a definite immunological specificity. Challenge with the specific antigen induces the appearance of macrophages secreting high levels of plasminogen activator, while unrelated antigens induce much smaller levels. Noninfected mice challenged with the same antigens do not display any enchancement in secretion. In contrast, increased spreading and phagocytosis mediated by the complement receptor are also displayed by cells from noninfected mice challenged with any of the agents tested. PMID:327012

  10. Splenic Damage during SIV Infection: Role of T-Cell Depletion and Macrophage Polarization and Infection.

    PubMed

    Williams, Dionna W; Engle, Elizabeth L; Shirk, Erin N; Queen, Suzanne E; Gama, Lucio; Mankowski, Joseph L; Zink, M Christine; Clements, Janice E

    2016-08-01

    The effects of HIV infection on spleen and its cellular subsets have not been fully characterized, particularly for macrophages in which diverse populations exist. We used an accelerated SIV-infected macaque model to examine longitudinal effects on T-cell and macrophage populations and their susceptibilities to infection. Substantial lymphoid depletion occurred, characterized by follicular burn out and a loss of CD3 T lymphocytes, which was associated with cellular activation and transient dysregulations in CD4/CD8 ratios and memory effector populations. In contrast, the loss of CD68 and CD163(+)CD68(+) macrophages and increase in CD163 cells was irreversible, which began during acute infection and persisted until terminal disease. Mac387 macrophages and monocytes were transiently recruited into spleen, but were not sufficient to mitigate the changes in macrophage subsets. Type I interferon, M2 polarizing genes, and chemokine-chemokine receptor signaling were up-regulated in spleen and drove macrophage alterations. SIV-infected T cells were numerous within the white pulp during acute infection, but were rarely observed thereafter. CD68, CD163, and Mac387 macrophages were highly infected, which primarily occurred in the red pulp independent of T cells. Few macrophages underwent apoptosis, indicating that they are a long-lasting target for HIV/SIV. Our results identify macrophages as an important contributor to HIV/SIV infection in spleen and in promoting morphologic changes through the loss of specific macrophage subsets that mediate splenic organization.

  11. Prostaglandins from Cytosolic Phospholipase A2α/Cyclooxygenase-1 Pathway and Mitogen-activated Protein Kinases Regulate Gene Expression in Candida albicans-infected Macrophages*

    PubMed Central

    Yun, Bogeon; Lee, HeeJung; Jayaraja, Sabarirajan; Suram, Saritha; Murphy, Robert C.; Leslie, Christina C.

    2016-01-01

    In Candida albicans-infected resident peritoneal macrophages, activation of group IVA cytosolic phospholipase A2 (cPLA2α) by calcium- and mitogen-activated protein kinases triggers the rapid production of prostaglandins I2 and E2 through cyclooxygenase (COX)-1 and regulates gene expression by increasing cAMP. In C. albicans-infected cPLA2α−/− or COX-1−/− macrophages, expression of Il10, Nr4a2, and Ptgs2 was lower, and expression of Tnfα was higher, than in wild type macrophages. Expression was reconstituted with 8-bromo-cAMP, the PKA activator 6-benzoyl-cAMP, and agonists for prostaglandin receptors IP, EP2, and EP4 in infected but not uninfected cPLA2α−/− or COX-1−/− macrophages. In C. albicans-infected cPLA2α+/+ macrophages, COX-2 expression was blocked by IP, EP2, and EP4 receptor antagonists, indicating a role for both prostaglandin I2 and E2. Activation of ERKs and p38, but not JNKs, by C. albicans acted synergistically with prostaglandins to induce expression of Il10, Nr4a2, and Ptgs2. Tnfα expression required activation of ERKs and p38 but was suppressed by cAMP. Results using cAMP analogues that activate PKA or Epacs suggested that cAMP regulates gene expression through PKA. However, phosphorylation of cAMP-response element-binding protein (CREB), the cAMP-regulated transcription factor involved in Il10, Nr4a2, Ptgs2, and Tnfα expression, was not mediated by cAMP/PKA because it was similar in C. albicans-infected wild type and cPLA2α−/− or COX-1−/− macrophages. CREB phosphorylation was blocked by p38 inhibitors and induced by the p38 activator anisomycin but not by the PKA activator 6-benzoyl-cAMP. Therefore, MAPK activation in C. albicans-infected macrophages plays a dual role by promoting the cPLA2α/prostaglandin/cAMP/PKA pathway and CREB phosphorylation that coordinately regulate immediate early gene expression. PMID:26841868

  12. Suppression of Protective Responses upon Activation of L-Type Voltage Gated Calcium Channel in Macrophages during Mycobacterium bovis BCG Infection

    PubMed Central

    Sharma, Deepika; Tiwari, Brijendra Kumar; Mehto, Subhash; Antony, Cecil; Kak, Gunjan; Singh, Yogendra; Natarajan, Krishnamurthy

    2016-01-01

    The prevalence of Mycobacterium tuberculosis (M. tb) strains eliciting drug resistance has necessitated the need for understanding the complexities of host pathogen interactions. The regulation of calcium homeostasis by Voltage Gated Calcium Channel (VGCCs) upon M. tb infection has recently assumed importance in this area. We previously showed a suppressor role of VGCC during M. tb infections and recently reported the mechanisms of its regulation by M. tb. Here in this report, we further characterize the role of VGCC in mediating defence responses of macrophages during mycobacterial infection. We report that activation of VGCC during infection synergistically downmodulates the generation of oxidative burst (ROS) by macrophages. This attenuation of ROS is regulated in a manner which is dependent on Toll like Receptor (TLR) and also on the route of calcium influx, Protein Kinase C (PKC) and by Mitogen Activation Protein Kinase (MAPK) pathways. VGCC activation during infection increases cell survival and downmodulates autophagy. Concomitantly, pro-inflammatory responses such as IL-12 and IFN-γ secretion and the levels of their receptors on cell surface are inhibited. Finally, the ability of phagosomes to fuse with lysosomes in M. bovis BCG and M. tb H37Rv infected macrophages is also compromised when VGCC activation occurs during infection. The results point towards a well-orchestrated strategy adopted by mycobacteria to supress protective responses mounted by the host. This begins with the increase in the surface levels of VGCCs by mycobacteria and their antigens by well-controlled and regulated mechanisms. Subsequent activation of the upregulated VGCC following tweaking of calcium levels by molecular sensors in turn mediates suppressor responses and prepare the macrophages for long term persistent infection. PMID:27723836

  13. Keratinocyte growth factor administration attenuates murine pulmonary mycobacterium tuberculosis infection through granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent macrophage activation and phagolysosome fusion.

    PubMed

    Pasula, Rajamouli; Azad, Abul K; Gardner, Jason C; Schlesinger, Larry S; McCormack, Francis X

    2015-03-13

    Augmentation of innate immune defenses is an appealing adjunctive strategy for treatment of pulmonary Mycobacterium tuberculosis infections, especially those caused by drug-resistant strains. The effect of intranasal administration of keratinocyte growth factor (KGF), an epithelial mitogen and differentiation factor, on M. tuberculosis infection in mice was tested in prophylaxis, treatment, and rescue scenarios. Infection of C57BL6 mice with M. tuberculosis resulted in inoculum size-dependent weight loss and mortality. A single dose of KGF given 1 day prior to infection with 10(5) M. tuberculosis bacilli prevented weight loss and enhanced pulmonary mycobacterial clearance (compared with saline-pretreated mice) for up to 28 days. Similar effects were seen when KGF was delivered intranasally every third day for 15 days, but weight loss and bacillary growth resumed when KGF was withdrawn. For mice with a well established M. tuberculosis infection, KGF given every 3 days beginning on day 15 postinoculation was associated with reversal of weight loss and an increase in M. tuberculosis clearance. In in vitro co-culture experiments, M. tuberculosis-infected macrophages exposed to conditioned medium from KGF-treated alveolar type II cell (MLE-15) monolayers exhibited enhanced GM-CSF-dependent killing through mechanisms that included promotion of phagolysosome fusion and induction of nitric oxide. Alveolar macrophages from KGF-treated mice also exhibited enhanced GM-CSF-dependent phagolysosomal fusion. These results provide evidence that administration of KGF promotes M. tuberculosis clearance through GM-CSF-dependent mechanisms and enhances host defense against M. tuberculosis infection.

  14. TACI deficiency leads to alternatively activated macrophage phenotype and susceptibility to Leishmania infection

    PubMed Central

    Allman, Windy R.; Dey, Ranadhir; Liu, Lunhua; Siddiqui, Shafiuddin; Coleman, Adam S.; Bhattacharya, Parna; Yano, Masahide; Uslu, Kadriye; Takeda, Kazuyo; Nakhasi, Hira L.; Akkoyunlu, Mustafa

    2015-01-01

    The TNF family member, transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), is a key molecule for plasma cell maintenance and is required in infections where protection depends on antibody response. Here, we report that compared with WT mouse, TACI KO Μϕs expressed lower levels of Toll-like receptors (TLRs), CD14, myeloid differentiation primary response protein 88, and adaptor protein Toll/IL-1 receptor domain-containing adapter-inducing IFN-β and responded poorly to TLR agonists. Analysis of Μϕ phenotype revealed that, in the absence of TACI, Μϕs adapt the alternatively activated (M2) phenotype. Steady-state expression levels for M2 markers IL-4Rα, CD206, CCL22, IL-10, Arg1, IL1RN, and FIZZ1 were significantly higher in TACI KO Μϕ than in WT cells. Confirming their M2 phenotype, TACI-KO Mϕs were unable to control Leishmania major infection in vitro, and intradermal inoculation of Leishmania resulted in a more severe manifestation of disease than in the resistant C57BL/6 strain. Transfer of WT Μϕs to TACI KO mice was sufficient to significantly reduce disease severity. TACI is likely to influence Mϕ phenotype by mediating B cell-activating factor belonging to the TNF family (BAFF) and a proliferation inducing ligand (APRIL) signals because both these ligands down-regulated M2 markers in WT but not in TACI-deficient Μϕs. Moreover, treatment of Μϕs with BAFF or APRIL enhanced the clearance of Leishmania from cells only when TACI is expressed. These findings may have implications for understanding the shortcomings of host response in newborns where TACI expression is reduced and in combined variable immunodeficiency patients where TACI signaling is ablated. PMID:26170307

  15. Release of interleukin 1 inhibitory activity (contra-IL-1) by human monocyte-derived macrophages infected with human immunodeficiency virus in vitro and in vivo.

    PubMed Central

    Locksley, R M; Crowe, S; Sadick, M D; Heinzel, F P; Gardner, K D; McGrath, M S; Mills, J

    1988-01-01

    Infection of monocyte-macrophages with human immunodeficiency virus may be central to the pathogenesis of the acquired immunodeficiency syndrome. The ability of infected macrophages to prime T cells through IL-1 production was investigated in vitro. Purified human monocytes maintained in suspension culture were infected with strain HIV-DV. Intracellular expression of virus p24 antigen increased from undetectable levels immediately after infection to 13-59% of cells by 10-14 d; infected macrophages remained viable for up to 60 d. Supernatants collected between 14 and 20 d after infection were examined in the murine thymocyte co-mitogenesis assay and demonstrated to contain a potent IL-1 inhibitor, designated contra-IL-1. Contra-IL-1 activity was present in all supernatants examined after 4 d of infection, and peaked coincident with peak p24 antigen expression. Inhibitory activity was not present in uninfected cells. Contra-IL-1 activity eluted after gel filtration with an approximate molecular weight of 9 kD. Inhibitory activity was removed by exposure to heat or acid pH, or by incubation with chymotrypsin or staphylococcal V8 protease. Contra-IL-1 did not inhibit IL-2- or IL-4-dependent proliferation of murine T cell lines. Despite its ability to inhibit IL-1 activity, contra-IL-1 did not interfere with the binding of recombinant IL-1 beta to a fibroblast cell line. Contra-IL-1 inhibited the proliferation of normal peripheral blood mononuclear cells to both concanavalin A and tetanus toxoid; inhibition could be attenuated by the addition of exogenous IL-1. Messenger RNA extracted from infected macrophages was examined by Northern analysis for the presence of message to IL-1 beta. No message was apparent, suggesting that the presence of contra-IL-1 was not obscuring the concomitant release of IL-1. Infected macrophages stimulated with endotoxin generated readily detectable message for IL-1 beta. Spleen macrophages purified from two patients with AIDS complicated by

  16. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    PubMed

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-03-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future.

  17. Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation.

    PubMed

    Kummari, Evangel; Alugubelly, Navatha; Hsu, Chuan-Yu; Dong, Brittany; Nanduri, Bindu; Edelmann, Mariola J

    2015-01-01

    Although protein ubiquitination has been shown to regulate multiple processes during host response to Salmonella enterica serovar Typhimurium infection, specific functions of host deubiquitinating enzymes remain unknown in this bacterial infection. By using chemical proteomics approach, in which deubiquitinating enzymes were labeled by an active-site probe and analyzed by quantitative proteomics, we identified novel deubiquitinases in chicken macrophages based on their reactivity with the probe. Also, we detected down-regulation of UCH-L3, and USP4 as well as up-regulation of USP5 and UCH-L5 deubiquitinating enzymes in macrophages infected with Salmonella Typhimurium. We showed that decrease in either UCH-L5 activity, or in UCH-L5 protein amount in chicken and human macrophages infected or stimulated with LPS/nigericin, led to decreased IL-1β release. These data point towards a putative role of UCH-L5 in inflammasome regulation during Salmonella infection. Because inflammasome activation is important in innate resistance to these bacteria, one would expect that naturally occurring or therapeutically induced alteration in UCH-L5 activation would influence disease outcome and could represent a target for new therapeutic approaches.

  18. Activity-Based Proteomic Profiling of Deubiquitinating Enzymes in Salmonella-Infected Macrophages Leads to Identification of Putative Function of UCH-L5 in Inflammasome Regulation

    PubMed Central

    Kummari, Evangel; Alugubelly, Navatha; Hsu, Chuan-Yu; Dong, Brittany; Nanduri, Bindu; Edelmann, Mariola J.

    2015-01-01

    Although protein ubiquitination has been shown to regulate multiple processes during host response to Salmonella enterica serovar Typhimurium infection, specific functions of host deubiquitinating enzymes remain unknown in this bacterial infection. By using chemical proteomics approach, in which deubiquitinating enzymes were labeled by an active-site probe and analyzed by quantitative proteomics, we identified novel deubiquitinases in chicken macrophages based on their reactivity with the probe. Also, we detected down-regulation of UCH-L3, and USP4 as well as up-regulation of USP5 and UCH-L5 deubiquitinating enzymes in macrophages infected with Salmonella Typhimurium. We showed that decrease in either UCH-L5 activity, or in UCH-L5 protein amount in chicken and human macrophages infected or stimulated with LPS/nigericin, led to decreased IL-1β release. These data point towards a putative role of UCH-L5 in inflammasome regulation during Salmonella infection. Because inflammasome activation is important in innate resistance to these bacteria, one would expect that naturally occurring or therapeutically induced alteration in UCH-L5 activation would influence disease outcome and could represent a target for new therapeutic approaches. PMID:26267804

  19. The RD1 Locus in the Mycobacterium tuberculosis Genome Contributes to Activation of Caspase-1 via Induction of Potassium Ion Efflux in Infected Macrophages

    PubMed Central

    Kurenuma, Takeshi; Kawamura, Ikuo; Hara, Hideki; Uchiyama, Ryosuke; Daim, Sylvia; Dewamitta, Sita Ramyamali; Sakai, Shunsuke; Tsuchiya, Kohsuke; Nomura, Takamasa; Mitsuyama, Masao

    2009-01-01

    A genomic locus called “region of difference 1” (RD1) in Mycobacterium tuberculosis has been shown to contribute to the generation of host protective immunity as well as to the virulence of the bacterium. To gain insight into the molecular mechanism, we investigated the difference in the cytokine-inducing ability between H37Rv and a mutant strain deficient for RD1 (ΔRD1). We found that RD1 is implicated in the production of caspase-1-dependent cytokines, interleukin-18 (IL-18) and IL-1β, from infected macrophages. The expression of these cytokines was similarly induced after infection with H37Rv and ΔRD1. However, the activation of caspase-1 was observed only in H37Rv-infected macrophages. The cytokine production and caspase-1 activation were induced independently of type I interferon receptor signaling events. We also found that the activation of caspase-1 was markedly inhibited with increasing concentrations of extracellular KCl. Furthermore, the production of IL-18 and IL-1β and caspase-1 activation were induced independently of a P2X7 purinergic receptor, and the inability of ΔRD1 in caspase-1 activation was compensated for by nigericin, an agent inducing the potassium ion efflux. Based on these results, we concluded that RD1 participates in caspase-1-dependent cytokine production via induction of the potassium ion efflux in infected macrophages. PMID:19596775

  20. Schistosoma japonicum infection induces macrophage polarization

    PubMed Central

    Xu, Jingwei; Zhang, Hao; Chen, Lin; Zhang, Donghui; Ji, Minjun; Wu, Haiwei; Wu, Guanling

    2014-01-01

    Abstract The role of macrophages (Mφ) as the first line of host defense is well accepted. These cells play a central role in orchestrating crucial functions during schistosomal infection. Thus, understanding the functional diversity of these cells in the process of infection as well as the mechanisms underlying these events is crucial for developing disease control strategies. In this study, we adopted a Mφ polarization recognition system. M1 macrophage was characterized by expressing CD16/32, IL-12 and iNOS. M2 macrophage was characterized by expressing CD206, IL-10 and arg-1. In vivo (mouse peritoneal macrophages of different infection stages were obtained) and in vitro (different S. japonicum antigens were used to stimulate RAW264.7) were characterized by using the above mentioned system. NCA and ACA stimulated RAW264.7 express significantly higher levels of IL-12 while significantly higher levels of IL-10 were detected after soluble egg antigen (SEA) stimulation. The results showed that dramatic changes of antigen in the microenvironment before and after egg production led to macrophage polarization. Furthermore, through TLR blocking experiments, the TLR4 signaling pathway was found to play a role in the process of macrophage polarization toward M1. Our data suggest that macrophage polarization during S. japonicum infection had significant effects on host immune responses to S. japonicum. PMID:25050114

  1. Macrophagic activation syndrome related to an infection by Rickettsia conorii in a child.

    PubMed

    Hsairi, M; Ben Ameur, S; Alibi, S; Belfitouri, Y; Maaloul, I; Znazen, A; Chabchoub, I; Hammami, A; Hachicha, M

    2016-10-01

    Since the Arab Spring, a resurgence of zoonotic diseases such as rickettsiosis, endemic in the Mediterranean basin, has been observed. It preferentially infects microvascular endothelial cells of mammalian hosts inducing vasculitis with endothelial injury. Rickettsioses are considered benign infectious diseases. Severe systemic manifestations have been reported and are often explained by a delay in diagnosis. We present a case of hemophagocytic syndrome occurring in a 4-year-old Libyan girl as a complication of Mediterranean spotted fever. Rickettsial infection was confirmed by serology and the patient was treated with clarithromycin, with a favorable outcome. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Macrophage proliferation, provenance, and plasticity in macroparasite infection.

    PubMed

    Rückerl, Dominik; Allen, Judith E

    2014-11-01

    Macrophages have long been center stage in the host response to microbial infection, but only in the past 10-15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.

  3. Upregulation of Retinal Dehydrogenase 2 in Alternatively Activated Macrophages during Retinoid-dependent Type-2 Immunity to Helminth Infection in Mice

    PubMed Central

    Broadhurst, Mara J.; Leung, Jacqueline M.; Lim, K. C.; Girgis, Natasha M.; Gundra, Uma Mahesh; Fallon, Padraic G.; Premenko-Lanier, Mary; McKerrow, James H.; McCune, Joseph M.; Loke, P'ng

    2012-01-01

    Although the vitamin A metabolite retinoic acid (RA) plays a critical role in immune function, RA synthesis during infection is poorly understood. Here, we show that retinal dehydrogenases (Raldh), required for the synthesis of RA, are induced during a retinoid-dependent type-2 immune response elicited by Schistosoma mansoni infection, but not during a retinoid-independent anti-viral immune response. Vitamin A deficient mice have a selective defect in TH2 responses to S. mansoni, but retained normal LCMV specific TH1 responses. A combination of in situ imaging, intra-vital imaging, and sort purification revealed that alternatively activated macrophages (AAMφ) express high levels of Raldh2 during S. mansoni infection. IL-4 induces Raldh2 expression in bone marrow-derived macrophages in vitro and peritoneal macrophages in vivo. Finally, in vivo derived AAMφ have an enhanced capacity to induce Foxp3 expression in CD4+ cells through an RA dependent mechanism, especially in combination with TGF-β. The regulation of Raldh enzymes during infection is pathogen specific and reflects differential requirements for RA during effector responses. Specifically, AAMφ are an inducible source of RA synthesis during helminth infections and TH2 responses that may be important in regulating immune responses. PMID:22927819

  4. Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection.

    PubMed

    Marino, Simeone; Cilfone, Nicholas A; Mattila, Joshua T; Linderman, Jennifer J; Flynn, JoAnne L; Kirschner, Denise E

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), induces formation of granulomas, structures in which immune cells and bacteria colocalize. Macrophages are among the most abundant cell types in granulomas and have been shown to serve as both critical bactericidal cells and targets for M. tuberculosis infection and proliferation throughout the course of infection. Very little is known about how these processes are regulated, what controls macrophage microenvironment-specific polarization and plasticity, or why some granulomas control bacteria and others permit bacterial dissemination. We take a computational-biology approach to investigate mechanisms that drive macrophage polarization, function, and bacterial control in granulomas. We define a "macrophage polarization ratio" as a metric to understand how cytokine signaling translates into polarization of single macrophages in a granuloma, which in turn modulates cellular functions, including antimicrobial activity and cytokine production. Ultimately, we extend this macrophage ratio to the tissue scale and define a "granuloma polarization ratio" describing mean polarization measures for entire granulomas. Here we coupled experimental data from nonhuman primate TB granulomas to our computational model, and we predict two novel and testable hypotheses regarding macrophage profiles in TB outcomes. First, the temporal dynamics of granuloma polarization ratios are predictive of granuloma outcome. Second, stable necrotic granulomas with low CFU counts and limited inflammation are characterized by short NF-κB signal activation intervals. These results suggest that the dynamics of NF-κB signaling is a viable therapeutic target to promote M1 polarization early during infection and to improve outcome.

  5. CD4+ T Cells Are as Protective as CD8+ T Cells against Rickettsia typhi Infection by Activating Macrophage Bactericidal Activity

    PubMed Central

    Moderzynski, Kristin; Papp, Stefanie; Rauch, Jessica; Heine, Liza; Kuehl, Svenja; Richardt, Ulricke; Fleischer, Bernhard; Osterloh, Anke

    2016-01-01

    Rickettsia typhi is an intracellular bacterium that causes endemic typhus, a febrile disease that can be fatal due to complications including pneumonia, hepatitis and meningoencephalitis, the latter being a regular outcome in T and B cell-deficient C57BL/6 RAG1-/- mice upon Rickettsia typhi infection. Here, we show that CD4+ TH1 cells that are generated in C57BL/6 mice upon R. typhi infection are as protective as cytotoxic CD8+ T cells. CD4+- as well as CD8+-deficient C57BL/6 survived the infection without showing symptoms of disease at any point in time. Moreover, adoptively transferred CD8+ and CD4+ immune T cells entered the CNS of C57BL/6 RAG1-/- mice with advanced infection and both eradicated the bacteria. However, immune CD4+ T cells protected only approximately 60% of the animals from death. They induced the expression of iNOS in infiltrating macrophages as well as in resident microglia in the CNS which can contribute to bacterial killing but also accelerate pathology. In vitro immune CD4+ T cells inhibited bacterial growth in infected macrophages which was in part mediated by the release of IFNγ. Collectively, our data demonstrate that CD4+ T cells are as protective as CD8+ T cells against R. typhi, provided that CD4+ TH1 effector cells are present in time to support bactericidal activity of phagocytes via the release of IFNγ and other factors. With regard to vaccination against TG Rickettsiae, our findings suggest that the induction of CD4+ TH1 effector cells is sufficient for protection. PMID:27875529

  6. The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection

    PubMed Central

    2011-01-01

    Background Alternatively activated macrophages (AAMϕ) play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs) plays any role in AAMϕ induction when young Fasciola hepatica penetrates the liver capsule and migrates through the liver tissue is still unclear. Results The data show that the lack of myeloid differentiation factor 88 (MyD88) has no effect on the AAMϕ derived from the bone marrow (BMMϕ) in vitro and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα), and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in F. hepatica-infected mice in the absence of MyD88 in vitro and in the pleural cavity lavage in vivo. In addition, MyD88-deficiency has no effect on the arginase production of the F. hepatica elicited macrophages (Fe Mϕs), production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post F. hepatica infection. Conclusions The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post F. hepatica infection. PMID:22074389

  7. Salmonella typhimurium Invasion Induces Apoptosis in Infected Macrophages

    NASA Astrophysics Data System (ADS)

    Monack, Denise M.; Raupach, Barbel; Hromockyj, Alexander E.; Falkow, Stanley

    1996-09-01

    Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.

  8. Morphine Enhances HIV Infection of Neonatal Macrophages

    PubMed Central

    Li, Yuan; Merrill, Jeffrey D.; Mooney, Kathy; Song, Li; Wang, Xu; Guo, Chang-Jiang; Savani, Rashmin C.; Metzger, David S.; Douglas, Steven D.; Ho, Wen-Zhe

    2014-01-01

    Perinatal transmission of HIV accounts for almost all new HIV infections in children. There is an increased risk of perinatal transmission of HIV with maternal illicit substance abuse. Little is known about neonatal immune system alteration and subsequent susceptibility to HIV infection after morphine exposure. We investigated the effects of morphine on HIV infection of neonatal monocyte-derived macrophages (MDM). Morphine significantly enhanced HIV infection of neonatal MDM. Morphine-induced HIV replication in neonatal MDM was completely suppressed by naltrexone, the opioid receptor antagonist. Morphine significantly up-regulated CCR5 receptor expression and inhibited the endogenous production of macrophage inflammatory protein-1β in neonatal MDM. Thus, morphine, most likely through alteration of β-chemokines and CCR5 receptor expression, enhances the susceptibility of neonatal MDM to HIV infection, and may have a cofactor role in perinatal HIV transmission and infection. PMID:12736382

  9. Macrophage-activating T-cell factor(s) produced in an early phase of Legionella pneumophila infection in guinea pigs.

    PubMed Central

    Nikaido, Y; Yoshida, S; Goto, Y; Mizuguchi, Y; Kuroiwa, A

    1989-01-01

    Protective immunity of guinea pigs against Legionella pneumophila was studied by infecting the animals with a sublethal dose (about 2 x 10(4) CFU) of the organism. The bacteria multiplied in the liver, spleen, and lungs up to day 4 after the intraperitoneal infection. The live bacteria in these organs decreased quickly thereafter and were eliminated by day 7. A delayed-type skin reaction and lymphoproliferation of spleen cells to Formalin-killed L. pneumophila were detected from days 5 and 6, respectively, after infection. Peritoneal macrophages obtained from guinea pigs infected 6 days previously inhibited the intracellular growth of L. pneumophila. Antigen-stimulated spleen cell factor prepared from infected guinea pigs inhibited the intracellular growth of the organism in macrophages obtained from uninfected animals. Antigen-stimulated spleen cell factor prepared from spleen cells treated with anti-guinea pig T-cell monoclonal antibody did not inhibit growth. The activity of antigen-stimulated spleen cell factor was labile to pH 2 treatment, and the factor could not be absorbed by L. pneumophila antigen, suggesting that it contains gamma interferon. Our data show that T-cell-mediated immunity begins to work from an early period of infection with L. pneumophila in guinea pigs. PMID:2807531

  10. Analysis of Differentially Expressed Proteins in Mycobacterium avium-Infected Macrophages Comparing with Mycobacterium tuberculosis-Infected Macrophages

    PubMed Central

    Yang, Dongjun; Fu, Xin; He, Shiyi; Ning, Xueping

    2017-01-01

    Mycobacterium avium (MA) belongs to the intracellular parasitic bacteria. To better understand how MA survives within macrophages and the different pathogenic mechanisms of MA and Mycobacterium tuberculosis (MTB), tandem mass tag (TMT) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis have been used to determine the proteins which are differentially expressed in MA-infected and MTB-infected macrophages. 369 proteins were found to be differentially expressed in MA-infected cells but not in MTB-infected cells. By using certain bioinformatics methods, we found the 369 proteins were involved in molecular function, biological process, and cellular component including binding, catalytic activity, metabolic process, cellular process, and cell part. In addition, some identified proteins were involved in multiple signaling pathways. These results suggest that MA probably survive within macrophages by affecting the expression of some crucial proteins. PMID:28573139

  11. Induction of interleukin-10 is dependent on p38 mitogen-activated protein kinase pathway in macrophages infected with porcine reproductive and respiratory syndrome virus

    PubMed Central

    2012-01-01

    Background Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure and respiratory illness in pigs and usually establishes a persistent infection. Previous studies suggested that interleukin-10 (IL-10) could play a critical role in PRRSV-induced immunosuppression. However, the ability of PRRSV to induce IL-10 in infected cells is controversial. In this study, we further investigated this issue using PRRSV strain CH-1a, which is the first North American genotype strain isolated in China. Results PRRSV strain CH-1a could significantly up-regulate IL-10 production both at mRNA and protein levels in porcine alveolar macrophages (PAMs), bone marrow-derived macrophages (BMDMs), and monocyte-derived macrophages (MDMs). However, up-regulation of IL-10 by PRRSV was retarded by specific inhibitors of p38 mitogen-activated protein kinase (MAPK) (SB203580) and NF-κB (BAY11-7082). Additionally, p38 MAPK and NF-κB pathways but not ERK1/2 MAPK were actually activated in PRRSV-infected BMDMs as demonstrated by western blot analysis, suggesting that p38 MAPK and NF-κB pathways are involved in the induction of IL-10 by PRRSV infection. Transfection of PAMs and PAM cell line 3D4/21 (CRL-2843) with viral structural genes showed that glycoprotein5 (GP5) could significantly up-regulate IL-10 production, which was dependent on p38 MAPK and signal transducer and activator of transcription-3 (STAT3) activation. We also demonstrated that a full-length glycoprotein was essential for GP5 to induce IL-10 production. Conclusions PRRSV strain CH-1a could significantly up-regulate IL-10 production through p38 MAPK activation. PMID:22909062

  12. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  13. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  14. Small ruminant macrophage polarization may play a pivotal role on lentiviral infection.

    PubMed

    Crespo, Helena; Bertolotti, Luigi; Juganaru, Magda; Glaria, Idoia; de Andrés, Damián; Amorena, Beatriz; Rosati, Sergio; Reina, Ramsés

    2013-09-26

    Small ruminant lentiviruses (SRLV) infect the monocyte/macrophage lineage inducing a long-lasting infection affecting body condition, production and welfare of sheep and goats all over the world. Macrophages play a pivotal role on the host's innate and adaptative immune responses against parasites by becoming differentially activated. Macrophage heterogeneity can tentatively be classified into classically differentiated macrophages (M1) through stimulation with IFN-γ displaying an inflammatory profile, or can be alternatively differentiated by stimulation with IL-4/IL-13 into M2 macrophages with homeostatic functions. Since infection by SRLV can modulate macrophage functions we explored here whether ovine and caprine macrophages can be segregated into M1 and M2 populations and whether this differential polarization represents differential susceptibility to SRLV infection. We found that like in human and mouse systems, ovine and caprine macrophages can be differentiated with particular stimuli into M1/M2 subpopulations displaying specific markers. In addition, small ruminant macrophages are plastic since M1 differentiated macrophages can express M2 markers when the stimulus changes from IFN-γ to IL-4. SRLV replication was restricted in M1 macrophages and increased in M2 differentiated macrophages respectively according to viral production. Identification of the infection pathways in macrophage populations may provide new targets for eliciting appropriate immune responses against SRLV infection.

  15. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    PubMed Central

    2012-01-01

    Background Tuberculosis (TB), a bacterial infection caused by Mycobacterium tuberculosis (Mtb) remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM) to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours) immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of a dysregulated host cell

  16. Brucella infection inhibits macrophages apoptosis via Nedd4-dependent degradation of calpain2.

    PubMed

    Cui, Guimei; Wei, Pan; Zhao, Yuxi; Guan, Zhenhong; Yang, Li; Sun, Wanchun; Wang, Shuangxi; Peng, Qisheng

    2014-11-07

    The calcium-dependent protease calpain2 is involved in macrophages apoptosis. Brucella infection-induced up-regulation of intracellular calcium level is an essential factor for the intracellular survival of Brucella within macrophages. Here, we hypothesize that calcium-dependent E3 ubiquitin ligase Nedd4 ubiquitinates calpain2 and inhibits Brucella infection-induced macrophage apoptosis via degradation of calpain2.Our results reveal that Brucella infection induces increases in Nedd4 activity in an intracellular calcium dependent manner. Furthermore, Brucella infection-induced degradation of calpain2 is mediated by Nedd4 ubiquitination of calpain2. Brucella infection-induced calpain2 degradation inhibited macrophages apoptosis. Treatment of Brucella infected macrophages with calcium chelator BAPTA or Nedd4 knock-down decreased Nedd4 activity, prevented calpain2 degradation, and resulted in macrophages apoptosis.

  17. Chlamydia muridarum Infection of Macrophages Stimulates IL-1β Secretion and Cell Death via Activation of Caspase-1 in an RIP3-Independent Manner

    PubMed Central

    Chen, Lixiang; Liu, Xue; Yu, Xin; Wang, Chao; Meng, Guangxun

    2017-01-01

    Chlamydiae are Gram-negative bacteria, which replicate exclusively in the infected host cells. Infection of the host cells by Chlamydiae stimulates the innate immune system leading to an inflammatory response, which is manifested not only by secretion of proinflammatory cytokines such as IL-1β from monocytes, macrophages, and dendritic cells, but also possibly by cell death mediated by Caspase-1 pyroptosis. RIP3 is a molecular switch that determines the development of necrosis or inflammation. However, the involvement of RIP3 in inflammasome activation by Chlamydia muridarum infection has not been clarified. Here, we assessed the role of RIP3 in synergy with Caspase-1 in the induction of IL-1β production in BMDM after either LPS/ATP or Chlamydia muridarum stimulation. The possibility of pyroptosis and necroptosis interplays and the role of RIP3 in IL-1β production during Chlamydia muridarum infection in BMDM was investigated as well. The data indicated that RIP3 is involved in NLRP3 inflammasome activation in LPS/ATP-stimulated BMDMs but not in Chlamydia muridarum infection. Pyroptosis occurred in BMDM after LPS/ATP stimulation or Chlamydia muridarum infection. Moreover, the results also illuminated the important role of the Caspase-1-mediated pyroptosis process which does not involve RIP3. Taken together, these observations may help shed new light on details in inflammatory signaling pathways activated by Chlamydia muridarum infection. PMID:28660207

  18. Macrophage origin limits functional plasticity in helminth-bacterial co-infection

    PubMed Central

    Campbell, Sharon M.; Duncan, Sheelagh; Hewitson, James P.; Barr, Tom A.; Jackson-Jones, Lucy H.; Maizels, Rick M.

    2017-01-01

    Rapid reprogramming of the macrophage activation phenotype is considered important in the defense against consecutive infection with diverse infectious agents. However, in the setting of persistent, chronic infection the functional importance of macrophage-intrinsic adaptation to changing environments vs. recruitment of new macrophages remains unclear. Here we show that resident peritoneal macrophages expanded by infection with the nematode Heligmosomoides polygyrus bakeri altered their activation phenotype in response to infection with Salmonella enterica ser. Typhimurium in vitro and in vivo. The nematode-expanded resident F4/80high macrophages efficiently upregulated bacterial induced effector molecules (e.g. MHC-II, NOS2) similarly to newly recruited monocyte-derived macrophages. Nonetheless, recruitment of blood monocyte-derived macrophages to Salmonella infection occurred with equal magnitude in co-infected animals and caused displacement of the nematode-expanded, tissue resident-derived macrophages from the peritoneal cavity. Global gene expression analysis revealed that although nematode-expanded resident F4/80high macrophages made an anti-bacterial response, this was muted as compared to newly recruited F4/80low macrophages. However, the F4/80high macrophages adopted unique functional characteristics that included enhanced neutrophil-stimulating chemokine production. Thus, our data provide important evidence that plastic adaptation of MΦ activation does occur in vivo, but that cellular plasticity is outweighed by functional capabilities specific to the tissue origin of the cell. PMID:28334040

  19. The Interferon-Induced Gene Ifi27l2a is Active in Lung Macrophages and Lymphocytes After Influenza A Infection but Deletion of Ifi27l2a in Mice Does Not Increase Susceptibility to Infection

    PubMed Central

    Dengler, Leonie; Kasnitz, Nadine; Weiß, Siegfried; Schughart, Klaus

    2014-01-01

    Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections. PMID:25184786

  20. Engineering Attenuated Virulence of a Theileria annulata–Infected Macrophage

    PubMed Central

    Echebli, Nadia; Mhadhbi, Moez; Chaussepied, Marie; Vayssettes, Catherine; Di Santo, James P.; Darghouth, Mohamed Aziz; Langsley, Gordon

    2014-01-01

    Live attenuated vaccines are used to combat tropical theileriosis in North Africa, the Middle East, India, and China. The attenuation process is empirical and occurs only after many months, sometimes years, of in vitro culture of virulent clinical isolates. During this extensive culturing, attenuated lines lose their vaccine potential. To circumvent this we engineered the rapid ablation of the host cell transcription factor c-Jun, and within only 3 weeks the line engineered for loss of c-Jun activation displayed in vitro correlates of attenuation such as loss of adhesion, reduced MMP9 gelatinase activity, and diminished capacity to traverse Matrigel. Specific ablation of a single infected host cell virulence trait (c-Jun) induced a complete failure of Theileria annulata–transformed macrophages to disseminate, whereas virulent macrophages disseminated to the kidneys, spleen, and lungs of Rag2/γC mice. Thus, in this heterologous mouse model loss of c-Jun expression led to ablation of dissemination of T. annulata–infected and transformed macrophages. The generation of Theileria-infected macrophages genetically engineered for ablation of a specific host cell virulence trait now makes possible experimental vaccination of calves to address how loss of macrophage dissemination impacts the disease pathology of tropical theileriosis. PMID:25375322

  1. Genome-wide Chromatin Profiling of Legionella pneumophila-Infected Human Macrophages Reveals Activation of the Probacterial Host Factor TNFAIP2.

    PubMed

    Du Bois, Ilona; Marsico, Annalisa; Bertrams, Wilhelm; Schweiger, Michal R; Caffrey, Brian E; Sittka-Stark, Alexandra; Eberhardt, Martin; Vera, Julio; Vingron, Martin; Schmeck, Bernd T

    2016-08-01

    Legionella pneumophila is a causative agent of severe pneumonia. Infection leads to a broad host cell response, as evident, for example, on the transcriptional level. Chromatin modifications, which control gene expression, play a central role in the transcriptional response to L. pneumophila  We infected human-blood-derived macrophages (BDMs) with L. pneumophila and used chromatin immunoprecipitation followed by sequencing to screen for gene promoters with the activating histone 4 acetylation mark. We found the promoter of tumor necrosis factor α-induced protein 2 (TNFAIP2) to be acetylated at histone H4. This factor has not been characterized in the pathology of L. pneumophila TNFAIP2 messenger RNA and protein were upregulated in response to L. pneumophila infection of human-BDMs and human alveolar epithelial (A549) cells. We showed that L. pneumophila-induced TNFAIP2 expression is dependent on the NF-κB transcription factor. Importantly, knock down of TNFAIP2 led to reduced intracellular replication of L. pneumophila Corby in A549 cells. Taken together, genome-wide chromatin analysis of L. pneumophila-infected macrophages demonstrated induction of TNFAIP2, a NF-κB-dependent factor relevant for bacterial replication. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  2. THE ENHANCEMENT OF MACROPHAGE BACTERIOSTASIS BY PRODUCTS OF ACTIVATED LYMPHOCYTES

    PubMed Central

    Fowles, Robert E.; Fajardo, Ileana M.; Leibowitch, Jacques L.; David, John R.

