Science.gov

Sample records for inferior parietal lobule

  1. Spatial selectivity in the temporoparietal junction, inferior frontal sulcus, and inferior parietal lobule.

    PubMed

    Hansen, Kathleen A; Chu, Carlton; Dickinson, Annelise; Pye, Brandon; Weller, J Patrick; Ungerleider, Leslie G

    2015-01-01

    Spatial selectivity, as measured by functional magnetic resonance imaging (fMRI) activity patterns that vary consistently with the location of visual stimuli, has been documented in many human brain regions, notably the occipital visual cortex and the frontal and parietal regions that are active during endogenous, goal-directed attention. We hypothesized that spatial selectivity also exists in regions that are active during exogenous, stimulus-driven attention. To test this hypothesis, we acquired fMRI data while subjects maintained passive fixation. At jittered time intervals, a briefly presented wedge-shaped array of rapidly expanding circles appeared at one of three contralateral or one of three ipsilateral locations. Positive fMRI activations were identified in multiple brain regions commonly associated with exogenous attention, including the temporoparietal junction, the inferior parietal lobule, and the inferior frontal sulcus. These activations were not organized as a map across the cortical surface. However, multivoxel pattern analysis of the fMRI activity correctly classified every pair of stimulus locations, demonstrating that patterns of fMRI activity were correlated with spatial location. These observations held for both contralateral and ipsilateral stimulus pairs as well as for stimuli of different textures (radial checkerboard) and shapes (squares and rings). Permutation testing verified that the obtained accuracies were not due to systematic biases and demonstrated that the findings were statistically significant. PMID:26382006

  2. Spatial selectivity in the temporoparietal junction, inferior frontal sulcus, and inferior parietal lobule

    PubMed Central

    Hansen, Kathleen A.; Chu, Carlton; Dickinson, Annelise; Pye, Brandon; Weller, J. Patrick; Ungerleider, Leslie G.

    2015-01-01

    Spatial selectivity, as measured by functional magnetic resonance imaging (fMRI) activity patterns that vary consistently with the location of visual stimuli, has been documented in many human brain regions, notably the occipital visual cortex and the frontal and parietal regions that are active during endogenous, goal-directed attention. We hypothesized that spatial selectivity also exists in regions that are active during exogenous, stimulus-driven attention. To test this hypothesis, we acquired fMRI data while subjects maintained passive fixation. At jittered time intervals, a briefly presented wedge-shaped array of rapidly expanding circles appeared at one of three contralateral or one of three ipsilateral locations. Positive fMRI activations were identified in multiple brain regions commonly associated with exogenous attention, including the temporoparietal junction, the inferior parietal lobule, and the inferior frontal sulcus. These activations were not organized as a map across the cortical surface. However, multivoxel pattern analysis of the fMRI activity correctly classified every pair of stimulus locations, demonstrating that patterns of fMRI activity were correlated with spatial location. These observations held for both contralateral and ipsilateral stimulus pairs as well as for stimuli of different textures (radial checkerboard) and shapes (squares and rings). Permutation testing verified that the obtained accuracies were not due to systematic biases and demonstrated that the findings were statistically significant. PMID:26382006

  3. Does the left inferior parietal lobule contribute to multiplication facts?

    PubMed

    van Harskamp, Natasja J; Rudge, Peter; Cipolotti, Lisa

    2005-12-01

    We report a single case, who presents with a selective and severe impairment for multiplication and division facts. His ability to retrieve subtraction and addition facts was entirely normal. His brain lesion affected the left superior temporal and to lesser extent in the left middle temporal gyri and the left precentral gyrus extending inferiorly to the pars opercularis of the left frontal lobe. Interestingly, the left supramarginal and angular gyri (SMG/AG) were spared. This finding realised a double dissociation with a previously reported patient, who despite lesions in the SMG/AG did not have a multiplication impairment (van Harskamp et al., 2002). The previously suggested crucial role of the SMG/AG in the retrieval of simple multiplication facts is therefore poorly supported (Cohen et al., 2000; Lee, 2000). PMID:16350657

  4. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons.

  5. ERP adaptation provides direct evidence for early mirror neuron activation in the inferior parietal lobule.

    PubMed

    Möhring, Nicole; Brandt, Emily S L; Mohr, Bettina; Pulvermüller, Friedemann; Neuhaus, Andres H

    2014-10-01

    Mirror neuron systems are frequently investigated by assessing overlapping brain activity during observation and execution of actions; however, distinct neuronal subpopulations may be activated that fall below the spatial resolution of magnetic resonance techniques. This shortfall can be resolved using repetition suppression paradigms that identify physiological adaptation processes caused by repeated activation of identical neuronal circuits. Here, event-related potentials were used to investigate the time course of mirror neuron circuit activation using repetition suppression within and across action observation and action execution modalities. In a lip-reading and speech production paradigm, the N170 component indexed stimulus repetition by adapting to both cross-modal and intra-modal repetitions in the left hemisphere. Neuronal source localization revealed activation of the left inferior parietal lobule during cross-modal relative to intra-modal trials. These results provide support for the position that the same neuronal circuits are activated in perceiving and performing articulatory actions. Moreover, our data strongly suggest that inferior parietal lobule mirror neurons are activated relatively early in time, which indicates partly automatic processes of linguistic perception and mirroring. Repetition suppression paradigms therefore help to elucidate neuronal correlates of different cognitive processes and may serve as a starting point for advanced electrophysiological research on mirror neurons. PMID:25017963

  6. A functional architecture of optic flow in the inferior parietal lobule of the behaving monkey.

    PubMed

    Raffi, Milena; Siegel, Ralph M

    2007-02-07

    The representation of navigational optic flow across the inferior parietal lobule was assessed using optical imaging of intrinsic signals in behaving monkeys. The exposed cortex, corresponding to the dorsal-most portion of areas 7a and dorsal prelunate (DP), was imaged in two hemispheres of two rhesus monkeys. The monkeys actively attended to changes in motion stimuli while fixating. Radial expansion and contraction, and rotation clockwise and counter-clockwise optic flow stimuli were presented concentric to the fixation point at two angles of gaze to assess the interrelationship between the eye position and optic flow signal. The cortical response depended upon the type of flow and was modulated by eye position. The optic flow selectivity was embedded in a patchy architecture within the gain field architecture. All four optic flow stimuli tested were represented in areas 7a and DP. The location of the patches varied across days. However the spatial periodicity of the patches remained constant across days at approximately 950 and 1100 microm for the two animals examined. These optical recordings agree with previous electrophysiological studies of area 7a, and provide new evidence for flow selectivity in DP and a fine scale description of its cortical topography. That the functional architectures for optic flow can change over time was unexpected. These and earlier results also from inferior parietal lobule support the inclusion of both static and dynamic functional architectures that define association cortical areas and ultimately support complex cognitive function.

  7. A Functional Architecture of Optic Flow in the Inferior Parietal Lobule of the Behaving Monkey

    PubMed Central

    Raffi, Milena; Siegel, Ralph M.

    2007-01-01

    The representation of navigational optic flow across the inferior parietal lobule was assessed using optical imaging of intrinsic signals in behaving monkeys. The exposed cortex, corresponding to the dorsal-most portion of areas 7a and dorsal prelunate (DP), was imaged in two hemispheres of two rhesus monkeys. The monkeys actively attended to changes in motion stimuli while fixating. Radial expansion and contraction, and rotation clockwise and counter-clockwise optic flow stimuli were presented concentric to the fixation point at two angles of gaze to assess the interrelationship between the eye position and optic flow signal. The cortical response depended upon the type of flow and was modulated by eye position. The optic flow selectivity was embedded in a patchy architecture within the gain field architecture. All four optic flow stimuli tested were represented in areas 7a and DP. The location of the patches varied across days. However the spatial periodicity of the patches remained constant across days at ∼950 and 1100 µm for the two animals examined. These optical recordings agree with previous electrophysiological studies of area 7a, and provide new evidence for flow selectivity in DP and a fine scale description of its cortical topography. That the functional architectures for optic flow can change over time was unexpected. These and earlier results also from inferior parietal lobule support the inclusion of both static and dynamic functional architectures that define association cortical areas and ultimately support complex cognitive function. PMID:17285147

  8. Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia.

    PubMed

    Liu, Xingyun; Zhuo, Chuanjun; Qin, Wen; Zhu, Jiajia; Xu, Lixue; Xu, Yongjie; Yu, Chunshui

    2016-01-01

    Structural and functional alterations in the inferior parietal lobule (IPL) in schizophrenia have been frequently reported; however, the IPL connectivity changes in schizophrenia remain largely unknown. Based on heterogeneity of the IPL in structure, connection and function, we hypothesize that the resting-state functional connectivities (rsFCs) of the IPL subregions are differentially affected in schizophrenia. This study included 95 schizophrenia patients and 104 healthy controls. The IPL subregions were defined according to a previous in vivo connection-based parcellation study. We calculated the rsFC of each IPL subregion and compared them between the two groups while controlling for the effects of age, gender, and grey matter volume. Among the six subregions of the left IPL and the five subregions of the right IPL, only the bilateral PFm (a transition zone of the IPL) subregions exhibited abnormal rsFC in schizophrenia. Specifically, the left PFm showed increased rsFC with the bilateral lingual gyri in schizophrenia patients than in healthy controls. The right PFm exhibited increased rsFC with the right lingual gyrus and inferior occipital gyrus, and bilateral mid-cingulate and sensorimotor cortices in schizophrenia patients. These findings suggest a selective rsFC abnormality in the IPL subregions in schizophrenia, characterized by the increased rsFC between the PFm subregion of the IPL and the visual and sensorimotor areas. PMID:27354957

  9. Motor imagery-based skill acquisition disrupted following rTMS of the inferior parietal lobule.

    PubMed

    Kraeutner, Sarah N; Keeler, Laura T; Boe, Shaun G

    2016-02-01

    Motor imagery (MI), the mental rehearsal of motor tasks, has promise as a therapy in post-stroke rehabilitation. The potential effectiveness of MI is attributed to the facilitation of plasticity in numerous brain regions akin to those recruited for physical practice. It is suggested, however, that MI relies more heavily on regions commonly affected post-stroke, including left hemisphere parietal regions involved in visuospatial processes. However, the impact of parietal damage on MI-based skill acquisition that underlies rehabilitation remains unclear. Here, we examine the contribution of the left inferior parietal lobule (IPL) to MI using inhibitory transcranial magnetic stimulation (TMS) and an MI-based implicit sequence learning (ISL) paradigm. Participants (N = 27) completed the MI-based ISL paradigm after receiving continuous theta burst stimulation to the left IPL (TMS), or with the coil angled away from the scalp (sham). Reaction time differences (dRT) and effect sizes between implicit and random sequences assessed success of MI-based learning. Mean dRT for the sham group was 36.1 ± 28.2 ms (d = 0.71). Mean dRT in the TMS group was 7.7 ± 38.5 ms (d = 0.11). These results indicate that inhibition of the left IPL impaired MI-based learning. We conclude that the IPL and likely the visuospatial processes it mediates are critical for MI performance and thus MI-based skill acquisition or learning. Ultimately, these findings have implications for the use of MI in post-stroke rehabilitation.

  10. A causal role for inferior parietal lobule in emotion body perception.

    PubMed

    Engelen, Tahnée; de Graaf, Tom A; Sack, Alexander T; de Gelder, Beatrice

    2015-12-01

    Recent investigations of emotion body perception have established that perceiving fearful body expressions critically triggers activity in dorsal stream structures related to action preparation. However, the causal contributions of these areas remain unclear. In the current experiment, we addressed this issue using online transcranial magnetic stimulation (TMS) of the inferior parietal lobule (IPL) in the dorsal stream and visual areas (extrastriate body area - EBA in the ventral stream and early visual cortex - EVC). Participants performed a delayed-match-to-sample task requiring detection of a change in posture of body expressions that were either neutral or fearful. Results revealed a significant interaction between the stimulation site and the emotional valence of stimuli, indicating that processing of emotional versus neutral bodies is affected differentially by stimulation of different central areas in body processing. IPL stimulation specifically enhanced fearful body processing. These findings relate emotion processing to separate processing streams, and moreover provide the first evidence that IPL plays a causal role in processing of fearful bodies. PMID:26460868

  11. Quantitative phosphoproteomic analyses of the inferior parietal lobule from three different pathological stages of Alzheimer's disease.

    PubMed

    Triplett, Judy C; Swomley, Aaron M; Cai, Jian; Klein, Jon B; Butterfield, D Allan

    2015-01-01

    Alzheimer's disease (AD), the most common age-related neurodegenerative disorder, is clinically characterized by progressive neuronal loss resulting in loss of memory and dementia. AD is histopathologically characterized by the extensive distribution of senile plaques and neurofibrillary tangles, and synapse loss. Amnestic mild cognitive impairment (MCI) is generally accepted to be an early stage of AD. MCI subjects have pathology and symptoms that fall on the scale intermediately between 'normal' cognition with little or no pathology and AD. A rare number of individuals, who exhibit normal cognition on psychometric tests but whose brains show widespread postmortem AD pathology, are classified as 'asymptomatic' or 'preclinical' AD (PCAD). In this study, we evaluated changes in protein phosphorylation states in the inferior parietal lobule of subjects with AD, MCI, PCAD, and control brain using a 2-D PAGE proteomics approach in conjunction with Pro-Q Diamond phosphoprotein staining. Statistically significant changes in phosphorylation levels were found in 19 proteins involved in energy metabolism, neuronal plasticity, signal transduction, and oxidative stress response. Changes in the disease state phosphoproteome may provide insights into underlying mechanisms for the preservation of memory with expansive AD pathology in PCAD and the progressive memory loss in amnestic MCI that escalates to the dementia and the characteristic pathology of AD brain.

  12. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination

    PubMed Central

    Royal, Isabelle; Vuvan, Dominique T.; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle

    2016-01-01

    Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523

  13. Activation in the Right Inferior Parietal Lobule Reflects the Representation of Musical Structure beyond Simple Pitch Discrimination.

    PubMed

    Royal, Isabelle; Vuvan, Dominique T; Zendel, Benjamin Rich; Robitaille, Nicolas; Schönwiesner, Marc; Peretz, Isabelle

    2016-01-01

    Pitch discrimination tasks typically engage the superior temporal gyrus and the right inferior frontal gyrus. It is currently unclear whether these regions are equally involved in the processing of incongruous notes in melodies, which requires the representation of musical structure (tonality) in addition to pitch discrimination. To this aim, 14 participants completed two tasks while undergoing functional magnetic resonance imaging, one in which they had to identify a pitch change in a series of non-melodic repeating tones and a second in which they had to identify an incongruous note in a tonal melody. In both tasks, the deviants activated the right superior temporal gyrus. A contrast between deviants in the melodic task and deviants in the non-melodic task (melodic > non-melodic) revealed additional activity in the right inferior parietal lobule. Activation in the inferior parietal lobule likely represents processes related to the maintenance of tonal pitch structure in working memory during pitch discrimination. PMID:27195523

  14. Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study.

    PubMed

    Tsujii, Takeo; Sakatani, Kaoru; Masuda, Sayako; Akiyama, Takekazu; Watanabe, Shigeru

    2011-09-15

    This study used off-line repetitive transcranial magnetic stimulation (rTMS) to examine the roles of the superior parietal lobule (SPL) and inferior frontal gyrus (IFG) in a deductive reasoning task. Subjects performed a categorical syllogistic reasoning task involving congruent, incongruent, and abstract trials. Twenty four subjects received magnetic stimulation to the SPL region prior to the task. In the other 24 subjects, TMS was administered to the IFG region before the task. Stimulation lasted for 10min, with an inter-pulse frequency of 1Hz. We found that bilateral SPL (Brodmann area (BA) 7) stimulation disrupted performance on abstract and incongruent reasoning. Left IFG (BA 45) stimulation impaired congruent reasoning performance while paradoxically facilitating incongruent reasoning performance. This resulted in the elimination of the belief-bias. In contrast, right IFG stimulation only impaired incongruent reasoning performance, thus enhancing the belief-bias effect. These findings are largely consistent with the dual-process theory of reasoning, which proposes the existence of two different human reasoning systems: a belief-based heuristic system; and a logic-based analytic system. The present findings suggest that the left language-related IFG (BA 45) may correspond to the heuristic system, while bilateral SPL may underlie the analytic system. The right IFG may play a role in blocking the belief-based heuristic system for solving incongruent reasoning trials. This study could offer an insight about functional roles of distributed brain systems in human deductive reasoning by utilizing the rTMS approach.

  15. Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals.

    PubMed

    Zhang, Sheng; Li, Chiang-Shan R

    2014-02-01

    The human inferior parietal lobule (IPL) comprised the lateral bank of the intraparietal sulcus, angular gyrus, and supramarginal gyrus, defined on the basis of anatomical landmarks and cytoarchitectural organization of neurons. However, it is not clear as to whether the three areas represent functional subregions within the IPL. For instance, imaging studies frequently identified clusters of activities that cut across areal boundaries. Here, we used resting-state functional magnetic resonance imaging (fMRI) data to examine how individual voxels within the IPL are best clustered according to their connectivity to the whole brain. The results identified a best estimate of seven clusters that are hierarchically arranged as the anterior, middle, and posterior subregions. The anterior, middle, and posterior IPL are each significantly connected to the somatomotor areas, superior/middle/inferior frontal gyri, and regions of the default mode network. This functional segregation is supported by recent cytoarchitechtonics and tractography studies. IPL showed hemispheric differences in connectivity that accord with a predominantly left parietal role in tool use and language processing and a right parietal role in spatial attention and mathematical cognition. The functional clusters may also provide a more parsimonious and perhaps even accurate account of regional activations of the IPL during a variety of cognitive challenges, as reported in earlier fMRI studies. PMID:24308753

  16. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention.

    PubMed

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network. PMID:27047351

  17. The Neuroanatomical Basis for Posterior Superior Parietal Lobule Control Lateralization of Visuospatial Attention

    PubMed Central

    Wu, Yan; Wang, Jiaojian; Zhang, Yun; Zheng, Dingchen; Zhang, Jinfeng; Rong, Menglin; Wu, Huawang; Wang, Yinyan; Zhou, Ke; Jiang, Tianzi

    2016-01-01

    The right hemispheric dominance in visuospatial attention in human brain has been well established. Converging evidence has documented that ventral posterior parietal cortex (PPC) plays an important role in visuospatial attention. The role of dorsal PPC subregions, especially the superior parietal lobule (SPL) in visuospatial attention is still controversial. In the current study, we used repetitive transcranial magnetic stimulation (rTMS) and diffusion magnetic resonance imaging (MRI) techniques to test the role of posterior SPL in visuospatial attention and to investigate the potential neuroanatomical basis for right hemisphere dominance in visuospatial function. Transcranial magnetic stimulation (TMS) results unraveled that the right SPL predominantly mediated visuospatial attention compared to left SPL. Anatomical connections analyses between the posterior SPL and the intrahemispheric frontal subregions and the contralateral PPC revealed that right posterior SPL has stronger anatomical connections with the ipsilateral middle frontal gyrus (MFG), with the ipsilateral inferior frontal gyrus (IFG), and with contralateral PPC than that of the left posterior SPL. Furthermore, these asymmetric anatomical connections were closely related to behavioral performances. Our findings indicate that SPL plays a crucial role in regulating visuospatial attention, and dominance of visuospatial attention results from unbalanced interactions between the bilateral fronto-parietal networks and the interhemispheric parietal network. PMID:27047351

  18. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain.

    PubMed

    Kamali, A; Sair, H I; Radmanesh, A; Hasan, K M

    2014-09-26

    The temporo-parietal (TP) white matter connections between the inferior parietal lobule and superior temporal gyrus as part of the superior longitudinal fasciculus/arcuate fasciculus (SLF/AF) or middle longitudinal fasciculus (MdLF) have been studied in prior diffusion tensor tractography (DTT) studies. However, few studies have been focusing on the higher TP connections of the superior parietal lobule with the temporal lobe. These higher TP connections have been shown to have a role in core processes such as attention, memory, emotions, and language. Our most recent study, for the first time, hinted to the possibility of a long white matter connection interconnecting the superior parietal lobule (SPL) with the posterior temporal lobe in human brain which we call the SLF/AF TP-SPL and for a shorter abbreviation, the TP-SPL. We decided to further investigate this white matter connection using fiber assignment by continuous tracking deterministic tractography and high spatial resolution diffusion tensor imaging on 3T. Five healthy right-handed men (age range 24-37 years) were studied. We delineated the SPL connections of the SLF/AF TP bilaterally in five normal adult human brains. Using a high resolution DTT technique, we demonstrate for the first time, the trajectory of a long fiber bundle connectivity between the SPL and posterior temporal lobe, called the SLF/AF TP-SPL (or the TP-SPL), bilaterally in five healthy adult human brains. We also demonstrate the trajectory of the vertically oriented posterior TP connections, interconnecting the inferior parietal lobule (IPL) with the posterior temporal lobe (TP-IPL) in relation to the TP-SPL, arcuate fasciculus and other major language pathways. In the current study, for the first time, we categorized the TP connections into the anterior and posterior connectivity groups and subcategorized each one into the SPL or IPL connections. PMID:25086308

  19. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks. PMID:26230367

  20. Functional Connectivity Between Superior Parietal Lobule and Primary Visual Cortex "at Rest" Predicts Visual Search Efficiency.

    PubMed

    Bueichekú, Elisenda; Ventura-Campos, Noelia; Palomar-García, María-Ángeles; Miró-Padilla, Anna; Parcet, María-Antonia; Ávila, César

    2015-10-01

    Spatiotemporal activity that emerges spontaneously "at rest" has been proposed to reflect individual a priori biases in cognitive processing. This research focused on testing neurocognitive models of visual attention by studying the functional connectivity (FC) of the superior parietal lobule (SPL), given its central role in establishing priority maps during visual search tasks. Twenty-three human participants completed a functional magnetic resonance imaging session that featured a resting-state scan, followed by a visual search task based on the alphanumeric category effect. As expected, the behavioral results showed longer reaction times and more errors for the within-category (i.e., searching a target letter among letters) than the between-category search (i.e., searching a target letter among numbers). The within-category condition was related to greater activation of the superior and inferior parietal lobules, occipital cortex, inferior frontal cortex, dorsal anterior cingulate cortex, and the superior colliculus than the between-category search. The resting-state FC analysis of the SPL revealed a broad network that included connections with the inferotemporal cortex, dorsolateral prefrontal cortex, and dorsal frontal areas like the supplementary motor area and frontal eye field. Noteworthy, the regression analysis revealed that the more efficient participants in the visual search showed stronger FC between the SPL and areas of primary visual cortex (V1) related to the search task. We shed some light on how the SPL establishes a priority map of the environment during visual attention tasks and how FC is a valuable tool for assessing individual differences while performing cognitive tasks.

  1. High Frequency rTMS over the Left Parietal Lobule Increases Non-Word Reading Accuracy

    ERIC Educational Resources Information Center

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-01-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe…

  2. Overlapping representations for reach depth and direction in caudal superior parietal lobule of macaques.

    PubMed

    Hadjidimitrakis, Kostas; Dal Bo', Giulia; Breveglieri, Rossella; Galletti, Claudio; Fattori, Patrizia

    2015-10-01

    Reaching movements in the real world have typically a direction and a depth component. Despite numerous behavioral studies, there is no consensus on whether reach coordinates are processed in separate or common visuomotor channels. Furthermore, the neural substrates of reach depth in parietal cortex have been ignored in most neurophysiological studies. In the medial posterior parietal area V6A, we recently demonstrated the strong presence of depth signals and the extensive convergence of depth and direction information on single neurons during all phases of a fixate-to-reach task in 3-dimensional (3D) space. Using the same task, in the present work we examined the processing of direction and depth information in area PEc of the caudal superior parietal lobule (SPL) in three Macaca fascicularis monkeys. Across the task, depth and direction had a similar, high incidence of modulatory effect. The effect of direction was stronger than depth during the initial fixation period. As the task progressed toward arm movement execution, depth tuning became more prominent than directional tuning and the number of cells modulated by both depth and direction increased significantly. Neurons tuned by depth showed a small bias for far peripersonal space. Cells with directional modulations were more frequently tuned toward contralateral spatial locations, but ipsilateral space was also represented. These findings, combined with results from neighboring areas V6A and PE, support a rostral-to-caudal gradient of overlapping representations for reach depth and direction in SPL. These findings also support a progressive change from visuospatial (vergence angle) to somatomotor representations of 3D space in SPL.

  3. Ultra-high field parallel imaging of the superior parietal lobule during mental maze solving.

    PubMed

    Jerde, Trenton A; Lewis, Scott M; Goerke, Ute; Gourtzelidis, Pavlos; Tzagarakis, Charidimos; Lynch, Joshua; Moeller, Steen; Van de Moortele, Pierre-François; Adriany, Gregor; Trangle, Jeran; Uğurbil, Kâmil; Georgopoulos, Apostolos P

    2008-06-01

    We used ultra-high field (7 T) fMRI and parallel imaging to scan the superior parietal lobule (SPL) of human subjects as they mentally traversed a maze path in one of four directions (up, down, left, right). A counterbalanced design for maze presentation and a quasi-isotropic voxel (1.46 x 1.46 x 2 mm thick) collection were implemented. Fifty-one percent of single voxels in the SPL were tuned to the direction of the maze path. Tuned voxels were distributed throughout the SPL, bilaterally. A nearest neighbor analysis revealed a "honeycomb" arrangement such that voxels tuned to a particular direction tended to occur in clusters. Three-dimensional (3D) directional clusters were identified in SPL as oriented centroids traversing the cortical depth. There were 13 same-direction clusters per hemisphere containing 22 voxels per cluster, on the average; the mean nearest-neighbor, same-direction intercluster distance was 9.4 mm. These results provide a much finer detail of the directional tuning in SPL, as compared to those obtained previously at 4 T (Gourtzelidis et al. Exp Brain Res 165:273-282, 2005). The more accurate estimates of quantitative clustering parameters in 3D brain space in this study were made possible by the higher signal-to-noise and contrast-to-noise ratios afforded by the higher magnetic field of 7 T as well as the quasi-isotropic design of voxel data collection.

  4. High frequency rTMS over the left parietal lobule increases non-word reading accuracy.

    PubMed

    Costanzo, Floriana; Menghini, Deny; Caltagirone, Carlo; Oliveri, Massimiliano; Vicari, Stefano

    2012-09-01

    Increasing evidence in the literature supports the usefulness of Transcranial Magnetic Stimulation (TMS) in studying reading processes. Two brain regions are primarily involved in phonological decoding: the left superior temporal gyrus (STG), which is associated with the auditory representation of spoken words, and the left inferior parietal lobe (IPL), which operates in phonological computation. This study aimed to clarify the specific contribution of IPL and STG to reading aloud and to evaluate the possibility of modulating healthy participants' task performance using high frequency repetitive TMS (hf-rTMS). The main finding is that hf-rTMS over the left IPL improves non-word reading accuracy (fewer errors), whereas hf-rTMS over the right STG selectively decreases text-reading accuracy (more errors). These results confirm the prevalent role of the left IPL in grapheme-to-phoneme conversion. The non-word reading improvement after Left-IPL stimulation provide a direct link between left IPL activation and advantages in sublexical procedures, mainly involved in non-word reading. Results indicate also the specific involvement of STG in reading morphologically complex words and in processing the representation of the text. The text reading impairment after stimulation of the right STG can be interpreted in light of an inhibitory influence on the homologous area. In sum, data document that hf-rTMS is effective in modulating the reading accuracy of expert readers and that the modulation is task related and site specific. These findings suggest new perspectives for the treatment of reading disorders.

  5. Left inferior parietal lobe engagement in social cognition and language.

    PubMed

    Bzdok, Danilo; Hartwigsen, Gesa; Reid, Andrew; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B

    2016-09-01

    Social cognition and language are two core features of the human species. Despite distributed recruitment of brain regions in each mental capacity, the left parietal lobe (LPL) represents a zone of topographical convergence. The present study quantitatively summarizes hundreds of neuroimaging studies on social cognition and language. Using connectivity-based parcellation on a meta-analytically defined volume of interest (VOI), regional coactivation patterns within this VOI allowed identifying distinct subregions. Across parcellation solutions, two clusters emerged consistently in rostro-ventral and caudo-ventral aspects of the parietal VOI. Both clusters were functionally significantly associated with social-cognitive and language processing. In particular, the rostro-ventral cluster was associated with lower-level processing facets, while the caudo-ventral cluster was associated with higher-level processing facets in both mental capacities. Contrarily, in the (less stable) dorsal parietal VOI, all clusters reflected computation of general-purpose processes, such as working memory and matching tasks, that are frequently co-recruited by social or language processes. Our results hence favour a rostro-caudal distinction of lower- versus higher-level processes underlying social cognition and language in the left inferior parietal lobe. PMID:27241201

  6. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study.

    PubMed

    Motomura, Kazuya; Fujii, Masazumi; Maesawa, Satoshi; Kuramitsu, Shunichiro; Natsume, Atsushi; Wakabayashi, Toshihiko

    2014-07-01

    Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes. Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing.

  7. Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study.

    PubMed

    Motomura, Kazuya; Fujii, Masazumi; Maesawa, Satoshi; Kuramitsu, Shunichiro; Natsume, Atsushi; Wakabayashi, Toshihiko

    2014-07-01

    Alexia and agraphia are disorders common to the left inferior parietal lobule, including the angular and supramarginal gyri. However, it is still unclear how these cortical regions interact with other cortical sites and what the most important white matter tracts are in relation to reading and writing processes. Here, the authors present the case of a patient who underwent an awake craniotomy for a left inferior parietal lobule glioma using direct cortical and subcortical electrostimulation. The use of subcortical stimulation allowed identification of the specific white matter tracts associated with reading and writing. These tracts were found as portions of the dorsal inferior frontooccipital fasciculus (IFOF) fibers in the deep parietal lobe that are responsible for connecting the frontal lobe to the superior parietal lobule. These findings are consistent with previous diffusion tensor imaging tractography and functional MRI studies, which suggest that the IFOF may play a role in the reading and writing processes. This is the first report of transient alexia and agraphia elicited through intraoperative direct subcortical electrostimulation, and the findings support the crucial role of the IFOF in reading and writing. PMID:24655122

  8. The Contribution of the Inferior Parietal Cortex to Spoken Language Production

    ERIC Educational Resources Information Center

    Geranmayeh, Fatemeh; Brownsett, Sonia L. E.; Leech, Robert; Beckmann, Christian F.; Woodhead, Zoe; Wise, Richard J. S.

    2012-01-01

    This functional MRI study investigated the involvement of the left inferior parietal cortex (IPC) in spoken language production (Speech). Its role has been apparent in some studies but not others, and is not convincingly supported by clinical studies as they rarely include cases with lesions confined to the parietal lobe. We compared Speech with…

  9. Atrophy of the Parietal Lobe in Preclinical Dementia

    ERIC Educational Resources Information Center

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  10. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  11. Atrophy of the parietal lobe in preclinical dementia.

    PubMed

    Jacobs, Heidi I L; Van Boxtel, Martin P J; Uylings, Harry B M; Gronenschild, Ed H B M; Verhey, Frans R; Jolles, Jelle

    2011-03-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults (38 cognitively stable and 37 individuals with cognitive decline after 3 years). Dementia screening 6 years after scanning resulted in nine AD cases from the cognitively stable (n=3) and cognitive decline group (n=6), who were assigned to a third group, the preclinical AD group. When regional differences in cortical volume in the parietal lobe areas were compared between groups, significant differences were found between either the cognitive decline or stable group on the one hand and preclinical AD individuals on the other hand in the inferior parietal lobule. Group membership was best predicted by the grey matter volume of the inferior parietal lobule, compared to the other parietal lobe areas. The parietal lobe was characterised by a differential atrophy pattern based on cognitive status, which is in agreement with the 'last-developed-first-atrophied' principle. Future studies should investigate the surplus value of the inferior parietal lobe as a potential marker for the diagnosis of AD compared to other brain regions, such as the medial temporal lobe and the prefrontal lobe. PMID:21130554

  12. Recency Effects in the Inferior Parietal Lobe during Verbal Recognition Memory.

    PubMed

    Buchsbaum, Bradley R; Ye, Donald; D'Esposito, Mark

    2011-01-01

    The most recently encountered information is often most easily remembered in psychological tests of memory. Recent investigations of the neural basis of such "recency effects" have shown that activation in the lateral inferior parietal cortex (LIPC) tracks the recency of a probe item when subjects make recognition memory judgments. A key question regarding recency effects in the LIPC is whether they fundamentally reflect the storage (and strength) of information in memory, or whether such effects are a consequence of task difficulty or an upswing in resting state network activity. Using functional magnetic resonance imaging we show that recency effects in the LIPC are independent of the difficulty of recognition memory decisions, that they are not a by-product of an increase in resting state network activity, and that they appear to dissociate from regions known to be involved in verbal working memory maintenance. We conclude with a discussion of two alternative explanations - the memory strength and "expectancy" hypotheses, respectively - of the parietal lobe recency effect.

  13. fMRI adaptation reveals mirror neurons in human inferior parietal cortex.

    PubMed

    Chong, Trevor T-J; Cunnington, Ross; Williams, Mark A; Kanwisher, Nancy; Mattingley, Jason B

    2008-10-28

    Mirror neurons, as originally described in the macaque, have two defining properties [1, 2]: They respond specifically to a particular action (e.g., bringing an object to the mouth), and they produce their action-specific responses independent of whether the monkey executes the action or passively observes a conspecific performing the same action. In humans, action observation and action execution engage a network of frontal, parietal, and temporal areas. However, it is unclear whether these responses reflect the activity of a single population that represents both observed and executed actions in a common neural code or the activity of distinct but overlapping populations of exclusively perceptual and motor neurons [3]. Here, we used fMRI adaptation to show that the right inferior parietal lobe (IPL) responds independently to specific actions regardless of whether they are observed or executed. Specifically, responses in the right IPL were attenuated when participants observed a recently executed action relative to one that had not previously been performed. This adaptation across action and perception demonstrates that the right IPL responds selectively to the motoric and perceptual representations of actions and is the first evidence for a neural response in humans that shows both defining properties of mirror neurons.

  14. Functional heterogeneity of inferior parietal cortex during mathematical cognition assessed with cytoarchitectonic probability maps.

    PubMed

    Wu, S S; Chang, T T; Majid, A; Caspers, S; Eickhoff, S B; Menon, V

    2009-12-01

    Although the inferior parietal cortex (IPC) has been consistently implicated in mathematical cognition, the functional roles of its subdivisions are poorly understood. We address this problem using probabilistic cytoarchitectonic maps of IPC subdivisions intraparietal sulcus (IPS), angular gyrus (AG), and supramarginal gyrus. We quantified IPC responses relative to task difficulty and individual differences in task proficiency during mental arithmetic (MA) tasks performed with Arabic (MA-A) and Roman (MA-R) numerals. The 2 tasks showed similar levels of activation in 3 distinct IPS areas, hIP1, hIP2, and hIP3, suggesting their obligatory role in MA. Both AG areas, PGa and PGp, were strongly deactivated in both tasks, with stronger deactivations in posterior area PGp. Compared with the more difficult MA-R task, the MA-A task showed greater responses in both AG areas, but this effect was driven by less deactivation in the MA-A task. AG deactivations showed prominent overlap with lateral parietal nodes of the default mode network, suggesting a nonspecific role in MA. In both tasks, greater bilateral AG deactivation was associated with poorer performance. Our findings suggest a close link between IPC structure and function and they provide new evidence for behaviorally salient functional heterogeneity within the IPC during mathematical cognition. PMID:19406903

  15. Why I tense up when you watch me: Inferior parietal cortex mediates an audience’s influence on motor performance

    PubMed Central

    Yoshie, Michiko; Nagai, Yoko; Critchley, Hugo D.; Harrison, Neil A.

    2016-01-01

    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output. PMID:26787326

  16. Why I tense up when you watch me: Inferior parietal cortex mediates an audience's influence on motor performance.

    PubMed

    Yoshie, Michiko; Nagai, Yoko; Critchley, Hugo D; Harrison, Neil A

    2016-01-01

    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants' performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others' actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one's own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output. PMID:26787326

  17. TMS stimulation over the inferior parietal cortex disrupts prospective sense of agency.

    PubMed

    Chambon, Valérian; Moore, James W; Haggard, Patrick

    2015-11-01

    Sense of agency refers to the feeling of controlling an external event through one's own action. On one influential view, sense of agency is inferred after an action, by "retrospectively" comparing actual effects of actions against their intended effects. However, it has been recently shown that earlier processes, linked to action selection, may also contribute to sense of agency, in advance of the action itself, and independently of action effects. The inferior parietal cortex (IPC) may underpin this "prospective" contribution to agency, by monitoring signals relating to fluency of action selection in dorsolateral prefrontal cortex (DLPFC). Here, we combined transcranial stimulation (TMS) with subliminal priming of action selection to investigate the causal role of these regions in the prospective coding of agency. In a first experiment, we showed that TMS over left IPC at the time of action selection disrupts perceived control over subsequent effects of action. In a second experiment, we exploited the temporal specificity of single-pulse TMS to pinpoint the exact timing of IPC contribution to sense of agency. We replicated the reduction in perceived control at the point of action selection, while observing no effect of TMS-induced disruption of IPC at the time of action outcomes. PMID:25134684

  18. Left inferior-parietal lobe activity in perspective tasks: identity statements.

    PubMed

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., "the tour guide is also the driver" activate the left IPL in contrast to a control statements, "the tour guide has an apprentice." This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL.

  19. Left inferior-parietal lobe activity in perspective tasks: identity statements

    PubMed Central

    Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef

    2015-01-01

    We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677

  20. Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey

    SciTech Connect

    Pandya, D.N.; Seltzer, B.

    1982-01-10

    By means of autoradiographic and ablation-degeneration techniques, the intrinsic cortical connections of the posterior parietal cortex in the rhesus monkey were traced and correlated with a reappraisal of cerebral architectonics. Two major rostral-to-caudal connectional sequences exist. One begins in the dorsal postcentral gyrus (area 2) and proceeds, through architectonic divisions of the superior parietal lobule (areas PE and PEc), to a cortical region on the medial surface of the parietal lobe (area PGm). This area has architectonic features similar to those of the caudal inferior parietal lobule (area PG). The second sequence begins in the ventral post/central gyrus (area 2) and passes through the rostral inferior parietal lobule (areas PG and PFG) to reach the caudal inferior parietal lobule (area PG). Both the superior parietal lobule and the rostral inferior parietal lobule also send projections to various other zones located in the parietal opercular region, the intraparietal sulcus, and the caudalmost portion of the cingulate sulcus. Areas PGm and PG, on the other hand, project to each other, to the cingulate region, to the caudalmost portion of the superior temporal gyrus, and to the upper bank of the superior temporal sulcus. Finally, a reciprocal sequence of connections, directed from caudal to rostral, links together many of the above-mentioned parietal zones. With regard to the laminar pattern of termination, the rostral-to-caudal connections are primarily distributed in the form of cortical ''columns'' while the caudal-to-rostral connections are found mainly over the first cortical cell layer.

  1. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study

    PubMed Central

    Karhson, Debra S.; Mock, Jeffrey R.; Golob, Edward J.

    2015-01-01

    Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230–340, parietal 400–460, frontal 550–750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity. PMID:26636333

  2. The Role of Right Inferior Parietal Cortex in Auditory Spatial Attention: A Repetitive Transcranial Magnetic Stimulation Study.

    PubMed

    Karhson, Debra S; Mock, Jeffrey R; Golob, Edward J

    2015-01-01

    Behavioral studies support the concept of an auditory spatial attention gradient by demonstrating that attentional benefits progressively diminish as distance increases from an attended location. Damage to the right inferior parietal cortex can induce a rightward attention bias, which implicates this region in the construction of attention gradients. This study used event-related potentials (ERPs) to define attention-related gradients before and after repetitive transcranial magnetic stimulation (rTMS) to the right inferior parietal cortex. Subjects (n = 16) listened to noise bursts at five azimuth locations (left to right: -90°, -45°, 0° midline, +45°, +90°) and responded to stimuli at one target location (-90°, +90°, separate blocks). ERPs as a function of non-target location were examined before (baseline) and after 0.9 Hz rTMS. Results showed that ERP attention gradients were observed in three time windows (frontal 230-340, parietal 400-460, frontal 550-750 ms). Significant transient rTMS effects were seen in the first and third windows. The first window had a voltage decrease at the farthest location when attending to either the left or right side. The third window had on overall increase in positivity, but only when attending to the left side. These findings suggest that rTMS induced a small contraction in spatial attention gradients within the first time window. The asymmetric effect of attended location on gradients in the third time window may relate to neglect of the left hemispace after right parietal injury. Together, these results highlight the role of the right inferior parietal cortex in modulating frontal lobe attention network activity. PMID:26636333

  3. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography.

    PubMed

    Makris, N; Preti, M G; Wassermann, D; Rathi, Y; Papadimitriou, G M; Yergatian, C; Dickerson, B C; Shenton, M E; Kubicki, M

    2013-09-01

    The middle longitudinal fascicle (MdLF) is a major fiber connection running principally between the superior temporal gyrus and the parietal lobe, neocortical regions of great biological and clinical interest. Although one of the most prominent cerebral association fiber tracts, it has only recently been discovered in humans. In this high angular resolution diffusion imaging (HARDI) MRI study, we delineated the two major fiber connections of the human MdLF, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy-four brains. These two fiber connections course together through the dorsal temporal pole and the superior temporal gyrus maintaining a characteristic topographic relationship in the mediolateral and ventrodorsal dimensions. As these pathways course towards the parietal lobe, they split to form separate fiber pathways, one following a ventrolateral trajectory and connecting with the angular gyrus and the other following a dorsomedial route and connecting with the superior parietal lobule. Based on the functions of their cortical affiliations, we suggest that the superior temporal-angular connection of the MdLF, i.e., STG(MdLF)AG plays a role in language and attention, whereas the superior temporal-superior parietal connection of the MdLF, i.e., STG(MdLF)SPL is involved in visuospatial and integrative audiovisual functions. Furthermore, the MdLF may have clinical implications in neurodegenerative disorders such as primary progressive aphasia, frontotemporal dementia, posterior cortical atrophy, corticobulbar degeneration and Alzheimer's disease as well as attention-deficit/hyperactivity disorder and schizophrenia.

  4. Anarchic hand with abnormal agency following right inferior parietal lobe damage: a case report.

    PubMed

    Jenkinson, Paul M; Edelstyn, Nicola M J; Preston, Catherine; Ellis, Simon J

    2015-01-01

    Anarchic hand syndrome (AHS) is characterized by goal-directed movements performed without volitional control (agency). Different AHS subtypes have been identified; however, few studies have examined the posterior subtype. We report a case of AHS following right-hemisphere parietal damage, with left-sided somatosensory and proprioceptive impairment. Agency was examined for nonanarchic (volitional) movements performed using the anarchic hand. The patient experienced abnormal agency for movements whether motor intention and visual feedback were congruent or incongruent, but not when intention was absent (passive movement). Findings suggest a general disturbance of veridical motor awareness and agency in this case of parietal AHS.

  5. The role of the inferior parietal cortex in linking the tactile perception and manual construction of object shapes.

    PubMed

    Jäncke, L; Kleinschmidt, A; Mirzazade, S; Shah, N J; Freund, H J

    2001-02-01

    We employed functional magnetic resonance imaging (fMRI) in 12 healthy subjects to measure cerebral activation related to a set of higher order manual sensorimotor tasks performed in the absence of visual guidance. Purposeless manipulation of meaningless plasticine lumps served as a reference against which we contrasted two tasks where manual manipulation served a meaningful purpose, either the perception and recognition of three-dimensional shapes or the construction of such shapes out of an amorphous plasticine lump. These tasks were compared with the corresponding mental imagery of the modelling process which evokes the constructive concept but lacks concomitant sensorimotor input and output. Neural overlap was found in a bilateral activity increase in the posterior and anterior intraparietal sulcus area (IPS and AIP). Differential activation was seen in the supplementary and cingulate motor areas, the left M1 and the superior parietal lobe for modelling and in the left angular and ventral premotor cortex for imagery. Our data thus point to a congruent neural substrate for both perceptive and constructive object-oriented sensorimotor cognition in the AIP and posterior IPS. The leftward asymmetry of the inferior parietal activations, including the angular gyrus, during imagery of modelling along with the ventral premotor activations emphasize the close vicinity of the circuitry for cognitive manipulative motor behaviour and language. PMID:11208666

  6. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.

    PubMed

    Micheli, Cristiano; Kaping, Daniel; Westendorff, Stephanie; Valiante, Taufik A; Womelsdorf, Thilo

    2015-10-01

    The inferior frontal gyrus (IFG) and the temporo-parietal junction (TPJ) are believed to be core structures of human brain networks that activate when sensory top-down expectancies guide goal directed behavior and attentive perception. But it is unclear how activity in IFG and TPJ coordinates during attention demanding tasks and whether functional interactions between both structures are related to successful attentional performance. Here, we tested these questions in electrocorticographic (ECoG) recordings in human subjects using a visual detection task that required sustained attentional expectancy in order to detect non-salient, near-threshold visual events. We found that during sustained attention the successful visual detection was predicted by increased phase synchronization of band-limited 15-30 Hz beta band activity that was absent prior to misses. Increased beta-band phase alignment during attentional engagement early during the task was restricted to inferior and lateral prefrontal cortex, but with sustained attention it extended to long-range IFG-TPJ phase synchronization and included superior prefrontal areas. In addition to beta, a widely distributed network of brain areas comprising the occipital cortex showed enhanced and reduced alpha band phase synchronization before correct detections. These findings identify long-range phase synchrony in the 15-30 Hz beta band as the mesoscale brain signal that predicts the successful deployment of attentional expectancy of sensory events. We speculate that localized beta coherent states in prefrontal cortex index 'top-down' sensory expectancy whose coupling with TPJ subregions facilitates the gating of relevant visual information. PMID:26119023

  7. The repetition paradigm: enhancement of novel metaphors and suppression of conventional metaphors in the left inferior parietal lobe.

    PubMed

    Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira

    2012-10-01

    The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of interest is to repeatedly present the same stimulus. The aim of the current study is to examine the neural signatures associated with forming new metaphoric concepts by repeatedly presenting novel as well as conventional metaphors. In an fMRI study, 11 subjects read novel and conventional two-word metaphoric expressions and decided whether the expressions were meaningful. Prior to the study, participants were presented with half of the conventional metaphors and half of the novel metaphoric expressions. The present results revealed that whereas repeated exposure to conventional metaphors elicited repetition suppression within the left supramarginal gyrus, no brain areas showed repetition suppression effects during the repeated exposure of novel metaphors. However, repetition enhancement effects for novel metaphors were found in several brain areas including the bilateral inferior parietal gyri. These findings suggest that the left and right supramarginal gyri are both involved in the conceptualization and the storage of novel semantic relations. This study is important to develop theoretical accounts of the formation of conceptual knowledge for both familiar and novel information.

  8. Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task

    PubMed Central

    d'Acremont, Mathieu; Fornari, Eleonora; Bossaerts, Peter

    2013-01-01

    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes. PMID:23401673

  9. Reappraising social emotions: the role of inferior frontal gyrus, temporo-parietal junction and insula in interpersonal emotion regulation

    PubMed Central

    Grecucci, Alessandro; Giorgetta, Cinzia; Bonini, Nicolao; Sanfey, Alan G.

    2013-01-01

    Previous studies have reported the effect of emotion regulation (ER) strategies on both individual and social decision-making, however, the effect of regulation on socially driven emotions independent of decisions is still unclear. In the present study, we investigated the neural effects of using reappraisal to both up- and down-regulate socially driven emotions. Participants played the Dictator Game (DG) in the role of recipient while undergoing fMRI, and concurrently applied the strategies of either up-regulation (reappraising the proposer's intentions as more negative), down-regulation (reappraising the proposer's intentions as less negative), as well as a baseline “look” condition. Results showed that regions responding to the implementation of reappraisal (effect of strategy, that is, “regulating regions”) were the inferior and middle frontal gyrus, temporo parietal junction and insula bilaterally. Importantly, the middle frontal gyrus activation correlated with the frequency of regulatory strategies in daily life, with the insula activation correlating with the perceived ability to reappraise the emotions elicited by the social situation. Regions regulated by reappraisal (effect of regulation, that is, “regulated regions”) were the striatum, the posterior cingulate and the insula, showing increased activation for the up-regulation and reduced activation for down-regulation, both compared to the baseline condition. When analyzing the separate effects of partners' behavior, selfish behavior produced an activation of the insula, not observed when subjects were treated altruistically. Here we show for the first time that interpersonal ER strategies can strongly affect neural responses when experiencing socially driven emotions. Clinical implications of these findings are also discussed to understand how the way we interpret others' intentions may affect the way we emotionally react. PMID:24027512

  10. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices.

    PubMed

    Arnstein, Dan; Cui, Fang; Keysers, Christian; Maurits, Natasha M; Gazzola, Valeria

    2011-10-01

    The discovery of mirror neurons in the monkey, that fire during both the execution and the observation of the same action, sparked great interest in studying the human equivalent. For over a decade, both functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) have been used to quantify activity in the human mirror neuron system (MNS)-yet, little is still known about how fMRI and EEG measures of the MNS relate to each other. To test the frequent assumption that regions of the MNS as evidenced by fMRI are the origin of the suppression of the EEG μ-rhythm during both action execution and observation, we recorded EEG and BOLD-fMRI signals simultaneously while participants observed and executed actions. We found that the suppression of the μ-rhythm in EEG covaried with BOLD activity in typical MNS regions, inferior parietal lobe (IPL), dorsal premotor (dPM) and primary somatosensory cortex (BA2), during both action observation and execution. In contrast, in BA44, only nonoverlapping voxels correlated with μ-suppression during observation and execution. These findings provide direct support for the notion that μ-suppression is a valid indicator of MNS activity in BA2, IPL, and dPM, but argues against the idea that mirror neurons in BA44 are the prime source of μ-suppression. These results shed light on the neural basis of μ-suppression and provide a basis for integrating more closely the flourishing but often separate literatures on the MNS using fMRI and EEG.

  11. Praxis-induced reflex seizures mainly precipitated by writing due to a parietal focal cortical dysplasia.

    PubMed

    Racicot, Frédéric; Obaid, Sami; Bouthillier, Alain; Guillon-Létourneau, Laurent; Clément, Jean-François; Nguyen, Dang Khoa

    2016-01-01

    We report the case of a 23-year-old left-handed woman with medically intractable praxis-induced reflex seizures mainly precipitated by writing. Selective resection of subtle end-of-sulcus cortical dysplasia in the right inferior parietal lobule resulted in freedom from seizures. To the best of our knowledge, this is the first case of praxis-induced reflex seizures mainly precipitated by writing in which a focal lesion was found and treated successfully by surgery. PMID:27630817

  12. Temporal and Motor Representation of Rhythm in Fronto-Parietal Cortical Areas: An fMRI Study

    PubMed Central

    Konoike, Naho; Kotozaki, Yuka; Jeong, Hyeonjeong; Miyazaki, Atsuko; Sakaki, Kohei; Shinada, Takamitsu; Sugiura, Motoaki; Kawashima, Ryuta; Nakamura, Katsuki

    2015-01-01

    When sounds occur with temporally structured patterns, we can feel a rhythm. To memorize a rhythm, perception of its temporal patterns and organization of them into a hierarchically structured sequence are necessary. On the other hand, rhythm perception can often cause unintentional body movements. Thus, we hypothesized that rhythm information can be manifested in two different ways; temporal and motor representations. The motor representation depends on effectors, such as the finger or foot, whereas the temporal representation is effector-independent. We tested our hypothesis with a working memory paradigm to elucidate neuronal correlates of temporal or motor representation of rhythm and to reveal the neural networks associated with these representations. We measured brain activity by fMRI while participants memorized rhythms and reproduced them by tapping with the right finger, left finger, or foot, or by articulation. The right inferior frontal gyrus and the inferior parietal lobule exhibited significant effector-independent activations during encoding and retrieval of rhythm information, whereas the left inferior parietal lobule and supplementary motor area (SMA) showed effector-dependent activations during retrieval. These results suggest that temporal sequences of rhythm are probably represented in the right fronto-parietal network, whereas motor sequences of rhythm can be represented in the SMA-parietal network. PMID:26076024

  13. UNDERSTANDING THE PARIETAL LOBE SYNDROME FROM A NEUROPHYSIOLOGICAL AND EVOLUTIONARY PERSPECTIVE

    PubMed Central

    Caminiti, Roberto; Chafee, Matthew V.; Battaglia-Mayer, Alexandra; Averbeck, Bruno B.; Crowe, David A.; Georgopoulos, Apostolos P.

    2010-01-01

    In human and non-human primates parietal cortex is formed by a multiplicity of areas. For those of the Superior Parietal Lobule (SPL) there exists a certain homology between man and macaques. As a consequence, Optic Ataxia, a disturbed visual control of hand reaching, has similar features in man and monkeys. Establishing such correspondence has proven difficult for the areas of the Inferior Parietal Lobule (IPL). This difficulty depends on many factors. First, no physiological information is available in man on the dynamic properties of cells in the IPL. Second, the number of IPL areas identified in the monkey is paradoxically higher that that so far described in man, although this issue will probably be reconsidered in future years, thanks to comparative imaging studies. Third, the consequences of parietal lesions in monkeys do not always match those observed in humans. This is another paradox if one considers that, in certain cases, the functional properties of neurons in the monkeys IPL would predict the presence of behavioral skills, such as construction capacity, that however do not seem to emerge in the wild. Therefore, Constructional Apraxia, which is well characterized in man, has never been described in monkeys and apes. Finally, only certain aspects, i.e. hand Directional Hypokinesia and Gaze Apraxia (Balint's Psychic Paralysis of Gaze), of the multifaceted syndrome Hemispatial Neglect have been described in monkeys. These similarities, differences and paradoxes, among many others, make the study of the evolution and function of parietal cortex a challenging “case”. PMID:20550568

  14. Mechanisms of spatial attention control in frontal and parietal cortex.

    PubMed

    Szczepanski, Sara M; Konen, Christina S; Kastner, Sabine

    2010-01-01

    Theories of spatial attentional control have been largely based upon studies of patients suffering from visuospatial neglect, resulting from circumscribed lesions of frontal and posterior parietal cortex. In the intact brain, the control of spatial attention has been related to a distributed frontoparietal attention network. Little is known about the nature of the control mechanisms exerted by this network. Here, we used a novel region-of-interest approach to relate activations of the attention network to recently described topographic areas in frontal cortex [frontal eye field (FEF), PreCC/IFS (precentral cortex/inferior frontal sulcus)] and parietal cortex [intraparietal sulcus areas (IPS1-IPS5) and an area in the superior parietal lobule (SPL1)] to examine their spatial attention signals. We found that attention signals in most topographic areas were spatially specific, with stronger responses when attention was directed to the contralateral than to the ipsilateral visual field. Importantly, two hemispheric asymmetries were found. First, a region in only right, but not left SPL1 carried spatial attention signals. Second, left FEF and left posterior parietal cortex (IPS1/2) generated stronger contralateral biasing signals than their counterparts in the right hemisphere. These findings are the first to characterize spatial attention signals in topographic frontal and parietal cortex and provide a neural basis in support of an interhemispheric competition account of spatial attentional control. PMID:20053897

  15. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain.

    PubMed

    Vandenberghe, Rik; Gillebert, Céline R

    2009-05-16

    Spatial-attentional deficits are highly prevalent following stroke. They can be clinically detected by means of conventional bedside tests such as target cancellation, line bisection and the visual extinction test. Until recently, lesion mapping studies and functional imaging of the intact brain did not agree very well on exactly which parietal areas play a key role in selective attention: the inferior parietal lobule or the intraparietal sulcus. Recently, the use of a contrastive approach in patients akin to that commonly used in functional imaging studies in healthy volunteers together with voxel-based lesion-symptom mapping have allowed to bring the patient lesion mapping much closer to the functional imaging results obtained in healthy controls. In this review we focus on converging evidence obtained from patient lesion studies and from fMRI studies in the intact brain in humans. This has yielded novel insights into the functional segregation between the middle third of the intraparietal sulcus, the superior parietal lobule and the temporoparietal junction in the intact brain and also enhanced our understanding of the pathogenetic mechanisms underlying deficits arising in patients. PMID:19118580

  16. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study

    PubMed Central

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K.; van der Meer, Elke

    2011-01-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents’ brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion–attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior. PMID:20934985

  17. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.

    PubMed

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K; van der Meer, Elke; Grafman, Jordan

    2011-10-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents' brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion-attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior. PMID:20934985

  18. Fronto-parietal regulation of media violence exposure in adolescents: a multi-method study.

    PubMed

    Strenziok, Maren; Krueger, Frank; Deshpande, Gopikrishna; Lenroot, Rhoshel K; van der Meer, Elke; Grafman, Jordan

    2011-10-01

    Adolescents spend a significant part of their leisure time watching TV programs and movies that portray violence. It is unknown, however, how the extent of violent media use and the severity of aggression displayed affect adolescents' brain function. We investigated skin conductance responses, brain activation and functional brain connectivity to media violence in healthy adolescents. In an event-related functional magnetic resonance imaging experiment, subjects repeatedly viewed normed videos that displayed different degrees of aggressive behavior. We found a downward linear adaptation in skin conductance responses with increasing aggression and desensitization towards more aggressive videos. Our results further revealed adaptation in a fronto-parietal network including the left lateral orbitofrontal cortex (lOFC), right precuneus and bilateral inferior parietal lobules, again showing downward linear adaptations and desensitization towards more aggressive videos. Granger causality mapping analyses revealed attenuation in the left lOFC, indicating that activation during viewing aggressive media is driven by input from parietal regions that decreased over time, for more aggressive videos. We conclude that aggressive media activates an emotion-attention network that has the capability to blunt emotional responses through reduced attention with repeated viewing of aggressive media contents, which may restrict the linking of the consequences of aggression with an emotional response, and therefore potentially promotes aggressive attitudes and behavior.

  19. Scene-Selectivity and Retinotopy in Medial Parietal Cortex

    PubMed Central

    Silson, Edward H.; Steel, Adam D.; Baker, Chris I.

    2016-01-01

    surface, the caudal inferior parietal lobule (cIPL). However, the differential connectivity in medial parietal cortex was found principally anterior of MPA. We suggest that there is posterior–anterior gradient within medial parietal cortex, with posterior regions in the POS showing retinotopically based scene-selectivity and more anterior regions showing connectivity that may be more reflective of abstract, navigationally pertinent and possibly mnemonic representations. PMID:27588001

  20. Scene-Selectivity and Retinotopy in Medial Parietal Cortex.

    PubMed

    Silson, Edward H; Steel, Adam D; Baker, Chris I

    2016-01-01

    surface, the caudal inferior parietal lobule (cIPL). However, the differential connectivity in medial parietal cortex was found principally anterior of MPA. We suggest that there is posterior-anterior gradient within medial parietal cortex, with posterior regions in the POS showing retinotopically based scene-selectivity and more anterior regions showing connectivity that may be more reflective of abstract, navigationally pertinent and possibly mnemonic representations. PMID:27588001

  1. Sensory syndromes in parietal stroke.

    PubMed

    Bassetti, C; Bogousslavsky, J; Regli, F

    1993-10-01

    We studied 20 patients with an acute parietal stroke with hemisensory disturbances but no visual field deficit and no or only slight motor weakness, without thalamic involvement on CT or MRI and found three main sensory syndromes. (1) The pseudothalamic sensory syndrome consists of a faciobrachiocrural impairment of elementary sensation (touch, pain, temperature, vibration). All patients have an inferior-anterior parietal stroke involving the parietal operculum, posterior insula, and, in all but one patient, underlying white matter. (2) The cortical sensory syndrome consists of an isolated loss of discriminative sensation (stereognosis, graphesthesia, position sense) involving one or two parts of the body. These patients show a superior-posterior parietal stroke. (3) The atypical sensory syndrome consists of a sensory loss involving all modalities of sensation in a partial distribution. Parietal lesions of different topography are responsible for this clinical picture, which probably represents a minor variant of the two previous sensory syndromes. Neuropsychological dysfunction was present in 17 patients. The only constant association was between conduction aphasia and right-sided pseudothalamic sensory deficit. We conclude that parietal stroke can cause different sensory syndromes depending on the topography of the underlying lesion. Sensory deficits can be monosymptomatic but never present as a "pure sensory stroke" involving face, arm, leg, and trunk together.

  2. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex.

    PubMed

    Hayashi, Masamichi J; Ditye, Thomas; Harada, Tokiko; Hashiguchi, Maho; Sadato, Norihiro; Carlson, Synnöve; Walsh, Vincent; Kanai, Ryota

    2015-01-01

    Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject's attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. PMID:26378440

  3. Time Adaptation Shows Duration Selectivity in the Human Parietal Cortex

    PubMed Central

    Hayashi, Masamichi J.; Ditye, Thomas; Harada, Tokiko; Hashiguchi, Maho; Sadato, Norihiro; Carlson, Synnöve; Walsh, Vincent; Kanai, Ryota

    2015-01-01

    Although psychological and computational models of time estimation have postulated the existence of neural representations tuned for specific durations, empirical evidence of this notion has been lacking. Here, using a functional magnetic resonance imaging (fMRI) adaptation paradigm, we show that the inferior parietal lobule (IPL) (corresponding to the supramarginal gyrus) exhibited reduction in neural activity due to adaptation when a visual stimulus of the same duration was repeatedly presented. Adaptation was strongest when stimuli of identical durations were repeated, and it gradually decreased as the difference between the reference and test durations increased. This tuning property generalized across a broad range of durations, indicating the presence of general time-representation mechanisms in the IPL. Furthermore, adaptation was observed irrespective of the subject’s attention to time. Repetition of a nontemporal aspect of the stimulus (i.e., shape) did not produce neural adaptation in the IPL. These results provide neural evidence for duration-tuned representations in the human brain. PMID:26378440

  4. Functional properties of parietal hand manipulation-related neurons and mirror neurons responding to vision of own hand action.

    PubMed

    Maeda, Kazutaka; Ishida, Hiroaki; Nakajima, Katsumi; Inase, Masahiko; Murata, Akira

    2015-03-01

    Parietofrontal pathways play an important role in visually guided motor control. In this pathway, hand manipulation-related neurons in the inferior parietal lobule represent 3-D properties of an object and motor patterns to grasp it. Furthermore, mirror neurons show visual responses that are concerned with the actions of others and motor-related activity during execution of the same grasping action. Because both of these categories of neurons integrate visual and motor signals, these neurons may play a role in motor control based on visual feedback signals. The aim of this study was to investigate whether these neurons in inferior parietal lobule including the anterior intraparietal area and PFG of macaques represent visual images of the monkey's own hand during a self-generated grasping action. We recorded 235 neurons related to hand manipulation tasks. Of these, 54 responded to video clips of the monkey's own hand action, the same as visual feedback during that action or clips of the experimenter's hand action in a lateral view. Of these 54 neurons, 25 responded to video clips of the monkey's own hand, even without an image of the target object. We designated these 25 neurons as "hand-type." Thirty-three of 54 neurons that were defined as mirror neurons showed visual responses to the experimenter's action and motor responses. Thirteen of these mirror neurons were classified as hand-type. These results suggest that activity of hand manipulation-related and mirror neurons in anterior intraparietal/PFG plays a fundamental role in monitoring one's own body state based on visual feedback.

  5. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    PubMed

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  6. The Role of Human Parietal Area 7A as a Link between Sequencing in Hand Actions and in Overt Speech Production.

    PubMed

    Heim, Stefan; Amunts, Katrin; Hensel, Tanja; Grande, Marion; Huber, Walter; Binkofski, Ferdinand; Eickhoff, Simon B

    2012-01-01

    Research on the evolutionary basis of the human language faculty has proposed the mirror neuron system as a link between motor processing and speech development. Consequently, most work has focused on the left inferior frontal cortex, in particular Broca's region, and the left inferior parietal cortex. However, the direct link between planning of hand motor and speech actions has yet to be elucidated. Thus, the present study investigated whether motor sequencing of hand vs. speech actions has a common neural denominator. For the hand motor task, 25 subjects performed single, repeated, or sequenced button presses with either the left or right hand. The speech task was in analogy; the same subjects produced the syllable "po" once or repeatedly, or a sequence of different syllables ("po-pi-po"). Speech motor vs. hand motor effectors resulted in increased perisylvian activation including Broca's region (left area 44 and areas medially adjacent to left area 45). In contrast, common activation for sequenced vs. repeated production of button presses and syllables revealed the effector-independent involvement of left area 7A in the superior parietal lobule (SPL) in sequencing. These data demonstrate that sequencing of vocal gestures, an important precondition for ordered utterances and ultimately human speech, shares area 7A, rather than inferior parietal regions, as a common cortical module with hand motor sequencing. Interestingly, area 7A has previously also been shown to be involved in the observation of hand and non-hand actions. In combination with the literature, the present data thus suggest a distinction between area 44, which is specifically recruited for (cognitive aspects of) speech, and SPL area 7A for general aspects of motor sequencing. In sum, the study demonstrates a previously underspecified role of the SPL in the origins of speech, and may be discussed in the light of embodiment of speech and language in the motor system. PMID:23227016

  7. Abnormal temporal and parietal magnetic activations during the early stages of theory of mind in schizophrenic patients.

    PubMed

    Vistoli, Damien; Brunet-Gouet, Eric; Lemoalle, Amelia; Hardy-Baylé, Marie-Christine; Passerieux, Christine

    2011-01-01

    Schizophrenia is associated with abnormal cortical activation during theory of mind (ToM), as demonstrated by several fMRI or PET studies. Electrical and temporal characteristics of these abnormalities, especially in the early stages, remain unexplored. Nineteen medicated schizophrenic patients and 21 healthy controls underwent magnetoencephalography (MEG) recording to measure brain response evoked by nonverbal stimuli requiring mentalizing. Three conditions based on comic-strips were contrasted: attribution of intentions to others (AI), physical causality with human characters (PCCH), and physical causality with objects (PCOB). Minimum norm localization was performed in order to select regions of interest (ROIs) within bilateral temporal and parietal regions that showed significant ToM-related activations in the control group. Time-courses of each ROI were compared across group and condition. Reduced cortical activation within the 200 to 600 ms time-window was observed in the selected regions in patients. Significant group by condition interactions (i.e., reduced modulation in patients) were found in right posterior superior temporal sulcus, right temporoparietal junction, and right inferior parietal lobule during attribution of intentions. As in healthy controls, the presence of characters elicited activation in patients' left posterior temporal regions and temporoparietal junction. No group difference on evoked responses' latencies in AI was found. In conclusion, ToM processes in the early stages are functionally impaired in schizophrenia. MEG provides a promising means to refine our knowledge on schizophrenic social cognitive disorders.

  8. Classical conditioning of the nictitating membrane response of the rabbit. III. Connections of cerebellar lobule HVI.

    PubMed

    Yeo, C H; Hardiman, M J; Glickstein, M

    1985-01-01

    We report the connections of cerebellar cortical lobule HVI in the rabbit. We have studied the anterograde and retrograde transport of wheatgerm-agglutinated horseradish peroxidase (WGA-HRP) following its injection into HVI to reveal efferent and afferent connections. All of the cases showed strong anterograde transport to the anterior interpositus nucleus (AIP) - indicating that this is the major efferent target of HVI. Retrogradely labelled cells were found in the inferior olivary, spinal trigeminal, lateral reticular, inferior vestibular and pontine nuclei. Within the olive, the medial part of the rostral dorsal accessory olive (DAO) and the adjacent medial part of the principal olive (PO) were consistently labelled in all cases. This area is known to receive somatosensory information from the face and neck. There was no projection to the hemispheral part of lobule VI from visual parts of the olive within the dorsal cap and medial parts of the medial accessory olive. Likely sources of visual and auditory information to HVI are the dorsolateral basilar pontine nuclei and nucleus reticularis tegmenti pontis, which were densely labelled in all cases. These anatomical findings are consistent with the suggestion that, during NMR conditioning, information related to the periorbital shock unconditional stimulus (US) may be provided by climbing fibres to HVI and light and white noise conditional stimulus (CS) information may be supplied by pontine mossy fibres. PMID:4043270

  9. Response inhibition and elevated parietal-cerebellar correlations in chronic adolescent cannabis users.

    PubMed

    Behan, B; Connolly, C G; Datwani, S; Doucet, M; Ivanovic, J; Morioka, R; Stone, A; Watts, R; Smyth, B; Garavan, H

    2014-09-01

    The ability to successfully inhibit an inappropriate behaviour is a crucial component of executive functioning and its impairment has been linked to substance dependence. Cannabis is the most widely used illicit drug in adolescence and, given the accelerated neuromaturation during adolescence, it is important to determine the effects of cannabis use on neurocognitive functioning during this developmental period. In this study, a cohort of adolescent heavy cannabis users and age-matched non-cannabis-using controls completed a Go/No-Go paradigm. Users were impaired in performance on the task but voxelwise and region-of-interest comparisons revealed no activation differences between groups. Instead, an analysis of correlation patterns between task-activated areas revealed heightened correlation scores in the users between bilateral inferior parietal lobules and the left cerebellum. The increased correlation activity between these regions was replicated with resting state fMRI data and was positively correlated with self-reported, recent cannabis usage. The results suggests that the poorer inhibitory control of adolescent cannabis users might be related to aberrant connectivity between nodes of the response inhibition circuit and that this effect is observable in both task-induced and intrinsic correlation patterns. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'.

  10. The contribution of fronto-parietal regions to sentence comprehension: insights from the Moses illusion.

    PubMed

    Raposo, Ana; Marques, J Frederico

    2013-12-01

    To interpret a sentence, the reader must not only process the linguistic input, but many times has also to draw inferences about what is implicitly stated. In some cases, the generation and integration of inferred information may lead to semantic illusions. In these sentences, subjects fail to detect errors such as in "It was two animals of each kind that Moses took on the ark" despite knowing that the correct answer is Noah, not Moses. The relative inability to notice these errors raises questions about how people establish and integrate inferences and which conditions improve error detection. To unravel the neural processes underlying inference and error detection in language comprehension, we carried out an fMRI study in which participants read sentences containing true or false statements. The false statements either took the form of more obvious (i.e., clearly false) or subtle (i.e., semantic illusions) inconsistent relations. Participants had to decide if each statement was true or false. Processing semantic illusions relative to true and clearly false sentences significantly engaged the right inferior parietal lobule, suggesting higher demands in establishing coherence. Successful versus unsuccessful error detection revealed a network of regions, including right dorsolateral prefrontal cortex, orbitofrontal, insula/putamen and anterior cingulate cortex. Such activation was significantly correlated with overall response accuracy to the illusions. These results suggest that to detect the semantic conflict, people must inhibit the tendency to draw pragmatic inferences. These findings demonstrate that fronto-parietal areas are involved in inference and inhibition processes necessary for establishing semantic coherence.

  11. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations. PMID:23749705

  12. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  13. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions.

    PubMed

    Johnson, P B; Ferraina, S; Bianchi, L; Caminiti, R

    1996-01-01

    The functional and structural properties of the dorsolateral frontal lobe and posterior parietal proximal arm representations were studied in macaque monkeys. Physiological mapping of primary motor (MI), dorsal premotor (PMd), and posterior parietal (area 5) cortices was performed in behaving monkeys trained in an instructed-delay reaching task. The parietofrontal corticocortical connectivities of these same areas were subsequently examined anatomically by means of retrograde tracing techniques. Signal-, set-, movement-, and position-related directional neuronal activities were distributed nonuniformly within the task-related areas in both frontal and parietal cortices. Within the frontal lobe, moving caudally from PMd to the MI, the activity that signals for the visuo-spatial events leading to target localization decreased, while the activity more directly linked to movement generation increased. Physiological recordings in the superior parietal lobule revealed a gradient-like distribution of functional properties similar to that observed in the frontal lobe. Signal- and set-related activities were encountered more frequently in the intermediate and ventral part of the medial bank of the intraparietal sulcus (IPS), in area MIP. Movement-and position-related activities were distributed more uniformly within the superior parietal lobule (SPL), in both dorsal area 5 and in MIP. Frontal and parietal regions sharing similar functional properties were preferentially connected through their association pathways. As a result of this study, area MIP, and possibly areas MDP and 7m as well, emerge as the parietal nodes by which visual information may be relayed to the frontal lobe arm region. These parietal and frontal areas, along with their association connections, represent a potential cortical network for visual reaching. The architecture of this network is ideal for coding reaching as the result of a combination between visual and somatic information.

  14. Superior Parietal Lobule Dysfunction in a Homogeneous Group of Dyslexic Children with a Visual Attention Span Disorder

    ERIC Educational Resources Information Center

    Peyrin, C.; Demonet, J. F.; N'Guyen-Morel, M. A.; Le Bas, J. F.; Valdois, S.

    2011-01-01

    A visual attention (VA) span disorder has been reported in dyslexic children as potentially responsible for their poor reading outcome. The purpose of the current paper was to identify the cerebral correlates of this VA span disorder. For this purpose, 12 French dyslexic children with severe reading and VA span disorders and 12 age-matched control…

  15. Parietal cortex and representation of the mental Self

    PubMed Central

    Lou, Hans C.; Luber, Bruce; Crupain, Michael; Keenan, Julian P.; Nowak, Markus; Kjaer, Troels W.; Sackeim, Harold A.; Lisanby, Sarah H.

    2004-01-01

    For a coherent and meaningful life, conscious self-representation is mandatory. Such explicit “autonoetic consciousness” is thought to emerge by retrieval of memory of personally experienced events (“episodic memory”). During episodic retrieval, functional imaging studies consistently show differential activity in medial prefrontal and medial parietal cortices. With positron-emission tomography, we here show that these medial regions are functionally connected and interact with lateral regions that are activated according to the degree of self-reference. During retrieval of previous judgments of Oneself, Best Friend, and the Danish Queen, activation increased in the left lateral temporal cortex and decreased in the right inferior parietal region with decreasing self-reference. Functionally, the former region was preferentially connected to medial prefrontal cortex, the latter to medial parietal. The medial parietal region may, then, be conceived of as a nodal structure in self-representation, functionally connected to both the right parietal and the medial prefrontal cortices. To determine whether medial parietal cortex in this network is essential for episodic memory retrieval with self-representation, we used transcranial magnetic stimulation over the region to transiently disturb neuronal circuitry. There was a decrease in the efficiency of retrieval of previous judgment of mental Self compared with retrieval of judgment of Other with transcranial magnetic stimulation at a latency of 160 ms, confirming the hypothesis. This network is strikingly similar to the network of the resting conscious state, suggesting that self-monitoring is a core function in resting consciousness. PMID:15096584

  16. Parietal cheiro-oral syndrome.

    PubMed

    Yasuda, Y; Watanabe, T; Ogura, A

    2000-12-01

    Cheiro-oral syndrome due to a parietal lesion has been reported in conjuction with a brain tumor, infarction and migraine. Only six reports of cheiro-oral syndrome due to a parietal infarction have been reported to date. We treated a 45-year-old woman with cheiro-oral syndrome due to a parietal infarction. Her sensory disturbance was characterized by paresthesia in the lower face and hand on the left side, and severe involvement of stereognosis and graphesthesia in the left hand. The pathogenesis of parietal cheiro-oral syndrome is discussed.

  17. Apraxia and the Parietal Lobes

    ERIC Educational Resources Information Center

    Goldenberg, Georg

    2009-01-01

    The widely held belief in a central role of left parietal lesions for apraxia can be traced back to Liepmann's model of a posterior to anterior stream converting mental images of intended action into motor execution. Although this model has undergone significant changes, its modern descendants still attribute the parietal contribution to the…

  18. Ear Lobule Rejuvenation in Face-Lifting: The Role of Fat Augmentation

    PubMed Central

    Hammoudeh, Ziyad S.; Small, Kevin; Unger, Jacob G.; Stark, Ran

    2016-01-01

    Background: Ear lobule ptosis and deflation are characteristics of facial aging. A rhytidectomy without rejuvenation of a deflated ear lobule may fail to address all aspects of facial aging. Fillers have been used to treat ear lobule deflation; however, autologous fat transfer has never been utilized for ear lobule rejuvenation. This investigation studies the success of autologous fat transfer to the ear lobule as part of volume augmentation rhytidectomy. Methods: A retrospective review of patients who underwent rhytidectomy between 2000 and 2014 by a single surgeon was performed. Patients between 2000 and 2004 who did not receive autologous fat transfer served as controls (group A). Patients between 2010 and 2014 who received autologous fat transfer to the ear lobule formed the treatment group (group B). Three independent observers reviewed preoperative and postoperative photographs for both groups at 1 year postoperatively. The following ear lobule volume grading scale was applied to numerically assess the patients: concave = 0, flat = 1, convex = 2, and round = 3. Results: Groups A and B each consisted of 65 consecutive patients (130 ears). In group A, the mean preoperative ear lobule grading score was 1.20, and the mean postoperative score was 1.22 (mean difference, 0.02; P = 0.42). In group B, the mean preoperative ear lobule grading score was 0.98, and the mean postoperative score was 2.00 (mean difference, 1.02; P < 0.0001). Conclusion: In patients receiving autologous fat transfer to the ear lobule during rhytidectomy, there was a significant change from a deflated ear lobule preoperatively to a more voluminous lobule at 1 year postoperatively. PMID:27104096

  19. Prolonged rock climbing activity induces structural changes in cerebellum and parietal lobe.

    PubMed

    Di Paola, Margherita; Caltagirone, Carlo; Petrosini, Laura

    2013-10-01

    This article analyzes whether climbing, a motor activity featured by upward movements by using both feet and hands, generation of new strategies of motor control, maintenance of not stable equilibrium and adoption of long-lasting quadrupedal posture, is able to modify specific brain areas. MRI data of 10 word-class mountain climbers (MC) and 10 age-matched controls, with no climbing experience were acquired. Combining region-of-interest analyses and voxel-based morphometry we investigated cerebellar volumes and correlation between cerebellum and whole cerebral gray matter. In comparison to controls, world-class MC showed significantly larger vermian lobules I-V volumes, with no significant difference in other cerebellar vermian lobules or hemispheres. The cerebellar enlargement was associated with an enlargement of right medial posterior parietal area. The specific features of the motor climbing skills perfectly fit with the plastic anatomical changes we found. The enlargement of the vermian lobules I-V seems to be related to highly dexterous hand movements and to eye-hand coordination in the detection of and correction of visuomotor errors. The concomitant enlargement of the parietal area is related to parallel work in predicting sensory consequences of action to make movement corrections. Motor control and sensory-motor prediction of actions make the difference between survive or not at extreme altitude. PMID:22522914

  20. Role of the right inferior frontal gyrus in turn-based cooperation and competition: A near-infrared spectroscopy study.

    PubMed

    Liu, Tao; Saito, Hirofumi; Oi, Misato

    2015-10-01

    Interpersonal interaction can be classified into two types: concurrent and turn-based interaction, requiring synchronized body-movement and complementary behaviors across persons, respectively. To examine the neural mechanism of turn-based interaction, we simultaneously measured paired participants activations in their bilateral inferior frontal gyrus (IFG) and the bilateral inferior parietal lobule (IPL) in a turn-taking game using near-infrared spectroscopy (NIRS). Pairs of participants were assigned to either one of two roles (game builder and the partner) in the game. The builder's task was to make a copy of a target disk-pattern by placing disks on a monitor, while the partner's task was to aid the builder in his/her goal (cooperation condition) or to obstruct it (competition condition). The builder always took the initial move and the partner followed. The NIRS data demonstrated an interaction of role (builder vs. partner) by task-type (cooperation vs. competition) in the right IFG. The builder in the cooperation condition showed higher activation than the cooperator, but the same builder in the competition condition showed lower activation than in the cooperation condition. The activations in the competitor-builder pairs showed positive correlation between their right IFG, but the activations in the cooperator-builder pairs did not. These results suggest that the builder's activation in the right IFG is reduced/increased in the context of interacting with a cooperative/competitive partner. Also, the competitor may actively trace the builder's disk manipulation, leading to deeper mind-set synchronization in the competition condition, while the cooperator may passively follow the builder's move, leading to shallower mind-set synchronization in the cooperation condition. PMID:26189111

  1. A physiologically-based flow network model for hepatic drug elimination I: regular lattice lobule model

    PubMed Central

    2013-01-01

    We develop a physiologically-based lattice model for the transport and metabolism of drugs in the functional unit of the liver, called the lobule. In contrast to earlier studies, we have emphasized the dominant role of convection in well-vascularized tissue with a given structure. Estimates of convective, diffusive and reaction contributions are given. We have compared drug concentration levels observed exiting the lobule with their predicted detailed distribution inside the lobule, assuming that most often the former is accessible information while the latter is not. PMID:24007328

  2. Fronto-parietal network supports context-dependent speech comprehension

    PubMed Central

    Smirnov, Dmitry; Glerean, Enrico; Lahnakoski, Juha M.; Salmi, Juha; Jääskeläinen, Iiro P.; Sams, Mikko; Nummenmaa, Lauri

    2014-01-01

    Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking. PMID:25218167

  3. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.

  4. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers. PMID:25818813

  5. Interhemispheric transfalcine approach and awake cortical mapping for resection of peri-atrial gliomas associated with the central lobule.

    PubMed

    Malekpour, Mahdi; Cohen-Gadol, Aaron A

    2015-02-01

    Medial posterior frontal and parietal gliomas extending to the peri-atrial region are difficult to reach surgically because of the working angle required to expose the lateral aspect of the tumor and the proximity of the tumor to the sensorimotor lobule; retraction of the sensorimotor cortex may lead to morbidity. The interhemispheric transfalcine approach is favorable and safe for resection of medial hemispheric tumors adjacent to the falx cerebri, but the literature on this approach is scarce. Awake cortical mapping using this operative route for tumors associated with the sensorimotor cortex has not been previously reported to our knowledge. We present the first case of a right medial posterior frontoparietal oligoastrocytoma that was resected through the interhemispheric transfalcine approach using awake cortical and subcortical mapping. Through a contralateral frontoparietal craniotomy, we excised a section of the falx and exposed the contralateral medial hemisphere. Cortical stimulation allowed localization of the supplementary motor cortex, and suprathreshold stimulation mapping excluded the primary motor cortex corresponding to the leg area. Gross total tumor resection was accomplished without any intraoperative or postoperative deficits. Awake cortical mapping using the contralateral transfalcine approach allows a "cross-court" operative route to map functional cortices and resect peri-atrial low-grade gliomas. This technique can minimize the otherwise necessary retraction on the ipsilateral hemisphere through an ipsilateral craniotomy.

  6. Altered synthesis of some secretory proteins in pancreatic lobules isolated from streptozotocin-induced diabetic rats

    SciTech Connect

    Duan, R.D.; Erlanson-Albertsson, C. )

    1990-03-01

    The in vitro incorporation of (35S)cysteine into lipase, colipase, amylase, procarboxypeptidase A and B, and the serine proteases and total proteins was studied in pancreatic lobules isolated from normal and diabetic rats with or without insulin treatment. The incorporation of (35S)cysteine into total proteins was 65% greater in pancreatic lobules from diabetic animals than from normal rats. The increased incorporation was partly reversed by insulin treatment (2 U/100 g/day for 5 days) of diabetic rats. The relative rates of biosynthesis for amylase and the procarboxypeptidases in diabetic pancreatic lobules were decreased by 75 and 25%, respectively, after 1 h of incubation, while those for lipase, colipase, and the serine proteases were increased by 90, 85, and 35%, respectively. The absolute rates of synthesis for these enzymes changed in the same direction as the relative rates in diabetic lobules, except that for the procarboxypeptidases, which did not change. The changed rates of biosynthesis for the pancreatic enzymes were reversed by insulin treatment of the diabetic rats. Kinetic studies showed that the incorporation of (35S)cysteine into amylase, lipase, and colipase was linear until up to 2 h of incubation in normal pancreatic lobules, while in the diabetic lobules the incorporation into lipase and colipase was accelerated, reaching a plateau level already after 1 h of incubation. It is concluded that the biosynthesis of pancreatic secretory proteins in diabetic rats is greatly changed both in terms of quantity and kinetics.

  7. Bilateral inferior turbinate osteoma

    PubMed Central

    Sahemey, R.; Warfield, A.T.; Ahmed, S.

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma. A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively. To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  8. Bilateral inferior turbinate osteoma.

    PubMed

    Sahemey, R; Warfield, A T; Ahmed, S

    2016-01-01

    Osteomas are the most common benign osteoclastic tumours of the paranasal sinuses. However, nasal cavity and turbinate osteomas are extremely rare. Only nine middle turbinate, three inferior turbinate and one inferior turbinate osteoma cases have been reported to date. The present case report describes the management and follow-up of symptomatic bilateral inferior turbinate osteoma.A 60-year-old female presented with symptoms of bilateral nasal obstruction and right-sided epiphora. Radiological investigation found hypertrophic bony changes involving both inferior turbinates. The patient was managed successfully by endoscopic inferior turbinectomies in order to achieve a patent airway, with no further recurrence of tumour after 3 months postoperatively.To the best of our knowledge, this is the first reported case of bilateral inferior turbinate osteoma. We describe a safe and minimally invasive method of tumour resection, which has a better cosmetic outcome compared with other approaches. PMID:27534890

  9. Distinct cerebellar lobules process arousal, valence and their interaction in parallel following a temporal hierarchy.

    PubMed

    Styliadis, Charis; Ioannides, Andreas A; Bamidis, Panagiotis D; Papadelis, Christos

    2015-04-15

    The cerebellum participates in emotion-related neural circuits formed by different cortical and subcortical areas, which sub-serve arousal and valence. Recent neuroimaging studies have shown a functional specificity of cerebellar lobules in the processing of emotional stimuli. However, little is known about the temporal component of this process. The goal of the current study is to assess the spatiotemporal profile of neural responses within the cerebellum during the processing of arousal and valence. We hypothesized that the excitation and timing of distinct cerebellar lobules is influenced by the emotional content of the stimuli. By using magnetoencephalography, we recorded magnetic fields from twelve healthy human individuals while passively viewing affective pictures rated along arousal and valence. By using a beamformer, we localized gamma-band activity in the cerebellum across time and we related the foci of activity to the anatomical organization of the cerebellum. Successive cerebellar activations were observed within distinct lobules starting ~160ms after the stimuli onset. Arousal was processed within both vermal (VI and VIIIa) and hemispheric (left Crus II) lobules. Valence (left VI) and its interaction (left V and left Crus I) with arousal were processed only within hemispheric lobules. Arousal processing was identified first at early latencies (160ms) and was long-lived (until 980ms). In contrast, the processing of valence and its interaction to arousal was short lived at later stages (420-530ms and 570-640ms respectively). Our findings provide for the first time evidence that distinct cerebellar lobules process arousal, valence, and their interaction in a parallel yet temporally hierarchical manner determined by the emotional content of the stimuli. PMID:25665964

  10. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex

    PubMed Central

    Jeong, Su Keun; Xu, Yaoda

    2016-01-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region. PMID:27494544

  11. The impact of top-down spatial attention on laterality and hemispheric asymmetry in the human parietal cortex.

    PubMed

    Jeong, Su Keun; Xu, Yaoda

    2016-08-01

    The human parietal cortex exhibits a preference to contralaterally presented visual stimuli (i.e., laterality) as well as an asymmetry between the two hemispheres with the left parietal cortex showing greater laterality than the right. Using visual short-term memory and perceptual tasks and varying target location predictability, this study examined whether hemispheric laterality and asymmetry are fixed characteristics of the human parietal cortex or whether they are dynamic and modulated by the deployment of top-down attention to the target present hemifield. Two parietal regions were examined here that have previously been shown to be involved in visual object individuation and identification and are located in the inferior and superior intraparietal sulcus (IPS), respectively. Across three experiments, significant laterality was found in both parietal regions regardless of attentional modulation with laterality being greater in the inferior than superior IPS, consistent with their roles in object individuation and identification, respectively. Although the deployment of top-down attention had no effect on the superior IPS, it significantly increased laterality in the inferior IPS. The deployment of top-down spatial attention can thus amplify the strength of laterality in the inferior IPS. Hemispheric asymmetry, on the other hand, was absent in both brain regions and only emerged in the inferior but not the superior IPS with the deployment of top-down attention. Interestingly, the strength of hemispheric asymmetry significantly correlated with the strength of laterality in the inferior IPS. Hemispheric asymmetry thus seems to only emerge when there is a sufficient amount of laterality present in a brain region. PMID:27494544

  12. Seeing Is Not Feeling: Posterior Parietal But Not Somatosensory Cortex Engagement During Touch Observation

    PubMed Central

    Baker, Chris I.

    2015-01-01

    Observing touch has been reported to elicit activation in human primary and secondary somatosensory cortices and is suggested to underlie our ability to interpret other's behavior and potentially empathy. However, despite these reports, there are a large number of inconsistencies in terms of the precise topography of activation, the extent of hemispheric lateralization, and what aspects of the stimulus are necessary to drive responses. To address these issues, we investigated the localization and functional properties of regions responsive to observed touch in a large group of participants (n = 40). Surprisingly, even with a lenient contrast of hand brushing versus brushing alone, we did not find any selective activation for observed touch in the hand regions of somatosensory cortex but rather in superior and inferior portions of neighboring posterior parietal cortex, predominantly in the left hemisphere. These regions in the posterior parietal cortex required the presence of both brush and hand to elicit strong responses and showed some selectivity for the form of the object or agent of touch. Furthermore, the inferior parietal region showed nonspecific tactile and motor responses, suggesting some similarity to area PFG in the monkey. Collectively, our findings challenge the automatic engagement of somatosensory cortex when observing touch, suggest mislocalization in previous studies, and instead highlight the role of posterior parietal cortex. PMID:25632124

  13. Dissociable parietal systems for primacy and subsequent memory effects.

    PubMed

    Sommer, Tobias; Rose, Michael; Büchel, Christian

    2006-05-01

    The frequently observed superior memory for the first items on a list is referred to as primacy. The aetiology of this effect in terms of cognitive processes and their neural substrate is subject to an ongoing debate. However, the brain areas generally involved in successful encoding are well described by subsequent memory studies in which activity during encoding is correlated with memory performance. We employed an object-location association paradigm to differentiate the neural correlate of the primacy from the subsequent memory effect. Activity in the intraparietal sulcus predicted memory performance across all encoding positions. Increased activity in the inferior parietal lobe and angular gyrus resulted exclusively in a more efficient encoding of the first item presented. These areas are part of the ventral frontoparietal network involved in stimulus driven attention. Our results implicate the relatively elevated attention to the first item probably due to its contextual distinctiveness, as a major contributor to the primacy effect.

  14. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  15. Progressive bilateral thinning of the parietal bones

    SciTech Connect

    Cederlund, C.G.; Andren, L.; Olivecrona, H.

    1982-03-01

    Observation of a case of progressive bilateral parietal thinning within a period of 14 years induced us to study skull films of 3 636 consecutive patients. Parietal thinning was found in 86 patients (2.37%). It was more common in women, with a sex ratio of 1:1.9. The mean age of the females was 72 years, and that of the males 63 years. Previous skull films of 25 of these patients were available and showed progression in 10. It is concluded that parietal thinning is a slowly progressive disease of middle-aged and old patients and is not an anatomical variant or congenital dysplasia of the dipole.

  16. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  17. Incarcerated inferior lumbar (Petit's) hernia.

    PubMed

    Astarcioğlu, H; Sökmen, S; Atila, K; Karademir, S

    2003-09-01

    Petit's hernia is an uncommon abdominal wall defect in the inferior lumbar triangle. Colonic incarceration through the inferior lumbar triangle, which causes mechanical obstructive symptoms, necessitates particular diagnostic and management strategy. We present a rare case of inferior lumbar hernia, leading to mechanical bowel obstruction, successfully treated with prosthetic mesh reinforcement repair.

  18. Genetics Home Reference: enlarged parietal foramina

    MedlinePlus

    ... parietal foramina is an inherited condition of impaired skull development. It is characterized by enlarged openings (foramina) ... that form the top and sides of the skull. This condition is due to incomplete bone formation ( ...

  19. Attentional functions of parietal and frontal cortex.

    PubMed

    Peers, Polly V; Ludwig, Casimir J H; Rorden, Chris; Cusack, Rhodri; Bonfiglioli, Claudia; Bundesen, Claus; Driver, Jon; Antoun, Nagui; Duncan, John

    2005-10-01

    A model of normal attentional function, based on the concept of competitive parallel processing, is used to compare attentional deficits following parietal and frontal lobe lesions. Measurements are obtained for visual processing speed, capacity of visual short-term memory (VSTM), spatial bias (bias to left or right hemifield) and top-down control (selective attention based on task relevance). The results show important differences, but also surprising similarities, in parietal and frontal lobe patients. For processing speed and VSTM, deficits are selectively associated with parietal lesions, in particular lesions of the temporoparietal junction. We discuss explanations based on either grey matter or white matter lesions. In striking contrast, measures of attentional weighting (spatial bias and top-down control) are predicted by simple lesion volume. We suggest that attentional weights reflect competition between broadly distributed object representations. Parietal and frontal mechanisms work together, both in weighting by location and weighting by task context.

  20. Parietal eye nerve in the fence lizard.

    PubMed

    EAKIN, R M; STEBBINS, R C

    1959-12-01

    A nerve from the parietal eye of the western fence lizard, Sceloporus occidentalis, is described as leaving inconspicuously from the third-eye and extending caudally under the dura mater and then ventrally along the left anterolateral surface of the epiphysis to the habenular commissure of the brain. The existence of a parietal nerve must be considered in interpreting the effects of parietalectomy. PMID:13819089

  1. Dramatic Cataplexy Improvement Following Right Parietal Surgery

    PubMed Central

    Fam, David J.; Shammi, Prathiba; Mainprize, Todd G.; Murray, Brian J.

    2015-01-01

    This is the case of a 34-year-old woman with severe narcolepsy with cataplexy who experienced a dramatic reduction in cataplexy symptoms after resection of a right parietal astrocytoma. The patient underwent detailed neurological exam, neuropsychological testing, polysomnography and multiple sleep latency testing following surgery. Citation: Fam DJ, Shammi P, Mainprize TG, Murray BJ. Dramatic cataplexy improvement following right parietal surgery. J Clin Sleep Med 2015;11(7):829–830. PMID:25902819

  2. Vagal afferent projections to lobule VIIa of the rabbit cerebellar vermis related to cardiovascular control.

    PubMed

    Kondo, M; Sears, T A; Sadakane, K; Nisimaru, N

    1998-02-01

    In decerebrate rabbits we recorded simultaneously field potentials in lobule VIIa of the vermal cerebellar cortex and the vagal compound action potentials (vCAPs) proximally in the vagus nerve following electrical stimulation distally in the same nerve at different intensities. Four principal components of the vCAP were distinguished based on their peak conduction velocities. Their velocities were component I, 67-100 m/s; II, 28-50 m/s; III, 6-28 m/s, IV, 0.4-1.3 m/s. A collision test based on stimulating the recurrent laryngeal nerve identified component I and sub-component IIa of the vCAP as being due to the motor fibres of the descending limb of the nerve. The field potentials evoked in lobule VIIa by electrical stimulation of the cervical vagus nerve were climbing fibre responses as judged by the characteristics of their lamina profile and their response to high frequency stimulation. These field potentials in lobule VIIa correlated most closely with the component III of the vCAP; particularly with a sub-component IIIa of the vagus. Based on the investigations by Evans and Murray (1954) (Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. (Lond.) 88, 320-337) in the rabbit, and by Paintal (1963) (Vagal afferent fibres. Ergeb. Physiol. 52, 74-156) and Mei (1970) (Cardiovascular and respiratory vagal mechanoreceptors in the cat. Exp. Brain Res. 11, 480-501) in the cat, component III is most likely to be due to receptors from the heart and a part of the pulmonary stretch receptors.

  3. Isolated inferior mesenteric portal hypertension with giant inferior mesenteric vein and anomalous inferior mesenteric vein insertion

    PubMed Central

    Prasad, G. Raghavendra; Billa, Srikar; Bhandari, Pavaneel; Hussain, Aijaz

    2013-01-01

    Extrahepatic portal hypertension is not an uncommon disease in childhood, but isolated inferior mesenteric portal varices and lower gastrointestinal (GI) bleed have not been reported till date. A 4-year-old girl presented with lower GI bleed. Surgical exploration revealed extrahepatic portal vein obstruction with giant inferior mesenteric vein and colonic varices. Inferior mesenteric vein was joining the superior mesenteric vein. The child was treated successfully with inferior mesenteric – inferior vena caval anastomosis. The child was relieved of GI bleed during the follow-up. PMID:23798814

  4. Sclerosing lymphocytic lobulitis manifesting as suspicious microcalcifications with Hashimoto's thyroiditis in a young woman.

    PubMed

    Park, Sung Hee; Choi, Seung Joon; Jung, Hyun Kyung

    2013-01-01

    Sclerosing lymphocytic lobulitis (SLL) is a rare inflammatory disorder, which is also known as fibrous mastopathy and lymphocytic mastitis. It is commonly associated with autoimmune disorders, particularly type 1 diabetes and thyroiditis. We report the case of a 28-year-old woman diagnosed as SLL with Hashimoto's thyroiditis, but without diabetes. She presented suspicious microcalcifications without palpable mass in routine mammograms in both breasts. She had been diagnosed as Hashimoto's thyroiditis several years before and had been followed up in endo-clinics. PMID:23834442

  5. Gastrin receptors on isolated canine parietal cells

    SciTech Connect

    Soll, A.H.; Amirian, D.A.; Thomas, L.P.; Reedy, T.J.; Elashoff, J.D.

    1984-05-01

    The receptors in the fundic mucosa that mediate gastrin stimulation of acid secretion have been studied. Synthetic human gastrin-17-I (G17) with a leucine substitution in the 15th position ((Leu15)-G17) was iodinated by chloramine T; high saturable binding was found to enzyme-dispersed canine fundic mucosal cells. /sup 127/I-(Leu15)-G17, but not /sup 127/I-G17, retained binding potency and biological activity comparable with uniodinated G17. Fundic mucosal cells were separated by size by using an elutriator rotor, and specific /sup 125/I-(Leu-15)-G17 binding in the larger cell fractions was highly correlated with the distribution of parietal cells. There was, however, specific gastrin binding in the small cell fractions, not accounted for by parietal cells. Using sequential elutriation and stepwise density gradients, highly enriched parietal and chief cell fractions were prepared; /sup 125/I-(Leu15)-G17 binding correlated positively with the parietal cell (r . 0.98) and negatively with chief cell content (r . -0.96). In fractions enriched to 45-65% parietal cells, specific /sup 125/I-(Leu15)-G17 binding was rapid, reaching a steady state at 37 degrees C within 30 min. Dissociation was also rapid, with the rate similar after 100-fold dilution or dilution plus excess pentagastrin. At a tracer concentration from 10 to 30 pM, saturable binding was 7.8 +/- 0.8% per 10(6) cells (mean +/- SE) and binding in the presence of excess pentagastrin accounted for 11% of total binding. G17 and carboxyl terminal octapeptide of cholecystokinin (26-33) were equipotent in displacing tracer binding and in stimulating parietal cell function ((/sup 14/C)aminopyrine accumulation), whereas the tetrapeptide of gastrin (14-17) had a much lower potency. Proglumide inhibited gastrin binding and selectively inhibited gastrin stimulation of parietal cell function.

  6. Common substrate for mental arithmetic and finger representation in the parietal cortex.

    PubMed

    Andres, Michael; Michaux, Nicolas; Pesenti, Mauro

    2012-09-01

    The history of mathematics provides several examples of the use of fingers to count or calculate. These observations converge with developmental data showing that fingers play a critical role in the acquisition of arithmetic knowledge. Further studies evidenced specific interference of finger movements with arithmetic problem solving in adults, raising the question of whether or not finger and number manipulations rely on common brain areas. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the possible overlap between the brain areas involved in mental arithmetic and those involved in finger discrimination. Solving subtraction and multiplication problems was found to increase cerebral activation bilaterally in the horizontal part of the intraparietal sulcus (hIPS) and in the posterior part of the superior parietal lobule (PSPL). Finger discrimination was associated with increased activity in a bilateral occipito-parieto-precentral network extending from the extrastriate body area to the primary somatosensory and motor cortices. A conjunction analysis showed common areas for mental arithmetic and finger representation in the hIPS and PSPL bilaterally. Voxelwise correlations further showed that finger discrimination and mental arithmetic induced a similar pattern of activity within the parietal areas only. Pattern similarity was more important for the left than for the right hIPS and for subtraction than for multiplication. These findings provide the first evidence that the brain circuits involved in finger representation also underlie arithmetic operations in adults. PMID:22634854

  7. Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval.

    PubMed

    Hutchinson, J Benjamin; Uncapher, Melina R; Weiner, Kevin S; Bressler, David W; Silver, Michael A; Preston, Alison R; Wagner, Anthony D

    2014-01-01

    While attention is critical for event memory, debate has arisen regarding the extent to which posterior parietal cortex (PPC) activation during episodic retrieval reflects engagement of PPC-mediated mechanisms of attention. Here, we directly examined the relationship between attention and memory, within and across subjects, using functional magnetic resonance imaging attention-mapping and episodic retrieval paradigms. During retrieval, 4 functionally dissociable PPC regions were identified. Specifically, 2 PPC regions positively tracked retrieval outcomes: lateral intraparietal sulcus (latIPS) indexed graded item memory strength, whereas angular gyrus (AnG) tracked recollection. By contrast, 2 other PPC regions demonstrated nonmonotonic relationships with retrieval: superior parietal lobule (SPL) tracked retrieval reaction time, consistent with a graded engagement of top-down attention, whereas temporoparietal junction displayed a complex pattern of below-baseline retrieval activity, perhaps reflecting disengagement of bottom-up attention. Analyses of retrieval effects in PPC topographic spatial attention maps (IPS0-IPS5; SPL1) revealed that IPS5 and SPL1 exhibited a nonmonotonic relationship with retrieval outcomes resembling that in the SPL region, further suggesting that SPL activation during retrieval reflects top-down attention. While demands on PPC attention mechanisms vary during retrieval attempts, the present functional parcellation of PPC indicates that 2 additional mechanisms (mediated by latIPS and AnG) positively track retrieval outcomes.

  8. Effect of Transcranial Magnetic Stimulation (TMS) on Parietal and Premotor Cortex during Planning of Reaching Movements

    PubMed Central

    Busan, Pierpaolo; Barbera, Claudia; Semenic, Mauro; Monti, Fabrizio; Pizzolato, Gilberto; Pelamatti, Giovanna; Battaglini, Piero Paolo

    2009-01-01

    Background Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL) and premotor cortex (PM), and their activation seems to take place in parallel. Methodology The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS) during planning of reaching movements under visual guidance. Principal Findings A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation. Conclusions This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions. PMID:19247490

  9. Parietal cortex coding of limb posture: in search of the body-schema.

    PubMed

    Parkinson, Amy; Condon, Laura; Jackson, Stephen R

    2010-09-01

    Computational theories of motor control propose that the brain uses 'forward' models of the body to ensure accurate control of movements. Forward 'dynamic' models are thought to generate an estimate of the next motor state for an upcoming movement: thereby providing a dynamic representation of the current postural configuration of the body that can be utilised during movement planning and execution. We used event-related functional magnetic resonance imaging [fMRI] to investigate brain areas involved in maintaining and updating the postural representations of the upper limb that participate in the control of reaching movements. We demonstrate that the neural correlates for executing memory-guided reaching movements to unseen target locations that were defined by arm posture, are primarily within regions of the superior parietal lobule [SPL]: including an area of the medial SPL identified as the human homologue of the 'parietal reach region' [PRR]. Using effective connectivity analyses we show that signals that influence the BOLD response within this area originate within premotor areas of the frontal lobe, including premotor cortex and the supplementary motor area. These data are consistent with the view that the SPL maintains an up-to-date estimate of the current postural configuration of the arm that is used during the planning and execution of reaching movements.

  10. Fat-plug myringoplasty of ear lobule vs abdominal donor sites.

    PubMed

    Acar, Mustafa; Yazıcı, Demet; San, Turhan; Muluk, Nuray Bayar; Cingi, Cemal

    2015-04-01

    The purpose of this study is to compare the success rates of fat-graft myringoplasties harvesting adipose grafts from different donor sites (ear lobule vs abdomen). The clinical records of 61 patients (24 males and 37 females) who underwent fat-plug myringoplasty (FPM) were reviewed retrospectively. Fat from ear lobule (FEL) and abdominal fat were used as graft materials. The impact of age, gender, systemic diseases, topography of the perforation, utilization of fat graft materials of different origin on the tympanic membrane closure rate and the effect of FPM on hearing gain was analyzed. Our tympanic membrane (TM) closure rate was 82 %. No statistical significant difference was observed regarding age, gender, comorbidities (septal deviation, hypertension and diabetes mellitus) or habits (smoking). Posterior TM perforations had significantly lower healing rate. The change in TM closure rate considering different adipose tissue donor sites was not statistically significant. The hearing gain of the patients was mostly below 20 dB. Fat-plug myringoplasty (FPM) is a safe, cost-effective and easy operation for selected patients. Abdominal fat graft is as effective as ear lobe fat graft on tympanic membrane healing, has cosmetic advantages and should be taken into consideration when planning fat as the graft source. PMID:24469028

  11. Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease.

    PubMed

    Yang, Zhen; Ye, Chuyang; Bogovic, John A; Carass, Aaron; Jedynak, Bruno M; Ying, Sarah H; Prince, Jerry L

    2016-02-15

    The cerebellum plays an important role in both motor control and cognitive function. Cerebellar function is topographically organized and diseases that affect specific parts of the cerebellum are associated with specific patterns of symptoms. Accordingly, delineation and quantification of cerebellar sub-regions from magnetic resonance images are important in the study of cerebellar atrophy and associated functional losses. This paper describes an automated cerebellar lobule segmentation method based on a graph cut segmentation framework. Results from multi-atlas labeling and tissue classification contribute to the region terms in the graph cut energy function and boundary classification contributes to the boundary term in the energy function. A cerebellar parcellation is achieved by minimizing the energy function using the α-expansion technique. The proposed method was evaluated using a leave-one-out cross-validation on 15 subjects including both healthy controls and patients with cerebellar diseases. Based on reported Dice coefficients, the proposed method outperforms two state-of-the-art methods. The proposed method was then applied to 77 subjects to study the region-specific cerebellar structural differences in three spinocerebellar ataxia (SCA) genetic subtypes. Quantitative analysis of the lobule volumes shows distinct patterns of volume changes associated with different SCA subtypes consistent with known patterns of atrophy in these genetic subtypes. PMID:26408861

  12. Assembly and use of new task rules in fronto-parietal cortex.

    PubMed

    Dumontheil, Iroise; Thompson, Russell; Duncan, John

    2011-01-01

    Severe capacity limits, closely associated with fluid intelligence, arise in learning and use of new task rules. We used fMRI to investigate these limits in a series of multirule tasks involving different stimuli, rules, and response keys. Data were analyzed both during presentation of instructions and during later task execution. Between tasks, we manipulated the number of rules specified in task instructions, and within tasks, we manipulated the number of rules operative in each trial block. Replicating previous results, rule failures were strongly predicted by fluid intelligence and increased with the number of operative rules. In fMRI data, analyses of the instruction period showed that the bilateral inferior frontal sulcus, intraparietal sulcus, and presupplementary motor area were phasically active with presentation of each new rule. In a broader range of frontal and parietal regions, baseline activity gradually increased as successive rules were instructed. During task performance, we observed contrasting fronto-parietal patterns of sustained (block-related) and transient (trial-related) activity. Block, but not trial, activity showed effects of task complexity. We suggest that, as a new task is learned, a fronto-parietal representation of relevant rules and facts is assembled for future control of behavior. Capacity limits in learning and executing new rules, and their association with fluid intelligence, may be mediated by this load-sensitive fronto-parietal network. PMID:20146600

  13. Spatial updating in human parietal cortex

    NASA Technical Reports Server (NTRS)

    Merriam, Elisha P.; Genovese, Christopher R.; Colby, Carol L.

    2003-01-01

    Single neurons in monkey parietal cortex update visual information in conjunction with eye movements. This remapping of stimulus representations is thought to contribute to spatial constancy. We hypothesized that a similar process occurs in human parietal cortex and that we could visualize it with functional MRI. We scanned subjects during a task that involved remapping of visual signals across hemifields. We observed an initial response in the hemisphere contralateral to the visual stimulus, followed by a remapped response in the hemisphere ipsilateral to the stimulus. We ruled out the possibility that this remapped response resulted from either eye movements or visual stimuli alone. Our results demonstrate that updating of visual information occurs in human parietal cortex.

  14. Parietal Lobes in Schizophrenia: Do They Matter?

    PubMed Central

    Yildiz, Murat; Borgwardt, Stefan J.; Berger, Gregor E.

    2011-01-01

    Objective. Despite observations that abnormal parietal lobe (PL) function is associated with psychotic-like experiences, our knowledge about the nature of PL involvement in schizophrenia is modest. The objective of this paper is to investigate the role of the PL in schizophrenia. Method. Medline databases were searched for English language publications using the following key words: parietal lobe, combined with schizophrenia, lesions, epilepsy, cognition, rare genetic disorders, MRI, fMRI, PET, and SPECT, respectively, followed by cross-checking of references. Results. Imaging studies in childhood onset schizophrenia suggest that grey matter abnormalities start in parietal and occipital lobes and proceed to frontal regions. Although, the findings are inconsistent, several studies with patients at risk to develop schizophrenia indicate early changes in the PL. Conclusions. We want to propose that in a proportion of individuals with emerging schizophrenia structural and functional alterations may start in the PL and progress to frontal regions. PMID:22937268

  15. Posterior parietal cortex and developmental dyslexia.

    PubMed

    Jaśkowski, Piotr; Rusiak, Patrycja

    2005-01-01

    Dyslexia is defined as a specific reading disorder despite normal intelligence and conventional teaching. One of the most influential theories attempting to explain problems suffered by dyslexics assumes that dyslexia is caused by deficits of the magnocellular system. This system, generally responsible for processing fast sensory information, projects mostly to the parietal cortex. Consistent with this theory, dyslexics should have problems with tasks which specifically involve parietal cortex. In the article, we review data and show that, indeed, dyslexics have problems with fast attention shifts, show some symptoms of mild unilateral neglect syndrome and have abnormal saccadic and pursuit eye movements. Little is known about visuo-motor coordination and mental rotation, the tasks in which the parietal cortex is thought to play important roles.