    1973-01-01

    It was reported previously that the incubation of normal guinea pig macrophages with partially purified products of activated lymphocytes resulted in altered macrophage function including increased cell adherence to culture vessels, spreading, phagocytosis, and glucose carbon-1 oxidation. Studies reported here demonstrate that such macrophages also exhibit enhanced bacteriostasis. Lymphocytes were stimulated with concanavalin A, the culture supernatant was chromatographed over Sephadex G-100 and the fraction of mol wt 25,000–55,000, rich in lymphocyte mediators, was cultured with normal guinea pig macrophages for 1–3 days. Macrophages incubated with fractions from unstimulated lymphocyte cultures served as controls. The resulting macrophage monolayers were infected with Listeria monocytogenes. Macrophages incubated with mediator-rich fractions exhibited 2- to 10-fold enhanced bacteriostasis compared to controls. Further studies indicate that this enhancement was attributable to intrinsic changes in the macrophages and not simply a consequence of the number of macrophages on the monolayers. The studies support the concept that macrophage bacteriostasis can be enhanced by lymphocyte mediators. However, macrophages, which have been preincubated directly with sensitive lymphocytes and antigen exhibit even greater bacteriostasis and sometimes bactericidal capacity, suggesting that either a labile lymphocyte factor or direct lymphocyte macrophage interaction may also be involved in bactericidal activity. PMID:4200649

  3. Aberrant fetal macrophage/microglial reactions to cytomegalovirus infection

    PubMed Central

    Sakao-Suzuki, Makiko; Kawasaki, Hideya; Akamatsu, Taisuke; Meguro, Shiori; Miyajima, Hiroaki; Iwashita, Toshihide; Tsutsui, Yoshihiro; Inoue, Naoki; Kosugi, Isao

    2014-01-01

    Objective Congenital cytomegalovirus (CMV) infection is the leading viral cause of neurodevelopmental disorders in humans, with the most severe and permanent sequelae being those affecting the cerebrum. As the fetal immune reactions to congenital CMV infection in the brain and their effects on cerebral development remain elusive, our aim was to investigate primitive innate immunity to CMV infection and its effects on cerebral corticogenesis in a mouse model for congenital CMV infection using a precise intraplacental inoculation method. Methods At 13.5 embryonic days (E13.5), pregnant C57BL/6 mice were intraplacentally infected with murine CMV (MCMV). Placentas and fetal organs were collected at 1, 3, and 5 days postinfection and analyzed. Results MCMV antigens were found frequently in perivascular macrophages, and subsequently in neural stem/progenitor cells (NSPCs). With increased expression of inducible nitric oxide synthase and proinflammatory cytokines, activated macrophages infiltrated into the infectious foci. In addition to the infected area, the numbers of both meningeal macrophages and parenchymal microglia increased even in the uninfected areas of MCMV-infected brain due to recruitment of their precursors from other sites. A bromodeoxyuridine (BrdU) incorporation experiment demonstrated that MCMV infection globally disrupted the self-renewal of NSPCs. Furthermore, BrdU-labeled neurons, particularly Brn2+ neurons of upper layers II/III in the cortical plate, decreased in number significantly in the MCMV-infected E18.5 cerebrum. Interpretation Brain macrophages are crucial for innate immunity during MCMV infection in the fetal brain, while their aberrant recruitment and activation may adversely impact on the stemness of NSPCs, resulting in neurodevelopmental disorders. PMID:25356429

  4. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans.

    PubMed

    Müller, Uwe; Stenzel, Werner; Köhler, Gabriele; Werner, Christoph; Polte, Tobias; Hansen, Gesine; Schütze, Nicole; Straubinger, Reinhard K; Blessing, Manfred; McKenzie, Andrew N J; Brombacher, Frank; Alber, Gottfried

    2007-10-15

    In the murine model of Cryptococcus neoformans infection Th1 (IL-12/IFN-gamma) and Th17 (IL-23/IL-17) responses are associated with protection, whereas an IL-4-dependent Th2 response exacerbates disease. To investigate the role of the Th2 cytokine IL-13 during pulmonary infection with C. neoformans, IL-13-overexpressing transgenic (IL-13Tg(+)), IL-13-deficient (IL-13(-/-)), and wild-type (WT) mice were infected intranasally. Susceptibility to C. neoformans infection was found when IL-13 was induced in WT mice or overproduced in IL-13Tg(+) mice. Infected IL-13Tg(+) mice had a reduced survival time and higher pulmonary fungal load as compared with WT mice. In contrast, infected IL-13(-/-) mice were resistant and 89% of these mice survived the entire period of the experiment. Ag-specific production of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with a significant type 2 cytokine shift but only minor changes in IFN-gamma production. Consistent with enhanced type 2 cytokine production, high levels of serum IgE and low ratios of serum IgG2a/IgG1 were detected in susceptible WT and IL-13Tg(+) mice. Interestingly, expression of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with reduced IL-17 production. IL-13 was found to induce formation of alternatively activated macrophages expressing arginase-1, macrophage mannose receptor (CD206), and YM1. In addition, IL-13 production led to lung eosinophilia, goblet cell metaplasia and elevated mucus production, and enhanced airway hyperreactivity. This indicates that IL-13 contributes to fatal allergic inflammation during C. neoformans infection.

  5. Kynurenine pathway inhibition reduces neurotoxicity of HIV-1-infected macrophages.

    PubMed

    Kerr, S J; Armati, P J; Pemberton, L A; Smythe, G; Tattam, B; Brew, B J

    1997-12-01

    The AIDS dementia complex (ADC) is a consequence of excessive immune activation driven at least in part by systemic HIV infection and probably brain infection. Quinolinic acid (QUIN) is a neurotoxic tryptophan metabolite produced by macrophages in response to stimulation with cytokines or infection with HIV-1. Consequently it has been implicated in ADC pathogenesis. However, macrophages infected with HIV-1 synthesize numerous neurotoxic substances. Therefore we conducted experiments using human fetal brain tissue to determine the relative importance of QUIN as a neurotoxin in ADC. Human macrophages were infected with HIV-1 in vitro using a viral isolate from a demented patient. 6-Chloro-D-tryptophan, an inhibitor of QUIN biosynthesis, was added to half the macrophage cultures to block formation of QUIN. Supernatants containing QUIN (SQpos) or in which QUIN biosynthesis had been inhibited (SQneg) were then added to human fetal brain aggregate cultures. Toxicity was evaluated using lactate dehydrogenase efflux, trypan blue exclusion, immunohistochemistry, image analysis, and electron microscopy. Each technique showed a reduction of toxicity in SQneg-treated cultures. These studies confirm the significance of QUIN as a neurotoxin in ADC and suggest that neuroprotective strategies may have a place in the treatment of this disease.

  6. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2

    PubMed Central

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  7. Cellular accumulation of fluoroquinolones is not predictive of their intracellular activity: studies with gemifloxacin, moxifloxacin and ciprofloxacin in a pharmacokinetic/pharmacodynamic model of uninfected and infected macrophages.

    PubMed

    Vallet, Coralie M; Marquez, Béatrice; Ngabirano, Eva; Lemaire, Sandrine; Mingeot-Leclercq, Marie-Paule; Tulkens, Paul M; Van Bambeke, Françoise

    2011-09-01

    Fluoroquinolones enter eukaryotic cells but the correlation between cellular accumulation and activity remains poorly established. Gemifloxacin is known to accumulate to a larger extent than most other fluoroquinolones in tissues. Using murine J774 macrophages and human THP-1 monocytes, we show that gemifloxacin accumulates more than ciprofloxacin and even moxifloxacin. Whilst showing indistinguishable kinetics of accumulation in J774 macrophages, gemifloxacin was released at an approximately two-fold slower rate than ciprofloxacin and its release was only partial. Gemifloxacin was also a weaker substrate than ciprofloxacin for the efflux transporter Mrp4 active in J774 macrophages. In cells infected with Listeria monocytogenes or Staphylococcus aureus (typical cytoplasmic and phagolysosomal organisms, respectively), gemifloxacin was equipotent to moxifloxacin and ciprofloxacin in concentration-dependent experiments if data are normalised based on the minimum inhibitory concentration (MIC) in broth. Thus, larger cellular concentrations of gemifloxacin than of moxifloxacin or ciprofloxacin were needed to obtain a similar target effect. Fractionation studies showed a similar subcellular distribution for all three fluoroquinolones, with approximately two-thirds of the cell-associated drug recovered in the soluble fraction (cytosol). These data suggest that cellular accumulation of fluoroquinolones is largely a self-defeating process as far as activity is concerned, with the intracellular drug made inactive in proportion to its accumulation level. Whilst these observations do not decrease the intrinsic value of fluoroquinolones for the treatment of intracellular infections, they indicate that ranking fluoroquinolones based on cell accumulation data without measuring the corresponding intracellular activity may lead to incorrect conclusions regarding their real potential. Copyright © 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  8. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages.

    PubMed

    Mujtaba, Shiraz; Winer, Benjamin Y; Jaganathan, Anbalagan; Patel, Jigneshkumar; Sgobba, Miriam; Schuch, Raymond; Gupta, Yogesh K; Haider, Shozeb; Wang, Rong; Fischetti, Vincent A

    2013-08-09

    Toxins play a major role in the pathogenesis of Bacillus anthracis by subverting the host defenses. However, besides toxins, B. anthracis expresses effector proteins, whose role in pathogenesis are yet to be investigated. Here we present that suppressor-of-variegation, enhancer-of-zeste, trithorax protein from B. anthracis (BaSET) methylates human histone H1, resulting in repression of NF-κB functions. Notably, BaSET is secreted and undergoes nuclear translocation to enhance H1 methylation in B. anthracis-infected macrophages. Compared with wild type Sterne, delayed growth kinetics and altered septum formation were observed in the BaSET knock-out (BaΔSET) bacilli. Uncontrolled BaSET expression during complementation of the BaSET gene in BaΔSET partially restored growth during stationary phase but resulted in substantially shorter bacilli throughout the growth cycle. Importantly, in contrast to Sterne, the BaΔSET B. anthracis is avirulent in a lethal murine bacteremia model of infection. Collectively, BaSET is required for repression of host transcription as well as proper B. anthracis growth, making it a potentially unique virulence determinant.

  9. Blocking the mitogen activated protein kinase-p38 pathway is associated with increase expression of nitric oxide synthase and higher production of nitric oxide by bovine macrophages infected with Mycobacterium avium subsp paratuberculosis.

    PubMed

    Souza, Cleverson D

    2015-03-15

    This study evaluated the role of the mitogen-activated protein kinase (MAPK)-p38 pathway in the nitric oxide synthase (iNOS) expression and nitric oxide (NO) production by bovine monocyte-derived macrophages ingesting Mycobacterium avium subsp. paratuberculosis (MAP) organisms in vitro. Bovine monocyte-derived macrophages were incubated with MAP organisms with or without a specific inhibitor of the MAPKp38 pathway and activation of the MAPKp38, interleukin - (IL) IL-10, IL-12, iNOS mRNA expression and NO production were evaluated. Incubation of macrophages with MAP organisms activates the MAPKp38 pathway at early time points post infection. Chemically inhibition of MAPKp38 before incubation of bovine macrophages with MAP resulted in increased expression of IL-12 mRNA at 2, 6 and 24h, decreased expression of IL-10 mRNA at 2, 6 and 24h and increased expression of iNOS mRNA at 2 and 6h. Nitric oxide was evaluated to indirectly determine the effects of MAPKp38 pathway on the anti-microbial activity of bovine macrophages. Incubation of bovine macrophages with MAP resulted in modest increased production of NO at 4 and 6h post infection. Pretreatment of bovine macrophages with the MAPKp38 inhibitor SB203580 before addition of MAP organisms resulted in increased production of NO at 2, 4, 6 and 24h post infection. This study expanded our knowledge of the importance of the MAPKp38 pathway in limiting an appropriate macrophage response to MAP and suggested how activation of MAPKp38 pathway may be a target of this organism to disrupt earlier antimicrobial mechanisms of macrophages. These findings raises the interesting possibility that the cellular manipulation of MAPKp38 may be useful in designing novel vaccines against MAP.

  10. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection

    PubMed Central

    Friedman, Rachel S.

    2017-01-01

    Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages. PMID:28542482

  11. HIV Infection of Macrophages: Implications for Pathogenesis and Cure.

    PubMed

    Clayton, Kiera L; Garcia, J Victor; Clements, Janice E; Walker, Bruce D

    2017-01-01

    Although CD4(+) T cells represent the major reservoir of persistent HIV and SIV infection, accumulating evidence suggests that macrophages also contribute. However, investigations of the role of macrophages are often underrepresented at HIV pathogenesis and cure meetings. This was the impetus for a scientific workshop dedicated to this area of study, held in Cambridge, MA in January 2017. The workshop brought together experts in the fields of HIV/SIV immunology and virology, macrophage biology and immunology, and animal models of HIV/SIV infection to discuss the role of macrophages as a physiologically relevant viral reservoir, and the implications of macrophage infection for HIV pathogenesis and strategies for cure. While still controversial, there is an emerging theory that infected macrophages likely persist in the setting of combination antiretroviral therapy. These macrophages could then drive persistent inflammation and contribute to the viral reservoir, which indicates the importance of addressing macrophages as well as CD4(+) T cells with future therapeutic strategies.

  12. Mycobacterium tuberculosis-induced neutrophil ectosomes decrease macrophage activation.

    PubMed

    Duarte, Tonya Azevedo; Noronha-Dutra, Alberto Augusto; Nery, Joilda Silva; Ribeiro, Samantha Brum; Pitanga, Thassila Nogueira; Lapa E Silva, José R; Arruda, Sérgio; Boéchat, Neio

    2012-05-01

    The existence of ectosome-like microvesicles released by neutrophils was proposed a few decades ago. Other studies revealed that the innate immune response during mycobacterial infection is accompanied by an intense migration of neutrophils to the site of infection, which may be important during the acute phase of tuberculosis. We found that the ectosomes derived from infected neutrophils are biologically active and can influence the survival of Mycobacterium tuberculosis within macrophages. Mycobacteria were cultured on supplemented Middlebrook-7H9 broth. All strains were grown to the exponential phase and quantitated by serial dilution. Human neutrophils and macrophages were infected with mycobacteria. Ectosomes from neutrophils were isolated post-infection and characterized by transmission electron microscopy and flow cytometry. To determine whether these microvesicles influenced mycobactericidal activity, mycobacteria-infected macrophages were treated with isolated ectosomes. Ectosomes were released from neutrophils infected with mycobacteria. These ectosomes were derived from neutrophil plasma membrane and a small proportion stained with PKH26. These microvesicles, when incubated with infected macrophages, influenced antimycobacterial activity. This is the first study to demonstrate that ectosomes that are shed from infected neutrophils influence mycobactericidal activity in macrophages in vitro, suggesting that these microvesicles have biological significance. Nevertheless, major gaps in our knowledge of microvesicle biology remain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    PubMed

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins.

    PubMed

    Ledesma-Soto, Yadira; Callejas, Blanca E; Terrazas, César A; Reyes, Jose L; Espinoza-Jiménez, Arlett; González, Marisol I; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R; Terrazas, Luis I

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins.

  15. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins

    PubMed Central

    Ledesma-Soto, Yadira; Callejas, Blanca E.; Terrazas, César A.; Reyes, Jose L.; Espinoza-Jiménez, Arlett; González, Marisol I.; León-Cabrera, Sonia; Morales, Rosario; Olguín, Jonadab E.; Saavedra, Rafael; Oghumu, Steve; Satoskar, Abhay R.; Terrazas, Luis I.

    2015-01-01

    Chronic inflammation of the intestinal mucosa is characteristic of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Helminth parasites have developed immunomodulatory strategies that may impact the outcome of several inflammatory diseases. Therefore, we investigated whether Taenia crassiceps infection is able to decrease the inflammatory effects of dextran sulfate sodium- (DSS-) induced ulcerative colitis in BALB/c and C57BL/6 mice. Preinfection significantly reduced the manifestations of DSS-induced colitis, as weight loss and shortened colon length, and decreased the disease activity index independently of the genetic background of the mice. Taenia infection decreased systemic levels of proinflammatory cytokines while increasing levels of IL-4 and IL-10, and the inflammatory infiltrate into the colon was also markedly reduced. RT-PCR assays from colon showed that T. crassiceps-infected mice displayed increased expression of Arginase-1 but decreased expression of iNOS compared to DSS-treated uninfected mice. The percentages of T regulatory cells were not increased. The adoptive transfer of alternatively activated macrophages (AAMФs) from infected mice into mice with DSS-induced colitis reduced the severity of colon inflammation. Administration of indomethacin abrogated the anticolitic effect of Taenia. Thus, T. crassiceps infection limits the pathology of ulcerative colitis by suppressing inflammatory responses mechanistically associated with AAMФs and prostaglandins. PMID:26090422

  16. Immunomodulation by Blastomyces dermatitidis: functional activity of murine peritoneal macrophages.

    PubMed Central

    McDaniel, L S; Cozad, G C

    1983-01-01

    Cell-mediated immunity plays the dominant role in the immune response of mice to Blastomyces dermatitidis infections. Since macrophages play an important role in cell-mediated immunity, the interactions between sensitized murine peritoneal macrophages and the yeast phase of B. dermatitidis were investigated. Scanning electron microscopy showed that the sensitized macrophages readily phagocytized B. dermatitidis yeast cells. In addition, there appeared to be activation of metabolic pathways within the sensitized macrophages, as indicated by increased chemiluminescence activity during phagocytosis. Sensitized macrophages were significantly better at controlling intracellular proliferation of the yeast cells when compared to nonsensitized cells. This was determined by disruption of macrophages and plating for viable yeasts. Scanning electron microscope observations offered further substantiation. Experiments with Candida albicans indicated that B. dermatitidis non-specifically activated macrophages. At 2 h postphagocytosis, 30% fewer C. albicans in B. dermatitidis-activated macrophages were able to form germ tubes. These studies demonstrated the multiple potential of activated macrophages with regard to their functional activity. Images PMID:6840859

  17. Proteomic Analysis of HIV-Infected Macrophages

    PubMed Central

    Colon, Krystal; Rivera, Linda; Rodriguez-Franco, Eillen; Toro-Nieves, Dianedis

    2010-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) play an important role in innate immunity against pathogens including HIV. These cells are also important viral reservoirs in the central nervous system and secrete inflammatory mediators and toxins that affect the tissue environment and function of surrounding cells. In the era of antiretroviral therapy, there are fewer of these inflammatory mediators. Proteomic approaches including surface enhancement laser desorption ionization, one- and two-dimensional difference in gel electrophoresis, and liquid chromatography tandem mass spectrometry have been used to uncover the proteins produced by in vitro HIV-infected monocytes, macrophages, and microglia. These approaches have advanced the understanding of novel mechanisms for HIV replication and neuronal damage. They have also been used in tissue macrophages that restrict HIV replication to understand the mechanisms of restriction for future therapies. In this review, we summarize the proteomic studies on HIV-infected mononuclear phagocytes and discuss other recent proteomic approaches that are starting to be applied to this field. As proteomic instruments and methods evolve to become more sensitive and quantitative, future studies are likely to identify more proteins that can be targeted for diagnosis or therapy and to uncover novel disease mechanisms. PMID:21153888

  18. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs).

    PubMed

    Thanawongnuwech, R; Thacker, E L; Halbur, P G

    1997-11-01

    Porcine pulmonary intravascular macrophages (PIMs) were recovered by in situ pulmonary vascular perfusion with 0.025% collagenase in saline from six 8-week old, crossbred pigs. Pulmonary alveolar macrophages (PAMs) were recovered by bronchoalveolar lavage from the same pigs for comparisons in each assay. The macrophages were exposed to PRRSV (ATCC VR-2385) in vitro for 24 h and infection was confirmed by an indirect immunofluorescence test or transmission electron microscopy. Viral particles tended to accumulate in the vesicles of the Golgi apparatus or endoplasmic reticulum. Bactericidal function assays were performed on the recovered macrophages to determine the effects of the virus on macrophage functions. In vitro PRRSV infection reduced the bactericidal ability of PIMs from 68.3% to 56.4% (P < 0.09), and PAMs from 69.3% to 61.0% (P > 0.1) at 24 h post-infection. The mean percentage of bacteria killed by macrophages after PRRSV infection was not significantly different among the treatment groups or between the treatment groups and non-infected controls based on colorimetric MTT bactericidal (Staphylococcus aureus) assay. PRRSV did not affect the ability of PIMs or PAMs to internalize opsonized 125I-iododeoxyuridine-labeled S. aureus (P > 0.05). PRRSV infection significantly decreased the production of superoxide anion (P < 0.01) by 67.0% in PIMs and by 69.4% in PAMs. PRRSV reduced the myeloperoxidase-H2O2-halide product (P < 0.01) by 36.5% for PIMs and by 48.1% for PAMs. The results suggest: (1) PIMs should be considered as an important replication site of PRRSV; (2) PRRSV may have a detrimental effect on both PIMs and PAMs; (3) loss of bactericidal function in PIMs may facilitate hematogenous bacterial infections.

  19. The macrophage: the intersection between HIV infection and atherosclerosis

    PubMed Central

    Crowe, Suzanne M.; Westhorpe, Clare L. V.; Mukhamedova, Nigora; Jaworowski, Anthony; Sviridov, Dmitri; Bukrinsky, Michael

    2010-01-01

    HIV-infected individuals are at increased risk of coronary artery disease (CAD) with underlying mechanisms including chronic immune activation and inflammation secondary to HIV-induced microbial translocation and low-grade endotoxemia; direct effects of HIV and viral proteins on macrophage cholesterol metabolism; and dyslipidemia related to HIV infection and specific antiretroviral therapies. Monocytes are the precursors of the lipid-laden foam cells within the atherosclerotic plaque and produce high levels of proinflammatory cytokines such as IL-6. The minor CD14+/CD16+ “proinflammatory” monocyte subpopulation is preferentially susceptible to HIV infection and may play a critical role in the pathogenesis of HIV-related CAD. In this review, the central role of monocytes/macrophages in HIV-related CAD and the importance of inflammation and cholesterol metabolism are discussed. PMID:19952353

  20. A novel mechanism underlying the basic defensive response of macrophages against Mycobacterium infection.

    PubMed

    Iyoda, Takuya; Takada, Muneaki; Fukatsu, Yoshinobu; Kumokoshi, Shunsuke; Fujisawa, Tatsuya; Shimada, Tomokazu; Shimokawa, Noriko; Matsunaga, Takuya; Makino, Kimiko; Doi, Norio; Terada, Hiroshi; Fukai, Fumio

    2014-05-01

    Following inhalation of Mycobacterium tuberculosis, including bacillus Calmette-Guérin (BCG), pathogens enter and grow inside macrophages by taking advantage of their phagocytic mechanisms. Macrophages often fail to eliminate intracellular M. tuberculosis, leading to the induction of host macrophage death. Despite accumulating evidence, the molecular mechanisms underlying M. tuberculosis infection-induced cell death remain controversial. In this study, we show the involvement of two distinct pathways triggered by TLR2 and β2 integrin in BCG infection-induced macrophage apoptosis. First, BCG infection induced activation of ERK1/2, which in turn caused phosphorylation/activation of the proapoptotic protein Bim in mouse macrophage-like Raw 264.7 cells. BCG-infected Raw cells treated with U0126, an MEK/ERK inhibitor, led to the suppression of Bim phosphorylation alongside a remarkable increase in the number of viable macrophages. Small interfering RNA-mediated knockdown of Bim rescued the macrophages from the apoptotic cell death induced by BCG infection. Stimulation with Pam3CSK, a TLR2 agonist, induced macrophage apoptosis with a concomitant increase in the phosphorylation/activation of MEK/ERK and Bim. These observations indicate the important role of the TLR2/MEK/ERK/Bim pathway in BCG infection-induced macrophage apoptosis. Second, we used the β2 integrin agonists C3bi and fibronectin to show that the β2 integrin-derived signal was involved in BCG infection-induced apoptosis, independent of MEK/ERK activation. Interestingly, latex beads coated with Pam3CSK and C3bi were able to induce apoptosis in macrophages to the same extent and specificity as that induced by BCG. Taken together, two distinct pattern-recognition membrane receptors, TLR2 and β2 integrin, acted as triggers in BCG infection-induced macrophage apoptosis, in which MEK/ERK activation played a crucial role following the engagement of TLR2.

  1. Local GM-CSF-Dependent Differentiation and Activation of Pulmonary Dendritic Cells and Macrophages Protect against Progressive Cryptococcal Lung Infection in Mice.

    PubMed

    Chen, Gwo-Hsiao; Teitz-Tennenbaum, Seagal; Neal, Lori M; Murdock, Benjamin J; Malachowski, Antoni N; Dils, Anthony J; Olszewski, Michal A; Osterholzer, John J

    2016-02-15

    Patients with acquired deficiency in GM-CSF are susceptible to infections with Cryptococcus neoformans and other opportunistic fungi. We previously showed that GM-CSF protects against progressive fungal disease using a murine model of cryptococcal lung infection. To better understand the cellular and molecular mechanisms through which GM-CSF enhances antifungal host defenses, we investigated temporal and spatial relationships between myeloid and lymphoid immune responses in wild-type C57BL/6 mice capable of producing GM-CSF and GM-CSF-deficient mice infected with a moderately virulent encapsulated strain of C. neoformans (strain 52D). Our data demonstrate that GM-CSF deficiency led to a reduction in: 1) total lung leukocyte recruitment; 2) Th2 and Th17 responses; 3) total numbers of CD11b(+) dendritic cells (DC) and CD11b(-) and CD11b(+) macrophages (Mϕ); 4) DC and Mϕ activation; and 5) localization of DC and Mϕ to the microanatomic sites of alveolar infection. In contrast, GM-CSF deficiency resulted in increased accumulation of DC and Mϕ precursors, namely Ly-6C(high) monocytes, in the blood and lungs of infected mice. Collectively, these results show that GM-CSF promotes the local differentiation, accumulation, activation, and alveolar localization of lung DC and Mϕ in mice with cryptococcal lung infection. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease and thus shed new light on the increased susceptibility to these infections observed in patients with acquired GM-CSF deficiency.

  2. A Burkholderia pseudomallei Macrophage Infectivity Potentiator-Like Protein Has Rapamycin-Inhibitable Peptidylprolyl Isomerase Activity and Pleiotropic Effects on Virulence ▿

    PubMed Central

    Norville, Isobel H.; Harmer, Nicholas J.; Harding, Sarah V.; Fischer, Gunter; Keith, Karen E.; Brown, Katherine A.; Sarkar-Tyson, Mitali; Titball, Richard W.

    2011-01-01

    Macrophage infectivity potentiators (Mips) are a group of virulence factors encoded by pathogenic bacteria such as Legionella, Chlamydia, and Neisseria species. Mips are part of the FK506-binding protein (FKBP) family, whose members typically exhibit peptidylprolyl cis-trans isomerase (PPIase) activity which is inhibitable by the immunosuppressants FK506 and rapamycin. Here we describe the identification and characterization of BPSS1823, a Mip-like protein in the intracellular pathogen Burkholderia pseudomallei. Recombinant BPSS1823 protein has rapamycin-inhibitable PPIase activity, indicating that it is a functional FKBP. A mutant strain generated by deletion of BPSS1823 in B. pseudomallei exhibited a reduced ability to survive within cells and significant attenuation in vivo, suggesting that BPSS1823 is important for B. pseudomallei virulence. In addition, pleiotropic effects were observed with a reduction in virulence mechanisms, including resistance to host killing mechanisms, swarming motility, and protease production. PMID:21859853

  3. Responses of macrophages against Salmonella infection compared with phagocytosis.

    PubMed

    Hu, Maozhi; Yang, Yun; Meng, Chuang; Pan, Zhiming; Jiao, Xinan

    2013-12-01

    To explore the responses of host cell after infection with live Salmonella compared with phagocytosis to dead bacteria, the responses of mouse macrophage after infection with Salmonella enteritidis C50041 and the fixed C50041 (C50041-d) were analyzed. Results indicated that the cytotoxicity induced by C50041 was stronger than C50041-d. Similar changing trends of mitochondrial membrane potential, intracellular concentration of calcium ions, reactive oxygen species and nitric oxide were found between C50041 and C50041-d infection. But the cell responses against C50041 were earlier and stronger than C50041-d. LC3 expression of macrophage induced by C50041 was lower than C50041-d. C50041 significantly inhibited the production of tumor necrosis factor and interleukin (IL)-6. Whereas intracellular caspase-1 activation and IL-1β release induced by C50041 were stronger than C50041-d, caspase-1 activation and IL-1β release are the innate defense responses of macrophage. Therefore, it will be beneficial to explore the use of this pathway in the control of Salmonella infection.

  4. Effect of Cocaine on HIV Infection and Inflammasome Gene Expression Profile in HIV Infected Macrophages

    PubMed Central

    Atluri, Venkata Subba Rao; Pilakka-Kanthikeel, Sudheesh; Garcia, Gabriella; Jayant, Rahul Dev; Sagar, Vidya; Samikkannu, Thangavel; Yndart, Adriana; Nair, Madhavan

    2016-01-01

    We have observed significantly increased HIV infection in HIV infected macrophages in the presence of cocaine that could be due to the downregulation of BST2 restriction factor in these cells. In human inflammasome PCR array, among different involved in inflammasome formation, in HIV infected macrophages in the presence of cocaine, we have observed significant upregulation of NLRP3, AIM2 genes and downstream genes IL-1β and PTGS2. Whereas negative regulatory gene MEFV was upregulated, CD40LG and PYDC1 were significantly downregulated. Among various NOD like receptors, NOD2 was significantly upregulated in both HIV alone and HIV plus cocaine treated cells. In the downstream genes, chemokine (C-C motif) ligand 2 (CCL2), CCL7 and IL-6 were significantly up regulated in HIV plus cocaine treated macrophages. We have also observed significant ROS production (in HIV and/or cocaine treated cells) which is one of the indirect-activators of inflammasomes formation. Further, we have observed early apoptosis in HIV alone and HIV plus cocaine treated macrophages which may be resultant of inflammasome formation and cspase-1 activation. These results indicate that in case of HIV infected macrophages exposed to cocaine, increased ROS production and IL-1β transcription serve as an activators for the formation of NLRP3 and AIM2 mediated inflammasomes that leads to caspase 1 mediated apoptosis. PMID:27321752

  5. Sulforaphane Inhibits HIV Infection of Macrophages through Nrf2

    PubMed Central

    Furuya, Andrea Kinga Marias; Sharifi, Hamayun J.; Jellinger, Robert M.; Cristofano, Paul; Shi, Binshan; de Noronha, Carlos M. C.

    2016-01-01

    Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV) and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2). The impact of Nrf2 activation on human immunodeficiency virus (HIV) infection has not been tested. Sulforaphane (SFN), produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression. Here we show for the first time that SFN blocks HIV infection in primary macrophages but not in primary T cells. Similarly SFN blocks infection in PMA-differentiated promonocytic cell lines, but not in other cell lines tested. siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary macrophages and reduced the anti-viral effects of SFN treatment. This supports a model in which anti-viral activity is mediated through Nrf2 after it is mobilized by SFN. We further found that, like the type I interferon-induced cellular anti-viral proteins SAMHD1 and MX2, SFN treatment blocks infection after entry, but before formation of 2-LTR circles. Interestingly however, neither SAMHD1 nor MX2 were upregulated. This shows for the first time that Nrf2 action can potently block HIV infection and highlights a novel way to trigger this inhibition. PMID:27093399

  6. Sulforaphane Inhibits HIV Infection of Macrophages through Nrf2.

    PubMed

    Furuya, Andrea Kinga Marias; Sharifi, Hamayun J; Jellinger, Robert M; Cristofano, Paul; Shi, Binshan; de Noronha, Carlos M C

    2016-04-01

    Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV) and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2). The impact of Nrf2 activation on human immunodeficiency virus (HIV) infection has not been tested. Sulforaphane (SFN), produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression. Here we show for the first time that SFN blocks HIV infection in primary macrophages but not in primary T cells. Similarly SFN blocks infection in PMA-differentiated promonocytic cell lines, but not in other cell lines tested. siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary macrophages and reduced the anti-viral effects of SFN treatment. This supports a model in which anti-viral activity is mediated through Nrf2 after it is mobilized by SFN. We further found that, like the type I interferon-induced cellular anti-viral proteins SAMHD1 and MX2, SFN treatment blocks infection after entry, but before formation of 2-LTR circles. Interestingly however, neither SAMHD1 nor MX2 were upregulated. This shows for the first time that Nrf2 action can potently block HIV infection and highlights a novel way to trigger this inhibition.

  7. Epstein-Barr virus infection induces indoleamine 2,3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-κB pathways: impairment in T cell functions.

    PubMed

    Liu, Wan-li; Lin, Yue-hao; Xiao, Han; Xing, Shan; Chen, Hao; Chi, Pei-dong; Zhang, Ge

    2014-06-01

    Epstein-Barr virus (EBV) infection has been observed in tumor-infiltrated macrophages, but its infection effects on macrophage immune functions are poorly understood. Here, we showed that some macrophages in the tumor stroma of nasopharyngeal carcinoma (NPC) tissue expressed the immunosuppressive protein indoleamine 2,3-dioxygenase (IDO) more strongly than did tumor cells. EBV infection induced mRNA, protein, and enzymatic activity of IDO in human monocyte-derived macrophages (MDMs). Infection increased the production of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), whereas the neutralizing antibodies against TNF-α and IL-6 inhibited IDO induction. EBV infection also activated the mitogen-activated protein kinase (MAPK) p38 and NF-κB, and the inhibition of these two pathways with SB202190 and SN50 almost abrogated TNF-α and IL-6 production and inhibited IDO production. Moreover, the activation of IDO in response to EBV infection of MDMs suppressed the proliferation of T cells and impaired the cytotoxic activity of CD8(+) T cells, whereas the inhibition of IDO activity with 1-methyl-l-tryptophan (1-MT) did not affect T cell proliferation and function. These findings indicate that EBV-induced IDO expression in MDMs is substantially mediated by IL-6- and TNF-α-dependent mechanisms via the p38/MAPK and NF-κB pathways, suggesting that a possible role of EBV-mediated IDO expression in tumor stroma of NPC may be to create a microenvironment of suppressed T cell immune responses. CD8(+) cytotoxic T lymphocytes (CTLs) play an important role in the control of viral infections and destroy tumor cells. Activation of the tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) in cancer tissues facilitates immune escape by the impairment of CTL functions. IDO expression was observed in some macrophages of the tumor stroma of nasopharyngeal carcinoma (NPC) tissue, and IDO could be induced in Epstein-Barr virus (EBV)-infected human monocyte

  8. Apoptotic neutrophils augment the inflammatory response to Mycobacterium tuberculosis infection in human macrophages.

    PubMed

    Andersson, Henrik; Andersson, Blanka; Eklund, Daniel; Ngoh, Eyler; Persson, Alexander; Svensson, Kristoffer; Lerm, Maria; Blomgran, Robert; Stendahl, Olle

    2014-01-01

    Macrophages in the lung are the primary cells being infected by Mycobacterium tuberculosis (Mtb) during the initial manifestation of tuberculosis. Since the adaptive immune response to Mtb is delayed, innate immune cells such as macrophages and neutrophils mount the early immune protection against this intracellular pathogen. Neutrophils are short-lived cells and removal of apoptotic cells by resident macrophages is a key event in the resolution of inflammation and tissue repair. Since anti-inflammatory activity is not compatible with effective immunity to intracellular pathogens, we therefore investigated how uptake of apoptotic neutrophils modulates the function of Mtb-activated human macrophages. We show that Mtb infection exerts a potent proinflammatory activation of human macrophages with enhanced gene activation and release of proinflammatory cytokines and that this response was augmented by apoptotic neutrophils. The enhanced macrophage response is linked to apoptotic neutrophil-driven activation of the NLRP3 inflammasome and subsequent IL-1β signalling. We also demonstrate that apoptotic neutrophils not only modulate the inflammatory response, but also enhance the capacity of infected macrophages to control intracellular growth of virulent Mtb. Taken together, these results suggest a novel role for apoptotic neutrophils in the modulation of the macrophage-dependent inflammatory response contributing to the early control of Mtb infection.

  9. Infection of bone marrow macrophages by equine infectious anemia virus.

    PubMed

    Swardson, C J; Lichtenstein, D L; Wang, S; Montelaro, R C; Kociba, G J

    1997-12-01

    To characterize infection of bone marrow-derived macrophages (BMDM) with equine infectious anemia virus (EIAV) by determining virus production, effects on viability, and induction of cytokines. BMDM obtained from bone marrow of 6 clinically normal adult horses. BMDM were infected with EIAV at a multiplicity of infection of 8. Cell viability, percentage of cells with detectable viral protein, reverse transcriptase activity, and concentrations of infective virus (focus-forming units/ml), interleukin 6, and tumor necrosis factor-alpha were measured in culture supernatant samples obtained at various days after infection. Cell viability was decreased on day 4 and was maximally decreased on day 8. The number of cells with detectable viral protein and supernatant reverse transcriptase activity increased significantly on day 4 and increased until day 6. Virus concentration (focus-forming units per milliliter) peaked on day 4 after infection and was constant thereafter. Infection with EIAV caused significant induction of interleukin 6 production by BMDM. The maximal difference was seen on day 4 after infection. Control and infected BMDM produced only negligible amounts of tumor necrosis factor-alpha. BMDM are useful, as a cell population, to study the effects of infection with EIAV, including cell death and induction of interleukin 6 but not tumor necrosis factor-alpha production.

  10. Alternative activation modifies macrophage resistance to Mycobacterium bovis.

    PubMed

    Castillo-Velázquez, Uziel; Aranday-Cortés, Elihú; Gutiérrez-Pabello, José A

    2011-07-05

    The aim of this study was to evaluate the influence of macrophage alternative activation in the intracellular pathogen natural disease resistance phenotype of the host. Macrophage monolayers from resistant (R) (3) or susceptible (S) (3) cattle donors were treated with 10 ng/ml of bovine recombinant IL-4 (rbIL-4), and infected with virulent and avirulent Mycobacterium bovis (MOI 10:1). Bactericidal assays were performed to assess the bacterial phagocytic index and intracellular survival. Total RNA was reverse transcribed and used to analyze the relative changes in gene expression of IL-10, IL-12, IL-18 IL-1β, TNF-α, MCP-1, MCP-2, IL-6, MIP-1, MIP-3, iNOS, ARGII and SLAM by real time PCR. Cell supernatants were collected and nitric oxide and arginase production was assessed. Apoptosis induction was measured by TUNEL. IL-4 treatment increased the phagocytic index in both R and S macrophages; however intracellular survival was augmented mainly in S macrophages. Alternative activation decreased gene expression of pro-inflammatory cytokines, nitric oxide production and DNA fragmentation mainly in R macrophages. On the other hand, arginase production was not different between R and S macrophages. Alternative activation modifies the macrophage response against M. bovis. IL-4 treatment minimized the functional differences that exist between R and S macrophages. Copyright © 2011. Published by Elsevier B.V.

  11. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    PubMed

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-09-08

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017. Published by Elsevier Inc.

  12. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    PubMed

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  13. TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection.

    PubMed

    Beceiro, S; Radin, J N; Chatuvedi, R; Piazuelo, M B; Horvarth, D J; Cortado, H; Gu, Y; Dixon, B; Gu, C; Lange, I; Koomoa, D-Lt; Wilson, K T; Algood, H M S; Partida-Sánchez, S

    2017-03-01

    Calcium signaling in phagocytes is essential for cellular activation, migration, and the potential resolution of infection or inflammation. The generation of reactive oxygen species (ROS) via activation of NADPH (nicotinamide adenine dinucleotide phosphate)-oxidase activity in macrophages has been linked to altered intracellular calcium concentrations. Because of its role as an oxidative stress sensor in phagocytes, we investigated the function of the cation channel transient receptor potential melastatin 2 (TRPM2) in macrophages during oxidative stress responses induced by Helicobacter pylori infection. We show that Trpm2(-)/(-) mice, when chronically infected with H. pylori, exhibit increased gastric inflammation and decreased bacterial colonization compared with wild-type (WT) mice. The absence of TRPM2 triggers greater macrophage production of inflammatory mediators and promotes classically activated macrophage M1 polarization in response to H. pylori. TRPM2-deficient macrophages upon H. pylori stimulation are unable to control intracellular calcium levels, which results in calcium overloading. Furthermore, increased intracellular calcium in TRPM2(-)/(-) macrophages enhanced mitogen-activated protein kinase and NADPH-oxidase activities, compared with WT macrophages. Our data suggest that augmented production of ROS and inflammatory cytokines with TRPM2 deletion regulates oxidative stress in macrophages and consequently decreases H. pylori gastric colonization while increasing inflammation in the gastric mucosa.

  14. Periodate-oxidized ATP modulates macrophage functions during infection with Leishmania amazonensis.

    PubMed

    Figliuolo, V R; Chaves, S P; Santoro, G F; Coutinho, C M L M; Meyer-Fernandes, J R; Rossi-Bergmann, B; Coutinho-Silva, R

    2014-07-01

    Previously, we showed that treating macrophages with ATP impairs the intracellular growth of Leishmania amazonensis, and that the P2X7 purinergic receptor is overexpressed during leishmaniasis. In the present study, we directly evaluated the effect of periodate-oxidized ATP (oATP) on parasite control in Leishmania-infected macrophages. We found that oATP impaired the attachment/entrance of L. amazonensis promastigotes to C57BL/6 mouse macrophages in a P2X7 receptor-independent manner, as macrophages from P2X7(-/-) mice were similarly affected. Although oATP directly inhibited the growth of axenic promastigotes in culture, promoted rapid ultrastructural alterations, and impaired Leishmania internalization by macrophages, it did not affect intracellular parasite multiplication. Upon infection, phagosomal acidification was diminished in oATP-treated macrophages, accompanied by reduced endosomal proteolysis. Likewise, MHC class II molecules expression and ectoATPase activity was decreased by oATP added to macrophages at the time of parasite infection. These inhibitory effects were not due to a cytotoxic effect, as no additional release of lactate dehydrogenase was detected in culture supernatants. Moreover, the capacity of macrophages to produce nitric oxide and reactive oxygen species was not affected by the presence of oATP during infection. We conclude that oATP directly affects extracellular parasite integrity and macrophage functioning.