  16. Early coding of reaching: frontal and parietal association connections of parieto-occipital cortex.

    PubMed

    Caminiti, R; Genovesio, A; Marconi, B; Mayer, A B; Onorati, P; Ferraina, S; Mitsuda, T; Giannetti, S; Squatrito, S; Maioli, M G; Molinari, M

    1999-09-01

    The ipsilateral association connections of the cortex of the dorsal part of the rostral bank of the parieto-occipital sulcus and of the adjoining posterior part of the superior parietal lobule were studied by using different retrograde fluorescent tracers. Fluoro-Ruby, Fast blue and Diamidino yellow were injected into visual area V6A, and dorso-caudal (PMdc, F2) and dorso-rostral (PMdr, F7) premotor cortex, respectively. The parietal area of injection had been previously characterized physiologically in behaving monkeys, through a variety of oculomotor and visuomanual tasks. Area V6A is mainly linked by reciprocal projections to parietal areas 7m, MIP (medial intraparietal) and PEa, and, to a lesser extent, to frontal areas PMdr (rostral dorsal premotor cortex, F7) and PMdc (F2). All these areas project to that part of the dorsocaudal premotor cortex that has a direct access to primary motor cortex. V6A is also connected to area F5 and, to a lesser extent, to 7a, ventral (VIP) and lateral (LIP) intraparietal areas. This pattern of association connections may explain the presence of visually-related and eye-position signals in premotor cortex, as well as the influence of information concerning arm position and movement direction on V6A neural activity. Area V6A emerges as a potential 'early' node of the distributed network underlying visually-guided reaching. In this network, reciprocal association connections probably impose, through re-entrant signalling, a recursive property to the operations leading to the composition of eye and hand motor commands.

  17. Assessment of Cortical Dysfunction in Patients with Intermittent Exotropia: An fMRI Study

    PubMed Central

    Zhang, Junran; Gong, Qiyong; Liu, Longqian

    2016-01-01

    Neural imaging studies have found the connection between strabismus and brain cortex. However, the pathological mechanisms of intermittent exotropia are still not fully understood. In the present study, changes of binocular fusion related cortices in intermittent exotropia were investigated with blood oxygen level dependent functional magnetic resonance imaging. Activated cortices induced by fusion stimulus were found to be distributed in several regions such as bilateral middle occipital gyrus, bilateral middle temporal gyrus, left superior parietal lobule and so on. Compared with normal subjects, the increased activation intensity was observed in bilateral superior parietal lobule and inferior parietal lobule in subjects with intermittent exotropia. These findings indicate that binocular fusion involves a complicated brain network including several regions. And cortical activities of bilateral superior parietal lobule and inferior parietal lobule compensate for the binocular fusion dysfunction in intermittent exotropia. PMID:27501391

  18. Assessment of Cortical Dysfunction in Patients with Intermittent Exotropia: An fMRI Study.

    PubMed

    Li, Qian; Bai, Junxing; Zhang, Junran; Gong, Qiyong; Liu, Longqian

    2016-01-01

    Neural imaging studies have found the connection between strabismus and brain cortex. However, the pathological mechanisms of intermittent exotropia are still not fully understood. In the present study, changes of binocular fusion related cortices in intermittent exotropia were investigated with blood oxygen level dependent functional magnetic resonance imaging. Activated cortices induced by fusion stimulus were found to be distributed in several regions such as bilateral middle occipital gyrus, bilateral middle temporal gyrus, left superior parietal lobule and so on. Compared with normal subjects, the increased activation intensity was observed in bilateral superior parietal lobule and inferior parietal lobule in subjects with intermittent exotropia. These findings indicate that binocular fusion involves a complicated brain network including several regions. And cortical activities of bilateral superior parietal lobule and inferior parietal lobule compensate for the binocular fusion dysfunction in intermittent exotropia. PMID:27501391

  19. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval.

    PubMed

    Lundstrom, Brian Nils; Ingvar, Martin; Petersson, Karl Magnus

    2005-10-01

    The posterior medial parietal cortex and left prefrontal cortex (PFC) have both been implicated in the recollection of past episodes. In a previous study, we found the posterior precuneus and left lateral inferior frontal cortex to be activated during episodic source memory retrieval. This study further examines the role of posterior precuneal and left prefrontal activation during episodic source memory retrieval using a similar source memory paradigm but with longer latency between encoding and retrieval. Our results suggest that both the precuneus and the left inferior PFC are important for regeneration of rich episodic contextual associations and that the precuneus activates in tandem with the left inferior PFC during correct source retrieval. Further, results suggest that the left ventro-lateral frontal region/frontal operculum is involved in searching for task-relevant information (BA 47) and subsequent monitoring or scrutiny (BA 44/45) while regions in the dorsal inferior frontal cortex are important for information selection (BA 45/46).

  20. From visual affordances in monkey parietal cortex to hippocampo-parietal interactions underlying rat navigation.

    PubMed Central

    Arbib, M A

    1997-01-01

    This paper explores the hypothesis that various subregions (but by no means all) of the posterior parietal cortex are specialized to process visual information to extract a variety of affordances for behaviour. Two biologically based models of regions of the posterior parietal cortex of the monkey are introduced. The model of the lateral intraparietal area (LIP) emphasizes its roles in dynamic remapping of the representation of targets during a double saccade task, and in combining stored, updated input with current visual input. The model of the anterior intraparietal area (AIP) addresses parietal-premotor interactions involved in grasping, and analyses the interaction between the AIP and premotor area F5. The model represents the role of other intraparietal areas working in concert with the inferotemporal cortex as well as with corollary discharge from F5 to provide and augment the affordance information in the AIP, and suggests how various constraints may resolve the action opportunities provided by multiple affordances. Finally, a systems-level model of hippocampo parietal interactions underlying rat navigation is developed, motivated by the monkey data used in developing the above two models as well as by data on neurones in the posterior parietal cortex of the monkey that are sensitive to visual motion. The formal similarity between dynamic remapping (primate saccades) and path integration (rat navigation) is noted, and certain available data on rat posterior parietal cortex in terms of affordances for locomotion are explained. The utility of further modelling, linking the World Graph model of cognitive maps for motivated behaviour with hippocampal-parietal interactions involved in navigation, is also suggested. These models demonstrate that posterior parietal cortex is not only itself a network of interacting subsystems, but functions through cooperative computation with many other brain regions. PMID:9368931

  1. Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools.

    PubMed

    Vingerhoets, Guy

    2014-01-01

    Neuropsychological and neuroimaging data suggest a differential contribution of posterior parietal regions during the different components of a transitive gesture. Reaching requires the integration of object location and body position coordinates and reaching tasks elicit bilateral activation in different foci along the intraparietal sulcus. Grasping requires a visuomotor match between the object's shape and the hand's posture. Lesion studies and neuroimaging confirm the importance of the anterior part of the intraparietal sulcus for human grasping. Reaching and grasping reveal bilateral activation that is generally more prominent on the side contralateral to the hand used or the hemifield stimulated. Purposeful behavior with objects and tools can be assessed in a variety of ways, including actual use, pantomimed use, and pure imagery of manipulation. All tasks have been shown to elicit robust activation over the left parietal cortex in neuroimaging, but lesion studies have not always confirmed these findings. Compared to pantomimed or imagined gestures, actual object and tool use typically produces activation over the left primary somatosensory region. Neuroimaging studies on pantomiming or imagery of tool use in healthy volunteers revealed neural responses in possibly separate foci in the left supramarginal gyrus. In sum, the parietal contribution of reaching and grasping of objects seems to depend on a bilateral network of intraparietal foci that appear organized along gradients of sensory and effector preferences. Dorsal and medial parietal cortex appears to contribute to the online monitoring/adjusting of the ongoing prehensile action, whereas the functional use of objects and tools seems to involve the inferior lateral parietal cortex. This functional input reveals a clear left lateralized activation pattern that may be tuned to the integration of acquired knowledge in the planning and guidance of the transitive movement.

  2. Beyond natural numbers: negative number representation in parietal cortex.

    PubMed

    Blair, Kristen P; Rosenberg-Lee, Miriam; Tsang, Jessica M; Schwartz, Daniel L; Menon, Vinod

    2012-01-01

    Unlike natural numbers, negative numbers do not have natural physical referents. How does the brain represent such abstract mathematical concepts? Two competing hypotheses regarding representational systems for negative numbers are a rule-based model, in which symbolic rules are applied to negative numbers to translate them into positive numbers when assessing magnitudes, and an expanded magnitude model, in which negative numbers have a distinct magnitude representation. Using an event-related functional magnetic resonance imaging design, we examined brain responses in 22 adults while they performed magnitude comparisons of negative and positive numbers that were quantitatively near (difference <4) or far apart (difference >6). Reaction times (RTs) for negative numbers were slower than positive numbers, and both showed a distance effect whereby near pairs took longer to compare. A network of parietal, frontal, and occipital regions were differentially engaged by negative numbers. Specifically, compared to positive numbers, negative number processing resulted in greater activation bilaterally in intraparietal sulcus (IPS), middle frontal gyrus, and inferior lateral occipital cortex. Representational similarity analysis revealed that neural responses in the IPS were more differentiated among positive numbers than among negative numbers, and greater differentiation among negative numbers was associated with faster RTs. Our findings indicate that despite negative numbers engaging the IPS more strongly, the underlying neural representation are less distinct than that of positive numbers. We discuss our findings in the context of the two theoretical models of negative number processing and demonstrate how multivariate approaches can provide novel insights into abstract number representation.

  3. The left parietal cortex and motor attention.

    PubMed

    Rushworth, M F; Nixon, P D; Renowden, S; Wade, D T; Passingham, R E

    1997-09-01

    The posterior parietal cortex, particularly in the right hemisphere, is crucially important for covert orienting; lesions impair the ability to disengage the focus of covert orienting attention from one potential saccade target to another (Posner, M. I. et al., Journal of Neuroscience, 1984, 4, 1863-1874). We have developed a task where precues allow subjects to covertly prepare subsequent cued hand movements, as opposed to an orienting or eye movement. We refer to this process as motor attention to distinguish it from orienting attention. Nine subjects with lesions that included the left parietal cortex and nine subjects with lesions including the right parietal cortex were compared with control subjects on the task. The left hemisphere subjects showed the same ability as controls to engage attention to a movement when they were forewarned by a valid precue. The left hemisphere subjects, however, were impaired in their ability to disengage the focus of motor attention from one movement to another when the precue was incorrect. The results support the existence of two distinct attentional systems allied to the orienting and limb motor systems. Damage to either system causes analogous problems in disengaging from one orienting/movement target to another. The left parietal cortex, particularly the supramarginal gyrus, is associated with motor attention. All the left hemisphere subjects had ideomotor apraxia and had particular problems performing sequences of movements. We suggest that the well documented left hemisphere and apraxic impairment in movement sequencing is the consequence of a difficulty in shifting the focus of motor attention from one movement in a sequence to the next. PMID:9364496

  4. Ethanol exposure during development reduces GABAergic/glycinergic neuron numbers and lobule volumes in the mouse cerebellar vermis.

    PubMed

    Nirgudkar, Pranita; Taylor, Devin H; Yanagawa, Yuchio; Valenzuela, C Fernando

    2016-10-01

    Cerebellar alterations are a hallmark of Fetal Alcohol Spectrum Disorders and are thought to be responsible for deficits in fine motor control, motor learning, balance, and higher cognitive functions. These deficits are, in part, a consequence of dysfunction of cerebellar circuits. Although the effect of developmental ethanol exposure on Purkinje and granule cells has been previously characterized, its actions on other cerebellar neuronal populations are not fully understood. Here, we assessed the impact of repeated ethanol exposure on the number of inhibitory neurons in the cerebellar vermis. We exposed pregnant mice to ethanol in vapor inhalation chambers during gestational days 12-19 and offspring during postnatal days 2-9. We used transgenic mice expressing the fluorescent protein, Venus, in GABAergic/glycinergic neurons. Using unbiased stereology techniques, we detected a reduction in Venus positive neurons in the molecular and granule cell layers of lobule II in the ethanol exposed group at postnatal day 16. In contrast, ethanol produced a more widespread reduction in Purkinje cell numbers that involved lobules II, IV-V and IX. We also found a reduction in the volume of lobules II, IV-V, VI-VII, IX and X in ethanol-exposed pups. These findings indicate that second and third trimester-equivalent ethanol exposure has a greater impact on Purkinje cells than interneurons in the developing cerebellar vermis. The decrease in the volume of most lobules could be a consequence of a reduction in cell numbers, dendritic arborizations, or axonal projections.

  5. Ethanol exposure during development reduces GABAergic/glycinergic neuron numbers and lobule volumes in the mouse cerebellar vermis.

    PubMed

    Nirgudkar, Pranita; Taylor, Devin H; Yanagawa, Yuchio; Valenzuela, C Fernando

    2016-10-01

    Cerebellar alterations are a hallmark of Fetal Alcohol Spectrum Disorders and are thought to be responsible for deficits in fine motor control, motor learning, balance, and higher cognitive functions. These deficits are, in part, a consequence of dysfunction of cerebellar circuits. Although the effect of developmental ethanol exposure on Purkinje and granule cells has been previously characterized, its actions on other cerebellar neuronal populations are not fully understood. Here, we assessed the impact of repeated ethanol exposure on the number of inhibitory neurons in the cerebellar vermis. We exposed pregnant mice to ethanol in vapor inhalation chambers during gestational days 12-19 and offspring during postnatal days 2-9. We used transgenic mice expressing the fluorescent protein, Venus, in GABAergic/glycinergic neurons. Using unbiased stereology techniques, we detected a reduction in Venus positive neurons in the molecular and granule cell layers of lobule II in the ethanol exposed group at postnatal day 16. In contrast, ethanol produced a more widespread reduction in Purkinje cell numbers that involved lobules II, IV-V and IX. We also found a reduction in the volume of lobules II, IV-V, VI-VII, IX and X in ethanol-exposed pups. These findings indicate that second and third trimester-equivalent ethanol exposure has a greater impact on Purkinje cells than interneurons in the developing cerebellar vermis. The decrease in the volume of most lobules could be a consequence of a reduction in cell numbers, dendritic arborizations, or axonal projections. PMID:27565053

  6. Electrocorticography reveals the temporal dynamics of posterior parietal cortical activity during recognition memory decisions.

    PubMed

    Gonzalez, Alex; Hutchinson, J Benjamin; Uncapher, Melina R; Chen, Janice; LaRocque, Karen F; Foster, Brett L; Rangarajan, Vinitha; Parvizi, Josef; Wagner, Anthony D

    2015-09-01

    Theories of the neurobiology of episodic memory predominantly focus on the contributions of medial temporal lobe structures, based on extensive lesion, electrophysiological, and imaging evidence. Against this backdrop, functional neuroimaging data have unexpectedly implicated left posterior parietal cortex (PPC) in episodic retrieval, revealing distinct activation patterns in PPC subregions as humans make memory-related decisions. To date, theorizing about the functional contributions of PPC has been hampered by the absence of information about the temporal dynamics of PPC activity as retrieval unfolds. Here, we leveraged electrocorticography to examine the temporal profile of high gamma power (HGP) in dorsal PPC subregions as participants made old/new recognition memory decisions. A double dissociation in memory-related HGP was observed, with activity in left intraparietal sulcus (IPS) and left superior parietal lobule (SPL) differing in time and sign for recognized old items (Hits) and correctly rejected novel items (CRs). Specifically, HGP in left IPS increased for Hits 300-700 ms poststimulus onset, and decayed to baseline ∼200 ms preresponse. By contrast, HGP in left SPL increased for CRs early after stimulus onset (200-300 ms) and late in the memory decision (from 700 ms to response). These memory-related effects were unique to left PPC, as they were not observed in right PPC. Finally, memory-related HGP in left IPS and SPL was sufficiently reliable to enable brain-based decoding of the participant's memory state at the single-trial level, using multivariate pattern classification. Collectively, these data provide insights into left PPC temporal dynamics as humans make recognition memory decisions. PMID:26283375

  7. Autologus parietal grafts in preprosthethic surgery

    PubMed Central

    GHERLONE, E.F.; VINCI, R.; D’AVERSA, L.

    2010-01-01

    SUMMARY Edentulous patients usually request implant supported/fixed rehabilitation. Ridge resorption after teeth loss usually affect three-dimensional implant position. Vertical and/or horizontal bone augmentation procedures are often the only choice the clinician has to deliver prosthetic guided restoration. Gold standard for augmentation procedures such as sinus lift, onlay or inlay grafts, is still autologous bone. The patient in this report underwent a pre-prosthetic reconstruction of the jaws with parietal bone, followed by fixtures insertion and fixed prosthetic rehabilitation. This clinical report aims to underline the importance of multidisciplinary treatment to optimize the results of the rehabilitation. PMID:23285358

  8. Navigating from hippocampus to parietal cortex

    PubMed Central

    Whitlock, Jonathan R.; Sutherland, Robert J.; Witter, Menno P.; Moser, May-Britt; Moser, Edvard I.

    2008-01-01

    The navigational system of the mammalian cortex comprises a number of interacting brain regions. Grid cells in the medial entorhinal cortex and place cells in the hippocampus are thought to participate in the formation of a dynamic representation of the animal's current location, and these cells are presumably critical for storing the representation in memory. To traverse the environment, animals must be able to translate coordinate information from spatial maps in the entorhinal cortex and hippocampus into body-centered representations that can be used to direct locomotion. How this is done remains an enigma. We propose that the posterior parietal cortex is critical for this transformation. PMID:18812502

  9. Simulation of the Inferior Mirage

    NASA Astrophysics Data System (ADS)

    Branca, Mario

    2010-09-01

    A mirage can occur when a continuous variation in the refractive index of the air causes light rays to follow a curved path. As a result, the image we see is displaced from the location of the object. If the image appears higher in the air than the object, it is called a "superior" mirage, while if it appears lower it is called an "inferior" mirage.2 The most common example of an inferior mirage is when, on a hot day, a stretch of dry road off in the distance appears to be wet (see Fig. 1). Many lab activities have been described that simulate the formation of superior mirages. In these demonstrations light beams curve downward as they pass through a nonuni-form fluid.3-6 Much less common are laboratory demonstrations of upward-curving light rays of the kind responsible for inferior mirages. This paper describes a simple version of such a demonstration.

  10. Activity in superior parietal cortex during training by observation predicts asymmetric learning levels across hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2016-01-01

    A dominant concept in motor cognition associates action observation with motor control. Previous studies have shown that passive action observation can result in significant performance gains in humans. Nevertheless, it is unclear whether the neural mechanism subserving such learning codes abstract aspects of the action (e.g. goal) or low level aspects such as effector identity. Eighteen healthy subjects learned to perform sequences of finger movements by passively observing right or left hand performing the same sequences in egocentric view. Using functional magnetic resonance imaging we show that during passive observation, activity in the superior parietal lobule (SPL) contralateral to the identity of the observed hand (right\\left), predicts subsequent performance gains in individual subjects. Behaviorally, left hand observation resulted in positively correlated performance gains of the two hands. Conversely right hand observation yielded negative correlation - individuals with high performance gains in one hand exhibited low gains in the other. Such behavioral asymmetry is reflected by activity in contralateral SPL during short-term training in the absence of overt physical practice and demonstrates the role of observed hand identity in learning. These results shed new light on the coding level in SPL and have implications for optimizing motor skill learning. PMID:27535179

  11. Activity in superior parietal cortex during training by observation predicts asymmetric learning levels across hands.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2016-01-01

    A dominant concept in motor cognition associates action observation with motor control. Previous studies have shown that passive action observation can result in significant performance gains in humans. Nevertheless, it is unclear whether the neural mechanism subserving such learning codes abstract aspects of the action (e.g. goal) or low level aspects such as effector identity. Eighteen healthy subjects learned to perform sequences of finger movements by passively observing right or left hand performing the same sequences in egocentric view. Using functional magnetic resonance imaging we show that during passive observation, activity in the superior parietal lobule (SPL) contralateral to the identity of the observed hand (right\\left), predicts subsequent performance gains in individual subjects. Behaviorally, left hand observation resulted in positively correlated performance gains of the two hands. Conversely right hand observation yielded negative correlation - individuals with high performance gains in one hand exhibited low gains in the other. Such behavioral asymmetry is reflected by activity in contralateral SPL during short-term training in the absence of overt physical practice and demonstrates the role of observed hand identity in learning. These results shed new light on the coding level in SPL and have implications for optimizing motor skill learning. PMID:27535179

  12. Malignant pilomatricoma in the parietal area.

    PubMed

    Kondo, Takeshi; Tanaka, Yoshio

    2006-01-01

    A 27-year-old Japanese woman presented with a 2.5-cm nodular subcutaneous lesion in the parietal area. The nodule was well demarcated and situated in the dermis and subcutis. Histologically, the tumor was diagnosed as malignant pilomatricoma. The tumor was excised, the postoperative course was uneventful, no evidence of local recurrence or distant metastasis was observed, and the patient continues to be under close follow-up. Malignant pilomatricoma, a locally aggressive counterpart of benign pilomatricoma, is also referred to as pilomatrix carcinoma. Most cases are excised as benign tumors; however, when the excision is incomplete local recurrence is likely, and distant metastases have also been reported. Histologically, the diagnosis can be challenging because no clear histologic criteria are available. Because of the rarity of malignant pilomatricoma, no welldefined standards in the surgical management of this neoplasm have been established. Moreover, since distant metastases have been described, close followup of the lesion is requisite.

  13. The pathology of parietal pleural plaques

    PubMed Central

    Roberts, G. Hefin

    1971-01-01

    The incidence, morbid anatomy, histology, and relationship of hyaline pleural plaques to exposure to asbestos has been studied. Plaques were found in 12·3% of 334 hospital necropsies (in an urban population in Glasgow, 41 cases). In 85·3% (35 cases) asbestos bodies were found in the lungs. There is evidence of a dose-response relationship between the number of asbestos bodies found in the lungs and the presence of pleural plaques. The selective distribution of plaques within the pleural cavities suggests that mechanical factors play a part in their localization. Histological examination contributed little to understanding the mechanism of plaque formation; that asbestos bodies have been detected in only a few cases suggest that their presence in the parietal pleura is not essential to plaque formation. The suggested mechanisms of plaque formation are discussed. Images PMID:5556121

  14. The role of the posterior parietal cortex in stereopsis and hand-eye coordination during motor task behaviours.

    PubMed

    Paggetti, Giulia; Leff, Daniel Richard; Orihuela-Espina, Felipe; Mylonas, George; Darzi, Ara; Yang, Guang-Zhong; Menegaz, Gloria

    2015-05-01

    The field of 'Neuroergonomics' has the potential to improve safety in high-risk operative environments through a better appreciation of the way in which the brain responds during human-tool interactions. This is especially relevant to minimally invasive surgery (MIS). Amongst the many challenges imposed on the surgeon by traditional MIS (laparoscopy), arguably the greatest is the loss of depth perception. Robotic MIS platforms, on the other hand, provide the surgeon with a magnified three-dimensional view of the environment, and as a result may offload a degree of the cognitive burden. The posterior parietal cortex (PPC) plays an integral role in human depth perception. Therefore, it can be hypothesized that differences in PPC activation between monoscopic and stereoscopic vision may be observed. In order to investigate this hypothesis, the current study explores disparities in PPC responses between monoscopic and stereoscopic visual perception to better de-couple the burden imposed by laparoscopy and robotic surgery on the operator's brain. Fourteen participants conducted tasks of depth perception and hand-eye coordination under both monoscopic and stereoscopic visual feedback. Cortical haemodynamic responses were monitored throughout using optical functional neuroimaging. Overall, recruitment of the bilateral superior parietal lobule was observed during both depth perception and hand-eye coordination tasks. This occurred contrary to our hypothesis, regardless of the mode of visual feedback. Operator technical performance was significantly different in two- and three-dimensional visual displays. These differences in technical performance do not appear to be explained by significant differences in parietal lobe processing.

  15. Sleep paralysis and "the bedroom intruder": the role of the right superior parietal, phantom pain and body image projection.

    PubMed

    Jalal, Baland; Ramachandran, Vilayanur S

    2014-12-01

    Sleep paralysis (SP) is a common condition occurring either at sleep onset or sleep offset. During SP the sleeper experiences gross motor paralysis while the sensory system is clear. Hypnogogic and hypnopompic hallucinations are common during SP and may involve seeing, hearing, and sensing the presence of menacing intruders in one's bedroom. This "intruder" is often perceived as a shadowy humanoid figure. Supernatural accounts of this hallucinated intruder are common across cultures. In this paper, we postulate that a functional disturbance of the right parietal cortex explains the shadowy nocturnal bedroom intruder hallucination during SP. This hallucination may arise due to a disturbance in the multisensory processing of body and self at the temporoparietal junction. We specifically propose that this perceived intruder is the result of a hallucinated projection of the genetically "hard-wired" body image (homunculus), in the right parietal region; namely, the same circuits that dictate aesthetic and sexual preference of body morphology. One way to test this hypothesis would be to study clinical populations who may have genetically acquired "irregularities" in their internal hard-wired body image in the right superior parietal lobule (SPL); for example, individuals with apotemnophilia or anorexia nervosa. If such individuals experience SP (e.g., induced in a sleep lab), and they hallucinate this shadowy figure, one would predict that they would see humanoid shadows and shapes with body irregularities, mirroring their own internal body image morphology. If correct, our hypothesis will offer a neurological explanation for this nocturnal bedroom intruder that has been a source of controversy, and striking and implausible cultural interpretations throughout history. Indeed, if our proposed hypothesis is tested and corroborated, dissemination of such findings would provide great relief to SP experiencers worldwide and could potentially be used in a therapeutic context.

  16. Sleep paralysis and "the bedroom intruder": the role of the right superior parietal, phantom pain and body image projection.

    PubMed

    Jalal, Baland; Ramachandran, Vilayanur S

    2014-12-01

    Sleep paralysis (SP) is a common condition occurring either at sleep onset or sleep offset. During SP the sleeper experiences gross motor paralysis while the sensory system is clear. Hypnogogic and hypnopompic hallucinations are common during SP and may involve seeing, hearing, and sensing the presence of menacing intruders in one's bedroom. This "intruder" is often perceived as a shadowy humanoid figure. Supernatural accounts of this hallucinated intruder are common across cultures. In this paper, we postulate that a functional disturbance of the right parietal cortex explains the shadowy nocturnal bedroom intruder hallucination during SP. This hallucination may arise due to a disturbance in the multisensory processing of body and self at the temporoparietal junction. We specifically propose that this perceived intruder is the result of a hallucinated projection of the genetically "hard-wired" body image (homunculus), in the right parietal region; namely, the same circuits that dictate aesthetic and sexual preference of body morphology. One way to test this hypothesis would be to study clinical populations who may have genetically acquired "irregularities" in their internal hard-wired body image in the right superior parietal lobule (SPL); for example, individuals with apotemnophilia or anorexia nervosa. If such individuals experience SP (e.g., induced in a sleep lab), and they hallucinate this shadowy figure, one would predict that they would see humanoid shadows and shapes with body irregularities, mirroring their own internal body image morphology. If correct, our hypothesis will offer a neurological explanation for this nocturnal bedroom intruder that has been a source of controversy, and striking and implausible cultural interpretations throughout history. Indeed, if our proposed hypothesis is tested and corroborated, dissemination of such findings would provide great relief to SP experiencers worldwide and could potentially be used in a therapeutic context

  17. Differential bilateral involvement of the parietal gyrus during predicative metaphor processing: an auditory fMRI study.

    PubMed

    Obert, Alexandre; Gierski, Fabien; Calmus, Arnaud; Portefaix, Christophe; Declercq, Christelle; Pierot, Laurent; Caillies, Stéphanie

    2014-10-01

    Despite the growing literature on figurative language processing, there is still debate as to which cognitive processes and neural bases are involved. Furthermore, most studies have focused on nominal metaphor processing without any context, and very few have used auditory presentation. We therefore investigated the neural bases of the comprehension of predicative metaphors presented in a brief context, in an auditory, ecological way. The comprehension of their literal counterparts served as a control condition. We also investigated the link between working memory and verbal skills and regional activation. Comparisons of metaphorical and literal conditions revealed bilateral activation of parietal areas including the left angular (lAG) and right inferior parietal gyri (rIPG) and right precuneus. Only verbal skills were associated with lAG (but not rIPG) activation. These results indicated that predicative metaphor comprehension share common activations with other metaphors. Furthermore, individual verbal skills could have an impact on figurative language processing.

  18. Serotonin in the inferior colliculus.

    PubMed

    Hurley, Laura M; Thompson, Ann M; Pollak, George D

    2002-06-01

    It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed. PMID:12117504

  19. Simulation of the Inferior Mirage

    ERIC Educational Resources Information Center

    Branca, Mario

    2010-01-01

    A mirage can occur when a continuous variation in the refractive index of the air causes light rays to follow a curved path. As a result, the image we see is displaced from the location of the object. If the image appears higher in the air than the object, it is called a "superior" mirage, while if it appears lower it is called an "inferior"…

  20. Mandatory Housing Requirements: The Constitutionality of Parietal Rules

    ERIC Educational Resources Information Center

    Iowa Law Review, 1975

    1975-01-01

    Analyzes the validity of parietal rules under both the due process and equal protection clauses of the Fourteenth Amendment. Models of substantive due process and equal protection are developed and applied to the various types of parietal rules that have been implemented at universities throughout the nation. (Author/JT)

  1. Agnosia for mirror stimuli: a new case report with a small parietal lesion.

    PubMed

    Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Lebas, Axel; Gerardin, Emmanuel; Hannequin, Didier

    2014-11-01

    Only seven cases of agnosia for mirror stimuli have been reported, always with an extensive lesion. We report a new case of an agnosia for mirror stimuli due to a circumscribed lesion. An extensive battery of neuropsychological tests and a new experimental procedure to assess visual object mirror and orientation discrimination were assessed 10 days after the onset of clinical symptoms, and 5 years later. The performances of our patient were compared with those of four healthy control subjects matched for age. This test revealed an agnosia for mirror stimuli. Brain imaging showed a small right occipitoparietal hematoma, encompassing the extrastriate cortex adjoining the inferior parietal lobe. This new case suggests that: (i) agnosia for mirror stimuli can persist for 5 years after onset and (ii) the posterior part of the right intraparietal sulcus could be critical in the cognitive process of mirror stimuli discrimination.

  2. Dissociable effects of surprise and model update in parietal and anterior cingulate cortex.

    PubMed

    O'Reilly, Jill X; Schüffelgen, Urs; Cuell, Steven F; Behrens, Timothy E J; Mars, Rogier B; Rushworth, Matthew F S

    2013-09-17

    Brains use predictive models to facilitate the processing of expected stimuli or planned actions. Under a predictive model, surprising (low probability) stimuli or actions necessitate the immediate reallocation of processing resources, but they can also signal the need to update the underlying predictive model to reflect changes in the environment. Surprise and updating are often correlated in experimental paradigms but are, in fact, distinct constructs that can be formally defined as the Shannon information (IS) and Kullback-Leibler divergence (DKL) associated with an observation. In a saccadic planning task, we observed that distinct behaviors and brain regions are associated with surprise/IS and updating/DKL. Although surprise/IS was associated with behavioral reprogramming as indexed by slower reaction times, as well as with activity in the posterior parietal cortex [human lateral intraparietal area (LIP)], the anterior cingulate cortex (ACC) was specifically activated during updating of the predictive model (DKL). A second saccade-sensitive region in the inferior posterior parietal cortex (human 7a), which has connections to both LIP and ACC, was activated by surprise and modulated by updating. Pupillometry revealed a further dissociation between surprise and updating with an early positive effect of surprise and late negative effect of updating on pupil area. These results give a computational account of the roles of the ACC and two parietal saccade regions, LIP and 7a, by which their involvement in diverse tasks can be understood mechanistically. The dissociation of functional roles between regions within the reorienting/reprogramming network may also inform models of neurological phenomena, such as extinction and Balint syndrome, and neglect.

  3. Navigating actions through the rodent parietal cortex

    PubMed Central

    Whitlock, Jonathan R.

    2014-01-01

    The posterior parietal cortex (PPC) participates in a manifold of cognitive functions, including visual attention, working memory, spatial processing, and movement planning. Given the vast interconnectivity of PPC with sensory and motor areas, it is not surprising that neuronal recordings show that PPC often encodes mixtures of spatial information as well as the movements required to reach a goal. Recent work sought to discern the relative strength of spatial vs. motor signaling in PPC by recording single unit activity in PPC of freely behaving rats during selective changes in either the spatial layout of the local environment or in the pattern of locomotor behaviors executed during navigational tasks. The results revealed unequivocally a predominant sensitivity of PPC neurons to locomotor action structure, with subsets of cells even encoding upcoming movements more than 1 s in advance. In light of these and other recent findings in the field, I propose that one of the key contributions of PPC to navigation is the synthesis of goal-directed behavioral sequences, and that the rodent PPC may serve as an apt system to investigate cellular mechanisms for spatial motor planning as traditionally studied in humans and monkeys. PMID:24860475

  4. Damage to temporo-parietal cortex decreases incidental activation of thematic relations during spoken word comprehension

    PubMed Central

    Mirman, Daniel; Graziano, Kristen M.

    2012-01-01

    Both taxonomic and thematic semantic relations have been studied extensively in behavioral studies and there is an emerging consensus that the anterior temporal lobe plays a particularly important role in the representation and processing of taxonomic relations, but the neural basis of thematic semantics is less clear. We used eye tracking to examine incidental activation of taxonomic and thematic relations during spoken word comprehension in participants with aphasia. Three groups of participants were tested: neurologically intact control participants (N=14), individuals with aphasia resulting from lesions in left hemisphere BA 39 and surrounding temporo-parietal cortex regions (N=7), and individuals with the same degree of aphasia severity and semantic impairment and anterior left hemisphere lesions (primarily inferior frontal gyrus and anterior temporal lobe) that spared BA 39 (N=6). The posterior lesion group showed reduced and delayed activation of thematic relations, but not taxonomic relations. In contrast, the anterior lesion group exhibited longer-lasting activation of taxonomic relations and did not differ from control participants in terms of activation of thematic relations. These results suggest that taxonomic and thematic semantic knowledge are functionally and neuroanatomically distinct, with the temporo-parietal cortex playing a particularly important role in thematic semantics. PMID:22571932

  5. Size abnormalities of the superior parietal cortices are related to dissociation in borderline personality disorder.

    PubMed

    Irle, Eva; Lange, Claudia; Weniger, Godehard; Sachsse, Ulrich

    2007-11-15

    Recent evidence suggests that borderline personality disorder (BPD) is related to reduced size of the parietal lobe. Dissociative symptoms occur in the majority of individuals with BPD. Structural magnetic resonance imaging (3D-MRI) was used to assess volumes of the superior (precuneus, postcentral gyrus) and inferior parietal cortices in 30 young women with BPD who had been exposed to severe childhood sexual and physical abuse and 25 healthy control subjects. Compared with control subjects, BPD subjects had significantly smaller right-sided precuneus (-9%) volumes. The left postcentral gyrus of BPD subjects with the comorbid diagnosis of dissociative amnesia (DA) or dissociative identity disorder (DID) was significantly increased compared with controls (+13%) and compared with BPD subjects without these disorders (+11%). In BPD subjects, stronger depersonalization was significantly related to larger right precuneus size. Possibly, larger precuneus size in BPD is related to symptoms of depersonalization. Increased postcentral gyrus size in BPD may be related to the development of DA or DID in the presence of severe childhood abuse.

  6. Inferior mirages: an improved model.

    PubMed

    Young, Andrew T

    2015-02-01

    A quantitative model of the inferior mirage is presented, based on a realistic temperature profile in the convective boundary layer, using Monin-Obukhov similarity theory. The top of the inverted image is determined by the logarithmic part of the profile; the bottom is the apparent horizon, which depends on optical obstruction by roughness elements. These effects of surface roughness are included in the model, which is illustrated with a simulation. The vertical magnification varies throughout the mirage, becoming infinite at Minnaert's ill-named "vanishing line"-which makes green flashes apparent to the naked eye. PMID:25967823

  7. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval.

    PubMed

    Ciaramelli, Elisa; Grady, Cheryl L; Moscovitch, Morris

    2008-01-01

    Recent neuroimaging studies have implicated the posterior parietal cortex in episodic memory retrieval, but there is uncertainty about its specific role. Research in the attentional domain has shown that superior parietal lobe (SPL) regions along the intraparietal sulcus are implicated in the voluntary orienting of attention to relevant aspects of the environment, whereas inferior parietal lobe (IPL) regions at the temporo-parietal junction mediate the automatic allocation of attention to task-relevant information. Here we propose that the SPL and the IPL play conceptually similar roles in episodic memory retrieval. We hypothesize that the SPL allocates top-down attention to memory retrieval, whereas the IPL mediates the automatic, bottom-up attentional capture by retrieved memory contents. By reviewing the existing fMRI literature, we show that the posterior intraparietal sulcus of SPL is consistently active when the need for top-down assistance to memory retrieval is supposedly maximal, e.g., for memories retrieved with low vs. high confidence, for familiar vs. recollected memories, for recognition of high vs. low frequency words. On the other hand, the supramarginal gyrus of IPL is consistently active when the attentional capture by memory contents is supposedly maximal, i.e., for strong vs. weak memories, for vividly recollected vs. familiar memories, for memories retrieved with high vs. low confidence. We introduce a model of episodic memory retrieval that characterizes contributions of posterior parietal cortex.

  8. INTERDEPENDENT SUPERIORITY AND INFERIORITY FEELINGS

    PubMed Central

    Ingham, Harrington V.

    1949-01-01

    It is postulated that in neurotic persons who have unrealistic feelings of superiority and inferiority the two are interdependent. This is a departure from the concept of previous observers that either one or the other is primary and its opposite is overcompensation. The author postulates considerable parallelism, with equal importance for each. He submits that the neurotic person forms two logic-resistant compartments for the two opposed self-estimates and that treatment which makes inroads of logic upon one compartment, simultaneously does so upon the other. Two examples are briefly reported. The neurotic benefits sought in exaggeration of capability are the same as those sought in insistence upon inferiority: Presumption of superiority at once bids for approbation and delivers the subject from the need to prove himself worthy of it in dreaded competition; exaggeration of incapability baits sympathy and makes competition unnecessary because failure is conceded. Some of the characteristics of abnormal self-estimates that distinguish them from normal are: Preoccupation with self, resistance to logical explanation of personality problems, inconsistency in reasons for beliefs in adequacy on the one hand and inadequacy on the other, unreality, rationalization of faults, and difficulty and vacillation in the selection of adequate goals. PMID:15390573

  9. Parietal Neural Prosthetic Control of a Computer Cursor in a Graphical-User-Interface Task

    PubMed Central

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A

    2014-01-01

    Objective To date, the majority of Brain Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in Area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like “Face in a Crowd” task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the “Crowd”) using a neurally controlled cursor. We assessed whether the Crowd affected decodes of intended cursor movements by comparing it to a “Crowd Off” condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main Results Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the Crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  10. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task

    NASA Astrophysics Data System (ADS)

    Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.

    2014-12-01

    Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet

  11. Parietal damage impairs learning of a visuomotor tracking skill.

    PubMed

    Cavaco, Sara; Anderson, Steven W; Chen, Kuan-Hua; Teixeira-Pinto, Armando; Damasio, Hanna

    2015-12-01

    This study evaluated the consequences of damage to the parietal lobe for learning a visuomotor tracking skill. Thirty subjects with a single unilateral brain lesion (13 with and 17 without parietal damage) and 23 demographically comparable healthy subjects performed the Rotary Pursuit task. For each group, time on target increased significantly across the four learning blocks. Subjects with parietal lesions had smaller improvements on the Rotary Pursuit from the 1st to the 4th block than subjects with lesions in other brain areas and healthy comparison subjects. The improvements on task performance from the 1st to the 2nd and from the 1st to the 3rd learning blocks were similar between groups. The parietal lobe appears to play an important role in the acquisition of a new visuomotor tracking skill, in particular during a relatively late phase of learning. PMID:26536523

  12. Parietal damage impairs learning of a visuomotor tracking skill.

    PubMed

    Cavaco, Sara; Anderson, Steven W; Chen, Kuan-Hua; Teixeira-Pinto, Armando; Damasio, Hanna

    2015-12-01

    This study evaluated the consequences of damage to the parietal lobe for learning a visuomotor tracking skill. Thirty subjects with a single unilateral brain lesion (13 with and 17 without parietal damage) and 23 demographically comparable healthy subjects performed the Rotary Pursuit task. For each group, time on target increased significantly across the four learning blocks. Subjects with parietal lesions had smaller improvements on the Rotary Pursuit from the 1st to the 4th block than subjects with lesions in other brain areas and healthy comparison subjects. The improvements on task performance from the 1st to the 2nd and from the 1st to the 3rd learning blocks were similar between groups. The parietal lobe appears to play an important role in the acquisition of a new visuomotor tracking skill, in particular during a relatively late phase of learning.

  13. Increased BOLD Variability in the Parietal Cortex and Enhanced Parieto-Occipital Connectivity during Tactile Perception in Congenitally Blind Individuals

    PubMed Central

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas. PMID:22792493

  14. Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals.

    PubMed

    Leo, Andrea; Bernardi, Giulio; Handjaras, Giacomo; Bonino, Daniela; Ricciardi, Emiliano; Pietrini, Pietro

    2012-01-01

    Previous studies in early blind individuals posited a possible role of parieto-occipital connections in conveying nonvisual information to the visual occipital cortex. As a consequence of blindness, parietal areas would thus become able to integrate a greater amount of multimodal information than in sighted individuals. To verify this hypothesis, we compared fMRI-measured BOLD signal temporal variability, an index of efficiency in functional information integration, in congenitally blind and sighted individuals during tactile spatial discrimination and motion perception tasks. In both tasks, the BOLD variability analysis revealed many cortical regions with a significantly greater variability in the blind as compared to sighted individuals, with an overlapping cluster located in the left inferior parietal/anterior intraparietal cortex. A functional connectivity analysis using this region as seed showed stronger correlations in both tasks with occipital areas in the blind as compared to sighted individuals. As BOLD variability reflects neural integration and processing efficiency, these cross-modal plastic changes in the parietal cortex, even if described in a limited sample, reinforce the hypothesis that this region may play an important role in processing nonvisual information in blind subjects and act as a hub in the cortico-cortical pathway from somatosensory cortex to the reorganized occipital areas.

  15. The Repetition Paradigm: Enhancement of Novel Metaphors and Suppression of Conventional Metaphors in the Left Inferior Parietal Lobe

    ERIC Educational Resources Information Center

    Subramaniam, Karuna; Faust, Miriam; Beeman, Mark; Mashal, Nira

    2012-01-01

    The neural mechanisms underlying the process of understanding novel and conventional metaphoric expressions remain unclear largely because the specific brain regions that support the formation of novel semantic relations are still unknown. A well established way to study distinct cognitive processes specifically associated with an event of…

  16. Dynamics of EEG Rhythms Support Distinct Visual Selection Mechanisms in Parietal Cortex: A Simultaneous Transcranial Magnetic Stimulation and EEG Study

    PubMed Central

    Spadone, Sara; Tosoni, Annalisa; Sestieri, Carlo; Romani, Gian Luca; Della Penna, Stefania; Corbetta, Maurizio

    2015-01-01

    Using repetitive transcranial magnetic stimulation (rTMS), we have recently shown a functional anatomical distinction in human parietal cortex between regions involved in maintaining attention to a location [ventral intraparietal sulcus (vIPS)] and a region involved in shifting attention between locations [medial superior parietal lobule (mSPL)]. In particular, while rTMS interference over vIPS impaired target discrimination at contralateral attended locations, interference over mSPL affected performance following shifts of attention regardless of the visual field (Capotosto et al., 2013). Here, using rTMS interference in conjunction with EEG recordings of brain rhythms during the presentation of cues that indicate to either shift or maintain spatial attention, we tested whether this functional anatomical segregation involves different mechanisms of rhythm synchronization. The transient inactivation of vIPS reduced the amplitude of the expected parieto-occipital low-α (8–10 Hz) desynchronization contralateral to the cued location. Conversely, the transient inactivation of mSPL, compared with vIPS, reduced the high-α (10–12 Hz) desynchronization induced by shifting attention into both visual fields. Furthermore, rTMS induced a frequency-specific delay of task-related modulation of brain rhythms. Specifically, rTMS over vIPS or mSPL during maintenance (stay cues) or shifting (shift cues) of spatial attention, respectively, caused a delay of α parieto-occipital desynchronization. Moreover, rTMS over vIPS during stay cues caused a delay of δ (2–4 Hz) frontocentral synchronization. These findings further support the anatomo-functional subdivision of the dorsal attention network in subsystems devoted to shifting or maintaining covert visuospatial attention and indicate that these mechanisms operate in different frequency channels linking frontal to parieto-occipital visual regions. PMID:25589765

  17. Distribution of vitamin A-storing lipid droplets in hepatic stellate cells in liver lobules--a comparative study.

    PubMed

    Higashi, Nobuyo; Senoo, Haruki

    2003-03-01

    To investigate the storage mechanisms of vitamin A, we examined the liver of adult polar bears and arctic foxes, which physiologically store a large amount of vitamin A, by high-performance liquid chromatography (HPLC), transmission electron microscopy (TEM) morphometry, gold chloride staining, fluorescence microscopy for the detection of autofluorescence of vitamin A, staining with hematoxylin-eosin (H&E), Masson's trichrome, and Ishii and Ishii's silver impregnation. HPLC revealed that the polar bears and arctic foxes contained 1.8-1.9 x 10(4) nmol total retinol (retinol plus retinyl esters) per gram liver. In the arctic foxes, the composition of the retinyl esters was found to be 51.1% palmitate, 26.6% oleate, 15.4% stearate, and 7% linoleate. The hepatic stellate cells of the arctic animals were demonstrated by TEM to contain the bulk of the vitamin A-lipid droplets in their cytoplasm. The liver lobules of the arctic animals showed a zonal gradient in the storage of vitamin A. The gradient was expressed as a symmetric crescendo-decrescendo profile starting at the periportal zone, peaking at the middle zone, and sloping down toward the central zone in the liver lobule. The density (i.e., cell number per area) of hepatic stellate cells was essentially the same among the zones. The gradient and the composition of the retinyl esters in storing vitamin A were not changed by differences in the vitamin A amount in the livers. These results indicate that the heterogeneity of vitamin A-storage capacity in hepatic stellate cells of arctic foxes and polar bears is genetically determined. PMID:12552640

  18. Inferior vena caval masses identified by echocardiography

    NASA Technical Reports Server (NTRS)

    Sun, J. P.; Asher, C. R.; Xu, Y.; Huang, V.; Griffin, B. P.; Stewart, W. J.; Novick, A. C.; Thomas, J. D.

    1999-01-01

    The most common cause of an inferior vena caval mass is renal cell carcinoma that extends through the lumen, occurring in 47 of 62 patients (85%). Detection of an inferior vena caval mass affects the surgical approach requiring cardiopulmonary bypass for resection when the mass extends to the heart.

  19. Essential role of the right superior parietal cortex in Japanese kana mirror reading: An fMRI study.

    PubMed

    Dong, Y; Fukuyama, H; Honda, M; Okada, T; Hanakawa, T; Nakamura, K; Nagahama, Y; Nagamine, T; Konishi, J; Shibasaki, H

    2000-04-01

    Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates responsible for Japanese kana mirror reading. Japanese kana words, arranged vertically from top to bottom, were used in the mirror reading task in 10 normal right-handed Japanese adults. Since both mirror-reversed and normally oriented kana items are read in the same (top to bottom) direction, it was possible to minimize the oculomotor effects which often occur in the process of mirror reading of alphabetical language. By using the SPM96 random effect analysis method, a significant increase in the blood oxygen level-dependent signal during mirror reading relative to normal reading was detected in multiple brain regions, including the bilateral superior occipital gyri, bilateral middle occipital gyri corresponding to Brodmann area (BA) 18/19, bilateral lingual gyri (BA 19), left inferior occipital gyrus (BA 18), left inferior temporal cortex (BA 37), bilateral fusiform gyri (BA 19), right superior parietal cortex (SPC) (BA 7), left inferior frontal gyrus (BA 44/45) and an inferior part of the left BA 6. In addition to these cortical regions, the right caudate nucleus and right cerebellum were also activated. The activation found in the right SPC and the left inferior temporal region is consistent with the hypothesis that mirror reading involves both the dorsal visuospatial and ventral object recognition pathways. In particular, a significant correlation was found between the fMRI signal change in the right SPC and the behavioural performance (error index) in the task. This may reflect increased demand on the right SPC for the spatial transformation which is required for the accurate recognition of mirror-reversed kana items. This relationship between the haemodynamic response in a specific brain area and the behavioural data provides new evidence for the essential role of the right SPC in Japanese kana mirror reading.

  20. Bilateral inferior petrosal sinus sampling.

    PubMed

    Zampetti, Benedetta; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo; Loli, Paola

    2016-07-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing's syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88-100% and 67-100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50-70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres. PMID:27352844

  1. Bilateral inferior petrosal sinus sampling.

    PubMed

    Zampetti, Benedetta; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo; Loli, Paola

    2016-07-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing's syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88-100% and 67-100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50-70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres.

  2. Bilateral inferior petrosal sinus sampling

    PubMed Central

    Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo

    2016-01-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing’s syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88–100% and 67–100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50–70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres. PMID:27352844

  3. Perceptual distortions and delusional thinking following ketamine administration are related to increased pharmacological MRI signal changes in the parietal lobe.

    PubMed

    Stone, James; Kotoula, Vasileia; Dietrich, Craige; De Simoni, Sara; Krystal, John H; Mehta, Mitul A

    2015-09-01

    Ketamine produces effects in healthy humans that resemble the positive, negative and cognitive symptoms of schizophrenia. We investigated the effect of ketamine administration on brain activity as indexed by blood-oxygen-level-dependent (BOLD) signal change response, and its relationship to ketamine-induced subjective changes, including perceptual distortion. Thirteen healthy participants volunteered for the study. All underwent a 15-min functional MRI acquisition with a ketamine infusion commencing after 5 min (approx 0.26 mg/kg over 20s followed by an infusion of approx. 0.42 mg/kg/h). Following the scan, participants self-rated ketamine-induced effects using the Psychotomimetic States Inventory. Ketamine led to widespread cortical and subcortical increases in BOLD response (FWE-corrected p < 0.01). Self-rated perceptual distortions and delusional thoughts correlated with increased BOLD response in the paracentral lobule (FWE-corrected p < 0.01). The findings suggest that BOLD increases in parietal cortices reflect ketamine effects on circuits that contribute to its capacity to produce perceptual alterations and delusional interpretations.

  4. [Microbiocenosis of parietal mucin in the gastrointestinal tract of rats].

    PubMed

    Vorob'ev, A A; Nesvizhskiĭ, Iu V; Bogdanova, E A; Korneev, L M

    2005-01-01

    The qualitative and quantitative composition of the microbial community in parietal mucin at different areas of the gastrointestinal tract (GIT) of rats was revealed. The pronounced variability in the quantitative and qualitative characteristics of microbiocenosis in parietal mucin of rats at different sections was revealed. The differences were most pronounced in the passage from upper to lower GIT sections, the large intestine found to be the richest biocenosis. The microbial composition of rat feces was faintly associated with the GIT parietal microbiocenosis. The individual areas of GIT mucosa were unique of their microbial characteristics and organization. This makes it possible to regard them as relatively independent biotopes and indicates that it is impossible to evaluate the microbial community by one of the colonic mucosal sifes. PMID:16438365

  5. Enlarged parietal foramina: a rare forensic autopsy finding.

    PubMed

    Durão, Carlos; Carpinteiro, Dina; Pedrosa, Frederico; Machado, Marcos P; Cunha, Eugénia

    2016-05-01

    Enlarged parietal foramina (EPF) are a quite rare developmental defect of the parietal bone which has to be distinguished from the normal small parietal foramina. We report a forensic case of an individual found in an advanced state of putrefaction in his own house with an undetermined cause of death. No evidence of trauma was observed, and the toxicological exam was negative. The victim was a 40-year-old man with a history of epilepsy. The large biparietal foramina, a rare anatomical variation and unusual autopsy finding, were observed at autopsy. The recognition of anatomical variations is important to avoid false interpretations and conclusions and has a significant potential as an identity factor, thus contributing to positive identification.

  6. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  7. Meta-analysis: how does posterior parietal cortex contribute to reasoning?

    PubMed Central

    Wendelken, Carter

    2015-01-01

    Reasoning depends on the contribution of posterior parietal cortex (PPC). But PPC is involved in many basic operations—including spatial attention, mathematical cognition, working memory, long-term memory, and language—and the nature of its contribution to reasoning is unclear. Psychological theories of the processes underlying reasoning make divergent claims about the neural systems that are likely to be involved, and better understanding the specific contribution of PPC can help to inform these theories. We set out to address several competing hypotheses, concerning the role of PPC in reasoning: (1) reasoning involves application of formal logic and is dependent on language, with PPC activation for reasoning mainly reflective of linguistic processing; (2) reasoning involves probabilistic computation and is thus dependent on numerical processing mechanisms in PPC; and (3) reasoning is built upon the representation and processing of spatial relations, and PPC activation associated with reasoning reflects spatial processing. We conducted two separate meta-analyses. First, we pooled data from our own studies of reasoning in adults, and examined activation in PPC regions of interest (ROI). Second, we conducted an automated meta-analysis using Neurosynth, in which we examined overlap between activation maps associated with reasoning and maps associated with other key functions of PPC. In both analyses, we observed reasoning-related activation concentrated in the left Inferior Parietal Lobe (IPL). Reasoning maps demonstrated the greatest overlap with mathematical cognition. Maintenance, visuospatial, and phonological processing also demonstrated some overlap with reasoning, but a large portion of the reasoning map did not overlap with the map for any other function. This evidence suggests that the PPC’s contribution to reasoning may be most closely related to its role in mathematical cognition, but that a core component of this contribution may be specific to

  8. Effects of Marijuana Use on Prefrontal and Parietal Volumes and Cognition in Emerging Adults

    PubMed Central

    Price, Jenessa S.; McQueeny, Tim; Shollenbarger, Skyler; Browning, Erin L.; Wieser, Jon; Lisdahl, Krista M.

    2015-01-01

    Rationale Chronic marijuana (MJ) use among adolescents has been associated with structural and functional abnormalities, particularly in developing regions responsible for higher order cognition. Objectives This study investigated prefrontal (PFC) and parietal volumes and executive function in emerging adult MJ users and explored potential gender differences. Methods Participants (ages 18–25) were 27 MJ users and 32 controls without neurologic or psychiatric disorders or heavy other drug use. A series of multiple regressions examined whether group status, past year MJ use, and their interactions with gender predicted ROI volumes. Post-hoc analyses consisted of brain-behavior correlations between volumes and cognitive variables and Fisher’s z tests to assess group differences. Results MJ users demonstrated significantly smaller medial orbitofrontal (mOFC; p=.004, FDR p=.024) and inferior parietal volumes (p=.04, FDR p=.12); follow-up regressions found that increased past year MJ use did not significantly dose-dependently predict smaller mOFC volume in a sub-sample of individuals with at least one past year MJ use. There were no significant gender interactions. There was a significant brain-behavior difference by group, such that smaller mOFC volumes were associated with poorer complex attention for MJ users (p<.05). Conclusions Smaller mOFC volumes among MJ users suggest disruption of typical neurodevelopmental processes associated with regular MJ use for both genders. These results highlight the need for longitudinal, multi-modal imaging studies providing clearer information on timing of neurodevelopmental processes and neurocognitive impacts of youth MJ initiation. PMID:25921032

  9. Inferior alveolar nerve block: Alternative technique

    PubMed Central

    Thangavelu, K.; Kannan, R.; Kumar, N. Senthil

    2012-01-01

    Background: Inferior alveolar nerve block (IANB) is a technique of dental anesthesia, used to produce anesthesia of the mandibular teeth, gingivae of the mandible and lower lip. The conventional IANB is the most commonly used the nerve block technique for achieving local anesthesia for mandibular surgical procedures. In certain cases, however, this nerve block fails, even when performed by the most experienced clinician. Therefore, it would be advantageous to find an alternative simple technique. Aim and Objective: The objective of this study is to find an alternative inferior alveolar nerve block that has a higher success rate than other routine techniques. To this purpose, a simple painless inferior alveolar nerve block was designed to anesthetize the inferior alveolar nerve. Materials and Methods: This study was conducted in Oral surgery department of Vinayaka Mission's dental college Salem from May 2009 to May 2011. Five hundred patients between the age of 20 years and 65 years who required extraction of teeth in mandible were included in the study. Out of 500 patients 270 were males and 230 were females. The effectiveness of the IANB was evaluated by using a sharp dental explorer in the regions innervated by the inferior alveolar, lingual, and buccal nerves after 3, 5, and 7 min, respectively. Conclusion: This study concludes that inferior alveolar nerve block is an appropriate alternative nerve block to anesthetize inferior alveolar nerve due to its several advantages. PMID:25885503

  10. FRONTAL AND PARIETAL CORTEX CONTRIBUTIONS TO ACTION MODIFICATION

    PubMed Central

    Mutha, Pratik K.; Stapp, Lee H.; Sainburg, Robert L.; Haaland, Kathleen Y.

    2014-01-01

    Successful achievement of task goals depends critically on the ability to adjust ongoing actions in response to environmental changes. The neural substrates underlying action modification have been a topic of great controversy: both, posterior parietal cortex and frontal regions, particularly prefrontal cortex have been previously identified as crucial in this regard, with most studies arguing in favor of one or the other. We aimed to address this controversy and understand whether frontal and parietal regions might play distinct roles during action modification. We tested ipsilesional arm performance of 27 stroke patients with focal lesions to frontal or parietal regions of the left or right cerebral hemisphere, and left or right arm performance of 18 healthy subjects on the classic double-step task in which a target is unpredictably displaced to a new location, requiring modification of the ongoing action. Only right hemisphere frontal lesions adversely impacted the timing of initiation of the modified response, while only left hemisphere parietal lesions impaired the accuracy of the modified action. Patients with right frontal lesions tended to complete the ongoing action to the initially displayed baseline target and initiated the new movement after a significant delay. In contrast, patients with left parietal damage did not accurately reach the new target location, but compared to the other groups, initiated the new action during an earlier phase of motion, before their baseline action was complete. Our findings thus suggest distinct, hemisphere specific contributions of frontal and parietal regions to action modification, and bring together, for the first time, disparate sets of prior findings about its underlying neural substrates. PMID:24763127

  11. Effective Brain Connectivity in Children with Reading Difficulties during Phonological Processing

    ERIC Educational Resources Information Center

    Cao, Fan; Bitan, Tali; Booth, James R.

    2008-01-01

    Using Dynamic Causal Modeling (DCM) and functional magnetic resonance imaging (fMRI), we examined effective connectivity between three left hemisphere brain regions (inferior frontal gyrus, inferior parietal lobule, fusiform gyrus) and bilateral medial frontal gyrus in 12 children with reading difficulties (M age = 12.4, range: 8.11-14.10) and 12…

  12. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement.

    PubMed

    Amemiya, Kaoru; Naito, Eiichi

    2016-05-01

    It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self. PMID:26986838

  13. Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement.

    PubMed

    Amemiya, Kaoru; Naito, Eiichi

    2016-05-01

    It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self.

  14. On-Chip Construction of Liver Lobule-like Microtissue and Its Application for Adverse Drug Reaction Assay.

    PubMed

    Ma, Chao; Zhao, Lei; Zhou, En-Min; Xu, Juan; Shen, Shaofei; Wang, Jinyi

    2016-02-01

    Engineering the liver in vitro is promising to provide functional replacement for patients with liver failure, or tissue models for drug metabolism and toxicity analysis. In this study, we describe a microfluidics-based biomimetic approach for the fabrication of an in vitro 3D liver lobule-like microtissue composed of a radially patterned hepatic cord-like network and an intrinsic hepatic sinusoid-like network. The hepatic enzyme assay showed that the 3D biomimetic microtissue maintained high basal CYP-1A1/2 and UGT activities, responded dynamically to enzyme induction/inhibition, and preserved great hepatic capacity of drug metabolism. Using the established biomimetic microtissue, the potential adverse drug reactions that induced liver injury were successfully analyzed via drug-drug interactions of clinical pharmaceuticals. The results showed that predosed pharmaceuticals which agitated CYP-1A1/2 and/or UGT activities would alter the toxic effect of the subsequently administrated drug. All the results validated the utility of the established biomimetic microtissue in toxicological studies in vitro. Also, we anticipate the microfluidics-based bioengineering strategy would benefit liver tissue engineering and liver physiology/pathophysiology studies, as well as in vitro assessment of drug-induced hepatotoxicity. PMID:26743823

  15. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: Dissociating prior from posterior temporal probabilities with fMRI.

    PubMed

    Coull, Jennifer T; Cotti, Julien; Vidal, Franck

    2016-11-01

    The ability to predict when an event will occur allows us to respond optimally to that event. Temporal predictability can be either fixed (prior probability) or evolving (posterior probability), in which case it is dynamically updated as a function of the elapse of time itself ("hazard function"). We used fMRI to identify the brain regions involved in either form of temporal prediction, within a single experimental paradigm. Participants performed a cued reaction time (RT) task, in which the target appeared after one of four intervals ("foreperiods") that was either predictable (temporal condition) or variable (neutral condition). As expected, RTs were faster in temporal versus neutral conditions, indicating the behavioural benefit of fixed temporal predictability. RTs also got faster as a function of foreperiod in the neutral, but not temporal, condition, reflecting the evolving temporal predictability of the hazard function. We confirmed that left inferior parietal cortex was preferentially activated by the fixed temporal predictability of temporal (versus neutral) cues. Then, by directly comparing how activity varied as a function of foreperiod in the neutral versus time conditions, we identified the neural substrates of the changes in temporal probability defined by the hazard function, while simultaneously controlling for changes related simply to the elapse of time itself. Whole-brain fMRI analyses (independently confirmed by anatomically guided ROI analyses) showed that activity in left inferior parietal cortex tracked the evolving temporal probabilities of the hazard function. ROI analysis further revealed a similar role for right inferior frontal cortex. Our data highlight a key role for left parietal cortex in instantiating the behavioural benefits of temporal predictability, whether predictions are fixed or dynamically evolving.

  16. Impairments in Tactile Search Following Superior Parietal Damage

    ERIC Educational Resources Information Center

    Skakoon-Sparling, Shayna P.; Vasquez, Brandon P.; Hano, Kate; Danckert, James

    2011-01-01

    The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior…

  17. Parietal cortex mediates perceptual Gestalt grouping independent of stimulus size.

    PubMed

    Grassi, Pablo R; Zaretskaya, Natalia; Bartels, Andreas

    2016-06-01

    The integration of local moving elements into a unified gestalt percept has previously been linked to the posterior parietal cortex. There are two possible interpretations for the lack of involvement of other occipital regions. The first is that parietal cortex is indeed uniquely functionally specialized to perform grouping. Another possibility is that other visual regions can perform grouping as well, but that the large spatial separation of the local elements used previously exceeded their neurons' receptive field (RF) sizes, preventing their involvement. In this study we distinguished between these two alternatives. We measured whole-brain activity using fMRI in response to a bistable motion illusion that induced mutually exclusive percepts of either an illusory global Gestalt or of local elements. The stimulus was presented in two sizes, a large version known to activate IPS only, and a version sufficiently small to fit into the RFs of mid-level dorsal regions such as V5/MT. We found that none of the separately localized motion regions apart from parietal cortex showed a preference for global Gestalt perception, even for the smaller version of the stimulus. This outcome suggests that grouping-by-motion is mediated by a specialized size-invariant mechanism with parietal cortex as its anatomical substrate.

  18. Human posterior parietal cortex mediates hand-specific planning

    PubMed Central

    Valyear, Kenneth F.; Frey, Scott H.

    2015-01-01

    The processes underlying action planning are fundamental to adaptive behavior and can be influenced by recent motor experience. Here, we used a novel fMRI Repetition Suppression (RS) design to test the hypotheses that action planning unfolds more efficiently for successive actions made with the same hand. More efficient processing was predicted to correspond with both faster response times (RTs) to initiate actions and reduced fMRI activity levels – RS. Consistent with these predictions, we detected faster RTs for actions made with the same hand and accompanying fMRI-RS within bilateral posterior parietal cortex and right-lateralized parietal operculum. Within posterior parietal cortex, these RS effects were localized to intraparietal and superior parietal cortices. These same areas were more strongly activated for actions involving the contralateral hand. The findings provide compelling new evidence for the specification of action plans in hand-specific terms, and indicate that these processes are sensitive to recent motor history. Consistent with computational efficiency accounts of motor history effects, the findings are interpreted as evidence for comparatively more efficient processing underlying action planning when successive actions involve the same versus opposite hand. PMID:25842294

  19. Parietal network underlying movement control: disturbances during subcortical electrostimulation.

    PubMed

    Almairac, Fabien; Herbet, Guillaume; Moritz-Gasser, Sylvie; Duffau, Hugues

    2014-07-01

    Our understanding of brain movement control has changed over the last two decades. Recent findings in the monkey and in humans have led to a parallel and interconnected network. Nevertheless, little is known about these networks. Here, we present two cases of patients with a parietal low-grade glioma. They underwent surgery under local anesthesia with cortical and subcortical mapping. For patient 1, subcortical electrostimulation immediately posterior to thalamocortical fibers induced movement disorders, with an inhibition of leg and arm movements medially and, more laterally, an acceleration of arm movement. For patient 2, electrostimulation of white matter immediately posterior to thalamocortical fibers induced an inhibition of both arm movement. It means that the detected fibers in the parietal lobe may be involved in the motor control modulation. They are distributed veil-like immediately posterior to thalamocortical pathways and could correspond to a fronto-parietal movement control subnetwork. These two cases highlight the major role of the subcortical connectivity in movement regulation, involving parietal lobe, thus the necessity to be identified and preserved during brain surgery.

  20. Functional connectivity of parietal cortex during temporal selective attention.

    PubMed

    Tyler, Sarah C; Dasgupta, Samhita; Agosta, Sara; Battelli, Lorella; Grossman, Emily D

    2015-04-01

    Perception of natural experiences requires allocation of attention towards features, objects, and events that are moving and changing over time. This allocation of attention is controlled by large-scale brain networks that, when damaged, cause widespread cognitive deficits. In particular, damage to ventral parietal cortex (right lateralized TPJ, STS, supramarginal and angular gyri) is associated with failures to selectively attend to and isolate features embedded within rapidly changing visual sequences (Battelli, Pascual-Leone, & Cavanagh, 2007; Husain, Shapiro, Martin, & Kennard, 1997). In this study, we used fMRI to investigate the neural activity and functional connectivity of intact parietal cortex while typical subjects judged the relative onsets and offsets of rapidly flickering tokens (a phase discrimination task in which right parietal patients are impaired). We found two regions in parietal cortex correlated with task performance: a bilateral posterior TPJ (pTPJ) and an anterior right-lateralized TPJ (R aTPJ). Both regions were deactivated when subjects engaged in the task but showed different patterns of functional connectivity. The bilateral pTPJ was strongly connected to nodes within the default mode network (DMN) and the R aTPJ was connected to the attention network. Accurate phase discriminations were associated with increased functional correlations between sensory cortex (hMT+) and the bilateral pTPJ, whereas accuracy on a control task was associated with yoked activity in the hMT+ and the R aTPJ. We conclude that temporal selective attention is particularly sensitive for revealing information pathways between sensory and core cognitive control networks that, when damaged, can lead to nonspatial attention impairments in right parietal stroke patients. PMID:25747530

  1. ROLE OF A LATERALIZED PARIETAL-BASAL GANGLIA CIRCUIT IN HIERARCHICAL PATTERN PERCEPTION

    PubMed Central

    Schendan, Haline E.; Amick, Melissa M.; Cronin-Golomb, Alice

    2009-01-01

    The role of corticostriatal circuits in hierarchical pattern perception was examined in Parkinson’s disease. The hypothesis was tested that patients with right-side onset of motor symptoms (RPD, left hemisphere dysfunction) would be impaired at local level processing because the left posterior temporoparietal junction (TP) emphasizes processing of local information. By contrast, left-side onset patients (LPD; right hemisphere dysfunction) would show impaired global processing because right TP emphasizes global processing. Participants identified targets at local or global levels without and with attention biased toward those levels. Despite normal attentional control between levels, LPD patients showed a single dissociation, demonstrating abnormal global level processing under all conditions, whereas RPD patients showed abnormal local level processing mainly when attention was biased toward the local level. These findings link side of motor symptom onset to visuospatial cognitive abilities that depend upon the contralateral TP, highlighting that side of onset can predict visuospatial impairments, and provide evidence that an inferior parietal - basal ganglia pathway involving the caudate head and the hemispherically asymmetrical TP region is necessary for hierarchical pattern perception. PMID:19170437

  2. Arm crossing updates brain functional connectivity of the left posterior parietal cortex

    PubMed Central

    Ora, Hiroki; Wada, Makoto; Salat, David; Kansaku, Kenji

    2016-01-01

    The unusual configuration of body parts can cause illusions. For example, when tactile stimuli are delivered to crossed arms a reversal of subjective temporal ordering occurs. Our group has previously demonstrated that arm crossing without sensory stimuli causes activity changes in the left posterior parietal cortex (PPC) and an assessment of tactile temporal order judgments (TOJs) revealed a positive association between activity in this area, especially the left intraparietal sulcus (IPS), and the degree of the crossed-hand illusion. Thus, the present study investigated how the IPS actively relates to other cortical areas under arms-crossed and -uncrossed conditions by analyzing the functional connectivity of the IPS. Regions showing connectivity with the IPS overlapped with regions within the default mode network (DMN) but the IPS also showed connectivity with other brain areas, including the frontoparietal control network (FPCN). The right middle/inferior frontal gyrus (MFG/IFG), which is included in the FPCN, showed greater connectivity in the arms-crossed condition than in the arms-uncrossed condition. These findings suggest that there is state-dependent connectivity during arm crossing, and that the left IPS may play an important role during the spatio-temporal updating of arm positions. PMID:27302746

  3. Neurological and neuropsychological characteristics of occipital, occipito-temporal and occipito-parietal infarction.

    PubMed

    Kraft, Antje; Grimsen, Cathleen; Kehrer, Stefanie; Bahnemann, Markus; Spang, Karoline; Prass, Maren; Irlbacher, Kerstin; Köhnlein, Martin; Lipfert, Anika; Brunner, Freimuth; Kastrup, Andreas; Fahle, Manfred; Brandt, Stephan A

    2014-07-01

    Neuropsychological deficits after occipital infarction are most often described in case studies and only a small sample of studies has attempted to exactly correlate the anatomical localization of lesions with associated neuropsychological symptoms. The present study investigated a large number of patients (N = 128) in order to provide an overview of neurological and neuropsychological deficits after occipital, occipito-temporal and occipito-parietal infarction. A particular approach of the study was to define exact anatomical correlates of neuropsychological dysfunction by using voxel-based lesion-symptom mapping (VLSM) in 61 patients. In addition to a visual field defect and phosphenes, patients often reported anomia, difficulties in reading and memory deficits. Visual disorders, such as achromatopsia, akinetopsia or prosopagnosia, were rarely reported by the patients. Memory and visual disorders were diagnosed efficiently using simple clinical screening tests, such as the Rey-Osterrieth Complex Figure Test for immediate recall, the Demtect and the Lang Stereo Test. Visual field defects, reading disorders and the perception of phosphenes were associated primarily with lesions of the calcarine sulcus. Anomia and memory deficits were related to lesions of the occipital inferior gyrus, the lingual gyrus and hippocampus, as well as to lesions of principal white matter tracts.

  4. Numerical ordering and symbolic arithmetic share frontal and parietal circuits in the right hemisphere.

    PubMed

    Knops, André; Willmes, Klaus

    2014-01-01

    A prominent proposal in numerical cognition states that our mental calculation abilities are grounded in the approximate number system (ANS). Recently, it was proposed that this association is mediated by numerical ordering abilities. As a first step in elucidating the neural correlates of this link this study tested which areas in the human brain carry information common to both calculation and numerical ordering. While lying in an MR scanner 17 healthy participants (a) decided whether or not a given number triplet was presented in numerically ascending order, and (b) solved simple addition and subtraction problems. Standard general linear model analyses revealed a largely overlapping network in fronto-parietal regions for both tasks. By analyzing the spatial information over voxels using a whole-brain searchlight algorithm we identified a right hemispheric network comprising areas along the intraparietal sulcus and in the inferior frontal cortex which was similarly involved in order judgments and symbolic arithmetic. Functional and anatomical characteristics of this network make it a candidate for linking the ANS to mental arithmetic. PMID:24064069

  5. Lobulated Enhancement Evaluation in the Follow-Up of Liver Metastases Treated by Stereotactic Body Radiation Therapy

    SciTech Connect

    Jarraya, Hajer; Borde, Paul; Mirabel, Xavier; Ernst, Olivier; Boulanger, Thomas; Lartigau, Eric; Ceugnart, Luc; Kramar, Andrew; Taieb, Sophie

    2015-06-01

    Objective: The Response Evaluation Criteria in Solid Tumors (RECIST) can have limitations when used to evaluate local treatments for cancer, especially for liver malignancies treated by stereotactic body radiation therapy (SBRT). The aim of this study was to validate the relationship between the occurrence of lobulated enhancement (LE) and local relapse and to evaluate the utility of this relationship for predicting local progression. Patients and Methods: Imaging data of 59 lesions in 46 patients, including 281 computed tomographic (CT) scans, were retrospectively and blindly reviewed by 3 radiologists. One radiologist measured the lesion size, for each CT and overall, to classify responses using RECIST threshold criteria. The second studied LE occurrence. A third radiologist was later included and studied LE occurrence to evaluate the interobserver consistency for LE evaluation. Results: The mean duration of follow-up was 13.6 months. LE was observed in 16 of 18 progressive lesions, occurring before size-based progression in 50% of cases, and the median delay of LE detection was 3.2 months. The sensitivity of LE to predict progression was 89%, and its specificity was 100%. The positive predictive value was 100%, the negative predictive value was 95.3%, and the overall accuracy was 97%. The probability of local progression-free survival at 12 months was significantly higher for lesions without LE compared with all lesions: 0.80 (CI 95%: 0.65-0.89) versus 0.69 (CI 95%: 0.54-0.80), respectively. The overall concordance rate between the 2 readers of LE was 97.9%. Conclusion: Response assessment of liver metastases treated by SBRT can be improved by including LE. This study demonstrates the diagnostic and predictive utility of LE for assessing local progression at a size still eligible for local salvage treatment.

  6. Functional organization of the left inferior precentral sulcus: dissociating the inferior frontal eye field and the inferior frontal junction.

    PubMed

    Derrfuss, J; Vogt, V L; Fiebach, C J; von Cramon, D Y; Tittgemeyer, M

    2012-02-15

    Two eye fields have been described in the human lateral frontal cortex: the frontal eye field (FEF) and the inferior frontal eye field (iFEF). The FEF has been extensively studied and has been found to lie at the ventral part of the superior precentral sulcus. Much less research, however, has focused on the iFEF. Recently, it was suggested that the iFEF is located at the dorsal part of the inferior precentral sulcus. A similar location was proposed for the inferior frontal junction area (IFJ), an area thought to be involved in cognitive control processes. The present study used fMRI to clarify the topographical and functional relationship of the iFEF and the IFJ in the left hemispheres of individual participants. The results show that both the iFEF and the IFJ are indeed located at the dorsal part of the inferior precentral sulcus. Nevertheless, the activations were spatially dissociable in every individual examined. The IFJ was located more towards the depth of the inferior precentral sulcus, close to the junction with the inferior frontal sulcus, whereas the iFEF assumed a more lateral, posterior and superior position. Furthermore, the results provided evidence for a functional double dissociation: the iFEF was activated only in a comparison of saccades vs. button presses, but not in a comparison of incongruent vs. congruent Stroop conditions, while the opposite pattern was found at the IFJ. These results provide evidence for a spatial and functional dissociation of two directly adjacent areas in the left posterior frontal lobe.

  7. [Inferior alveolar nerve repositioning in implant surgery].

    PubMed

    Ardekian, L; Salnea, J; Abu el-Naaj, I; Gutmacher, T; Peled, M

    2001-04-01

    Severe resorption of the posterior mandible possesses one of the most difficult restorative challenges to the implant surgery today. This resorption may prevent the placement of dental implants without the potentially damage to the inferior alveolar nerve. To create the opportunity of insertion dental implants of adequately length in those cases, the technique of nerve repositioning has been advocated. The purpose of this article is to describe two cases of nerve repositioning combined with placement of dental implants. Both cases showed appropriate postoperative healing without damage to the inferior alveolar nerve. The inferior alveolar nerve repositioning technique seems to be an acceptable alternative to augmentation procedure prior to dental implants placement in cases exhibiting atrophic posterior mandibular ridges. PMID:11494807

  8. Lateralization Technique and Inferior Alveolar Nerve Transposition

    PubMed Central

    Sanches, Marco Antonio; Ramalho, Gabriel Cardoso; Manzi, Marcello Roberto

    2016-01-01

    Bone resorption of the posterior mandible can result in diminished bone edge and, therefore, the installation of implants in these regions becomes a challenge, especially in the presence of the mandibular canal and its contents, the inferior alveolar nerve. Several treatment alternatives are suggested: the use of short implants, guided bone regeneration, appositional bone grafting, distraction osteogenesis, inclined implants tangential to the mandibular canal, and the lateralization of the inferior alveolar nerve. The aim was to elucidate the success rate of implants in the lateralization technique and in inferior alveolar nerve transposition and to determine the most effective sensory test. We conclude that the success rate is linked to the possibility of installing implants with long bicortical anchor which favors primary stability and biomechanics. PMID:27433360

  9. Prefrontal-parietal function: from foraging to foresight.

    PubMed

    Genovesio, Aldo; Wise, Steven P; Passingham, Richard E

    2014-02-01

    Comparative neuroanatomy shows that new prefrontal areas emerged during the evolution of anthropoid primates to augment prefrontal, parietal, and temporal areas that had evolved in earlier primates. We recently proposed that the new anthropoid areas reduce foraging errors by generating goals from current contexts and learning to do so rapidly, sometimes based on single events. Among the contexts used to generate these goals, the posterior parietal cortex provides the new prefrontal areas with information about relational metrics such as order, number, duration, length, distance and proportion, which play a crucial role in foraging choices. Here we propose that this specialized network later became adapted to support the human capacity for reasoning and general problem-solving.

  10. Overlapping Parietal Activity in Memory and Perception: Evidence for the Attention to Memory Model

    ERIC Educational Resources Information Center

    Cabeza, Roberto; Mazuz, Yonatan S.; Stokes, Jared; Kragel, James E.; Woldorff, Marty G.; Ciaramelli, Elisa; Olson, Ingrid R.; Moscovitch, Morris

    2011-01-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval…

  11. Dissociation of Subtraction and Multiplication in the Right Parietal Cortex: Evidence from Intraoperative Cortical Electrostimulation

    ERIC Educational Resources Information Center

    Yu, Xiaodan; Chen, Chuansheng; Pu, Song; Wu, Chenxing; Li, Yongnian; Jiang, Tao; Zhou, Xinlin

    2011-01-01

    Previous research has consistently shown that the left parietal cortex is critical for numerical processing, but the role of the right parietal lobe has been much less clear. This study used the intraoperative cortical electrical stimulation approach to investigate neural dissociation in the right parietal cortex for subtraction and…

  12. Anatomy of Inferior Mesenteric Artery in Fetuses.

    PubMed

    Nuzhat, Ayesha

    2016-01-01

    Aim. To analyze Inferior Mesenteric Artery in fetuses through its site of origin, length, diameter, and variation of its branches. Method. 100 fetuses were collected from various hospitals in Warangal at Kakatiya Medical College in Andhra Pradesh, India, and were divided into two groups, group I (second-trimester fetuses) and group II (third-trimester fetuses), followed by dissection. Result. (1) Site of Origin. In group I fetuses, origin of Inferior Mesenteric Artery was at third lumbar vertebra in 33 out of 34 fetuses (97.2%). In one fetus it was at first lumbar vertebra, 2.8%. In all group II fetuses, origin of Inferior Mesenteric Artery was at third lumbar vertebra. (2) Length. In group I fetuses it ranged between 18 and 30 mm, average being 24 mm except in one fetus where it was 48 mm. In group II fetuses the length ranged from 30 to 34 mm, average being 32 mm. (3) Diameter. In group I fetuses it ranged from 0.5 to 1 mm, and in group II fetuses it ranged from 1 to 2 mm, average being 1.5 mm. (4) Branches. Out of 34 fetuses of group I, 4 fetuses showed variation. In one fetus left colic artery was arising from abdominal aorta, 2.9%. In 3 fetuses, Inferior Mesenteric Artery was giving a branch to left kidney, 8.8%. Out of 66 fetuses in group II, 64 had normal branching. In one fetus left renal artery was arising from Inferior Mesenteric Artery, 1.5%, and in another fetus one accessory renal artery was arising from Inferior Mesenteric Artery and entering the lower pole of left kidney. Conclusion. Formation, course, and branching pattern of an artery depend on development and origin of organs to attain the actual adult position. PMID:27313956

  13. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    PubMed

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  14. Impairments in tactile search following superior parietal damage.

    PubMed

    Skakoon-Sparling, Shayna P; Vasquez, Brandon P; Hano, Kate; Danckert, James

    2011-08-01

    The superior parietal cortex is critical for the control of visually guided actions. Research suggests that visual stimuli relevant to actions are preferentially processed when they are in peripersonal space. One recent study demonstrated that visually guided movements towards the body were more impaired in a patient with damage to superior parietal cortex. Whereas past studies have explored disordered movement in optic ataxic patients, there has been less exploration of space perception in terms of search capacity in this population. In addition, there is some debate concerning the relationship between deficits of visuomotor control and impaired attention/perception in optic ataxia. Given that the dorsal stream has been implicated in the spatial processing of stimuli in peripersonal space, and damage to this region is known to cause optic ataxia, we felt that further investigation was warranted. We examined tactile search behavior in the fronto-parallel and radial planes in a patient with right superior parietal damage and optic ataxia. We used a pegboard with removable cylindrical pegs that allowed for the reorganization of targets between trials. To better characterize three-dimensional search behavior, we included both horizontal and vertical search conditions. Results showed that the patient spent more time searching, was more accurate and revisited more targets in right versus left space. Interestingly, the patient spent the majority of her time specifically searching the lower right quadrant of the stimulus array. Further analysis revealed lower target detection rates along the outer borders of the pegboard on all sides. The search pattern observed here is unusual considering that all targets were within arm's reach. The present experiment demonstrates that damage to superior parietal cortex impairs tactile search and biases exploration towards lower right peripersonal space.

  15. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites.

  16. Neuronal oscillations form parietal/frontal networks during contour integration.

    PubMed

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13-30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  17. Neuronal oscillations form parietal/frontal networks during contour integration

    PubMed Central

    Castellano, Marta; Plöchl, Michael; Vicente, Raul; Pipa, Gordon

    2014-01-01

    The ability to integrate visual features into a global coherent percept that can be further categorized and manipulated are fundamental abilities of the neural system. While the processing of visual information involves activation of early visual cortices, the recruitment of parietal and frontal cortices has been shown to be crucial for perceptual processes. Yet is it not clear how both cortical and long-range oscillatory activity leads to the integration of visual features into a coherent percept. Here, we will investigate perceptual grouping through the analysis of a contour categorization task, where the local elements that form contour must be linked into a coherent structure, which is then further processed and manipulated to perform the categorization task. The contour formation in our visual stimulus is a dynamic process where, for the first time, visual perception of contours is disentangled from the onset of visual stimulation or from motor preparation, cognitive processes that until now have been behaviorally attached to perceptual processes. Our main finding is that, while local and long-range synchronization at several frequencies seem to be an ongoing phenomena, categorization of a contour could only be predicted through local oscillatory activity within parietal/frontal sources, which in turn, would synchronize at gamma (>30 Hz) frequency. Simultaneously, fronto-parietal beta (13–30 Hz) phase locking forms a network spanning across neural sources that are not category specific. Both long range networks, i.e., the gamma network that is category specific, and the beta network that is not category specific, are functionally distinct but spatially overlapping. Altogether, we show that a critical mechanism underlying contour categorization involves oscillatory activity within parietal/frontal cortices, as well as its synchronization across distal cortical sites. PMID:25165437

  18. [A cytoprotective chloride channel in gastric parietal cells].

    PubMed

    Sakai, H

    1999-08-01

    This review summarizes the regulatory mechanisms and physiological functions of the novel sub-pS Cl- channel (0.3 pS) that is present abundantly in the basolateral membrane of rabbit gastric parietal cells. The sub-pS Cl- channel is voltage-independent and inhibited by NPPB, a Cl- channel blocker. We found that this gastric Cl- channel is linked to three important physiological roles. First, the sub-pS Cl- channel has a housekeeping role through dominating the cell membrane potential. Although several types of cation channels are present, they do not significantly contribute to the membrane potential in the parietal cells. Second, the Cl- channel is activated by prostaglandin E2 via the EP3 receptor/Ca2-/nitric oxide (NO)/cGMP pathway. A vasodilator ecabapide also activates the channel by increasing the intracellular cGMP content. The NO/cGMP pathway-mediated opening of the sub-pS Cl- channel is essential for cytoprotection against ethanol-induced damage in the gastric parietal cells. The NO/cGMP-elicited cytoprotection is abolished by NPPB. To our knowledge, this Cl- channel is the first identified target for the cytoprotective NO/cGMP pathway. Third, the sub-pS Cl- channel is inhibited by the GTP-binding protein-mediated intracellular production of superoxide anion. Hydrogen peroxide and hydroxyl radicals have no effect on the channel activity. The intracellular superoxide anion acts as a messenger in the negative regulatory mechanism of the sub-pS Cl- channel. The similar sub-pS Cl- channel is also found in rat gastric parietal cells.

  19. [The endocranial parietal vascular traces in the hominid line].

    PubMed

    Saban, R

    1977-03-01

    The study of the grooves traced by the middle meningeal veins on the parietal bone or the endocast of Hominid fossils shows different patterns which correspond to each evolutive stage. Height types are characterised among the Hominids (Australopithecines, Archanthropines, Paleanthropines and Neanthropines): I, robust Australopithecine type; II, gracile Australopithecine type; III, earliest Pithecanthropine type; IV, evolved Pithecanthropine type; V, Preneandertal type; VI, neandertal type; VII, Neanthropine type; VIII, modern type. PMID:405108

  20. Gestalt perception is associated with reduced parietal beta oscillations.

    PubMed

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex.

  1. Bottom-up Visual Integration in the Medial Parietal Lobe.

    PubMed

    Pflugshaupt, Tobias; Nösberger, Myriam; Gutbrod, Klemens; Weber, Konrad P; Linnebank, Michael; Brugger, Peter

    2016-03-01

    Largely based on findings from functional neuroimaging studies, the medial parietal lobe is known to contribute to internally directed cognitive processes such as visual imagery or episodic memory. Here, we present 2 patients with behavioral impairments that extend this view. Both had chronic unilateral lesions of nearly the entire medial parietal lobe, but in opposite hemispheres. Routine neuropsychological examination conducted >4 years after the onset of brain damage showed little deficits of minor severity. In contrast, both patients reported persistent unusual visual impairment. A comprehensive series of tachistoscopic experiments with lateralized stimulus presentation and comparison with healthy participants revealed partial visual hemiagnosia for stimuli presented to their contralesional hemifield, applying inferential single-case statistics to evaluate deficits and dissociations. Double dissociations were found in 4 experiments during which participants had to integrate more than one visual element, either through comparison or formation of a global gestalt. Against the background of recent neuroimaging findings, we conclude that of all medial parietal structures, the precuneus is the most likely candidate for a crucial involvement in such bottom-up visual integration.

  2. Early recurrence and ongoing parietal driving during elementary visual processing

    PubMed Central

    Plomp, Gijs; Hervais-Adelman, Alexis; Astolfi, Laura; Michel, Christoph M.

    2015-01-01

    Visual stimuli quickly activate a broad network of brain areas that often show reciprocal structural connections between them. Activity at short latencies (<100 ms) is thought to represent a feed-forward activation of widespread cortical areas, but fast activation combined with reciprocal connectivity between areas in principle allows for two-way, recurrent interactions to occur at short latencies after stimulus onset. Here we combined EEG source-imaging and Granger-causal modeling with high temporal resolution to investigate whether recurrent and top-down interactions between visual and attentional brain areas can be identified and distinguished at short latencies in humans. We investigated the directed interactions between widespread occipital, parietal and frontal areas that we localized within participants using fMRI. The connectivity results showed two-way interactions between area MT and V1 already at short latencies. In addition, the results suggested a large role for lateral parietal cortex in coordinating visual activity that may be understood as an ongoing top-down allocation of attentional resources. Our results support the notion that indirect pathways allow early, evoked driving from MT to V1 to highlight spatial locations of motion transients, while influence from parietal areas is continuously exerted around stimulus onset, presumably reflecting task-related attentional processes. PMID:26692466

  3. Outcomes of Unilateral Inferior Oblique Myectomy Surgery in Inferior Oblique Overaction Due to Superior Oblique Palsy

    PubMed Central

    Yumuşak, Erhan; Yolcu, Ümit; Küçükevcilioğlu, Murat; Diner, Oktay; Mutlu, Fatih Mehmet

    2016-01-01

    Objectives: To present the outcomes of unilateral inferior oblique myectomy performed in patients with inferior oblique overaction due to superior oblique palsy. Materials and Methods: Twenty-seven eyes of 27 patients that underwent inferior oblique myectomy surgery for superior oblique palsy between 2002 and 2008 were included. Inferior oblique overaction scores (between 0-4) at preoperative, early postoperative (within 1 week after surgery) and late postoperative (earliest 6 months) visits were reviewed. Results: There were 12 male and 15 female patients. Eighteen were operated on the right eye, and 9 were operated on the left eye. The mean age was 15.62±13.31 years, and the mean follow-up was 17±11.28 months (range, 6-60 months). Patients who had horizontal component and V-pattern deviation were excluded. Preoperative and early postoperative inferior oblique overaction scores were 2.55±0.75 and 0.14±0.36, respectively, and the difference was statistically significant (p<0.01). This improvement was maintained up to the late postoperative period. Conclusion: Due to its promising short-term and long-term results, inferior oblique myectomy can be the first choice of surgery for inferior oblique overaction due to superior oblique palsy. PMID:27800253

  4. Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?

    PubMed Central

    Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J.S.

    2015-01-01

    Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic ‘hub’ must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal ‘output’ systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including ‘classic’ Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (sup

  5. Topographic Organization for Delayed Saccades in Human Posterior Parietal Cortex

    PubMed Central

    Schluppeck, Denis; Glimcher, Paul; Heeger, David J.

    2008-01-01

    Posterior parietal cortex (PPC) is thought to play a critical role in decision making, sensory attention, motor intention, and/or working memory. Research on the PPC in non-human primates has focused on the lateral intraparietal area (LIP) in the intraparietal sulcus (IPS). Neurons in LIP respond after the onset of visual targets, just before saccades to those targets, and during the delay period in between. To study the function of posterior parietal cortex in humans, it will be crucial to have a routine and reliable method for localizing specific parietal areas in individual subjects. Here, we show that human PPC contains at least two topographically organized regions, which are candidates for the human homologue of LIP. We mapped the topographic organization of human PPC for delayed (memory guided) saccades using fMRI. Subjects were instructed to fixate centrally while a peripheral target was briefly presented. After a further 3-s delay, subjects made a saccade to the remembered target location followed by a saccade back to fixation and a 1-s inter-trial interval. Targets appeared at successive locations “around the clock” (same eccentricity, ≈30° angular steps), to produce a traveling wave of activity in areas that are topographically organized. PPC exhibited topographic organization for delayed saccades. We defined two areas in each hemisphere that contained topographic maps of the contralateral visual field. These two areas were immediately rostral to V7 as defined by standard retinotopic mapping. The two areas were separated from each other and from V7 by reversals in visual field orientation. However, we leave open the possibility that these two areas will be further subdivided in future studies. Our results demonstrate that topographic maps tile the cortex continuously from V1 well into PPC. PMID:15817644

  6. Syndecan-1 in the Mouse Parietal Peritoneum Microcirculation in Inflammation

    PubMed Central

    Kowalewska, Paulina M.; Patrick, Amanda L.; Fox-Robichaud, Alison E.

    2014-01-01

    Background The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. Methods Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2), anti-KC (CXCL1) or anti-MCP-1 (CCL2). Results and Conclusion Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18), ICAM-1 (CD54) and VCAM-1 (CD106) did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P) abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte recruitment

  7. Neural activity in the parietal eye of a lizard.

    PubMed

    MILLER, W H; WOLBARSHT, M L

    1962-01-26

    Electrical signs of activity in response to illumination of the parietal eye of the American chameleon, Anolis carolinensis, have been investigated. The responses were of two types. Under conditions of direct-coupled amplification, with glass pipette electrodes recording extracellularly from the retinal surface, the response consisted of an increase in negativity maintained throughout prolonged illumination. With capacitance-coupled amplification and metal electrodes, brisk mass discharges of nerve impulses were detected at the onset and cessation of illumination. During illumination a less vigorous maintained discharge was observed.

  8. Environmental reduplication associated with right frontal and parietal lobe injury.

    PubMed Central

    Ruff, R L; Volpe, B T

    1981-01-01

    Four patients with environmental reduplication, a specific form of spatial disorientation and confabulation are described. The patients maintained that their hospital rooms were located in their homes. Each patients had evidence of right frontal or right parietal injury based upon computed tomography, neurosurgery, and neuropsychological testing. The factors associated with environmental reduplication were: impaired spatial perception and visual memory, inability of the patients to recognise the inconsistency between their believed location and their actual location, confusion soon after admission to hospital, and a strong desire to be at home. PMID:7264684

  9. Multidirectional Instability Accompanying an Inferior Labral Cyst

    PubMed Central

    Ji, Jong-Hun; Kim, Sung-Jae

    2010-01-01

    Paralabral cyst of the shoulder joint can be observed in 2% to 4% of the general population, particularly in men during the third and fourth decade. On average, these cysts measure 10 mm to 20 mm in diameter and are located preferentially on the postero-superior aspect of the glenoid. The MRI has increased the frequency of the diagnosis of paralabral cysts of the shoulder joint. Paralabral cysts of the shoulder joint usually develop in the proximity of the labrum. The relationship between shoulder instability and labral tears is well known, however, the association of shoulder instability with a paralabral cyst is rare. Shoulder instability may cause labral injury or labral injury may cause shoulder instability, and then injured tear develops paralabral cyst. In our patient, the inferior paralabral cyst may be associated with inferior labral tears and instability MRI. PMID:20514270

  10. Sylvian fissure and parietal anatomy in children with autism spectrum disorder.

    PubMed

    Knaus, Tracey A; Tager-Flusberg, Helen; Foundas, Anne L

    2012-01-01

    Autism spectrum disorder (ASD) is characterized by deficits in social functioning and language and communication, with restricted interests or stereotyped behaviors. Anatomical differences have been found in the parietal cortex in children with ASD, but parietal subregions and associations between Sylvian fissure (SF) and parietal anatomy have not been explored. In this study, SF length and anterior and posterior parietal volumes were measured on MRI in 30 right-handed boys with ASD and 30 right-handed typically developing boys (7-14 years), matched on age and non-verbal IQ. There was leftward SF and anterior parietal asymmetry, and rightward posterior parietal asymmetry, across groups. There were associations between SF and parietal asymmetries, with slight group differences. Typical SF asymmetry was associated with typical anterior and posterior parietal asymmetry, in both groups. In the atypical SF asymmetry group, controls had atypical parietal asymmetry, whereas in ASD there were more equal numbers of individuals with typical as atypical anterior parietal asymmetry. We did not find significant anatomical-behavioral associations. Our findings of more individuals in the ASD group having a dissociation between cortical asymmetries warrants further investigation of these subgroups and emphasizes the importance of investigating anatomical relationships in addition to group differences in individual regions. PMID:22713374

  11. Right parietal cortex mediates recognition memory for melodies.

    PubMed

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task. PMID:25959620

  12. Parietal cortex mediates conscious perception of illusory gestalt.

    PubMed

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas

    2013-01-01

    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection. PMID:23303932

  13. Increased parietal activity after training of interference control.

    PubMed

    Oelhafen, Stephan; Nikolaidis, Aki; Padovani, Tullia; Blaser, Daniela; Koenig, Thomas; Perrig, Walter J

    2013-11-01

    Recent studies suggest that computerized cognitive training leads to improved performance in related but untrained tasks (i.e. transfer effects). However, most study designs prevent disentangling which of the task components are necessary for transfer. In the current study, we examined whether training on two variants of the adaptive dual n-back task would affect untrained task performance and the corresponding electrophysiological event-related potentials (ERPs). Forty three healthy young adults were trained for three weeks with a high or low interference training variant of the dual n-back task, or they were assigned to a passive control group. While n-back training with high interference led to partial improvements in the Attention Network Test (ANT), we did not find transfer to measures of working memory and fluid intelligence. ERP analysis in the n-back task and the ANT indicated overlapping processes in the P3 time range. Moreover, in the ANT, we detected increased parietal activity for the interference training group alone. In contrast, we did not find electrophysiological differences between the low interference training and the control group. These findings suggest that training on an interference control task leads to higher electrophysiological activity in the parietal cortex, which may be related to improvements in processing speed, attentional control, or both.

  14. Parietal cortex mediates conscious perception of illusory gestalt.

    PubMed

    Zaretskaya, Natalia; Anstis, Stuart; Bartels, Andreas

    2013-01-01

    Grouping local elements into a holistic percept, also known as spatial binding, is crucial for meaningful perception. Previous studies have shown that neurons in early visual areas V1 and V2 can signal complex grouping-related information, such as illusory contours or object-border ownerships. However, relatively little is known about higher-level processes contributing to these signals and mediating global Gestalt perception. We used a novel bistable motion illusion that induced alternating and mutually exclusive vivid conscious experiences of either dynamic illusory contours forming a global Gestalt or moving ungrouped local elements while the visual stimulation remained the same. fMRI in healthy human volunteers revealed that activity fluctuations in two sites of the parietal cortex, the superior parietal lobe and the anterior intraparietal sulcus (aIPS), correlated specifically with the perception of the grouped illusory Gestalt as opposed to perception of ungrouped local elements. We then disturbed activity at these two sites in the same participants using transcranial magnetic stimulation (TMS). TMS over aIPS led to a selective shortening of the duration of the global Gestalt percept, with no effect on that of local elements. The results suggest that aIPS activity is directly involved in the process of spatial binding during effortless viewing in the healthy brain. Conscious perception of global Gestalt is therefore associated with aIPS function, similar to attention and perceptual selection.

  15. Sleep Related Hypermotor Seizures with a Right Parietal Onset

    PubMed Central

    Gibbs, Steve A.; Figorilli, Michela; Casaceli, Giuseppe; Proserpio, Paola; Nobili, Lino

    2015-01-01

    Nocturnal frontal lobe epilepsy (NFLE) is a syndrome characterized by the occurrence of sleep related seizures of variable complexity and duration. Hypermotor seizures (HMS) represent a classic manifestation of this syndrome, associated with a perturbation of the ventromesial frontal cortex and anterior cingulate gyrus regions. Nevertheless, in recent years, reports have showed that the seizure onset zone (SOZ) need not be of frontal origin to generate HMS. Here we report an unusual case of a patient presenting with a seven-year history of drug-resistant sleep related HMS arising from the mesial parietal region. The presence of an infrequent feeling of levitation before the HMS was key to suspecting a subtle focal cortical dysplasia in the right precuneus region. A stereo-EEG investigation confirmed the extra-frontal seizure onset of the HMS and highlighted the interrelationship between unstable sleep and seizure precipitation. Citation: Gibbs SA, Figorilli M, Casaceli G, Proserpio P, Nobili L. Sleep related hypermotor seizures with a right parietal onset. J Clin Sleep Med 2015;11(8):953–955. PMID:25902821

  16. Frontal and parietal lobe activation during transitive inference in humans.

    PubMed

    Acuna, Bettina D; Eliassen, James C; Donoghue, John P; Sanes, Jerome N

    2002-12-01

    Cortical areas engaged in knowledge manipulation during reasoning were identified with functional magnetic resonance imaging (MRI) while participants performed transitive inference (TI) on an ordered list of 11 items (e.g. if A < B and B < C, then A < C). Initially, participants learned a list of arbitrarily ordered visual shapes. Learning occurred by exposure to pairs of list items that were adjacent in the sequence. Subsequently, functional MR images were acquired as participants performed TI on non-adjacent sequence items. Control tasks consisted of height comparisons (HT) and passive viewing (VIS). Comparison of the TI task with the HT task identified activation resulting from TI, termed 'reasoning', while controlling for rule application, decision processes, perception, and movement, collectively termed 'support processes'. The HT-VIS comparison revealed activation related to support processes. The TI reasoning network included bilateral prefrontal cortex (PFC), pre-supplementary motor area (preSMA), premotor area (PMA), insula, precuneus, and lateral posterior parietal cortex. By contrast, cortical regions activated by support processes included the bilateral supplementary motor area (SMA), primary motor cortex (M1), somatic sensory cortices, and right PMA. These results emphasize the role of a prefrontal-parietal network in manipulating information to form new knowledge based on familiar facts. The findings also demonstrate PFC activation beyond short-term memory to include mental operations associated with reasoning. PMID:12427681

  17. Right parietal cortex mediates recognition memory for melodies.

    PubMed

    Schaal, Nora K; Javadi, Amir-Homayoun; Halpern, Andrea R; Pollok, Bettina; Banissy, Michael J

    2015-07-01

    Functional brain imaging studies have highlighted the significance of right-lateralized temporal, frontal and parietal brain areas for memory for melodies. The present study investigated the involvement of bilateral posterior parietal cortices (PPCs) for the recognition memory of melodies using transcranial direct current stimulation (tDCS). Participants performed a recognition task before and after tDCS. The task included an encoding phase (12 melodies), a retention period, as well as a recognition phase (24 melodies). Experiment 1 revealed that anodal tDCS over the right PPC led to a deterioration of overall memory performance compared with sham. Experiment 2 confirmed the results of Experiment 1 and further showed that anodal tDCS over the left PPC did not show a modulatory effect on memory task performance, indicating a right lateralization for musical memory. Furthermore, both experiments revealed that the decline in memory for melodies can be traced back to an interference of anodal stimulation on the recollection process (remember judgements) rather than to familiarity judgements. Taken together, this study revealed a causal involvement of the right PPC for memory for melodies and demonstrated a key role for this brain region in the recollection process of the memory task.

  18. Maxillary antral lavage using inferior meatal cannula anaesthesia.

    PubMed

    Mochloulis, G; Hern, J D; Hollis, L J; Tolley, N S

    1996-08-01

    Antral puncture and lavage through the inferior meatus is a minor but common otolaryngological procedure, usually performed under local anaesthesia. We describe a new method of introducing local anaesthetic into the inferior meatus, via the use of a soft intravenous cannula connected to a syringe containing 10 per cent cocaine paste. We have called this new technique inferior meatal cannula anaesthesia (IMCA).

  19. Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss.

    PubMed

    Saenz, Jose B; Burclaff, Joseph; Mills, Jason C

    2016-01-01

    Parietal cell loss represents the initial step in the sequential progression toward gastric adenocarcinoma. In the setting of chronic inflammation, the expansion of the mucosal response to parietal cell loss characterizes a crucial transition en route to gastric dysplasia. Here, we detail methods for using the selective estrogen receptor modulator tamoxifen as a novel tool to rapidly and reversibly induce parietal cell loss in mice in order to study the mechanisms that underlie these pre-neoplastic events. PMID:27246044

  20. Inferior sinus venosus defects: anatomic features and echocardiographic correlates.

    PubMed

    Plymale, Jennifer; Kolinski, Kellen; Frommelt, Peter; Bartz, Peter; Tweddell, James; Earing, Michael G

    2013-02-01

    Inferior sinus venosus defects (SVDs) are rare imperfections located in the inferior portion of the atrial septum, leading to an overriding inferior vena cava (IVC) and an interatrial connection. These defects have increased risk of anomalous pulmonary venous return (PAPVR) and often are confused with secundum atrial septal defects (ASDs) with inferior extension. The authors sought to review their experience with inferior SVDs and to establish at their institution an echocardiographic definition that differentiates inferior SVDs from secundum ASDs with inferior extension. The study identified 161 patients 1.5 to 32 years of age who had undergone repair of a secundum ASD with inferior extension or inferior SVD over the preceding 10 years. All surgical notes, preoperative transthoracic echocardiograms (TTEs), and preoperative transesophageal echocardiograms (TEEs) were reviewed. Based on the surgical notes, 147 patients were classified as having a secundum ASD (147/161, 91 %) and 14 patients (9 %) as having an inferior SVD. The study identified PAPVR in 7 % (1/14) of the patients with inferior SVDs and 3.5 % (5/14) of the patients with secundum ASDs. Surgical diagnosis and preoperative TTE correlated for 143 (89 %) of the 161 patients. Using a strict anatomic and echocardiographic definition with a blinded observer, the majority of the defects (14/18, 78 %) were reclassified correctly after review of their TTE images, and 100 % of the defects were correctly reclassified after TEE image review. Accurate diagnosis of inferior SVDs remains challenging. The data from this study demonstrate that use of a strict anatomic and echocardiographic definition (a defect that originates in the mouth of the IVC and continues into the inferoposterior border of the left atrium, leaving no residual atrial septal tissue at the inferior margin) allows for accurate differentiation between secundum ASDs with inferior extension and inferior SVDs. This differentiation is extremely important

  1. Intracellular correlates of acquisition and long-term memory of classical conditioning in Purkinje cell dendrites in slices of rabbit cerebellar lobule HVI.

    PubMed

    Schreurs, B G; Gusev, P A; Tomsic, D; Alkon, D L; Shi, T

    1998-07-15

    Intradendritic recordings in Purkinje cells from a defined area in parasaggital slices of cerebellar lobule HVI, obtained after rabbits were given either paired (classical conditioning) or explicitly unpaired (control) presentations of tone and periorbital electrical stimulation, were used to assess the nature and duration of conditioning-specific changes in Purkinje cell dendritic membrane excitability. We found a strong relationship between the level of conditioning and Purkinje cell dendritic membrane excitability after initial acquisition of the conditioned response. Moreover, conditioning-specific increases in Purkinje cell excitability were still present 1 month after classical conditioning. Although dendritically recorded membrane potential, input resistance, and amplitude of somatic and dendritic spikes were not different in cells from paired or control animals, the size of a potassium channel-mediated transient hyperpolarization was significantly smaller in cells from animals that received classical conditioning. In slices of lobule HVI obtained from naive rabbits, the conditioning-related increases in membrane excitability could be mimicked by application of potassium channel antagonist tetraethylammonium chloride, iberiotoxin, or 4-aminopyridine. However, only 4-aminopyridine was able to reduce the transient hyperpolarization. The pharmacological data suggest a role for potassium channels and, possibly, channels mediating an IA-like current, in learning-specific changes in membrane excitability. The conditioning-specific increase in Purkinje cell dendritic excitability produces an afterhyperpolarization, which is hypothesized to release the cerebellar deep nuclei from inhibition, allowing conditioned responses to be elicited via the red nucleus and accessory abducens motorneurons.

  2. Developmental Phases of the Seminal Vesicle related to the Spermatogenic Stages in the Testicular Lobules of Neptunea (Barbitonia) cumingii (Gastropoda: Buccinidae)

    PubMed Central

    Kim, Sung Han

    2016-01-01

    Cytological changes of the epithelial cells according to the developmenatal phases of the seminal vesicle related to the spermatogenic stages in the testicular lobules during spermagenesis in male Neptunea (Barbitonia) cumingii (Gastropoda: Buccinidae) were investigated monthly by electron microscopical and histological observations. N. (B) cumingii is dioecious, and an internal fertilization species. The male genital organ is located near the tentacles. The spermatozoon is approximatley 50 μm in length. The axoneme of the tail flagellum consists of nine pairs of microtubles at the periphery and one pair at the center. The process of germ cell development during spermatogenesis can be divided into five succesive stages: (1) spermatogonia, (2) primary spermatocytes, (3) secondary spermatocytes, (4) spermatids, and (5) spermatozoa. A considerable amount of spermatozoa make their appearance in the testicular lobules (or acini) and some of them are tranported from the testis towards the seminal vesicles until late July. In this study, the developmental phases of the epithelial cells of the seminal vesicles of N. (B.) cumingii could be classified into four phases: (1) S-I phase (resting), (2) S-Ⅱphase (early accumulating), (3) S-Ⅲ phase (accumulating), and (4) S-IV phase (spent). However, in case of N. (B.) arthritica cumingii, the developmental phases of the seminal vesicle were devided into three phases: (1) resting, (2) accumulating and (3) spent. Granular bodies in the inner layer of the seminal vesicles are involved in resorption of digestion of residual spermatozoa. PMID:27796006

  3. Unexpected Rupture of a Giant Lobulated Thrombotic Middle Cerebral Artery Aneurysm and Emergency Surgical Treatment With Thrombectomy: A Case Report and Review of the Literature

    PubMed Central

    Koksal, Vaner; Kayaci, Selim

    2016-01-01

    Introduction The treatment of giant intracranial aneurysms is one of the most challenging cerebrovascular problems of neurosurgery. We report the rupture of a giant, lobulated, and almost completely thrombosed middle cerebral artery (MCA) aneurysm that is the ninth such report in the literature. We also investigated additional solutions used in the treatment of this patient. Case Presentation A 58-year-old man had been admitted with headache 8 years previously (in 2005), and a giant MCA aneurysm was detected. Two separate endovascular interventions were performed, and both failed. The patient began to live with the giant aneurysm. As there was a large thrombosis filling the aneurysm lumen during the previous endovascular procedures, the aneurysm was not expected to rupture. However, a rupture eventually occurred, in 2013. Even if an aneurysm is very large, lobulated, old, and almost completely thrombosed, it can suddenly bleed. During surgery on this patient, we observed severe cerebral vasospasm caused by a giant thrombosed aneurysmal rupture. Despite the complications, surgery is a life-saving treatment for this emergency when other strategies are not possible. Thrombectomy and clipping are approaches that require a great deal of courage for the neurosurgeon, in terms of entering the risky area within the aneurysm. Conclusions We believe that it would be more appropriate to plan for combined treatment with surgical and endovascular approaches before the emergency condition could occur. PMID:27781115

  4. Modeling function-perfusion behavior in liver lobules including tissue, blood, glucose, lactate and glycogen by use of a coupled two-scale PDE-ODE approach.