  15. IFN-ε protects primary macrophages against HIV infection

    PubMed Central

    Tasker, Carley; Subbian, Selvakumar; Gao, Pan; Couret, Jennifer; Levine, Carly; Ghanny, Saleena; Soteropoulos, Patricia; Zhao, Xilin; Landau, Nathaniel; Lu, Wuyuan

    2016-01-01

    IFN-ε is a unique type I IFN that is not induced by pattern recognition response elements. IFN-ε is constitutively expressed in mucosal tissues, including the female genital mucosa. Although the direct antiviral activity of IFN-ε was thought to be weak compared with IFN-α, IFN-ε controls Chlamydia muridarum and herpes simplex virus 2 in mice, possibly through modulation of immune response. We show here that IFN-ε induces an antiviral state in human macrophages that blocks HIV-1 replication. IFN-ε had little or no protective effect in activated CD4+ T cells or transformed cell lines unless activated CD4+ T cells were infected with replication-competent HIV-1 at a low MOI. The block to HIV infection of macrophages was maximal after 24 hours of treatment and was reversible. IFN-ε acted on early stages of the HIV life cycle, including viral entry, reverse transcription, and nuclear import. The protection did not appear to operate through known type I IFN-induced HIV host restriction factors, such as APOBEC3A and SAMHD1. IFN-ε–stimulated immune mediators and pathways had the signature of type I IFNs but were distinct from IFN-α in macrophages. IFN-ε induced significant phagocytosis and ROS, which contributed to the block to HIV replication. These findings indicate that IFN-ε induces an antiviral state in macrophages that is mediated by different factors than those induced by IFN-α. Understanding the mechanism of IFN-ε–mediated HIV inhibition through immune modulation has implications for prevention. PMID:27942584

  16. TRPM2 Ion Channels Regulate Macrophage Polarization and Gastric Inflammation During Helicobacter pylori Infection

    PubMed Central

    Beceiro, Susana; Radin, Jana N.; Chatuvedi, Rupesh; Piazuelo, M. Blanca; Horvarth, Dennis J.; Cortado, Hanna; Gu, Yuanzheng; Dixon, Beverly; Gu, Chen; Lange, Ingo; Koomoa, Dana-Lynn T.; Wilson, Keith T.; Scott Algood, Holly M.; Partida-Sánchez, Santiago

    2016-01-01

    Calcium signaling in phagocytes is essential for cellular activation, migration and the potential resolution of infection or inflammation. The generation of reactive oxygen species (ROS) via activation of NADPH (nicotinamide adenine dinucleotide phosphate-) oxidase activity in macrophages has been linked to altered intracellular calcium concentrations. Because of its role as an oxidative stress sensor in phagocytes, we investigated the function of the cation channel transient receptor potential melastatin 2 (TRPM2) in macrophages during oxidative stress responses induced by Helicobacter pylori infection. We show that Trpm2−/− mice, when chronically infected with H. pylori, exhibit increased gastric inflammation and decreased bacterial colonization compared with WT mice. The absence of TRPM2 triggers greater macrophage production of inflammatory mediators and promotes classically activated macrophage M1 polarization in response to H. pylori. TRPM2-deficient macrophages upon H. pylori stimulation are unable to control intracellular calcium levels, which results in calcium overloading. Furthermore, increased intracellular calcium in TRPM2−/− macrophages enhanced MAPK and NADPH oxidase activities, compared to WT macrophages. Our data suggest that augmented production of ROS and inflammatory cytokines with TRPM2 deletion regulates oxidative stress in macrophages, and consequently, decreases H. pylori gastric colonization while increasing inflammation in the gastric mucosa. PMID:27435104

  17. Inhibitory effects of Zanthoxylum rhoifolium Lam. (Rutaceae) against the infection and infectivity of macrophages by Leishmania amazonensis.

    PubMed

    Melo, Bernardo; Leitão, Joseana M S R; Oliveira, Luciano G C; Santos, Sérgio E M; Carneiro, Sabrina M P; Rodrigues, Klinger A F; Chaves, Mariana H; Arcanjo, Daniel D R; Carvalho, Fernando A A

    2016-01-01

    Zanthoxylum rhoifolium Lam. (Rutaceae) has been traditionally used in the treatment of microbial infections and parasitic diseases. In the present study, the antileishmanial effect induced by the ethanol extract of stem barks from Z. rhoifolium (ZR-EEtOH) and its n-hexane fraction (ZR-FHEX) on infection and infectivity of murine macrophages by promastigote forms of Leishmania amazonensis were investigated. In different set of experiments, macrophages or promastigotes were pretreated with ZR-EEtOH or ZR-FHEX at non-lethal concentrations for 24 hours, and then macrophages were submitted to infection by promastigotes. Moreover, their effects on activation of macrophages, as well as on the DNA content, size and number of promastigotes by flow cytometry were also evaluated. The infection rate and the number of internalized amastigote forms were markedly decreased after pretreatment of macrophages or promastigotes when compared with non-treated cells. The increase in phagocytic capability and nitrite content was also observed. Furthermore, the decrease of DNA content, size and number of promastigotes was also observed. In conclusion, ZR-EEtOH and ZR-FHEX promoted a markedly significant antileishmanial effect and reduction of infection of macrophages, probably underlying defense mechanisms activation in macrophages. These findings reinforce the potential application of Z. rhoifolium in the treatment of leishmaniasis.

  18. Macrophage infection via selective capture of HIV-1-infected CD4+ T cells.

    PubMed

    Baxter, Amy E; Russell, Rebecca A; Duncan, Christopher J A; Moore, Michael D; Willberg, Christian B; Pablos, Jose L; Finzi, Andrés; Kaufmann, Daniel E; Ochsenbauer, Christina; Kappes, John C; Groot, Fedde; Sattentau, Quentin J

    2014-12-10

    Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir and mediating neurological disorders. Cell-free HIV-1 infection of macrophages is inefficient, in part due to low plasma membrane expression of viral entry receptors. We find that macrophages selectively capture and engulf HIV-1-infected CD4+ T cells leading to efficient macrophage infection. Infected T cells, both healthy and dead or dying, were taken up through viral envelope glycoprotein-receptor-independent interactions, implying a mechanism distinct from conventional virological synapse formation. Macrophages infected by this cell-to-cell route were highly permissive for both CCR5-using macrophage-tropic and otherwise weakly macrophage-tropic transmitted/founder viruses but restrictive for nonmacrophage-tropic CXCR4-using virus. These results have implications for establishment of the macrophage reservoir and HIV-1 dissemination in vivo.

  19. Apoptotic CD8 T-lymphocytes disable macrophage-mediated immunity to Trypanosoma cruzi infection

    PubMed Central

    Cabral-Piccin, M P; Guillermo, L V C; Vellozo, N S; Filardy, A A; Pereira-Marques, S T; Rigoni, T S; Pereira-Manfro, W F; DosReis, G A; Lopes, M F

    2016-01-01

    Chagas disease is caused by infection with the protozoan Trypanosoma cruzi. CD8 T-lymphocytes help to control infection, but apoptosis of CD8 T cells disrupts immunity and efferocytosis can enhance parasite infection within macrophages. Here, we investigate how apoptosis of activated CD8 T cells affects M1 and M2 macrophage phenotypes. First, we found that CD8 T-lymphocytes and inflammatory monocytes/macrophages infiltrate peritoneum during acute T. cruzi infection. We show that treatment with anti-Fas ligand (FasL) prevents lymphocyte apoptosis, upregulates type-1 responses to parasite antigens, and reduces infection in macrophages cocultured with activated CD8 T cells. Anti-FasL skews mixed M1/M2 macrophage profiles into polarized M1 phenotype, both in vitro and following injection in infected mice. Moreover, inhibition of T-cell apoptosis induces a broad reprogramming of cytokine responses and improves macrophage-mediated immunity to T. cruzi. The results indicate that disposal of apoptotic CD8 T cells increases M2-macrophage differentiation and contributes to parasite persistence. PMID:27195678

  20. Macrophage accumulation in gut mucosa differentiates AIDS from chronic SIV infection in rhesus macaques.

    PubMed

    Swan, Zachary D; Wonderlich, Elizabeth R; Barratt-Boyes, Simon M

    2016-02-01

    The relationship between recruitment of mononuclear phagocytes to lymphoid and gut tissues and disease in HIV and SIV infection remains unclear. To address this question, we conducted cross-sectional analyses of dendritic cell (DC) subsets and CD163(+) macrophages in lymph nodes (LNs) and ileum of rhesus macaques with acute and chronic SIV infection and AIDS. In LNs significant differences were only evident when comparing uninfected and AIDS groups, with loss of myeloid DCs and CD103(+) DCs from peripheral and mesenteric LNs, respectively, and accumulation of plasmacytoid DCs and macrophages in mesenteric LNs. In contrast, there were fourfold more macrophages in ileum lamina propria in macaques with AIDS compared with chronic infection, and this increased to 40-fold in Peyer's patches. Gut macrophages exceeded plasmacytoid DCs and CD103(+) DCs by ten- to 17-fold in monkeys with AIDS but were at similar low frequencies as DCs in chronic infection. Gut macrophages in macaques with AIDS expressed IFN-α and TNF-α consistent with cell activation. CD163(+) macrophages also accumulated in gut mucosa in acute infection but lacked expression of IFN-α and TNF-α. These data reveal a relationship between inflammatory macrophage accumulation in gut mucosa and disease and suggest a role for macrophages in AIDS pathogenesis.

  1. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions

    PubMed Central

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens. PMID:28763472

  2. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    PubMed

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha; Abdul-Careem, Mohamed Faizal

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  3. Leishmania infantum Induces Mild Unfolded Protein Response in Infected Macrophages

    PubMed Central

    De Santi, Mauro; Ceccarelli, Marcello; Vitale, Fabrizio; Brandi, Giorgio; Magnani, Mauro

    2016-01-01

    The Leishmaniases are a group of parasitic diseases caused by protozoa of the Leishmania genus affecting both humans and other vertebrates. Leishmania is an intracellular pathogen able to confer resistance to apoptosis in the early phase of macrophages infection by activation of host PI3K/Akt pathway and inhibition of caspase-3 activation. Intracellular pathogens hijack organelles such as ER to facilitate survival and replication, thus eliciting ER stress and activating/modulating the unfolded protein response (UPR) in the host cell. The UPR is aimed to mitigate ER stress, thereby promoting cell survival. However, prolonged ER stress will activate the apoptotic pathway. The aim of this study was to investigate the ER stress response in Leishmania-infected macrophages to gain insights about the mechanisms underlying the apoptosis resistance in parasitized cells. Macrophages differentiated from human monocytic cell lines (U937 and THP-1) and murine primary macrophages were infected with Leishmania infantum MHOM/TN/80/IPT1 (WHO international reference strain). Several ER stress/autophagy expression markers, as well as cell survival/apoptosis markers (phospho-Akt and cleaved caspase-3) were evaluated by qPCR and/or by western blotting. As ER stress positive control, cells were treated with tunicamycin or dithiothreitol (DTT). The gene expression analyses showed a mild but significant induction of the ER stress/autophagy markers. The western blot analyses revealed that the Leishmania infection induced Akt phosphorylation and significantly inhibited the induction of caspase-3 cleavage, eIF2α phosphorylation and DDIT3/CHOP expression in tunicamycin and DTT treated cells. The mild but significant increase in ER stress expression markers and the delay/attenuation of the effects of ER stress inducers in infected cells support the hypothesis that L. infantum could promote survival of host cells by inducing a mild ER stress response. The host ER stress response could be not

  4. Interactions between Naïve and Infected Macrophages Reduce Mycobacterium tuberculosis Viability

    PubMed Central

    Hartman, Michelle L.; Kornfeld, Hardy

    2011-01-01

    A high intracellular bacillary load of Mycobacterium tuberculosis in macrophages induces an atypical lysosomal cell death with early features of apoptosis that progress to necrosis within hours. Unlike classical apoptosis, this cell death mode does not appear to diminish M. tuberculosis viability. We previously reported that culturing heavily infected macrophages with naïve macrophages produced an antimicrobial effect, but only if naïve macrophages were added during the pre-necrotic phase of M. tuberculosis-induced cell death. In the present study we investigated the mechanism of antimicrobial activity in co-cultures, anticipating that efferocytosis of bacilli in apoptotic bodies would be required. Confocal microscopy revealed frustrated phagocytosis of M. tuberculosis-infected macrophages with no evidence that significant numbers of bacilli were transferred to the naïve macrophages. The antimicrobial effect of naïve macrophages was retained when they were separated from infected macrophages in transwells, and conditioned co-culture supernatants transferred antimicrobial activity to cultures of infected macrophages alone. Antimicrobial activity in macrophage co-cultures was abrogated when the naïve population was deficient in IL-1 receptor or when the infected population was deficient in inducible nitric oxide synthase. The participation of nitric oxide suggested a conventional antimicrobial mechanism requiring delivery of bacilli to a late endosomal compartment. Using macrophages expressing GFP-LC3 we observed the induction of autophagy specifically by a high intracellular load of M. tuberculosis. Bacilli were identified in LC3-positive compartments and LC3-positive compartments were confirmed to be acidified and LAMP1 positive. Thus, the antimicrobial effect of naïve macrophages acting on M. tuberculosis in heavily-infected macrophages is contact-independent. Interleukin-1 provides an afferent signal that induces an as yet unidentified small molecule which

  5. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection.

    PubMed

    Shiloh, Michael U; Manzanillo, Paolo; Cox, Jeffery S

    2008-05-15

    Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistence in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment.

  6. Differential Transcriptional Response in Macrophages Infected with Cell Wall Deficient versus Normal Mycobacterium Tuberculosis

    PubMed Central

    Fu, Yu-Rong; Gao, Kun-Shan; Ji, Rui; Yi, Zheng-Jun

    2015-01-01

    Host-pathogen interactions determine the outcome following infection by mycobacterium tuberculosis (Mtb). Under adverse circumstances, normal Mtb can form cell-wall deficient (CWD) variants within macrophages, which have been considered an adaptive strategy for facilitating bacterial survival inside macrophages. However, the molecular mechanism by which infection of macrophages with different phenotypic Mtb elicits distinct responses of macrophages is not fully understood. To explore the molecular events triggered upon Mtb infection of macrophages, differential transcriptional responses of RAW264.7 cells infected with two forms of Mtb, CWD-Mtb and normal Mtb, were studied by microarray analysis. Some of the differentially regulated genes were confirmed by RT-qPCR in both RAW264.7 cells and primary macrophages. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was used to analyze functions of differentially expressed genes. Distinct gene expression patterns were observed between CWD-Mtb and normal Mtb group. Mapt was up-regulated, while NOS2 and IL-11 were down-regulated in CWD-Mtb infected RAW264.7 cells and primary macrophages compared with normal Mtb infected ones. Many deregulated genes were found to be related to macrophages activation, immune response, phagosome maturation, autophagy and lipid metabolism. KEGG analysis showed that the differentially expressed genes were mainly involved in MAPK signaling pathway, nitrogen metabolism, cytokine-cytokine receptor interaction and focal adhesion. Taken together, the present study showed that differential macrophage responses were induced by intracellular CWD-Mtb an normal Mtb infection, which suggested that interactions between macrophages and different phenotypic Mtb are very complex. The results provide evidence for further understanding of pathogenesis of CWD-Mtb and may help in improving strategies to eliminate intracellular CWD-Mtb. PMID:25552926

  7. Acute heart inflammation: ultrastructural and functional aspects of macrophages elicited by Trypanosoma cruzi infection.

    PubMed

    Melo, Rossana C N

    2009-02-01

    The heart is the main target organ of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, a significant public health issue and still a major cause of morbidity and mortality in Latin America. During the acute disease, tissue damage in the heart is related to the intense myocardium parasitism. To control parasite multiplication, cells of the monocytic lineage are highly mobilized. In response to inflammatory and immune stimulation, an intense migration and extravasation of monocytes occurs from the bloodstream into heart. Monocyte differentiation leads to the formation of tissue phagocytosing macrophages, which are strongly activated and direct host defence. Newly elicited monocyte-derived macrophages both undergo profound physiological changes and display morphological heterogeneity that greatly differs from originally non-inflammatory macrophages, and underlie their functional activities as potent inflammatory cells. Thus, activated macrophages play a critical role in the outcome of parasite infection. This review covers functional and ultrastructural aspects of heart inflammatory macrophages triggered by the acute Chagas' disease, including recent discoveries on morphologically distinct, inflammation-related organelles, termed lipid bodies, which are actively formed in vivo within macrophages in response to T. cruzi infection. These findings are defining a broader role for lipid bodies as key markers of macrophage activation during innate immune responses to infectious diseases and attractive targets for novel anti-inflammatory therapies. Modulation of macrophage activation may be central in providing therapeutic benefits for Chagas' disease control.

  8. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  9. In vitro evidence for metallopeptidase participation in hepatocyte damage induced by Leishmania chagasi-infected macrophages.

    PubMed

    Costa, Juliana Dias; Nogueira de Melo, Ana Cristina; Vermelho, Alane Beatriz; Meirelles, Maria de Nazareth; Porrozzi, Renato

    2008-06-01

    Leishmania (Leishmania) chagasi infection activates macrophages, which release several microbicidal agents, including peptidases, to eliminate the parasite. Leishmanicidal mediators released in large amounts may cause morphological and/or functional injuries to the liver. In order to investigate the involvement of peptidases in this phenomenon, an in vitro co-culture model of peritoneal macrophages infected with L. chagasi and hepatocytes was used. High levels of released hepatic transaminases were found in supernatants from infected co-cultures at the same time point in which alterations in hepatocyte morphology and maximum proteolytic activity were observed. The largest proteolytic activity being at pH 10 as well as the greatest efficiency of treatment with 1,10-phenantroline observed in supernatants from the infected co-cultures suggests the presence of metallopeptidases during the leishmanicidal activity by infected macrophages. Furthermore, TNF-alpha levels and high levels of TGF-beta were increased at this time point, and this can be related to the synthesis of metallopeptidases and the conversion of the latent form to the active form. Metallopeptidase activities were detected by gelatin SDS-PAGE in higher amounts in infected macrophages and co-culture supernatant; moreover, one metallopeptidase migrating at 85 kDa produced in excess (41% more) by infected macrophages was identified as MMP-9. This metallopeptidase may be participating in this phenomenon together with other leishmanicidal factors released by these host cells.

  10. HIV Infection of Macrophages: Implications for Pathogenesis and Cure

    PubMed Central

    Clayton, Kiera L.; Garcia, J. Victor; Clements, Janice E.; Walker, Bruce D.

    2017-01-01

    Although CD4+ T cells represent the major reservoir of persistent HIV and SIV infection, accumulating evidence suggests that macrophages also contribute. However, investigations of the role of macrophages are often underrepresented at HIV pathogenesis and cure meetings. This was the impetus for a scientific workshop dedicated to this area of study, held in Cambridge, MA in January 2017. The workshop brought together experts in the fields of HIV/SIV immunology and virology, macrophage biology and immunology, and animal models of HIV/SIV infection to discuss the role of macrophages as a physiologically relevant viral reservoir, and the implications of macrophage infection for HIV pathogenesis and strategies for cure. While still controversial, there is an emerging theory that infected macrophages likely persist in the setting of combination antiretroviral therapy. These macrophages could then drive persistent inflammation and contribute to the viral reservoir, which indicates the importance of addressing macrophages as well as CD4+ T cells with future therapeutic strategies. PMID:28752134

  11. Chronic Opisthorchis viverrini infection and associated hepatobiliary disease is associated with iron loaded M2-like macrophages.

    PubMed

    Bility, Moses T; Sripa, Banchob

    2014-12-01

    Chronic Opisthorchis viverrini-induced hepatobiliary disease is associated with significant leukocyte infiltration, including activated macrophages; however, the polarization of infiltrating macrophages remains to be fully characterized. In this study, we characterized macrophage polarization and phenotype in chronic O. viverrini-induced hepatobiliary disease in humans and hamsters using gene expression and histochemical analysis. Chronic O. viverrini infection and associated hepatobiliary diseases were associated with iron loaded M2-like macrophages in both humans and hamsters. This study provides suggestive evidence that iron loaded M2-like macrophages promote hepatobiliary disease in chronic O. viverrini infection.

  12. Extracellular adenosine triphosphate affects the response of human macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Dubois-Colas, Nicolas; Petit-Jentreau, Laetitia; Barreiro, Luis B; Durand, Sylvère; Soubigou, Guillaume; Lecointe, Cécile; Klibi, Jihène; Rezaï, Keyvan; Lokiec, François; Coppée, Jean-Yves; Gicquel, Brigitte; Tailleux, Ludovic

    2014-09-01

    Granulomas are the hallmark of Mycobacterium tuberculosis infection. As the host fails to control the bacteria, the center of the granuloma exhibits necrosis resulting from the dying of infected macrophages. The release of the intracellular pool of nucleotides into the surrounding medium may modulate the response of newly infected macrophages, although this has never been investigated. Here, we show that extracellular adenosine triphosphate (ATP) indirectly modulates the expression of 272 genes in human macrophages infected with M. tuberculosis and that it induces their alternative activation. ATP is rapidly hydrolyzed by the ecto-ATPase CD39 into adenosine monophosphate (AMP), and it is AMP that regulates the macrophage response through the adenosine A2A receptor. Our findings reveal a previously unrecognized role for the purinergic pathway in the host response to M. tuberculosis. Dampening inflammation through signaling via the adenosine A2A receptor may limit tissue damage but may also favor bacterial immune escape.

  13. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  14. Pulmonary macrophages activity in CO intoxication.

    PubMed

    Pieri, Maria; Giugliano, Pasquale; Vacchiano, Giuseppe

    2016-02-01

    The presence of macrophages and their activation on the pulmonary tissues of 21 subjects deceased after CO intoxication has been studied. A notable number of activated macrophages, especially in the interstitial level, have been evidenced, and such phenomenon supports the hypothesis of a possible association between CO intoxication and pulmonary macrophages activity. The highlighted association could be mediated by changes of the surfactant, by impairing of mitochondrial respiration and by release of pro-inflammatory cytokines. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  15. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection.

    PubMed

    Mora-Bau, Gabriela; Platt, Andrew M; van Rooijen, Nico; Randolph, Gwendalyn J; Albert, Matthew L; Ingersoll, Molly A

    2015-07-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder.

  16. Macrophages Subvert Adaptive Immunity to Urinary Tract Infection

    PubMed Central

    Mora-Bau, Gabriela; Platt, Andrew M.; van Rooijen, Nico; Randolph, Gwendalyn J.; Albert, Matthew L.; Ingersoll, Molly A.

    2015-01-01

    Urinary tract infection (UTI) is one of the most common bacterial infections with frequent recurrence being a major medical challenge. Development of effective therapies has been impeded by the lack of knowledge of events leading to adaptive immunity. Here, we establish conclusive evidence that an adaptive immune response is generated during UTI, yet this response does not establish sterilizing immunity. To investigate the underlying deficiency, we delineated the naïve bladder immune cell compartment, identifying resident macrophages as the most populous immune cell. To evaluate their impact on the establishment of adaptive immune responses following infection, we measured bacterial clearance in mice depleted of either circulating monocytes, which give rise to macrophages, or bladder resident macrophages. Surprisingly, mice depleted of resident macrophages, prior to primary infection, exhibited a nearly 2-log reduction in bacterial burden following secondary challenge compared to untreated animals. This increased bacterial clearance, in the context of a challenge infection, was dependent on lymphocytes. Macrophages were the predominant antigen presenting cell to acquire bacteria post-infection and in their absence, bacterial uptake by dendritic cells was increased almost 2-fold. These data suggest that bacterial uptake by tissue macrophages impedes development of adaptive immune responses during UTI, revealing a novel target for enhancing host responses to bacterial infection of the bladder. PMID:26182347

  17. Macrophage activation in human diseases.

    PubMed

    Schultze, Joachim L; Schmieder, Astrid; Goerdt, S

    2015-08-01

    It is becoming increasingly accepted that macrophages play a crucial role in many diseases associated with chronic inflammation, including atherosclerosis, obesity, diabetes, cancer, skin diseases, and even neurodegenerative diseases. It is therefore not surprising that macrophages in human diseases have gained significant interest during the last years. Molecular analysis combined with more sophisticated murine disease models and the application of genome-wide technologies has resulted in a much better understanding of the role of macrophages in human disease. We highlight important gain of knowledge during the last years for tumor-associated macrophages, and for macrophages in atherosclerosis, obesity and wound healing. Albeit these exciting findings certainly pave the way to novel diagnostics and therapeutics, several hurdles still need to be overcome. We propose a general outline for future research and development in disease-related macrophage biology based on integrating (1) genome-wide technologies, (2) direct human sampling, and (3) a dedicated use of in vivo model systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The protection effect of LEAP-2 on the mudskipper (Boleophthalmus pectinirostris) against Edwardsiella tarda infection is associated with its immunomodulatory activity on monocytes/macrophages.

    PubMed

    Chen, Jie; Chen, Qiang; Lu, Xin-Jiang; Chen, Jiong

    2016-12-01

    Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in the host's innate immune system. However, the mechanism by which LEAP-2 modulates/regulates the host defense against pathogens remains largely unknown. In this study, we identified a cDNA sequence encoding LEAP-2 homolog (BpLEAP-2) in the mudskipper, Boleophthalmus pectinirostris. Sequence analysis revealed that BpLEAP-2 belonged to the fish LEAP-2A cluster and that it was closely related to ayu LEAP-2. BpLEAP-2 mRNA was detected in a wide range of tissues, with the highest level of transcripts found in the liver. Upon infection with Edwardsiella tarda, BpLEAP-2 mRNA expression was significantly increased in the liver, kidney, spleen, and gill, but decreased in the intestine. Chemically synthesized BpLEAP-2 mature peptide did not exhibit antibacterial activity against E. tarda in vitro. Intraperitoneal injection of BpLEAP-2 (1.0 or 10.0 μg/g) resulted in significantly improved survival rate and reduced tissue bacterial load in E. tarda-infected mudskippers. In E. tarda-infected fish, BpLEAP-2 (0.1, 1.0, or 10.0 μg/g) eliminated E. tarda-induced tissue mRNA expression of BpTNF-α and BpIL-1β. In monocytes/macrophages (MO/MФ), BpLEAP-2 (1.0 or 10.0 μg/ml) induced chemotaxis, enhanced respiratory burst, and inhibited E. tarda-induced mRNA expression of BpTNF-α and BpIL-1β. At a concentration of 10.0 μg/ml, BpLEAP-2 also significantly enhanced the bacterial killing efficiency of MO/MФ. No significant effect was seen in the phagocytic activity of MO/MФ upon treatment with BpLEAP-2. Our study provides evidence, for the first time, that LEAP-2 exhibited immunomodulatory effects on immune cells, and protected the host from pathogenic infections independent of direct bacterial killing function.

  19. Aryl hydrocarbon receptor protects against bacterial infection by promoting macrophage survival and reactive oxygen species production.

    PubMed

    Kimura, Akihiro; Abe, Hiromi; Tsuruta, Sanae; Chiba, Sayuri; Fujii-Kuriyama, Yoshiaki; Sekiya, Takashi; Morita, Rimpei; Yoshimura, Akihiko

    2014-04-01

    Aryl hydrocarbon receptor (AhR) is crucial for various immune responses. The relationship between AhR and infection with the intracellular bacteria Listeria monocytogenes (LM) is poorly understood. Here, we show that in response to LM infection, AhR is required for bacterial clearance by promoting macrophage survival and reactive oxygen species (ROS) production. AhR-deficient mice were more susceptible to listeriosis, and AhR deficiency enhances bacterial growth in vivo and in vitro. On the other hand, pro-inflammatory cytokines were increased in AhR-deficient macrophages infected with LM despite enhanced susceptibility to LM infection in AhR-deficient mice. Subsequent studies demonstrate that AhR protects against macrophage cell death induced by LM infection through the induction of the antiapoptotic factor, the apoptosis inhibitor of macrophages, which promotes macrophage survival in the setting of LM infection. Furthermore, AhR promotes ROS production for bacterial clearance. Our results demonstrate that AhR is essential to the resistance against LM infection as it promotes macrophage survival and ROS production. This suggests that the activation of AhR by its ligands may be an effective strategy against listeriosis.

  20. Gene expression profiling of human macrophages at late time of infection with Mycobacterium tuberculosis

    PubMed Central

    Volpe, Elisabetta; Cappelli, Giulia; Grassi, Manuela; Martino, Angelo; Serafino, Annalucia; Colizzi, Vittorio; Sanarico, Nunzia; Mariani, Francesca

    2006-01-01

    Macrophages play an essential role in the immune response to Mycobacterium tuberculosis (Mtb). Previous transcriptome surveys, by means of micro- and macroarrays, investigated the cellular gene expression profile during the early phases of infection (within 48 hr). However, Mtb remains within the host macrophages for a longer period, continuing to influence the macrophage gene expression and, consequently, the environment in which it persists. Therefore, we studied the transcription patterns of human macrophages for up to 7 days after infection with Mtb. We used a macroarray approach to study 858 human genes involved in immunoregulation, and we confirmed by quantitative real-time reverse transcriptase polymerase chain reaction (q-rt RT-PCR) and by enzyme-linked immunosorbent assay the most relevant modulations. We constantly observed the up-regulation in infected macrophages versus uninfected, of the following genes: interleukin-1β and interleukin-8, macrophage inflammatory protein-1α, growth-related oncogene-β, epithelial cell-derived neutrophil-activating peptide-78, macrophage-derived chemokine, and matrix metalloproteinase-7; whereas macrophage colony-stimulating factor-receptor and CD4 were down-regulated in infected macrophages. Mtb is able to withstand this intense cytokine microenvironment and to survive inside the human macrophage. Therefore we simultaneously investigated by q-rt RT-PCR the modulation of five mycobacterial genes: the alternative sigma factors sigA, sigE and sigG, the α-crystallin (acr) and the superoxide dismutase C (sodC) involved in survival mechanisms. The identified host and mycobacterial genes that were expressed until 7 days after infection, could have a role in the interplay between the host immune defences and the bacterial escape mechanisms. PMID:16895554

  1. Bacterial Membrane Vesicles Mediate the Release of Mycobacterium tuberculosis Lipoglycans and Lipoproteins from Infected Macrophages.

    PubMed

    Athman, Jaffre J; Wang, Ying; McDonald, David J; Boom, W Henry; Harding, Clifford V; Wearsch, Pamela A

    2015-08-01

    Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected

  2. BAI1 Orchestrates Macrophage Inflammatory Response to HSV Infection-Implications for Oncolytic Viral Therapy.

    PubMed

    Bolyard, Chelsea; Meisen, W Hans; Banasavadi-Siddegowda, Yeshavanth; Hardcastle, Jayson; Yoo, Ji Young; Wohleb, Eric S; Wojton, Jeffrey; Yu, Jun-Ge; Dubin, Samuel; Khosla, Maninder; Xu, Bo; Smith, Jonathan; Alvarez-Breckenridge, Christopher; Pow-Anpongkul, Pete; Pichiorri, Flavia; Zhang, Jianying; Old, Matthew; Zhu, Dan; Van Meir, Erwin G; Godbout, Jonathan P; Caligiuri, Michael A; Yu, Jianhua; Kaur, Balveen

    2017-04-01

    Purpose: Brain angiogenesis inhibitor (BAI1) facilitates phagocytosis and bacterial pathogen clearance by macrophages; however, its role in viral infections is unknown. Here, we examined the role of BAI1, and its N-terminal cleavage fragment (Vstat120) in antiviral macrophage responses to oncolytic herpes simplex virus (oHSV).Experimental Design: Changes in infiltration and activation of monocytic and microglial cells after treatment of glioma-bearing mice brains with a control (rHSVQ1) or Vstat120-expressing (RAMBO) oHSV was analyzed using flow cytometry. Co-culture of infected glioma cells with macrophages or microglia was used to examine antiviral signaling. Cytokine array gene expression and Ingenuity Pathway Analysis (IPA) helped evaluate changes in macrophage signaling in response to viral infection. TNFα-blocking antibodies and macrophages derived from Bai1(-/-) mice were used.Results: RAMBO treatment of mice reduced recruitment and activation of macrophages/microglia in mice with brain tumors, and showed increased virus replication compared with rHSVQ1. Cytokine gene expression array revealed that RAMBO significantly altered the macrophage inflammatory response to infected glioma cells via altered secretion of TNFα. Furthermore, we showed that BAI1 mediated macrophage TNFα induction in response to oHSV therapy. Intracranial inoculation of wild-type/RAMBO virus in Bai1(-/-) or wild-type non-tumor-bearing mice revealed the safety of this approach.Conclusions: We have uncovered a new role for BAI1 in facilitating macrophage anti-viral responses. We show that arming oHSV with antiangiogenic Vstat120 also shields them from inflammatory macrophage antiviral response, without reducing safety. Clin Cancer Res; 23(7); 1809-19. ©2016 AACR.

  3. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  4. The Many Alternative Faces of Macrophage Activation.

    PubMed

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide

  5. The CD14 C-260T single nucleotide polymorphism (SNP) modulates monocyte/macrophage activation in treated HIV-infected individuals.

    PubMed

    Rajasuriar, Reena; Kong, Yong Yean; Nadarajah, Reshika; Abdullah, Noor Kamila; Spelman, Tim; Yuhana, Muhamad Yazli; Ponampalavanar, Sasheela; Kamarulzaman, Adeeba; Lewin, Sharon R

    2015-01-27

    HIV-infected individuals have an increased risk of cardiovascular disease (CVD). T-allele carriers of the CD14 C-260T single-nucleotide polymorphism (SNP) have reported increased expression of the LPS-binding receptor, CD14 and inflammation in the general population. Our aim was to explore the relationship of this SNP with monocyte/macrophage activation and inflammation and its association with sub-clinical atherosclerosis in HIV-infected individuals. Patients with no pre-existing CVD risk factors on suppressive antiretroviral therapy were recruited from University Malaya Medical Centre, Malaysia (n = 84). The CD14 C-260T and TLR4 SNPs, Asp299Gly and Thr399Ile were genotyped and soluble(s) CD14 and sCD163 and high-sensitivity C-reactive protein, hsCRP were measured in plasma. Subclinical atherosclerosis was assessed by measuring carotid intima media thickness (cIMT). The association between CD14 C-260T SNP carriage and cIMT was assessed in a multivariable quantile regression model where a p-value of <0.05 was considered significant. We found the CD14 C-260T T-allele in 56% of the cohort and evidence of subclinical atherosclerosis in 27%. TT genotype was associated with higher sCD163 (p = 0.009) but only marginally higher sCD14 (p = 0.209) and no difference in hsCRP (p = 0.296) compared to CC/CT. In multivariable analysis, only Framingham risk score was independently associated with higher cIMT while lower sCD163 was trending towards significance. No association was found in TT-genotype carriers and cIMT measurements. The CD14 C-260T SNP was associated with increased monocyte activation but not systemic inflammation or cIMT in this HIV-infected cohort with low CVD risk profile.

  6. Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function

    PubMed Central

    Podinovskaia, Maria; Lee, Wonsik; Caldwell, Shannon; Russell, David G.

    2013-01-01

    The phagosome is a central mediator of both the homeostatic and microbicidal functions of a macrophage. Following phagocytosis, Mycobacterium tuberculosis (Mtb) is able to establish infection through arresting phagosome maturation and avoiding the consequences of delivery to the lysosome. The infection of a macrophage by Mtb leads to marked changes in the behavior of both the macrophage and the surrounding tissue as the bacterium modulates its environment to promote its survival. In this study, we use functional physiological assays to probe the biology of the phagosomal network in Mtb-infected macrophages. The resulting data demonstrate that Mtb modifies phagosomal function in a TLR2/TLR4-dependent manner, and that most of these modifications are consistent with an increase in the activation status of the cell. Specifically, superoxide burst is enhanced and lipolytic activity is decreased upon infection. There are some species- or cell type-specific differences between human and murine macrophages in the rates of acidification and the degree of proteolysis. However, the most significant modification is the marked reduction in intra-phagosomal lipolysis because this correlates with the marked increase in the retention of host lipids in the infected macrophage, which provides a potential source of nutrients that can be accessed by Mtb. PMID:23253353

  7. Galectin-3 promotes caspase-independent cell death of HIV-1-infected macrophages.

    PubMed

    Xue, Jing; Fu, Chunyan; Cong, Zhe; Peng, Lingjuan; Peng, Zhuoying; Chen, Ting; Wang, Wei; Jiang, Hong; Wei, Qiang; Qin, Chuan

    2017-01-01

    HIV-1-infected macrophages are a key contributor to the formation of a viral reservoir and new treatment strategies focus on eliminating this pool of virus. Galectin-3 is a potent apoptosis-inducing protein that regulates diverse cellular activities. In the present study, we investigated whether galectin-3 could induce cell death in HIV-1-infected macrophages using HIV-1-infected THP1 monocytes (THP1-MNs) and THP1-derived macrophages (THP1-MΦs) as in vitro cellular models. We found that THP1-MΦs were more resistant than the THP1-MNs to HIV-1 infection-induced death, and that HIV-1 infection of the THP1-MΦs increased expression of the anti-apoptotic proteins Mcl-1, Bcl-2 and Bcl-xL. Additionally, galectin-3 but not FasL, tumor necrosis factor (TNF)-related apoptosis-inducing ligand or TNF-α, could induce cell death in HIV-1-infected THP1-MΦs. A similar result was shown for primary human monocyte-derived macrophages. Galectin-3-induced cell death was also significantly increased in macrophages obtained from SIVmac251-infected macaques compared to that of macrophages from healthy macaques. Furthermore, galectin-3-induced cell death in HIV-1-infected THP1-MΦs was caspase independent. Interestingly, endonuclease G (Endo G) was increased in the nucleus and decreased in the cytoplasm of galectin-3-treated cells; thus, galectin-3-induced cell death in HIV-1-infected THP1-MΦs is most likely related to the translocation of Endo G from the cytoplasm to the nucleus. These findings suggest that galectin-3 may potentially aid in the eradication of HIV-1/SIV-infected macrophages.

  8. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications

    PubMed Central

    Hardbower, Dana M.; Asim, Mohammad; Luis, Paula B.; Singh, Kshipra; Barry, Daniel P.; Yang, Chunying; Steeves, Meredith A.; Cleveland, John L.; Schneider, Claus; Piazuelo, M. Blanca; Gobert, Alain P.; Wilson, Keith T.

    2017-01-01

    Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms. PMID:28096401

  9. Coordinated Regulation of Signaling Pathways during Macrophage Activation.

    PubMed

    Lawrence, Toby

    2016-10-01

    The functional and phenotypic diversity of macrophages has long been appreciated, and it is now clear that it reflects a complex interplay between hard-wired differentiation pathways and instructive signals in specific tissues (Lawrence T, Natoli G. 2011, Nat Rev Immunol11:750-761). Recent studies have begun to unravel the molecular basis for the integration of these intrinsic developmental pathways with extracellular signals from the tissue microenvironment that confer the distinct phenotypes of tissue-resident macrophages (Lavin Y et al. 2014. Cell159:1312-1326; Gosselin D et al. 2014. Cell159:1327-1340). Macrophage phenotype and function is particularly dynamic during inflammation or infection, as blood monocytes are recruited into tissues and differentiate into macrophages, and depending on the nature of the inflammatory stimulus, they may acquire distinct functional phenotypes (Xue J et al. 2014. Immunity40:274-288; Murray PJ et al. 2014. Immunity41:14-20). Furthermore, these functional activation states can be rapidly modified in response to a changing microenvironment. Here we will discuss several key signaling pathways that drive macrophage activation during the inflammatory response and discuss how these pathways are integrated to "fine-tune" macrophage phenotype and function.