    PubMed

    Ricken, T; Werner, D; Holzhütter, H G; König, M; Dahmen, U; Dirsch, O

    2015-06-01

    This study focuses on a two-scale, continuum multicomponent model for the description of blood perfusion and cell metabolism in the liver. The model accounts for a spatial and time depending hydro-diffusion-advection-reaction description. We consider a solid-phase (tissue) containing glycogen and a fluid-phase (blood) containing glucose as well as lactate. The five-component model is enhanced by a two-scale approach including a macroscale (sinusoidal level) and a microscale (cell level). The perfusion on the macroscale within the lobules is described by a homogenized multiphasic approach based on the theory of porous media (mixture theory combined with the concept of volume fraction). On macro level, we recall the basic mixture model, the governing equations as well as the constitutive framework including the solid (tissue) stress, blood pressure and solutes chemical potential. In view of the transport phenomena, we discuss the blood flow including transverse isotropic permeability, as well as the transport of solute concentrations including diffusion and advection. The continuum multicomponent model on the macroscale finally leads to a coupled system of partial differential equations (PDE). In contrast, the hepatic metabolism on the microscale (cell level) was modeled via a coupled system of ordinary differential equations (ODE). Again, we recall the constitutive relations for cell metabolism level. A finite element implementation of this framework is used to provide an illustrative example, describing the spatial and time-depending perfusion-metabolism processes in liver lobules that integrates perfusion and metabolism of the liver.

  5. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.

    PubMed

    Zhang, Tao; Liu, Tiejun; Li, Fali; Li, Mengchen; Liu, Dongbo; Zhang, Rui; He, Hui; Li, Peiyang; Gong, Jinnan; Luo, Cheng; Yao, Dezhong; Xu, Peng

    2016-07-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual

  6. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network.

    PubMed

    Zhang, Tao; Liu, Tiejun; Li, Fali; Li, Mengchen; Liu, Dongbo; Zhang, Rui; He, Hui; Li, Peiyang; Gong, Jinnan; Luo, Cheng; Yao, Dezhong; Xu, Peng

    2016-07-01

    Motor imagery (MI)-based brain-computer interfaces (BCIs) have been widely used for rehabilitation of motor abilities and prosthesis control for patients with motor impairments. However, MI-BCI performance exhibits a wide variability across subjects, and the underlying neural mechanism remains unclear. Several studies have demonstrated that both the fronto-parietal attention network (FPAN) and MI are involved in high-level cognitive processes that are crucial for the control of BCIs. Therefore, we hypothesized that the FPAN may play an important role in MI-BCI performance. In our study, we recorded multi-modal datasets consisting of MI electroencephalography (EEG) signals, T1-weighted structural and resting-state functional MRI data for each subject. MI-BCI performance was evaluated using the common spatial pattern to extract the MI features from EEG signals. One cortical structural feature (cortical thickness (CT)) and two measurements (degree centrality (DC) and eigenvector centrality (EC)) of node centrality were derived from the structural and functional MRI data, respectively. Based on the information extracted from the EEG and MRI, a correlation analysis was used to elucidate the relationships between the FPAN and MI-BCI performance. Our results show that the DC of the right ventral intraparietal sulcus, the EC and CT of the left inferior parietal lobe, and the CT of the right dorsolateral prefrontal cortex were significantly associated with MI-BCI performance. Moreover, the receiver operating characteristic analysis and machine learning classification revealed that the EC and CT of the left IPL could effectively predict the low-aptitude BCI users from the high-aptitude BCI users with 83.3% accuracy. Those findings consistently reveal that the individuals who have efficient FPAN would perform better on MI-BCI. Our findings may deepen the understanding of individual variability in MI-BCI performance, and also may provide a new biomarker to predict individual

  7. Transcranial direct current stimulation (tDCS) of left parietal cortex facilitates gesture processing in healthy subjects.

    PubMed

    Weiss, Peter H; Achilles, Elisabeth I S; Moos, Katharina; Hesse, Maike D; Sparing, Roland; Fink, Gereon R

    2013-12-01

    Gesture processing deficits constitute a key symptom of apraxia, a disorder of motor cognition frequently observed after left-hemispheric stroke. The clinical relevance of apraxia stands in stark contrast to the paucity of therapeutic options available. Transcranial direct current stimulation (tDCS) is a promising tool for modulating disturbed network function after stroke. Here, we investigate the effect of parietal tDCS on gesture processing in healthy human subjects. Neuropsychological and imaging studies suggest that the imitation and matching of hand gestures involve the left inferior parietal lobe (IPL). Using neuronavigation based on cytoarchitectonically defined anatomical probability maps, tDCS was applied over left IPL-areas PF, PFm, or PG in healthy participants (n = 26). Before and after tDCS, subjects performed a gesture matching task and a person discrimination task for control. Changes in error rates and reaction times were analyzed for the effects of anodal and cathodal tDCS (compared with sham tDCS). Matching of hand gestures was specifically facilitated by anodal tDCS applied over the cytoarchitectonically defined IPL-area PFm, whereas tDCS over IPL-areas PF and PG did not elucidate significant effects. Taking into account tDCS electrode size and the central position of area PFm within IPL, it can be assumed that the observed effect is rather the result of a combined stimulation of the supramarginal and angular gyrus than an isolated PFm stimulation. Our data confirm the pivotal role of the left IPL in gesture processing. Furthermore, anatomically guided tDCS of the left IPL may constitute a promising approach to neurorehabilitation of apraxic patients with gesture processing deficits. PMID:24305816

  8. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence.

    PubMed

    Minamoto, Takehiro; Azuma, Miyuki; Yaoi, Ken; Ashizuka, Aoi; Mima, Tastuya; Osaka, Mariko; Fukuyama, Hidenao; Osaka, Naoyuki

    2014-01-01

    The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing. PMID:25538609

  9. The anodal tDCS over the left posterior parietal cortex enhances attention toward a focus word in a sentence

    PubMed Central

    Minamoto, Takehiro; Azuma, Miyuki; Yaoi, Ken; Ashizuka, Aoi; Mima, Tastuya; Osaka, Mariko; Fukuyama, Hidenao; Osaka, Naoyuki

    2014-01-01

    The posterior parietal cortex (PPC) has two attentional functions: top-down attentional control and stimulus-driven attentional processing. Using the focused version of the reading span test (RST), in which the target word to be remembered is the critical word for comprehending a sentence (focused word) or a non-focused word, we examined the effect of tDCS on resolution of distractor interference by the focused word in the non-focus condition (top-down attentional control) and on augmented/shrunk attentional capture by the focused word in both the focus and non-focus conditions (stimulus-driven attentional processing). Participants were divided into two groups: anodal tDCS (atDCS) and cathodal tDCS (ctDCS). Online stimulation was given while participants performed the RST. A post-hoc recognition task was also administered in which three kinds of words were presented: target words in the RST, distractor words in the RST, and novel words. atDCS augmented the effect of the focused word by increasing differences in performance between the focus and non-focus conditions. Such an effect was not observed in the ctDCS group. As for the recognition task, atDCS again produced the augmented effect of the focused words in the distractor recognition. On the other hand, ctDCS brought less recognition of non-focused target words in comparison to sham. The results indicate that atDCS promotes stimulus-driven attentional processing, possibly by affecting neural firing in the inferior parietal regions. In contrast, ctDCS appears to prevent retrieval of less important information from episodic memory, which may require top-down attentional processing. PMID:25538609

  10. The role of right and left parietal lobes in the conceptual processing of numbers.

    PubMed

    Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D; Price, Cathy J

    2010-02-01

    Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention, and response-selection processes. To dissociate parietal activation that is number-selective from parietal activation related to other stimulus or response-selection processes, we used fMRI to compare numbers and object names during exactly the same conceptual and perceptual tasks while factoring out activations correlating with response times. We found that right parietal activation was higher for conceptual decisions on numbers relative to the same tasks on object names, even when response time effects were fully factored out. In contrast, left parietal activation for numbers was equally involved in conceptual processing of object names. We suggest that left parietal activation for numbers reflects a range of processes, including the retrieval of learnt facts that are also involved in conceptual decisions on object names. In contrast, number selectivity in right parietal cortex reflects processes that are more involved in conceptual decisions on numbers than object names. Our results generate a new set of hypotheses that have implications for the design of future behavioral and functional imaging studies of patients with left and right parietal damage. PMID:19400672

  11. [Parietal-scar endometriosis after cesarean section: a rare entity].

    PubMed

    El Fahssi, Mohammed; Lomdo, Massama; Bounaim, Ahmed; Ali, Abdelmounaim Ait; Sair, Khalid

    2016-01-01

    Wall endometriosis is a rare clinical entity whose pathophysiology remains unclear. It occurs most frequently after gynecologic or obstetric surgery. We report the case of a patient with cyclic pain at the caesarean section scar. Clinical examination showed a 5 cm mass in the right iliac fossa. Tomodensitometry revealed a tissue density mass (45mm on the major axis). Hence, the decision to perform a wide excision of the lesion. Anatomo-pathological examination confirmed the diagnosis of parietal endometriosis. Postoperative sequelae were simple with a follow-up period of 20 months with no recurrence of the mass or of the pain. Our study highlights the characteristics of this disease to allow the health practitioner to understand the importance of diagnosis, of early treatment of this disease as well as of the possibility to prevent it during each gynecologic or obstetric surgery. PMID:27642418

  12. Transient contribution of left posterior parietal cortex to cognitive restructuring

    PubMed Central

    Sutoh, Chihiro; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yamada, Makiko; Nagaoka, Sawako; Chakraborty, Sudesna; Ishii, Daisuke; Matsuda, Shingo; Tomizawa, Haruna; Ito, Hiroshi; Tsuji, Hiroshi; Obata, Takayuki; Shimizu, Eiji

    2015-01-01

    Cognitive restructuring is a fundamental method within cognitive behavioural therapy of changing dysfunctional beliefs into flexible beliefs and learning to react appropriately to the reality of an anxiety-causing situation. To clarify the neural mechanisms of cognitive restructuring, we designed a unique task that replicated psychotherapy during a brain scan. The brain activities of healthy male participants were analysed using functional magnetic resonance imaging. During the brain scan, participants underwent Socratic questioning aimed at cognitive restructuring regarding the necessity of handwashing after using the restroom. The behavioural result indicated that the Socratic questioning effectively decreased the participants' degree of belief (DOB) that they must wash their hands. Alterations in the DOB showed a positive correlation with activity in the left posterior parietal cortex (PPC) while the subject thought about and rated own belief. The involvement of the left PPC not only in planning and decision-making but also in conceptualization may play a pivotal role in cognitive restructuring. PMID:25775998

  13. Sleep Related Hypermotor Seizures with a Right Parietal Onset.

    PubMed

    Gibbs, Steve A; Figorilli, Michela; Casaceli, Giuseppe; Proserpio, Paola; Nobili, Lino

    2015-08-01

    Nocturnal frontal lobe epilepsy (NFLE) is a syndrome characterized by the occurrence of sleep related seizures of variable complexity and duration. Hypermotor seizures (HMS) represent a classic manifestation of this syndrome, associated with a perturbation of the ventromesial frontal cortex and anterior cingulate gyrus regions. Nevertheless, in recent years, reports have showed that the seizure onset zone (SOZ) need not be of frontal origin to generate HMS. Here we report an unusual case of a patient presenting with a seven-year history of drug-resistant sleep related HMS arising from the mesial parietal region. The presence of an infrequent feeling of levitation before the HMS was key to suspecting a subtle focal cortical dysplasia in the right precuneus region. A stereo-EEG investigation confirmed the extra-frontal seizure onset of the HMS and highlighted the interrelationship between unstable sleep and seizure precipitation. PMID:25902821

  14. Herpes Simplex Encephalitis of the Parietal Lobe: A Rare Presentation

    PubMed Central

    Tkachenko, Lara; Moisi, Marc; Rostad, Steven; Umeh, Randle; Zwillman, Michael E; Tubbs, R. Shane; Page, Jeni; Newell, David W.; Delashaw, Johnny B

    2016-01-01

    A 69-year-old female with a history of breast cancer and hypertension presented with a rare case of herpes simplex encephalitis (HSE) isolated to her left parietal lobe. The patient’s first biopsy was negative for herpes simplex virus (HSV) I/II antigens, but less than two weeks later, the patient tested positive on repeat biopsy. This initial failure to detect the virus and the similarities between HSE and symptoms of intracranial hemorrhage (ICH) suggests repeat testing for HSV in the presence of ICH. Due to the frequency of patients with extra temporal HSE, a diagnosis of HSE should be more readily considered, particularly when a patient may not be improving and a concrete diagnosis has not been solidified. PMID:27774355

  15. A parietal memory network revealed by multiple MRI methods.

    PubMed

    Gilmore, Adrian W; Nelson, Steven M; McDermott, Kathleen B

    2015-09-01

    The manner by which the human brain learns and recognizes stimuli is a matter of ongoing investigation. Through examination of meta-analyses of task-based functional MRI and resting state functional connectivity MRI, we identified a novel network strongly related to learning and memory. Activity within this network at encoding predicts subsequent item memory, and at retrieval differs for recognized and unrecognized items. The direction of activity flips as a function of recent history: from deactivation for novel stimuli to activation for stimuli that are familiar due to recent exposure. We term this network the 'parietal memory network' (PMN) to reflect its broad involvement in human memory processing. We provide a preliminary framework for understanding the key functional properties of the network. PMID:26254740

  16. Diverse spatial reference frames of vestibular signals in parietal cortex

    PubMed Central

    Chen, Xiaodong; DeAngelis, Gregory C; Angelaki, Dora E

    2013-01-01

    Summary Reference frames are important for understanding how sensory cues from different modalities are coordinated to guide behavior, and the parietal cortex is critical to these functions. We compare reference frames of vestibular self-motion signals in the ventral intraparietal area (VIP), parietoinsular vestibular cortex (PIVC), and dorsal medial superior temporal area (MSTd). Vestibular heading tuning in VIP is invariant to changes in both eye and head positions, indicating a body (or world)-centered reference frame. Vestibular signals in PIVC have reference frames that are intermediate between head- and body-centered. In contrast, MSTd neurons show reference frames between head- and eye-centered, but not body-centered. Eye and head position gain fields were strongest in MSTd and weakest in PIVC. Our findings reveal distinct spatial reference frames for representing vestibular signals, and pose new challenges for understanding the respective roles of these areas in potentially diverse vestibular functions. PMID:24239126

  17. Scalp Medical Tattooing Technique to Camouflage Bifid Parietal Whorls

    PubMed Central

    You, Seung Hyun

    2016-01-01

    Background: To the best of the authors’ knowledge, no reports have described cosmetic problems arising from the hair direction around the parietal whorl (PW). This study was performed to evaluate the efficacy of scalp medical tattooing technique for camouflaging bifid PWs. Methods: We retrospectively examined the outcomes of scalp medical tattooing in 38 patients who were admitted for camouflage of a bifid PW. Results: All patients’ cosmetic appearance was judged, by both the patients and the surgeon, to be markedly improved. No specific complications occurred, such as infection, hair loss in the operative field, or other problems. Conclusion: Scalp medical tattooing appears to be an effective method that helps to camouflage the see-through appearance of bifid PWs. PMID:27200232

  18. Inferior alveolar and lingual nerve imaging.

    PubMed

    Miloro, Michael; Kolokythas, Antonia

    2011-03-01

    At present, there are no objective testing modalities available for evaluation of iatrogenic injury to the terminal branches of the trigeminal nerve, making such clinical diagnosis and management complicated for the oral and maxillofacial surgeon. Several imaging modalities can assist in the preoperative risk assessment of the trigeminal nerve as related to commonly performed procedures in the vicinity of the nerve, mostly third molar surgery. This article provides a review of all available imaging modalities and their clinical application relative to preoperative injury risk assessment of the inferior alveolar nerve and lingual nerve, and postinjury and postsurgical repair recovery status.

  19. Subcortical mapping of calculation processing in the right parietal lobe.

    PubMed

    Della Puppa, Alessandro; De Pellegrin, Serena; Lazzarini, Anna; Gioffrè, Giorgio; Rustemi, Oriela; Cagnin, Annachiara; Scienza, Renato; Semenza, Carlo

    2015-05-01

    Preservation of calculation processing in brain surgery is crucial for patients' quality of life. Over the last decade, surgical electrostimulation was used to identify and preserve the cortical areas involved in such processing. Conversely, subcortical connectivity among different areas implicated in this function remains unclear, and the role of surgery in this domain has not been explored so far. The authors present the first 2 cases in which the subcortical functional sites involved in calculation were identified during right parietal lobe surgery. Two patients affected by a glioma located in the right parietal lobe underwent surgery with the aid of MRI neuronavigation. No calculation deficits were detected during preoperative assessment. Cortical and subcortical mapping were performed using a bipolar stimulator. The current intensity was determined by progressively increasing the amplitude by 0.5-mA increments (from a baseline of 1 mA) until a sensorimotor response was elicited. Then, addition and multiplication calculation tasks were administered. Corticectomy was performed according to both the MRI neuronavigation data and the functional findings obtained through cortical mapping. Direct subcortical electrostimulation was repeatedly performed during tumor resection. Subcortical functional sites for multiplication and addition were detected in both patients. Electrostimulation interfered with calculation processing during cortical mapping as well. Functional sites were spared during tumor removal. The postoperative course was uneventful, and calculation processing was preserved. Postoperative MRI showed complete resection of the tumor. The present preliminary study shows for the first time how functional mapping can be a promising method to intraoperatively identify the subcortical functional sites involved in calculation processing. This report therefore supports direct electrical stimulation as a promising tool to improve the current knowledge on

  20. The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers

    ERIC Educational Resources Information Center

    Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D.; Price, Cathy J.

    2010-01-01

    Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention,…

  1. Differences in biomechanical properties and thickness among frontal and parietal bones in a Japanese sample.

    PubMed

    Torimitsu, Suguru; Nishida, Yoshifumi; Takano, Tachio; Yajima, Daisuke; Inokuchi, Go; Makino, Yohsuke; Motomura, Ayumi; Chiba, Fumiko; Yamaguchi, Rutsuko; Hashimoto, Mari; Hoshioka, Yumi; Iwase, Hirotaro

    2015-07-01

    The aim of this study was to assess the mechanical properties and thickness of adult frontal and parietal bones. The heads of 114 Japanese cadavers (78 male cadavers and 36 female cadavers) of known age and sex were used. A total of 912 cranial samples, 8 from each skull, were collected. Samples were imaged using multidetector computed tomography to measure sample thickness. The fracture load of each sample was measured using a bending test with calculation of flexural strength. Statistical analyses demonstrated no significant bilateral difference in either the mechanical properties or thickness of frontal or parietal bones. The mechanical properties and thicknesses of frontal bones were significantly greater than those of parietal bones regardless of sex. Therefore, the skull may have a great ability to resist frontal impacts compared with parietal impacts. In female samples, parietal bones were found to have a more uniform structure when compared with male samples. Male parietal bones were found to be thicker at medial sites than at lateral sites. This study also revealed parietal bones at lateral sites in female samples were thicker than in male samples. No strong association was observed between age and flexural strength of frontal or parietal bones. However, the fracture load was negatively correlated with age most likely due to the reduction of thickness.

  2. Holding Biological Motion in Working Memory: An fMRI Study

    PubMed Central

    Lu, Xiqian; Huang, Jian; Yi, Yuji; Shen, Mowei; Weng, Xuchu; Gao, Zaifeng

    2016-01-01

    Holding biological motion (BM), the movements of animate entities, in working memory (WM) is important to our daily life activities. However, the neural substrates underlying the WM processing of BM remain largely unknown. Employing the functional magnetic resonance imaging (fMRI) technique, the current study directly investigated this issue. We used point-light BM animations as the tested stimuli, and explored the neural substrates involved in encoding and retaining BM information in WM. Participants were required to remember two or four BM stimuli in a change-detection task. We first defined a set of potential brain regions devoted to the BM processing in WM in one experiment. We then conducted the second fMRI experiment, and performed time-course analysis over the pre-defined regions, which allowed us to differentiate the encoding and maintenance phases of WM. The results showed that a set of brain regions were involved in encoding BM into WM, including the middle frontal gyrus, inferior frontal gyrus, superior parietal lobule, inferior parietal lobule, superior temporal sulcus, fusiform gyrus, and middle occipital gyrus. However, only the middle frontal gyrus, inferior frontal gyrus, superior parietal lobule, and inferior parietal lobule were involved in retaining BM into WM. These results suggest that an overlapped network exists between the WM encoding and maintenance for BM; however, retaining BM in WM predominately relies on the mirror neuron system. PMID:27313520

  3. The Brain Adapts to Orthography with Experience: Evidence from English and Chinese

    ERIC Educational Resources Information Center

    Cao, Fan; Brennan, Christine; Booth, James R.

    2015-01-01

    Using functional magnetic resonance imaging (fMRI), we examined the process of language specialization in the brain by comparing developmental changes in two contrastive orthographies: Chinese and English. In a visual word rhyming judgment task, we found a significant interaction between age and language in left inferior parietal lobule and left…

  4. Chrysotile and tremolite asbestos fibres in the lungs and parietal pleura of Corsican goats

    PubMed Central

    Dumortier, P; Rey, F; Viallat, J; Broucke, I; Boutin, C; De Vuyst, P

    2002-01-01

    Methods: Ten goats from areas with asbestos outcrops and two from other areas were slaughtered. Fibre content of lung and parietal pleural samples was determined by analytical transmission electron microscopy. Results: Both chrysotile and tremolite fibres were detected. In the exposed goats, the geometric mean concentrations of asbestos fibres longer than 1 µm were 0.27 x 106 fibres/g dry lung tissue and 1.8 x 106 fibres/g dry pleural tissue. Asbestos fibres were not detected in the lungs of the two control goats. Chrysotile fibres shorter than 5 µm were predominant in the parietal pleura. Tremolite fibres accounted for 78% and 86% of the fibres longer than 5 µm in lung and parietal pleural samples, respectively. Conclusions: Environmental exposure in northeast Corsica results in detectable chrysotile and tremolite fibre loads in the lung and parietal pleura of adult goats. Tremolite fibres of dimensions with a high carcinogenic potency are detected in the parietal pleura. PMID:12205241

  5. SII and the fronto-parietal areas are involved in visually cued tactile top-down spatial attention: a functional MRI study.

    PubMed

    Wu, Qiong; Li, Chunlin; Li, Yujie; Sun, Hongzan; Guo, Qiyong; Wu, Jinglong

    2014-04-16

    Visual cue-oriented, tactile top-down attention (vTA) has been well investigated behaviorally. However, vTA-related brain activation remains unclear, and whether SI (primary somatosensory cortex) or SII (secondary somatosensory cortex) is modulated by the top-down process of tactile cognition remains particularly controversial. We used the Posner paradigm in which a visual spatial cue directed attention to a tactile target [tactile spatial attention (TS) task]. The TS is compared with a visual nonspatially cued, tactile attention task [tactile neutral attention (TN) task]. The behavioral results showed no significant differences between the TS and TN tasks. However, we considered the possibility that the visual spatial hint affected the TS neural network. Brain-imaging data showed that the inferior parietal lobe was activated more during the TS task than during the TN task. Furthermore, we present evidence to support SII modulation by top-down processing during the TS task.

  6. Dissociable Temporo-Parietal Memory Networks Revealed by Functional Connectivity during Episodic Retrieval

    PubMed Central

    Hirose, Satoshi; Kimura, Hiroko M.; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki

    2013-01-01

    Episodic memory retrieval most often recruits multiple separate processes that are thought to involve different temporal regions. Previous studies suggest dissociable regions in the left lateral parietal cortex that are associated with the retrieval processes. Moreover, studies using resting-state functional connectivity (RSFC) have provided evidence for the temporo-parietal memory networks that may support the retrieval processes. In this functional MRI study, we tested functional significance of the memory networks by examining functional connectivity of brain activity during episodic retrieval in the temporal and parietal regions of the memory networks. Recency judgments, judgments of the temporal order of past events, can be achieved by at least two retrieval processes, relational and item-based. Neuroimaging results revealed several temporal and parietal activations associated with relational/item-based recency judgments. Significant RSFC was observed between one parahippocampal region and one left lateral parietal region associated with relational recency judgments, and between four lateral temporal regions and another left lateral parietal region associated with item-based recency judgments. Functional connectivity during task was found to be significant between the parahippocampal region and the parietal region in the RSFC network associated with relational recency judgments. However, out of the four tempo-parietal RSFC networks associated with item-based recency judgments, only one of them (between the left posterior lateral temporal region and the left lateral parietal region) showed significant functional connectivity during task. These results highlight the contrasting roles of the parahippocampal and the lateral temporal regions in recency judgments, and suggest that only a part of the tempo-parietal RSFC networks are recruited to support particular retrieval processes. PMID:24009657

  7. Over-expression of GFP-FEZ1 causes generation of multi-lobulated nuclei mediated by microtubules in HEK293 cells

    SciTech Connect

    Lanza, Daniel C.F.; Trindade, Daniel M.; Assmann, Eliana M.; Kobarg, Joerg

    2008-06-10

    FEZ1 (Fasciculation and elongation protein zeta 1) is an ortholog of the Caenorhabditis elegans protein UNC-76, involved in neuronal development and axon outgrowth, in that worm. Mammalian FEZ1 has already been reported to cooperate with PKC-zeta in the differentiation and polarization of PC12 neuronal cells. Furthermore, FEZ1 is associated with kinesin 1 and JIP1 to form a cargo-complex responsible for microtubule based transport of mitochondria along axons. FEZ1 can also be classified as a hub protein, since it was reported to interact with over 40 different proteins in yeast two-hybrid screens, including at least nine nuclear proteins. Here, we transiently over-expressed GFP-FEZ1full in human HEK293 and HeLa cells in order to study the sub-cellular localization of GFP-FEZ1. We observed that over 40% of transiently transfected cells at 3 days post-transfection develop multi-lobulated nuclei, which are also called flower-like nuclei. We further demonstrated that GFP-FEZ1 localizes either to the cytoplasm or the nuclear fraction, and that the appearance of the flower-like nuclei depends on intact microtubule function. Finally, we show that FEZ1 co-localizes with both, {alpha}- and especially with {gamma}-tubulin, which localizes as a centrosome like structure at the center of the multiple lobules. In summary, our data suggest that FEZ1 has an important centrosomal function and supply new mechanistic insights to the formation of flower-like nuclei, which are a phenotypical hallmark of human leukemia cells.

  8. Anatomic Variant of Liver, Gall Bladder and Inferior Vena Cava.

    PubMed

    Sontakke, Yogesh Ashok; Gladwin, V; Chand, Parkash

    2016-07-01

    The morphology and relations of liver, gall bladder and inferior vena cava are cardinal. Their anatomical variations may be a reason for the adverse surgical outcome. During routine anatomy dissection of an abdomen, we noticed a variant liver, gall bladder and inferior vena cava in a 63-year-old male cadaver. In the specimen, a retrohepatic segment of inferior vena cava was found to be intrahepatic. On dissection, it was observed that inferior vena cava was covered entirely by a liver tissue on its dorsal aspect. In the same specimen, the gall bladder had undulated inferior surface. On dissection of the gall bladder, numerous mucosal folds were present in the interior. A band of fibrous tissue was found, which was extending from the right side of the gall bladder to the falciform ligament. Hence, preoperative scanning of congenital variations of the liver, gall bladder and inferior vena cava may be compassionate in planning safe surgeries and interventional abdominal procedures. PMID:27630832

  9. Anatomic Variant of Liver, Gall Bladder and Inferior Vena Cava

    PubMed Central

    Gladwin, V.; Chand, Parkash

    2016-01-01

    The morphology and relations of liver, gall bladder and inferior vena cava are cardinal. Their anatomical variations may be a reason for the adverse surgical outcome. During routine anatomy dissection of an abdomen, we noticed a variant liver, gall bladder and inferior vena cava in a 63-year-old male cadaver. In the specimen, a retrohepatic segment of inferior vena cava was found to be intrahepatic. On dissection, it was observed that inferior vena cava was covered entirely by a liver tissue on its dorsal aspect. In the same specimen, the gall bladder had undulated inferior surface. On dissection of the gall bladder, numerous mucosal folds were present in the interior. A band of fibrous tissue was found, which was extending from the right side of the gall bladder to the falciform ligament. Hence, preoperative scanning of congenital variations of the liver, gall bladder and inferior vena cava may be compassionate in planning safe surgeries and interventional abdominal procedures. PMID:27630832

  10. Total laparoscopic retrieval of inferior vena cava filter

    PubMed Central

    Benrashid, Ehsan; Adkar, Shaunak Sanjay; Bennett, Kyla Megan; Zani, Sabino

    2015-01-01

    While there is some local variability in the use of inferior vena cava filters and there has been some evolution in the indications for filter placement over time, inferior vena cava filters remain a standard option for pulmonary embolism prophylaxis. Indications are clear in certain subpopulations of patients, particularly those with deep venous thrombosis and absolute contraindications to anticoagulation. There are, however, a variety of reported inferior vena cava filter complications in the short and long term, making retrieval of the filter desirable in most cases. Here, we present the case of a morbidly obese patient complaining of chronic abdominal pain after inferior vena cava filter placement and malposition of the filter with extensive protrusion outside the inferior vena cava. She underwent successful laparoscopic retrieval of her malpositioned inferior vena cava filters after failure of a conventional endovascular approach. PMID:27489697

  11. Gray matter increases in fronto-parietal regions of depression patients with aripiprazole monotherapy: An exploratory study.

    PubMed

    Lai, Chien-Han; Wu, Yu-Te; Chen, Cheng-Yu; Hou, Yi-Cheng

    2016-08-01

    We investigated the treatment effects of aripiprazole monotherapy in first-episode medication-naïve patients with major depressive disorder (MDD). The accompanying changes in the gray matter volume (GMV) were also explored.Fifteen patients completed the trial and received structural scans by 3-Tesla magnetic resonance imaging at baseline and partially responding state (sixth week). To account for the test-retest bias, 27 healthy controls were scanned twice within 6 weeks. We utilized optimized voxel-based morphometry with different comparisons between groups.The partially responding patients with MDD had greater GMV in left middle frontal gyrus and left superior parietal gyrus when compared with baseline. However, they had decreases in the GMV of right orbitofrontal gyrus and right inferior temporal gyrus after response. The partially responding patients with MDD still had residual GMV deficits in right superior frontal gyrus when compared with controls. However, the lack of second patient group without aripiprazole intervention would be a significant limitation to interpret the aripiprazole-specific effects on GMV.The changes in the GMV of fronto-parieto-temporal regions and residual GMV deficits in the superior frontal gyrus might represent "state-dependent brain changes" and "residual-deficit brain regions," respectively, for aripiprzole monotherapy in MDD. PMID:27559967

  12. Short-term memory deficit after focal parietal damage.

    PubMed

    Markowitsch, H J; Kalbe, E; Kessler, J; von Stockhausen, H M; Ghaemi, M; Heiss, W D

    1999-12-01

    The neuropsychological symptomatology is reported for a 44-year-old patient of normal intelligence, EE, after removal of a circumscribed left hemispheric tumor the major part of which was located in the angular gyrus and in the subcortical white matter. EE had a distinct and persistent short-term memory impairment together with an equally severe impairment in transcoding numbers. On the other hand, his performance was flawless in calculation tasks and in all other tests involving number processing. Impairments in language tests could be attributed to his short-term memory deficit, which furthermore was characterized by a strong primacy effect in the absence of a recency effect. His graphomotoric output was temporarily inhibited. The patient, with a strong left-sided dominance, manifested a bi-hemispherical activation of the Broca and Wernicke regions in a positron-emission-tomographic investigation when required to produce verbs which he was to derive from nouns. The findings in EE suggest that unilateral and restricted lateral parietal damage can result in a profound short-term memory deficit together with a transcoding deficit for stimuli extending over only a few digits or syllables in the absence of any symptoms of the Gerstmann syndrome.

  13. Spatial invariance of visual receptive fields in parietal cortex neurons.

    PubMed

    Duhamel, J R; Bremmer, F; Ben Hamed, S; Graf, W

    1997-10-23

    Spatial information is conveyed to the primary visual cortex in retinal coordinates. Movement trajectory programming, however, requires a transformation from this sensory frame of reference into a frame appropriate for the selected part of the body, such as the eye, head or arms. To achieve this transformation, visual information must be combined with information from other sources: for instance, the location of an object of interest can be defined with respect to the observer's head if the position of the eyes in the orbit is known and is added to the object's retinal coordinates. Here we show that in a subdivision of the monkey parietal lobe, the ventral intraparietal area (VIP), the activity of visual neurons is modulated by eye-position signals, as in many other areas of the cortical visual system. We find that individual receptive fields of a population of VIP neurons are organized along a continuum, from eye to head coordinates. In the latter case, neurons encode the azimuth and/or elevation of a visual stimulus, independently of the direction in which the eyes are looking, thus representing spatial locations explicitly in at least a head-centred frame of reference. PMID:9349815

  14. Contralesional neglect in monkeys with small unilateral parietal cortical ablations.

    PubMed

    Marshall, J W B; Baker, H F; Ridley, R M

    2002-10-17

    Transient contralesional spatial neglect, in addition to motor impairment in the contralesional arm, is sometimes seen in patients following cerebral infarction in the right hemisphere and is seen following experimental occlusion of the right middle cerebral artery in primates. To test whether contralesional visuospatial neglect arises from a disruption of the forward flow of information from the striate cortex through the dorsal territory of the middle cerebral artery, we made a small strip suction ablation in the right parietal cortex from the medial edge of the dorsal cortical surface to the posterior ventral edge of the superior temporal gyrus in marmoset monkeys. These monkeys did not exhibit a motor impairment, or misreaching, with the contralesional arm. When they were unrestrained and free to use either arm, they were impaired at finding rewards in their contralesional space and in choosing the nearer of two rewards hidden in ipsilesional space (i.e. they had an ultra-ipsilesional bias in ipsilesional space). Comparison of performance under four conditions in a task in which the monkeys were constrained to reach into each hemispace with each arm separately indicated that they were impaired at reaching into contralesional, but not ipsilesional, space with either arm but they did not exhibit any impairment confined to the contralesional arm. These impairments in contralesional space were transient suggesting that the monkeys were able to re-align their egocentric spatial coordinates to obviate these deficits.

  15. TMS of posterior parietal cortex disrupts visual tactile multisensory integration

    PubMed Central

    Pasalar, Siavash; Ro, Tony; Beauchamp, Michael S.

    2010-01-01

    Functional neuroimaging studies have implicated a number of brain regions, especially the posterior parietal cortex (PPC), as being potentially important for visual–tactile multisensory integration. However, neuroimaging studies are correlational and do not prove the necessity of a region for the behavioral improvements that are the hallmark of multisensory integration. To remedy this knowledge gap, we interrupted activity in the PPC, near the junction of the anterior intraparietal sulcus and the postcentral sulcus, using MRI-guided transcranial magnetic stimulation (TMS) while subjects localized touches delivered to different fingers. As the touches were delivered, subjects viewed a congruent touch video, an incongruent touch video, or no video. Without TMS, a strong effect of multisensory integration was observed, with significantly better behavioral performance for discrimination of congruent multisensory touch than for unisensory touch alone. Incongruent multisensory touch produced a smaller improvement in behavioral performance. TMS of the PPC eliminated the behavioral advantage of both congruent and incongruent multisensory stimuli, reducing performance to unisensory levels. These results demonstrate a causal role for the PPC in visual–tactile multisensory integration. Taken together with converging evidence from other studies, these results support a model in which the PPC contains a map of space around the hand that receives input from both the visual and somatosensory modalities. Activity in this map is likely to be the neural substrate for visual–tactile multisensory integration. PMID:20584182

  16. Increased prefrontal and parietal cortical thickness does not correlate with anhedonia in patients with untreated first-episode major depressive disorders.

    PubMed

    Yang, Xin-hua; Wang, Yi; Huang, Jia; Zhu, Cui-ying; Liu, Xiao-qun; Cheung, Eric F C; Xie, Guang-rong; Chan, Raymond C K

    2015-10-30

    Cerebral morphological abnormalities in major depressive disorder (MDD) may be modulated by antidepressant treatment and course of illness in chronic medicated patients. The present study examined cortical thickness in patients with untreated first-episode MDD to elucidate the early pathophysiology of this illness. Here, we examined cortical thickness in patients with first-episode MDD (N=27) and healthy controls (N=27) using an automated surface-based method (in FreeSurfer). By assessing the correlation between caudate volume and cortical thickness at each vertex on the cortical surface, a caudate-cortical network was obtained for each group. Subsequent analysis was performed to assess the effect of anhedonia by the Temporal Experience of Pleasure Scale. We observed increased cortical thickness at the right orbital frontal cortex and the left inferior parietal gyrus in MDD patients compared with healthy controls. Furthermore, morphometric correlational analysis using cortical thickness measurement revealed increased caudate-cortical connectivity in the bilateral superior parietal gyrus in MDD patients. All changes were not related to anhedonia. These preliminary findings may reflect disorder manifestation close to illness onset and may provide insight into the early neurobiology of MDD.

  17. Enlarged parietal foramina: a rare finding in a female Greek skull with unusual multiple Wormian bones and a rich parietal vascular network.

    PubMed

    Piagkou, Maria; Skotsimara, Georgia; Repousi, Elpida; Paraskevas, George; Natsis, Konstantinos

    2013-06-01

    Enlarged parietal foramina (>5 mm) is an extremely rare developmental defect of the parietal bone, which is distinguished from the normal small parietal foramina, as genes associated with this entity have been identified, suggesting that it is hereditary in nature. We describe a dry skull of a 35-year-old female, with enlarged parietal foramina symmetrically situated bilaterally, oval in shape, measuring 4.5 × 9.3 mm (right) and 4.9 × 9.2 mm (left) in size. The foramina coexisted with multiple Wormian bones in several sites of the skull. On the inner parietal bone surface, the anterior, posterior and lateral foramina's rims carried grooves, which were continuous with the middle meningeal vessels' branches, indicating that a rich vascular network existed around the foramina. These vascular grooves also notched the external table at the margin of the foramina, which suggests a potential communication between the meningeal and the scalp vessels. In addition, this vascular variation should be taken into consideration when performing surgical interventions in the area, because the large vascular supply to the foramina is a possible source of extensive bleeding. Moreover, the interaction of intracranial and extracranial veins and the fact that the blood flows in them in both directions, as they are valveless, could represent a possible pathway for infections to spread in the cranial cavity.

  18. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat

    PubMed Central

    Wilber, Aaron A.; Clark, Benjamin J.; Demecha, Alexis J.; Mesina, Lilia; Vos, Jessica M.; McNaughton, Bruce L.

    2015-01-01

    A central feature of theories of spatial navigation involves the representation of spatial relationships between objects in complex environments. The parietal cortex has long been linked to the processing of spatial visual information and recent evidence from single unit recording in rodents suggests a role for this region in encoding egocentric and world-centered frames. The rat parietal cortex can be subdivided into four distinct rostral-caudal and medial-lateral regions, which includes a zone previously characterized as secondary visual cortex. At present, very little is known regarding the relative connectivity of these parietal subdivisions. Thus, we set out to map the connectivity of the entire anterior-posterior and medial-lateral span of this region. To do this we used anterograde and retrograde tracers in conjunction with open source neuronal segmentation and tracer detection tools to generate whole brain connectivity maps of parietal inputs and outputs. Our present results show that inputs to the parietal cortex varied significantly along the medial-lateral, but not the rostral-caudal axis. Specifically, retrosplenial connectivity is greater medially, but connectivity with visual cortex, though generally sparse, is more significant laterally. Finally, based on connection density, the connectivity between parietal cortex and hippocampus is indirect and likely achieved largely via dysgranular retrosplenial cortex. Thus, similar to primates, the parietal cortex of rats exhibits a difference in connectivity along the medial-lateral axis, which may represent functionally distinct areas. PMID:25601828

  19. Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan

    PubMed Central

    van Dinteren, Rik; Arns, Martijn; Jongsma, Marijtje L. A.; Kessels, Roy P. C.

    2014-01-01

    In the present study the frontal and parietal P300, elicited in an auditory oddball paradigm were investigated in a large sample of healthy participants (N = 1572), aged 6–87. According to the concepts of the compensation-related utilization of neural circuits hypothesis (CRUNCH) it was hypothesized that the developmental trajectories of the frontal P300 would reach a maximum in amplitude at an older age than the amplitude of the parietal P300 amplitude. In addition, the amplitude of the frontal P300 was expected to increase with aging in adulthood in contrast to a decline in amplitude of the parietal P300 amplitude. Using curve-fitting methods, a comparison was made between the developmental trajectories of the amplitudes of the frontal and parietal P300. It was found that the developmental trajectories of frontal and parietal P300 amplitudes differed significantly across the lifespan. During adulthood, the amplitude of the parietal P300 declines with age, whereas both the frontal P300 amplitude and behavioral performance remain unaffected. A lifespan trajectory of combined frontal and parietal P300 amplitudes was found to closely resemble the lifespan trajectory of behavioral performance. Our results can be understood within the concepts of CRUNCH. That is, to compensate for declining neural resources, older participants recruit additional neural resources of prefrontal origin and consequently preserve a stable behavioral performance. Though, a direct relation between amplitude of the frontal P300 and compensatory mechanisms cannot yet be claimed. PMID:25386141

  20. Influence of monkey dorsolateral prefrontal and posterior parietal activity on behavioral choice during attention tasks

    PubMed Central

    Katsuki, Fumi; Saito, Mizuki; Constantinidis, Christos

    2014-01-01

    The dorsolateral prefrontal and the posterior parietal cortex have both been implicated in the guidance of visual attention. Traditionally, posterior parietal cortex has been thought to guide visual bottom-up attention, whereas prefrontal cortex to bias attention through top-down information. More recent studies suggest a parallel time course of activation of the two areas in bottom-up attention tasks, suggesting a common involvement, though these results do not necessarily imply identical roles, either. To address the specific roles of the two areas, we examined the influence of neuronal activity recorded from the prefrontal and parietal cortex of monkeys as they performed attention tasks based on choice probability and correlation between reaction time and neuronal activity. The results revealed that posterior parietal but not dorsolateral prefrontal activity correlated with behavioral choice during the fixation period, prior to the appearance of the stimulus, resembling a bias factor. This preferential influence of posterior parietal activity on behavior was transient, so that dorsolateral prefrontal activity predicted choice after the appearance of the stimulus. Additionally, reaction time was better predicted by posterior parietal activity. These findings confirm an involvement of both dorsolateral prefrontal and posterior parietal cortex in the bottom-up guidance of visual attention but indicate different roles of the two areas in the guidance of attention and a dynamic time course of their effects, influencing behavior at different stages of the task. PMID:24964224

  1. Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention

    PubMed Central

    Leng, Yuan; Shi, Yonggang; Yu, Qiaowen; Van Horn, John Darrell; Tang, Haiyan; Li, Junning; Xu, Wenjian; Ge, Xinting; Tang, Yuchun; Han, Yan; Zhang, Dong; Xiao, Min; Zhang, Huaqiang; Pang, Zengchang; Toga, Arthur W.; Liu, Shuwei

    2016-01-01

    Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention. PMID:27597294

  2. Phenotypic and Genetic Correlations Between the Lobar Segments of the Inferior Fronto-occipital Fasciculus and Attention.

    PubMed

    Leng, Yuan; Shi, Yonggang; Yu, Qiaowen; Van Horn, John Darrell; Tang, Haiyan; Li, Junning; Xu, Wenjian; Ge, Xinting; Tang, Yuchun; Han, Yan; Zhang, Dong; Xiao, Min; Zhang, Huaqiang; Pang, Zengchang; Toga, Arthur W; Liu, Shuwei

    2016-01-01

    Attention deficits may present dysfunctions in any one or two components of attention (alerting, orienting, and executive control (EC)). However, these various forms of attention deficits generally have abnormal microstructure integrity of inferior fronto-occipital fasciculus (IFOF). In this work, we aim to deeply explore: (1) associations between microstructure integrities of IFOF (including frontal, parietal, temporal, occipital, and insular segments) and attention by means of structural equation models and multiple regression analyses; (2) genetic/environmental effects on IFOF, attention, and their correlations using bivariate genetic analysis. EC function was attributed to the fractional anisotropy (FA) of left (correlation was driven by genetic and environmental factors) and right IFOF (correlation was driven by environmental factors), especially to left frontal part and right occipital part (correlation was driven by genetic factors). Alerting was associated with FA in parietal and insular parts of left IFOF. No significant correlation was found between orienting and IFOF. This study revealed the advantages of lobar-segmental analysis in structure-function correlation study and provided the anatomical basis for kinds of attention deficits. The common genetic/environmental factors implicated in the certain correlations suggested the common physiological mechanisms for two traits, which should promote the discovery of single-nucleotide polymorphisms affecting IFOF and attention. PMID:27597294

  3. Distinct relationships of parietal and prefrontal cortices to evidence accumulation

    PubMed Central

    Hanks, Timothy; Kopec, Charles D.; Brunton, Bingni W.; Duan, Chunyu A.; Erlich, Jeffrey C.; Brody, Carlos D.

    2014-01-01

    Gradual accumulation of evidence is thought to be fundamental for decision-making, and its neural correlates have been found in multiple brain regions1–8. Here we develop a generalizable method to measure tuning curves that specify the relationship between neural responses and mentally-accumulated evidence, and apply it to distinguish the encoding of decision variables in posterior parietal cortex (PPC) and prefrontal cortex (frontal orienting fields, FOF). We recorded the firing rates of neurons in PPC and FOF from rats performing a perceptual decision-making task. Classical analyses uncovered correlates of accumulating evidence, similar to previous observations in primates and also similar across the two regions. However, tuning curve assays revealed that while the PPC encodes a graded value of the accumulating evidence, the FOF has a more categorical encoding that indicates, throughout the trial, the decision provisionally favored by the evidence accumulated so far. Contrary to current views3,5,7–9, this suggests that premotor activity in frontal cortex does not play a role in the accumulation process, but instead has a more categorical function, such as transforming accumulated evidence into a discrete choice. To causally probe the role of FOF activity, we optogenetically silenced it during different timepoints of the trial. Consistent with a role in committing to a categorical choice at the end of the evidence accumulation process, but not consistent with a role during the accumulation itself, a behavioral effect was observed only when FOF silencing occurred at the end of the perceptual stimulus. Our results place important constraints on the circuit logic of brain regions involved in decision-making. PMID:25600270

  4. A frontal but not parietal neural correlate of auditory consciousness.

    PubMed

    Brancucci, Alfredo; Lugli, Victor; Perrucci, Mauro Gianni; Del Gratta, Cosimo; Tommasi, Luca

    2016-01-01

    Hemodynamic correlates of consciousness were investigated in humans during the presentation of a dichotic sequence inducing illusory auditory percepts with features analogous to visual multistability. The sequence consisted of a variation of the original stimulation eliciting the Deutsch's octave illusion, created to maintain a stable illusory percept long enough to allow the detection of the underlying hemodynamic activity using functional magnetic resonance imaging (fMRI). Two specular 500 ms dichotic stimuli (400 and 800 Hz) presented in alternation by means of earphones cause an illusory segregation of pitch and ear of origin which can yield up to four different auditory percepts per dichotic stimulus. Such percepts are maintained stable when one of the two dichotic stimuli is presented repeatedly for 6 s, immediately after the alternation. We observed hemodynamic activity specifically accompanying conscious experience of pitch in a bilateral network including the superior frontal gyrus (SFG, BA9 and BA10), medial frontal gyrus (BA6 and BA9), insula (BA13), and posterior lateral nucleus of the thalamus. Conscious experience of side (ear of origin) was instead specifically accompanied by bilateral activity in the MFG (BA6), STG (BA41), parahippocampal gyrus (BA28), and insula (BA13). These results suggest that the neural substrate of auditory consciousness, differently from that of visual consciousness, may rest upon a fronto-temporal rather than upon a fronto-parietal network. Moreover, they indicate that the neural correlates of consciousness depend on the specific features of the stimulus and suggest the SFG-MFG and the insula as important cortical nodes for auditory conscious experience.

  5. [The parietal cell mass and acid secretion: Helicobacter pylori does not induce changes in the course of a duodenal ulcer].

    PubMed

    Testino, G; Sumberaz, A; Cornaggia, M

    1995-12-01

    Some studies have postulated that Helicobacter pylori (HP) itself might be responsible for hypergastrinemia and acid secretion in duodenal ulcer (DU). In each DU patient parietal cell mass (expressed by a parietal index) and stimulated acid secretion (expressed by maximal acid output) were evaluated. The study has been conducted grouping DU patients in relation to HP infection in antral mucosa. HP infection does not modify parietal cell mass and stimulated acid secretion. Therefore, mild chronic hypergastrinemia induced by HP infection is not sufficient to justify any increase of parietal index and acid secretion. In fact, parietal cells and acid secretion remain higher in DU subjects independently from HP infection.

  6. Fusion and Fission of Cognitive Functions in the Human Parietal Cortex

    PubMed Central

    Humphreys, Gina F.; Lambon Ralph, Matthew A.

    2015-01-01

    How is higher cognitive function organized in the human parietal cortex? A century of neuropsychology and 30 years of functional neuroimaging has implicated the parietal lobe in many different verbal and nonverbal cognitive domains. There is little clarity, however, on how these functions are organized, that is, where do these functions coalesce (implying a shared, underpinning neurocomputation) and where do they divide (indicating different underlying neural functions). Until now, there has been no multi-domain synthesis in order to reveal where there is fusion or fission of functions in the parietal cortex. This aim was achieved through a large-scale activation likelihood estimation (ALE) analysis of 386 studies (3952 activation peaks) covering 8 cognitive domains. A tripartite, domain-general neuroanatomical division and 5 principles of cognitive organization were established, and these are discussed with respect to a unified theory of parietal functional organization. PMID:25205661

  7. Progressive limb ataxia following inferior olive lesions

    PubMed Central

    Horn, K M; Deep, A; Gibson, A R

    2013-01-01

    Cerebellar climbing fibres originate in the inferior olive (IO). Temporary IO inactivation produces movement deficits. Does permanent inactivation produce similar deficits and, if so, do they recover? The excitotoxin, kainic acid, was injected into the rostral IO of three cats. Behaviour was measured during reaching and locomotion. Two cats were injected during the reaching task. Within minutes, grasping became difficult and the trajectories of the reaches showed higher arcing than normally seen. During locomotion, both cats showed head and trunk deviation to the injected side, walking paths curved to the injected side, and the paws were lifted higher than normal. Limbs contralateral to the injections became rigid. Within 1 day, posture had normalized, locomotion was unsteady and high lifting of the paws had reversed to a tendency to drag the dorsum of the paws. Passive body movement produced vestibular signs. Over a few days, locomotion normalized and vestibular signs disappeared. Reach trajectories were normal but grasping deficits persisted. Over the first week, the amplitude of limb lift during reaching and locomotion began to increase. The increase continued over time and, after several months, limb movements became severely ataxic. The effects followed the somatotopy of the rostral IO: a loss of cells in medial rostral IO only affected the forelimb, whereas a loss of cells in medial and lateral IO affected both forelimb and hindlimb. Deficits produced by IO lesions involve multiple mechanisms; some recover rapidly, some appear stable, and some worsen over time. The nature of the progressive deficit suggests a gradual loss of Purkinje cell inhibition on cerebellar nuclear cells. PMID:23027819

  8. Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades

    PubMed Central

    Schluppeck, Denis; Curtis, Clayton E.; Glimcher, Paul W.; Heeger, David J.

    2006-01-01

    In a previous study we identified three cortical areas in human posterior parietal cortex that exhibited topographic responses during memory-guided saccades (V7, IPS1, and IPS2), which are candidate homologues of macaque parietal areas such as the lateral intraparietal area (LIP) and parietal reach region (PRR). Here, we show that these areas exhibit sustained delay-period activity, a critical physiological signature of areas in macaque parietal areas. By varying delay duration we disambiguated delay-period activity from sensory and motor responses. Mean time-courses in the parietal areas were well-fit by a linear model comprising 3 components representing responses to: (1) the visual target, (2) the delay period, and (3) the eye movement interval. We estimated the contributions of each component: the response amplitude during the delay period was substantially smaller (<30%) than that elicited by the transient visual target. All 3 parietal regions showed comparable delay period response amplitudes, with a trend towards larger responses from V7, to IPS1, and IPS2. Responses to the cue and during the delay period showed clear lateralization with larger responses to trials in which the target was placed in the contralateral visual field, suggesting that both these components contributed to the topography we measured. PMID:16687501

  9. Altered pain and thermal sensation in subjects with isolated parietal and insular cortical lesions

    PubMed Central

    Veldhuijzen, D.S.; Greenspan, J.D; Kim, J.H.; Lenz, F.A.