  10. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  11. Semen CD4+ T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques

    PubMed Central

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Corneau, Aurélien B.; Guenounou, Sabrina; Torres, Claire; Dejucq-Rainsford, Nathalie; Cosma, Antonio; Dereuddre-Bosquet, Nathalie; Le Grand, Roger

    2013-01-01

    The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure. PMID:24348253

  12. Micro RNA in Exosomes from HIV-Infected Macrophages.

    PubMed

    Roth, William W; Huang, Ming Bo; Addae Konadu, Kateena; Powell, Michael D; Bond, Vincent C

    2015-12-22

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  13. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy

    PubMed Central

    Merlini, Esther; Tincati, Camilla; Biasin, Mara; Saulle, Irma; Cazzaniga, Federico Angelo; d’Arminio Monforte, Antonella; Cappione, Amedeo J.; Snyder-Cappione, Jennifer; Clerici, Mario; Marchetti, Giulia Carla

    2016-01-01

    In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting

  14. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  15. Role of Macrophages in the Repair Process during the Tissue Migrating and Resident Helminth Infections

    PubMed Central

    Faz-López, Berenice

    2016-01-01

    The Th1/Th2/Th17 balance is a fundamental feature in the regulation of the inflammatory microenvironment during helminth infections, and an imbalance in this paradigm greatly contributes to inflammatory disorders. In some cases of helminthiasis, an initial Th1 response could occur during the early phases of infection (acute), followed by a Th2 response that prevails in chronic infections. During the late phase of infection, alternatively activated macrophages (AAMs) are important to counteract the inflammation caused by the Th1/Th17 response and larval migration, limiting damage and repairing the tissue affected. Macrophages are the archetype of phagocytic cells, with the primary role of pathogen destruction and antigen presentation. Nevertheless, other subtypes of macrophages have been described with important roles in tissue repair and immune regulation. These types of macrophages challenge the classical view of macrophages activated by an inflammatory response. The role of these subtypes of macrophages during helminthiasis is a controversial topic in immunoparasitology. Here, we analyze some of the studies regarding the role of AAMs in tissue repair during the tissue migration of helminths. PMID:27648452

  16. TREM-2 promotes macrophage survival and lung disease after respiratory viral infection.

    PubMed

    Wu, Kangyun; Byers, Derek E; Jin, Xiaohua; Agapov, Eugene; Alexander-Brett, Jennifer; Patel, Anand C; Cella, Marina; Gilfilan, Susan; Colonna, Marco; Kober, Daniel L; Brett, Tom J; Holtzman, Michael J

    2015-05-04

    Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13-dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5-12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease.

  17. Experimental infection of murine and human macrophages with Cystoisospora belli.

    PubMed

    Resende, Deisy V; Lages-Silva, Eliane; Assis, Dnieber C; Prata, Aluízio; Oliveira-Silva, Márcia B

    2009-08-01

    Extraintestinal cystoisosporosis by Cystoisospora belli has already been reported in HIV/AIDS patients, generally involving preferential invasion of mesenteric and trachaeobronchial lymph nodes, liver and spleen by unizoic cysts of this parasite, which may infect macrophages. To test this hypothesis, murine and human macrophages were exposed to sporozoites of C. belli and cultures were observed daily after contact with these cells. The parasites penetrated and multiplied by endodyogeny in both cell types and inserted themselves inside perinuclear vacuoles. After 48 h, extracellular parasites were removed from macrophage cultures and incubated in Monkey Kidney Rhesus cells (MK2) where there was intense multiplication. This is the first report of infection of macrophages by this parasite, which supports the hypothesis that these could act as C. belli host cells in extraintestinal sites.

  18. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment

    PubMed Central

    Pagán, Antonio J.; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E.; Ellett, Felix; Lieschke, Graham J.; Ramakrishnan, Lalita

    2015-01-01

    Summary The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis. PMID:26159717

  19. Myeloid Growth Factors Promote Resistance to Mycobacterial Infection by Curtailing Granuloma Necrosis through Macrophage Replenishment.

    PubMed

    Pagán, Antonio J; Yang, Chao-Tsung; Cameron, James; Swaim, Laura E; Ellett, Felix; Lieschke, Graham J; Ramakrishnan, Lalita

    2015-07-08

    The mycobacterial ESX-1 virulence locus accelerates macrophage recruitment to the forming tuberculous granuloma. Newly recruited macrophages phagocytose previously infected apoptotic macrophages to become new bacterial growth niches. Granuloma macrophages can then necrose, releasing mycobacteria into the extracellular milieu, which potentiates their growth even further. Using zebrafish with genetic or pharmacologically induced macrophage deficiencies, we find that global macrophage deficits increase susceptibility to mycobacterial infection by accelerating granuloma necrosis. This is because reduction in the macrophage supply below a critical threshold decreases granuloma macrophage replenishment to the point where apoptotic infected macrophages, failing to get engulfed, necrose. Reducing macrophage demand by removing bacterial ESX-1 offsets the susceptibility of macrophage deficits. Conversely, increasing macrophage supply in wild-type fish by overexpressing myeloid growth factors induces resistance by curtailing necrosis. These findings may explain the susceptibility of humans with mononuclear cytopenias to mycobacterial infections and highlight the therapeutic potential of myeloid growth factors in tuberculosis.

  20. Chronic filarial infection provides protection against bacterial sepsis by functionally reprogramming macrophages.

    PubMed

    Gondorf, Fabian; Berbudi, Afiat; Buerfent, Benedikt C; Ajendra, Jesuthas; Bloemker, Dominique; Specht, Sabine; Schmidt, David; Neumann, Anna-Lena; Layland, Laura E; Hoerauf, Achim; Hübner, Marc P

    2015-01-01

    Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also

  1. Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages

    PubMed Central

    Groseth, Allison; Hoenen, Thomas; Weber, Michaela; Wolff, Svenja; Herwig, Astrid; Kaufmann, Andreas; Becker, Stephan

    2011-01-01

    The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation. PMID:21572983

  2. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P.

    PubMed

    Tuluc, Florin; Meshki, John; Spitsin, Sergei; Douglas, Steven D

    2014-07-01

    Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis.

  3. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P

    PubMed Central

    Tuluc, Florin; Meshki, John; Spitsin, Sergei; Douglas, Steven D.

    2014-01-01

    Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163low and CD163high) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163high cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis. PMID:24577568

  4. A subunit vaccine based on rH-NS induces protection against Mycobacterium tuberculosis infection by inducing the Th1 immune response and activating macrophages.

    PubMed

    Liu, Yuan; Chen, Suting; Pan, Bowen; Guan, Zhu; Yang, Zhenjun; Duan, Linfei; Cai, Hong

    2016-10-01

    Mycobacterium tuberculosis (Mtb) is a Gram-positive pathogen which causes tuberculosis in both animals and humans. All tested rH-NS formulations induced a specific Th1 response, as indicated by increased production of interferon γ (IFN-γ) and interleukin 2 (IL-2) by lymphocytes in the spleen of mice which were immunized with rH-NS alone or with rH-NS and the adjuvant cyclic GMP-AMP (cGAMP). Serum from mice immunized with rH-NS with or without adjuvant also had higher levels of IL-12p40 and TNF-α, compared with those from control mice immunized with phosphate-buffered saline. Both vaccines increased protective efficacy in mice which were challenged with Mtb H37Rv, as measured by reduced relative CFU counts in the lungs. We found that rH-NS induced the production of TNF-α, IL-6, and IL-12p40, which relied on the activation of mitogen-activated protein kinases by stimulating the rapid phosphorylation of ERK1/2, p38, and JNK, and on the activation of transcription factor NF-κB in macrophages. Additionally, we also found that rH-NS could interact with TLR2 but not TLR4 in pull-down assays. The rH-NS-induced cytokine production from TLR2-silenced RAW264.7 cells was lower than that from BALB/c macrophages. Prolonged exposure (>24 h) of RAW264.7 cells to rH-NS resulted in a significant enhancement in IFN-γ-induced MHC II expression, which was not found in shTLR2-treated RAW264.7 cells. These results suggest that rH-NS is a TLR2 agonist which induces the production of cytokines by macrophages and up-regulates macrophage function.

  5. Iron modulates the replication of virulent Mycobacterium bovis in resting and activated bovine and possum macrophages.

    PubMed

    Denis, Michel; Buddle, Bryce M

    2005-09-15

    Bovine and possum macrophages were infected in vitro with a virulent strain of Mycobacterium bovis, and mycobacterial replication was measured in the infected macrophages cultured under a variety of conditions. Virulent M. bovis replicated substantially in alveolar possum macrophages as well as in bovine blood monocyte-derived macrophages. Addition of recombinant bovine interferon-gamma (IFN-gamma) with low concentrations of lipopolysaccharide (LPS) rendered bovine macrophages significantly more resistant to M. bovis replication. Disruption of iron levels in infected macrophages by addition of apotransferrin or bovine lactoferrin blocked replication of M. bovis in both bovine and possum macrophages. On the other hand, addition of exogenous iron, either in the form of iron citrate or iron-saturated transferrin, rendered macrophages of both species much more permissive for the replication of M. bovis. The impact of iron deprivation/loading on the mycobacteriostatic activity of cells was independent of nitric-oxide release, as well as independent of the generation of oxygen radical species in both possum and bovine macrophages. Exogenous iron was shown to reverse the ability of IFN-gamma/LPS pulsed bovine macrophages to restrict M. bovis replication. When autologous possum lymphocytes from animals vaccinated with M. bovis strain BCG were added to infected macrophages, they rendered the macrophages less permissive for virulent M. bovis replication. Loading the cells with iron prior to this macrophage-lymphocyte interaction, reversed this immune effect induced by sensitized cells. We conclude that, in two important animal species, intracellular iron level plays an important role in M. bovis replication in macrophages, irrespective of their activation status.

  6. Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

    PubMed

    Verway, Mark; Bouttier, Manuella; Wang, Tian-Tian; Carrier, Marilyn; Calderon, Mario; An, Beum-Soo; Devemy, Emmanuelle; McIntosh, Fiona; Divangahi, Maziar; Behr, Marcel A; White, John H

    2013-01-01

    Although vitamin D deficiency is a common feature among patients presenting with active tuberculosis, the full scope of vitamin D action during Mycobacterium tuberculosis (Mtb) infection is poorly understood. As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D). We found that the virulent Mtb strain H37Rv elicits a broad host transcriptional response. Transcriptome profiling also revealed that the profile of target genes regulated by 1,25D is substantially altered by infection, and that 1,25D generally boosts infection-stimulated cytokine/chemokine responses. We further focused on the role of 1,25D- and infection-induced interleukin 1β (IL-1β) expression in response to infection. 1,25D enhanced IL-1β expression via a direct transcriptional mechanism. Secretion of IL-1β from infected cells required the NLRP3/caspase-1 inflammasome. The impact of IL-1β production was investigated in a novel model wherein infected macrophages were co-cultured with primary human small airway epithelial cells. Co-culture significantly prolonged survival of infected macrophages, and 1,25D/infection-induced IL-1β secretion from macrophages reduced mycobacterial burden by stimulating the anti-mycobacterial capacity of co-cultured lung epithelial cells. These effects were independent of 1,25D-stimulated autophagy in macrophages but dependent upon epithelial IL1R1 signaling and IL-1β-driven epithelial production of the antimicrobial peptide DEFB4/HBD2. These data provide evidence that the anti-microbial actions of vitamin D extend beyond the macrophage by modulating paracrine signaling, reinforcing its role in innate immune regulation in humans.

  7. Production of MMP-9 and inflammatory cytokines by Trypanosoma cruzi-infected macrophages.

    PubMed

    de Pinho, Rosa Teixeira; da Silva, Wellington Seguins; de Castro Côrtes, Luzia Monteiro; da Silva Vasconcelos Sousa, Periela; de Araujo Soares, Renata Oliveira; Alves, Carlos Roberto

    2014-12-01

    Matrix metalloproteinases (MMPs) constitute a large family of Zn(2+) and Ca(2+) dependent endopeptidases implicated in tissue remodeling and chronic inflammation. MMPs also play key roles in the activation of growth factors, chemokines and cytokines produced by many cell types, including lymphocytes, granulocytes, and, in particular, activated macrophages. Their synthesis and secretion appear to be important in a number of physiological processes, including the inflammatory process. Here, we investigated the interaction between human and mouse macrophages with T. cruzi Colombian and Y strains to characterize MMP-9 and cytokine production in this system. Supernatants and total extract of T. cruzi infected human and mouse macrophages were obtained and used to assess MMP-9 profile and inflammatory cytokines. The presence of metalloproteinase activity was determined by zymography, enzyme-linked immunosorbent assay and immunoblotting assays. The effect of cytokines on MMP-9 production in human macrophages was verified by previous incubation of cytokines on these cells in culture, and analyzed by zymography. We detected an increase in MMP-9 production in the culture supernatants of T. cruzi infected human and mouse macrophages. The addition of IL-1β or TNF-α to human macrophage cultures increased MMP-9 production. In contrast, MMP-9 production was down-modulated when human macrophage cultures were treated with IFN-γ or IL-4 before infection. Human macrophages infected with T. cruzi Y or Colombian strains produced increased levels of MMP-9, which was related to the production of cytokines such as IL-1β, TNF-α and IL-6.

  8. IL-27 inhibits HIV-1 infection in human macrophages by down-regulating host factor SPTBN1 during monocyte to macrophage differentiation.

    PubMed

    Dai, Lue; Lidie, Kristy B; Chen, Qian; Adelsberger, Joseph W; Zheng, Xin; Huang, DaWei; Yang, Jun; Lempicki, Richard A; Rehman, Tauseef; Dewar, Robin L; Wang, Yanmei; Hornung, Ronald L; Canizales, Kelsey A; Lockett, Stephen J; Lane, H Clifford; Imamichi, Tomozumi

    2013-03-11

    The susceptibility of macrophages to HIV-1 infection is modulated during monocyte differentiation. IL-27 is an anti-HIV cytokine that also modulates monocyte activation. In this study, we present new evidence that IL-27 promotes monocyte differentiation into macrophages that are nonpermissive for HIV-1 infection. Although IL-27 treatment does not affect expression of macrophage differentiation markers or macrophage biological functions, it confers HIV resistance by down-regulating spectrin β nonerythrocyte 1 (SPTBN1), a required host factor for HIV-1 infection. IL-27 down-regulates SPTBN1 through a TAK-1-mediated MAPK signaling pathway. Knockdown of SPTBN1 strongly inhibits HIV-1 infection of macrophages; conversely, overexpression of SPTBN1 markedly increases HIV susceptibility of IL-27-treated macrophages. Moreover, we demonstrate that SPTBN1 associates with HIV-1 gag proteins. Collectively, our results underscore the ability of IL-27 to protect macrophages from HIV-1 infection by down-regulating SPTBN1, thus indicating that SPTBN1 is an important host target to reduce HIV-1 replication in one major element of the viral reservoir.

  9. The mannose receptor mediates dengue virus infection of macrophages.

    PubMed

    Miller, Joanna L; de Wet, Barend J M; deWet, Barend J M; Martinez-Pomares, Luisa; Radcliffe, Catherine M; Dwek, Raymond A; Rudd, Pauline M; Gordon, Siamon

    2008-02-08

    Macrophages (MØ) and mononuclear phagocytes are major targets of infection by dengue virus (DV), a mosquito-borne flavivirus that can cause haemorrhagic fever in humans. To our knowledge, we show for the first time that the MØ mannose receptor (MR) binds to all four serotypes of DV and specifically to the envelope glycoprotein. Glycan analysis, ELISA, and blot overlay assays demonstrate that MR binds via its carbohydrate recognition domains to mosquito and human cell-produced DV antigen. This binding is abrogated by deglycosylation of the DV envelope glycoprotein. Surface expression of recombinant MR on NIH3T3 cells confers DV binding. Furthermore, DV infection of primary human MØ can be blocked by anti-MR antibodies. MR is a prototypic marker of alternatively activated MØ, and pre-treatment of human monocytes or MØ with type 2 cytokines (IL-4 or IL-13) enhances their susceptibility to productive DV infection. Our findings indicate a new functional role for the MR in DV infection.

  10. Macrophage Folate Receptor-Targeted Antiretroviral Therapy Facilitates Drug Entry, Retention, Antiretroviral Activities and Biodistribution for Reduction of Human Immunodeficiency Virus Infections

    PubMed Central

    Puligujja, Pavan; McMillan, JoEllyn; Kendrick, Lindsey; Li, Tianyuzi; Balkundi, Shantanu; Smith, Nathan; Veerubhotla, Ram S.; Edagwa, Benson J.; Kabanov, Alexander V.; Bronich, Tatiana; Gendelman, Howard E.; Liu, Xin-Ming

    2013-01-01

    Macrophages serve as vehicles for the carriage and delivery of polymer-coated nanoformulated antiretroviral therapy (nanoART). Although superior to native drug, high drug concentrations are required for viral inhibition. Herein, folate-modified atazanavir/ritonavir (ATV/r)-encased polymers facilitated macrophage receptor targeting for optimizing drug dosing. Folate coating of nanoART ATV/r significantly enhanced cell uptake, retention and antiretroviral activities without altering cell viability. Enhanced retentions of folate-coated nanoART within recycling endosomes provided a stable subcellular drug depot. Importantly, five-fold enhanced plasma and tissue drug levels followed folate-coated formulation injection in mice. Folate polymer encased ATV/r improves nanoART pharmacokinetics bringing the technology one step closer to human use. PMID:23680933

  11. HIV-1-infected macrophages induce astrogliosis by SDF-1{alpha} and matrix metalloproteinases

    SciTech Connect

    Okamoto, Mika; Wang, Xin; Baba, Masanori . E-mail: baba@m.kufm.kagoshima-u.ac.jp

    2005-11-04

    Brain macrophages/microglia and astrocytes are known to be involved in the pathogenesis of HIV-1-associated dementia (HAD). To clarify their interaction and contribution to the pathogenesis, HIV-1-infected or uninfected macrophages were used as a model of brain macrophages/microglia, and their effects on human astrocytes in vitro were examined. The culture supernatants of HIV-1-infected or uninfected macrophages induced significant astrocyte proliferation, which was annihilated with a neutralizing antibody to stromal cell-derived factor (SDF)-1{alpha} or a matrix metalloproteinase (MMP) inhibitor. In these astrocytes, CXCR4, MMP, and tissue inhibitors of matrix metalloproteinase mRNA expression and SDF-1{alpha} production were significantly up-regulated. The supernatants of infected macrophages were always more effective than those of uninfected cells. Moreover, the enhanced production of SDF-1{alpha} was suppressed by the MMP inhibitor. These results indicate that the activated and HIV-1-infected macrophages can indirectly induce astrocyte proliferation through up-regulating SDF-1{alpha} and MMP production, which implies a mechanism of astrogliosis in HAD.

  12. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

    PubMed Central

    Wang, Xu; Wang, He; Liu, Man-Qing; Li, Jie-Liang; Zhou, Run-Hong; Zhou, Yu; Wang, Yi-Zhong; Zhou, Wang; Ho, Wen-Zhe

    2017-01-01

    Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection. PMID:28321215

  13. Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B.

    PubMed

    Rajaram, Krithika; Nelson, David E

    2015-08-01

    The ability of certain species of Chlamydia to inhibit the biogenesis of phagolysosomes permits their survival and replication within macrophages. The survival of macrophage-adapted chlamydiae correlates with the multiplicity of infection (MOI), and optimal chlamydial growth occurs in macrophages infected at an MOI of ≤1. In this study, we examined the replicative capacity of Chlamydia muridarum in the RAW 264.7 murine macrophage cell line at different MOIs. C. muridarum productively infected these macrophages at low MOIs but yielded few viable elementary bodies (EBs) when macrophages were infected at a moderate (10) or high (100) MOI. While high MOIs caused cytotoxicity and irreversible host cell death, macrophages infected at a moderate MOI did not show signs of cytotoxicity until late in the infectious cycle. Inhibition of host protein synthesis rescued C. muridarum in macrophages infected at a moderate MOI, implying that chlamydial growth was blocked by activated defense mechanisms. Conditioned medium from these macrophages was antichlamydial and contained elevated levels of interleukin 1β (IL-1β), IL-6, IL-10, and beta interferon (IFN-β). Macrophage activation depended on Toll-like receptor 2 (TLR2) signaling, and cytokine production required live, transcriptionally active chlamydiae. A hydroxyl radical scavenger and inhibitors of inducible nitric oxide synthase (iNOS) and cathepsin B also reversed chlamydial killing. High levels of reactive oxygen species (ROS) led to an increase in cathepsin B activity, and pharmacological inhibition of ROS and cathepsin B reduced iNOS expression. Our data demonstrate that MOI-dependent TLR2 activation of macrophages results in iNOS induction via a novel ROS- and cathepsin-dependent mechanism to facilitate C. muridarum clearance.

  14. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection.

    PubMed

    Qiu, Hongyu; KuoLee, Rhonda; Harris, Greg; Van Rooijen, Nico; Patel, Girishchandra B; Chen, Wangxue

    2012-01-01

    Acinetobacter baumannii is an emerging bacterial pathogen that causes nosocomial pneumonia and other infections. Although it is recognized as an increasing threat to immunocompromised patients, the mechanism of host defense against A. baumannii infection remains poorly understood. In this study, we examined the potential role of macrophages in host defense against A. baumannii infection using in vitro macrophage culture and the mouse model of intranasal (i.n.) infection. Large numbers of A. baumannii were taken up by alveolar macrophages in vivo as early as 4 h after i.n. inoculation. By 24 h, the infection induced significant recruitment and activation (enhanced expression of CD80, CD86 and MHC-II) of macrophages into bronchoalveolar spaces. In vitro cell culture studies showed that A. baumannii were phagocytosed by J774A.1 (J774) macrophage-like cells within 10 minutes of co-incubation, and this uptake was microfilament- and microtubule-dependent. Moreover, the viability of phagocytosed bacteria dropped significantly between 24 and 48 h after co-incubation. Infection of J774 cells by A. baumannii resulted in the production of large amounts of proinflammatory cytokines and chemokines, and moderate amounts of nitric oxide (NO). Prior treatment of J774 cells with NO inhibitors significantly suppressed their bactericidal efficacy (P<0.05). Most importantly, in vivo depletion of alveolar macrophages significantly enhanced the susceptibility of mice to i.n. A. baumannii challenge (P<0.01). These results indicate that macrophages may play an important role in early host defense against A. baumannii infection through the efficient phagocytosis and killing of A. baumannii to limit initial pathogen replication and the secretion of proinflammatory cytokines and chemokines for the rapid recruitment of other innate immune cells such as neutrophils.

  15. Effect of mercuric chloride on macrophage-mediated resistance mechanisms against infection with herpes simplex virus type 2.

    PubMed

    Ellermann-Eriksen, S; Christensen, M M; Mogensen, S C

    1994-11-11

    Macrophages play an important role in the early, nonspecific resistance to infection with herpes simplex virus. Mercuric chloride (HgCl2) accumulates in macrophages and has in certain concentrations a marked influence on the functional capacity of these cells. Therefore the influence of HgCl2 on resistance to generalized infection with herpes simplex virus type 2 (HSV-2) in mice and its effect on the HSV-2-induced activation of macrophages in vitro was examined. Mice injected intraperitoneally with HgCl2 24 h before infection with HSV-2 had more than 100 times higher virus titres in the liver 4 days after infection than mice not receiving any mercury. HgCl2 exerted a toxic effect on macrophages in vitro, which was especially pronounced during their adherence. Macrophages infected with HSV-2 were activated for an enhanced respiratory burst. This activation was abolished by treatment of the cells for 24 h with relatively low concentrations of HgCl2, resulting in macrophages with a potential to react with a respiratory burst comparable to that of uninfected cells. The HSV-2-induced activation of macrophages is mediated through the production and synergistic interaction of interferon-alpha/beta and tumour necrosis factor-alpha in an autocrine manner. The ability of these cytokines to activate macrophages and to interact synergistically was not affected by mercury. However the production by macrophages of both cytokines during the HSV-2 infection, but especially interferon-alpha/beta, which is essential for the activation, was reduced at low concentrations of HgCl2. Collectively these data indicate that mercury, by interfering with the early macrophage-production of cytokines, disables the early control of virus replication, leading to an enhanced infection.

  16. Classical and alternative macrophages have impaired function during acute and chronic HIV-1 infection.

    PubMed

    Galvão-Lima, Leonardo J; Espíndola, Milena S; Soares, Luana S; Zambuzi, Fabiana A; Cacemiro, Maira; Fontanari, Caroline; Bollela, Valdes R; Frantz, Fabiani G

    Three decades after HIV recognition and its association with AIDS development, many advances have emerged - especially related to prevention and treatment. Undoubtedly, the development of Highly Active Antiretroviral Therapy (HAART) dramatically changed the future of the syndrome that we know today. In the present study, we evaluate the impact of Highly Active Antiretroviral Therapy on macrophage function and its relevance to HIV pathogenesis. PBMCs were isolated from blood samples and monocytes (CD14+ cells) were purified. Monocyte-Derived Macrophages (MDMs) were activated on classical (MGM-CSF+IFN-γ) or alternative (MIL-4+IL13) patterns using human recombinant cytokines for six days. After this period, Monocyte-Derived Macrophages were stimulated with TLR2/Dectin-1 or TLR4 agonists and we evaluated the influence of HIV-1 infection and Highly Active Antiretroviral Therapy on the release of cytokines/chemokines by macrophages. The data were obtained using Monocyte-Derived Macrophages derived from HIV naïve or from patients on regular Highly Active Antiretroviral Therapy. Classically Monocyte-Derived Macrophages obtained from HIV-1 infected patients on Highly Active Antiretroviral Therapy released higher levels of IL-6 and IL-12 even without PAMPs stimuli when compared to control group. On the other hand, alternative Monocyte-Derived Macrophages derived from HIV-1 infected patients on Highly Active Antiretroviral Therapy released lower levels of IL-6, IL-10, TNF-α, IP-10 and RANTES after LPS stimuli when compared to control group. Furthermore, healthy individuals have a complex network of cytokines/chemokines released by Monocyte-Derived Macrophages after PAMP stimuli, which was deeply affected in MDMs obtained from naïve HIV-1 infected patients and only partially restored in MDMs derived from HIV-1 infected patients even on regular Highly Active Antiretroviral Therapy. Our therapy protocols were not effective in restoring the functional alterations induced by

  17. Cholesterol, ganglioside GM1 and class A scavenger receptor contribute to infection by Brucella ovis and Brucella canis in murine macrophages.

    PubMed

    Martín-Martín, Ana I; Vizcaíno, Nieves; Fernández-Lago, Luis

    2010-03-01

    The establishment of infection by Brucella ovis and Brucella canis in J774.A1 macrophages was found to be dependent upon cholesterol and ganglioside GM(1), two components of lipid rafts. This process also required a class A scavenger receptor of macrophages, and was not inhibited by smooth and rough lipopolysaccharides from Brucella spp. In response to infection, both bacteria induced a weak degree of macrophage activation. These results demonstrate that B. ovis and B. canis use cell surface receptors common to smooth Brucella spp. for macrophage infection, thus limiting macrophage activation and favouring intracellular multiplication and/or the survival of both bacteria. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  18. Passive transfer of interferon-γ over-expressing macrophages enhances resistance of SCID mice to Mycobacterium tuberculosis infection.

    PubMed

    Pasula, Rajamouli; Martin, William J; Kesavalu, Banu Rekha; Abdalla, Maher Y; Britigan, Bradley E

    2017-02-23

    Infection with Mycobacterium tuberculosis (M.tb) is associated with increased deaths worldwide. Alveolar macrophages (AMs) play a critical role in host defense against infection with this pathogen. In this work we tested the hypothesis that passive transfer of normal AMs, IFN-γ activated AMs, or macrophages transduced to over-express IFN-γ into the lungs of immunosuppressed SCID mice, where resident macrophages are present but not functional, would enhance alveolar immunity and increase clearance of pulmonary M.tb infection. Accordingly, SCID mice were infected with M.tb intratracheally (I.T.), following which they received either control macrophages or macrophages overexpressing IFN-γ (J774A.1). The extent of M.tb infection was assessed at 30days post-M.tb infection. SCID mice administered macrophages over-expressing IFN-γ showed a significant decrease in M.tb burden and increased survival compared to J774A.1 control macrophages or untreated mice. This was further associated with a significant increase in IFN-γ and TNF-α mRNA and protein expression, as well as NF-κB (p65) mRNA, in the lungs. The increase in IFN-γ and TNF-α lung levels was inversely proportional to the number of M.tb organisms recovered. These results provide evidence that administration of macrophages overexpressing IFN-γ inhibit M.tb growth in vivo and may enhance host defense against M.tb infection.

  19. mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis.

    PubMed

    Hallowell, R W; Collins, S L; Craig, J M; Zhang, Y; Oh, M; Illei, P B; Chan-Li, Y; Vigeland, C L; Mitzner, W; Scott, A L; Powell, J D; Horton, M R

    2017-01-27

    Alternatively activated macrophages (M2) have an important function in innate immune responses to parasitic helminths, and emerging evidence also indicates these cells are regulators of systemic metabolism. Here we show a critical role for mTORC2 signalling in the generation of M2 macrophages. Abrogation of mTORC2 signalling in macrophages by selective conditional deletion of the adaptor molecule Rictor inhibits the generation of M2 macrophages while leaving the generation of classically activated macrophages (M1) intact. Selective deletion of Rictor in macrophages prevents M2 differentiation and clearance of a parasitic helminth infection in mice, and also abrogates the ability of mice to regulate brown fat and maintain core body temperature. Our findings define a role for mTORC2 in macrophages in integrating signals from the immune microenvironment to promote innate type 2 immunity, and also to integrate systemic metabolic and thermogenic responses.

  20. mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis

    PubMed Central

    Hallowell, R. W.; Collins, S. L.; Craig, J. M.; Zhang, Y.; Oh, M.; Illei, P. B.; Chan-Li, Y.; Vigeland, C. L.; Mitzner, W.; Scott, A. L.; Powell, J. D.; Horton, M. R.

    2017-01-01

    Alternatively activated macrophages (M2) have an important function in innate immune responses to parasitic helminths, and emerging evidence also indicates these cells are regulators of systemic metabolism. Here we show a critical role for mTORC2 signalling in the generation of M2 macrophages. Abrogation of mTORC2 signalling in macrophages by selective conditional deletion of the adaptor molecule Rictor inhibits the generation of M2 macrophages while leaving the generation of classically activated macrophages (M1) intact. Selective deletion of Rictor in macrophages prevents M2 differentiation and clearance of a parasitic helminth infection in mice, and also abrogates the ability of mice to regulate brown fat and maintain core body temperature. Our findings define a role for mTORC2 in macrophages in integrating signals from the immune microenvironment to promote innate type 2 immunity, and also to integrate systemic metabolic and thermogenic responses. PMID:28128208

  1. Neutrophils and macrophages cooperate in host resistance against Leishmania braziliensis infection.

    PubMed

    Novais, Fernanda O; Santiago, Rômulo C; Báfica, André; Khouri, Ricardo; Afonso, Lilian; Borges, Valéria M; Brodskyn, Cláudia; Barral-Netto, Manoel; Barral, Aldina; de Oliveira, Camila I

    2009-12-15

    Neutrophils play an active role in the control of infections caused by intracellular pathogens such as Leishmania. In the present study, we investigated the effect of neutrophil depletion at the time of Leishmania braziliensis infection of BALB/c mice and how neutrophils interact with the infected macrophage to promote parasite elimination. The in vivo depletion of neutrophils led to a significant increase in parasite load and enhanced the Th1-Th2 immune response in this experimental model of infection. BALB/c mice coinoculated with both parasites and live neutrophils displayed lower parasite burdens at the site of infection and in the draining lymph nodes. In vitro, we observed that live neutrophils significantly reduced the parasite load in L. braziliensis-infected murine macrophages, an effect not observed with Leishmania major. L. braziliensis elimination was dependent on the interaction between neutrophils and macrophages and was associated with TNF-alpha as well as superoxide production. Furthermore, cooperation between neutrophils and macrophages toward parasite elimination was also observed in experiments performed with L. braziliensis-infected human cells and, importantly, with two other New World Leishmania species. These results indicate that neutrophils play an important and previously unappreciated role in L. braziliensis infection, favoring the induction of a protective immune response.

  2. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO.

  3. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection

    PubMed Central

    Abtin, Arby; Jain, Rohit; Mitchell, Andrew J.; Roediger, Ben; Brzoska, Anthony J.; Tikoo, Shweta; Cheng, Qiang; Ng, Lai Guan; Cavanagh, Lois L.; von Andrian, Ulrich H.; Hickey, Michael J.; Firth, Neville; Weninger, Wolfgang

    2014-01-01

    Transendothelial migration of neutrophils in post-capillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we show that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor alpha-hemolysin lyses perivascular macrophages leading to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin, and indicate that Staphylococcus aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy. PMID:24270515

  4. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection.

    PubMed

    Abtin, Arby; Jain, Rohit; Mitchell, Andrew J; Roediger, Ben; Brzoska, Anthony J; Tikoo, Shweta; Cheng, Qiang; Ng, Lai Guan; Cavanagh, Lois L; von Andrian, Ulrich H; Hickey, Michael J; Firth, Neville; Weninger, Wolfgang

    2014-01-01

    Transendothelial migration of neutrophils in postcapillary venules is a key event in the inflammatory response against pathogens and tissue damage. The precise regulation of this process is incompletely understood. We report that perivascular macrophages are critical for neutrophil migration into skin infected with the pathogen Staphylococcus aureus. Using multiphoton intravital microscopy we showed that neutrophils extravasate from inflamed dermal venules in close proximity to perivascular macrophages, which are a major source of neutrophil chemoattractants. The virulence factor α-hemolysin produced by S. aureus lyses perivascular macrophages, which leads to decreased neutrophil transmigration. Our data illustrate a previously unrecognized role for perivascular macrophages in neutrophil recruitment to inflamed skin and indicate that S. aureus uses hemolysin-dependent killing of these cells as an immune evasion strategy.

  5. Akt1-mediated regulation of macrophage polarization in a murine model of Staphylococcus aureus pulmonary infection.

    PubMed

    Xu, Feng; Kang, Yanhua; Zhang, Hang; Piao, Zhenghao; Yin, Hongping; Diao, Ran; Xia, Jingyan; Shi, Liyun

    2013-08-01

    Macrophage polarization is critical for dictating host defense against pathogens and injurious agents. Dysregulation of macrophage differentiation has been implicated in infectious and inflammatory diseases. Here, we show that protein kinase B/Akt1 signaling induced by Staphylococcus aureus is essential in shifting macrophages from an antimicrobial phenotype (M1) to a functionally inert signature. Akt1(-/-)mice consistently had enhanced bacterial clearance and greater survival, compared with their wild-type littermates. The blunted M1 macrophage reaction driven by Akt1 was associated with decreased RelA/nuclear factor κB activity. Furthermore, by repression of the expression of suppressor of cytokine signaling 1 (SOCS1), microRNA 155 revealed to promote the transcription of M1 signature genes in macrophages from Akt1(-/-) mice. Accordingly, blocking of microRNA 155 in macrophages from Akt1(-/-)mice or knockdown of SOCS1 in cells from wild-type mice disabled or enabled, respectively, an M1 macrophage shift and antibacterial response. These results thus establish an Akt1-mediated, microRNA-involved circuit that regulates pathogen-driven macrophage polarization and, subsequently, the host response to infection.

  6. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies

  7. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  8. Forkhead Box O1 Regulates Macrophage Polarization Following Staphylococcus aureus Infection: Experimental Murine Data and Review of the Literature.

    PubMed

    Wang, Yu-Chen; Ma, Hong-Di; Yin, Xue-Ying; Wang, Yin-Hu; Liu, Qing-Zhi; Yang, Jing-Bo; Shi, Qing-Hua; Sun, Baolin; Gershwin, M Eric; Lian, Zhe-Xiong

    2016-12-01

    The functions of macrophages that lead to effective host responses are critical for protection against Staphylococcus aureus. Deep tissue-invading S. aureus initially countered by macrophages trigger macrophage accumulation and induce inflammatory responses through surface receptors, especially toll-like receptor 2 (TLR2). Here, we found that macrophages formed sporadic aggregates in the liver during infection. Within those aggregates, macrophages co-localized with T cells and were indispensable for their infiltration. In addition, we have focused on the mechanisms underlying the polarization of macrophages in Forkhead box transcription factor O1 (FoxO1) conditional knockout Lys (Cre/+) FoxO1 (fl/fl) mice following S. aureus infection and report herein that macrophage M1-M2 polarization via TLR2 is intrinsically regulated by FoxO1. Indeed, for effective FoxO1 activity, stimulation of TLR2 is essential. However, following S. aureus challenge, there was a decrease in macrophage FoxO1, with increased phosphorylation of FoxO1 because of TLR2-mediated activation of PI3K/Akt and c-Raf/MEK/ERK pathway. Following infection in Lys (Cre/+) FoxO1 (fl/fl) mice, mice became more susceptible to S. aureus with reduced macrophage aggregation in the liver and attenuated Th1 and Th17 responses. FoxO1 abrogation reduced M1 pro-inflammatory responses triggered by S. aureus and enhanced M2 polarization in macrophages. In contrast, overexpression of FoxO1 in macrophages increased pro-inflammatory mediators and functional surface molecule expression. In conclusion, macrophage FoxO1 is critical to promote M1 polarization and maintain a competent T cell immune response against S. aureus infection in the liver. FoxO1 regulates macrophage M1-M2 polarization downstream of TLR2 dynamically through phosphorylation.

  9. gammadeltaT cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation.

    PubMed

    Tramonti, D; Rhodes, K; Martin, N; Dalton, J E; Andrew, E; Carding, S R

    2008-10-01

    Infection of gammadeltaT cell-deficient (TcRdelta-/-) mice with the intracellular bacterium Listeria monocytogenes (Lm) results in an exacerbated inflammatory response characterized by the accumulation of activated macrophages and necrotic liver lesions. Here we investigated whether changes in chemokine production by Lm-elicited macrophages contribute to this abnormal inflammatory response. In response to Lm infection, activated macrophages accumulate in the primary sites of infection in TcRdelta-/- mice and express high amounts of mRNA encoding the chemokines CCL3 (MIP-1alpha), CCL4 (MIP-1beta), CXCL2 (MIP-2) and CXCL10 (IP-10). In the infected tissues of TcRdelta-/- the number of chemokine-synthesizing macrophages was higher than in wild-type (WT) mice, with the amount of MIP-1alpha and MIP-1beta secreted by individual macrophages in the spleen of TcRdelta-/- mice also being significantly higher than in WT mice. By contrast, protease activity and NO production in individual splenic macrophages of Lm-infected TcRdelta-/- and WT mice were comparable. Pathogen-elicited macrophages in TcRdelta-/- mice also expressed high levels of the CCL3 and CCL4 receptor, CCR5. In macrophage-gammadeltaT cell co-cultures, chemokine-producing macrophages were killed by cytotoxic Vgamma1+ T cells in a Fas-FasL-dependent manner consistent with the high levels of chemokine-producing macrophages seen in infected TcRdelta-/- mice being due to the absence of Vgamma1+ T cells. Together these findings highlight the importance of gammadeltaT cells in regulating macrophage anti-microbial responses.

  10. Quantitation of Productively Infected Monocytes and Macrophages of Simian Immunodeficiency Virus-Infected Macaques

    PubMed Central

    Avalos, Claudia R.; Price, Sarah L.; Forsyth, Ellen R.; Pin, Julia N.; Shirk, Erin N.; Bullock, Brandon T.; Queen, Suzanne E.; Li, Ming; Gellerup, Dane; O'Connor, Shelby L.; Zink, M. Christine; Mankowski, Joseph L.; Gama, Lucio

    2016-01-01

    ABSTRACT Despite the success of combined antiretroviral therapy (ART), human immunodeficiency virus (HIV) infection remains a lifelong infection because of latent viral reservoirs in infected patients. The contribution of CD4+ T cells to infection and disease progression has been extensively studied. However, during early HIV infection, macrophages in brain and other tissues are infected and contribute to tissue-specific diseases, such as encephalitis and dementia in brain and pneumonia in lung. The extent of infection of monocytes and macrophages has not been rigorously assessed with assays comparable to those used to study infection of CD4+ T cells and to evaluate the number of CD4+ T cells that harbor infectious viral genomes. To assess the contribution of productively infected monocytes and macrophages to HIV- and simian immunodeficiency virus (SIV)-infected cells in vivo, we developed a quantitative virus outgrowth assay (QVOA) based on similar assays used to quantitate CD4+ T cell latent reservoirs in HIV- and SIV-infected individuals in whom the infection is suppressed by ART. Myeloid cells expressing CD11b were serially diluted and cocultured with susceptible cells to amplify virus. T cell receptor β RNA was measured as a control to assess the potential contribution of CD4+ T cells in the assay. Virus production in the supernatant was quantitated by quantitative reverse transcription-PCR. Productively infected myeloid cells were detected in blood, bronchoalveolar lavage fluid, lungs, spleen, and brain, demonstrating that these cells persist throughout SIV infection and have the potential to contribute to the viral reservoir during ART. IMPORTANCE Infection of CD4+ T cells and their role as latent reservoirs have been rigorously assessed; however, the frequency of productively infected monocytes and macrophages in vivo has not been similarly studied. Myeloid cells, unlike lymphocytes, are resistant to the cytopathic effects of HIV. Moreover, tissue

  11. Role of activated macrophages in experimental Fusarium solani keratitis.

    PubMed

    Hu, Jianzhang; Hu, Yingfeng; Chen, Shikun; Dong, Chenhuan; Zhang, Jingjin; Li, Yanling; Yang, Juan; Han, Xiaoli; Zhu, Xuejun; Xu, Guoxing

    2014-12-01

    Macrophages under the conjunctival tissue are the first line defender cells of the corneas. Elimination of these cells would lead to aggravation of fungal keratitis. To determine how the course of fungal keratitis would be altered after the activation of these macrophages, a murine model was achieved by intrastromal instillation of latex beads before the corneas were infected with Fusarium solani. The keratitis was observed and clinically scored daily. Infected corneas were homogenized for colony counts. The levels of the IL-12, IL-4, MPO, MIF and iNOS cytokines were measured in the corneas using real-time polymerase chain reactions and enzyme-linked immunosorbent assays. CD3+, CD4+ and CD8+ lymphocytes in the corneas, submaxillary lymph nodes and peripheral blood were detected using immunohistochemistry and flow cytometry, respectively. The latex bead-treated mice exhibited aggravated keratitis. Substantially increased macrophage and polymorphonuclear leukocyte infiltration was detected in the corneas, although few colonies were observed. There was a marked increase in the IL-12, IL-4, MPO, MIF and iNOS expression in the corneas. The numbers of CD3+, CD4+ and CD8+ lymphocytes and the CD4+/CD8+ ratio were significantly enhanced in the corneas and submaxillary lymph nodes. However, the number of CD4+ lymphocytes was decreased in the peripheral blood, while the number of CD8+ lymphocytes increased. Collectively, our data demonstrate that the activation of macrophages in the cornea may cause an excessive immune response. Macrophages appear to play a critical role in regulating the immune response to corneal infections with F. solani.