    2009-01-01

    Studies of sensory function following cortical lesions have often included lesions which multiple cortical, white matter, and thalamic structures. We now test the hypothesis that lesions anatomically constrained to particular insular and parietal structures and their subjacent white matter are associated with different patterns of sensory loss. Sensory loss was measured by quantitative sensory testing (QST), and evaluated statistically with respect to normal values. All seven subjects with insular and/or parietal lesions demonstrated thermal hypoesthesia, although the etiology of the lesions was heterogeneous. Cold and heat hypoalgesia were only found in the subject with the most extensive parietal and insular lesion, which occurred in utero. Cold allodynia occurred clinically and by thresholds in two subjects with isolated ischemic lesions of the posterior insular/ retroinsular cortex, and by thresholds in two subjects with a lesion of parietal cortex with little or no insular involvement. Central pain occurred in the two subjects with clinical allodynia secondary to isolated lesions of the posterior insular/retroinsular cortex, which spared the anterior and posterior parietal cortex. These results suggest that nonpainful cold and heat sensations are jointly mediated by parietal and insular cortical structures so that lesions anywhere in this system may diminish sensitivity. In contrast, thermal pain is more robust requiring larger cortical lesions of these same structures to produce hypoalgesia. In addition, cold allodynia can result from restricted lesions that also produce thermal hypoesthesia, but not from all such lesions. PMID:19939715

  10. High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules.

    PubMed

    Boon, L; Geerts, W J; Jonker, A; Lamers, W H; Van Noorden, C J

    1999-06-01

    The liver plays a central role in nitrogen metabolism. Nitrogen enters the liver as free ammonia and as amino acids of which glutamine and alanine are the most important precursors. Detoxification of ammonia to urea involves deamination and transamination. By applying quantitative in situ hybridization, we found that mRNA levels of the enzymes involved are mainly expressed in periportal zones of liver lobules. Free ammonia, that is not converted periportally, is efficiently detoxified in the small rim of hepatocytes around the central veins by glutamine synthetase preventing it from entering the systemic circulation. Detoxification of ammonia by glutamine synthetase may be limited due to a shortage of glutamate when the nitrogen load is high. Adaptations in metabolism that prevent release of toxic ammonia from the liver were studied in rats that were fed diets with different amounts of protein, thereby varying the nitrogen load of the liver. We observed that mRNA levels of periportal deaminating and transaminating enzymes increased with the protein content in the diet. Similarly, mRNA levels of pericentral glutamate dehydrogenase and ornithine aminotransferase, the main producers of glutamate in this zone, and pericentral glutamine synthetase all increased with increasing protein levels in the diet. On the basis of these changes in mRNA levels, we conclude that: (a) glutamate is produced pericentrally in sufficient amounts to allow ammonia detoxification by glutamine synthetase and (b) in addition to the catalytic role of ornithine in the periportally localized ornithine cycle, pericentral ornithine degradation provides glutamate for ammonia detoxification.

  11. Inferior Frontal Gyrus Activation Underlies the Perception of Emotions, While Precuneus Activation Underlies the Feeling of Emotions during Music Listening

    PubMed Central

    Tabei, Ken-ichi

    2015-01-01

    While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses. PMID:26504353

  12. Inferior Frontal Gyrus Activation Underlies the Perception of Emotions, While Precuneus Activation Underlies the Feeling of Emotions during Music Listening.

    PubMed

    Tabei, Ken-ichi

    2015-01-01

    While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses.

  13. Inferior Frontal Gyrus Activation Underlies the Perception of Emotions, While Precuneus Activation Underlies the Feeling of Emotions during Music Listening.

    PubMed

    Tabei, Ken-ichi

    2015-01-01

    While music triggers many physiological and psychological reactions, the underlying neural basis of perceived and experienced emotions during music listening remains poorly understood. Therefore, using functional magnetic resonance imaging (fMRI), I conducted a comparative study of the different brain areas involved in perceiving and feeling emotions during music listening. I measured fMRI signals while participants assessed the emotional expression of music (perceived emotion) and their emotional responses to music (felt emotion). I found that cortical areas including the prefrontal, auditory, cingulate, and posterior parietal cortices were consistently activated by the perceived and felt emotional tasks. Moreover, activity in the inferior frontal gyrus increased more during the perceived emotion task than during a passive listening task. In addition, the precuneus showed greater activity during the felt emotion task than during a passive listening task. The findings reveal that the bilateral inferior frontal gyri and the precuneus are important areas for the perception of the emotional content of music as well as for the emotional response evoked in the listener. Furthermore, I propose that the precuneus, a brain region associated with self-representation, might be involved in assessing emotional responses. PMID:26504353

  14. Variant Inferior Alveolar Nerves and Implications for Local Anesthesia.

    PubMed

    Wolf, Kevin T; Brokaw, Everett J; Bell, Andrea; Joy, Anita

    2016-01-01

    A sound knowledge of anatomical variations that could be encountered during surgical procedures is helpful in avoiding surgical complications. The current article details anomalous morphology of inferior alveolar nerves encountered during routine dissection of the craniofacial region in the Gross Anatomy laboratory. We also report variations of the lingual nerves, associated with the inferior alveolar nerves. The variations were documented and a thorough review of literature was carried out. We focus on the variations themselves, and the clinical implications that these variations present. Thorough understanding of variant anatomy of the lingual and inferior alveolar nerves may determine the success of procedural anesthesia, the etiology of pathologic processes, and the avoidance of surgical misadventure.

  15. Prestimulus frontal-parietal coherence predicts auditory detection performance in rats

    PubMed Central

    Herzog, Linnea; Salehi, Kia; Bohon, Kaitlin S.

    2014-01-01

    Electrophysiology in primates has implicated long-range neural coherence as a potential mechanism for enhancing sensory detection. To test whether local synchronization and long-range neural coherence support detection performance in rats, we recorded local field potentials (LFPs) in frontal and parietal cortex while rats performed an auditory detection task. We observed significantly elevated power at multiple low frequencies (<15 Hz) preceding the target beep when the animal failed to respond to the signal (misses), in both frontal and parietal cortex. In terms of long-range coherence, we observed significantly more frontal-parietal coherence in the beta band (15–30 Hz) before the signal on misses compared with hits. This effect persisted after regressing away linear trends in the coherence values during a session, showing that the excess frontal-parietal beta coherence prior to misses cannot be explained by slow motivational changes during a session. In addition, a trend toward higher low-frequency (<15 Hz) coherence prior to miss trials compared with hits became highly significant when we rereferenced the LFPs to the mean voltage on each recording array, suggesting that the results are specific to our frontal and parietal areas. These results do not support a role for long-range frontal-parietal coherence or local synchronization in facilitating the detection of external stimuli. Rather, they extend to long-range frontal-parietal coherence previous findings that correlate local synchronization of low-frequency (<15 Hz) oscillations with inattention to external stimuli and synchronization of beta rhythms (15–30 Hz) with voluntary or involuntary prolongation of the current cognitive or motor state. PMID:24572093

  16. Reward-based decision signals in parietal cortex are partially embodied.

    PubMed

    Kubanek, Jan; Snyder, Lawrence H

    2015-03-25

    Recordings in the lateral intraparietal area (LIP) reveal that parietal cortex encodes variables related to spatial decision-making, the selection of desirable targets in space. It has been unclear whether parietal cortex is involved in spatial decision-making in general, or whether specific parietal compartments subserve decisions made using specific actions. To test this, we engaged monkeys (Macaca mulatta) in a reward-based decision task in which they selected a target based on its desirability. The animals' choice behavior in this task followed the molar matching law, and in each trial was governed by the desirability of the choice targets. Critically, animals were instructed to make the choice using one of two actions: eye movements (saccades) and arm movements (reaches). We recorded the discharge activity of neurons in area LIP and the parietal reach region (PRR) of the parietal cortex. In line with previous studies, we found that both LIP and PRR encode a reward-based decision variable, the target desirability. Crucially, the target desirability was encoded in LIP at least twice as strongly when choices were made using saccades compared with reaches. In contrast, PRR encoded target desirability only for reaches and not for saccades. These data suggest that decisions can evolve in dedicated parietal circuits in the context of specific actions. This finding supports the hypothesis of an intentional representation of developing decisions in parietal cortex. Furthermore, the close link between the cognitive (decision-related) and bodily (action-related) processes presents a neural contribution to the theories of embodied cognition. PMID:25810518

  17. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    PubMed Central

    Fatima, Huma; Moeller, Marcus J.; Smeets, Bart; Yang, Hai-Chun; D’Agati, Vivette D.; Alpers, Charles E.

    2012-01-01

    Summary Background and objectives Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This study investigated whether activated parietal epithelial cells are increased in early recurrent FSGS in transplant compared with minimal change disease. Design, setting, participants, & measurements CD44 staining in renal allograft biopsies from 12 patients with recurrent FSGS was performed and compared with native kidneys with minimal change disease or FSGS and normal control native and transplant kidneys without FSGS. CD44+ epithelial cells along Bowman’s capsule in the parietal epithelial cell location and over the glomerular tuft in the visceral epithelial cell location were assessed. Results Cases with early recurrent FSGS manifesting only foot process effacement showed significantly increased CD44+ visceral epithelial cells involving 29.0% versus 2.6% of glomeruli in minimal change disease and 0% in non-FSGS transplants. Parietal location CD44 positivity also was numerically increased in recurrent FSGS. In later transplant biopsies, glomeruli with segmental lesions had more CD44+ visceral epithelial cells than glomeruli without lesions. Conclusions Parietal epithelial cell activation marker is significantly increased in evolving FSGS versus minimal change disease, and this increase may distinguish early FSGS from minimal change disease. Whether parietal epithelial cell activation contributes to pathogenesis of sclerosis in idiopathic FSGS or is a regenerative/repair response to replace injured podocytes awaits additional study. PMID:22917699

  18. Ventral fronto-parietal contributions to the disruption of visual working memory storage.

    PubMed

    Hakun, Jonathan G; Ravizza, Susan M

    2016-01-01

    The ability to maintain information in visual working memory (VWM) in the presence of ongoing visual input allows for flexible goal-directed behavior. Previous evidence suggests that categorical overlap between visual distractors and the contents of VWM is associated with both the degree to which distractors disrupt VWM performance and activation among fronto-parietal regions of cortex. While within-category distractors have been shown to elicit a greater response in ventral fronto-parietal regions, to date, no study has linked distractor-evoked response of these regions to VWM performance costs. Here we examined the contributions of ventral fronto-parietal cortex to the disruption of VWM storage by manipulating memoranda-distractor similarity. Our results revealed that the degree of activation across cortex was graded in a manner suggesting that similarity between the contents of VWM and visual distractors influenced distractor processing. While abrupt visual onsets failed to engage ventral fronto-parietal regions during VWM maintenance, objects sharing categorical- (Related objects) and feature-overlap (Matched objects) with VWM elicited a significant response in the right TPJ and right AI. Of central relevance, the magnitude of activation in the right AI elicited by both types of distractor objects subsequently predicted costs to binding change detection accuracy. In addition, Related and Matched distractors differentially affected ventral-dorsal connectivity between the right AI and dorsal parietal regions, uniquely contributing to disruption of VWM storage. Together, our current results implicate activation of ventral fronto-parietal cortex in disruption of VWM storage, and disconnection between ventral frontal and dorsal parietal cortices as a mechanism to protect the contents of VWM.

  19. Ventral fronto-parietal contributions to the disruption of visual working memory storage.

    PubMed

    Hakun, Jonathan G; Ravizza, Susan M

    2016-01-01

    The ability to maintain information in visual working memory (VWM) in the presence of ongoing visual input allows for flexible goal-directed behavior. Previous evidence suggests that categorical overlap between visual distractors and the contents of VWM is associated with both the degree to which distractors disrupt VWM performance and activation among fronto-parietal regions of cortex. While within-category distractors have been shown to elicit a greater response in ventral fronto-parietal regions, to date, no study has linked distractor-evoked response of these regions to VWM performance costs. Here we examined the contributions of ventral fronto-parietal cortex to the disruption of VWM storage by manipulating memoranda-distractor similarity. Our results revealed that the degree of activation across cortex was graded in a manner suggesting that similarity between the contents of VWM and visual distractors influenced distractor processing. While abrupt visual onsets failed to engage ventral fronto-parietal regions during VWM maintenance, objects sharing categorical- (Related objects) and feature-overlap (Matched objects) with VWM elicited a significant response in the right TPJ and right AI. Of central relevance, the magnitude of activation in the right AI elicited by both types of distractor objects subsequently predicted costs to binding change detection accuracy. In addition, Related and Matched distractors differentially affected ventral-dorsal connectivity between the right AI and dorsal parietal regions, uniquely contributing to disruption of VWM storage. Together, our current results implicate activation of ventral fronto-parietal cortex in disruption of VWM storage, and disconnection between ventral frontal and dorsal parietal cortices as a mechanism to protect the contents of VWM. PMID:26436710

  20. Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex.

    PubMed

    Lee, Kun Ho; Choi, Yu Yong; Gray, Jeremy R; Cho, Sun Hee; Chae, Jeong-Ho; Lee, Seungheun; Kim, Kyungjin

    2006-01-15

    General intelligence (g) is a common factor in diverse cognitive abilities and a major influence on life outcomes. Neuroimaging studies in adults suggest that the lateral prefrontal and parietal cortices play a crucial role in related cognitive activities including fluid reasoning, the control of attention, and working memory. Here, we investigated the neural bases for intellectual giftedness (superior-g) in adolescents, using fMRI. The participants consisted of a superior-g group (n = 18, mean RAPM = 33.9 +/- 0.8, >99%) from the national academy for gifted adolescents and the control group (n = 18, mean RAPM = 22.8 +/- 1.6, 60%) from local high schools in Korea (mean age = 16.5 +/- 0.8). fMRI data were acquired while they performed two reasoning tasks with high and low g-loadings. In both groups, the high g-loaded tasks specifically increased regional activity in the bilateral fronto-parietal network including the lateral prefrontal, anterior cingulate, and posterior parietal cortices. However, the regional activations of the superior-g group were significantly stronger than those of the control group, especially in the posterior parietal cortex. Moreover, regression analysis revealed that activity of the superior and intraparietal cortices (BA 7/40) strongly covaried with individual differences in g (r = 0.71 to 0.81). A correlated vectors analysis implicated bilateral posterior parietal areas in g. These results suggest that superior-g may not be due to the recruitment of additional brain regions but to the functional facilitation of the fronto-parietal network particularly driven by the posterior parietal activation.

  1. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention.

    PubMed

    Gillebert, Céline R; Mantini, Dante; Thijs, Vincent; Sunaert, Stefan; Dupont, Patrick; Vandenberghe, Rik

    2011-06-01

    Based on lesion mapping studies, the inferior parietal lobule and temporoparietal junction are considered the critical parietal regions for spatial-attentional deficits. Lesion evidence for a key role of the intraparietal sulcus, a region featuring prominently in non-human primate studies and human functional imaging studies of the intact brain, is still lacking, probably due to the exceptional nature of isolated intraparietal sulcus lesions. We combined behavioural testing and functional imaging in two patients with a focal intraparietal sulcus lesion sparing the inferior parietal lobule and temporoparietal junction to examine the critical contribution of the intraparietal sulcus to spatial attention. Case H.H. had a focal ischaemic lesion (1.8 cm3) that was confined to the posterior segment of the left intraparietal sulcus, whereas Case N.V. had a partially reversible lesion of the middle segment of the right intraparietal sulcus extending into the superior parietal lobule (13.8 cm3). The performance of these cases was contrasted with five cases with a classical inferior parietal lesion, as well as with a group of 31 age-matched controls. In the behavioural study, the patients performed an orientation discrimination task on a peripheral target (eccentricity 7.6°) that was preceded by a central spatial cue. We manipulated both the cue validity (17% trials with an invalid spatial cue) and the presence of a competing distracter in the visual field contralateral to the target (17% double stimulation trials). The ability of the patients with an intraparietal sulcus lesion to reorient their spatial focus of attention and to select between competing stimuli was impaired for contralesional targets compared with controls, similarly to what we saw in the inferior parietal group. Furthermore, we could observe that the deficit in Case N.V. resolved with regression of the lesion. To further evaluate the correspondence between spatial-attentional deficits and the

  2. Troubleshooting OptEase inferior vena cava filter retrieval.

    PubMed

    Nakashima, Masaya; Kobayashi, Hideaki; Kobayashi, Masayoshi

    2016-01-01

    For treatment of deep vein thrombosis and prevention of pulmonary thromboembolism, a retrievable inferior vena cava filter is commonly utilized as an effective bridge to anticoagulation. However, we have experienced difficulties in retrieving inferior vena cava filters. Endovascular retrieval assisted by disposable biopsy forceps is an appropriate approach because it provides a less-invasive low-cost way to remove a migrated filter. We suggest this troubleshooting technique to deal with filter hook migration into the caval wall.

  3. Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex

    PubMed Central

    Jeong, Su Keun

    2016-01-01

    The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been

  4. Role of Medio-Dorsal Frontal and Posterior Parietal Neurons during Auditory Detection Performance in Rats

    PubMed Central

    Bohon, Kaitlin S.; Wiest, Michael C.

    2014-01-01

    To further characterize the role of frontal and parietal cortices in rat cognition, we recorded action potentials simultaneously from multiple sites in the medio-dorsal frontal cortex and posterior parietal cortex of rats while they performed a two-choice auditory detection task. We quantified neural correlates of task performance, including response movements, perception of a target tone, and the differentiation between stimuli with distinct features (different pitches or durations). A minority of units—15% in frontal cortex, 23% in parietal cortex—significantly distinguished hit trials (successful detections, response movement to the right) from correct rejection trials (correct leftward response to the absence of the target tone). Estimating the contribution of movement-related activity to these responses suggested that more than half of these units were likely signaling correct perception of the auditory target, rather than merely movement direction. In addition, we found a smaller and mostly not overlapping population of units that differentiated stimuli based on task-irrelevant details. The detection-related spiking responses we observed suggest that correlates of perception in the rat are sparsely represented among neurons in the rat's frontal-parietal network, without being concentrated preferentially in frontal or parietal areas. PMID:25479194

  5. Neural sources of visual working memory maintenance in human parietal and ventral extrastriate visual cortex.

    PubMed

    Becke, Andreas; Müller, Notger; Vellage, Anne; Schoenfeld, Mircea Ariel; Hopf, Jens-Max

    2015-04-15

    Maintaining information in visual working memory is reliably indexed by the contralateral delay activity (CDA) - a sustained modulation of the event-related potential (ERP) with a topographical maximum over posterior scalp regions contralateral to the memorized input. Based on scalp topography, it is hypothesized that the CDA reflects neural activity in the parietal cortex, but the precise cortical origin of underlying electric activity was never determined. Here we combine ERP recordings with magnetoencephalography based source localization to characterize the cortical current sources generating the CDA. Observers performed a cued delayed match to sample task where either the color or the relative position of colored dots had to be maintained in memory. A detailed source-localization analysis of the magnetic activity in the retention interval revealed that the magnetic analog of the CDA (mCDA) is generated by current sources in the parietal cortex. Importantly, we find that the mCDA also receives contribution from current sources in the ventral extrastriate cortex that display a time-course similar to the parietal sources. On the basis of the magnetic responses, forward modeling of ERP data reveals that the ventral sources have non-optimal projections and that these sources are therefore concealed in the ERP by overlapping fields with parietal projections. The present observations indicate that visual working memory maintenance, as indexed by the CDA, involves the parietal cortical regions as well as the ventral extrastriate regions, which code the sensory representation of the memorized content.

  6. Black spots concentrate oncogenic asbestos fibers in the parietal pleura. Thoracoscopic and mineralogic study.

    PubMed

    Boutin, C; Dumortier, P; Rey, F; Viallat, J R; De Vuyst, P

    1996-01-01

    Epidemiologic and pathologic data demonstrate that malignant mesothelioma occurs preferentially after exposure to long amphibole asbestos fibers. However, mineralogic studies have rarely detected such fibers in the parietal pleura. We hypothesized that the distribution of asbestos fibers in the pleura was heterogeneous and that they might concentrate in certain areas, as does coal dust in patients showing anthracotic "black spots" of the parietal pleura during thoracoscopy. We collected thoracoscopic biopsy samples from these black spots and from normal areas of the parietal pleura and lung from 14 subjects (eight with and six without asbestos exposure). Asbestos content was determined by transmission electron microscopy. In exposed subjects, mean fiber concentrations were 12.4 +/- 9.8 x 10(6) fibers/g of dry tissue in lung, 4.1 +/- 1.9 in black spots, and 0.5 +/- 0.2 in normal pleura. In unexposed patients, concentrations were 0, 0.3 +/- 0.1, and 0, respectively. Amphiboles outnumbered chrysotile in all samples. A total of 22.5% of fibers were > or = 5 microns in length in black spots. A histologic similarity of these black spots with milky spots is suggested by conventional and electron microscopy. We conclude that the distribution of asbestos fibers is heterogeneous in the parietal pleura. Indeed, the fibers concentrate in black spots, where they can reach high concentrations. These findings could explain why the parietal pleura is the target organ for mesothelioma and plaques.

  7. Frontal and parietal lobe involvement in the processing of pretence and intention.

    PubMed

    Chiavarino, Claudia; Apperly, Ian A; Humphreys, Glyn W

    2009-09-01

    We assessed whether different processes might be at play during pretence understanding by examining breakdowns of performance in participants with acquired brain damage. In Experiment 1 patients with frontal or parietal lesions and neurologically intact adults were asked to categorize videos of pretend and real actions. In Experiment 2 participants saw three types of videos: real intentional actions, real accidental actions, and pretend actions. In one session they judged whether the actions they saw were intentional or accidental, and in a second session they judged whether the actions were real or pretend. Parietal patients had particular difficulties in the identification of pretend actions, and both parietal and frontal patients were more impaired than controls in understanding the intentional nature of pretence. Analyses of individual patients' performance revealed that parietal lesions, and in particular lesions to the temporo-parietal junction, impaired the ability to discriminate pretend from real actions. However, this did not necessarily affect the discrimination of intentional from unintentional actions, which instead may be independently disrupted by damage to frontal areas. Moreover, spared ability to discriminate pretend actions from real actions, and intentional actions from accidental actions, did not grant a full conceptual understanding of the intentional nature of pretence. The implications for pretence understanding are discussed. PMID:19219753

  8. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG.

    PubMed

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L; Iriye, Heather; Seth, Anil K; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant's individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  9. Physiological implications of the abnormal absence of the parietal foramen in a late Permian cynodont (Therapsida)

    NASA Astrophysics Data System (ADS)

    Benoit, Julien; Abdala, Fernando; Van den Brandt, Marc J.; Manger, Paul R.; Rubidge, Bruce S.

    2015-12-01

    The third eye (pineal eye), an organ responsible for regulating exposure to sunlight in extant ectotherms, is located in an opening on the dorsal surface of the skull, the parietal foramen. The parietal foramen is absent in extant mammals but often observed in basal therapsids, the stem-group to true mammals. Here, we report the absence of the parietal foramen in a specimen of Cynosaurus suppostus, a Late Permian cynodont from South Africa (SA). Comparison with Procynosuchus delaharpeae, a contemporaneous non-mammalian cynodont from SA, demonstrates that the absence of this foramen is an abnormal condition for such a basal species. Because seasonality was marked during the Late Permian in SA, it is proposed that the third eye was functionally redundant in Cynosaurus, possibly due to the acquisition of better thermoregulation or the evolution of specialized cells in the lateral eyes to compensate for the role of the third eye.

  10. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    PubMed

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention.

  11. Effects of parietal lesions in humans on color and location priming.

    PubMed

    Marangolo, P; Di Pace, E; Rafal, R; Scabini, D

    1998-11-01

    To determine whether the parietal lobes contribute tot he selection of nonspatial features known to be processed in the ventral stream, the current study examined the effect of chronic unilateral parietal lobe lesions in humans on color and location priming. Patients and normal controls performed a go/no-go color discrimination task in which either the same color and different color pairs of stimuli (prime and probe) were projected sequentially either in the same hemifield or in opposite hemifields. Control subjects and patients both showed independent effects of color and location priming. In the patients, primes in either field produced color priming for target probes in the ipsilesional field but not for probes in the contralesional field. This observation implicates the parietal cortex in processing activated codes of stimulus attributes not only for spatial information but also for visual features processed in the ventral visual pathways.

  12. Fractionation of parietal function in bistable perception probed with concurrent TMS-EEG

    PubMed Central

    Schauer, Georg; Chang, Acer; Schwartzman, David; Rae, Charlotte L.; Iriye, Heather; Seth, Anil K.; Kanai, Ryota

    2016-01-01

    When visual input has conflicting interpretations, conscious perception can alternate spontaneously between these possible interpretations. This is called bistable perception. Previous neuroimaging studies have indicated the involvement of two right parietal areas in resolving perceptual ambiguity (ant-SPLr and post-SPLr). Transcranial magnetic stimulation (TMS) studies that selectively interfered with the normal function of these regions suggest that they play opposing roles in this type of perceptual switch. In the present study, we investigated this fractionation of parietal function by use of combined TMS with electroencephalography (EEG). Specifically, while participants viewed either a bistable stimulus, a replay stimulus, or resting-state fixation, we applied single pulse TMS to either location independently while simultaneously recording EEG. Combined with participant’s individual structural magnetic resonance imaging (MRI) scans, this dataset allows for complex analyses of the effect of TMS on neural time series data, which may further elucidate the causal role of the parietal cortex in ambiguous perception. PMID:27529410

  13. Role of the parietal associative area of the cortex for "counting" behavior in dogs.

    PubMed

    Varga, M E; Pavlova, O G; Mats, V N

    2007-10-01

    Experiments were performed on six dogs to study the effects of simultaneous and separate ablation of fields 5 and 7 of the parietal cortex on "counting" behavior. Dogs were trained to discriminate series of five sound clicks presented with variable interstimulus intervals from similar series consisting of three clicks. A food-related operant response (elevation of the right forepaw to place it on the feeder) was used to develop asymmetrical differentiation; the positive signal was a series of five clicks with variable interstimulus intervals and the negative (unreinforced) stimulus was a series of three clicks. Simultaneous bilateral ablation of fields 5 and 7 of the parietal cortex, like bilateral ablation only of field 5, produced profound impairment of differentiation lasting 2-3 months. Isolated bilateral ablation of field 7 produced no impairment of differentiation. These data led to the conclusion that field 5 of the parietal cortex is important for discriminating the numbers of sequential signals.

  14. Benign fibrous histiocytoma of parietal bone: case report and review of the literature.

    PubMed

    Yang, Lili; Feng, Yan; Yan, Xu; Li, Yanhui; Bie, Li

    2015-01-01

    A benign fibrous histiocytoma with primary site of origin in the parietal bone has not yet been reported in the literature. We report here a case concerning a 12-year-old girl with a 14-month history of an enlarging parietal bone mass. The tumor was excised after removal of the cortical bone and resection of the tumor surrounding the cortical bone erosion using pre-plasticity titanium repair. Both postoperative histopathological examination and immunohistochemical analysis were consistent with a benign fibrous histiocytoma. No clinical or computed tomography (CT) radiological signs of tumor recurrence and/or metastasis were observed at 12 months. Although a primary benign fibrous histiocytoma of the parietal bone is a rare tumor, it should be considered as a potential diagnosis for any cranial tumor. Surgical intervention is the most effective treatment technique for a benign fibrous histiocytoma. PMID:25951848

  15. Optimized Gamma Synchronization Enhances Functional Binding of Fronto-Parietal Cortices in Mathematically Gifted Adolescents during Deductive Reasoning

    PubMed Central

    Zhang, Li; Gan, John Q.; Wang, Haixian

    2014-01-01

    As enhanced fronto-parietal network has been suggested to support reasoning ability of math-gifted adolescents, the main goal of this EEG source analysis is to investigate the temporal binding of the gamma-band (30–60 Hz) synchronization between frontal and parietal cortices in adolescents with exceptional mathematical ability, including the functional connectivity of gamma neurocognitive network, the temporal dynamics of fronto-parietal network (phase-locking durations and network lability in time domain), and the self-organized criticality of synchronizing oscillation. Compared with the average-ability subjects, the math-gifted adolescents show a highly integrated fronto-parietal network due to distant gamma phase-locking oscillations, which is indicated by lower modularity of the global network topology, more “connector bridges” between the frontal and parietal cortices and less “connector hubs” in the sensorimotor cortex. The time domain analysis finds that, while maintaining more stable phase dynamics of the fronto-parietal coupling, the math-gifted adolescents are characterized by more extensive fronto-parietal connection reconfiguration. The results from sample fitting in the power-law model further find that the phase-locking durations in the math-gifted brain abides by a wider interval of the power-law distribution. This phase-lock distribution mechanism could represent a relatively optimized pattern for the functional binding of frontal–parietal network, which underlies stable fronto-parietal connectivity and increases flexibility of timely network reconfiguration. PMID:24966829

  16. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.

  17. Vacuolar-type H+-ATPase-mediated proton transport in the rat parietal cell.

    PubMed

    Kopic, Sascha; Wagner, Maximilian E H; Griessenauer, Christoph; Socrates, Thenral; Ritter, Markus; Geibel, John P

    2012-03-01

    The vacuolar-type H-ATPase (V-ATPase) plays an important role in the active acidification of intracellular organelles. In certain specialized cells, such as the renal intercalated cell, apical V-ATPase can also function as a proton secretion pathway. In the parietal cells of the stomach, it has been thought that acid secretion is controlled solely via the H,K-ATPase. However, recent observations suggest that functional V-ATPase is necessary for acid secretion to take place. This study aimed to investigate and characterize the role of V-ATPase in parietal cell proton transport. Individual rat gastric glands were incubated with the pH-sensitive dye (BCECF) to monitor changes in intracellular pH in real time. Parietal cell V-ATPase activity was measured by quantifying the rate of intracellular alkalinization (ΔpH/minute) following an acid load, while excluding the contribution of non-V-ATPase proton transport mechanisms through pharmacological inhibition or ion substitution. Expression of V-ATPase was confirmed by immunohistochemistry. We observed concanamycin A-sensitive V-ATPase activity in rat parietal cells following intracellular acidification and H,K-ATPase inhibition. Furthermore, V-ATPase-mediated proton transport could be abolished by inhibiting trafficking mechanisms with paclitaxel and by stimulating H,K-ATPase with acid secretagogues. Our results propose that parietal cells contain a functional V-ATPase that can be mobilized using a microtubule network. V-ATPase may function as an auxiliary acid secretion or proton-buffering pathway in parietal cells, which is inactive during H,K-ATPase activity. Our findings may have important implications for patients experiencing acid breakthrough under proton pump inhibitor therapy.

  18. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions. PMID:27027542

  19. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses.

    PubMed

    Sestieri, Carlo; Corbetta, Maurizio; Romani, Gian Luca; Shulman, Gordon L

    2011-03-23

    The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g., episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative "default" processes such as episodic memory retrieval. Using functional magnetic resonance imaging, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting-state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in postretrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. Whereas angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval.

  20. Multimodal responses induced by cortical stimulation of the parietal lobe: a stereo-electroencephalography study.

    PubMed

    Balestrini, Simona; Francione, Stefano; Mai, Roberto; Castana, Laura; Casaceli, Giuseppe; Marino, Daniela; Provinciali, Leandro; Cardinale, Francesco; Tassi, Laura

    2015-09-01

    The functional complexity of the parietal lobe still represents a challenge for neurophysiological and functional neuroimaging studies. While the somatosensory functions of the anterior parietal cortex are well established, the posterior parietal cortex has a relevant role in processing the sensory information, including visuo-spatial perception, visual attention, visuo-motor transformations and other complex and not completely understood functions. We retrospectively analysed all the clinical manifestations induced by intracerebral bipolar electrical stimulation in 172 patients suffering from drug-resistant focal epilepsy (mean age 25.6, standard deviation 11.6; 44% females and 56% males) with at least one electrode stereotactically implanted in the parietal cortex. A total of 1186 electrical stimulations were included in the analysis, of which 88 were subsequently excluded because of eliciting pathological electric activity or inducing ictal symptomatology. In the dominant parietal lobe, clinical responses were observed for 56 (25%) of the low-frequency stimulations and for 76 (50%) of the high-frequency stimulations. In the non-dominant parietal lobe, 111 (27%) low-frequency and 176 (55%) high-frequency stimulations were associated with a clinical response. Body scheme alteration was the only clinical effect showing a lateralization, as they were evoked only in the non-dominant hemisphere. The occurrence of somatosensory sensations, motor symptoms, dysarthria and multimodal responses were significantly associated with stimulation of the postcentral gyrus (odds ratio: 5.83, P < 0.001; odds ratio: 8.77, P < 0.001; odds ratio: 5.44, P = 0.011; odds ratio: 8.33, P = 0.006; respectively). Stimulation of the intraparietal sulcus was associated with the occurrence of sensory illusions or hallucinations (odds ratio: 8.68, P < 0.001) and eyeball/eyelid movements or sensations (odds ratio: 4.35, P = 0.047). To our knowledge, this is the only currently available complete

  1. Altered prefronto-striato-parietal network response to mental rotation in HIV.

    PubMed

    Schweinsburg, Brian C; Scott, J Cobb; Schweinsburg, Alecia Dager; Jacobus, Joanna; Theilmann, Rebecca J; Frank, Larry R; Weber, Erica; Grant, Igor; Woods, Steven Paul

    2012-02-01

    The present study used functional magnetic resonance imaging to examine the neural substrates of mental rotation in 11 individuals with HIV infection and 13 demographically similar HIV seronegative volunteers. Individuals with HIV showed increased brain response to mental rotation in prefrontal and posterior parietal cortices, striatum, and thalamus, with significant HIV by angle interactions emerging in the prefrontal cortex and caudate. Results indicate that HIV infection is associated with altered brain response to mental rotation in fronto-striato-parietal pathways, which may reflect compensatory strategies, recruitment of additional brain regions, and/or increased neuroenergetic demands during mental rotation needed to offset underlying HIV-associated neural injury.

  2. A basic review on the inferior alveolar nerve block techniques

    PubMed Central

    Khalil, Hesham

    2014-01-01

    The inferior alveolar nerve block is the most common injection technique used in dentistry and many modifications of the conventional nerve block have been recently described in the literature. Selecting the best technique by the dentist or surgeon depends on many factors including the success rate and complications related to the selected technique. Dentists should be aware of the available current modifications of the inferior alveolar nerve block techniques in order to effectively choose between these modifications. Some operators may encounter difficulty in identifying the anatomical landmarks which are useful in applying the inferior alveolar nerve block and rely instead on assumptions as to where the needle should be positioned. Such assumptions can lead to failure and the failure rate of inferior alveolar nerve block has been reported to be 20-25% which is considered very high. In this basic review, the anatomical details of the inferior alveolar nerve will be given together with a description of its both conventional and modified blocking techniques; in addition, an overview of the complications which may result from the application of this important technique will be mentioned. PMID:25886095

  3. Inferior oblique muscle paresis as a sign of myasthenia gravis.

    PubMed

    Almog, Yehoshua; Ben-David, Merav; Nemet, Arie Y

    2016-03-01

    Myasthenia gravis may affect any of the six extra-ocular muscles, masquerading as any type of ocular motor pathology. The frequency of involvement of each muscle is not well established in the medical literature. This study was designed to determine whether a specific muscle or combination of muscles tends to be predominantly affected. This retrospective review included 30 patients with a clinical diagnosis of myasthenia gravis who had extra-ocular muscle involvement with diplopia at presentation. The diagnosis was confirmed by at least one of the following tests: Tensilon test, acetylcholine receptor antibodies, thymoma on chest CT scan, or suggestive electromyography. Frequency of involvement of each muscle in this cohort was inferior oblique 19 (63.3%), lateral rectus nine (30%), superior rectus four (13.3%), inferior rectus six (20%), medial rectus four (13.3%), and superior oblique three (10%). The inferior oblique was involved more often than any other muscle (p<0.01). Eighteen (60%) patients had ptosis, six (20%) of whom had bilateral ptosis. Diagnosing myasthenia gravis can be difficult, because the disease may mimic every pupil-sparing pattern of ocular misalignment. In addition diplopia caused by paresis of the inferior oblique muscle is rarely encountered (other than as a part of oculomotor nerve palsy). Hence, when a patient presents with vertical diplopia resulting from an isolated inferior oblique palsy, myasthenic etiology should be highly suspected.

  4. The effects of inferior olive lesion on strychnine seizure

    SciTech Connect

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H. )

    1990-10-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable ({sup 3}H)AMPA ((RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid) binding in cerebella from inferior olive-lesioned rats was observed, but no difference in ({sup 3}H)AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclo-hepten-5,10 imine) were tested as anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the ({sup 3}H)AMPA binding data.

  5. Traumatic neuroma of the inferior alveolar nerve: a case report.

    PubMed

    Arribas-García, Ignacio; Alcalá-Galiano, Andrea; Gutiérrez, Ramón; Montalvo-Moreno, Juan José

    2008-03-01

    Traumatic neuromas are rare entities which characteristically arise subsequently to surgery and are usually accompanied by pain, typically neuralgic. We present an unusual case of an intraosseous traumatic neuroma of the inferior alveolar nerve following tooth extraction. A 56-year-old man consulted for paresthesias and hyperesthesia in the left mandibular region following extraction of the left mandibular third molar (#38). The panoramic radiograph revealed a radiolucent lesion in the inferior alveolar nerve canal, and CT demonstrated the existence of a mass within the canal, producing widening of the same. Nerve-sparing excisional biopsy was performed. Histopathology and immunohistochemistry were consistent with traumatic neuroma of the left inferior alveolar nerve. After 3 years of follow-up, the patient is asymptomatic and there are no signs of recurrence.

  6. Variant Inferior Alveolar Nerves and Implications for Local Anesthesia.

    PubMed

    Wolf, Kevin T; Brokaw, Everett J; Bell, Andrea; Joy, Anita

    2016-01-01

    A sound knowledge of anatomical variations that could be encountered during surgical procedures is helpful in avoiding surgical complications. The current article details anomalous morphology of inferior alveolar nerves encountered during routine dissection of the craniofacial region in the Gross Anatomy laboratory. We also report variations of the lingual nerves, associated with the inferior alveolar nerves. The variations were documented and a thorough review of literature was carried out. We focus on the variations themselves, and the clinical implications that these variations present. Thorough understanding of variant anatomy of the lingual and inferior alveolar nerves may determine the success of procedural anesthesia, the etiology of pathologic processes, and the avoidance of surgical misadventure. PMID:27269666

  7. Inferior oblique recession in thyroid-related orbitopathy.

    PubMed

    Salchow, Daniel J

    2015-06-01

    Thyroid-related orbitopathy is a form of orbital inflammation associated with thyroid dysfunction, developing in many patients with Graves disease. Fibrosis of the inferior rectus muscle can lead to restricted elevation and vertical ocular misalignment, which may be improved by recessing this muscle. In some patients, vertical misalignment persists after surgical weakening of one or more vertical rectus muscles. In this case series, unilateral inferior oblique recession as a secondary procedure after inferior rectus recession reduced hypertropia in primary gaze from 9(Δ) ± 3(Δ) to 1.3(Δ) ± 1.5(Δ) (mean ± standard deviation) and largest hypertropia in side gaze from 18.3 ± 2.1(Δ) to 3.3(Δ) ± 1.5(Δ). Postoperatively, all 3 patients were diplopia free in primary and downgaze. PMID:26059675

  8. Pleomorphic adenoma originates from inferior nasal turbinate causing epiphora.

    PubMed

    Erol, Bekir; Selçuk, Ömer Tarik; Gürses, Cemil; Osma, Üstün; Köroğlu, Mert; Süren, Dinç

    2013-01-01

    Pleomorphic adenoma is the most common benign tumor of the salivary glands. A 62-year-old female patient presented with epiphora and was suffering from breathing difficulties. With the diagnostic nasal endoscopy, a mass, originating from right inferior nasal turbinate and filling the entire nasal cavity, was seen. Originating from the inferior nasal turbinate is a very rare entity. Paranasal sinus computed tomography and magnetic resonance images revealed a mass that fills and expands the right nasal cavity. Mass was hypoechoic in B-mode ultrasonography and hypovascular in color Doppler ultrasonography, and rate of tissue stiffness was high in sonoelastography. These were helpful for the diagnosis.

  9. Suprarenal symplastic leiomyoma of the inferior vena cava.

    PubMed

    Kepenekci, Ilknur; Demirkan, Arda; Sözener, Ulas; Cakmak, Atil; Demirer, Seher; Alaçayir, Iskender; Ekinci, Cemil

    2009-01-01

    We report on a case of a leiomyoma in the inferior vena cava that appeared in the image to be located in the adrenal gland. En bloc excision of the tumor with the right adrenal gland and the involved segment of the vena cava was carried out. Histopathological work-up of the tumor revealed smooth muscle fibers and marked nuclear pleomorphism consistent with symplastic leiomyoma. This case report presents a distinct histological variant of the rarely seen primary smooth muscle tumor of the inferior vena cava.

  10. Cortical infarction of the right parietal lobe and neurogenic heart disease: A report of three cases.

    PubMed

    Li, Fang; Jia, Yujie

    2012-04-25

    Three male patients were diagnosed with new cortical infarctions of the right parietal lobe on the basis of head magnetic resonance imaging; high-intensity signals indicating lesions in the right parietal lobe were noted on diffusion-weighted images at admission. Two of them presented with left hand weakness, and one exhibited left upper limb weakness. Treatment for improving blood supply to the brain was administered. One patient died suddenly because of ventricular fibrillation 3 days after admission. The other two patients had increased troponin levels and abnormal electrocardiograms, and were diagnosed with acute myocardial infarction half a month after admission. When lesions exist in field 7 of the parietal cortex (resulting in paralysis of the contralateral hand), the sympathetic center of the posterior lateral nucleus of the hypothalamus demonstrates compensatory excitement, which easily causes tachyarrhythmia and sudden death. Our experimental findings indicate that close electrocardiograph monitoring and cerebral infarction treatment should be standard procedures to predict and help prevent heart disease in patients with cerebral infarction in the right parietal lobe and left upper limb weakness as the main complaint. PMID:25722680

  11. Parietal Lobe Volume Deficits in Adolescents with Schizophrenia and Adolescents with Cannabis Use Disorders

    ERIC Educational Resources Information Center

    Kumra, Sanjiv; Robinson, Paul; Tambyraja, Rabindra; Jensen, Daniel; Schimunek, Caroline; Houri, Alaa; Reis, Tiffany; Lim, Kelvin

    2012-01-01

    Objective: In early-onset schizophrenia (EOS), the earliest structural brain volumetric abnormalities appear in the parietal cortices. Early exposure to cannabis may represent an environmental risk factor for developing schizophrenia. This study characterized cerebral cortical gray matter structure in adolescents in regions of interest (ROIs) that…

  12. The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography.

    PubMed

    Astle, Duncan E; Luckhoo, Henry; Woolrich, Mark; Kuo, Bo-Cheng; Nobre, Anna C; Scerif, Gaia

    2015-10-01

    Our ability to hold information in mind is limited, requires a high degree of cognitive control, and is necessary for many subsequent cognitive processes. Children, in particular, are highly variable in how, trial-by-trial, they manage to recruit cognitive control in service of memory. Fronto-parietal networks, typically recruited under conditions where this cognitive control is needed, undergo protracted development. We explored, for the first time, whether dynamic changes in fronto-parietal activity could account for children's variability in tests of visual short-term memory (VSTM). We recorded oscillatory brain activity using magnetoencephalography (MEG) as 9- to 12-year-old children and adults performed a VSTM task. We combined temporal independent component analysis (ICA) with general linear modeling to test whether the strength of fronto-parietal activity correlated with VSTM performance on a trial-by-trial basis. In children, but not adults, slow frequency theta (4-7 Hz) activity within a right lateralized fronto-parietal network in anticipation of the memoranda predicted the accuracy with which those memory items were subsequently retrieved. These findings suggest that inconsistent use of anticipatory control mechanism contributes significantly to trial-to-trial variability in VSTM maintenance performance.

  13. The Role of the Parietal Lobe in Visual Extinction Studied with Transcranial Magnetic Stimulation

    ERIC Educational Resources Information Center

    Battelli, Lorella; Alvarez, George A.; Carlson, Thomas; Pascual-Leone, Alvaro

    2009-01-01

    Interhemispheric competition between homologous areas in the human brain is believed to be involved in a wide variety of human behaviors from motor activity to visual perception and particularly attention. For example, patients with lesions in the posterior parietal cortex are unable to selectively track objects in the contralesional side of…

  14. Role of Right Posterior Parietal Cortex in Maintaining Attention to Spatial Locations over Time

    ERIC Educational Resources Information Center

    Malhotra, Paresh; Coulthard, Elizabeth J.; Husain, Masud

    2009-01-01

    Recent models of human posterior parietal cortex (PPC) have variously emphasized its role in spatial perception, visuomotor control or directing attention. However, neuroimaging and lesion studies also suggest that the right PPC might play a special role in maintaining an alert state. Previously, assessments of right-hemisphere patients with…

  15. The Role of the Right Posterior Parietal Cortex in Temporal Order Judgment

    ERIC Educational Resources Information Center

    Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min

    2009-01-01

    Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the…

  16. Coordinate expression of parietal endodermal functions in hybrids of embryonal carcinoma and endodermal cells.

    PubMed Central

    Howe, W E; Oshima, R G

    1982-01-01

    A derivative, FOT5, of the F9 murine embryonal carcinoma cell line which is resistant to ouabain and thioguanine was fused with a near diploid parietal endodermal cell line, PFHR9, Hybrid clones (ENEC1 to ENEC5) were isolated in HAT Medium containing ouabain at a frequency of approximately 2 x 10(-4). The DNA contents and chromosome number of the ENEC hybrids were approximately the sum of those of the parents. Five hybrid cell lines examined in detail expressed the following parietal endodermal functions: plasminogen activator activity, basement membrane proteins, and endodermal cytoskeletal proteins. Embryonal carcinoma characteristic functions (tumorigenicity, a stage specific embryonic antigen, and high alkaline phosphatase activity) were extinguished in the hybrids. No hybrid clones with embryonal carcinoma morphology were observed among 1,358 hybrid clones examined. Hybrids, propagated for over 100 generations, continued to express endodermal functions and not embryonal carcinoma functions. The coordinate expression of endodermal functions and the extinction of embryonal carcinoma functions in the ENEC hybrids suggest that the parietal endodermal cells contain diffusible activities which extinguish embryonal carcinoma functions and possibly cause the embryonal carcinoma genome to express parietal endodermal characteristics. Images PMID:7202115

  17. Task-Dependent Changes in Frontal-Parietal Activation and Connectivity During Visual Search.

    PubMed

    Maximo, Jose O; Neupane, Ajaya; Saxena, Nitesh; Joseph, Robert M; Kana, Rajesh K

    2016-05-01

    Visual search is an important skill in navigating and locating objects (a target) among distractors in our environment. Efficient and faster target detection involves reciprocal interaction between a viewer's attentional resources as well as salient target characteristics. The neural correlates of visual search have been extensively investigated over the last decades, suggesting the involvement of a frontal-parietal network comprising the frontal eye fields (FEFs) and intraparietal sulcus (IPS). In addition, activity and connectivity of these network changes as the visual search become complex and more demanding. The current functional magnetic resonance imaging study examined the modulation of the frontal-parietal network in response to cognitive demand in 22 healthy adult participants. In addition to brain activity, changes in functional connectivity and effective connectivity in this network were examined in response to easy and difficult visual search. Results revealed significantly increased activation in FEF, IPS, and supplementary motor area, more so in difficult search than in easy search. Functional and effective connectivity analyses showed enhanced connectivity in the frontal-parietal network during difficult search and enhanced information transfer from left to right hemisphere during the difficult search process. Our overall findings suggest that cognitive demand significantly increases brain resources across all three measures of brain processing. In sum, we found that goal-directed visual search engages a network of frontal-parietal areas that are modulated in relation to cognitive demand.

  18. Contrasting Effects of Vocabulary Knowledge on Temporal and Parietal Brain Structure across Lifespan

    ERIC Educational Resources Information Center

    Richardson, Fiona M.; Thomas, Michael S. C.; Filippi, Roberto; Harth, Helen; Price, Cathy J.

    2010-01-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in…

  19. Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.

    PubMed

    Qi, Xue-Lian; Constantinidis, Christos

    2015-10-01

    The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate. PMID:26269556

  20. The precision of value-based choices depends causally on fronto-parietal phase coupling.

    PubMed

    Polanía, Rafael; Moisa, Marius; Opitz, Alexander; Grueschow, Marcus; Ruff, Christian C

    2015-01-01

    Which meal would you like today, chicken or pasta? For such value-based choices, organisms must flexibly integrate various types of sensory information about internal states and the environment to transform them into actions. Recent accounts suggest that these choice-relevant processes are mediated by information transfer between functionally specialized but spatially distributed brain regions in parietal and prefrontal cortex; however, it remains unclear whether such fronto-parietal communication is causally involved in guiding value-based choices. We find that transcranially inducing oscillatory desynchronization between the frontopolar and -parietal cortex leads to more inaccurate choices between food rewards while leaving closely matched perceptual decisions unaffected. Computational modelling shows that this exogenous manipulation leads to imprecise value assignments to the choice alternatives. Thus, our study demonstrates that accurate value-based decisions critically involve coherent rhythmic information transfer between fronto-parietal brain areas and establishes an experimental approach to non-invasively manipulate the precision of value-based choices in humans. PMID:26290482

  1. Human Topological Task Adapted for Rats: Spatial Information Processes of the Parietal Cortex

    PubMed Central

    Goodrich-Hunsaker, Naomi J.; Howard, Brian P.; Hunsaker, Michael R.; Kesner, Raymond P.

    2008-01-01

    Human research has shown that lesions of the parietal cortex disrupt spatial information processing, specifically topological information. Similar findings have been found in nonhumans. It has been difficult to determine homologies between human and non-human mnemonic mechanisms for spatial information processing because methodologies and neuropathology differ. The first objective of the present study was to adapt a previously established human task for rats. The second objective was to better characterize the role of parietal cortex (PC) and dorsal hippocampus (dHPC) for topological spatial information processing. Rats had to distinguish whether a ball inside a ring or a ball outside a ring was the correct, rewarded object. After rats reached criterion on the task (>95%) they were randomly assigned to a lesion group (control, PC, dHPC). Animals were then re-tested. Post-surgery data show that controls were 94% correct on average, dHPC rats were 89% correct on average, and PC rats were 56% correct on average. The results from the present study suggest that the parietal cortex, but not the dHPC processes topological spatial information. The present data are the first to support comparable topological spatial information processes of the parietal cortex in humans and rats. PMID:18571941

  2. Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex

    ERIC Educational Resources Information Center

    Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne

    2009-01-01

    Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…

  3. Lateralization of Egocentric and Allocentric Spatial Processing after Parietal Brain Lesions

    ERIC Educational Resources Information Center

    Iachini, Tina; Ruggiero, Gennaro; Conson, Massimiliano; Trojano, Luigi

    2009-01-01

    The purpose of this paper was to verify whether left and right parietal brain lesions may selectively impair egocentric and allocentric processing of spatial information in near/far spaces. Two Right-Brain-Damaged (RBD), 2 Left-Brain-Damaged (LBD) patients (not affected by neglect or language disturbances) and eight normal controls were submitted…

  4. Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex.

    PubMed

    Kuang, Shenbing; Morel, Pierre; Gail, Alexander

    2016-02-01

    Neurons in the posterior parietal cortex respond selectively for spatial parameters of planned goal-directed movements. Yet, it is still unclear which aspects of the movement the neurons encode: the spatial parameters of the upcoming physical movement (physical goal), or the upcoming visual limb movement (visual goal). To test this, we recorded neuronal activity from the parietal reach region while monkeys planned reaches under either normal or prism-reversed viewing conditions. We found predominant encoding of physical goals while fewer neurons were selective for visual goals during planning. In contrast, local field potentials recorded in the same brain region exhibited predominant visual goal encoding, similar to previous imaging data from humans. The visual goal encoding in individual neurons was neither related to immediate visual input nor to visual memory, but to the future visual movement. Our finding suggests that action planning in parietal cortex is not exclusively a precursor of impending physical movements, as reflected by the predominant physical goal encoding, but also contains spatial kinematic parameters of upcoming visual movement, as reflected by co-existing visual goal encoding in neuronal spiking. The co-existence of visual and physical goals adds a complementary perspective to the current understanding of parietal spatial computations in primates.

  5. Sex Differences in Parietal Lobe Morphology: Relationship to Mental Rotation Performance

    ERIC Educational Resources Information Center

    Koscik, Tim; O'Leary, Dan; Moser, David J.; Andreasen, Nancy C.; Nopoulos, Peg

    2009-01-01

    Structural magnetic resonance imaging (MRI) studies of the human brain have reported evidence for sexual dimorphism. In addition to sex differences in overall cerebral volume, differences in the proportion of gray matter (GM) to white matter (WM) volume have been observed, particularly in the parietal lobe. To our knowledge there have been no…

  6. Monitoring cerebral tissue oxygen saturation at frontal and parietal regions during carotid artery stenting.

    PubMed

    Meng, Lingzhong; Hall, Melanie; Settecase, Fabio; Higashida, Randall T; Gelb, Adrian W

    2016-04-01

    Cerebral oximetry is normally placed on the upper forehead to monitor the frontal lobe cerebral tissue oxygen saturation (SctO2). We present a case in which the SctO2 was simultaneously monitored at both frontal and parietal regions during internal carotid artery (ICA) stenting. Our case involves a 79-year-old man who presented after a sudden fall and was later diagnosed with a watershed ischemic stroke in the distal fields perfused by the left middle cerebral artery. He had diffuse atherosclerotic occlusive lesions in the carotid and cerebral arterial systems including an 85 % stenotic lesion in the left distal cervical ICA. The brain territory perfused by the left ICA was devoid of collateral flow from anterior and posterior communicating arteries due to an abnormal circle of Willis. During stenting, the SctO2 monitored at both frontal and parietal regions tracked the procedure-induced acute flow change. However, the baseline SctO2 values of frontal and parietal regions differed. The SctO2-MAP correlation was more consistent on the stroked hemisphere than the non-stroked hemisphere. This case showed that SctO2 can be reliably monitored at the parietal region, which is primarily perfused by the ICA. SctO2 of the stroked brain is more pressure dependent than the non-stroked brain.

  7. The Neural Dynamics of Fronto-Parietal Networks in Childhood Revealed using Magnetoencephalography.

    PubMed

    Astle, Duncan E; Luckhoo, Henry; Woolrich, Mark; Kuo, Bo-Cheng; Nobre, Anna C; Scerif, Gaia

    2015-10-01

    Our ability to hold information in mind is limited, requires a high degree of cognitive control, and is necessary for many subsequent cognitive processes. Children, in particular, are highly variable in how, trial-by-trial, they manage to recruit cognitive control in service of memory. Fronto-parietal networks, typically recruited under conditions where this cognitive control is needed, undergo protracted development. We explored, for the first time, whether dynamic changes in fronto-parietal activity could account for children's variability in tests of visual short-term memory (VSTM). We recorded oscillatory brain activity using magnetoencephalography (MEG) as 9- to 12-year-old children and adults performed a VSTM task. We combined temporal independent component analysis (ICA) with general linear modeling to test whether the strength of fronto-parietal activity correlated with VSTM performance on a trial-by-trial basis. In children, but not adults, slow frequency theta (4-7 Hz) activity within a right lateralized fronto-parietal network in anticipation of the memoranda predicted the accuracy with which those memory items were subsequently retrieved. These findings suggest that inconsistent use of anticipatory control mechanism contributes significantly to trial-to-trial variability in VSTM maintenance performance. PMID:25410426

  8. [Mother and son with enlarged parietal foramina, persistent fetal vein, and ALX4 mutation].