  12. A hot water extract of Aralia cordata activates bone marrow-derived macrophages via a myeloid differentiation protein 88-dependent pathway and protects mice from bacterial infection.

    PubMed

    Seo, Dong-Won; Cho, Yong-Il; Gu, Suna; Kim, Da-Hee; Park, Jung-Hee; Yi, Young-Joo; Lee, Sang-Myeong

    2016-05-01

    In traditional Asian medicine, Aralia cordata (AC) is a known as a pain reliever and anti-inflammatory drug. Although several of its biological activities have been reported, the immunomodulatory effects of a hot water extract of AC (HAC) have not yet been described. The aim of this study was to investigate whether HAC modulates the activation of macrophages, which play important roles in innate immune responses against microbial pathogens, and if so, to determine the molecular mechanisms by which HAC mediates this process. It was found that HAC activates bone marrow-derived macrophages (BMDM) and increases amounts of nitric oxide and proinflammatory cytokines in a dose-dependent manner. In addition, HAC was found to induce phosphorylation of NF-κB and mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinases, extracellular signal-regulated kinases and p38. Interestingly, these effects were absent in BMDM prepared from myeloid differentiation protein 88-knockout mice. Polysaccharides from HAC exerted stronger immunostimulatory effects than HAC itself. Furthermore, orally administered HAC clearly enhanced clearance of the intracellular pathogen Listeria monocytogenes by boosting innate immune responses. These results demonstrate that HAC exerts immunostimulatory effects through the TLR/MyD88 and NF-κB/MAPK signal transduction pathways.

  13. Chronic hepatitis C infection–induced liver fibrogenesis is associated with M2 macrophage activation

    PubMed Central

    Bility, Moses T.; Nio, Kouki; Li, Feng; McGivern, David R.; Lemon, Stanley M.; Feeney, Eoin R.; Chung, Raymond T.; Su, Lishan

    2016-01-01

    The immuno-pathogenic mechanisms of chronic hepatitis C virus (HCV) infection remain to be elucidated and pose a major hurdle in treating or preventing chronic HCV-induced advanced liver diseases such as cirrhosis. Macrophages are a major component of the inflammatory milieu in chronic HCV–induced liver disease, and are generally derived from circulating inflammatory monocytes; however very little is known about their role in liver diseases. To investigate the activation and role of macrophages in chronic HCV–induced liver fibrosis, we utilized a recently developed humanized mouse model with autologous human immune and liver cells, human liver and blood samples and cell culture models of monocyte/macrophage and/or hepatic stellate cell activation. We showed that M2 macrophage activation was associated with liver fibrosis during chronic HCV infection in the livers of both humanized mice and patients, and direct-acting antiviral therapy attenuated M2 macrophage activation and associated liver fibrosis. We demonstrated that supernatant from HCV-infected liver cells activated human monocytes/macrophages with M2-like phenotypes. Importantly, HCV-activated monocytes/macrophages promoted hepatic stellate cell activation. These results suggest a critical role for M2 macrophage induction in chronic HCV-associated immune dysregulation and liver fibrosis. PMID:28000758

  14. Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites.

    PubMed

    Tavares, Natália; Afonso, Lilian; Suarez, Martha; Ampuero, Mariana; Prates, Deboraci Brito; Araújo-Santos, Théo; Barral-Netto, Manoel; DosReis, George A; Borges, Valéria Matos; Brodskyn, Cláudia

    2016-02-15

    Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  15. Asc-Dependent and Independent Mechanisms Contribute to Restriction of Legionella Pneumophila Infection in Murine Macrophages

    PubMed Central

    Abdelaziz, Dalia H. A.; Gavrilin, Mikhail A.; Akhter, Anwari; Caution, Kyle; Kotrange, Sheetal; Khweek, Arwa Abu; Abdulrahman, Basant A.; Hassan, Zeinab A.; El-Sharkawi, Fathia Z.; Bedi, Simranjit S.; Ladner, Katherine; Gonzalez-Mejia, M. Elba; Doseff, Andrea I.; Mostafa, Mahmoud; Kanneganti, Thirumala-Devi; Guttridge, Dennis; Marsh, Clay B.; Wewers, Mark D.; Amer, Amal O.

    2010-01-01

    The apoptosis-associated speck-like protein containing a caspase recruitment domain (Asc) is an adaptor molecule that mediates inflammatory and apoptotic signals. Legionella pneumophila is an intracellular bacterium and the causative agent of Legionnaire's pneumonia. L. pneumophila is able to cause pneumonia in immuno-compromised humans but not in most inbred mice. Murine macrophages that lack the ability to activate caspase-1, such as caspase-1−/− and Nlrc4−/− allow L. pneumophila infection. This permissiveness is attributed mainly to the lack of active caspase-1 and the absence of its down stream substrates such as caspase-7. However, the role of Asc in control of L. pneumophila infection in mice is unclear. Here we show that caspase-1 is moderately activated in Asc−/− macrophages and that this limited activation is required and sufficient to restrict L. pneumophila growth. Moreover, Asc-independent activation of caspase-1 requires bacterial flagellin and is mainly detected in cellular extracts but not in culture supernatants. We also demonstrate that the depletion of Asc from permissive macrophages enhances bacterial growth by promoting L. pneumophila-mediated activation of the NF-κB pathway and decreasing caspase-3 activation. Taken together, our data demonstrate that L. pneumophila infection in murine macrophages is controlled by several mechanisms: Asc-independent activation of caspase-1 and Asc-dependent regulation of NF-κB and caspase-3 activation. PMID:21713115

  16. Dynamics of Salmonella infection of macrophages at the single cell level.

    PubMed

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  17. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  18. Control of macrophage metabolism and activation by mTOR and Akt signaling.

    PubMed

    Covarrubias, Anthony J; Aksoylar, H Ibrahim; Horng, Tiffany

    2015-08-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies.

  19. Changes in lymphocyte and macrophage subsets due to morphine and ethanol treatment during a retrovirus infection causing murine AIDS

    SciTech Connect

    Watson, R.R.; Prabhala, R.H.; Darban, H.R.; Yahya, M.D.; Smith, T.L.

    1988-01-01

    The number of lymphocytes of various subsets were not significantly changed by the ethanol exposure except those showing activation markers which were reduced. The percentage of peripheral blood cells showing markers for macrophage functions and their activation were significantly reduced after binge use of ethanol. Ethanol retarded suppression of cells by retroviral infection. However by 25 weeks of infection there was a 8.6% survival in the ethanol fed mice infected with retrovirus which was much less than virally infected controls. Morphine treatment also increased the percentage of cells with markers for macrophages and activated macrophages in virally infected mice, while suppressing them in uninfected mice. The second and third morphine injection series suppressed lymphocyte T-helper and T-suppressor cells, but not total T cells. However, suppression by morphine was significantly less during retroviral disease than suppression caused by the virus only. At 25 weeks of infection 44.8% of morphine treated, infected mice survived.

  20. Arginase-1-expressing macrophages are dispensable for resistance to infection with the gastrointestinal helminth Trichuris muris

    PubMed Central

    Bowcutt, R; Bell, L V; Little, M; Wilson, J; Booth, C; Murray, P J; Else, K J; Cruickshank, S M

    2011-01-01

    Alternatively activated macrophages (AAMs) have key roles in the immune response to a variety of gastrointestinal helminths such as Heligmosomoides bakeri and Nippostrongylus brasiliensis. In addition, AAMs have been implicated in the resolution of infection-induced pathology in Schistosoma mansoni infection. AAMs exert their activity in part via the enzyme arginase-1 (Arg1), which hydrolyses l-arginine into urea and ornithine, and can supply precursor substrate for proline and polyamine production. Trichuris muris is a worm that resides in the large intestine with resistance being characterized by a Th2 T-cell response, which drives alternatively activated macrophage production in the local environment of the infection. To investigate the role of AAMs in T. muris infection, we used independent genetic and pharmacologic models of arginase deficiency. In acute infection and Th2-dominated immunity, arginase-deficient models expelled worms normally. Macrophage-Arg1-deficient mice showed cytokine and antibody levels comparable to wild-type animals in acute and chronic infection. We also found no role for AAMs and Arg1 in infection-induced pathology in the response to T. muris in either chronic (Th1 dominated) or acute (Th2 dominated) infections. Our data demonstrate that, unlike other gastrointestinal helminths, Arg1 expression in AAMs is not essential for resistance to T. muris in effective resolution of helminth-induced inflammation. PMID:21585399

  1. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages

    PubMed Central

    Smalley, Claire; Bechelli, Jeremy; Rockx-Brouwer, Dedeke; Saito, Tais; Azar, Sasha R.; Ismail, Nahed; Walker, David H.; Fang, Rong

    2016-01-01

    Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8–12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved. PMID:27362650

  2. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages.

    PubMed

    Smalley, Claire; Bechelli, Jeremy; Rockx-Brouwer, Dedeke; Saito, Tais; Azar, Sasha R; Ismail, Nahed; Walker, David H; Fang, Rong

    2016-01-01

    Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8-12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved.

  3. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

    PubMed

    Osterholzer, John J; Chen, Gwo-Hsiao; Olszewski, Michal A; Zhang, Yan-Mei; Curtis, Jeffrey L; Huffnagle, Gary B; Toews, Galen B

    2011-01-01

    Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.

  4. Alu repeats as transcriptional regulatory platforms in macrophage responses to M. tuberculosis infection

    PubMed Central

    Bouttier, Manuella; Laperriere, David; Memari, Babak; Mangiapane, Joseph; Fiore, Amanda; Mitchell, Eric; Verway, Mark; Behr, Marcel A.; Sladek, Robert; Barreiro, Luis B.; Mader, Sylvie; White, John H.

    2016-01-01

    To understand the epigenetic regulation of transcriptional response of macrophages during early-stage M. tuberculosis (Mtb) infection, we performed ChIPseq analysis of H3K4 monomethylation (H3K4me1), a marker of poised or active enhancers. De novo H3K4me1 peaks in infected cells were associated with genes implicated in host defenses and apoptosis. Our analysis revealed that 40% of de novo regions contained human/primate-specific Alu transposable elements, enriched in the AluJ and S subtypes. These contained several transcription factor binding sites, including those for members of the MEF2 and ATF families, and LXR and RAR nuclear receptors, all of which have been implicated in macrophage differentiation, survival, and responses to stress and infection. Combining bioinformatics, molecular genetics, and biochemical approaches, we linked genes adjacent to H3K4me1-associated Alu repeats to macrophage metabolic responses against Mtb infection. In particular, we show that LXRα signaling, which reduced Mtb viability 18-fold by altering cholesterol metabolism and enhancing macrophage apoptosis, can be initiated at response elements present in Alu repeats. These studies decipher the mechanism of early macrophage transcriptional responses to Mtb, highlighting the role of Alu element transposition in shaping human transcription programs during innate immunity. PMID:27604870

  5. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection.

    PubMed

    Notari, Luigi; Riera, Diana C; Sun, Rex; Bohl, Jennifer A; McLean, Leon P; Madden, Kathleen B; van Rooijen, Nico; Vanuytsel, Tim; Urban, Joseph F; Zhao, Aiping; Shea-Donohue, Terez

    2014-01-01

    Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2) to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a "lean" epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.

  6. Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection.

    PubMed

    Hassan, Musa A; Jensen, Kirk D; Butty, Vincent; Hu, Kenneth; Boedec, Erwan; Prins, Pjotr; Saeij, Jeroen P J

    2015-10-01

    Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious and inflammatory diseases. Several macrophage- or immune-related genes have been shown to modulate infectious and inflammatory disease pathogenesis. However, the potential role that differences in macrophage activation phenotypes play in modulating differences in susceptibility to infectious and inflammatory disease is just emerging. We integrated transcriptional profiling and linkage analyses to determine the genetic basis for the differential murine macrophage response to inflammatory stimuli and to infection with the obligate intracellular parasite Toxoplasma gondii. We show that specific transcriptional programs, defined by distinct genomic loci, modulate macrophage activation phenotypes. In addition, we show that the difference between AJ and C57BL/6J macrophages in controlling Toxoplasma growth after stimulation with interferon gamma and tumor necrosis factor alpha mapped to chromosome 3, proximal to the Guanylate binding protein (Gbp) locus that is known to modulate the murine macrophage response to Toxoplasma. Using an shRNA-knockdown strategy, we show that the transcript levels of an RNA helicase, Ddx1, regulates strain differences in the amount of nitric oxide produced by macrophage after stimulation with interferon gamma and tumor necrosis factor. Our results provide a template for discovering candidate genes that modulate macrophage-mediated complex traits.

  7. CD4 Ligation on Human Blood Monocytes Triggers Macrophage Differentiation and Enhances HIV Infection

    PubMed Central

    Zhen, Anjie; Krutzik, Stephan R.; Levin, Bernard R.; Kasparian, Saro; Zack, Jerome A.

    2014-01-01

    ABSTRACT A unique aspect of human monocytes, compared to monocytes from many other species, is that they express the CD4 molecule. However, the role of the CD4 molecule in human monocyte development and function is not known. We determined that the activation of CD4 via interaction with major histocompatibility complex class II (MHC-II) triggers cytokine expression and the differentiation of human monocytes into functional mature macrophages. Importantly, we determined that CD4 activation induces intracellular signaling in monocytes and that inhibition of the MAPK and Src family kinase pathways blocked the ability of CD4 ligation to trigger macrophage differentiation. We observed that ligation of CD4 by MHC-II on activated endothelial cells induced CD4-mediated macrophage differentiation of blood monocytes. Finally, CD4 ligation by MHC-II increases the susceptibility of blood-derived monocytes to HIV binding and subsequent infection. Altogether, our studies have identified a novel function for the CD4 molecule on peripheral monocytes and suggest that a unique set of events that lead to innate immune activation differ between humans and mice. Further, these events can have effects on HIV infection and persistence in the macrophage compartment. IMPORTANCE The CD4 molecule, as the primary receptor for HIV, plays an important role in HIV pathogenesis. There are many cell types that express CD4 other than the primary HIV target, the CD4+ T cell. Other than allowing HIV infection, the role of the CD4 molecule on human monocytes or macrophages is not known. We were interested in determining the role of CD4 in human monocyte/macrophage development and function and the potential effects of this on HIV infection. We identified a role for the CD4 molecule in triggering the activation and development of a monocyte into a macrophage following its ligation. Activation of the monocyte through the CD4 molecule in this manner increases the ability of monocytes to bind to and become

  8. Clinical investigation of bacterial species and endotoxin in endodontic infection and evaluation of root canal content activity against macrophages by cytokine production.

    PubMed

    Martinho, Frederico C; Leite, Fábio R M; Nascimento, Gustavo G; Cirelli, Joni A; Gomes, Brenda P F A

    2014-12-01

    This study investigated the presence of different Gram-negative bacterial species and the levels of endotoxins found in primary endodontic infection (PEI), determining their stimulation ability against macrophages through the levels of interleukin (IL)-1, IL-6, IL-10, and tumor necrosis factor alpha (TNF-α), and evaluated their relationship with clinical and radiographic findings. Samples were taken from 21 root canals with primary endodontic infection with apical periodontitis (PEIAP). Molecular techniques were used for bacterial detection. Limulus amebocyte lysate assay was used to measure endotoxins. Pro-inflammatory cytokines were measured by ELISA assay. All samples were positive for bacterial DNA (21/21). Prevotella nigrescens (57.2 %) was the most frequent species. Higher levels of endotoxins were found in teeth with pain on palpation and exudation (all p < 0.05). Positive correlations were found between endotoxins and the levels of TNF-α and IL-1β, whereas a negative correlation was found between endotoxin and the amount of IL-10 (p < 0.05). Endotoxin levels were found to be a risk factor for exudation and increased the number of Gram-negative bacterial species for the presence of a larger area of bone destruction (all p < 0.05). A wide variety of Gram-negative bacterial species are involved in primary endodontic infection, with participation of different Treponema species. Thus, the levels of endotoxins and the number of Gram-negative bacteria species present in root canals were considered risk factors for the severity of endodontic infection. The present study revealed that Gram-negative bacterial species and endotoxins play an important role in the development of signs/symptoms and the severity of bone destruction, this knowledge is essential for the establishment of an effective therapy.

  9. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir.

    PubMed

    Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio

    2017-08-15

    A human immunodeficiency virus (HIV) infection cure requires an understanding of the cellular and anatomical sites harboring virus that contribute to viral rebound upon treatment interruption. Despite antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are reported in HIV-infected individuals on ART. Biomarkers for macrophage activation and neuronal damage in cerebrospinal fluid (CSF) of HIV-infected individuals demonstrate continued effects of HIV in brain and suggest that the central nervous system (CNS) may serve as a viral reservoir. Using a simian immunodeficiency virus (SIV)/macaque model for HIV encephalitis and AIDS, we evaluated whether infected cells persist in brain despite ART. Eight SIV-infected pig-tailed macaques were virally suppressed with ART, and plasma and CSF viremia levels were analyzed longitudinally. To assess whether virus persisted in brain macrophages (BrMΦ) in these macaques, we used a macrophage quantitative viral outgrowth assay (MΦ-QVOA), PCR, and in situ hybridization (ISH) to measure the frequency of infected cells and the levels of viral RNA and DNA in brain. Viral RNA in brain tissue of suppressed macaques was undetectable, although viral DNA was detected in all animals. The MΦ-QVOA demonstrated that the majority of suppressed animals contained latently infected BrMΦ. We also showed that virus produced in the MΦ-QVOAs was replication competent, suggesting that latently infected BrMΦ are capable of reestablishing productive infection upon treatment interruption. This report provides the first confirmation of the presence of replication-competent SIV in BrMΦ of ART-suppressed macaques and suggests that the highly debated issue of viral latency in macrophages, at least in brain, has been addressed in SIV-infected macaques treated with ART.IMPORTANCE Resting CD4(+) T cells are currently the only cells that fit the definition of a latent reservoir. However, recent evidence suggests that HIV/SIV-infected

  10. Cytotoxic mechanism of cytolethal distending toxin in nontyphoidal Salmonella serovar (Salmonella Javiana) during macrophage infection.

    PubMed

    Williams, Katherine; Gokulan, Kuppan; Shelman, Diamond; Akiyama, Tatsuya; Khan, Ashraf; Khare, Sangeeta

    2015-02-01

    Cytolethal distending toxin B (cdtB) is a conserved virulence factor in Salmonella enterica serovar Typhi. Here we report the presence and functionality of cdtB in some nontyphoidal Salmonella (NTS) serovars, including Salmonella Javiana (cdtB+wt S. Javiana), isolated from imported food. To understand the role of cdtB in NTS serovars, a deletion mutant (cdtB(-)ΔS. Javiana) was constructed. Macrophages were infected with cdtB+wt S. Javiana (wild type), cdtB(-)Δ S. Javiana (mutant), and cdtB-negative NTS serovar (S. Typhimurium). Cytotoxic activity and transcription level of genes involved in cell death (apoptosis, autophagy, and necrosis) were assessed in infected macrophages. The cdtB+wt S. Javiana caused cellular distension as well as high degree of vacuolization and presence of the autophagosome marker LC3 in infected macrophages as compared with cdtB(-)ΔS. Javiana. The mRNA expression of genes involved in the induction of autophagy in response to toxin (Esr1 and Pik3C3) and coregulators of autophagy and apoptosis (Bax and Cyld) were significantly upregulated in cdtB(+)wt S. Javiana-infected macrophages. As autophagy destroys internalized pathogens in addition to the infected cell, it may reduce the spread of infection.

  11. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    PubMed

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  12. Susceptibility of mouse macrophage J774 to dengue virus infection.

    PubMed

    Moreno-Altamirano, María M B; Sánchez-García, F Javier; Legorreta-Herrera, Martha; Aguilar-Carmona, Israel

    2007-01-01

    The aim of this study was to investigate whether the J774 mouse macrophage cell line could be used as an in vitro model for dengue virus infection (DENV). After 3 days, infection in J774 cells was assessed by detecting dengue virus non-structural protein 1 (NSP-1) production either by dot blot or indirect immunofluorescence assay (IFA) of saponine-permeabilized J774 cells and then confirmed by RT-PCR (171 bp product, corresponding to the DENV-2 core). Based on the presence of NSP-1 in infected but not in non-infected cells by both IFA and dot blot, as well as the amplification of a 171-bp DENV-2-specific RT-PCR product exclusively in the infected cells, the J774 cell line was found to be permissive for dengue virus infection. As far as we know, this is the first report that the J774 mouse macrophage cell line is infected with dengue virus and, thus, that it can be used as an alternative in vitro model for dengue virus infection studies. This finding could help to further elucidate the mechanisms involved in dengue virus infection and pathogenesis.

  13. Measurement of Macrophage Activation by Chemiluminescence.

    DTIC Science & Technology

    1986-05-01

    cytotoxicity and oxidative metabolism including those reactions responsible for chemiluminescence (11-13). This activation has been correlated with an...order to assay this event, enhancers of chemiluminescence such as lucigenin and luminol are required to amplify the reaction . Enhancement of CL by...Maleic vinyl ether activation of murine *. macrophages against lung metastasizing tumors. Cancer Res 41:3901-3906 1981 4. Fidler I.J., Sone, S., Fogler

  14. Divergent macrophage responses to Mycobacterium bovis among naturally exposed uninfected and infected cattle.

    PubMed

    Alcaraz-López, Omar A; García-Gil, Cindy; Morales-Martínez, Claudia; López-Rincón, Gonzalo; Estrada-Chávez, Ciro; Gutiérrez-Pabello, José A; Esquivel-Solís, Hugo

    2017-05-01

    Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), is a successful pathogen that remains an important global threat to livestock. Cattle naturally exposed to M. bovis normally become reactive to the M. bovis-purified protein derivative (tuberculin) skin test; however, some individuals remain negative, suggesting that they may be resistant to infection. To better understand host innate resistance to infection, 26 cattle from herds with a long history of high TB prevalence were included in this study. We investigated the bactericidal activity, the production of reactive oxygen and nitrogen species and the TB-related gene expression profile after in vitro M. bovis challenge of monocyte-derived macrophages from cattle with TB (n=17) and from non-infected, exposed cattle (in-contacts, n=9). The disease status was established based on the tuberculin skin test and blood interferon-gamma test responses, the presence of visible lesions at inspection on abattoirs and the histopathology and culture of M. bovis. Although macrophages from TB-infected cattle enabled M. bovis replication, macrophages from healthy, exposed cattle had twofold lower bacterial loads, overproduced nitric oxide and had lower interleukin (IL)-10 gene expression (P⩽0.05). Higher mRNA expression levels of inducible nitric oxide synthase, C-C motif chemokine ligand 2 and IL-12 were observed in macrophages from all in-contact cattle than in macrophages from their TB-infected counterparts, which expressed more tumour necrosis factor-α; however, the differences were not statistically significant owing to individual variation. These results confirm that macrophage bactericidal responses have a crucial role in innate resistance to M. bovis infection in cattle.

  15. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection.

    PubMed

    Chang, S C; Ding, J L

    2014-09-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin-proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS.

  16. Investigating the Human Immunodeficiency Virus Type One-Infected Monocyte-Derived Macrophage Secretome

    PubMed Central

    Ciborowski, Pawel; Kadiu, Irena; Rozek, Wojciech; Smith, Lynette; Bernhardt, Kristen; Fladseth, Melissa; Ricardo-Dukelow, Mary; Gendelman, Howard E.

    2007-01-01

    Mononuclear phagocytes (bone marrow monocyte-derived macrophages, alveolar macrophages, perivascular macrophages, and microglia) are reservoirs and vehicles of dissemination for the human immunodeficiency virus type-1 (HIV-1). How virus alters mononuclear phagocyte immunoregulatory activities to complete its life cycle and influence disease is incompletely understood. In attempts to better understanding the influence of virus on macrophage functions, we used one-dimensional electrophoresis, and liquid chromatography tandem mass spectrometry to analyze the secretome of HIV-1 infected human monocyte-derived macrophages. We identified 111 proteins in culture supernatants of control (uninfected) and virus-infected cells. Differentially expressed cytoskeletal, enzymes, redox, and immunoregulatory protein classes were discovered and validated by Western-blot tests. These included, but were not limited to, cystatin C, cystatin B, chitinase 3-like 1 protein, cofilin-1, L-plastin, superoxide dismutase, leukotriene A4 hydrolase, and α-enolase. This study, through the use of a unique proteomics platform, provides novel insights into virus-host cell interactions that affect the functional role of macrophages in HIV disease. PMID:17320137

  17. Modulation of Stat-1 in Human Macrophages Infected with Different Species of Intracellular Pathogenic Bacteria

    PubMed Central

    Dominici, Sabrina; Rinaldi, Laura; Cangiano, Alfonsina Mariarosaria; Brandi, Giorgio; Magnani, Mauro

    2016-01-01

    The infection of human macrophages by pathogenic bacteria induces different signaling pathways depending on the type of cellular receptors involved in the microorganism entry and on their mechanism(s) of survival and replication in the host cell. It was reported that Stat proteins play an important role in this process. In the present study, we investigate the changes in Stat-1 activation (phosphorylation in p-tyr701) after uptake of two Gram-positive (Listeria monocytogenes and Staphylococcus aureus) and two Gram-negative bacteria (Salmonella typhimurium and Legionella pneumophila) characterized by their varying abilities to enter, survive, and replicate in human macrophages. Comparing the results obtained with Gram-negative and Gram-positive bacteria, Stat-1 activation in macrophages does not seem to be related to LPS content. The p-tyr701Stat-1 expression levels were found to be independent of the internalized bacterial number and IFN-γ release. On the contrary, Jak/Stat-1 pathway activation only occurs when an active infection has been established in the host macrophage, and it is plausible that the differences in the expression levels of p-tyr701Stat-1 could be due to different survival mechanisms or to differences in bacteria life cycles within macrophages. PMID:27437406

  18. Macrophages from disease resistant B2 haplotype chickens activate T lymphocytes more effectively than macrophages from disease susceptible B19 birds.

    PubMed

    Collisson, Ellen; Griggs, Lisa; Drechsler, Yvonne

    2017-02-01

    Resistance to respiratory pathogens, including coronavirus-induced infection and clinical illness in chickens has been correlated with the B (MHC) complex and differential ex vivo macrophage responses. In the current study, in vitro T lymphocyte activation measured by IFNγ release was significantly higher in B2 versus B19 haplotypes. AIV infection of macrophages was required to activate T lymphocytes and prior in vivo exposure of chickens to NP AIV plasmid enhanced responses to infected macrophages. This study suggests that the demonstrated T lymphocyte activation is in part due to antigen presentation by the macrophages as well as cytokine release by the infected macrophages, with B2 haplotypes showing stronger activation. These responses were present both in CD4 and CD8 T lymphocytes. In contrast, T lymphocytes stimulated by ConA showed greater IFNγ release of B19 haplotype cells, further indicating the greater responses in B2 haplotypes to infection is due to macrophages, but not T cells. In summary, resistance of B2 haplotype chickens appears to be directly linked to a more vigorous innate immune response and the role macrophages play in activating adaptive immunity.

  19. The Nuclear Receptor LXR Limits Bacterial Infection of Host Macrophages through a Mechanism that Impacts Cellular NAD Metabolism.

    PubMed

    Matalonga, Jonathan; Glaria, Estibaliz; Bresque, Mariana; Escande, Carlos; Carbó, José María; Kiefer, Kerstin; Vicente, Ruben; León, Theresa E; Beceiro, Susana; Pascual-García, Mónica; Serret, Joan; Sanjurjo, Lucía; Morón-Ros, Samantha; Riera, Antoni; Paytubi, Sonia; Juarez, Antonio; Sotillo, Fernando; Lindbom, Lennart; Caelles, Carme; Sarrias, Maria-Rosa; Sancho, Jaime; Castrillo, Antonio; Chini, Eduardo N; Valledor, Annabel F

    2017-01-31

    Macrophages exert potent effector functions against invading microorganisms but constitute, paradoxically, a preferential niche for many bacterial strains to replicate. Using a model of infection by Salmonella Typhimurium, we have identified a molecular mechanism regulated by the nuclear receptor LXR that limits infection of host macrophages through transcriptional activation of the multifunctional enzyme CD38. LXR agonists reduced the intracellular levels of NAD(+) in a CD38-dependent manner, counteracting pathogen-induced changes in macrophage morphology and the distribution of the F-actin cytoskeleton and reducing the capability of non-opsonized Salmonella to infect macrophages. Remarkably, pharmacological treatment with an LXR agonist ameliorated clinical signs associated with Salmonella infection in vivo, and these effects were dependent on CD38 expression in bone-marrow-derived cells. Altogether, this work reveals an unappreciated role for CD38 in bacterial-host cell interaction that can be pharmacologically exploited by activation of the LXR pathway.

  20. Pyroptosis of Salmonella Typhimurium-infected macrophages was suppressed and elimination of intracellular bacteria from macrophages was promoted by blocking QseC

    PubMed Central

    Li, Zhi; Zheng, Qing; Xue, Xiaoyan; Shi, Xin; Zhou, Ying; Da, Fei; Qu, Di; Hou, Zheng; Luo, Xiaoxing

    2016-01-01

    QseC is a membrane-bound histidine sensor kinase found in Gram-negative pathogens and is involved in the regulation of bacterial virulence. LED209, a QseC-specific inhibitor, significantly inhibits the virulence of several pathogens and partially protects infected mice from death by blocking QseC. However, the mechanism of its antibacterial effects remains unclear. In this experiment, a Salmonella Typhimurium (S. Typhimurium) and macrophage co-culture system was utilized to investigate possible mechanisms underlying the antimicrobial effects of the QseC inhibitor. QseC blockade inhibited the expression of QseC-dependent virulence genes, including flhDC, sifA, and sopB, in S. Typhimurium, leading to inhibition of swimming motility, invasion capacity, and replication capacity of the pathogens. Release of lactate dehydrogenase (LDH) from S. Typhimurium-infected macrophages was significantly inhibited by blocking QseC. Activated caspase-1 and IL-1β levels were suppressed, and intracellular bacterial count was reduced in infected macrophages. QseC blockade effectively reduced the virulence of S. Typhimurium, inhibited S. Typhimurium-induced pyroptosis of macrophages, and promoted elimination of intracellular bacteria from infected macrophages. Thus, the antibacterial effects of QseC inhibitor are mediated via enhancement of intracellular killing of S. Typhimurium in macrophages. PMID:27853287

  1. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  2. Intracellular multiplication of Paracoccidioides brasiliensis in macrophages: killing and restriction of multiplication by activated macrophages.

    PubMed Central

    Brummer, E; Hanson, L H; Restrepo, A; Stevens, D A

    1989-01-01

    The effect of coculturing yeast-form Paracoccidioides brasiliensis with murine cells was studied. Coculture of resident peritoneal or pulmonary macrophages with P. brasiliensis for 72 h dramatically enhanced fungal multiplication 19.3 +/- 2.4- and 4.7 +/- 0.8-fold, respectively, compared with cocultures with lymph node cells or complete tissue culture medium alone. Support of P. brasiliensis multiplication by resident peritoneal macrophages was macrophage dose dependent. Lysates of macrophages, supernatants from macrophage cultures, or McVeigh-Morton broth, like complete tissue culture medium, did not support multiplication of P. brasiliensis in 72-h cultures. Time course microscopic studies of cocultures in slide wells showed that macrophages ingested P. brasiliensis cells and that the ingested cells multiplied intracellularly. In sharp contrast to resident macrophages, lymphokine-activated peritoneal and pulmonary macrophages not only prevented multiplication but reduced inoculum CFU by 96 and 100%, respectively, in 72 h. Microscopic studies confirmed killing and digestion of P. brasiliensis ingested by activated macrophages in 48 h. These findings indicate that resident macrophages are permissive for intracellular multiplication of P. brasiliensis and that this could be a factor in pathogenicity. By contrast, activated macrophages are fungicidal for P. brasiliensis. Images PMID:2744848

  3. Mycobacterium tuberculosis Infection Manipulates the Glycosylation Machinery and the N-Glycoproteome of Human Macrophages and Their Microparticles.

    PubMed

    Hare, Nathan J; Lee, Ling Y; Loke, Ian; Britton, Warwick J; Saunders, Bernadette M; Thaysen-Andersen, Morten

    2017-01-06

    Tuberculosis (TB) remains a prevalent and lethal infectious disease. The glycobiology associated with Mycobacterium tuberculosis infection of frontline alveolar macrophages is still unresolved. Herein, we investigated the regulation of protein N-glycosylation in human macrophages and their secreted microparticles (MPs) used for intercellular communication upon M. tb infection. LC-MS/MS-based proteomics and glycomics were performed to monitor the regulation of glycosylation enzymes and receptors and the N-glycome in in vitro-differentiated macrophages and in isolated MPs upon M. tb infection. Infection promoted a dramatic regulation of the macrophage proteome. Most notably, significant infection-dependent down-regulation (4-26 fold) of 11 lysosomal exoglycosidases, e.g., β-galactosidase, β-hexosaminidases and α-/β-mannosidases, was observed. Relative weak infection-driven transcriptional regulation of these exoglycosidases and a stronger augmentation of the extracellular hexosaminidase activity demonstrated that the lysosome-centric changes may originate predominantly from infection-induced secretion of the lysosomal content. The macrophages showed heterogeneous N-glycan profiles and displayed significant up-regulation of complex-type glycosylation and concomitant down-regulation of paucimannosylation upon infection. Complementary intact N-glycopeptide analysis supported a subcellular-specific manipulation of the glycosylation machinery and altered glycosylation patterns of lysosomal N-glycoproteins within infected macrophages. Interestingly, the corresponding macrophage-derived MPs displayed unique N-glycome and proteome signatures supporting a preferential packaging from plasma membranes. The MPs were devoid of infection-dependent N-glycosylation signatures, but interestingly displayed increased levels of the glyco-initiating oligosaccharyltransferase complex and associated α-glucosidases that correlated with increased formation, N-glycan precursor levels

  4. Macrophage Polarization in AIDS: Dynamic Interface between Anti-Viral and Anti-Inflammatory Macrophages during Acute and Chronic Infection.

    PubMed

    Burdo, Tricia H; Walker, Joshua; Williams, Kenneth C

    2015-06-01

    Monocyte and macrophage inflammation in parenchymal tissues during acute and chronic HIV and SIV infection plays a role in early anti-viral immune responses and later in restorative responses. Macrophage polarization is observed in such responses in the central nervous system (CNS) and the heart and cardiac vessels that suggest early responses are M1 type antiviral responses, and later responses favor M2 restorative responses. Macrophage polarization is unique to different tissues and is likely dictated as much by the local microenvironment as well as other inflammatory cells involved in the viral responses. Such polarization is found in HIV infected humans, and the SIV infected animal model of AIDS, and occurs even with effective anti-retroviral therapy. Therapies that directly target macrophage polarization in HIV infection have recently been implemented, as have therapies to directly block traffic and accumulation of macrophages in tissues.

  5. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization.

    PubMed

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-10-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-GuC)rin) activates disabled naC/ve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-N1), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1N2), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-N2) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

  6. IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages

    PubMed Central

    Cruz, Andrea; Ludovico, Paula; Torrado, Egidio; Gama, José Bernardo; Sousa, Jeremy; Gaifem, Joana; Appelberg, Rui; Rodrigues, Fernando; Cooper, Andrea M.; Pedrosa, Jorge; Saraiva, Margarida; Castro, António G.

    2015-01-01

    The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism. PMID:26483789

  7. IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages.

    PubMed

    Cruz, Andrea; Ludovico, Paula; Torrado, Egidio; Gama, José Bernardo; Sousa, Jeremy; Gaifem, Joana; Appelberg, Rui; Rodrigues, Fernando; Cooper, Andrea M; Pedrosa, Jorge; Saraiva, Margarida; Castro, António G

    2015-01-01

    The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.

  8. Alternative activation deprives macrophages of a coordinated defense program to Mycobacterium tuberculosis.

    PubMed

    Kahnert, Antje; Seiler, Peter; Stein, Maik; Bandermann, Silke; Hahnke, Karin; Mollenkopf, Hans; Kaufmann, Stefan H E

    2006-03-01

    A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis.

  9. De novo Generation of Cells within Human Nurse Macrophages and Consequences following HIV-1 Infection

    PubMed Central

    Gartner, Suzanne

    2012-01-01

    Nurse cells are defined as those that provide for the development of other cells. We report here, that in vitro, human monocyte-derived macrophages can behave as nurse cells with functional capabilities that include de novo generation of CD4+ T-lymphocytes and a previously unknown small cell with monocytoid characteristics. We named these novel cells “self-renewing monocytoid cells” (SRMC), because they could develop into nurse macrophages that produced another generation of SRMC. SRMC were not detectable in blood. Their transition to nurse behavior was characterized by expression of CD10, a marker of thymic epithelium and bone marrow stroma, typically absent on macrophages. Bromodeoxyuridine labeling and immunostaining for cdc6 expression confirmed DNA synthesis within nurse macrophages. T-cell excision circles were detected in macrophages, along with expression of pre-T-cell receptor alpha and recombination activating gene 1, suggesting that genetic recombination events associated with generation of the T-cell receptor were occurring in these cells. SRMC expressed CCR5, the coreceptor for R5 HIV-1 isolates, and were highly susceptible to HIV-1 entry leading to productive infection. While expressing HIV-1, SRMC could differentiate into nurse macrophages that produced another generation of HIV-1-expressing SRMC. The infected nurse macrophage/SRMC cycle could continue in vitro for multiple generations, suggesting it might represent a mechanism whereby HIV-1 can maintain persistence in vivo. HIV-1 infection of nurse macrophages led to a decline in CD4+ T-cell production. There was severe, preferential loss of the CCR5+ CD4+ T-cell subpopulation. Confocal microscopy revealed individual HIV-1-expressing nurse macrophages simultaneously producing both HIV-1-expressing SRMC and non-expressing CD3+ cells, suggesting that nurse macrophages might be a source of latently infected CD4+ T-cells. Real-time PCR experiments confirmed this by demonstrating 10-fold more HIV-1

  10. Suppression of Mcl-1 induces apoptosis in mouse peritoneal macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Wang, Fei-Yu; Wang, Xin-Min; Wang, Chan; Wang, Xiao-Fang; Zhang, Yu-Qing; Wu, Jiang-Dong; Wu, Fang; Zhang, Wan-Jiang; Zhang, Le

    2016-04-01

    The effect of myeloid cell leukemia-1 (Mcl-1) inhibition on apoptosis of peritoneal macrophages in mice infected with Mycobacterium tuberculosis was investigated and the primary signaling pathway associated with the transcriptional regulation of Mcl-1 was identified. Real-time PCR and western blotting indicated that Mcl-1 transcript and protein expression are upregulated during infection with virulent M. tuberculosis H37Rv and Xinjiang strains but not with attenuated M. tuberculosis strain H37Ra or Bacillus Calmette-Guérin. Mcl-1 transcript and protein expression were downregulated by specific inhibitors of the Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways (AG490, PD98059 and LY294002, respectively). The strongest inhibitor of Mcl-1 expression was PD98059, the MAPK inhibitor. Flow cytometry demonstrated that the rate of apoptosis in peritoneal macrophages is significantly higher in mice infected with M. tuberculosis and the rate of apoptosis is correlated with the virulence of the strain of M. tuberculosis. Apoptosis was found to be upregulated by AG490, PD98059 and LY294002, whereas inhibition of the MAPK pathway sensitized the infected macrophages to apoptosis. Taken together, these results suggest that specific downregulation of Mcl-1 significantly increases apoptosis of peritoneal macrophages and that the MAPK signaling pathway is the primary mediator of Mcl-1 expression.

  11. Macrophage activation and polarization: nomenclature and experimental guidelines.

    PubMed

    Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A

    2014-07-17

    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Macrophages sense and kill bacteria through carbon monoxide-dependent inflammasome activation.

    PubMed

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J; Zuckerbraun, Brian S; Flavell, Richard; Soares, Miguel P; Otterbein, Leo E

    2014-11-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1-deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1-deficient mice. IL-1β cleavage and secretion were impaired in HO-1-deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes.

  13. Changes in macrophage membrane properties during early Leishmania amazonensis infection differ from those observed during established infection and are partially explained by phagocytosis.

    PubMed

    Quintana, Eduardo; Torres, Yolima; Alvarez, Claudia; Rojas, Angela; Forero, María Elisa; Camacho, Marcela

    2010-03-01

    Understanding the impact of intracellular pathogens on the behavior of their host cells is key to designing new interventions. We are interested in how Leishmania alters the electrical function of the plasma membrane of the macrophage it infects. The specific question addressed here is the impact of Leishmania infection on macrophage membrane properties during the first 12h post-infection. A decrease of 29% in macrophage membrane capacitance at 3h post-infection indicates that the phagolysosome membrane is donated on entry by the macrophage plasma membrane. Macrophage membrane potential depolarized during the first 12h post-infection, which associated with a decreased inward potassium current density, changed in inward rectifier conductance and increased outward potassium current density. Decreased membrane capacitance and membrane potential, with no changes in ion current density, were found in macrophages after phagocytosis of latex beads. Therefore we suggest that the macrophage membrane changes observed during early Leishmania infection appear to be associated with the phagocytic and activation processes.

  14. Modulation of macrophage activation by prostaglandins

    PubMed Central

    Carnuccio, R.; D'Acquisto, F.; Rosa, M. Di

    1996-01-01

    The effect of prostaglandtn E2, iloprost and cAMP on both nitric oxide and tumour necrosis factor-α release in J774 macrophages has been studied. Both prostaglandin E2 and iloprost inhibited, in a concentration-dependent fashion, the lipopolysaccharide-induced generation of nitric oxide and tumour necrosis factor-α. The inhibitory effect of these prostanoids seems to be mediated by an increase of the second messenger cAMP since it was mimicked by dibutyryl cAMP and potentiated by the selective type IV phosphodiesterase inhibitor RO-20-1724. Our results suggest that the inhibition of nitric oxide release by prostaglandin E2 and iloprost in lipopolysaccharide-activated J774 macrophages may be secondary to the inhibition of tumour necrosis factor-α generation, which in turn is likely to be mediated by cAMP. PMID:18475691

  15. M2 macrophages or IL-33 treatment attenuate ongoing Mycobacterium tuberculosis infection

    PubMed Central

    Piñeros, A. R.; Campos, L. W.; Fonseca, D. M.; Bertolini, T. B.; Gembre, A. F.; Prado, R. Q.; Alves-Filho, J. C.; Ramos, S. G.; Russo, M.; Bonato, V. L. D.

    2017-01-01

    The protective effects of mycobacterial infections on lung allergy are well documented. However, the inverse relationship between tuberculosis and type 2 immunity is still elusive. Although type 1 immunity is essential to protection against Mycobacterium tuberculosis it might be also detrimental to the host due to the induction of extensive tissue damage. Here, we determined whether lung type 2 immunity induced by allergen sensitization and challenge could affect the outcome of M. tuberculosis infection. We used two different protocols in which sensitization and allergen challenge were performed before or after M. tuberculosis infection. We found an increased resistance to M. tuberculosis only when allergen exposure was given after, but not before infection. Infected mice exposed to allergen exhibited lower bacterial load and cellular infiltrates in the lungs. Enhanced resistance to infection after allergen challenge was associated with increased gene expression of alternatively activated macrophages (M2 macrophages) and IL-33 levels. Accordingly, either adoptive transfer of M2 macrophages or systemic IL-33 treatment was effective in attenuating M. tuberculosis infection. Notably, the enhanced resistance induced by allergen exposure was dependent on IL-33 receptor ST2. Our work indicates that IL-33 might be an alternative therapeutic treatment for severe tuberculosis. PMID:28128217

  16. Leishmania infantum: infection of macrophages in vitro with promastigotes.

    PubMed

    Méndez, S; Nell, M; Alunda, J M

    1996-06-01

    Leishmania infantum promastigotes in axenic culture exhibit limited infectivity for mouse peritoneal macrophages (M phi) in vitro using standard culture conditions (37 degrees C; 95% air/5% CO2) compared to Leishmania donovani promastigotes which induce notable infections. The infectivity of logarithmic (log) and stationary (stat) phase promastigotes of L. infantum was enhanced by the addition of fresh homologous serum, but no amastigotes were observed after 4 days. Prolonged infections, including transformation and survival of intracellular amastigotes in BALB/c mouse and hamster resident peritoneal M phi and M phi cell line J774.G8 were obtained by incubating M phi for 48 h at 26 degrees C prior to standard culture. Enhanced infectivity was observed in a number of L. infantum strains subject to this transient thermal change.

  17. Copper redistribution in murine macrophages in response to Salmonella infection.

    PubMed

    Achard, Maud E S; Stafford, Sian L; Bokil, Nilesh J; Chartres, Jy; Bernhardt, Paul V; Schembri, Mark A; Sweet, Matthew J; McEwan, Alastair G

    2012-05-15

    The movement of key transition metal ions is recognized to be of critical importance in the interaction between macrophages and intracellular pathogens. The present study investigated the role of copper in mouse macrophage responses to Salmonella enterica sv. Typhimurium. The copper chelator BCS (bathocuproinedisulfonic acid, disodium salt) increased intracellular survival of S. Typhimurium within primary mouse BMM (bone-marrow-derived macrophages) at 24 h post-infection, implying that copper contributed to effective host defence against this pathogen. Infection of BMM with S. Typhimurium or treatment with the TLR (Toll-like receptor) 4 ligand LPS (lipopolysaccharide) induced the expression of several genes encoding proteins involved in copper transport [Ctr (copper transporter) 1, Ctr2 and Atp7a (copper-transporting ATPase 1)], as well as the multi-copper oxidase Cp (caeruloplasmin). Both LPS and infection with S. Typhimurium triggered copper accumulation within punctate intracellular vesicles (copper 'hot spots') in BMM as indicated by the fluorescent reporter CS1 (copper sensor 1). These copper hot spots peaked in their accumulation at approximately 18 h post-stimulation and were dependent on copper uptake into cells. Localization studies indicated that the copper hot spots were in discrete vesicles distinct from Salmonella containing vacuoles and lysosomes. We propose that copper hot spot formation contributes to antimicrobial responses against professional intracellular bacterial pathogens.

  18. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions

    PubMed Central

    MacCallum, Donna M.; Brown, Gordon D.

    2017-01-01

    ABSTRACT   The opportunistic human fungal pathogen Candida albicans can cause a variety of diseases, ranging from superficial mucosal infections to life-threatening systemic infections. Phagocytic cells of the innate immune response, such as neutrophils and macrophages, are important first-line responders to an infection and generate reactive oxygen and nitrogen species as part of their protective antimicrobial response. During an infection, host cells generate nitric oxide through the enzyme inducible nitric oxide synthase (iNOS) to kill the invading pathogen. Inside the phagocyte, iNOS competes with the enzyme arginase-1 for a common substrate, the amino acid l-arginine. Several pathogenic species, including bacteria and parasitic protozoans, actively modulate the production of nitric oxide by inducing their own arginases or the host’s arginase activity to prevent the conversion of l-arginine to nitric oxide. We report here that C. albicans blocks nitric oxide production in human-monocyte-derived macrophages by induction of host arginase activity. We further determined that purified chitin (a fungal cell wall polysaccharide) and increased chitin exposure at the fungal cell wall surface induces this host arginase activity. Blocking the C. albicans-induced arginase activity with the arginase-specific substrate inhibitor Nω-hydroxy-nor-arginine (nor-NOHA) or the chitinase inhibitor bisdionin F restored nitric oxide production and increased the efficiency of fungal killing. Moreover, we determined that C. albicans influences macrophage polarization from a classically activated phenotype toward an alternatively activated phenotype, thereby reducing antimicrobial functions and mediating fungal survival. Therefore, C. albicans modulates l-arginine metabolism in macrophages during an infection, potentiating its own survival. PMID:28119468

  19. Macrophage induced gelsolin in response to Group B Streptococcus (GBS) infection.

    PubMed

    Fettucciari, Katia; Ponsini, Pamela; Palumbo, Camilla; Rosati, Emanuela; Mannucci, Roberta; Bianchini, Rodolfo; Modesti, Andrea; Marconi, Pierfrancesco

    2015-01-01

    Group B Streptococcus (GBS) has evolved several strategies to avoid host defences. We have shown that interaction of macrophages with GBS causes macrophage calpain activation, cytoskeletal disruption and apoptosis, consequences of intracellular calcium increase induced by membrane permeability alterations provoked by GBS-β-haemolysin. Open question remains about what effect calcium influx has on other calcium-sensing proteins such as gelsolin, involved in cytoskeleton modulation and apoptosis. Therefore we analysed the effect of GBS-III-COH31:macrophage interaction on gelsolin expression. Here we demonstrate that an early macrophage response to GBS-III-COH31 is a very strong gelsolin increase, which occurs in a time- and infection-ratio-dependent manner. This is not due to transcriptional events, translation events, protein turnover alterations, or protein-kinase activation, but to calcium influx, calpain activation and caspase-3 degradation. In fact, EGTA and PD150606 (calpain inhibitor) prevented gelsolin increase while BAF (caspase inhibitor) enhanced it. Since gelsolin increase is induced by highly β-haemolytic GBS-III-NEM316 and GBS-V-10/84, but not by weakly β-haemolytic GBS, or GBS-III-COH31 in conditions suppressing β-haemolysin expression/activity and the presence of dipalmitoylphosphatidylcholine (β-haemolysin inhibitor), GBS-β-haemolysin is solely responsible for gelsolin increase causing, through membrane permeability defects, calcium influx and calpain activation. Early gelsolin increase could represent a macrophage response to antagonize apoptosis since gelsolin knockdown increases macrophage susceptibility to GBS-induced apoptosis. This response seems to be GBS specific because macrophage apoptosis by Staurosporine or Cycloeximide does not induce gelsolin.

  20. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis

    PubMed Central

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection. PMID:26513474

  1. Distinct Macrophage Fates after in vitro Infection with Different Species of Leishmania: Induction of Apoptosis by Leishmania (Leishmania) amazonensis, but Not by Leishmania (Viannia) guyanensis.

    PubMed

    DaMata, Jarina Pena; Mendes, Bárbara Pinheiro; Maciel-Lima, Kátia; Menezes, Cristiane Alves Silva; Dutra, Walderez Ornelas; Sousa, Lirlândia Pires; Horta, Maria Fátima

    2015-01-01

    Leishmania is an intracellular parasite in vertebrate hosts, including man. During infection, amastigotes replicate inside macrophages and are transmitted to healthy cells, leading to amplification of the infection. Although transfer of amastigotes from infected to healthy cells is a crucial step that may shape the outcome of the infection, it is not fully understood. Here we compare L. amazonensis and L. guyanensis infection in C57BL/6 and BALB/c mice and investigate the fate of macrophages when infected with these species of Leishmania in vitro. As previously shown, infection of mice results in distinct outcomes: L. amazonensis causes a chronic infection in both strains of mice (although milder in C57BL/6), whereas L. guyanensis does not cause them disease. In vitro, infection is persistent in L. amazonensis-infected macrophages whereas L. guyanensis growth is controlled by host cells from both strains of mice. We demonstrate that, in vitro, L. amazonensis induces apoptosis of both C57BL/6 and BALB/c macrophages, characterized by PS exposure, DNA cleavage into nucleosomal size fragments, and consequent hypodiploidy. None of these signs were seen in macrophages infected with L. guyanensis, which seem to die through necrosis, as indicated by increased PI-, but not Annexin V-, positive cells. L. amazonensis-induced macrophage apoptosis was associated to activation of caspases-3, -8 and -9 in both strains of mice. Considering these two species of Leishmania and strains of mice, macrophage apoptosis, induced at the initial moments of infection, correlates with chronic infection, regardless of its severity. We present evidence suggestive that macrophages phagocytize L. amazonensis-infected cells, which has not been verified so far. The ingestion of apoptotic infected macrophages by healthy macrophages could be a way of amastigote spreading, leading to the establishment of infection.

  2. Infiltrating macrophages are key to the development of seizures following virus infection.

    PubMed

    Cusick, Matthew F; Libbey, Jane E; Patel, Dipan C; Doty, Daniel J; Fujinami, Robert S

    2013-02-01

    Viral infections of the central nervous system (CNS) can trigger an antiviral immune response, which initiates an inflammatory cascade to control viral replication and dissemination. The extent of the proinflammatory response in the CNS and the timing of the release of proinflammatory cytokines can lead to neuronal excitability. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two proinflammatory cytokines, have been linked to the development of acute seizures in Theiler's murine encephalomyelitis virus-induced encephalitis. It is unclear the extent to which the infiltrating macrophages versus resident CNS cells, such as microglia, contribute to acute seizures, as both cell types produce TNF-α and IL-6. In this study, we show that following infection a significantly higher number of microglia produced TNF-α than did infiltrating macrophages. In contrast, infiltrating macrophages produced significantly more IL-6. Mice treated with minocycline or wogonin, both of which limit infiltration of immune cells into the CNS and their activation, had significantly fewer macrophages infiltrating the brain, and significantly fewer mice had seizures. Therefore, our studies implicate infiltrating macrophages as an important source of IL-6 that contributes to the development of acute seizures.

  3. Infiltrating Macrophages Are Key to the Development of Seizures following Virus Infection

    PubMed Central

    Cusick, Matthew F.; Libbey, Jane E.; Patel, Dipan C.; Doty, Daniel J.

    2013-01-01

    Viral infections of the central nervous system (CNS) can trigger an antiviral immune response, which initiates an inflammatory cascade to control viral replication and dissemination. The extent of the proinflammatory response in the CNS and the timing of the release of proinflammatory cytokines can lead to neuronal excitability. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), two proinflammatory cytokines, have been linked to the development of acute seizures in Theiler's murine encephalomyelitis virus-induced encephalitis. It is unclear the extent to which the infiltrating macrophages versus resident CNS cells, such as microglia, contribute to acute seizures, as both cell types produce TNF-α and IL-6. In this study, we show that following infection a significantly higher number of microglia produced TNF-α than did infiltrating macrophages. In contrast, infiltrating macrophages produced significantly more IL-6. Mice treated with minocycline or wogonin, both of which limit infiltration of immune cells into the CNS and their activation, had significantly fewer macrophages infiltrating the brain, and significantly fewer mice had seizures. Therefore, our studies implicate infiltrating macrophages as an important source of IL-6 that contributes to the development of acute seizures. PMID:23236075

  4. RP105 facilitates macrophage activation by Mycobacterium tuberculosis lipoproteins.

    PubMed

    Blumenthal, Antje; Kobayashi, Toshihiko; Pierini, Lynda M; Banaei, Niaz; Ernst, Joel D; Miyake, Kensuke; Ehrt, Sabine

    2009-01-22

    RP105, phylogenetically related to Toll-like receptor (TLR)-4, is reported to facilitate B cell activation by the TLR4-agonist lipopolysaccharide (LPS)--but to limit LPS-induced cytokine production by antigen-presenting cells. Here, we show that the role of RP105 extends beyond LPS recognition and that RP105 positively regulates macrophage responses to Mycobacterium tuberculosis (Mtb) lipoproteins. Mtb-infected RP105(-/-) mice exhibited impaired proinflammatory cytokine responses associated with enhanced bacterial burden and increased lung pathology. The Mtb 19 kDa lipoprotein induced release of tumor necrosis factor in a manner dependent on both TLR2 and RP105, and macrophage activation by Mtb lacking mature lipoproteins was not RP105 dependent. Thus, mycobacterial lipoproteins are RP105 agonists. RP105 physically interacted with TLR2, and both RP105 and TLR2 were required for optimal macrophage activation by Mtb. Our data identify RP105 as an accessory molecule for TLR2, forming part of the receptor complex for innate immune recognition of mycobacterial lipoproteins.

  5. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  6. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  7. Effects of Corynebacterium parvum treatment and Toxoplasma gondii infection on macrophage-mediated cytostasis of tumour target cells.

    PubMed Central

    Krahenbuhl, J L; Lambert, L H; Remington, J S

    1976-01-01

    Injection of mice with Corynebacterium parvum or living or killed Toxoplasma gondii was studied to determine the efficacy of these treatments in activating peritoneal macrophages to inhibit the uptake of [3H]TdR (cytostasis) by tumour target cells in vitro. In the presence of activated macrophages from mice treated i.p. with a wide dose range of either C. parvum or living Toxoplasma, cytostasis was usually greater than 99%. This population of activated macrophages was transient in C. parvum-treated mice, but persists, probably for life, in Toxoplasma-infected mice. Whereas the i.p. route of administration of C. parvum was more efficient in activating macrophages than the i.v. route, the s.c. route appeared to be relatively ineffective. Treatment with killed Toxoplasma by any route was also relatively ineffective in activating macrophages. In contrast Toxoplasma infection resulted in highly activated peritoneal macrophages, regardless of the route of administration. Depending upon the route of initial treatment, the route of readministration of C. parvum had either no appreciable effect or resulted in a marked alteration in the cytostatic capacity of peritoneal macrophages. PMID:992714

  8. The Role of Mcl-1 in S. aureus-Induced Cytoprotection of Infected Macrophages

    PubMed Central

    Koziel, Joanna; Kmiecik, Katarzyna; Chmiest, Daniela; Maresz, Katarzyna; Mizgalska, Danuta; Maciag-Gudowska, Agnieszka; Mydel, Piotr; Potempa, Jan

    2013-01-01

    As a facultative intracellular pathogen, Staphylococcus aureus invades macrophages and then promotes the cytoprotection of infected cells thus stabilizing safe niche for silent persistence. This process occurs through the upregulation of crucial antiapoptotic genes, in particular, myeloid cell leukemia-1 (MCL-1). Here, we investigated the underlying mechanism and signal transduction pathways leading to increased MCL-1 expression in infected macrophages. Live S. aureus not only stimulated de novo synthesis of Mcl-1, but also prolonged the stability of this antiapoptotic protein. Consistent with this, we proved a crucial role of Mcl-1 in S. aureus-induced cytoprotection, since silencing of MCL1 by siRNA profoundly reversed the cytoprotection of infected cells leading to apoptosis. Increased MCL1 expression in infected cells was associated with enhanced NFκB activation and subsequent IL-6 secretion, since the inhibition of both NFκB and IL-6 signalling pathways abrogated Mcl-1 induction and cytoprotection. Finally, we confirmed our observation in vivo in murine model of septic arthritis showing the association between the severity of arthritis and Mcl-1 expression. Therefore, we propose that S. aureus is hijacking the Mcl-1-dependent inhibition of apoptosis to prevent the elimination of infected host cells, thus allowing the intracellular persistence of the pathogen, its dissemination by infected macrophages, and the progression of staphylococci diseases. PMID:23431241

  9. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

    PubMed

    Rabhi, Imen; Rabhi, Sameh; Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.

  10. Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View

    PubMed Central

    Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection. PMID:22928052

  11. Stromal down-regulation of macrophage CD4/CCR5 expression and NF-κB activation mediates HIV-1 non-permissiveness in intestinal macrophages.

    PubMed

    Shen, Ruizhong; Meng, Gang; Ochsenbauer, Christina; Clapham, Paul R; Grams, Jayleen; Novak, Lea; Kappes, John C; Smythies, Lesley E; Smith, Phillip D

    2011-05-01

    Tissue macrophages are derived exclusively from blood monocytes, which as monocyte-derived macrophages support HIV-1 replication. However, among human tissue macrophages only intestinal macrophages are non-permissive to HIV-1, suggesting that the unique microenvironment in human intestinal mucosa renders lamina propria macrophages non-permissive to HIV-1. We investigated this hypothesis using blood monocytes and intestinal extracellular matrix (stroma)-conditioned media (S-CM) to model the exposure of newly recruited monocytes and resident macrophages to lamina propria stroma, where the cells take up residence in the intestinal mucosa. Exposure of monocytes to S-CM blocked up-regulation of CD4 and CCR5 expression during monocyte differentiation into macrophages and inhibited productive HIV-1 infection in differentiated macrophages. Importantly, exposure of monocyte-derived macrophages simultaneously to S-CM and HIV-1 also inhibited viral replication, and sorted CD4+ intestinal macrophages, a proportion of which expressed CCR5+, did not support HIV-1 replication, indicating that the non-permissiveness to HIV-1 was not due to reduced receptor expression alone. Consistent with this conclusion, S-CM also potently inhibited replication of HIV-1 pseudotyped with vesicular stomatitis virus glycoprotein, which provides CD4/CCR5-independent entry. Neutralization of TGF-β in S-CM and recombinant TGF-β studies showed that stromal TGF-β inhibited macrophage nuclear translocation of NF-κB and HIV-1 replication. Thus, the profound inability of intestinal macrophages to support productive HIV-1 infection is likely the consequence of microenvironmental down-regulation of macrophage HIV-1 receptor/coreceptor expression and NF-κB activation.

  12. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development.

    PubMed

    Pribul, Philippa K; Harker, James; Wang, Belinda; Wang, Hongwei; Tregoning, John S; Schwarze, Jürgen; Openshaw, Peter J M

    2008-05-01

    Macrophages are abundant in the lower respiratory tract. They play a central role in the innate response to infection but may also modulate excessive inflammation. Both macrophages and ciliated epithelial cells respond to infection by releasing soluble mediators, leading to the recruitment of innate and adaptive effector cells. To study the role of lung macrophages in acute respiratory viral infection, we depleted them by the inhalation of clodronate liposomes in an established mouse model of respiratory syncytial virus (RSV) disease. Infection caused an immediate local release of inflammatory cytokines and chemokines, peaking on day 1, which was virtually abolished by clodronate liposome treatment. Macrophage depletion inhibited the activation (days 1 to 2) and recruitment (day 4) of natural killer (NK) cells and enhanced peak viral load in the lung (day 4). However, macrophage depletion did not affect the recruitment of activated CD4 or CD8 T cells, weight loss, or virus-induced changes in lung function. Therefore, lung macrophages play a central role in the early responses to viral infection but have remarkably little effect on the adaptive response occurring at the time of peak disease severity.

  13. Conversion of Mycobacterium smegmatis to a pathogenic phenotype via passage of epithelial cells during macrophage infection.

    PubMed

    Kim, Su-Young; Sohn, Hosung; Choi, Go-Eun; Cho, Sang-Nae; Oh, Taegwon; Kim, Hwa-Jung; Whang, Jake; Kim, Jong-Seok; Byun, Eui-Hong; Kim, Woo Sik; Min, Ki-Nam; Kim, Jin Man; Shin, Sung Jae

    2011-08-01

    Mycobacteria encounter many different cells during infection within their hosts. Although alveolar epithelial cells play an essential role in host defense as the first cells to be challenged upon contact with mycobacteria, they may contribute to the acquisition of mycobacterial virulence by increasing the expression of virulence or adaptation factors prior to being ingested by macrophages on the side of pathogens. From this aspect, the enhanced virulence of nonpathogenic Mycobacterium smegmatis (MSM) passed through human alveolar A549 epithelial cells (A-MSM) was compared to the direct infection of MSM (D-MSM) in THP-1 macrophages and mouse models. The intracellular growth rate and cytotoxicity of A-MSM were significantly increased in THP-1 macrophages. In addition, compared to D-MSM, A-MSM induced relatively greater interleukin (IL)-1β, IL-6, IL-8, IL-12, TNF-α, MIP-1α, and MCP-1 in THP-1 macrophages. As a next step, a more persistent A-MSM infection was observed in a murine infection model with the development of granulomatous inflammation. Finally, 58 genes induced specifically in A-MSM were partially identified by differential expression using a customized amplification library. These gene expressions were simultaneously maintained in THP-1 infection but no changes were observed in D-MSM. Bioinformatic analysis revealed that these genes are involved mainly in bacterial metabolism including energy production and conversion, carbohydrate, amino acid, and lipid transport, and metabolisms. Conclusively, alveolar epithelial cells promoted the conversion of MSM to the virulent phenotype prior to encountering macrophages by activating the genes required for intracellular survival and presenting its pathogenicity.

  14. African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis.

    PubMed

    Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga

    2015-03-16

    The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication.

  15. HIV-1 Vpr Protein Induces Proteasomal Degradation of Chromatin-associated Class I HDACs to Overcome Latent Infection of Macrophages.

    PubMed

    Romani, Bizhan; Baygloo, Nima Shaykh; Hamidi-Fard, Mojtaba; Aghasadeghi, Mohammad Reza; Allahbakhshi, Elham

    2016-02-05

    Mechanisms underlying HIV-1 latency remain among the most crucial questions that need to be answered to adopt strategies for purging the latent viral reservoirs. Here we show that HIV-1 accessory protein Vpr induces depletion of class I HDACs, including HDAC1, 2, 3, and 8, to overcome latency in macrophages. We found that Vpr binds and depletes chromatin-associated class I HDACs through a VprBP-dependent mechanism, with HDAC3 as the most affected class I HDAC. De novo expression of Vpr in infected macrophages induced depletion of HDAC1 and 3 on the HIV-1 LTR that was associated with hyperacetylation of histones on the HIV-1 LTR. As a result of hyperacetylation of histones on HIV-1 promotor, the virus established an active promotor and this contributed to the acute infection of macrophages. Collectively, HIV-1 Vpr down-regulates class I HDACs on chromatin to counteract latent infections of macrophages.

  16. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  17. Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species

    PubMed Central

    Mahesh, P. P.; Retnakumar, R. J.; Mundayoor, Sathish

    2016-01-01

    Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation. PMID:26876331

  18. Downregulation of vimentin in macrophages infected with live Mycobacterium tuberculosis is mediated by Reactive Oxygen Species.

    PubMed

    Mahesh, P P; Retnakumar, R J; Mundayoor, Sathish

    2016-02-15

    Mycobacterium tuberculosis persists primarily in macrophages after infection and manipulates the host defence pathways in its favour. 2D gel electrophoresis results showed that vimentin, an intermediate filament protein, is downregulated in macrophages infected with live Mycobacterium tuberculosis H37Rv when compared to macrophages infected with heat- killed H37Rv. The downregulation was confirmed by Western blot and quantitative RT-PCR. Besides, the expression of vimentin in avirulent strain, Mycobacterium tuberculosis H37Ra- infected macrophages was similar to the expression in heat-killed H37Rv- infected macrophages. Increased expression of vimentin in H2O2- treated live H37Rv-infected macrophages and decreased expression of vimentin both in NAC and DPI- treated heat-killed H37Rv-infected macrophages showed that vimentin expression is positively regulated by ROS. Ectopic expression of ESAT-6 in macrophages decreased both the level of ROS and the expression of vimentin which implies that Mycobacterium tuberculosis-mediated downregulation of vimentin is at least in part due to the downregulation of ROS by the pathogen. Interestingly, the incubation of macrophages with anti-vimentin antibody increased the ROS production and decreased the survival of H37Rv. In addition, we also showed that the pattern of phosphorylation of vimentin in macrophages by PKA/PKC is different from monocytes, emphasizing a role for vimentin phosphorylation in macrophage differentiation.

  19. Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections

    PubMed Central

    Lim, Yun-Ji; Yi, Min-Hee; Choi, Ji-Ae; Lee, Junghwan; Han, Ji-Ye; Jo, Sung-Hee; Oh, Sung-Man; Cho, Hyun Jin; Kim, Dong Woon; Kang, Min-Woong; Song, Chang-Hwa

    2016-01-01

    Alteration of macrophage function has an important regulatory impact on the survival of intracellular mycobacteria. We found that macrophages infected with attenuated Mycobacterium tuberculosis (Mtb) strain H37Ra had elevated expression of M1-related molecules, whereas the M2 phenotype was dominant in macrophages infected with virulent Mtb H37Rv. Further, the TLR signalling pathway played an important role in modulating macrophage polarization against Mtb infection. Interestingly, endoplasmic reticulum (ER) stress was significantly increased in M1 polarized macrophages and these macrophages effectively removed intracellular Mtb, indicating that ER stress may be an important component of the host immune response to Mtb in M1 macrophages. This improved understanding of the mechanisms that regulate macrophage polarization could provide new therapeutic strategies for tuberculosis. PMID:27845414

  20. Infection of murine macrophages with Toxoplasma gondii is associated with release of transforming growth factor beta and downregulation of expression of tumor necrosis factor receptors.

    PubMed Central

    Bermudez, L E; Covaro, G; Remington, J

    1993-01-01

    Toxoplasma gondii is capable of invading and multiplying within murine peritoneal macrophages. Previous studies have shown that treatment of macrophage monolayers with recombinant gamma interferon but not tumor necrosis factor (TNF) is associated with intracellular killing of T. gondii by macrophages. Furthermore, infection of macrophages with T. gondii prevents their stimulation for mycobactericidal activity by TNF. Since transforming growth factor beta (TGF-beta) is known to suppress a number of functions in macrophages, we investigated the influence of infection with T. gondii on macrophage TNF receptors and on production of TGF-beta. Infection with T. gondii was associated with increased production of TGF-beta and downregulation of TNF receptors. This effect was observed early after infection and was partially inhibited by anti-TGF-beta 1 antibody. PMID:8406801

  1. D-penicillamine-induced autoimmunity: relationship to macrophage activation.

    PubMed

    Li, Jinze; Uetrecht, Jack P

    2009-09-01

    Idiosyncratic drug reactions represent a serious health problem, and they remain unpredictable largely due to our limited understanding of the mechanisms involved. Penicillamine-induced autoimmunity in Brown Norway (BN) rats represents one model of an idiosyncratic reaction, and this drug can also cause autoimmune reactions in humans. We previously demonstrated that penicillamine binds to aldehydes on the surface of macrophages. There is evidence that an imine bond formed by aldehyde groups on macrophages and amine groups on T cells is one type of interaction between these two cells that is involved in the induction of an immune response. We proposed that the binding of penicillamine with aldehyde groups on macrophages could lead to their activation and in some patients could lead to autoimmunity. In this study, the transcriptome profile of spleen macrophages 6 h after penicillamine treatment was used to detect effects of penicillamine on macrophages with a focus on 20 genes known to be macrophage activation biomarkers. One biological consequence of macrophage activation was investigated by determining mRNA levels for IL-15 and IL-1 beta which are crucial for NK cell activation, as well as levels of mRNA for selected cytokines in spleen NK cells. Up-regulation of the macrophage activating cytokines, IFN-gamma and GM-CSF, and down-regulation of IL-13 indicated activation of NK cells, which suggests a positive feedback loop between macrophages and NK cells. Furthermore, treatment of a murine macrophage cell line, RAW264.7, with penicillamine increased the production of TNF-alpha, IL-6, and IL-23, providing additional evidence that penicillamine activates macrophages. Hydralazine and isoniazid cause a lupus-like syndrome in humans and also bind to aldehyde groups. These drugs were also found to activate RAW264.7 macrophages. Together, these data support the hypothesis that drugs that bind irreversibly with aldehydes lead to macrophage activation, which in some

  2. Increased formation of autophagosomes in ectromelia virus-infected primary culture of murine bone marrow-derived macrophages.

    PubMed

    Martyniszyn, L; Szulc-Dąbrowska, L; Boratyńska-Jasińska, A; Niemiałtowski, M

    2013-01-01

    Induction of autophagy by ectromelia virus (ECTV) in primary cultures of bone marrow-derived macrophages (BMDMs) was investigated. The results showed that ECTV infection of BMDMs resulted in increased formation of autophagosomes, increased level of LC3-II protein present in aggregates and extensive cytoplasmic vacuolization. These data indicate an increased autophagic activity in BMDMs during ECTV infection.

  3. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes

    PubMed Central

    Halstead, Scott B; Mahalingam, Prof Suresh; Marovich, Mary A; Ubol, Sukathida; Mosser, Prof David M

    2011-01-01

    A wide range of microorganisms can replicate in macrophages, and cell entry of these pathogens via non-neutralising IgG antibody complexes can result in increased intracellular infection through idiosyncratic Fcγ-receptor signalling. The activation of Fcγ receptors usually leads to phagocytosis. Paradoxically, the ligation of monocyte or macrophage Fcγ receptors by IgG immune complexes, rather than aiding host defences, can suppress innate immunity, increase production of interleukin 10, and bias T-helper-1 (Th1) responses to Th2 responses, leading to increased infectious output by infected cells. This intrinsic antibody-dependent enhancement (ADE) of infection modulates the severity of diseases as disparate as dengue haemorrhagic fever and leishmaniasis. Intrinsic ADE is distinct from extrinsic ADE, whereby complexes of infectious agents with non-neutralising antibodies lead to an increased number of infected cells. Intrinsic ADE might be involved in many protozoan, bacterial, and viral infections. We review insights into intracellular mechanisms and implications of enhanced pathogenesis after ligation of macrophage Fcγ receptors by infectious immune complexes. PMID:20883967

  4. Polarization dictates iron handling by inflammatory and alternatively activated macrophages

    PubMed Central

    Corna, Gianfranca; Campana, Lara; Pignatti, Emanuele; Castiglioni, Alessandra; Tagliafico, Enrico; Bosurgi, Lidia; Campanella, Alessandro; Brunelli, Silvia; Manfredi, Angelo A.; Apostoli, Pietro; Silvestri, Laura; Camaschella, Clara; Rovere-Querini, Patrizia

    2010-01-01

    Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with

  5. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    PubMed

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages.

    PubMed

    Bao, Zhang; Chen, Ran; Zhang, Pei; Lu, Shan; Chen, Xing; Yao, Yake; Jin, Xiaozheng; Sun, Yilan; Zhou, Jianying

    2016-09-01

    Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in Raw264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of Raw264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the Raw264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy.

  7. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection.

    PubMed

    Anand, Rahul J; Dai, Shipan; Gribar, Steven C; Richardson, Ward; Kohler, Jeff W; Hoffman, Rosemary A; Branca, Maria F; Li, Jun; Shi, Xiao-Hua; Sodhi, Chhinder P; Hackam, David J

    2008-12-15

    The pathways that lead to the internalization of pathogens via phagocytosis remain incompletely understood. We now demonstrate a previously unrecognized role for the gap junction protein connexin43 (Cx43) in the regulation of phagocytosis by macrophages and in the host response to bacterial infection of the peritoneal cavity. Primary and cultured macrophages were found to express Cx43, which localized to the phagosome upon the internalization of IgG-opsonized particles. The inhibition of Cx43 using small interfering RNA or by obtaining macrophages from Cx43 heterozygous or knockout mice resulted in significantly impaired phagocytosis, while transfection of Cx43 into Fc-receptor expressing HeLa cells, which do not express endogenous Cx43, conferred the ability of these cells to undergo phagocytosis. Infection of macrophages with adenoviruses expressing wild-type Cx43 restored phagocytic ability in macrophages from Cx43 heterozygous or deficient mice, while infection with viruses that expressed mutant Cx43 had no effect. In understanding the mechanisms involved, Cx43 was required for RhoA-dependent actin cup formation under adherent particles, and transfection with constitutively active RhoA restored a phagocytic phenotype after Cx43 inactivation. Remarkably, mortality was significantly increased in a mouse model of bacterial peritonitis after Cx43 inhibition and in Cx43 heterozygous mice compared with untreated and wild-type counterparts. These findings reveal a novel role for Cx43 in the regulation of phagocytosis and rearrangement of the F-actin cytoskeleton, and they implicate Cx43 in the regulation of the host response to microbial infection.

  8. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    PubMed

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-04-04

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease.

  9. Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages.

    PubMed

    Kato, Kosuke; Uchino, Reina; Lillehoj, Erik P; Knox, Kenneth; Lin, Yong; Kim, K Chul

    2016-04-01

    MUC1 (MUC in human; Muc in animals) is a transmembrane mucin glycoprotein expressed in mucosal epithelial cells and hematopoietic cells. MUC1 is involved in the resolution of inflammation during airway Pseudomonas aeruginosa (Pa) infection by suppressing Toll-like receptor signaling in airway epithelial cells. Although alveolar macrophages are recognized as critical mediators of cell-mediated immunity against microorganisms inhaled into the airways, the role of MUC1 in regulating their response is unknown. The aims of this study were to determine whether macrophages express MUC1, and, if so, whether MUC1 expression might be associated with macrophage M0/M1/M2 differentiation or phagocytic activity. Human and mouse MUC1/Muc1 expression was drastically up-regulated in classically activated (M1) macrophages compared with nonactivated (M0) and alternatively activated (M2) macrophages. M1 polarization and Pa stimulation each increased MUC1 ectodomain shedding from the macrophage surface in a TNF-α-converting enzyme-dependent manner. MUC1/Muc1 deficiency in M0 macrophages increased adhesion and phagocytosis of Pa and Escherichia coli compared with MUC1/Muc1-expressing cells, and attenuation of phagocytosis by MUC1 was augmented after polarization into M1 macrophages compared with M0 macrophages. Finally, MUC1/Muc1 deficiency in macrophages increased reactive oxygen species production and TNF-α release in response to Pa compared with MUC1/Muc1-sufficient cells. These results indicate that MUC1/Muc1 expression by macrophages is predominantly in the M1 subtype, and that MUC1/Muc1 expression in these cells decreases their phagocytic activity in an antiinflammatory manner.

  10. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    SciTech Connect

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  11. Parainfluenza Virus Sendai Infection in Macrophages, Ependyma, Choroid Plexus, Vascular Endothelium and Respiratory Tract of Mice

    PubMed Central

    Mims, Cedric A.; Murphy, Frederick A.

    1973-01-01

    Immunofluorescent observations showed that after intranasal instillation of parainfluenza 1 (Sendai) virus into adult mice, infection is confined to the epithelial lining of the larger airways. Alveolar macrophages were not significantly involved, although they could be infected in vitro. In suckling mice, the infection was more acutely lethal and extended into the terminal air spaces. The intranasal susceptibility of adult mice was not reproducibly affected by treatment with potent antithymocyte serum, and there were no obvious pathogenic effects when heterologous antiserum was instilled intranasally into infected mice. Peritoneal macrophages were infected by intraperitoneally injected Sendai virus, with production of a highly viscous peritoneal exudate. Kupffer cells of the liver and endothelial cells in large veins and auricles were infected by intravenously injected virus. When injected intracerebrally, Sendai virus infected ependyma and choroid plexus epithelium. Adult mice often survived, in spite of ependymal destruction and changes in ventricular morphology. Astrocytes were activated but not infected. ImagesFig 9Fig 10Fig 1Fig 2Fig 3Fig 4Fig 5Fig 6Fig 7Fig 8 PMID:4347621

  12. Development of ostrich thrombocytes and monocyte-derived macrophages in culture and the control of Toxoplasma gondii reproduction after macrophage activation.

    PubMed

    Miranda, Farlen J B; Damasceno-Sá, João Cláudio; DaMatta, Renato A

    2016-01-01

    Raising ostriches became an important economic activity after their products became commodities. The health of farm animals is of paramount importance, so assessing basic immunological responses is necessary to better understand health problems. We developed a method to obtain ostrich thrombocytes and macrophages. The thrombocytes died by apoptosis after 48 h in culture, and the macrophages expanded in size and increased the number of acidic compartments. Macrophages were activated by chicken interferon-γ, producing high levels of nitric oxide. Toxoplasma gondii was able to infect these macrophages, and activation controlled parasitic reproduction. T. gondii, however, persisted in these cells, and infection reduced the production of nitric oxide. These results are important for the future assessment of the basic cellular and immunobiology of ostriches and demonstrate T. gondii suppression of nitric oxide production.

  13. Modulation of macrophage activation and programming in immunity.

    PubMed

    Liu, Guangwei; Yang, Hui

    2013-03-01

    Macrophages are central mediators of the immune, contributing both to the initiation and the resolution of inflammation. The concept of macrophage activation and program has stimulated interest in its definition, and functional significance in homeostasis and diseases. It has been known that macrophages could be differently activated and programmed into different functional subtypes in response to different types of antigen stumuli or different kinds of cytokines present in the microenvironment and could thus profoundly influence immune responses, but little is known about the state and exact regulatory mechanism of macrophage activation and program from cell or molecular signaling level in immunity. In this review, we summarize the recent finding regarding the regulatory mechanism of macrophage activation and program toward M1 and M2, especially on M2 macrophages.