    PubMed

    Morita, Motoaki; Nanba, Eiji; Adachi, Kaori; Ohno, Kousaku

    2016-05-01

    Enlarged parietal foramina (EPF) are rare congenital skull defects. These round or oval defects are situated on each parietal bone approximately 1 cm from the midline. Most patients with EPF have a positive family history. The condition is inherited as an autosomal dominant trait with relatively high, but not full, penetrance. Mutation in either MSX2 or ALX4 genes is associated with enlarged parietal foramina. Case 1 is a boy who was noticed to have a large anterior fontanelle, large posterior fontanelle, and widely opened sagittal suture at 2 months. During development, the anterior fontanelle and sagittal suture closed at 3 years and the posterior fontanelle subsequently divided into two foramina with ossification of the midline bridge by 4 years. The foramina were about 2.5 x 2.5 cm in diameter at 8 years. Case 2 is the 34-year-old mother of Case 1. She showed similar bone defects in her cranium, again about 2.5 x 2.5 cm in diameter. Neither patient showed any neurological symptoms. Genetic analysis revealed a mutation in the ALX4 gene in both patients, and magnetic resonance imaging showed a persistent falcine sinus and a hypoplastic straight sinus. Further evaluation revealed that the mother of Case 2 also had a mutation in the ALX4 gene, but no enlarged parietal foramina. Although high penetrance of this condition has been reported, this family suggests incomplete penetrance of this disorder. PMID:27349084

  9. The role of parietal cortex in the formation of color and motion based concepts

    PubMed Central

    Cheadle, Samuel W.; Zeki, Semir

    2014-01-01

    Imaging evidence shows that separate subdivisions of parietal cortex, in and around the intraparietal sulcus (IPS), are engaged when stimuli are grouped according to color and to motion (Zeki and Stutters, 2013). Since grouping is an essential step in the formation of concepts, we wanted to learn whether parietal cortex is also engaged in the formation of concepts according to these two attributes. Using functional magnetic resonance imaging (fMRI), and choosing the recognition of concept-based color or motion stimuli as our paradigm, we found that there was strong concept-related activity in and around the IPS, a region whose homolog in the macaque monkey is known to receive direct but segregated anatomical inputs from V4 and V5. Parietal activity related to color concepts was juxtaposed but did not overlap with activity related to motion concepts, thus emphasizing the continuation of the segregation of color and motion into the conceptual system. Concurrent retinotopic mapping experiments showed that within the parietal cortex, concept-related activity increases within later stage IPS areas. PMID:25120447

  10. Temporo-Parietal Junction Activity in Theory-of-Mind Tasks: Falseness, Beliefs, or Attention

    ERIC Educational Resources Information Center

    Aichhorn, Markus; Perner, Josef; Weiss, Benjamin; Kronbichler, Martin; Staffen, Wolfgang; Ladurner, Gunther

    2009-01-01

    By combining the false belief (FB) and photo (PH) vignettes to identify theory-of-mind areas with the false sign (FS) vignettes, we re-establish the functional asymmetry between the left and right temporo-parietal junction (TPJ). The right TPJ (TPJ-R) is specially sensitive to processing belief information, whereas the left TPJ (TPJ-L) is equally…

  11. Molecular insights into evolution of the vertebrate gut: focus on stomach and parietal cells in the marsupial, Macropus eugenii.

    PubMed

    Kwek, Joly; De Iongh, Robbert; Nicholas, Kevin; Familari, Mary

    2009-09-15

    Gastrulation in vertebrate embryos results in the formation of the primary germ layers: ectoderm, mesoderm and endoderm, which contain the progenitors of the tissues of the entire fetal body. Extensive studies undertaken in Xenopus, zebrafish and mouse have revealed a high degree of conservation in the genes and cellular mechanisms regulating endoderm formation. Nodal, Mix and Sox gene factor families have been implicated in the specification of the endoderm across taxa. Considerably less is known about endoderm development in marsupials. In this study we review what is known about the molecular aspects of endoderm development, focusing on evolution and development of the stomach and parietal cells and highlight recent studies on parietal cells in the stomach of Tammar Wallaby, Macropus eugenii. Although the regulation of parietal cells has been extensively studied, very little is known about the regulation of parietal cell differentiation. Intriguingly, during late-stage forestomach maturation in M. eugenii, there is a sudden and rapid loss of parietal cells, compared with the sharp increase in parietal cell numbers in the hindstomach region. This has provided a unique opportunity to study the development and regulation of parietal cell differentiation. A PCR-based subtractive hybridization strategy was used to identify candidate genes involved in this phenomenon. This will allow us to dissect the molecular mechanisms that underpin regulation of parietal cell development and differentiation, which have been a difficult process to study and provide markers that can be used to study the evolutionary origin of these cells in vertebrates.

  12. Fronto-Parietal Connectivity Is a Non-Static Phenomenon with Characteristic Changes during Unconsciousness

    PubMed Central

    Kochs, Eberhard F.; Ilg, Rüdiger; Schneider, Gerhard

    2014-01-01

    Background It has been previously shown that loss of consciousness is associated with a breakdown of dominating fronto-parietal feedback connectivity as assessed by electroencephalogram (EEG) recordings. Structure and strength of network connectivity may change over time. Aim of the current study is to investigate cortico-cortical connectivity at different time intervals during consciousness and unconsciousness. For this purpose, EEG symbolic transfer entropy (STEn) was calculated to indicate cortico-cortical information transfer at different transfer times. Methods The study was performed in 15 male volunteers. 29-channel EEG was recorded during consciousness and propofol-induced unconsciousness. EEG data were analyzed by STEn, which quantifies intensity and directionality of the mutual information flow between two EEG channels. STEn was computed over fronto-parietal channel pair combinations (10 s length, 0.5–45 Hz total bandwidth) to analyze changes of intercortical directional connectivity. Feedback (fronto → parietal) and feedforward (parieto → frontal) connectivity was calculated for transfer times from 25 ms to 250 ms in 5 ms steps. Transfer times leading to maximum directed interaction were identified to detect changes of cortical information transfer (directional connectivity) induced by unconsciousness (p<0.05). Results The current analyses show that fronto-parietal connectivity is a non-static phenomenon. Maximum detected interaction occurs at decreased transfer times during propofol-induced unconsciousness (feedback interaction: 60 ms to 40 ms, p = 0.002; feedforward interaction: 65 ms to 45 ms, p = 0.001). Strength of maximum feedback interaction decreases during unconsciousness (p = 0.026), while no effect of propofol was observed on feedforward interaction. During both consciousness and unconsciousness, intensity of fronto-parietal interaction fluctuates with increasing transfer times. Conclusion Non-stationarity of directional

  13. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    PubMed

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  14. Traumatic longitudinal splitting of the inferior rectus muscle

    PubMed Central

    Laursen, Jessica; Demer, Joseph L.

    2011-01-01

    Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus following orbital reconstruction after a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging (MRI) revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958

  15. Corticofugal regulation of auditory sensitivity in the bat inferior colliculus.

    PubMed

    Jen, P H; Chen, Q C; Sun, X D

    1998-12-01

    Under free-field stimulation conditions, corticofugal regulation of auditory sensitivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus, was studied by blocking activities of auditory cortical neurons with Lidocaine or by electrical stimulation in auditory cortical neuron recording sites. The corticocollicular pathway regulated the number of impulses, the auditory spatial response areas and the frequency-tuning curves of inferior colliculus neurons through facilitation or inhibition. Corticofugal regulation was most effective at low sound intensity and was dependent upon the time interval between acoustic and electrical stimuli. At optimal inter-stimulus intervals, inferior colliculus neurons had the smallest number of impulses and the longest response latency during corticofugal inhibition. The opposite effects were observed during corticofugal facilitation. Corticofugal inhibitory latency was longer than corticofugal facilitatory latency. Iontophoretic application of gamma-aminobutyric acid and bicuculline to inferior colliculus recording sites produced effects similar to what were observed during corticofugal inhibition and facilitation. We suggest that corticofugal regulation of central auditory sensitivity can provide an animal with a mechanism to regulate acoustic signal processing in the ascending auditory pathway.

  16. A periodic network of neurochemical modules in the inferior colliculus.

    PubMed

    Chernock, Michelle L; Larue, David T; Winer, Jeffery A

    2004-02-01

    A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections. PMID:14759566

  17. Inferior Colliculus Lesions Impair Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Freeman, John H.; Halverson, Hunter E.; Hubbard, Erin M.

    2007-01-01

    The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the…

  18. Traumatic longitudinal splitting of the inferior rectus muscle.

    PubMed

    Laursen, Jessica; Demer, Joseph L

    2011-04-01

    Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus after orbital reconstruction following a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers.

  19. Asymptomatic Lumbar Vertebral Erosion from Inferior Vena Cava Filter Perforation

    SciTech Connect

    Fang, Wayne Hieb, Robert A.; Olson, Eric; Carrera, Guillermo F.

    2007-06-15

    In 2002, a 24-year-old female trauma patient underwent prophylactic inferior vena cava filter placement. Recurrent bouts of renal stones prompted serial CT imaging in 2004. In this brief report, we describe erosion and ossification of the L3 vertebral body by a Greenfield filter strut.

  20. Traumatic longitudinal splitting of the inferior rectus muscle.

    PubMed

    Laursen, Jessica; Demer, Joseph L

    2011-04-01

    Orbital floor fractures and associated injuries can cause strabismus. We present the case of a 34-year-old man with incomitant strabismus after orbital reconstruction following a high-impact baseball injury. Multipositional, high-resolution magnetic resonance imaging revealed extensive longitudinal splitting of the inferior rectus muscle by an orbital floor implant that separated its orbital and global layers. PMID:21463958

  1. Surgical outcomes of superior versus inferior glaucoma drainage device implantation

    PubMed Central

    Martino, Amy Z.; Iverson, Shawn; Feuer, William J.; Greenfield, David S.

    2013-01-01

    Purpose To compare the safety and intraocular pressure (IOP) lowering efficacy of initial glaucoma drainage device (GDD) implantation performed at the superior versus inferior limbus. Methods A retrospective chart review was conducted to identify glaucoma patients that had undergone initial Baerveldt GDD surgery at the inferior limbus for uncontrolled IOP. All eyes had a minimum of 6 months of postoperative follow-up. These eyes were frequency matched to eyes with initial Baerveldt GDD implantation performed at the superior limbus to within 5 years of age and 6 months of follow-up. Baseline demographic and clinical information, as well as preoperative and postoperative IOP, visual acuity, and number of anti-glaucoma medications were extracted. Failure was defined as IOP > 21 mmHg or not reduced by 20% below baseline on two consecutive follow-up visits after 3 months, IOP ≤ 5 mmHg on two consecutive follow-up visits after 3 months, reoperation for glaucoma, or loss of light perception vision. Statistical methods consisted of Student's t-tests, chi-squared test, and Kaplan-Meier time to failure analysis. Results Fifty eyes (17 inferior, 33 superior) of 43 patients were enrolled. Mean postoperative follow-up in both groups were similar (mean 26.2 ± 15.2 for inferior and 23.9 ± 10.43 months for superior, p=0.54). Prior trabeculectomy had been performed in 8/17 (47%) and 11/33 (33%) eyes (p=0.34) with inferior and superior implants, respectively. Mean preoperative IOP (mmHg) in the superior group (26 ± 11) was significantly higher (p=0.02) than in the inferior group (21 ± 7). Success rates were similar (p>0.05) between the inferior and superior GDD groups during the study period, with 64.7% and 75.8% classified as successful at 1-year of follow-up and 43.1% and 65.7% at 2-years of follow-up, respectively. There was no difference in cumulative proportions of eyes failing between the groups (p=0.20, log-rank test). Mean postoperative IOP and number of anti

  2. Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection

    PubMed Central

    Hau, Janice; Sarubbo, Silvio; Perchey, Guy; Crivello, Fabrice; Zago, Laure; Mellet, Emmanuel; Jobard, Gaël; Joliot, Marc; Mazoyer, Bernard M.; Tzourio-Mazoyer, Nathalie; Petit, Laurent

    2016-01-01

    We combined the neuroanatomists’ approach of defining a fascicle as all fibers passing through its compact stem with diffusion-weighted tractography to investigate the cortical terminations of two association tracts, the inferior fronto-occipital fasciculus (IFOF) and the uncinate fasciculus (UF), which have recently been implicated in the ventral language circuitry. The aim was to provide a detailed and quantitative description of their terminations in 60 healthy subjects and to do so to apply an anatomical stem-based virtual dissection, mimicking classical post-mortem dissection, to extract with minimal a priori the IFOF and UF from tractography datasets. In both tracts, we consistently observed more extensive termination territories than their conventional definitions, within the middle and superior frontal, superior parietal and angular gyri for the IFOF and the middle frontal gyrus and superior, middle and inferior temporal gyri beyond the temporal pole for the UF. We revealed new insights regarding the internal organization of these tracts by investigating for the first time the frequency, distribution and hemispheric asymmetry of their terminations. Interestingly, we observed a dissociation between the lateral right-lateralized and medial left-lateralized fronto-occipital branches of the IFOF. In the UF, we observed a rightward lateralization of the orbito-frontal and temporal branches. We revealed a more detailed map of the terminations of these fiber pathways that will enable greater specificity for correlating with diseased populations and other behavioral measures. The limitations of the diffusion tensor model in this study are also discussed. We conclude that anatomical stem-based virtual dissection with diffusion tractography is a fruitful method for studying the structural anatomy of the human white matter pathways. PMID:27252628

  3. Magnetization Transfer Imaging of Suicidal Patients with Major Depressive Disorder

    PubMed Central

    Chen, Ziqi; Zhang, Huawei; Jia, Zhiyun; Zhong, Jingjie; Huang, Xiaoqi; Du, Mingying; Chen, Lizhou; Kuang, Weihong; Sweeney, John A.; Gong, Qiyong

    2015-01-01

    Magnetization transfer imaging (MTI) provides a quantitative measure of the macromolecular structural integrity of brain tissue, as represented by magnetization transfer ratio (MTR). In this study, we utilized MTI to identify biophysical alterations in MDD patients with a history of suicide attempts relative to MDD patients without such history. The participants were 36 medication-free MDD patients, with (N = 17) and without (N = 19) a history of a suicide attempt, and 28 healthy controls matched for age and gender. Whole brain voxel-based analysis was used to compare MTR across three groups and to analyze correlations with symptom severity and illness duration. We identified decreased MTR in left inferior parietal lobule and right superior parietal lobule in suicide attempters relative to both non-attempters and controls. Non-attempters also showed significantly reduced MTR in left inferior parietal lobule relative to controls, as well as an MTR reduction in left cerebellum. These abnormalities were not correlated with symptom severity or illness duration. Depressed patients with a history of suicide attempt showed bilateral abnormalities in parietal cortex compared to nonsuicidal depressed patients and healthy controls. Parietal lobe abnormalities might cause attentional dysfunction and impaired decision making to increase risk for suicidal behavior in MDD. PMID:25853872

  4. White and Gray Matter Volume Changes and Correlation with Visual Evoked Potential in Patients with Optic Neuritis: A Voxel-Based Morphometry Study

    PubMed Central

    Huang, Xin; Zhang, Qiang; Hu, Pei-Hong; Zhong, Yu-Lin; Zhang, Ying; Wei, Rong; Xu, Ting-Ting; Shao, Yi

    2016-01-01

    Background The aim of this study was to investigate potential morphological alterations of gray and white matter in patients with optic neuritis (ON) and their relationship with behavioral performance, using voxel-based morphometry (VBM). Material/Methods Twelve (4 males, 8 females) patients with ON and 12 (4 males, 8 females) age-, sex-, and education-matched healthy controls (HCs) underwent magnetic resonance imaging (MRI). Imaging data were analyzed using two-sample t tests to identify group differences in gray and white matter volume (GMV, WMV). Correlation analysis was used to explore relationships between observed GMV and WMV of different areas and visual evoked potential (VEP) in ON. Results Compared with HCs, ON patients had: significantly decreased GMV in the left postcentral gyrus, left inferior frontal gyrus, left anterior cingulate, left and right middle frontal gyrus, and right inferior parietal lobule; decreased WMV in the left middle frontal gyrus, right superior frontal gyrus, left precentral gyrus and right inferior parietal lobule; and increased WMV in the left fusiform gyrus and left inferior parietal lobule. VEP latency of the right eye in ON correlated positively with WMV signal value of the left fusiform gyrus (r=0.726, p=0.008), and negatively with GMV signal value of the right inferior parietal lobule (r=−0.611, p=0.035). Duration of ON correlated negatively with WMV signal value of the right superior frontal gyrus (r=−0.662, p=0.019), while best-corrected visual acuity (VA) of the right eye correlated negatively with WMV signal value of the left middle frontal gyrus (r=−0.704, p=0.011). Conclusions These results suggest significant brain involvement in ON, which may reflect the underlying pathologic mechanism. Correlational results demonstrate that VEP in ON is closely associated with WMV and GMV atrophy in many brain regions. PMID:27045330

  5. Temporo-parietal and fronto-parietal lobe contributions to theory of mind and executive control: an fMRI study of verbal jokes

    PubMed Central

    Chan, Yu-Chen; Lavallee, Joseph P.

    2015-01-01

    ‘Getting a joke’ always requires resolving an apparent incongruity, but the particular cognitive operations called upon vary depending on the nature of the joke itself. Previous research has identified the primary neural correlates of the cognitive and affective processes called upon to respond to humor generally, but little work has been done on the substrates underlying the distinct cognitive operations required to comprehend particular joke types. This study explored the neural correlates of the cognitive processes required to successfully comprehend three joke types: bridging-inference jokes (BJs), exaggeration jokes (EJs), and ambiguity jokes (AJs). For all joke types, the left dlPFC appeared to support common cognitive mechanisms, such as script-shifting, while the vACC was associated with affective appreciation. The temporo-parietal lobe (TPJ and MTG) was associated with BJs, suggesting involvement of these regions with ‘theory of mind’ processing. The fronto-parietal lobe (IPL and IFG) was associated with both EJs and AJs, suggesting that it supports executive control processes such as retrieval from episodic memory, self-awareness, and language-based decoding. The social-affective appreciation of verbal jokes was associated with activity in the orbitofrontal cortex, amygdala, and parahippocampal gyrus. These results allow a more precise account of the neural processes required to support the particular cognitive operations required for the understanding of different types of humor. PMID:26388803

  6. A Study of Temporal Aspect of Posterior Parietal Cortex in Visual Search Using Transcranial Magnetic Stimulation

    NASA Astrophysics Data System (ADS)

    Ge, Sheng; Matsuoka, Akira; Ueno, Shoogo; Iramina, Keiji

    It is known that the posterior parietal cortex (PPC) plays a dominant role in spatial processing during visual search. However, the temporal aspect of the PPC is unclear. In the present study, to investigate the temporal aspects of the PPC in feature search, we applied Transcranial Magnetic Stimulation (TMS) over the right PPC with the TMS stimulus onset asynchronies (SOAs) set at 100, 150, 200 and 250 ms after visual search stimulation. We found that when SOA was set at 150 ms, compared to the sham TMS condition, there was a significant elevation in response time when TMS pulses were applied. However, there was no significant difference between the TMS and sham TMS conditions for the other SOA settings. Therefore, we suggest that the spatial processing of feature search is probably processed in the posterior parietal cortex at about 150-170 ms after visual search stimuli presentation.

  7. Pseudodystonic hand posturing contralateral to a metastasis of the parietal association cortex.

    PubMed

    Coria, F; Blanco Martín, A I; Rivas Vilas, M D

    2000-10-01

    A 56 year-old patient, with a history of surgically removed breast cancer three years earlier, presented with incoordination of hand movements while playing piano. Neurological examination disclosed mild position sensory loss and limb-kinetic apraxia of the distal part of the right upper extremity. The most conspicuous neurological sign was a dystonic posturing of the right hand, which was only elicited when the patient outstretched her arms with the eyes closed. MRI revealed a metastatic lesion involving the left parietal cortex. The association of focal dystonic postures with lesions of the parietal association cortex indicates that dystonia may feature damage of brain cortical areas far from the basal ganglia. In addition, this provides support to the hypothesis that impairment of sensory pathways may play a role in the origin of some hyperkinetic movement disorders, such as dystonia and athetosis.

  8. Decoding the view expectation during learned maze navigation from human fronto-parietal network

    PubMed Central

    Shikauchi, Yumi; Ishii, Shin

    2015-01-01

    Humans use external cues and prior knowledge about the environment to monitor their positions during spatial navigation. View expectation is essential for correlating scene views with a cognitive map. To determine how the brain performs view expectation during spatial navigation, we applied a multiple parallel decoding technique to functional magnetic resonance imaging (fMRI) when human participants performed scene choice tasks in learned maze navigation environments. We decoded participants’ view expectation from fMRI signals in parietal and medial prefrontal cortices, whereas activity patterns in occipital cortex represented various types of external cues. The decoder’s output reflected participants’ expectations even when they were wrong, corresponding to subjective beliefs opposed to objective reality. Thus, view expectation is subjectively represented in human brain, and the fronto-parietal network is involved in integrating external cues and prior knowledge during spatial navigation. PMID:26631641

  9. Parietal dysfunction during number processing in children with fetal alcohol spectrum disorders

    PubMed Central

    Woods, K.J.; Meintjes, E.M.; Molteno, C.D.; Jacobson, S.W.; Jacobson, J.L.

    2015-01-01

    Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD), effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task. PMID:26199871

  10. Making sense of another mind: the role of the right temporo-parietal junction.

    PubMed

    Saxe, Rebecca; Wexler, Anna

    2005-01-01

    Human adults conceive of one another as beings with minds, and attribute to one another mental states like perceptions, desires and beliefs. That is, we understand other people using a 'Theory of Mind'. The current study investigated the contributions of four brain regions to Theory of Mind reasoning. The right temporo-parietal junction (RTPJ) was recruited selectively for the attribution of mental states, and not for other socially relevant facts about a person, and the response of the RTPJ was modulated by the congruence or incongruence of multiple relevant facts about the target's mind. None of the other three brain regions commonly implicated in Theory of Mind reasoning--the left temporo-parietal junction (LTPJ), posterior cingulate (PC) and medial prefrontal cortex (MPFC)--showed an equally selective profile of response. The implications of these results for an alternative theory of reasoning about other minds--Simulation Theory--are discussed. PMID:15936784

  11. Parietal dysfunction during number processing in children with fetal alcohol spectrum disorders.

    PubMed

    Woods, K J; Meintjes, E M; Molteno, C D; Jacobson, S W; Jacobson, J L

    2015-01-01

    Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD), effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task.

  12. Differential diagnosis of bilateral parietal abnormalities in I-123 IMP SPECT imaging

    SciTech Connect

    Kuwabara, Y.; Ichiya, Y.; Otsuka, M.; Tahara, T.; Fukumura, T.; Gunasekera, R.; Masuda, K. )

    1990-12-01

    This report discusses the clinical significance of bilateral parietal abnormalities on I-123 IMP SPECT imaging in 158 patients with cerebral disorders. This pattern was seen in 15 out of 21 patients with Alzheimer's disease; it was also seen in 4 out of 5 patients with Parkinson's disease with dementia, in 3 out of 17 patients with vascular dementia, in 1 out of 36 patients with cerebral infarction without dementia, in 1 out of 2 patients with hypoglycemia, and in 1 out of 2 patients with CO intoxication. Detection of bilateral parietal abnormalities is a useful finding in the diagnosis of Alzheimer's disease, but one should keep in mind that other cerebral disorders may also show a similar pattern with I-123 IMP SPECT imaging.

  13. Parietal dysfunction during number processing in children with fetal alcohol spectrum disorders.

    PubMed

    Woods, K J; Meintjes, E M; Molteno, C D; Jacobson, S W; Jacobson, J L

    2015-01-01

    Number processing deficits are frequently seen in children prenatally exposed to alcohol. Although the parietal lobe, which is known to mediate several key aspects of number processing, has been shown to be structurally impaired in fetal alcohol spectrum disorders (FASD), effects on functional activity in this region during number processing have not previously been investigated. This fMRI study of 49 children examined differences in activation associated with prenatal alcohol exposure in five key parietal regions involved in number processing, using tasks involving simple addition and magnitude comparison. Despite generally similar behavioral performance, in both tasks greater prenatal alcohol exposure was related to less activation in an anterior section of the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the angular gyrus during the magnitude comparison task. PMID:26199871

  14. Optic ataxia: from Balint’s syndrome to the parietal reach region

    PubMed Central

    Andersen, Richard A.; Andersen, Kristen N.; Hwang, EunJung; Hauschild, Markus

    2014-01-01

    Optic ataxia is a high order deficit in reaching to visual goals that occurs with posterior parietal cortex (PPC) lesions. It is a component of Balint’s syndrome that also includes attentional and gaze disorders. Aspects of optic ataxia are misreaching in the contralesional visual field, difficulty preshaping the hand for grasping, and an inability to correct reaches online. Recent research in non-human primates (NHPs) suggests that many aspects of Balint’s syndrome and optic ataxia are a result of damage to specific functional modules for reaching, saccades, grasp, attention, and state estimation. The deficits from large lesions in humans are likely composite effects from damage to combinations of these functional modules. Interactions between these modules, either within posterior parietal cortex or downstream within frontal cortex, may account for more complex behaviors such as hand-eye coordination and reach-to-grasp. PMID:24607223

  15. Negligible fronto-parietal BOLD activity accompanying unreportable switches in bistable perception

    PubMed Central

    Brascamp, Jan; Blake, Randolph; Knapen, Tomas

    2015-01-01

    The human brain's executive systems play a vital role in deciding and selecting among actions. Selection among alternatives also occurs in the perceptual domain, for instance when perception switches between interpretations during perceptual bistability. Whether executive systems also underlie this functionality remains debated, with known fronto-parietal concomitants of perceptual switches being variously interpreted as reflecting the switches' cause, or as reflecting their consequences. We developed a paradigm where the two eyes receive different inputs and perception demonstrably switches between these inputs, yet where switches themselves are so inconspicuous as to become unreportable, minimizing their executive consequences. Fronto-parietal fMRI BOLD responses that accompany perceptual switches were similarly minimized in this paradigm, indicating that these reflect the switches' consequences rather than their cause. We conclude that perceptual switches do not always rely on executive brain areas, and that processes responsible for selection among alternatives may operate outside of the brain's executive systems. PMID:26436901

  16. Sensory monitoring of prehension in the parietal lobe: a study using digital video.

    PubMed

    Gardner, Esther P; Debowy, Daniel J; Ro, Jin Y; Ghosh, Soumya; Babu, K Srinivasa

    2002-09-20

    Digital video provides technological tools for monitoring hand kinematics during prehension, and for correlating motor behavior with the simultaneously recorded firing patterns of neurons in parietal cortex of monkeys. The constancy of the hand action in the task allowed us to derive population responses of neurons in both S-I and posterior parietal cortex (PPC) from serial single unit recordings. Activity of PPC neurons preceded that in S-I, and was often shape-selective for particular objects, suggesting that they play an important role in motor planning of prehension. Detailed sensory monitoring of hand-object interactions occurred in S-I, where distinct groups of neurons responded to specific behaviors such as grasping, lifting, holding or releasing objects.

  17. Alice in Wonderland Syndrome associated with a temporo-parietal cavernoma.

    PubMed

    Philip, Michelle; Kornitzer, Jeffery; Marks, David; Lee, Huey-Jen; Souayah, Nizar

    2015-12-01

    Alice in Wonderland Syndrome (AIWS) is characterized by a rare constellation of perceptual disturbances including distorted body image, metamorphopsia, and visual hallucinations. In this report, we relate a unique case of AIWS in a woman with a right temporo-parietal cavernoma. AIWS in this patient may be secondary to epileptiform activity associated with the cavernoma and improved with anti-epileptic treatment. PMID:25663031

  18. Phospho-regulated ACAP4-Ezrin interaction is essential for histamine-stimulated parietal cell secretion.

    PubMed

    Ding, Xia; Deng, Hui; Wang, Dongmei; Zhou, Jiajia; Huang, Yuejia; Zhao, Xuannv; Yu, Xue; Wang, Ming; Wang, Fengsong; Ward, Tarsha; Aikhionbare, Felix; Yao, Xuebiao

    2010-06-11

    The ezrin-radixin-moesin proteins provide a regulated linkage between membrane proteins and the cortical cytoskeleton and also participate in signal transduction pathways. Ezrin is localized to the apical membrane of parietal cells and couples the protein kinase A activation cascade to the regulated HCl secretion. Our recent proteomic study revealed a protein complex of ezrin-ACAP4-ARF6 essential for volatile membrane remodeling (Fang, Z., Miao, Y., Ding, X., Deng, H., Liu, S., Wang, F., Zhou, R., Watson, C., Fu, C., Hu, Q., Lillard, J. W., Jr., Powell, M., Chen, Y., Forte, J. G., and Yao, X. (2006) Mol. Cell Proteomics 5, 1437-1449). However, knowledge of whether ACAP4 physically interacts with ezrin and how their interaction is integrated into membrane-cytoskeletal remodeling has remained elusive. Here we provide the first evidence that ezrin interacts with ACAP4 in a protein kinase A-mediated phosphorylation-dependent manner through the N-terminal 400 amino acids of ACAP4. ACAP4 locates in the cytoplasmic membrane in resting parietal cells but translocates to the apical plasma membrane upon histamine stimulation. ACAP4 was precipitated with ezrin from secreting but not resting parietal cell lysates, suggesting a phospho-regulated interaction. Indeed, this interaction is abolished by phosphatase treatment and validated by an in vitro reconstitution assay using phospho-mimicking ezrin(S66D). Importantly, ezrin specifies the apical distribution of ACAP4 in secreting parietal cells because either suppression of ezrin or overexpression of non-phosphorylatable ezrin prevents the apical localization of ACAP4. In addition, overexpressing GTPase-activating protein-deficient ACAP4 results in an inhibition of apical membrane-cytoskeletal remodeling and gastric acid secretion. Taken together, these results define a novel molecular mechanism linking ACAP4-ezrin interaction to polarized epithelial secretion.

  19. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    PubMed

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  20. Decision and action planning signals in human posterior parietal cortex during delayed perceptual choices.

    PubMed

    Tosoni, Annalisa; Corbetta, Maurizio; Calluso, Cinzia; Committeri, Giorgia; Pezzulo, Giovanni; Romani, G L; Galati, Gaspare

    2014-04-01

    During simple perceptual decisions, sensorimotor neurons in monkey fronto-parietal cortex represent a decision variable that guides the transformation of sensory evidence into a motor response, supporting the view that mechanisms for decision-making are closely embedded within sensorimotor structures. Within these structures, however, decision signals can be dissociated from motor signals, thus indicating that sensorimotor neurons can play multiple and independent roles in decision-making and action selection/planning. Here we used functional magnetic resonance imaging to examine whether response-selective human brain areas encode signals for decision-making or action planning during a task requiring an arbitrary association between face pictures (male vs. female) and specific actions (saccadic eye vs. hand pointing movements). The stimuli were gradually unmasked to stretch the time necessary for decision, thus maximising the temporal separation between decision and action planning. Decision-related signals were measured in parietal and motor/premotor regions showing a preference for the planning/execution of saccadic or pointing movements. In a parietal reach region, decision-related signals were specific for the stimulus category associated with its preferred pointing response. By contrast, a saccade-selective posterior intraparietal sulcus region carried decision-related signals even when the task required a pointing response. Consistent signals were observed in the motor/premotor cortex. Whole-brain analyses indicated that, in our task, the most reliable decision signals were found in the same neural regions involved in response selection. However, decision- and action-related signals within these regions can be dissociated. Differences between the parietal reach region and posterior intraparietal sulcus plausibly depend on their functional specificity rather than on the task structure.

  1. Distinguishing Intentions from Desires: Contributions of the Frontal and Parietal Lobes

    ERIC Educational Resources Information Center

    Chiavarino, Claudia; Apperly, Ian A.; Humphreys, Glyn W.

    2010-01-01

    The ability to represent desires and intentions as two distinct mental states was investigated in patients with parietal (N = 8) and frontal (N = 6) lesions and in age-matched controls (N = 7). A task was used where the satisfaction of the desire and the fulfilment of the intention did not co-vary and were manipulated in a 2 x 2 set. In two…

  2. Representation of remembered stimuli and task information in the monkey dorsolateral prefrontal and posterior parietal cortex.

    PubMed

    Qi, Xue-Lian; Elworthy, Anthony C; Lambert, Bryce C; Constantinidis, Christos

    2015-01-01

    Both dorsolateral prefrontal and posterior parietal cortex have been implicated in spatial working memory and representation of task information. Prior experiments training animals to recall the first of a sequence of stimuli and examining the effect of subsequent distractors have identified increased ability of the prefrontal cortex to represent remembered stimuli and filter distractors. It is unclear, however, if this prefrontal functional specialization extends to stimuli appearing earlier in a sequence, when subjects are cued to remember subsequent ones. It is also not known how task information interacts with persistent activity representing remembered stimuli and distractors in the two areas. To address these questions, we trained monkeys to remember either the first or second of two stimuli presented in sequence and recorded neuronal activity from the posterior parietal and dorsolateral prefrontal cortex. The prefrontal cortex was better able to represent the actively remembered stimulus, whereas the posterior parietal cortex was more modulated by distractors; however, task effects interfered with this representation. As a result, large proportions of neurons with persistent activity and task effects exhibited a preference for a stimulus when it appeared as a distractor in both areas. Additionally, prefrontal neurons were modulated to a greater extent by task factors during the delay period of the task. The results indicate that the prefrontal cortex is better able than the posterior parietal cortex to differentiate between distractors and actively remembered stimuli and is more modulated by the task; however, this relative preference is highly context dependent and depends on the specific requirements of the task. PMID:25298389

  3. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    PubMed

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  4. Potential mediation of prostaglandin E2 release from isolated human parietal cells by protein kinase C.

    PubMed

    Schepp, W; Schneider, J; Tatge, C; Schusdziarra, V; Classen, M

    1990-01-01

    Parietal cells are a major source of gastric mucosal prostaglandins in various species. We examined cholinergic stimulation of prostaglandin E2 (PGE2) release from human parietal cells; using activators of the protein kinase C we attempted to get an indirect insight into cellular mechanisms which control PGE2 release. Gastric mucosal specimens were obtained at surgery and the cells were dispersed by collagenase and pronase E. Parietal cells were enriched to 65-80% by a Percoll gradient, and were incubated for 30 min. PGE2 release into the medium (radioimmunoassay) was 74-126 pg/10(6) cells/30 min under basal conditions and was 2.6-fold increased by carbachol (10(-5) and 10(-4) M). Similarly, PGE2 release was stimulated by phospholipase C (20-200 mU/ml, 364% above basal), 1-oleoyl-2-acetyl-sn-glycerol (10(-9)-10(-5) M, 229%), 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-9)-10(-5) M, 283%) and calcium ionophore A23187 (10(-7)-10(-5) M, 219%). Simultaneous presence of A23187 and TPA synergistically induced stimulation which was slightly higher than the sum of the individual responses. N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide W-7, a putative calmodulin antagonist, inhibited TPA-induced PGE2 release at concentrations regarded specific for blocking calmodulin (IC50 = 1.5 X 0(-6) M). We conclude that in human parietal cells PGE2 is released upon cholinergic stimulation and that phospholipase C and protein kinase C are involved in the control of PGE2 release. We speculate that calmodulin might interact with a protein phosphorylated by protein kinase C to cause PGE2 release.

  5. Thematic role assignment in the posterior parietal cortex: A TMS study.

    PubMed

    Finocchiaro, Chiara; Capasso, Rita; Cattaneo, Luigi; Zuanazzi, Arianna; Miceli, Gabriele

    2015-10-01

    Verbs denote relations between entities acting a role in an event. Thematic roles are essential to the correct use of verbs and involve both semantic and syntactic aspects. We used repetitive Transcranial Magnetic Stimulation (rTMS) to study the involvement of three different left parietal sites in the understanding of thematic roles. In a sentence-to-picture matching task, twelve participants were asked to judge whether or not a given picture matched with a written sentence. Pictures represented simple reversible actions, and sentences were in the active or passive diathesis. Whereas both active and passive sentences require the correct encoding of thematic roles, passives also imply thematic reanalysis, as the canonical order of thematic roles is systematically reversed. The experiment was divided in three sessions. In each session a different parietal site (anterior, middle, posterior) was stimulated at 5 Hz in an event-related fashion, time-locked to the presentation of visual stimuli. Results showed increased accuracy for passive sentences following posterior parietal stimulation. The effect appeared to be (a) TMS-related, as no effect was observed in a control, no-TMS experiment with eighteen new participants; (b) independent from semantic processes involved in word-picture association, as no TMS-related effects were observed in a picture-word matching task. We interpret the results as showing that the posterior parietal site is specifically involved in the assignment of thematic roles, in particular when the correct interpretation of a sentence requires reanalysis of temporarily encoded thematic roles, as in passive reversible sentences.

  6. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.

    PubMed

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-01-01

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in "pop-out" or "search" condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the "search" condition, while PPC is mainly involved in detecting "pop-out" targets. PMID:27452715

  7. Drug-resistant parietal epilepsy: polymorphic ictal semiology does not preclude good post-surgical outcome.

    PubMed

    Francione, Stefano; Liava, Alexandra; Mai, Roberto; Nobili, Lino; Sartori, Ivana; Tassi, Laura; Scarpa, Pina; Cardinale, Francesco; Castana, Laura; Cossu, Massimo; Lo Russo, Giorgio

    2015-03-01

    We investigated the anatomo-electro-clinical features and clinical outcome of surgical resections strictly confined to the parietal lobe in 40 consecutive patients who received surgery for pharmacoresistant seizures. The population was subcategorized into a paediatric (11 subjects; mean age at surgery: 7.2+/-3.7 years) and an adult group (29 patients; mean age at surgery: 30+/-10.8 years). The paediatric group more frequently exhibited personal antecedents, neurological impairment, high seizure frequency, and dysplastic lesions. Nonetheless, compared with adults, children had better outcome and more frequently reached definitive drug discontinuation after surgery. After a mean follow-up of 9.4 years (range: 3.1-16.7), 30 subjects (75%) were classified as Engel Class I. The presence of multiple types of aura in the same patient, as well as a high incidence of secondary generalization, represented a characteristic feature of parietal seizures and did not correlate negatively with surgical outcome. A total resection of the epileptogenic zone and a localizing/regional interictal EEG were statistically significant predictive factors of outcome. Intracerebral investigation, performed in 55% of cases, contributed to complete tailored resections of the epileptogenic area and determination of prognosis. Frequent subjective manifestations of parietal lobe seizures, such as vertiginous, cephalic and visual-moving sensations, underscore their potential misdiagnosis as non-epileptic events.

  8. Measurements of evoked electroencephalograph by transcranial magnetic stimulation applied to motor cortex and posterior parietal cortex

    NASA Astrophysics Data System (ADS)

    Iwahashi, Masakuni; Koyama, Yohei; Hyodo, Akira; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2009-04-01

    To investigate the functional connectivity, the evoked potentials by stimulating at the motor cortex, the posterior parietal cortex, and the cerebellum by transcranial magnetic stimulation (TMS) were measured. It is difficult to measure the evoked electroencephalograph (EEG) by the magnetic stimulation because of the large artifact induced by the magnetic pulse. We used an EEG measurement system with sample-and-hold circuit and an independent component analysis to eliminate the electromagnetic interaction emitted from TMS. It was possible to measure EEG signals from all electrodes over the head within 10 ms after applying the TMS. When the motor area was stimulated by TMS, the spread of evoked electrical activity to the contralateral hemisphere was observed at 20 ms after stimulation. However, when the posterior parietal cortex was stimulated, the evoked electrical activity to the contralateral hemisphere was not observed. When the cerebellum was stimulated, the cortical activity propagated from the stimulated point to the frontal area and the contralateral hemisphere at around 20 ms after stimulation. These results suggest that the motor area has a strong interhemispheric connection and the posterior parietal cortex has no interhemispheric connection.

  9. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study.

    PubMed

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-07-25

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in "pop-out" or "search" condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the "search" condition, while PPC is mainly involved in detecting "pop-out" targets.

  10. Differential roles of the dorsal prefrontal and posterior parietal cortices in visual search: a TMS study

    PubMed Central

    Yan, Yulong; Wei, Rizhen; Zhang, Qian; Jin, Zhenlan; Li, Ling

    2016-01-01

    Although previous studies have shown that fronto-parietal attentional networks play a crucial role in bottom-up and top-down processes, the relative contribution of the frontal and parietal cortices to these processes remains elusive. Here we used transcranial magnetic stimulation (TMS) to interfere with the activity of the right dorsal prefrontal cortex (DLPFC) or the right posterior parietal cortex (PPC), immediately prior to the onset of the visual search display. Participants searched a target defined by color and orientation in “pop-out” or “search” condition. Repetitive TMS was applied to either the right DLPFC or the right PPC on different days. Performance was evaluated at baseline (no TMS), during TMS, and after TMS (Post-session). RTs were prolonged when TMS was applied over the DLPFC in the search, but not in the pop-out condition, relative to the baseline session. In comparison, TMS over the PPC prolonged RTs in the pop-out condition, and when the target appeared in the left visual field for the search condition. Taken together these findings provide evidence for a differential role of DLPFC and PPC in the visual search, indicating that DLPFC has a specific involvement in the “search” condition, while PPC is mainly involved in detecting “pop-out” targets. PMID:27452715

  11. Asymmetric Multisensory Interactions of Visual and Somatosensory Responses in a Region of the Rat Parietal Cortex

    PubMed Central

    Lippert, Michael T.; Takagaki, Kentaroh

    2013-01-01

    Perception greatly benefits from integrating multiple sensory cues into a unified percept. To study the neural mechanisms of sensory integration, model systems are required that allow the simultaneous assessment of activity and the use of techniques to affect individual neural processes in behaving animals. While rodents qualify for these requirements, little is known about multisensory integration and areas involved for this purpose in the rodent. Using optical imaging combined with laminar electrophysiological recordings, the rat parietal cortex was identified as an area where visual and somatosensory inputs converge and interact. Our results reveal similar response patterns to visual and somatosensory stimuli at the level of current source density (CSD) responses and multi-unit responses within a strip in parietal cortex. Surprisingly, a selective asymmetry was observed in multisensory interactions: when the somatosensory response preceded the visual response, supra-linear summation of CSD was observed, but the reverse stimulus order resulted in sub-linear effects in the CSD. This asymmetry was not present in multi-unit activity however, which showed consistently sub-linear interactions. These interactions were restricted to a specific temporal window, and pharmacological tests revealed significant local intra-cortical contributions to this phenomenon. Our results highlight the rodent parietal cortex as a system to model the neural underpinnings of multisensory processing in behaving animals and at the cellular level. PMID:23667650

  12. Optical imaging of visually guided reaching in macaque posterior parietal cortex.

    PubMed

    Heider, Barbara; Siegel, Ralph M

    2014-03-01

    Sensorimotor transformation for reaching movements in primates requires a large network of visual, parietal, and frontal cortical areas. We performed intrinsic optical imaging over posterior parietal cortex including areas 7a and the dorsal perilunate in macaque monkeys during visually guided hand movements. Reaching was performed while foveating one of nine static reach targets; thus eye-position-varied concurrently with reach position. The hemodynamic reflectance signal was analyzed during specific phases of the task including pre-reach, reach, and touch epochs. The eye position maps changed substantially as the task progressed: First, direction of spatial tuning shifted from a weak preference close to the center to the lower eye positions in both cortical areas. Overall tuning strength was greater in area 7a. Second, strength of spatial tuning increased from the early pre-reach to the later touch epoch. These consistent temporal changes suggest that dynamic properties of the reflectance signal were modulated by task parameters. The peak amplitude and peak delay of the reflectance signal showed considerable differences between eye position but were similar between areas. Compared with a detection task using a lever response, the reach task yielded higher amplitudes and longer delays. These findings demonstrate a spatially tuned topographical representation for reaching in both areas and suggest a strong synergistic combination of various feedback signals that result in a spatially tuned amplification of the hemodynamic response in posterior parietal cortex.

  13. Longitudinal working memory development is related to structural maturation of frontal and parietal cortices.

    PubMed

    Tamnes, Christian K; Walhovd, Kristine B; Grydeland, Håkon; Holland, Dominic; Østby, Ylva; Dale, Anders M; Fjell, Anders M

    2013-10-01

    Parallels between patterns of brain maturation and cognitive development have been observed repeatedly, but studies directly testing the relationships between improvements in specific cognitive functions and structural changes in the brain are lacking. Working memory development extends throughout childhood and adolescence and likely plays a central role for cognitive development in multiple domains and in several neurodevelopmental disorders. Neuroimaging, lesion, and electrophysiological studies indicate that working memory emerges from coordinated interactions of a distributed neural network in which fronto-parietal cortical regions are critical. In the current study, verbal working memory function, as indexed by performance on the Keep Track task, and volumes of brain regions were assessed at two time points in 79 healthy children and adolescents in the age range of 8-22 years. Longitudinal change in cortical and subcortical volumes was quantified by the use of Quantitative Anatomical Regional Change. Improvement in working memory was related to cortical volume reduction in bilateral prefrontal and posterior parietal regions and in regions around the central sulci. Importantly, these relationships were not explained by differences in gender, age, or intelligence level or change in intellectual abilities. Furthermore, the relationships did not interact with age and were not significantly different in children, young adolescents, and old adolescents. The results provide the first direct evidence that structural maturation of a fronto-parietal cortical network supports working memory development. PMID:23767921

  14. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    PubMed

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  15. Inferior turbinate osteoma as a cause of unilateral nose obstruction.

    PubMed

    Grabovac, Stjepan; Hadzibegović, Ana Danić; Markesić, Josip

    2012-11-01

    Osteomas are benign, slow growing bone tumors often seen in paranasal sinuses, mostly in the frontal sinus, whereas they are rare in the nasal cavity. Inferior turbinate osteoma is extremely rare and our case is the third reported in the literature to date. Symptoms vary depending on the location, size and spreading and nasal obstruction is the most common symptom. Treatment of osteomas is surgical and is reserved only for rapidly growing osteomas with symptoms of infection or compression. Although endoscopic surgery is preferred modality, external approach with lateral rhinotomy should be considered with larger osteomas especially those that involve the ethmoid labyrinth. In cases like ours, when large osteoma is localized on the inferior nasal turbinate, sublabial incision through the vestibulum is very suitable approach because it provides wide access and good visibility and leaves no visible scar.

  16. Deep Vein Thrombosis Provoked by Inferior Vena Cava Agenesis.

    PubMed

    Haddad, Raad A; Saadaldin, Mazin; Kumar, Binay; Bachuwa, Ghassan

    2015-01-01

    Inferior vena cava agenesis (IVCA) is a rare congenital anomaly that can be asymptomatic or present with vague, nonspecific symptoms, such as abdominal or lower back pain, or deep vein thrombosis (DVT). Here, we present a 55-year-old male who came with painless swelling and redness of his left lower limb. On examination, swelling and redness were noted extending from the left foot to the upper thigh; it was also warm compared to his right lower limb. Venous Doppler ultrasound was done which showed DVT extending up to the common femoral vein. Subsequently, computed-tomography (CT) of the chest and abdomen was done to exclude malignancy or venous flow obstruction; it revealed congenital absence (agenesis) of the infrarenal inferior vena cava (IVC). PMID:26788400

  17. Pheochromocytoma with inferior vena cava thrombosis: An unusual association

    PubMed Central

    Kota, Sunil K.; Kota, Siva K.; Jammula, Sruti; Meher, Lalit K.; Modi, Kirtikumar D.

    2012-01-01

    Pheochromocytomas have been described in association with vascular abnormalities like renal artery stenosis. A 48-year-old man was admitted to our hospital with the complaints of headache, sweating, anxiety, dizziness, nausea, vomiting and hypertension. For last several days, he was having a dull aching abdominal pain. Abdominal computed tomography (CT) revealed the presence of a left adrenal pheochromocytoma. An inferior vena cava (IVC) venogram via the right jugular vein demonstrated occlusion of the IVC inferior to the right atrium. Surgical removal of pheochromocytoma was done, followed by anticoagulant treatment for IVC thrombosis, initially with subcutaneous low molecular weight heparin, and then with oral warfarin, resulting in restoration of patency. To the best of our knowledge, the occurrence of pheochromocytoma in IVC thrombosis has not been reported so far from India. Possible mechanisms of such an involvement are discussed. PMID:22629039

  18. Penetrating injuries of the abdominal inferior vena cava.

    PubMed Central

    Degiannis, E.; Velmahos, G. C.; Levy, R. D.; Souter, I.; Benn, C. A.; Saadia, R.

    1996-01-01

    This is a retrospective study of 74 patients with penetrating injuries of the abdominal inferior vena cava; the cause of injury was gunshot in 91% and stabbing in 9%. Of the patients, 77% underwent lateral venorrhaphy, 5% underwent infrarenal ligation of the inferior vena cava (IVC), and 18% died perioperatively before any caval repair could be carried out. There was an overall perioperative mortality of 39%. Persistent shock, the site of the venous injury, particularly in the retrohepatic position, and the number of associated vascular injuries were directly related to mortality. Irrespective of the improvements in resuscitation and the various operative methods available, penetrating trauma of the abdominal IVC remains a life-threatening injury. PMID:8943628

  19. Atrioventricular nodal reentrant tachycardia ablation and inferior vena cava agenesis.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Mabo, Philippe; Martins, Raphaël P

    2016-10-01

    Congenital anomalies of the inferior vena cava (IVC) are rare and very often diagnosed in asymptomatic patients during computed tomography performed for other purposes. These anomalies can have significant clinical implications, for example if electrophysiology procedures are needed. Diagnostic and ablation procedures are difficult since catheter manipulation and positioning are more complex. We present here a case of successful atrioventricular nodal reentrant tachycardia ablation in a patient with unexpected IVC agenesis, using an azygos route. PMID:27633734

  20. Leiomyosarcoma of the inferior vena cava: a case report.

    PubMed

    Nascif, Rafael Lemos; Antón, Ana Graziela Santana; Fernandes, Gabriel Lacerda; Dantas, George Caldas; Gomes, Vinícius de Araújo; Natal, Marcelo Ricardo Canuto

    2014-01-01

    The authors report a case of a 48 year-old female patient with moderate abdominal pain and bulging in the abdomen. Physical examination demonstrated the presence of a palpable abdominal mass. Computed tomography showed a heterogeneously enhancing retroperitoneal mass in close contact with the inferior vena cava. En bloc resection of the mass and of the attached vena cava segment was performed. Histological analysis revealed leiomyosarcoma.

  1. [Aneurysm of the anterior inferior cerebellar artery: case report].

    PubMed

    Adorno, Juan Oscar Alarcón; de Andrade, Guilherme Cabral

    2002-12-01

    The intracranial aneurysms of the posterior circulation have been reported between 5 and 10% of all cerebral aneurysms and the aneurysms of the anterior inferior cerebellar artery (AICA) are considered rare, can cause cerebello pontine angle (CPA) syndrome with or without subarachnoid hemorrhage. Since 1948 few cases were described in the literature. We report on a 33 year-old female patient with subarachnoid hemorrhage due to sacular aneurysm of the left AICA. She was submitted to clipage of the aneurysm without complications.

  2. Truncal ataxia from infarction involving the inferior olivary nucleus.

    PubMed

    Park, Jae Hyun; Ryoo, Sookyung; Moon, So Young; Seo, Sand Won; Na, Duk L

    2012-08-01

    Truncal ataxia in medullary infarction may be caused by involvement of the lateral part of the medulla; however, truncal ataxia in infarction involving the inferior olivary nucleus (ION) has received comparatively little attention. We report a patient with truncal ataxia due to medial medullary infarction located in the ION. A lesion in the ION could produce a contralateral truncal ataxia due to increased inhibitory input to the contralesional vestibular nucleus from the contralesional flocculus.

  3. [One case of pleomorphic adenoma originates from inferior nasal turbinate].

    PubMed

    Hao, Fang; Xu, Xuehai

    2014-10-01

    Pleomorphic adenoma (PA) is the most common benign tumor of the salivary glands. Originating from the nasal cavity is very rare. This paper reports one case of pleomorphic adenoma of the inferior nasal turbinate to analyze the clinic characteristic of this disease. Although these tumors are rarely seen in everyday practice, one should consider this possibility as an uncommon aetiology when confronted with an intranasal mass.

  4. Inferior hip dislocation after falling from height: A case report

    PubMed Central

    Tekin, Ali Çağrı; Çabuk, Haluk; Büyükkurt, Cem Dinçay; Dedeoğlu, Süleyman Semih; İmren, Yunus; Gürbüz, Hakan

    2016-01-01

    Introduction Traumatic inferior hip dislocation is the least common of all hip dislocations. Adult inferior hip dislocations usually occur after high-energy trauma, very few cases are reported without fracture. Presentation of case A 26-year-old female was brought to the emergency department with severe pain in the left hip, impaired posture and restricted movement following a fall from 15 m height. The hip joint was fixed in 90° flexion, 15° abduction, and 20° external rotation. No neurovascular impairment was determined. On radiologic examination, a left ischial type inferior hip dislocation was detected. Hemorrhagic shock which developed due to acute blood loss to thoracic and abdominal cavity and patient died at third hour after she was brought to the hospital. Discussion Traumatic hip dislocations have high morbidity and mortality rates due to multiple organ damage, primarily of the extremities, chest and abdomen. In the treatment of traumatic hip dislocation, closed reduction is recommended through muscle relaxation under general anesthesia or sedation. This procedure should be applied before any intervention for concomitant extremity injuries. A detailed evaluation on emergency presentation, a multi-disciplinary approach and early diagnosis with the rapid application of imaging methods could be life-saving for such patients. PMID:27058153

  5. Gaining Surgical Access for Repositioning the Inferior Alveolar Neurovascular Bundle

    PubMed Central

    Al-Siweedi, Saif Yousif Abdullah; Nambiar, P.; Shanmuhasuntharam, P.; Ngeow, W. C.

    2014-01-01

    This study is aimed at determining anatomical landmarks that can be used to gain access to the inferior alveolar neurovascular (IAN) bundle. Scanned CBCT (i-CAT machine) data of sixty patients and reconstructions performed using the SimPlant dental implant software were reviewed. Outcome variables were the linear distances of the mandibular canal to the inferior border and the buccal cortex of the mandible, measured immediately at the mental foramen (D1) and at 10, 20, 30, and 40 mm (D2–D5) distal to it. Predictor variables were age, ethnicity, and gender of subjects. Apicobasal assessment of the canal reveals that it is curving downward towards the inferior mandibular border until 20 mm (D3) distal to the mental foramen where it then curves upwards, making an elliptic-arc curve. The mandibular canal also forms a buccolingually oriented elliptic arc in relation to the buccal cortex. Variations due to age, ethnicity, and gender were evident and this study provides an accurate anatomic zone for gaining surgical access to the IAN bundle. The findings indicate that the buccal cortex-IAN distance was greatest at D3. Therefore, sites between D2 and D5 can be used as favorable landmarks to access the IAN bundle with the least complications to the patient. PMID:24892077

  6. Combination-sensitive neurons in the inferior colliculus.

    PubMed

    Mittmann, D H; Wenstrup, J J

    1995-10-01

    We examined whether neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii) are combination sensitive, responding to both low- and high-frequency components of the bat's sonar signal. These neurons, previously reported in the thalamus and cortex, analyze sonar target features including distance. Of 82 single units and 36 multiple units from the 58-112 kHz representations of the inferior colliculus, most (86%) displayed sensitivity to low-frequency sounds that was tuned in the range of the fundamental biosonar component (24-31 kHz). All histologically localized units were in the central nucleus of the inferior colliculus (ICC). There were two major types of combination-sensitive influences. Many neurons were facilitated by low-frequency sounds and selective for particular delays between the low- and high-frequency components. In other neurons, the low-frequency signal was inhibitory if presented simultaneously or a few milliseconds prior to the high-frequency signal. The results indicate that mechanisms creating specialized frequency comparisons and delay sensitivity in combination-sensitive neurons operate at the ICC or below. Since combination sensitivity or multipeaked tuning curves occur in the auditory systems of many species, ICC neurons in these animals may also respond to species-specific frequency combinations.