  14. Differential Induction of Apoptosis, Interferon Signaling, and Phagocytosis in Macrophages Infected with a Panel of Attenuated and Nonattenuated Poxviruses

    PubMed Central

    Royo, Sandra; Sainz, Bruno; Hernández-Jiménez, Enrique; Reyburn, Hugh; López-Collazo, Eduardo

    2014-01-01

    ABSTRACT Due to the essential role macrophages play in antiviral immunity, it is important to understand the intracellular and molecular processes that occur in macrophages following infection with various strains of vaccinia virus, particularly those used as vaccine vectors. Similarities as well as differences were found in macrophages infected with different poxvirus strains, particularly at the level of virus-induced apoptosis and the expression of immunomodulatory genes, as determined by microarray analyses. Interestingly, the attenuated modified vaccinia Ankara virus (MVA) was particularly efficient in triggering apoptosis and beta interferon (IFN-β) secretion and in inducing changes in the expression of genes associated with increased activation of innate immunity, setting it apart from the other five vaccinia virus strains tested. Taken together, these results increase our understanding of how these viruses interact with human macrophages, at the cellular and molecular levels, and suggest mechanisms that may underlie their utility as recombinant vaccine vectors. IMPORTANCE Our studies clearly demonstrate that there are substantial biological differences in the patterns of cellular gene expression between macrophages infected with different poxvirus strains and that these changes are due specifically to infection with the distinct viruses. For example, a clear induction in IFN-β mRNA was observed after infection with MVA but not with other poxviruses. Importantly, antiviral bioassays confirmed that MVA-infected macrophages secreted a high level of biologically active type I IFN. Similarly, the phagocytic capacity of macrophages was also specifically increased after infection with MVA. Although the main scope of this study was not to test the vaccine potential of MVA as there are several groups in the field working extensively on this aspect, the characteristics/phenotypes we observed at the in vitro level clearly highlight the inherent advantages that MVA

  15. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus

    PubMed Central

    2014-01-01

    providing additional information on the role of downstream signaling by FcγRII. Conclusions These results demonstrate that human macrophages can be infected by SARS-CoV as a result of IgG-mediated ADE and indicate that this infection route requires signaling pathways activated downstream of binding to FcγRII receptors. PMID:24885320

  16. Hybrid cluster proteins and flavodiiron proteins afford protection to Desulfovibrio vulgaris upon macrophage infection.

    PubMed

    Figueiredo, Mafalda C O; Lobo, Susana A L; Sousa, Sara H; Pereira, Fábio P; Wall, Judy D; Nobre, Lígia S; Saraiva, Lígia M

    2013-06-01

    Desulfovibrio species are Gram-negative anaerobic sulfate-reducing bacteria that colonize the human gut. Recently, Desulfovibrio spp. have been implicated in gastrointestinal diseases and shown to stimulate the epithelial immune response, leading to increased production of inflammatory cytokines by macrophages. Activated macrophages are key cells of the immune system that impose nitrosative stress during phagocytosis. Hence, we have analyzed the in vitro and in vivo responses of Desulfovibrio vulgaris Hildenborough to nitric oxide (NO) and the role of the hybrid cluster proteins (HCP1 and HCP2) and rubredoxin oxygen oxidoreductases (ROO1 and ROO2) in NO protection. Among the four genes, hcp2 was the gene most highly induced by NO, and the hcp2 transposon mutant exhibited the lowest viability under conditions of NO stress. Studies in murine macrophages revealed that D. vulgaris survives incubation with these phagocytes and triggers NO production at levels similar to those stimulated by the cytokine gamma interferon (IFN-γ). Furthermore, D. vulgaris hcp and roo mutants exhibited reduced viability when incubated with macrophages, revealing that these gene products contribute to the survival of D. vulgaris during macrophage infection.

  17. Ubiquitination by SAG regulates macrophage survival/death and immune response during infection

    PubMed Central

    Chang, S C; Ding, J L

    2014-01-01

    The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin–proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS. PMID:24786833

  18. Inflammatory Stroke Extracellular Vesicles Induce Macrophage Activation.

    PubMed

    Couch, Yvonne; Akbar, Naveed; Davis, Simon; Fischer, Roman; Dickens, Alex M; Neuhaus, Ain A; Burgess, Annette I; Rothwell, Peter M; Buchan, Alastair M

    2017-08-01

    Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells. © 2017 American Heart Association, Inc.

  19. Production of colony-stimulating factors (CSFs) during infection: separate determinations of macrophage-, granulocyte-, granulocyte-macrophage-, and multi-CSFs.

    PubMed Central

    Cheers, C; Haigh, A M; Kelso, A; Metcalf, D; Stanley, E R; Young, A M

    1988-01-01

    After infection of mice with Listeria monocytogenes, elevated levels of colony-stimulating factors (CSFs) in the serum were quantitated by six different assays: ability to stimulate colony formation, the proliferation of 2 suspension of bone marrow cells (both measuring total colony-stimulating activity), a radioimmunoassay for macrophage-CSF (CSF-1), the WEHI-3B differentiation assay for granulocyte-CSF, and proliferation of 32D-c1-3 and FDC-P1 cell lines (specific for multi-CSF and either multi- or granulocyte-macrophage-CSFs, respectively). The great bulk of serum colony-stimulating activity represented macrophage- and granulocyte-CSFs, with small but measurable amounts of granulocyte-macrophage-CSF. The degree of elevation of serum CSF depended on the infecting dose used and the numbers of bacteria growing in the spleens and livers of the two mouse strains compared, i.e., L. monocytogenes-resistant C57BL/10 and susceptible BALB/cJ. The increase in serum CSFs occurred before the peak in bone marrow granulocyte-macrophage progenitors and before the reduction in bacterial numbers which follows the onset of specific cell-mediated immunity. PMID:3257205

  20. Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation.

    PubMed

    Silva, Manuel T

    2011-05-01

    Macrophages and neutrophils possess overlapping and complementary features associated to their common origin and subsequent specialization during myelopoiesis. That specialization results in macrophage lineage being limited in antimicrobial capacity and cytotoxicity comparatively with the neutrophil lineage. These and other features of mature macrophages and neutrophils, like different lifespan and tissue localization, promote their particular lifestyles and prompt a functional partnership for cooperation in the protective antimicrobial host defense. This partnership includes reciprocal recruitment to infected sites, cooperative effector antimicrobial activities, and pro-resolving anti-inflammatory effects. One modality of the cooperative effector antimicrobial activities involves the phagocytosis by the macrophage of apoptosing neutrophils and of nonapoptosing neutrophils expressing "eat-me" signals. This cooperative interaction results in the enhancement of the comparatively limited macrophage antimicrobial capacity by the acquisition and use of potent neutrophil microbicidal molecules. Here, data are reviewed that suggest that this is a process actively engaging the two professional phagocytes. Phagocytosis of neutrophils by macrophages at inflammatory/infectious foci accumulates two effects beneficial to the protective host immune response: help in the control of the infection and prevention of neutrophil autolysis, effects that converge to accelerate the resolution of the infection-associated inflammation.

  1. Susceptibility of Inbred Mice to Leishmania major Infection: Genetic Analysis of Macrophage Activation and Innate Resistance to Disease in Individual Progeny of P/J (Susceptible) and C3H/HeN (Resistant) Mice

    DTIC Science & Technology

    1990-12-01

    mediated immu- ease and defective macrophage activation in Bx mice that nity in mice highly susceptible to Leishmania tropica . J. Exp. could not be...inbred mice to Leishmania tropica infec- tion: correlation of susceptibility with in vitro defective macro- LITERATURE CITED phage microbicidal...probability and phage activation to kill Leishmania tropica : characterization of statistics. Chemical Rubber Co., Cleveland. P/J mouse macrophage defects for

  2. Methamphetamine Inhibits Toll-Like Receptor 9-Mediated Anti-HIV Activity in Macrophages

    PubMed Central

    Cen, Ping; Ye, Li; Su, Qi-Jian; Wang, Xu; Li, Jie-Liang; Lin, Xin-Qin

    2013-01-01

    Abstract Toll-like receptor 9 (TLR9) is one of the key sensors that recognize viral infection/replication in the host cells. Studies have demonstrated that methamphetamine (METH) dysregulated host cell innate immunity and facilitated HIV infection of macrophages. In this study, we present new evidence that METH suppressed TLR9-mediated anti-HIV activity in macrophages. Activation of TLR9 by its agonist CpG-ODN 2216 inhibits HIV replication, which was demonstrated by increased expression of TLR9, interferon (IFN)-α, IFN regulatory factor-7 (IRF-7), myeloid differentiation factor 88 (MyD88), and myxovirus resistance gene A (MxA) in macrophages. However, METH treatment of macrophages greatly compromised the TLR9 signaling-mediated anti-HIV effect and inhibited the expression of TLR9 downstream signaling factors. Dopamine D1 receptor (D1R) antagonists (SCH23390) could block METH-mediated inhibition of anti-HIV activity of TLR9 signaling. Investigation of the underlying mechanisms of the METH action showed that METH treatment selectively down-regulated the expression of TLR9 on macrophages, whereas it had little effect on the expression of other TLRs. Collectively, our results provide further evidence that METH suppresses host cell innate immunity against HIV infection by down-regulating TLR9 expression and its signaling-mediated antiviral effect in macrophages. PMID:23751096

  3. Haemophilus ducreyi-induced interleukin-10 promotes a mixed M1 and M2 activation program in human macrophages.

    PubMed

    Li, Wei; Katz, Barry P; Spinola, Stanley M

    2012-12-01

    During microbial infection, macrophages are polarized to classically activated (M1) or alternatively activated (M2) cells in response to microbial components and host immune mediators. Proper polarization of macrophages is critical for bacterial clearance. To study the role of macrophage polarization during Haemophilus ducreyi infection, we analyzed a panel of macrophage surface markers in skin biopsy specimens of pustules obtained from experimentally infected volunteers. Lesional macrophages expressed markers characteristic of both M1 and M2 polarization. Monocyte-derived macrophages (MDM) also expressed a mixed M1 and M2 profile of surface markers and cytokines/chemokines upon infection with H. ducreyi in vitro. Endogenous interleukin 10 (IL-10) produced by infected MDM downregulated and enhanced expression of several M1 and M2 markers, respectively. Bacterial uptake, mediated mainly by class A scavenger receptors, and activation of mitogen-activated protein kinase and phosphoinositide 3-kinase signaling pathways were required for H. ducreyi-induced IL-10 production in MDM. Compared to M1 cells, IL-10-polarized M2 cells displayed enhanced phagocytic activity against H. ducreyi and similar bacterial killing. Thus, IL-10-modulated macrophage polarization may contribute to H. ducreyi clearance during human infection.

  4. Human splenic macrophages as a model for in vitro infection with Mycobacterium tuberculosis.

    PubMed

    Henao, Julieta; Sánchez, Dulfary; Muñoz, Carlos H; Mejía, Natalia; Arias, Mauricio A; García, Luis F; Barrera, Luis F

    2007-11-01

    Macrophages play an important role during Mycobacterium tuberculosis (MTB) infection. In humans most of the studies on MTB-macrophage interactions have been performed using circulating monocytes and monocyte-derived macrophages. However, little research has been performed on this interaction using tissue macrophages. Herein, we used human splenic macrophages to characterize particular responses to MTB infection. Based on morphological, biochemical, and immunological markers, splenic adherent cells exhibit characteristics of tissue macrophages. They were able to efficiently phagocytose both live and heat-killed (h-k) MTB H37Rv. Upon infection with live, but not h-k MTB, an increase in secreted TNF-alpha was elicited. Splenic macrophages produced high basal levels of IL-10; however, infection with live or h-k MTB resulted in decrease IL-10 secretion. Both IL-12p40 and IL-12p70 basal levels were also decreased upon infection with live or h-k MTB; however, while the reduction for IL-12p40 levels was observed at earlier time points (4h) for both live and h-k MTB, infection with live MTB, but not h-k MTB, resulted in a time-dependent secretion of IL-12p40 at 24 and 48h after infection. IL-12p70 levels were completely reduced upon infection by either live or h-k MTB. These results support that human splenic macrophages may represent a potential useful model to study MTB-macrophage interactions in vitro.

  5. A 3-D airway epithelial cell and macrophage co-culture system to study Rhodococcus equi infection.

    PubMed

    Schwab, Ute; Caldwell, Shannon; Matychak, Mary-Beth; Felippe, Julia

    2013-07-15

    We developed a 3-D equine bronchial epithelial cell (BEC) culture that fully differentiates into ciliary beating and mucus producing cells. Using this system, we evaluated how mucus affects the phagocytic activity of macrophages. Adult horse monocyte-derived macrophages were incubated with Rhodococcus equi for 4h either in the mucus layer of in vitro generated airway epithelium or on collagen coated membranes. Using light and electron microscopy, we noted that the number of macrophages with intracellular bacteria, and the number of intracellular bacteria per macrophage were lower in the presence of mucus. TNFα measurements revealed that the presence of BECs promoted TNFα production by R. equi-infected macrophages; a decrease in TLR-2 (involved in R. equi recognition) and an increase in EGF-R (involved in mucin production) mRNA expression were also noted. Interestingly, when foal macrophages were added to foal BECs, we made the opposite observation, i.e. many macrophages were loaded with R. equi. Our in vitro bronchial system shows great potential for the identification of mechanisms how BECs and mucus play a role in phagocyte activation and bacterial clearance. Further studies using this system will show whether the airway environment in the foal responds differently to R. equi infection.

  6. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages.

    PubMed

    Nayak, Tapas K; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K; Sahoo, Subhransu S; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-06

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  7. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    PubMed Central

    Nayak, Tapas K.; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K.; Sahoo, Subhransu S.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-01

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology. PMID:28067803

  8. Titanium particles that have undergone phagocytosis by macrophages lose the ability to activate other macrophages.

    PubMed

    Xing, Zhiqing; Schwab, Luciana P; Alley, Carie F; Hasty, Karen A; Smith, Richard A

    2008-04-01

    Titanium particles derived from the wear of the orthopaedic implant surfaces can activate macrophages to secrete cytokines and stimulate osteoclastic bone resorption, causing osteolysis around orthopaedic implants. However, what happens to the titanium particles after being phagocytosed by macrophages is not known. We prepared titanium particles (as received, clean, and LPS-coated), and exposed them to macrophages in culture. Free particles were washed away after 24 h and the intracellular particles were kept in culture for additional 48 h until being harvested by lysing the cells. Particles that had been cell treated or noncell treated were examined by scanning electronic microscopy to analyze the shape, size, and concentration of the particles. The cell treated and noncell treated particles were exposed to macrophages in culture with a particle to cell ratio of 300:1. After 18 h, the levels of TNF-alpha in culture medium and the viability of the cells were examined. Clean particles did not stimulate TNF-alpha secretion by macrophages, while LPS-coated particles dramatically increased that response. Phagocytosis by macrophages did not change the shape and size of the particles, but depleted the ability of the particles to stimulate TNF-alpha secretion by macrophages. This indicates that macrophages are capable of rendering titanium particles inactive without degrading the particles, possibly by altering the surface chemistry of the particles.

  9. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection

    PubMed Central

    Rabhi, Sameh; Rabhi, Imen; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Goyard, Sophie; Lang, Thierry; Descoteaux, Albert; Enninga, Jost; Guizani-Tabbane, Lamia

    2016-01-01

    Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source. PMID:26871576

  10. Lipid Droplet Formation, Their Localization and Dynamics during Leishmania major Macrophage Infection.

    PubMed

    Rabhi, Sameh; Rabhi, Imen; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Goyard, Sophie; Lang, Thierry; Descoteaux, Albert; Enninga, Jost; Guizani-Tabbane, Lamia

    2016-01-01

    Leishmania, the causative agent of vector-borne diseases, known as leishmaniases, is an obligate intracellular parasite within mammalian hosts. The outcome of infection depends largely on the activation status of macrophages, the first line of mammalian defense and the major target cells for parasite replication. Understanding the strategies developed by the parasite to circumvent macrophage defense mechanisms and to survive within those cells help defining novel therapeutic approaches for leishmaniasis. We previously showed the formation of lipid droplets (LDs) in L. major infected macrophages. Here, we provide novel insights on the origin of the formed LDs by determining their cellular distribution and to what extent these high-energy sources are directed to the proximity of Leishmania parasites. We show that the ability of L. major to trigger macrophage LD accumulation is independent of parasite viability and uptake and can also be observed in non-infected cells through paracrine stimuli suggesting that LD formation is from cellular origin. The accumulation of LDs is demonstrated using confocal microscopy and live-cell imagin in parasite-free cytoplasmic region of the host cell, but also promptly recruited to the proximity of Leishmania parasites. Indeed LDs are observed inside parasitophorous vacuole and in parasite cytoplasm suggesting that Leishmania parasites besides producing their own LDs, may take advantage of these high energy sources. Otherwise, these LDs may help cells defending against parasitic infection. These metabolic changes, rising as common features during the last years, occur in host cells infected by a large number of pathogens and seem to play an important role in pathogenesis. Understanding how Leishmania parasites and different pathogens exploit this LD accumulation will help us define the common mechanism used by these different pathogens to manipulate and/or take advantage of this high-energy source.

  11. Altered sialylation of alveolar macrophages in HIV-1-infected individuals

    PubMed Central

    PERRIN, C; GIORDANENGO, V; BANNWARTH, S; BLAIVE, B; LEFEBVRE, J-C

    1997-01-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness. PMID:9353144

  12. Altered sialylation of alveolar macrophages in HIV-1-infected individuals.

    PubMed

    Perrin, C; Giordanengo, V; Bannwarth, S; Blaive, B; Lefebvre, J C

    1997-10-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness.

  13. Caspase-1-dependent and -independent cell death pathways in Burkholderia pseudomallei infection of macrophages.

    PubMed

    Bast, Antje; Krause, Kathrin; Schmidt, Imke H E; Pudla, Matsayapan; Brakopp, Stefanie; Hopf, Verena; Breitbach, Katrin; Steinmetz, Ivo

    2014-03-01

    The cytosolic pathogen Burkholderia pseudomallei and causative agent of melioidosis has been shown to regulate IL-1β and IL-18 production through NOD-like receptor NLRP3 and pyroptosis via NLRC4. Downstream signalling pathways of those receptors and other cell death mechanisms induced during B. pseudomallei infection have not been addressed so far in detail. Furthermore, the role of B. pseudomallei factors in inflammasome activation is still ill defined. In the present study we show that caspase-1 processing and pyroptosis is exclusively dependent on NLRC4, but not on NLRP3 in the early phase of macrophage infection, whereas at later time points caspase-1 activation and cell death is NLRC4- independent. In the early phase we identified an activation pathway involving caspases-9, -7 and PARP downstream of NLRC4 and caspase-1. Analyses of caspase-1/11-deficient infected macrophages revealed a strong induction of apoptosis, which is dependent on activation of apoptotic initiator and effector caspases. The early activation pathway of caspase-1 in macrophages was markedly reduced or completely abolished after infection with a B. pseudomallei flagellin FliC or a T3SS3 BsaU mutant. Studies using cells transfected with the wild-type and mutated T3SS3 effector protein BopE indicated also a role of this protein in caspase-1 processing. A T3SS3 inner rod protein BsaK mutant failed to activate caspase-1, revealed higher intracellular counts, reduced cell death and IL-1β secretion during early but not during late macrophage infection compared to the wild-type. Intranasal infection of BALB/c mice with the BsaK mutant displayed a strongly decreased mortality, lower bacterial loads in organs, and reduced levels of IL-1β, myeloperoxidase and neutrophils in bronchoalveolar lavage fluid. In conclusion, our results indicate a major role for a functional T3SS3 in early NLRC4-mediated caspase-1 activation and pyroptosis and a contribution of late caspase-1-dependent and -independent

  14. Apoptosis in porcine macrophages infected in vitro with African swine fever virus (ASFV) strains with different virulence.

    PubMed

    Portugal, Raquel; Leitão, Alexandre; Martins, Carlos

    2009-01-01

    African swine fever virus (ASFV) replicates in porcine macrophages. Since modulation of cell death by ASFV strains of different virulence is poorly understood, we studied the development of apoptosis in porcine macrophage cultures during in vitro infection with the high- and low-virulence isolates ASFV/L60 (L60) and ASFV/NH/P68 (NHV), respectively. In cultures inoculated with each isolate, similar numbers of cells hosting infection showed morphological signs of apoptosis, which were visible from a relatively early time of infection (8 h), although a significant proportion of the infected cell populations remained non-apoptotic until 18 h. L60 inhibited caspase-3 activation by 18 h after infection and induced less DNA internucleosomic fragmentation at 8 h than NHV. However, at the late infection time, apoptosis levels were similar in both infections and occurred, at least partially, independently of caspases, suggesting the existence of yet unknown alternative pathways committing ASFV host cells to apoptotic death.

  15. High-Density Lipoprotein Binds to Mycobacterium avium and Affects the Infection of THP-1 Macrophages

    PubMed Central

    Ichimura, Naoya; Sato, Megumi; Yoshimoto, Akira; Yano, Kouji; Ohkawa, Ryunosuke; Kasama, Takeshi

    2016-01-01

    High-density lipoprotein (HDL) is involved in innate immunity toward various infectious diseases. Concerning bacteria, HDL is known to bind to lipopolysaccharide (LPS) and to neutralize its physiological activity. On the other hand, cholesterol is known to play an important role in mycobacterial entry into host cells and in survival in the intracellular environment. However, the pathogenicity of Mycobacterium avium (M. avium) infection, which tends to increase worldwide, remains poorly studied. Here we report that HDL indicated a stronger interaction with M. avium than that with other Gram-negative bacteria containing abundant LPS. A binding of apolipoprotein (apo) A-I, the main protein component of HDL, with a specific lipid of M. avium might participate in this interaction. HDL did not have a direct bactericidal activity toward M. avium but attenuated the engulfment of M. avium by THP-1 macrophages. HDL also did not affect bacterial killing after ingestion of live M. avium by THP-1 macrophage. Furthermore, HDL strongly promoted the formation of lipid droplets in M. avium-infected THP-1 macrophages. These observations provide new insights into the relationship between M. avium infection and host lipoproteins, especially HDL. Thus, HDL may help M. avium to escape from host innate immunity. PMID:27516907

  16. Macrophages in Progressive Human Immunodeficiency Virus/Simian Immunodeficiency Virus Infections

    PubMed Central

    DiNapoli, Sarah R.; Hirsch, Vanessa M.

    2016-01-01

    The cells that are targeted by primate lentiviruses (HIV and simian immunodeficiency virus [SIV]) are of intense interest given the renewed effort to identify potential cures for HIV. These viruses have been reported to infect multiple cell lineages of hematopoietic origin, including all phenotypic and functional CD4 T cell subsets. The two most commonly reported cell types that become infected in vivo are memory CD4 T cells and tissue-resident macrophages. Though viral infection of CD4 T cells is routinely detected in both HIV-infected humans and SIV-infected Asian macaques, significant viral infection of macrophages is only routinely observed in animal models wherein CD4 T cells are almost entirely depleted. Here we review the roles of macrophages in lentiviral disease progression, the evidence that macrophages support viral replication in vivo, the animal models where macrophage-mediated replication of SIV is thought to occur, how the virus can interact with macrophages in vivo, pathologies thought to be attributed to viral replication within macrophages, how viral replication in macrophages might contribute to the asymptomatic phase of HIV/SIV infection, and whether macrophages represent a long-lived reservoir for the virus. PMID:27307568

  17. Collagenase Production by Endotoxin-Activated Macrophages

    PubMed Central

    Wahl, Larry M.; Wahl, Sharon M.; Mergenhagen, Stephan E.; Martin, George R.

    1974-01-01

    Peritoneal exudate macrophages, when exposed to bacterial lipopolysaccharide in culture, were found to produce collagenase (EC 3.4.24.3). This enzyme was not detected in extracts of the macrophages or in media from nonstimulated macrophage cultures. Lipidcontaining fractions of the lipopolysaccharide, including a glycolipid from the rough mutant of Salmonella minnesota (R595) and lipid A, were potent stimulators of collagenase production. The lipid-free polysaccharide fraction had no effect. Cycloheximide prevented the production of collagenase by endotoxin-treated macrophages, suggesting that it was newly synthesized. Images PMID:4372628

  18. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation.

    PubMed

    Wang, Guodong; Zhu, Lei; Yu, Bo; Chen, Ke; Liu, Bo; Liu, Jun; Qin, Guozheng; Liu, Chunyan; Liu, Huixia; Chen, Kaoshan

    2016-09-20

    In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1.

  19. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  20. Nitric Oxide Synthase Expression in Macrophages of Histoplasma capsulatum-Infected Mice Is Associated with Splenocyte Apoptosis and Unresponsiveness

    PubMed Central

    Wu-Hsieh, Betty A.; Chen, Wen; Lee, Hsin-Ju

    1998-01-01

    Splenic macrophages from Histoplasma capsulatum-infected mice express inducible nitric oxide synthase (iNOS), and the iNOS expression correlates with severity of the infection. We examined whether production of NO is responsible for apoptosis and the anti-lymphoproliferative response of splenocytes from mice infected with H. capsulatum. In situ terminal deoxynucleotidyl transferase nick end labeling revealed apoptotic nuclei in cryosections of spleen from infected but not normal mice. Splenocytes of infected mice were unresponsive to stimulation by either concanavalin A or heat-killed H. capsulatum yeast cells. Splenocyte responsiveness was restored by addition to the medium of NG-monomethyl-l-arginine, a known inhibitor of NO production. The proliferative response of splenocytes from infected mice was also restored by depletion of macrophages or by replacement with macrophages from normal mice. In addition, expression of iNOS returned to its basal level when the animals had recovered from infection. These results suggest that suppressor cell activity of macrophages is associated with production of NO, which also appears to be an effector molecule for apoptosis of cultured splenocytes from infected mice. PMID:9784566

  1. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  2. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    PubMed

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-02

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  3. Amphiregulin may be a new biomarker of classically activated macrophages.

    PubMed

    Meng, Chen; Liu, Guilin; Mu, Honglan; Zhou, Miaomiao; Zhang, Shihai; Xu, Younian

    2015-10-23

    Amphiregulin (Areg) participates in tissue repair and inflammation regulation. As important effector cells in inflammation, macrophages can be polarized to classically (M1) or alternatively (M2) activated phenotype with diverse functions in immunity. However, the relationship between Areg expression and macrophage activation is poorly understood. Here we report that Areg was significantly expressed in M1 but not in M2 macrophages. This was confirmed by analyses of RT-PCR and ELISA in peritoneal macrophages, and by evaluating protein expression in alveolar macrophages and RAW264.7 cells. Selective inhibitors of TLR4 (CLI-095) and MAP kinase, including Erk1/2 (PD98059), JNK (SP600125) and p38 (SB203580), significantly reduced Areg expression in M1 macrophages, suggesting that M1 macrophages produce Areg mainly through the TLR4-MAPK pathway, which is involved in the mechanism of M1 activation. When compared with productions of classical biomarkers of M1 macrophages, Areg expression was highly consistent in time series. Taken together, Areg may be an effective new biomarker of M1 macrophages.

  4. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with HIV or HCV infection

    PubMed Central

    Shaked, Iftach; Hanna, David B; Gleißner, Christian; Marsh, Brenda; Plants, Jill; Tracy, Daniel; Anastos, Kathryn; Cohen, Mardge; Golub, Elizabeth T; Karim, Roksana; Lazar, Jason; Prasad, Vinayaka; Tien, Phyllis C.; Young, Mary A; Landay, Alan L; Kaplan, Robert C; Ley, Klaus

    2014-01-01

    Objective Infection with hepatitis C (HCV) or human immunodeficiency virus (HIV) may be associated with atherosclerosis and vascular disease. Macrophages are a major component of atherosclerotic plaque, and classically activated (M1) macrophages contribute to plaque instability. Our goal was to identify plasma biomarkers that reflect macrophage inflammation and are associated with subclinical atherosclerosis. Approach and results We tested whether M1 macrophages produce galectin-3 binding protein (Gal-3BP) in-vitro. Then we measured Gal-3BP and the soluble macrophage biomarkers sCD163 and sCD14 in 264 participants in the Women’s Interagency HIV Study. Women were positive for HIV, HCV, both, or neither (66 in each group, matched for age, race/ethnicity and smoking status). Carotid artery disease was assessed by ultrasound measurement of right distal common carotid artery intima-media thickness (cIMT), distensibility, and presence of atherosclerotic lesions (IMT>1.5 mm). Plasma Gal-3BP was higher in HCV+ than HCV− women (p<0.01), but did not differ by HIV status. The three inflammatory macrophage markers were significantly correlated with each other and negatively correlated with CD4+ counts in HIV-infected women. We defined a macrophage score as 1, 2 or 3 biomarkers elevated above the median. In models adjusted for traditional risk factors, higher macrophage scores were significantly associated with increased atherosclerotic lesions and lower carotid distensibility. Receiver-operator curve analysis of lesions revealed that the markers added predictive value beyond traditional risk factors and C-reactive protein. Conclusions The macrophage inflammatory markers Gal-3BP, sCD163 and sCD14 are significantly associated with carotid artery disease in the setting of HIV and HCV infection. PMID:24651679

  5. HCV dsRNA-Activated Macrophages Inhibit HCV Replication in Hepatocytes

    PubMed Central

    Wang, Yizhong; Li, Jieliang; Wang, Xu; Zhou, Yu; Zhang, Ting; Ho, Wenzhe

    2015-01-01

    Background: Macrophages play critical roles in innate immune response in the liver. Whether macrophages participate in liver innate immunity against HCV replication is poorly understood Objectives: The aim of this study was to investigate the role of macrophages in liver innate immunity against HCV replication. Materials and Methods: Freshly isolated monocytes were purified from peripheral blood of healthy adult donors. Macrophages refer to 7-day-cultured monocytes in vitro. A hepatoma cell line (Huh7) was infected with HCV JFH-1 to generate in vitro HCV infectious system. RT-PCR was used to determine HCV RNA and mRNA levels of genes expression. ELISA was used to measure the protein level of interferon-α (IFN-α) and western blot was used to determine protein expression level of Toll-like receptor 3 (TLR3). Results: HCV dsRNA induced the expression of type I IFN (IFN-α/β) in monocyte-derived macrophages. HCV dsRNA also induced the expression of TLR3 and IFN regulatory factor-7 (IRF-7), the key regulators of the IFN signaling pathway. When HCV JFH-1-infected Huh7 cells were co-cultured with macrophages activated with HCV dsRNA or incubated in media conditioned with supernatant (SN) from HCV dsRNA-activated macrophages, HCV replication was significantly suppressed. This macrophage SN action on HCV inhibition was mediated through type I IFN, which was evidenced by the observation that antibody to type I IFN receptor could neutralize the macrophages-mediated anti-HCV effect. The role of type I IFN in macrophages-mediated anti-HCV activity is further supported by the observation that HCV dsRNA-activated macrophages SN treatment induced the expression of several IFN-stimulated genes (ISGs), ISG15, ISG56, OAS-1, OAS-2, MxA and Viperin in HCV-infected Huh7 cells. Conclusions: Macrophages may play an important role in liver innate immunity against HCV replication through a type I IFN-dependent mechanism. PMID:26322111

  6. Infections with Avian Pathogenic and Fecal Escherichia coli Strains Display Similar Lung Histopathology and Macrophage Apoptosis

    PubMed Central

    Horn, Fabiana; Corrêa, André Mendes Ribeiro; Barbieri, Nicolle Lima; Glodde, Susanne; Weyrauch, Karl Dietrich; Kaspers, Bernd; Driemeier, David; Ewers, Christa; Wieler, Lothar H.

    2012-01-01

    The purpose of this study was to compare histopathological changes in the lungs of chickens infected with avian pathogenic (APEC) and avian fecal (Afecal) Escherichia coli strains, and to analyze how the interaction of the bacteria with avian macrophages relates to the outcome of the infection. Chickens were infected intratracheally with three APEC strains, MT78, IMT5155, and UEL17, and one non-pathogenic Afecal strain, IMT5104. The pathogenicity of the strains was assessed by isolating bacteria from lungs, kidneys, and spleens at 24 h post-infection (p.i.). Lungs were examined for histopathological changes at 12, 18, and 24 h p.i. Serial lung sections were stained with hematoxylin and eosin (HE), terminal deoxynucleotidyl dUTP nick end labeling (TUNEL) for detection of apoptotic cells, and an anti-O2 antibody for detection of MT78 and IMT5155. UEL17 and IMT5104 did not cause systemic infections and the extents of lung colonization were two orders of magnitude lower than for the septicemic strains MT78 and IMT5155, yet all four strains caused the same extent of inflammation in the lungs. The inflammation was localized; there were some congested areas next to unaffected areas. Only the inflamed regions became labeled with anti-O2 antibody. TUNEL labeling revealed the presence of apoptotic cells at 12 h p.i in the inflamed regions only, and before any necrotic foci could be seen. The TUNEL-positive cells were very likely dying heterophils, as evidenced by the purulent inflammation. Some of the dying cells observed in avian lungs in situ may also be macrophages, since all four avian E. coli induced caspase 3/7 activation in monolayers of HD11 avian macrophages. In summary, both pathogenic and non-pathogenic fecal strains of avian E. coli produce focal infections in the avian lung, and these are accompanied by inflammation and cell death in the infected areas. PMID:22848424

  7. The interaction of gamma delta T cells with activated macrophages is a property of the V gamma 1 subset.

    PubMed

    Dalton, Jane E; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2003-12-15

    Immunoregulation is an emerging paradigm of gammadelta T cell function. The mechanisms by which gammadelta T cells mediate this function, however, are not clear. Studies have identified a direct role for gammadelta T cells in resolving the host immune response to infection, by eliminating populations of activated macrophages. The aim of this study was to identify macrophage-reactive gammadelta T cells and establish the requirements/outcomes of macrophage-gammadelta T cell interactions during the immune response to the intracellular bacterium, Listeria monocytogenes (Lm). Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta(-/-) mice were incubated with splenocytes from naive and Lm-infected alphabeta/gammadelta T cell-deficient and wild-type mice, the ability to bind macrophages was shown to be restricted to gammadelta T cells and the GV5S1 (Vgamma1) subset of gammadelta T cells. Macrophage adherence resulted in a 4- to 10-fold enrichment of Vgamma1(+) T cells. Enrichment of Vgamma1 T cells was dependent upon the activation status of macrophages, but independent of the activation status of gammadelta T cells. Vgamma1 T cells were cytotoxic for activated macrophages with both the binding to and killing of macrophages being TCR dependent because anti-TCRgammadelta Abs inhibited both Vgamma1 binding and killing activities. These studies establish the identity of macrophage cytotoxic gammadelta T cells, the conditions under which this interaction occurs, and the outcome of this interaction. These findings are concordant with the involvement of Vgamma1 T cells in macrophage homeostasis during the resolution of pathogen-mediated immune responses.

  8. Influence of trehalose 6,6'-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages.

    PubMed

    Indrigo, Jessica; Hunter, Robert L; Actor, Jeffrey K

    2002-07-01

    The relative role of surface lipids in the innate macrophage response to infection with mycobacteria remains unknown. Trehalose 6,6'-dimycolate (TDM), a major component of the mycobacterial cell wall, can elicit hypersensitive as well as T-cell-independent foreign body responses. The T-cell-independent contribution of TDM to the primary macrophage response to mycobacterial infection was investigated. Bone-marrow-derived macrophages isolated from C57BL/6 mice were infected with native Mycobacterium tuberculosis (MTB) or with MTB delipidated using petroleum ether extraction methods. The removal of surface lipids caused decreased bacterial survival in macrophages, but there was no loss of bacterial growth in broth culture. Bacterial survival within macrophages was restored upon reconstitution of the bacteria with purified TDM. The cytokine and chemokine parameters of the macrophage responses were also investigated. The amounts of IL-1beta, TNF-alpha, IL-6 and MIP-1alpha produced were significantly reduced following delipidation, but were restored upon reconstitution with TDM. The amount of IL-12 produced, but not the amount of IL-10 produced, was also significantly reduced upon macrophage infection with delipidated MTB. Furthermore, nitric oxide responses were not impaired upon infection with delipidated MTB, suggesting that intracellular survival and macrophage secretion of cytokines and chemokines are differentially controlled. These studies indicate that TDM is a major component contributing to the innate macrophage responses to MTB infection.

  9. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    PubMed

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  10. SIV Vpx Is Essential for Macrophage Infection but Not for Development of AIDS

    PubMed Central

    Westmoreland, Susan V.; Converse, A. Peter; Hrecka, Kasia; Hurley, Mollie; Knight, Heather; Piatak, Michael; Lifson, Jeffrey; Mansfield, Keith G.; Skowronski, Jacek; Desrosiers, Ronald C.

    2014-01-01

    Analysis of rhesus macaques infected with a vpx deletion mutant virus of simian immunodeficiency virus mac239 (SIVΔvpx) demonstrates that Vpx is essential for efficient monocyte/macrophage infection in vivo but is not necessary for development of AIDS. To compare myeloid-lineage cell infection in monkeys infected with SIVΔvpx compared to SIVmac239, we analyzed lymphoid and gastrointestinal tissues from SIVΔvpx-infected rhesus (n = 5), SIVmac239-infected rhesus with SIV encephalitis (7 SIV239E), those without encephalitis (4 SIV239noE), and other SIV mutant viruses with low viral loads (4 SIVΔnef, 2 SIVΔ3). SIV+ macrophages and the percentage of total SIV+ cells that were macrophages in spleen and lymph nodes were significantly lower in rhesus infected with SIVΔvpx (2.2%) compared to those infected with SIV239E (22.7%), SIV239noE (8.2%), and SIV mutant viruses (10.1%). In colon, SIVΔvpx monkeys had fewer SIV+ cells, no SIV+ macrophages, and lower percentage of SIV+ cells that were macrophages than the other 3 groups. Only 2 SIVΔvpx monkeys exhibited detectable virus in the colon. We demonstrate that Vpx is essential for efficient macrophage infection in vivo and that simian AIDS and death can occur in the absence of detectable macrophage infection. PMID:24465411

  11. SIV vpx is essential for macrophage infection but not for development of AIDS.

    PubMed

    Westmoreland, Susan V; Converse, A Peter; Hrecka, Kasia; Hurley, Mollie; Knight, Heather; Piatak, Michael; Lifson, Jeffrey; Mansfield, Keith G; Skowronski, Jacek; Desrosiers, Ronald C

    2014-01-01

    Analysis of rhesus macaques infected with a vpx deletion mutant virus of simian immunodeficiency virus mac239 (SIVΔvpx) demonstrates that Vpx is essential for efficient monocyte/macrophage infection in vivo but is not necessary for development of AIDS. To compare myeloid-lineage cell infection in monkeys infected with SIVΔvpx compared to SIVmac239, we analyzed lymphoid and gastrointestinal tissues from SIVΔvpx-infected rhesus (n = 5), SIVmac239-infected rhesus with SIV encephalitis (7 SIV239E), those without encephalitis (4 SIV239noE), and other SIV mutant viruses with low viral loads (4 SIVΔnef, 2 SIVΔ3). SIV+ macrophages and the percentage of total SIV+ cells that were macrophages in spleen and lymph nodes were significantly lower in rhesus infected with SIVΔvpx (2.2%) compared to those infected with SIV239E (22.7%), SIV239noE (8.2%), and SIV mutant viruses (10.1%). In colon, SIVΔvpx monkeys had fewer SIV+ cells, no SIV+ macrophages, and lower percentage of SIV+ cells that were macrophages than the other 3 groups. Only 2 SIVΔvpx monkeys exhibited detectable virus in the colon. We demonstrate that Vpx is essential for efficient macrophage infection in vivo and that simian AIDS and death can occur in the absence of detectable macrophage infection.

  12. Control of tumor-associated macrophage alternative activation by MIF

    PubMed Central

    Yaddanapudi, Kavitha; Putty, Kalyani; Rendon, Beatriz E.; Lamont, Gwyneth J.; Faughn, Jonathan D.; Satoskar, Abhay; Lasnik, Amanda; Eaton, John W.; Mitchell, Robert A.

    2013-01-01

    Tumor stromal alternatively activated macrophages are important determinants of anti-tumor T lymphocyte responses, intratumoral neovascularization and metastatic dissemination. Our recent efforts to investigate the mechanism of macrophage migration inhibitory factor (MIF) in antagonizing anti-melanoma immune responses reveal that macrophage-derived MIF participates in macrophage alternative activation in melanoma-bearing mice. Both peripheral and tumor-associated macrophages (TAMs) isolated from melanoma bearing MIF-deficient mice display elevated pro-inflammatory cytokine expression and reduced anti-inflammatory, immunosuppressive and pro-angiogenic gene products compared to macrophages from tumor bearing MIF wildtype mice. Moreover, TAMs and myeloid-derived suppressor cells (MDSCs) from MIF-deficient mice exhibit reduced T lymphocyte immunosuppressive activities than do those from their wildtype littermates. Corresponding with reduced tumor immunosuppression and neoangiogenic potential by TAMs, MIF-deficiency confers protection against transplantable subcutaneous melanoma outgrowth and melanoma lung metastatic colonization. Finally, we report for the first time that our previously discovered MIF small molecule antagonist, 4-iodo-6-phenylpyrimidine (4-IPP), recapitulates MIF-deficiency in vitro and in vivo and attenuates tumor polarized macrophage alternative activation, immunosuppression, neoangiogenesis and melanoma tumor outgrowth. These studies describe an important functional contribution by MIF to tumor-associated macrophage alternative activation and provide justification for immunotherapeutic targeting of MIF in melanoma patients. PMID:23390297

  13. Microbicidal activity of monocyte derived macrophages in AIDS and related disorders.

    PubMed Central

    Eales, L J; Moshtael, O; Pinching, A J

    1987-01-01

    We have examined the ability of monocyte-derived macrophages from patients with AIDS and other HIV-related disorders to kill the intracellular pathogen Toxoplasma gondii. We have also examined the capacity of peripheral blood mononuclear cells from these patients to produce macrophage-activating and other lymphokines. The capacity to produce interleukin 2 and gamma interferon decreases from controls through asymptomatic seropositive subjects and lymphadenopathy groups A (benign) and B (prodromal) to AIDS. The decrease did not correlate precisely with the decrease in CD4+ cells in these patients. Monocyte-derived macrophages from asymptomatic HIV-infected subjects and lymphadenopathy patients showed a decreased ability to kill T. gondii after activation with recombinant gamma interferon; paradoxically, this was most striking for PGL group A. The defect was largely overcome by using Concanavalin A stimulated autologous supernatants. It was notable that macrophages from AIDS patients showed normal killing with recombinant gamma interferon, but that the supernatants from AIDS patients had reduced activity with normal macrophages. These studies confirm that functional defects of both lymphocytes and macrophages are found in HIV-infected subjects; they serve to emphasize the heterogeneity of the clinical and biological responses to this retrovirus, responses which have important implications in the pathogenesis and treatment of the immunodeficiency. PMID:3111759

  14. Host response. Inflammation-induced disruption of SCS macrophages impairs B cell responses to secondary infection.

    PubMed

    Gaya, Mauro; Castello, Angelo; Montaner, Beatriz; Rogers, Neil; Reis e Sousa, Caetano; Bruckbauer, Andreas; Batista, Facundo D

    2015-02-06

    The layer of macrophages at the subcapsular sinus (SCS) captures pathogens entering the lymph node, preventing their global dissemination and triggering an immune response. However, how infection affects SCS macrophages remains largely unexplored. Here we show that infection and inflammation disrupt the organization of SCS macrophages in a manner that involves the migration of mature dendritic cells to the lymph node. This disrupted organization reduces the capacity of SCS macrophages to retain and present antigen in a subsequent secondary infection, resulting in diminished B cell responses. Thus, the SCS macrophage layer may act as a sensor or valve during infection to temporarily shut down the lymph node to further antigenic challenge. This shutdown may increase an organism's susceptibility to secondary infections.

  15. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders.

    PubMed

    Rigante, Donato; Emmi, Giacomo; Fastiggi, Michele; Silvestri, Elena; Cantarini, Luca

    2015-08-01

    An overwhelming activation of cytotoxic T cells and well-differentiated macrophages leading to systemic overload of inflammatory mediators characterizes the so-called macrophage activation syndrome (MAS); this potentially life-threatening clinical entity may derive from several genetic defects involved in granule-mediated cytotoxicity but has been largely observed in patients with juvenile idiopathic arthritis, many rheumatologic diseases, infections, and malignancies. The occurrence of MAS in the natural history or as the revealing clue of monogenic autoinflammatory disorders (AIDs), rare conditions caused by disrupted innate immunity pathways with overblown release of proinflammatory cytokines, has been only reported in few isolated patients with cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome since 2001. All these patients displayed various clinical, laboratory, and histopathologic features of MAS and have often required intensive care support. Only one patient has died due to MAS. Defective cytotoxic cell function was documented in a minority of patients. Corticosteroids were the first-line treatment, but anakinra was clinically effective in three refractory cases. Even if MAS and AIDs share multiple clinical features as well as heterogeneous pathogenetic scenes and a potential response to anti-interleukin-1 targeted therapies, MAS requires a prompt specific recognition in the course of AIDs due to its profound severity and high mortality rate.

  16. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    PubMed

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.

  17. Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages.

    PubMed

    Awuh, Jane Atesoh; Haug, Markus; Mildenberger, Jennifer; Marstad, Anne; Do, Chau Phuc Ngoc; Louet, Claire; Stenvik, Jørgen; Steigedal, Magnus; Damås, Jan Kristian; Halaas, Øyvind; Flo, Trude Helen

    2015-08-04

    Several mechanisms are involved in controlling intracellular survival of pathogenic mycobacteria in host macrophages, but how these mechanisms are regulated remains poorly understood. We report a role for Kelch-like ECH-associated protein 1 (Keap1), an oxidative stress sensor, in regulating inflammation induced by infection with Mycobacterium avium in human primary macrophages. By using confocal microscopy, we found that Keap1 associated with mycobacterial phagosomes in a time-dependent manner, whereas siRNA-mediated knockdown of Keap1 increased M. avium-induced expression of inflammatory cytokines and type I interferons (IFNs). We show evidence of a mechanism whereby Keap1, as part of an E3 ubiquitin ligase complex with Cul3 and Rbx1, facilitates ubiquitination and degradation of IκB kinase (IKK)-β thus terminating IKK activity. Keap1 knockdown led to increased nuclear translocation of transcription factors NF-κB, IFN regulatory factor (IRF) 1, and IRF5 driving the expression of inflammatory cytokines and IFN-β. Furthermore, knockdown of other members of the Cul3 ubiquitin ligase complex also led to increased cytokine expression, further implicating this ligase complex in the regulation of the IKK family. Finally, increased inflammatory responses in Keap1-silenced cells contributed to decreased intracellular growth of M. avium in primary human macrophages that was reconstituted with inhibitors of IKKβ or TANK-binding kinase 1 (TBK1). Taken together, we propose that Keap1 acts as a negative regulator for the control of inflammatory signaling in M. avium-infected human primary macrophages. Although this might be important to avoid sustained or overwhelming inflammation, our data suggest that a negative consequence could be facilitated growth of pathogens like M. avium inside macrophages.

  18. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response

    PubMed Central

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten

    2016-01-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. PMID:27021246

  19. Targeting macrophage anti-tumor activity to suppress melanoma progression

    PubMed Central

    Yang, Luhong; Liu, Chengfang; Zhang, Qi; Zhang, Linjing

    2017-01-01

    By phagocytosing cancer cells and their cellular debris, macrophages play a critical role in nonspecific defense (innate immunity) and, as antigen presenters, they help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma is a lethal disease due to its aggressive capacity for metastasis and resistance to therapy. For decades, considerable effort has gone into development of an effective immunotherapy for treatment of metastatic melanoma. In this review, we focus on the anti-tumor activities of macrophages in melanoma and their potential as therapeutic targets in melanoma. Although macrophages can be re-educated through intercellular signaling to promote tumor survival owing to their plasticity, we expect that targeting the anti-tumor activity of macrophages remains a promising strategy for melanoma inhibition. The combination of tumoricidal macrophage activation and other treatments such as surgery, chemotherapy, and radiotherapy, may provide an effective and comprehensive anti-melanoma strategy. PMID:28060744

  20. Sodium-activated macrophages: the salt mine expands.

    PubMed

    Lucca, Liliana E; Hafler, David A

    2015-08-01

    High sodium consumption has been raising interest as a putative environmental factor linking Western lifestyle to the growing epidemic of autoimmune and inflammatory diseases. Now Zhang and colleagues show that high sodium drives macrophage to acquire a new proinflammatory effector phenotype with a distinct signature, paving the path to assess the role of salt-activated macrophages in human disease.

  1. Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis

    PubMed Central

    Andreu, Nuria; Phelan, Jody; de Sessions, Paola F.; Cliff, Jacqueline M.; Clark, Taane G.; Hibberd, Martin L.

    2017-01-01

    Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions. PMID:28176867

  2. Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis.

    PubMed

    Andreu, Nuria; Phelan, Jody; de Sessions, Paola F; Cliff, Jacqueline M; Clark, Taane G; Hibberd, Martin L

    2017-02-08

    Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions.

  3. Macrophages expressing arginase 1 and nitric oxide synthase 2 accumulate in the small intestine during Giardia lamblia infection.

    PubMed

    Maloney, Jenny; Keselman, Aleksander; Li, Erqiu; Singer, Steven M

    2015-06-01

    Nitric oxide (NO) has been shown to inhibit Giardia lamblia in vitro and in vivo. This study sought to determine if Giardia infection induces arginase 1 (ARG1) expression in host macrophages to reduce NO production. Stimulations of RAW 264.7 macrophage-like cells with Giardia extract induced arginase activity. Real-time PCR and immunohistochemistry showed increased ARG1 and nitric oxide synthase 2 (NOS2) expression in mouse intestine following infection. Flow cytometry demonstrated increased numbers of macrophages positive for both ARG1 and NOS2 in lamina propria following infection, but there was no evidence of increased expression of ARG1 in these cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Macrophages sense and kill bacteria through carbon monoxide–dependent inflammasome activation

    PubMed Central

    Wegiel, Barbara; Larsen, Rasmus; Gallo, David; Chin, Beek Yoke; Harris, Clair; Mannam, Praveen; Kaczmarek, Elzbieta; Lee, Patty J.; Zuckerbraun, Brian S.; Flavell, Richard; Soares, Miguel P.; Otterbein, Leo E.

    2014-01-01

    Microbial clearance by eukaryotes relies on complex and coordinated processes that remain poorly understood. The gasotransmitter carbon monoxide (CO) is generated by the stress-responsive enzyme heme oxygenase-1 (HO-1, encoded by Hmox1), which is highly induced in macrophages in response to bacterial infection. HO-1 deficiency results in inadequate pathogen clearance, exaggerated tissue damage, and increased mortality. Here, we determined that macrophage-generated CO promotes ATP production and release by bacteria, which then activates the Nacht, LRR, and PYD domains-containing protein 3 (NALP3) inflammasome, intensifying bacterial killing. Bacterial killing defects in HO-1–deficient murine macrophages were restored by administration of CO. Moreover, increased CO levels enhanced the bacterial clearance capacity of human macrophages and WT murine macrophages. CO-dependent bacterial clearance required the NALP3 inflammasome, as CO did not increase bacterial killing in macrophages isolated from NALP3-deficient or caspase-1–deficient mice. IL-1β cleavage and secretion were impaired in HO-1–deficient macrophages, and CO-dependent processing of IL-1β required the presence of bacteria-derived ATP. We found that bacteria remained viable to generate and release ATP in response to CO. The ATP then bound to macrophage nucleotide P2 receptors, resulting in activation of the NALP3/IL-1β inflammasome to amplify bacterial phagocytosis by macrophages. Taken together, our results indicate that macrophage-derived CO permits efficient and coordinated regulation of the host innate response to invading microbes. PMID:25295542

  5. Enhancement of host resistance against Listeria infection by Lactobacillus casei: Role of macrophages

    SciTech Connect

    Sato, K.

    1984-05-01

    Among the 10 species of the genus Lactobacillus, L. casei showed the strongest protective action against Listeria monocytogenes infection in mice. The activity of L. casei differed with regard to the dose of administration. The anti-L. monocytogenes resistance in mice intravenously administered 5.5 X 10(7), 2.8 X 10(8), or 1.1 X 10(9) L. casei cells was most manifest at ca. 2, 2 and 13, and 3 to 21 days after its administration, respectively. The growth of L. monocytogenes in the liver of mice injected with L. casei (10(7), 10(8), or 10(9) cells) 48 h after infection was suppressed, particularly when 10(8) or 10(9) L. casei cells were given 2 or 13 days before the induced infection, respectively. This suppression of L. monocytogenes growth was overcome by carrageenan treatment or X-ray irradiation. (/sup 3/H)thymidine incorporation into the liver DNA increased 13 days after administration of L. casei, and augmentation of (/sup 3/H)thymidine incorporation during 6 to 48 h after infection was dependent on the dose of L. casei. Peritoneal macrophage accumulation observed 1 to 5 days after intraperitoneal injection of UV-killed L. monocytogenes was markedly enhanced when the mice were treated with L. casei cells 13 days before macrophage elicitation. Therefore, the enhanced host resistance by L. casei to L. monocytogenes infection may be mediated by macrophages migrating from the blood stream to the reticuloendothelial system in response to L. casei injection before or after L. monocytogenes infection.

  6. 17β-estradiol protects primary macrophages against HIV infection through induction of interferon-alpha.

    PubMed

    Tasker, Carley; Ding, Jian; Schmolke, Mirco; Rivera-Medina, Amariliz; García-Sastre, Adolfo; Chang, Theresa L

    2014-05-01

    Estrogen has been shown to increase resistance to HIV/SIV transmission by increasing the thickness of the genital epithelium. The immunological role of estrogen in HIV infection of primary target cells is less well characterized. We have found that primary macrophages are a target for anti-HIV activity of 17β-estradiol (E2). E2 did not affect surface expression of CD4 and HIV co-receptors nor HIV attachment to monocyte-derived macrophages (MDMs). In addition, E2 treatment blocked infection by a co-receptor-independent HIV-1VSV-G pseudotyped virus. Quantitative polymerase chain reaction analysis of HIV reverse transcribed DNA products indicated that E2 blocked HIV reverse transcription. E2 upregulated gene expression of interferons (IFNs) in MDMs from multiple donors. However, induction of host restriction factors APOBEC3G, APOBEC3F, or SAMHD1 was not consistent, with exception of APOBEC3A. Anti-HIV activity of E2 was abolished in the presence of IFN-α neutralizing antibody, and was absent in bone marrow-derived macrophages from IFN-α receptor deficient mice. Interestingly, HIV overcame E2-mediated HIV inhibition by suppressing induction of IFNs when MDMs were exposed to HIV before E2 treatment. These results offer a new mechanism of E2 on HIV inhibition. Future studies on the interplay between HIV and E2-mediated innate immune responses will likely provide insights relevant for development of effective strategies for HIV prevention.

  7. Conditional deletion of caspase-8 in macrophages alters macrophage activation in a RIPK-dependent manner.

    PubMed

    Cuda, Carla M; Misharin, Alexander V; Khare, Sonal; Saber, Rana; Tsai, FuNien; Archer, Amy M; Homan, Philip J; Haines, G Kenneth; Hutcheson, Jack; Dorfleutner, Andrea; Budinger, G R Scott; Stehlik, Christian; Perlman, Harris

    2015-10-16

    Although caspase-8 is a well-established initiator of apoptosis and suppressor of necroptosis, recent evidence suggests that this enzyme maintains functions beyond its role in cell death. As cells of the innate immune system, and in particular macrophages, are now at the forefront of autoimmune disease pathogenesis, we examined the potential involvement of caspase-8 within this population. Cre (LysM) Casp8 (fl/fl) mice were bred via a cross between Casp8 (fl/fl) mice and Cre (LysM) mice, and RIPK3 (-/-) Cre (LysM) Casp8 (fl/fl) mice were generated to assess the contribution of receptor-interacting serine-threonine kinase (RIPK)3. Immunohistochemical and immunofluorescence analyses were used to examine renal damage. Flow cytometric analysis was employed to characterize splenocyte distribution and activation. Cre (LysM) Casp8 (fl/fl) mice were treated with either Toll-like receptor (TLR) agonists or oral antibiotics to assess their response to TLR activation or TLR agonist removal. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure cytokine/chemokine and immunoglobulin levels in serum and cytokine levels in cell culture studies. In vitro cell culture was used to assess macrophage response to cell death stimuli, TLR activation, and M1/M2 polarization. Data were compared using the Mann-Whitney U test. Loss of caspase-8 expression in macrophages promotes onset of a mild systemic inflammatory disease, which is preventable by the deletion of RIPK3. In vitro cell culture studies reveal that caspase-8-deficient macrophages are prone to a caspase-independent death in response to death receptor ligation; yet, caspase-8-deficient macrophages are not predisposed to unchecked survival, as analysis of mixed bone marrow chimeric mice demonstrates that caspase-8 deficiency does not confer preferential expansion of myeloid populations. Loss of caspase-8 in macrophages dictates the response to TLR activation, as injection of TLR ligands upregulates

  8. Macrophage Activation Syndrome in Paediatric Rheumatic Diseases.

    PubMed

    Islam, M I; Talukder, M K; Islam, M M; Laila, K; Rahman, S A

    2017-04-01

    Macrophage activation syndrome (MAS) is a potentially fatal complication of rheumatic disorders, which commonly occurs in systemic juvenile idiopathic arthritis (sJIA).This study was carried out with the aims of describing the clinical features, laboratory findings and outcomes of MAS associated with paediatric rheumatic diseases in the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU) and compare these results with previous studies on MAS. This retrospective study was conducted in the paediatric rheumatology wing of the Department of Paediatrics, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh. Clinical and laboratory profile of all the diagnosed cases of MAS were analyzed from the medical records from January 2010 to July 2015. Among 10 MAS patients, 6 were female and 4 were male. Seven patients of systemic JIA, two patients of SLE and one patient with Kawasaki Disease developed MAS in their course of primary disease. Mean duration of primary disease prior to development of MAS was 2.9 years and mean age of onset was 9.1 years. High continued fever and new onset hepatosplenomegaly were the hallmark of the clinical presentation. White blood cell count and platelet count came down from the mean of 16.2 to 10.2×10⁹/L and 254 to 90×10⁹/L. Mean erythrocyte sedimentation rate was dropped from 56 to 29 mm/hr. Six patients had abnormal liver enzyme level (ALT) and 5 had evidence of coagulopathy (prolonged prothrombin time and APTT) at the onset of disease. Hyperferritinnemia were found in all the patients. Bone marrow study was done in 5 patients but features of hamophagocytosis were found only in 2 patients. All patients received intravenous steroid and 3 patients who did not respond to steroid received additional cyclosporine. Mortality rate was 30% in this series. Macrophage activation syndrome is a fatal complication of paediatric rheumatic diseases among which s-JIA was predominant. Early diagnosis and

  9. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    PubMed

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.

  10. Comparison of antiviral activity of lambda-interferons against HIV replication in macrophages.

    PubMed

    Wang, Yizhong; Li, Jieliang; Wang, Xu; Zhou, Yu; Zhang, Ting; Ho, Wenzhe

    2015-03-01

    Lambda-interferons (IFN-λs) have been demonstrated as having the ability to inhibit HIV replication in macrophages. However, specific differences in signaling transduction and anti-HIV activity in macrophages between different IFN-λs are unclear. Here, we showed that although all 3 members of (IFN-λ1, λ2, and λ3) IFN-λ family induced the expression of a number of genes of janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway in monocyte-derived macrophages, IFN-λ1 or IFN-λ3 induced higher levels of antiviral IFN-stimulated genes (ISGs) expression than did IFN-λ2. In addition, IFN-λ1 or IFN-λ3 induced higher levels of several pattern recognition receptors (PPRs) than did IFN-λ2. Incubation of IFN-λs with HIV-infected macrophages showed that IFN-λ1 or IFN-λ3 is more potent in anti-HIV activity than IFN-λ2. We also showed that IFN-λ treatment before HIV infection was more potent in HIV inhibition than that after HIV infection. Further investigations showed that the inductions of ISGs and PPRs expression by IFN-λs were largely compromised by HIV infection. These findings provide further experimental evidence that IFN-λs have therapeutic potential in treatment of HIV infection.

  11. Thioredoxin Peroxidase Secreted by Fasciola hepatica Induces the Alternative Activation of Macrophages

    PubMed Central

    Donnelly, Sheila; O'Neill, Sandra M.; Sekiya, Mary; Mulcahy, Grace; Dalton, John P.

    2005-01-01

    Alternatively activated macrophages (AAMφ) are primarily associated with the chronic stages of parasitic infections and the development of a polarized Th2 response. We have shown that Fasciola hepatica infection of BALB/c mice induces a polarized Th2 response during both the latent and chronic stage of disease. The activation status of macrophages was analyzed in this model of helminth infection by evaluating the expression of genetic markers of alternative activation, namely, Fizz1, Ym1, and Arg1. AAMφ were recruited to the peritoneum of mice within 24 h of F. hepatica infection and after intraperitoneal injection of parasite excretory-secretory (ES) products. Administration of a recombinant antioxidant thioredoxin peroxidase (TPx), which is contained within the ES products, also induced the recruitment of AAMφ to the peritoneum. In vitro studies showed that this recombinant TPx directly converts RAW 264.7 macrophages to an alternatively activated phenotype characterized by the production of high levels of interleukin-10 (IL-10), prostaglandin E2, corresponding with low levels of IL-12. Our data suggest that the Th2 responses induced by the helminth F. hepatica are mediated through the secretion of molecules, one of which is TPx, that induce the recruitment and alternative activation of macrophages. PMID:15618151

  12. Retinal Pigment Epithelial Cells Suppress Phagolysosome Activation in Macrophages

    PubMed Central

    Wang, Eric; Choe, Yoona; Ng, Tat Fong; Taylor, Andrew W.

    2017-01-01

    Purpose The eye is an immune-privileged microenvironment that has adapted several mechanisms of immune regulation to prevent inflammation. One of these potential mechanisms is retinal pigment epithelial cells (RPE) altering phagocytosis in macrophages. Methods The conditioned media of RPE eyecups from eyes of healthy mice and mice with experimental autoimmune uveitis (EAU) were used to treat primary macrophage phagocytizing pHrodo bacterial bioparticles. In addition, the neuropeptides were depleted from the conditioned media of healthy RPE eyecups and used to treat phagocytizing macrophages. The conditioned media from healthy and EAU RPE eyecups were assayed for IL-6, and IL-6 was added to the healthy conditioned media, and neutralized in the EAU conditioned media. The macrophages were treated with the conditioned media and assayed for fluorescence. The macrophages were imaged, and the fluorescence intensity, relative to active phagolysosomes, was measured. Also, the macrophages were assayed using fluorescent viability dye staining. Results The conditioned media from healthy, but not from EAU RPE eyecups suppressed phagolysosome activation. Depletion of the neuropeptides alpha-melanocyte–stimulating hormone and neuropeptide Y from the healthy RPE eyecup conditioned media resulted in macrophage death. In the EAU RPE eyecup conditioned media was 0.96 ± 0.18 ng/mL of IL-6, and when neutralized the conditioned media suppressed phagolysosome activation. Conclusions The healthy RPE through soluble molecules, including alpha-melanocyte–stimulating hormone and neuropeptide Y, suppresses the activation of the phagolysosome in macrophages. In EAU, the IL-6 produced by the RPE promotes the activation of phagolysosomes in macrophages. These results demonstrate that under healthy conditions, RPE promotes an altered pathway of phagocytized material in macrophages with implications on antigen processing and clearance. PMID:28241314

  13. Modulations of 92kDa gelatinase B and its inhibitors are associated with HIV-1 infection in human macrophage cultures.

    PubMed

    Chapel, C; Camara, V; Clayette, P; Salvat, S; Mabondzo, A; Leblond, V; Marcé, D; Lafuma, C; Dormont, D

    1994-11-15

    The macrophage-secreted 92-kDa type IV collagenase and metalloproteinases play a critical role in cell microenvironment regulation and cell movement. HIV infection of macrophages might be capable of deregulating the expression of these gelatinases. Hence, human monocyte-derived-macrophages were infected by lymphotropic HIV-1/Lai and monocytropic HIV-1/DAS isolates. Gelatinase activity and gelatinase and inhibitor (TIMP, alpha 2M) biosyntheses were evaluated in supernatants and cellular extracts. Our data suggest that HIV infection facilitates gelatinase secretion and intracellular inhibitor retention. These argue for the increase of free proteinase that could degrade barriers, which would permit cell movement and viral dissemination into tissues.

  14. Impaired Toll-Like Receptor 3-Mediated Immune Responses from Macrophages of Patients Chronically Infected with Hepatitis C Virus

    PubMed Central

    Qian, Feng; Bolen, Christopher R.; Jing, Chunxia; Wang, Xiaomei; Zheng, Wei; Zhao, Hongyu; Fikrig, Erol; Bruce, R. Douglas; Kleinstein, Steven H.

    2013-01-01

    Hepatitis C virus (HCV) is the most common chronic blood-borne infection in the United States, with the majority of patients becoming chronically infected and a subset (20%) progressing to cirrhosis and hepatocellular carcinoma. Individual variations in immune responses may help define successful resistance to infection with HCV. We have compared the immune response in primary macrophages from patients who have spontaneously cleared HCV (viral load negative [VL−], n = 37) to that of primary macrophages from HCV genotype 1 chronically infected (VL+) subjects (n = 32) and found that macrophages from VL− subjects have an elevated baseline expression of Toll-like receptor 3 (TLR3). Macrophages from HCV patients were stimulated ex vivo through the TLR3 pathway and assessed using gene expression arrays and pathway analysis. We found elevated TLR3 response genes and pathway activity from VL− subjects. Furthermore, macrophages from VL− subjects showed higher production of beta interferon (IFN-β) and related IFN response genes by quantitative PCR (Q-PCR) and increased phosphorylation of STAT-1 by immunoblotting. Analysis of polymorphisms in TLR3 revealed a significant association of intronic TLR3 polymorphism (rs13126816) with the clearance of HCV and the expression of TLR3. Of note, peripheral blood mononuclear cells (PBMCs) from the same donors showed opposite changes in gene expression, suggesting ongoing inflammatory responses in PBMCs from VL+ HCV patients. Our results suggest that an elevated innate immune response enhances HCV clearance mechanisms and may offer a potential therapeutic approach to increase viral clearance. PMID:23220997

  15. Cryptococcus neoformans Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of Infection.

    PubMed

    Bojarczuk, Aleksandra; Miller, Katie A; Hotham, Richard; Lewis, Amy; Ogryzko, Nikolay V; Kamuyango, Alfred A; Frost, Helen; Gibson, Rory H; Stillman, Eleanor; May, Robin C; Renshaw, Stephen A; Johnston, Simon A

    2016-02-18

    Cryptococcus neoformans is a significant fungal pathogen of immunocompromised patients. Many questions remain regarding the function of macrophages in normal clearance of cryptococcal infection and the defects present in uncontrolled cryptococcosis. Two current limitations are: 1) The difficulties in interpreting studies using isolated macrophages in the context of the progression of infection, and 2) The use of high resolution imaging in understanding immune cell behavior during animal infection. Here we describe a high-content imaging method in a zebrafish model of cryptococcosis that permits the detailed analysis of macrophage interactions with C. neoformans during infection. Using this approach we demonstrate that, while macrophages are critical for control of C. neoformans, a failure of macrophage response is not the limiting defect in fatal infections. We find phagocytosis is restrained very early in infection and that increases in cryptococcal number are driven by intracellular proliferation. We show that macrophages preferentially phagocytose cryptococci with smaller polysaccharide capsules and that capsule size is greatly increased over twenty-four hours of infection, a change that is sufficient to severely limit further phagocytosis. Thus, high-content imaging of cryptococcal infection in vivo demonstrates how very early interactions between macrophages and cryptococci are critical in the outcome of cryptococcosis.

  16. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation

    PubMed Central

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-01-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection. PMID:25075784

  17. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages

    PubMed Central

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Background Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Methods Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. Results ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1

  18. Caspase-independent apoptosis in infected macrophages triggered by sulforaphane via Nrf2/p38 signaling pathways

    PubMed Central

    Bonay, M; Roux, A-L; Floquet, J; Retory, Y; Herrmann, J-L; Lofaso, F; Deramaudt, TB

    2015-01-01

    Mycobacterium abscessus (Mabs), a non-tuberculous mycobacterium, is an emerging and rapidly growing opportunistic pathogen that is frequently found in patients with cystic fibrosis and in immunosuppressed patients. Its high tolerance to antibiotics is of great concern for public health. In this study, our results showed that human THP-1-derived macrophages infected with M. abscessus presented an increase in ROS production and cell necrosis. In addition, M. abscessus infection triggered activation of the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway, and the induction of HO-1 and NQO1 expression levels. Interestingly, pretreatment of macrophages with sulforaphane (SFN), an activator of the antioxidant key regulator Nrf2, followed by M. abscessus infection significantly decreased mycobacterial burden. We demonstrated that this reduction in mycobacterial growth was due to an activation in cell apoptosis in SFN-pretreated and M. abscessus-infected macrophages. Pretreatment with specific MAPK inhibitors, PD98059, SP600125, and SB203580 to ERK, JNK, and p38 respectively, failed to inhibit induction of Nrf2 expression, suggesting that Nrf2 signaling pathway was upstream of MAPK signaling. Activation of cell apoptosis was caspase 3/7 independent but p38 MAPK dependent. Moreover, p38 MAPK induction was abolished in macrophages transfected with Nrf2 siRNA. In addition, p38 inhibitor abolished Nrf2-dependent apoptosis in infected macrophages. Taken together, our results indicate that modulation of the Nrf2 signaling using Nrf2 activators may help potentiate the actual drug therapies used to treat mycobacterial infection. PMID:27551455

  19. Molecular and epigenetic basis of macrophage polarized activation.

    PubMed

    Porta, Chiara; Riboldi, Elena; Ippolito, Alessandro; Sica, Antonio

    2015-08-01

    Macrophages are unique cells for origin, heterogeneity and plasticity. At steady state most of macrophages are derived from fetal sources and maintained in adulthood through self-renewing. Despite sharing common progenitors, a remarkable heterogeneity characterized tissue-resident macrophages indicating that local signals educate them to express organ-specific functions. Macrophages are extremely plastic: chromatin landscape and transcriptional programs can be dynamically re-shaped in response to microenvironmental changes. Owing to their ductility, macrophages are crucial orchestrators of both initiation and resolution of immune responses and key supporters of tissue development and functions in homeostatic and pathological conditions. Herein, we describe current understanding of heterogeneity and plasticity of macrophages using the M1-M2 dichotomy as operationally useful simplification of polarized activation. We focused on the complex network of signaling cascades, metabolic pathways, transcription factors, and epigenetic changes that control macrophage activation. In particular, this network was addressed in sepsis, as a paradigm of a pathological condition determining dynamic macrophage reprogramming.

  20. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gamma delta T cells.

    PubMed

    Dalton, Jane E; Howell, Gareth; Pearson, Jayne; Scott, Phillip; Carding, Simon R

    2004-09-15

    Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses. Copyright 2004 The American Association of Immunologists, Inc.

  1. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  2. Macrophages are the determinant of resistance to and outcome of nonlethal Babesia microti infection in mice.

    PubMed

    Terkawi, Mohamad Alaa; Cao, Shinuo; Herbas, Maria S; Nishimura, Maki; Li, Yan; Moumouni, Paul Franck Adjou; Pyarokhil, Asadullah Hamid; Kondoh, Daisuke; Kitamura, Nobuo; Nishikawa, Yoshifumi; Kato, Kentaro; Yokoyama, Naoaki; Zhou, Jinlin; Suzuki, Hiroshi; Igarashi, Ikuo; Xuan, Xuenan

    2015-01-01

    In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ(-/-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.

  3. Impact of Leishmania Infection on Host Macrophage Nuclear Physiology and Nucleopore Complex Integrity

    PubMed Central

    Isnard, Amandine; Christian, Jan G.; Kodiha, Mohamed; Stochaj, Ursula; McMaster, W. Robert; Olivier, Martin

    2015-01-01

    The protease GP63 is an important virulence factor of Leishmania parasites. We previously showed that GP63 reaches the perinuclear area of host macrophages and that it directly modifies nuclear translocation of the transcription factors NF-κB and AP-1. Here we describe for the first time, using molecular biology and in-depth proteomic analyses, that GP63 alters the host macrophage nuclear envelope, and impacts on nuclear processes. Our results suggest that GP63 does not appear to use a classical nuclear localization signal common between Leishmania species for import, but degrades nucleoporins, and is responsible for nuclear transport alterations. In the nucleoplasm, GP63 activity accounts for the degradation and mislocalization of proteins involved amongst others in gene expression and in translation. Collectively, our data indicates that Leishmania infection strongly affects nuclear physiology, suggesting that targeting of nuclear physiology may be a strategy beneficial for virulent Leishmania parasites. PMID:25826301

  4. Macrophage Colony Stimulating Factor Derived from CD4+ T Cells Contributes to Control of a Blood-Borne Infection

    PubMed Central

    de Melo, Gabrielly L.; Anidi, Chioma; Hamburger, Rebecca; Pham, Jennifer

    2016-01-01

    Dynamic regulation of leukocyte population size and activation state is crucial for an effective immune response. In malaria, Plasmodium parasites elicit robust host expansion of macrophages and monocytes, but the underlying mechanisms remain unclear. Here we show that myeloid expansion during P. chabaudi infection is dependent upon both CD4+ T cells and the cytokine Macrophage Colony Stimulating Factor (MCSF). Single-cell RNA-Seq analysis on antigen-experienced T cells revealed robust expression of Csf1, the gene encoding MCSF, in a sub-population of CD4+ T cells with distinct transcriptional and surface phenotypes. Selective deletion of Csf1 in CD4+ cells during P. chabaudi infection diminished proliferation and activation of certain myeloid subsets, most notably lymph node-resident CD169+ macrophages, and resulted in increased parasite burden and impaired recovery of infected mice. Depletion of CD169+ macrophages during infection also led to increased parasitemia and significant host mortality, confirming a previously unappreciated role for these cells in control of P. chabaudi. This work establishes the CD4+ T cell as a physiologically relevant source of MCSF in vivo; probes the complexity of the CD4+ T cell response during type 1 infection; and delineates a novel mechanism by which T helper cells regulate myeloid cells to limit growth of a blood-borne intracellular pathogen. PMID:27923070

  5. Inhibitory effect of deferoxamine or macrophage activation on transformation of Paracoccidioides brasiliensis conidia ingested by macrophages: reversal by holotransferrin.

    PubMed

    Cano, L E; Gomez, B; Brummer, E; Restrepo, A; Stevens, D A

    1994-04-01

    Conidia of P. brasiliensis ingested by murine macrophages at 37 degrees C showed enhanced transformation to yeast cells and further intracellular growth compared with conidia in culture medium alone. Treatment of macrophages with the iron chelator deferoxamine inhibited the intracellular conidium-to-yeast transformation. Cytokine-activated macrophages could also exert this inhibitory effect. Holotransferrin reversed the inhibitory effect of either deferoxamine or activated macrophages on intracellular conidium-to-yeast transformation. These results indicate that iron restriction is one of the mechanisms by which activated macrophages control the intracellular transformation of ingested conidia and growth of yeast cells.

  6. Inhibitory effect of deferoxamine or macrophage activation on transformation of Paracoccidioides brasiliensis conidia ingested by macrophages: reversal by holotransferrin.

    PubMed Central

    Cano, L E; Gomez, B; Brummer, E; Restrepo, A; Stevens, D A

    1994-01-01

    Conidia of P. brasiliensis ingested by murine macrophages at 37 degrees C showed enhanced transformation to yeast cells and further intracellular growth compared with conidia in culture medium alone. Treatment of macrophages with the iron chelator deferoxamine inhibited the intracellular conidium-to-yeast transformation. Cytokine-activated macrophages could also exert this inhibitory effect. Holotransferrin reversed the inhibitory effect of either deferoxamine or activated macrophages on intracellular conidium-to-yeast transformation. These results indicate that iron restriction is one of the mechanisms by which activated macrophages control the intracellular transformation of ingested conidia and growth of yeast cells. PMID:8132359

  7. Functional evaluation of gene silencing on macrophages derived from U937 cells using interference RNA (shRNA) in a model of macrophages infected with Leishmania (Viannia) braziliensis.

    PubMed

    Ovalle-Bracho, Clemencia; Londoño-Barbosa, Diana A; Franco-Muñoz, Carlos; Clavijo-Ramírez, Carlos

    2015-12-01

    Leishmaniasis development is multifactorial; nonetheless, the establishment of the infection, which occurs by the survival and replication of the parasite inside its main host cell, the macrophage, is mandatory. Thus, the importance of studying the molecular mechanisms involved in the Leishmania-macrophage interaction is highlighted. The aim of this study was to characterize a cellular model of macrophages derived from U937 cells that would allow for the identification of infection phenotypes induced by genetic silencing with interference RNA in the context of macrophages infected with Leishmania (Viannia) braziliensis. The model was standardized by silencing an exogenous gene (gfp), an endogenous gene (lmna) and a differentially expressed gene between infected and non-infected macrophages (gro-β). The silencing process was successful for the three genes studied, obtaining reductions of 88·9% in the GFP levels, 87·5% in LMNA levels and 74·4% for Gro-β with respect to the corresponding control cell lines. The cell model revealed changes in the infection phenotype of the macrophages in terms of number of amastigotes per infected macrophage, number of amastigotes per sampled macrophage and percentage of infected macrophages as a result of gene silencing. Thus, this cell model constitutes a research platform for the study of parasite-host interactions and for the identification of potentially therapeutic targets.

  8. Extract from Calotropis procera latex activates murine macrophages.

    PubMed

    Seddek, Abdel latif Shaker; Mahmoud, Motamed Elsayed; Shiina, Takahiko; Hirayama, Haruko; Iwami, Momoe; Miyazawa, Seiji; Nikami, Hideki; Takewaki, Tadashi; Shimizu, Yasutake

    2009-07-01

    Calotropis procera latex has long been used in traditional medicines. Extracts from C. procera latex have been reported to have various pharmacological actions, including protection from myocardial infarction, hepatoprotective action, antitumor activity, antinociceptive, and pro- and anti-inflammatory actions. To evaluate the immunomodulatory functions of the water-soluble C. procera extract (CPE), we investigated its ability to activate macrophages-effector cells in inflammatory and immune responses. Intraperitoneal injection of CPE in mice (2 mg/mouse) induced migration of macrophages to the intraperitoneal cavity, confirming the proinflammatory effects of water-soluble CPE. The direct effects of CPE on macrophages were then assessed by measuring the production of nitric oxide (NO) as an indicator for macrophage activation. Addition of CPE (1-10 microg/ml) to the culture medium of the murine monocyte/macrophage cell line RAW264.7 caused an increase in NO production in a time- and dose-dependent manner. CPE-elicited NO production was blocked by application of an inhibitor of inducible nitric oxide synthase (iNOS). Expression of iNOS mRNA was induced by treatment of cultured macrophages with CPE. Injection of CPE in mice also resulted in an increase in plasma NO level. The results suggest that CPE activates macrophages and facilitates NO production via up-regulation of iNOS gene expression.

  9. HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar macrophages.

    PubMed

    Staitieh, Bashar S; Ding, Lingmei; Neveu, Wendy A; Spearman, Paul; Guidot, David M; Fan, Xian

    2017-08-01

    Respiratory complications occur frequently in individuals living with human immunodeficiency-1 virus (HIV) infection, and there is evidence that HIV-related oxidative stress impairs alveolar macrophage immune function. We hypothesized that nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master transcription factor that activates the antioxidant response element (ARE) and regulates antioxidant defenses, has an important role in alveolar macrophage (AMs) immune dysfunction in individuals with HIV infections. To test that hypothesis, we analyzed human monocyte-derived macrophages (MDMs) that were either infected with HIV-1 or were exposed to the HIV-related proteins gp120 and Tat ex vivo and determined that either stress affected the expression of Nrf2 and the Nrf2-ARE-dependent genes for NAD(P)H dehydrogenase, quinone 1 (NQO1) and glutamate-cysteine ligase, catalytic subunit (GCLC). We then determined that the expression of Nrf2, NQO1, and GCLC was significantly decreased in primary AMs isolated from HIV-1 transgenic rats. In parallel, treating a rat macrophage cell line (NR8383 cells) with the HIV-related proteins gp120 or Tat similarly decreased the gene and protein expression of Nrf2, NQO1, and GCLC. Further, phagocytic function was decreased in both human MDMs infected with HIV-1 and primary AMs from HIV-1 transgenic rats. Importantly, treating HIV-1-infected human MDMs or AMs from HIV-1 transgenic rats with sulforaphane (SFN, an Nrf2 activator) significantly improved their phagocytic function. The salutary effects of SFN were abrogated by silencing RNA to Nrf2 in wild-type rat macrophages. Our findings demonstrate that HIV-1 infection and exposure to HIV-1-related proteins inhibit Nrf2-ARE activity in the AMs and impair their phagocytic function. Treatments targeted at increasing Nrf2-ARE activity could, therefore, enhance lung innate immunity in people living with HIV-1. © Society for Leukocyte Biology.

  10. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    PubMed

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  11. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages.

    PubMed

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-05-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. © The American Society of Tropical Medicine and Hygiene.

  12. Trypanosoma cruzi Calreticulin Topographical Variations in Parasites Infecting Murine Macrophages

    PubMed Central

    González, Andrea; Valck, Carolina; Sánchez, Gittith; Härtel, Steffen; Mansilla, Jorge; Ramírez, Galia; Fernández, María Soledad; Arias, José Luis; Galanti, Norbel; Ferreira, Arturo

    2015-01-01

    Trypanosoma cruzi calreticulin (TcCRT), a 47-kDa chaperone, translocates from the endoplasmic reticulum to the area of flagellum emergence. There, it binds to complement components C1 and mannan-binding lectin (MBL), thus acting as a main virulence factor, and inhibits the classical and lectin pathways. The localization and functions of TcCRT, once the parasite is inside the host cell, are unknown. In parasites infecting murine macrophages, polyclonal anti-TcCRT antibodies detected TcCRT mainly in the parasite nucleus and kinetoplast. However, with a monoclonal antibody (E2G7), the resolution and specificity of the label markedly improved, and TcCRT was detected mainly in the parasite kinetoplast. Gold particles, bound to the respective antibodies, were used as probes in electron microscopy. This organelle may represent a stopover and accumulation site for TcCRT, previous its translocation to the area of flagellum emergence. Finally, early during T. cruzi infection and by unknown mechanisms, an important decrease in the number of MHC-I positive host cells was observed. PMID:25758653

  13. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus.

    PubMed

    Martyniszyn, Lech; Szulc-Dąbrowska, Lidia; Boratyńska-Jasińska, Anna; Struzik, Justyna; Winnicka, Anna; Niemiałtowski, Marek

    2013-10-01

    Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.