  7. [Inferior vertical nystagmus: is magnetic resonance imaging mandatory?].

    PubMed

    Esteban-Sánchez, Jonathan; Rueda-Marcos, Almudena; Sanz-Fernández, Ricardo; Martín-Sanz, Eduardo

    2016-02-01

    Introduccion. La aparicion de un nistagmo vertical inferior clasicamente obliga a descartar una patologia vascular o de la union craneocervical mediante resonancia magnetica (RM). Estudios recientes demuestran una baja rentabilidad de esta prueba, ya que sugieren que este signo oculomotor puede tener una causa vestibular periferica, sobre todo cuando el paciente presenta un vertigo posicional paroxistico benigno (VPPB) del canal semicircular superior. Objetivo. Comprobar la rentabilidad de la RM en una poblacion de pacientes con nistagmo de posicion vertical inferior. Pacientes y metodos. Estudio retrospectivo de 42 pacientes consecutivos a los que se les realizo una historia clinica, exploracion fisica, y pruebas vestibulares caloricas y rotatorias. A todos ellos se les practico una RM craneal y cervical. Resultados. El 52% de los pacientes con nistagmo de posicion vertical inferior presentaba una clinica y exploracion fisica compatibles con VPPB del canal semicircular superior. La RM fue normal en un 67%, un 26% mostraba datos de espondilopatia y un 5% de microangiopatia cerebral no relacionados con la clinica del paciente. La prevalencia de malformacion de Arnold-Chiari de tipo I fue de un 9% en la poblacion estudiada, sin que nadie tuviera un antecedente reciente de VPPB. Los resultados obtenidos en las pruebas complementarias vestibulares no aportaron informacion adicional para llegar a un diagnostico etiologico. Conclusion. En los pacientes con un VPPB, la RM craneal y las pruebas vestibulares tienen una baja rentabilidad diagnostica, y se debe evaluar la necesidad real de esta prueba con el contexto clinico.

  8. Refuting the hypothesis that a unilateral human parietal lesion abolishes saccade corollary discharge.

    PubMed

    Rath-Wilson, Kate; Guitton, Daniel

    2015-12-01

    This paper questions the prominent role that the parietal lobe is thought to play in the processing of corollary discharges for saccadic eye movements. A corollary discharge copies the motor neurons' signal and sends it to brain areas involved in monitoring eye trajectories. The classic double-step saccade task has been used extensively to study these mechanisms: two targets (T1 and T2) are quickly (40-150 ms) flashed sequentially in the periphery. After the extinction of the fixation point, subjects are to make two saccades (S1 and S2), in the dark, to the remembered locations of the targets in the order they appeared. The success of S2 requires a corollary discharge encoding S1's vector. Patients with a parietal lobe lesion, particularly on the right, are impaired at generating an accurate S2 when S1 is directed contralesionally, but not ipsilesionally, thought due to an impaired contralesional corollary discharge. In contrast, we hypothesize that failure on the classic double-step task is due to visual processing and attentional deficits that commonly result from lesions of the parietal lobe and imperfect data analysis methods. Here, we studied parietal patients who fail in the classic double-step task when tested and data analysed according to previously published methods. We then tested our patients on two modified versions of the double-step task, designed to mitigate deficits other than corollary discharge that may have confounded previous investigations. In our 'exogenous' task, T2 was presented prior to T1 and for longer (T2: 800-1200 ms, T1: 350 ms) than in the classic task. S1 went to T1 and S2 to T2, all in the dark. All patients who completed sufficient trials had a corollary discharge for contralesional and ipsilesional S1s (5/5). In our 'endogenous' task, a single target was presented peripherally for 800-1200 ms. After extinction of target and fixation point, patients made first an 'endogenous' S1, of self-determined amplitude either to the left or

  9. Mandibular osteotomies after drawing out the inferior alveolar nerve along the canal.

    PubMed

    Jin, Hoon; Kim, Byung-Gun

    2003-01-01

    In some cases, the inferior alveolar nerve runs through a lower course than usual. In such cases, osteotomy of the mandible can injure the inferior alveolar nerves. In other instances, the course of the mandibular osteotomy can meet that of the inferior alveolar nerve. In these cases, a useful method may be excavating the canal and drawing the nerve out through it. With this technique, we can make the osteotomy as initially planned with minimal damage to the inferior alveolar nerve. PMID:14629066

  10. An Enlarged Parietal Foramen in the Late Archaic Xujiayao 11 Neurocranium from Northern China, and Rare Anomalies among Pleistocene Homo

    PubMed Central

    Xing, Song

    2013-01-01

    We report here a neurocranial abnormality previously undescribed in Pleistocene human fossils, an enlarged parietal foramen (EPF) in the early Late Pleistocene Xujiayao 11 parietal bones from the Xujiayao (Houjiayao) site, northern China. Xujiayao 11 is a pair of partial posteromedial parietal bones from an adult. It exhibits thick cranial vault bones, arachnoid granulations, a deviated posterior sagittal suture, and a unilateral (right) parietal lacuna with a posteriorly-directed and enlarged endocranial vascular sulcus. Differential diagnosis indicates that the perforation is a congenital defect, an enlarged parietal foramen, commonly associated with cerebral venous and cranial vault anomalies. It was not lethal given the individual’s age-at-death, but it may have been associated with secondary neurological deficiencies. The fossil constitutes the oldest evidence in human evolution of this very rare condition (a single enlarged parietal foramen). In combination with developmental and degenerative abnormalities in other Pleistocene human remains, it suggests demographic and survival patterns among Pleistocene Homo that led to an elevated frequency of conditions unknown or rare among recent humans. PMID:23527224

  11. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.

    PubMed

    Ng, H B Tommy; Kao, K-L Cathy; Chan, Y C; Chew, Effie; Chuang, K H; Chen, S H Annabel

    2016-05-15

    Previous studies have suggested cerebro-cerebellar circuitry in working memory. The present fMRI study aims to distinguish differential cerebro-cerebellar activation patterns in verbal and visual working memory, and employs a quantitative analysis to deterimine lateralization of the activation patterns observed. Consistent with Chen and Desmond (2005a,b) predictions, verbal working memory activated a cerebro-cerebellar circuitry that comprised left-lateralized language-related brain regions including the inferior frontal and posterior parietal areas, and subcortically, right-lateralized superior (lobule VI) and inferior cerebellar (lobule VIIIA/VIIB) areas. In contrast, a distributed network of bilateral inferior frontal and inferior temporal areas, and bilateral superior (lobule VI) and inferior (lobule VIIB) cerebellar areas, was recruited during visual working memory. Results of the study verified that a distinct cross cerebro-cerebellar circuitry underlies verbal working memory. However, a neural circuitry involving specialized brain areas in bilateral neocortical and bilateral cerebellar hemispheres subserving visual working memory is observed. Findings are discussed in the light of current models of working memory and data from related neuroimaging studies.

  12. Anesthetic technique for inferior alveolar nerve block: a new approach

    PubMed Central

    PALTI, Dafna Geller; de ALMEIDA, Cristiane Machado; RODRIGUES, Antonio de Castro; ANDREO, Jesus Carlos; LIMA, José Eduardo Oliveira

    2011-01-01

    Background Effective pain control in Dentistry may be achieved by local anesthetic techniques. The success of the anesthetic technique in mandibular structures depends on the proximity of the needle tip to the mandibular foramen at the moment of anesthetic injection into the pterygomandibular region. Two techniques are available to reach the inferior alveolar nerve where it enters the mandibular canal, namely indirect and direct; these techniques differ in the number of movements required. Data demonstrate that the indirect technique is considered ineffective in 15% of cases and the direct technique in 1329% of cases. Objective Objective: The aim of this study was to describe an alternative technique for inferior alveolar nerve block using several anatomical points for reference, simplifying the procedure and enabling greater success and a more rapid learning curve. Materials and Methods A total of 193 mandibles (146 with permanent dentition and 47 with primary dentition) from dry skulls were used to establish a relationship between the teeth and the mandibular foramen. By using two wires, the first passing through the mesiobuccal groove and middle point of the mesial slope of the distolingual cusp of the primary second molar or permanent first molar (right side), and the second following the oclusal plane (left side), a line can be achieved whose projection coincides with the left mandibular foramen. Results The obtained data showed correlation in 82.88% of cases using the permanent first molar, and in 93.62% of cases using the primary second molar. Conclusion This method is potentially effective for inferior alveolar nerve block, especially in Pediatric Dentistry. PMID:21437463

  13. Determining the non-inferiority margin for patient reported outcomes.

    PubMed

    Gerlinger, Christoph; Schmelter, Thomas

    2011-01-01

    One of the cornerstones of any non-inferiority trial is the choice of the non-inferiority margin delta. This threshold of clinical relevance is very difficult to determine, and in practice, delta is often "negotiated" between the sponsor of the trial and the regulatory agencies. However, for patient reported, or more precisely patient observed outcomes, the patients' minimal clinically important difference (MCID) can be determined empirically by relating the treatment effect, for example, a change on a 100-mm visual analogue scale, to the patient's satisfaction with the change. This MCID can then be used to define delta. We used an anchor-based approach with non-parametric discriminant analysis and ROC analysis and a distribution-based approach with Norman's half standard deviation rule to determine delta in three examples endometriosis-related pelvic pain measured on a 100-mm visual analogue scale, facial acne measured by lesion counts, and hot flush counts. For each of these examples, all three methods yielded quite similar results. In two of the cases, the empirically derived MCIDs were smaller or similar of deltas used before in non-inferiority trials, and in the third case, the empirically derived MCID was used to derive a responder definition that was accepted by the FDA. In conclusion, for patient-observed endpoints, the delta can be derived empirically. In our view, this is a better approach than that of asking the clinician for a "nice round number" for delta, such as 10, 50%, π, e, or i. PMID:21932298

  14. Bruxism elicited by inferior alveolar nerve injury: a case report.

    PubMed

    Melis, Marcello; Coiana, Carlo; Secci, Simona

    2012-02-01

    The aim of this case report is to describe the history of a patient who received an injury to the right inferior alveolar nerve after placement of a dental implant, with bruxism noted afterward. The symptoms were managed by the use of an occlusal appliance worn at night and occasionally during the day, associated with increased awareness of parafunction during the day to reduce muscle pain and fatigue. Paresthesia of the teeth, gingiva, and lower lip persisted but were reduced during appliance use. PMID:22254232

  15. Evidence of mirror neurons in human inferior frontal gyrus.

    PubMed

    Kilner, James M; Neal, Alice; Weiskopf, Nikolaus; Friston, Karl J; Frith, Chris D

    2009-08-12

    There is much current debate about the existence of mirror neurons in humans. To identify mirror neurons in the inferior frontal gyrus (IFG) of humans, we used a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging. Subjects either executed or observed a series of actions. Here we show that in the IFG, responses were suppressed both when an executed action was followed by the same rather than a different observed action and when an observed action was followed by the same rather than a different executed action. This pattern of responses is consistent with that predicted by mirror neurons and is evidence of mirror neurons in the human IFG.

  16. Inferior Vena Cava Duplication: Incidental Case in a Young Woman.

    PubMed

    Coco, Danilo; Cecchini, Sara; Leanza, Silvana; Viola, Massimo; Ricci, Stefano; Campagnacci, Roberto

    2016-01-01

    A case of a double inferior vena cava (IVC) with retroaortic left renal vein, azygos continuation of the IVC, and presence of the hepatic portion of the IVC drained into the right renal vein is reported and the embryologic, clinical, and radiological significance is discussed. The diagnosis is suggested by multidetector computed tomography (MDCT), which reveals the aberrant vascular structures. Awareness of different congenital anomalies of IVC is necessary for radiologists to avoid diagnostic pitfalls and they should be remembered because they can influence several surgical interventions and endovascular procedures. PMID:27217964

  17. Leiomyosarcoma of the Inferior Vena Cava With Kidney Invasion.

    PubMed

    Brewer, Katherine; Attalla, Kyrollis; Husain, Fatima; Tsao, Che-Kai; Badani, Ketan K; Sfakianos, John P

    2016-11-01

    Primary leiomyosarcomas of the inferior vena cava (IVC) are rare tumors associated with poor prognosis, and surgical resection with the goal of obtaining negative margins is the gold standard for initial treatment. Tumor characteristics of both extraluminal extension into renal parenchyma and intraluminal extension of the subdiaphragmatic IVC are even less common. The prognosis of vascular leiomyosarcomas is determined by the location and the size of the tumor, as these factors determine the risk of local recurrence and metastasis. We present a case of a 30-year old female incidentally found to have a 14 cm right renal mass and IVC thrombus. PMID:27679758

  18. Laparoscopic management of inferior lumbar hernia (Petit triangle hernia).

    PubMed

    Ipek, T; Eyuboglu, E; Aydingoz, O

    2005-05-01

    Lumbar hernias are rare defects in the posterolateral abdominal wall that may be congenital or acquired. We present a case of laparoscopic approach to repair an acquired inferior triangle (Petit) lumbar hernia in a woman by using polytetrafluoroethylene mesh. The size of the hernia was 8 x 10 cm. The length of her hospital stay was 2 days. The patient resumed normal activities in less than 2 weeks. The main advantage of this approach is excellent operative visualization, thus avoiding injury to structures near the hernia during repair. Patients benefit from a minimally invasive approach with less pain, shortened hospital course, less analgesic requirements, better cosmetic result, and minimal life-style interference.

  19. Pleomorphic adenoma originated from the inferior nasal turbinate.

    PubMed

    Unlu, H Halis; Celik, Onur; Demir, M Akif; Eskiizmir, Gorkem

    2003-12-01

    Although pleomorphic adenoma is the most common benign neoplasm of the salivary glands, it has also been reported to be present in the neck, ear, mediastinum, external nose and nasal cavity. Intranasal localization of this lesion is very rare and mainly originates from the nasal septum. From wherever the lesion originates, the main treatment modality should be surgical. We presented a very rare case of intranasal pleomorphic adenoma originated from the inferior nasal turbinate. Due to the expansile nature of the lesion, a midfacial degloving approach was preferred.

  20. Left Inferior Vena Cava and Right Retroaortic Renal Vein

    PubMed Central

    Nania, Alberto; Capilli, Fabio; Longo, Eugenia

    2016-01-01

    Nowadays, incidental anatomical variants are frequent findings, due to the widespread diffusion of cross-sectional imaging. This case report illustrates a fairly uncommon anatomical variant, that is, the copresence of left inferior vena cava and retroaortic right renal vein reported in a 46-year-old lady, undergoing a staging CT for breast cancer. Although the patient was asymptomatic, the authors highlight potential risks related to the above-mentioned condition and the importance of correct identification and diagnosis of the findings. PMID:26955497

  1. Apical vacuole formation by gastric parietal cells in primary culture: effect of low extracellular Ca2+

    PubMed Central

    Nakada, Stephanie L.; Machen, Terry E.; Forte, John G.

    2012-01-01

    In primary culture, the gastric parietal cell's deeply invaginated apical membrane, seen in microscopy by phalloidin binding to F-actin (concentrated in microvilli and a subapical web), is engulfed into the cell, separated from the basolateral membrane (which then becomes the complete plasma membrane), and converted, from a lacy interconnected system of canaliculi, into several separate vacuoles. In this study, vacuolar morphology was achieved by 71% of parietal cells 8 h after typical collagenase digestion of rabbit gastric mucosa, but the tight-junctional protein zonula occludens-1 (ZO-1) was completely delocalized after ∼2 h, when cells were ready for culturing. Use of low-Ca2+ medium (4 mM EGTA) to release cells quickly from gastric glands yielded parietal cells in which ZO-1 was seen in a small spot or ring, a localization quickly lost if these cells were then cultured in normal Ca2+ but remaining up to 20 h if they were cultured in low Ca2+. The cells in low Ca2+ mostly retained, at 20 h, an intermediate morphology of many bulbous canalicular expansions (“prevacuoles”), seemingly with narrow interconnections. Histamine stimulation of 20-h cells with intermediate morphology caused colocalization of proton-pumping H-K-ATPase with canaliculi and prevacuoles but little swelling of those structures, consistent with a remaining apical pore through which secreted acid could escape. Apparent canalicular interconnections, lack of stimulated swelling, and lingering ZO-1 staining indicate inhibition of membrane fission processes that separate apical from basolateral membrane and vacuoles from each other, suggesting an important role for extracellular Ca2+ in these, and possibly other, endocytotic processes. PMID:23099641

  2. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?

    PubMed

    Alahyane, Nadia; Brien, Donald C; Coe, Brian C; Stroman, Patrick W; Munoz, Douglas P

    2014-09-01

    The ability to prepare for an action improves the speed and accuracy of its performance. While many studies indicate that behavior performance continues to improve throughout childhood and adolescence, it remains unclear whether or how preparatory processes change with development. Here, we used a rapid event-related fMRI design in three age groups (8-12, 13-17, 18-25years) who were instructed to execute either a prosaccade (look toward peripheral target) or an antisaccade (look away from target) task. We compared brain activity within the core fronto-parietal network involved in saccade control at two epochs of saccade generation: saccade preparation related to task instruction versus saccade execution related to target appearance. The inclusion of catch trials containing only task instruction and no target or saccade response allowed us to isolate saccade preparation from saccade execution. Five regions of interest were selected: the frontal, supplementary, parietal eye fields which are consistently recruited during saccade generation, and two regions involved in top down executive control: the dorsolateral prefrontal and anterior cingulate cortices. Our results showed strong evidence that developmental improvements in saccade performance were related to better saccade preparation rather than saccade execution. These developmental differences were mostly attributable to children who showed reduced fronto-parietal activity during prosaccade and antisaccade preparation, along with longer saccade reaction times and more incorrect responses, compared to adolescents and adults. The dorsolateral prefrontal cortex was engaged similarly across age groups, suggesting a general role in maintaining task instructions through the whole experiment. Overall, these findings suggest that developmental improvements in behavioral control are supported by improvements in effectively presetting goal-appropriate brain systems.

  3. Posterior parietal cortex mediates encoding and maintenance processes in change blindness.

    PubMed

    Tseng, Philip; Hsu, Tzu-Yu; Muggleton, Neil G; Tzeng, Ovid J L; Hung, Daisy L; Juan, Chi-Hung

    2010-03-01

    It is commonly accepted that right posterior parietal cortex (PPC) plays an important role in updating spatial representations, directing visuospatial attention, and planning actions. However, recent studies suggest that right PPC may also be involved in processes that are more closely associated with our visual awareness as its activation level positively correlates with successful conscious change detection (Beck, D.M., Rees, G., Frith, C.D., & Lavie, N. (2001). Neural correlates of change detection and change blindness. Nature Neuroscience, 4, 645-650.). Furthermore, disruption of its activity increases the occurrences of change blindness, thus suggesting a causal role for right PPC in change detection (Beck, D.M., Muggleton, N., Walsh, V., & Lavie, N. (2006). Right parietal cortex plays a critical role in change blindness. Cerebral Cortex, 16, 712-717.). In the context of a 1-shot change detection paradigm, we applied transcranial magnetic stimulation (TMS) during different time intervals to elucidate the temporally precise involvement of PPC in change detection. While subjects attempted to detect changes between two image sets separated by a brief time interval, TMS was applied either during the presentation of picture 1 when subjects were encoding and maintaining information into visual short-term memory, or picture 2 when subjects were retrieving information relating to picture 1 and comparing it to picture 2. Our results show that change blindness occurred more often when TMS was applied during the viewing of picture 1, which implies that right PPC plays a crucial role in the processes of encoding and maintaining information in visual short-term memory. In addition, since our stimuli did not involve changes in spatial locations, our findings also support previous studies suggesting that PPC may be involved in the processes of encoding non-spatial visual information (Todd, J.J. & Marois, R. (2004). Capacity limit of visual short-term memory in human

  4. Surgical trauma and CO2-insufflation impact on adhesion formation in parietal and visceral peritoneal lesions.

    PubMed

    Mynbaev, Ospan A; Eliseeva, Marina Yu; Kalzhanov, Zhomart R; Lyutova, Lv; Pismensky, Sergei V; Tinelli, Andrea; Malvasi, Antonio; Kosmas, Ioannis P

    2013-01-01

    CO2-insufflation and electrocoagulation were advanced as causative factors of postsurgical adhesions. We assumed that severe tissue reaction due to electrocoagulation might obscure CO2-insufflation impact on adhesion formation. Therefore, the purpose of this study was to evaluate the effects and interactions of surgical trauma and CO2-insufflation on adhesion formation. Prospective-randomized study with 60 rats, equally divided into 3 groups. In the control group, the sidewall adhesion model was induced by monopolar coagulation of the uterine horn and ipsilateral parietal peritoneum and by mechanical damaging - in the opposite side through open laparoscopy without CO2-insufflation. In two other groups, CO2 was insufflated for 60 min at 15 cm of water, either before or after the sidewall model-induction. Parameters of sidewall and lesion site adhesions of parietal peritoneum and uterine horns were evaluated by scoring system and analyzed by two-way ANOVA with Bonferroni posttests, one-way ANOVA Student-Newman-Keuls multiple comparisons test, as well as by two-tailed unpaired Mann-Whitney test. Monopolar coagulation significantly increased peritoneal lesion site adhesion scores, as compared with the scores for mechanical damaging (p=0.0001). Visceral peritoneal lesion sites were more predisposed to adhesion formation than parietal peritoneal lesion sites (p=0.0009), whereas CO2 did not affect parameters of either sidewall or peritoneal lesion site adhesions, regardless of the insufflation mode (p>0.05). The data suggest that both surgical trauma and peritoneal lesion sites had a substantial impact on adhesion formation, whereas CO2 did not interfere with adhesion parameters irrespective of its insufflation mode. These findings may improve our insights into adhesion formation pathophysiology and open new perspectives in developing future adhesion prevention strategies.

  5. Observational learning of new movement sequences is reflected in fronto-parietal coherence.

    PubMed

    van der Helden, Jurjen; van Schie, Hein T; Rombouts, Christiaan

    2010-12-31

    Mankind is unique in her ability for observational learning, i.e. the transmission of acquired knowledge and behavioral repertoire through observation of others' actions. In the present study we used electrophysiological measures to investigate brain mechanisms of observational learning. Analysis investigated the possible functional coupling between occipital (alpha) and motor (mu) rhythms operating in the 10 Hz frequency range for translating "seeing" into "doing". Subjects observed movement sequences consisting of six consecutive left or right hand button presses directed at one of two target-buttons for subsequent imitation. Each movement sequence was presented four times, intervened by short pause intervals for sequence rehearsal. During a control task subjects observed the same movement sequences without a requirement for subsequent reproduction. Although both alpha and mu rhythms desynchronized during the imitation task relative to the control task, modulations in alpha and mu power were found to be largely independent from each other over time, arguing against a functional coupling of alpha and mu generators during observational learning. This independence was furthermore reflected in the absence of coherence between occipital and motor electrodes overlaying alpha and mu generators. Instead, coherence analysis revealed a pair of symmetric fronto-parietal networks, one over the left and one over the right hemisphere, reflecting stronger coherence during observation of movements than during pauses. Individual differences in fronto-parietal coherence were furthermore found to predict imitation accuracy. The properties of these networks, i.e. their fronto-parietal distribution, their ipsilateral organization and their sensitivity to the observation of movements, match closely with the known properties of the mirror neuron system (MNS) as studied in the macaque brain. These results indicate a functional dissociation between higher order areas for observational

  6. Effects of word form on brain processing of written Chinese.

    PubMed

    Fu, Shimin; Chen, Yiping; Smith, Stephen; Iversen, Susan; Matthews, P M

    2002-11-01

    Both logographic characters and alphabetic pinyins can be used to write words in Chinese. Here we use fMRI to address the question of whether the written form affects brain processing of a word. Fifteen healthy, right-handed, native Chinese-reading volunteers participated in our study and were asked to read silently either Chinese characters (8 subjects) or pinyins (7 subjects). The stimulus presentation rate was varied for both tasks to allow us to identify brain regions with word-load-dependent activation. Rate effects (fast minus slow presentations) for Chinese character reading were observed in striate and extrastriate visual cortex, superior parietal lobule, left posterior middle temporal gyrus, bilateral inferior temporal gyri, and bilateral superior frontal gyri. Rate effects for pinyin reading were observed in bilateral fusiform, lingual, and middle occipital gyri, bilateral superior parietal lobule/precuneus, left inferior parietal lobule, bilateral inferior temporal gyrus, left middle temporal gyrus, and left superior temporal gyrus. These results demonstrate that common regions of the brain are involved in reading both Chinese characters and pinyins, activated apparently independently of the surface form of the word. There also appear to be brain regions in which activation is dependent on word form. However, it is unlikely that these are entirely specific for a given word form; their activation more likely reflects relative functional specializations within broader networks for processing written language.

  7. Sequelae of a left-sided parietal stroke: posterior alien hand syndrome.

    PubMed

    Kloesel, Benjamin; Czarnecki, Kathrin; Muir, Jeffery J; Keller, A Scott

    2010-12-01

    Posterior alien hand syndrome is a new addition to a poorly understood group of movement disorders. Historically, anatomical lesions causing uncontrolled limb movement and a feeling of foreignness were found to be located in the corpus callosum or frontal lobe. Recent case reports, however, demonstrate the typical symptoms of alien hand syndrome with lesions located in the parietal/occipital lobes. Disturbance of normal function in these regions tends to produce less complex motor activity, such as hand levitation, along with a sensory component characterized by feeling of estrangement. We discuss a patient who presented with unusual symptoms following an outpatient procedure and was found to have posterior alien hand syndrome. PMID:20824573

  8. Ectopic supernumerary tooth on the inferior nasal concha.

    PubMed

    Ray, Bappaditya; Singh, Lav Kumar; Das, Chandan Jyoti; Roy, T S

    2006-01-01

    Variations regarding the location of an ectopic tooth in the human nasal cavity, although rare, are documented in the literature, but presence of an ectopic tooth on the inferior nasal concha (INC) has not been reported. We observed an anomalous tooth projecting from the posterior margin of the right INC in two adult female skulls. A small quadrangular tooth projected beyond the posterior margin of the hard palate in one of the skulls and a medium sized conical tooth was observed in the other skull. The affected INC in both skulls were located more inferiorly compared to the opposite side and were in close approximation with the hard palate. No similar findings were noted on the contralateral side nor were there any associated congenital or iatrogenic deformity. The phylogenetic, ontogenetic, and clinical importance of this variant is described. Knowledge of such an anomaly is of paramount importance to otorhinolaryngologists, reconstructive and dental surgeons, and radiologists for identification of such rarities encountered during invasive or non-invasive procedures. PMID:16283635

  9. Parietal endoderm secreted S100A4 promotes early cardiomyogenesis in embryoid bodies

    SciTech Connect

    Stary, Martina; Schneider, Mikael; Sheikh, Soren P.; Weitzer, Georg . E-mail: georg.weitzer@meduniwien.ac.at

    2006-05-05

    Cardiomyogenesis is influenced by factors secreted by anterior-lateral and extra-embryonic endoderm. Differentiation of embryonic stem cells in embryoid bodies allows to study the influence of growth factors on cardiomyogenesis. By these means SPARC was identified as a new factor enhancing cardiomyogenesis [M. Stary, W. Pasteiner, A. Summer, A. Hrdina, A. Eger, G. Weitzer, Parietal endoderm secreted SPARC promotes early cardiomyogenesis in vitro, Exp. Cell Res. 310 (2005) 331-341]. Here we report a similar and new function for S100A4, a calcium-binding protein of the EF-hand type. S100A4 is secreted by parietal endoderm and promotes early differentiation and proliferation of cardiomyocytes. Oligomeric S100A4 supports cardiomyogenesis in a concentration-dependent manner, whereas inhibition of autocrine S100A4 severely attenuates cardiomyogenesis. S100A4 specifically influences transcription in differentiating cardiomyocytes, as evident from increased expression of cardiac transcription factor genes nkx2.5 and mef2C. These data suggest that S100A4, like SPARC, plays a supportive role in early in vitro cardiomyogenesis.

  10. Neural circuitry involved in quitting after repeated failures: role of the cingulate and temporal parietal junction

    PubMed Central

    Zhao, Weihua; Kendrick, Keith M; Chen, Fei; Li, Hong; Feng, Tingyong

    2016-01-01

    The more times people fail the more likely they are to give up, however little is known about the neural mechanisms underlying this impact of repeated failure on decision making. Here we have used a visual shape discrimination task with computer-controlled feedback combined with functional magnetic resonance imaging (fMRI) to investigate the neural circuits involved. The behavioral task confirmed that the more times subjects experienced failure the more likely they were to give up, with three successive failures being the key threshold and the majority of subjects reaching the point where they decided to quit and try a new stimulus set after three or four failures. The fMRI analysis revealed activity changes in frontal, parietal, temporal, limbic and striatal regions, especially anterior cingulate cortex (ACC), posterior cingulate cortex (PCC) and temporal parietal junction (TPJ) associated with the number of previous failures experienced. Furthermore, their parameter estimates were predictive of subjects’ quitting rate. Thus, subjects reach the point where they decide to quit after three/four failures and this is associated with differential changes in brain regions involved in error monitoring and reward which regulate both failure detection and changes in decision-making strategy. PMID:27097529

  11. [A case of conduction aphasia due to small infarction in the left parietal lobe].

    PubMed

    Ibayashi, Katsuhiko

    2002-08-01

    This is a report on the patient with conduction aphAsia due to small infarction in the left parietal lobe. The patient is a right-handed man aged 74, who developed a speech disorder and mild paralysis of the right hand on November 13. 1996. A CT scan showed a small low-density in the supramarginal gyrus of the left parietal lobe. Standard Language Test of aphasia (SLTA) conducted at five days after admission to the hospital showed preserved auditory comprehension and phonemic para-aphasia symptoms with respect to volitional speech, naming, reading aloud and repetition. Frequent self-correction was also observed while repetition was not remarkably impaired. A test at three months after the onset revealed generally fluent speech, while there still remained occasional phonemic para-aphasia and self-correction for the speech disruption. Three years and four months later, most of the aphasic syndromes disappeared, although the patient claimed he still had difficulty in speaking. This case suggests that conduction aphasia can be caused by a lesion, though small, located in arcuate fibers of the cerebrum. The characteristics are phonemic para-aphasia with respect to general speech functions as well as self-correction toward target words. The indicated that lesions in the pathway connecting Broca's area and Wernicke's area causes difficulties in selecting accurate phonemes due to a malfunctioning interface between the two areas. PMID:12701218

  12. Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict

    PubMed Central

    Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao

    2015-01-01

    Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758

  13. Formation of concentric saccules in murine parietal cells after injection of diazo-oxo-norleucine.

    PubMed

    Michaels, J E

    1979-04-01

    After treatment with various chemical and physical agents, flattened or ring-like saccules may occur in the cytoplasm of parietal cells of the gastric glands of several species of mammals. In the current investigation, similar structures appeared after treatment with high dosages of diazo-oxo-norleucine (DON), a glutamine antagonist. A tentative sequence for their formation is suggested. Saccules formed of unit membrane became abundant in some parietal cells of the treated mice. Single saccules often had narrow lumens and peripheral distensions. The saccules, either singular or several stacked together, became progressively more curved, enclosing a region of cytoplasm that often contained glycogen-like particles and occasionally vesicles or other organelles. Many of the concentric saccules were close to an intracellular canaliculus. Membrane bound cytoplasm containing glycogen-like particles occasionally occurred in the canaliculi, suggesting that exocytosis had occurred. Cytochemistry revealed that glycoproteins were associated with the concentric saccules, probably located on the luminal surface. The glycogen-like particles in all locations stained in a manner characteristic of glycogen. It is suggested that the concentric saccules may form from vesicles of the tubulovesicular system.

  14. Further observations on the fine structure of the parietal eye of lizards.

    PubMed

    EAKIN, R M; WESTFALL, J A

    1960-10-01

    An electron microscopical study of the third eye of the Western Fence Lizard, Sceloporus occidentalis, fixed with 1 per cent osmium tetroxide, pH 7.4-7.6, for 16 to 20 hours at 0 degrees C., revealed the following new facts. The fibrillar system of the retinal photoreceptor consists of nine double fibrils enclosed in a sheath. Pigment cells and lens cells possess similar systems. Two short cylindrical centrioles are associated with the fibrillar apparatus: one, from which striated rootlets extend inward, lies at the base of the fibrils, with the other at an oblique angle to the axis of the system. A Golgi complex, whorls of endoplasmic reticulum, lipid (?) droplets, and other organelles and inclusions in the photoreceptors are described. An axon leads from the base of the photoreceptor into the nervous layer of the retina which consists of many nerve fibers and large ganglion cells. Although the pattern of neural connections has not yet been determined, some synapses were found. The parietal nerve consists of about 250 non-medullated fibers. The capsule of the eye usually has a layer of iridocytes, which contain rows of guanine (?) rods. A few parietal eyes of the Granite Night Lizard, Xantusia henshawi, were also examined. Large lipid (?) droplets occur in the bases of their receptoral processes.

  15. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons

    PubMed Central

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-01-01

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions. PMID:24928956

  16. Intentional signals during saccadic and reaching delays in the human posterior parietal cortex.

    PubMed

    Galati, Gaspare; Committeri, Giorgia; Pitzalis, Sabrina; Pelle, Gina; Patria, Fabiana; Fattori, Patrizia; Galletti, Claudio

    2011-12-01

    In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.

  17. Multimodal integration for the representation of space in the posterior parietal cortex.

    PubMed Central

    Andersen, R A

    1997-01-01

    The posterior parietal cortex has long been considered an 'association' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author's laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer's movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals. PMID:9368930

  18. True Memory, False Memory, and Subjective Recollection Deficits after Focal Parietal Lobe Lesions

    PubMed Central

    Drowos, David B.; Berryhill, Marian; André, Jessica M.; Olson, Ingrid R.

    2010-01-01

    Objective There is mounting evidence that the posterior parietal cortex (PPC) plays an important role in episodic memory. We previously found that patients with PPC damage exhibit retrieval-related episodic memory deficits. Our objective was to assess whether parietal lobe damage affects episodic memory on a different task: the Deese-Roediger-McDermott (DRM) false-memory paradigm. Method Two patients with bilateral PPC damage and matched controls were tested. In Experiment 1, the task was to remember words; in Experiment 2 the task was to remember pictures of common objects. Prior studies have shown that normal participants have high levels of false memory to words, low levels to pictures. Results The patients exhibited significantly lower levels of false memory to words. The patients' false memories were accompanied by reduced levels of recollection, as tested by a Remember/Know procedure. It is unlikely that a failure of gist processing accounts for these results, as patients accurately remembered thematic elements of short vignettes, but failed to remember details. These results support the view that portions of the PPC play a critical role in objective and subjective aspects of recollection. PMID:20604621

  19. Anodal tDCS targeting the left temporo-parietal junction disrupts verbal reality-monitoring.

    PubMed

    Mondino, Marine; Poulet, Emmanuel; Suaud-Chagny, Marie-Françoise; Brunelin, Jerome

    2016-08-01

    Using transcranial direct current stimulation (tDCS) we aimed to investigate the causal role of the left temporo-parietal and prefrontal regions in source-monitoring. Forty-two healthy participants received tDCS while performing a verbal reality-monitoring task (requiring discrimination between imagined and heard words) and a verbal internal source-monitoring task (requiring discrimination between imagined and said words). In 2 randomized crossover studies, 21 participants received active and sham anodal tDCS applied over the left temporo-parietal junction (TPJ) and 21 participants received active and sham cathodal tDCS applied over the left prefrontal cortex (PFC). The reference electrode was placed over the right occipital region in both experiments. Active tDCS over the left TPJ decreased reality-monitoring performance but did not modulate internal source-monitoring performance. Participants were more likely to misattribute self-generated events to externally perceived events (externalization bias). Active tDCS over the left PFC did not modulate performance of participants in both tasks. In summary, anodal tDCS applied over the left TPJ, assumed to enhance cortical excitability, can alter reality-monitoring processes in healthy subjects. Such abnormal reality-monitoring performances have been reported in hallucinating patients with schizophrenia known to display hyperactivity of the left TPJ. Our results highlighted the role of the left TPJ in self/other recognition.

  20. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  1. Alpha stimulation of the human parietal cortex attunes tactile perception to external space.

    PubMed

    Ruzzoli, Manuela; Soto-Faraco, Salvador

    2014-02-01

    An intriguing question in neuroscience concerns how somatosensory events on the skin are represented in the human brain. Since Head and Holmes' [1] neuropsychological dissociation between localizing touch on the skin and localizing body parts in external space, touch is considered to operate in a variety of spatial reference frames [2]. At least two representations of space are in competition during orienting to touch: a somatotopic one, reflecting the organization of the somatosensory cortex (S1) [3], and a more abstract, external reference frame that factors postural changes in relation to body parts and/or external space [4, 5]. Previous transcranial magnetic stimulation (TMS) studies suggest that the posterior parietal cortex (PPC) plays a key role in supporting representations as well as orienting attention in an external reference frame [4, 6]. Here, we capitalized on the TMS entrainment approach [7, 8], targeting the intraparietal sulcus (IPS). We found that frequency-specific (10 Hz) tuning of the PPC induced spatially specific enhancement of tactile detection that was expressed in an external reference frame. This finding establishes a tight causal link between a concrete form of brain activity (10 Hz oscillation) and a specific type of spatial representation, revealing a fundamental property of how the parietal cortex encodes information. PMID:24440394

  2. Contextual modulation of pain in masochists: involvement of the parietal operculum and insula.

    PubMed

    Kamping, Sandra; Andoh, Jamila; Bomba, Isabelle C; Diers, Martin; Diesch, Eugen; Flor, Herta

    2016-02-01

    Pain can be modulated by contextual stimuli, such as emotions, social factors, or specific bodily perceptions. We presented painful laser stimuli together with body-related masochistic visual stimuli to persons with and without preferred masochistic sexual behavior and used neutral, positive, and negative pictures with and without painful stimuli as control. Masochists reported substantially reduced pain intensity and unpleasantness in the masochistic context compared with controls but had unaltered pain perception in the other conditions. Functional magnetic resonance imaging revealed that masochists activated brain areas involved in sensory-discriminative processing rather than affective pain processing when they received painful stimuli on a masochistic background. The masochists compared with the controls displayed attenuated functional connectivity of the parietal operculum with the left and right insulae, the central operculum, and the supramarginal gyrus. Masochists additionally showed negative correlations between the duration of interest in masochistic activities and activation of areas involved in motor activity and affective processing. We propose that the parietal operculum serves as an important relay station that attenuates the affective-motivational aspects of pain in masochists. This novel mechanism of pain modulation might be related to multisensory integration and has important implications for the assessment and treatment of pain. PMID:26808014

  3. Further observations on the fine structure of the parietal eye of lizards.

    PubMed

    EAKIN, R M; WESTFALL, J A

    1960-10-01

    An electron microscopical study of the third eye of the Western Fence Lizard, Sceloporus occidentalis, fixed with 1 per cent osmium tetroxide, pH 7.4-7.6, for 16 to 20 hours at 0 degrees C., revealed the following new facts. The fibrillar system of the retinal photoreceptor consists of nine double fibrils enclosed in a sheath. Pigment cells and lens cells possess similar systems. Two short cylindrical centrioles are associated with the fibrillar apparatus: one, from which striated rootlets extend inward, lies at the base of the fibrils, with the other at an oblique angle to the axis of the system. A Golgi complex, whorls of endoplasmic reticulum, lipid (?) droplets, and other organelles and inclusions in the photoreceptors are described. An axon leads from the base of the photoreceptor into the nervous layer of the retina which consists of many nerve fibers and large ganglion cells. Although the pattern of neural connections has not yet been determined, some synapses were found. The parietal nerve consists of about 250 non-medullated fibers. The capsule of the eye usually has a layer of iridocytes, which contain rows of guanine (?) rods. A few parietal eyes of the Granite Night Lizard, Xantusia henshawi, were also examined. Large lipid (?) droplets occur in the bases of their receptoral processes. PMID:13725484

  4. Parietal and Frontal Cortex Encode Stimulus-Specific Mnemonic Representations during Visual Working Memory.

    PubMed

    Ester, Edward F; Sprague, Thomas C; Serences, John T

    2015-08-19

    Working memory (WM) enables the storage and manipulation of information in an active state. WM storage has long been associated with sustained increases in activation across a network of frontal and parietal cortical regions. However, recent evidence suggests that these regions primarily encode information related to general task goals rather than feature-selective representations of specific memoranda. These goal-related representations are thought to provide top-down feedback that coordinates the representation of fine-grained details in early sensory areas. Here, we test this model using fMRI-based reconstructions of remembered visual details from region-level activation patterns. We could reconstruct high-fidelity representations of a remembered orientation based on activation patterns in occipital visual cortex and in several sub-regions of frontal and parietal cortex, independent of sustained increases in mean activation. These results challenge models of WM that postulate disjoint frontoparietal "top-down control" and posterior sensory "feature storage" networks. PMID:26257053

  5. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    PubMed Central

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  6. Contextual modulation of pain in masochists: involvement of the parietal operculum and insula.

    PubMed

    Kamping, Sandra; Andoh, Jamila; Bomba, Isabelle C; Diers, Martin; Diesch, Eugen; Flor, Herta

    2016-02-01

    Pain can be modulated by contextual stimuli, such as emotions, social factors, or specific bodily perceptions. We presented painful laser stimuli together with body-related masochistic visual stimuli to persons with and without preferred masochistic sexual behavior and used neutral, positive, and negative pictures with and without painful stimuli as control. Masochists reported substantially reduced pain intensity and unpleasantness in the masochistic context compared with controls but had unaltered pain perception in the other conditions. Functional magnetic resonance imaging revealed that masochists activated brain areas involved in sensory-discriminative processing rather than affective pain processing when they received painful stimuli on a masochistic background. The masochists compared with the controls displayed attenuated functional connectivity of the parietal operculum with the left and right insulae, the central operculum, and the supramarginal gyrus. Masochists additionally showed negative correlations between the duration of interest in masochistic activities and activation of areas involved in motor activity and affective processing. We propose that the parietal operculum serves as an important relay station that attenuates the affective-motivational aspects of pain in masochists. This novel mechanism of pain modulation might be related to multisensory integration and has important implications for the assessment and treatment of pain.

  7. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  8. Lateral posterior parietal activity during reality monitoring discriminations of memories of high and low perceptual vividness.

    PubMed

    King, Danielle R; Schubert, Misty L; Miller, Michael B

    2015-09-01

    Regions of the lateral posterior parietal cortex (PPC) tend to be more active during recognition of previously studied items compared to correct rejection of unstudied items. Previously, we demonstrated that this effect is source-specific. While items that were encoded through visual perception elicited robust successful retrieval activity in the lateral PPC during a subsequent source memory test, items that were visually imagined did not elicit this effect. Memories of perceived events typically contain more perceptually-based contextual details than memories of imagined events. Therefore, source-based differences in lateral parietal activity might be due to a difference in the perceptual vividness of memories of perceived and imagined events. The goal of the present study was to test this hypothesis. Participants perceived and imagined items in both high and low perceptual vividness conditions. Experiment 1 demonstrated that memories for items encoded in the high vividness conditions contained significantly greater visual detail than memories encoded in the low vividness conditions. In Experiment 2, participants were scanned while they made source memory judgments about items that were previously perceived and imagined in high and low vividness conditions. Consistent with previous findings, the left lateral PPC was more active during retrieval of perceived compared to imagined events. However, lateral PPC activity did not vary according to vividness, suggesting that source effects in this region cannot be explained by a difference in the perceptual vividness of memories encoded through perception versus imagination.

  9. Neuromodulation of parietal and motor activity affects motor planning and execution.

    PubMed

    Convento, Silvia; Bolognini, Nadia; Fusaro, Martina; Lollo, Federica; Vallar, Giuseppe

    2014-08-01

    Transcranial direct current stimulation (tDCS) is a non-invasive tool, which effectively modulates behavior, and related brain activity. When applied to the primary motor cortex (M1), tDCS affects motor function, enhancing or decreasing performance of both healthy participants and brain-damaged patients. Beyond M1, the posterior parietal cortex (PPC) is also crucially involved in controlling and guiding movement. Therefore, we explored whether the modulation of cortical excitability within PPC can also affect hand motor function in healthy right-handed participants. In Experiment 1, anodal tDCS (2 mA, 10 min) was applied to PPC and to M1 of both hemispheres. Skilled motor function of the non-dominant left hand, measured using the Jebsen-Taylor Hand Function Test (JTT), improved after anodal tDCS of the right, contralateral M1, as well as after the anodal stimulation of the left, ipsilateral PPC. Conversely, in Experiment 2, cathodal tDCS of the left PPC, or of the right M1, reduced motor performance of the left hand. Finally, Experiment 3 shows that the anodal tDCS of the left PPC selectively facilitated action planning, while the anodal tDCS of the right M1 modulated action execution only. This evidence shows that motor improvement induced by left parietal and right motor stimulations relies on substantial different mechanisms, opening up novel perspectives in the neurorehabilitation of stroke patients with motor and apraxic disorders.

  10. Examination of Frontal and Parietal Tectocortical Attention Pathways in Spina Bifida Meningomyelocele Using Probabilistic Diffusion Tractography

    PubMed Central

    Juranek, Jenifer; Stuebing, Karla; Cirino, Paul T.; Dennis, Maureen; Fletcher, Jack M.

    2013-01-01

    Abstract Abnormalities of the midbrain tectum are common but variable malformations in spina bifida meningomyelocele (SBM) and have been linked to neuropsychological deficits in attention orienting. The degree to which variations in tectum structure influence white matter (WM) connectivity to cortical regions is unknown. To assess the relationship of tectal structure and connectivity to frontal and parietal cortical regions, probabilistic diffusion tractography was performed on 106 individuals (80 SBM, 26 typically developing [TD]) to isolate anterior versus posterior tectocortical WM pathways. Results showed that those with SBM exhibited significantly reduced tectal volume, along with decreased fractional anisotropy (FA) in posterior but not anterior tectocortical WM pathways when compared with TD individuals. The group with SBM also showed greater within-subject discrepancies between frontal and parietal WM integrity compared with the TD group. Of those with SBM, qualitative classification of tectal beaking based on radiological review was associated with increased axial diffusivity across both anterior and posterior tectocortical pathways, relative to individuals with SBM and a normal appearing tectum. These results support previous volumetric findings of greater impairment to posterior versus anterior brain regions in SBM, and quantifiably relate tectal volume, tectocortical WM integrity, and tectal malformations in this population. PMID:23937233

  11. The Effect of Thoracoscopic Pleurodesis in Primary Spontaneous Pneumothorax: Apical Parietal Pleurectomy versus Pleural Abrasion

    PubMed Central

    Huh, Up; Cho, Jeong Su; I, Hoseok; Lee, Jon Geun; Lee, Jun Ho

    2012-01-01

    Background The standard operative treatment of primary spontaneous pneumothorax (PSP) is thoracoscopic wedge resection, but necessity of pleurodesis still remains controversial. Nevertheless, pleural procedure after wedge resection such as pleurodesis has been performed in some patients who need an extremely low recurrence rate. Materials and Methods From January 2000 to July 2010, 207 patients who had undergone thoracoscopic wedge resection and pleurodesis were enrolled in this study. All patients were divided into two groups according to the methods of pleurodesis; apical parietal pleurectomy (group A) and pleural abrasion (group B). The recurrence after surgery had been checked by reviewing medical record through follow-up in ambulatory care clinic or calling to the patients, directly until January 2011. Results Of the 207 patients, the recurrence rate of group A and B was 9.1% and 12.8%, respectively and there was a significant difference (p=0.01, Cox's proportional hazard model). There was no significant difference in age, gender, smoking status, and body mass index between two groups. Conclusion This study suggests that the risk of recurrence after surgery in PSP is significantly low in patients who underwent thoracoscopic wedge resection with parietal pleurectomy than pleural abrasion. PMID:23130305

  12. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory.

    PubMed

    Bor, Daniel; Owen, Adrian M

    2007-04-01

    Previous studies have indicated that the lateral prefrontal cortex (LPFC) is closely involved in strategic recoding, even when such processes lessen task demands. For example, 2 studies presented, in the spatial and verbal domains, sequences of stimuli for participants to retain during a short interval and then retrieve. Stimuli were either randomly arranged or structured (forming symmetries and regular shapes for the spatial task and mathematical patterns for the verbal task). Although participants performed the structured tasks better by reorganizing or "chunking" them into more efficient forms, LPFC activity was greater for the structured compared with the random sequences. However, although these results demonstrate that LPFC is involved in strategic recoding, regardless of the type of modality, it remains to be seen whether such a result generalizes to different types of strategic recoding processes. To test this, we presented digit sequence trials that separately emphasized mnemonic or mathematical recoding strategies. While participants were able to gain a performance benefit from either type of recoding strategy, increased LPFC activity was observed for both mathematical and mnemonic recoding trials, compared with either unstructured sequences or control conditions matched for mathematical or mnemonic processes. However, mathematically structured trials activated the LPFC significantly more than mnemonic recoding trials. In addition, lateral posterior parietal cortex was consistently coactivated with LPFC for strategic recoding trials, both in the current experiments and in previous related studies. We conclude that a prefrontal-parietal network is involved in strategic recoding in working memory, regardless of the type of recoding process. PMID:16707737

  13. Frontal and occipital-parietal alpha oscillations distinguish between stimulus conflict and response conflict.

    PubMed

    Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao

    2015-01-01

    Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758

  14. Alpha power increases in right parietal cortex reflects focused internal attention.

    PubMed

    Benedek, Mathias; Schickel, Rainer J; Jauk, Emanuel; Fink, Andreas; Neubauer, Aljoscha C

    2014-04-01

    This study investigated the functional significance of EEG alpha power increases, a finding that is consistently observed in various memory tasks and specifically during divergent thinking. It was previously shown that alpha power is increased when tasks are performed in mind-e.g., when bottom-up processing is prevented. This study aimed to examine the effect of task-immanent differences in bottom-up processing demands by comparing two divergent thinking tasks, one intrinsically relying on bottom-up processing (sensory-intake task) and one that is not (sensory-independence task). In both tasks, stimuli were masked in half of the trials to establish conditions of higher and lower internal processing demands. In line with the hypotheses, internal processing affected performance and led to increases in alpha power only in the sensory-intake task, whereas the sensory-independence task showed high levels of task-related alpha power in both conditions. Interestingly, conditions involving focused internal attention showed a clear lateralization with higher alpha power in parietal regions of the right hemisphere. Considering evidence from fMRI studies, right-parietal alpha power increases may correspond to a deactivation of the right temporoparietal junction, reflecting an inhibition of the ventral attention network. Inhibition of this region is thought to prevent reorienting to irrelevant stimulation during goal-driven, top-down behavior, which may serve the executive function of task shielding during demanding cognitive tasks such as idea generation and mental imagery.

  15. Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production.

    PubMed

    Margulies, Daniel S; Petrides, Michael

    2013-10-16

    Broca's region, which in the language-dominant hemisphere of the human brain plays a major role in language production, includes two distinct cytoarchitectonic areas: 44 and 45. The unique connectivity patterns of these two areas have not been well established. In a resting-state functional connectivity study, we tested predictions about these areas from invasive tract-tracing studies of the connectivity of their homologs in the macaque monkey. We demonstrated their distinct connectivity profiles as well as their differences from the caudally adjacent ventral parts of the premotor cortex and the primary motor cortical region that represent the orofacial musculature. Area 45 is strongly connected with the superior temporal sulcus and the cortex on the adjacent superior and middle temporal gyri. In the parietal region, area 45 is connected with the angular gyrus, whereas area 44 is connected with the supramarginal gyrus. The primary motor cortical region in the caudal precentral gyrus is not connected with the posterior parietal region, which lies outside the confines of the postcentral gyrus, whereas the ventrorostral premotor cortical area 6VR, in the most anterior part of the precentral gyrus, has strong connections with the rostral supramarginal gyrus. Thus, area 44, which has stronger connections to the posterior supramarginal gyrus, can be distinguished from both the adjacent area 6VR and area 45. These findings provide a major improvement in understanding the connectivity of the areas in the ventrolateral frontal region that are involved in language production.

  16. Parietal cell hyperplasia induced by long-term administration of antacids to rats.

    PubMed Central

    Mazzacca, G; Cascione, F; Budillon, G; D'Agostino, L; Cimino, L; Femiano, C

    1978-01-01

    Suspension of magnesium and aluminum hydroxide (30--60 mEq/24h) or a comparable volme of water was orally administered by gastric intubation to two groups of 20 male Wistar rats each over 60 days. The antacid treatment led to a significant increase in the height (0.464 +/- 0.02 mm v. 0.318 +/- 0.06) and in the volume (472 +/- 32 mm3v.328 +/- 45) of the fundic mucosa of the stomach, in the average count of parietal cells per unit area of the mucosa (32.37 +/- 1.8 v. 22.3 +/- 1.6), and in the total parietal cell population of the stomach (53.6 +/- 3.5 x 10(6) v. 43.2 +/- 3.7 x 10(6)). Furthermore fasting serum gastrin concentration was significantly higher in the antacid treated rats (81.2 +/- 7.4 pg/ml) than in control animals (56.9 +/- 6.9 pg/ml). PMID:710969

  17. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants.

    PubMed

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S

    2015-09-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height.

  18. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability.

    PubMed

    Greenwood, Deanne L V; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W

    2008-08-01

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly. Here, we report on two prepubertal children who developed autoimmune gastritis. One child developed autoimmune gastritis as part of a polyglandular autoimmune disease from a family with polyglandular autoimmune disease type II (PGA type II) and the other as part of a classic "thyro-gastric cluster," which may have been triggered by emotional trauma. Both children presented with normal small bowel biopsies, with abnormal gut permeability, which subsequently resolved. These patients are among the youngest reported to date. The immune systems targetted the gastric parietal cell autoantigens (ATP4A and ATP4B) in both children, similar to the elderly. The study of children with autoimmune gastritis and their families may provide additional insights into the disease's pathogenesis and may also lead to the identification of inheritable factors influencing susceptibility. This report underlines the necessity to screen paediatric patients with organ-specific autoimmune diseases for co-existent conditions. Children with polyglandular autoimmune disease are at particularly high risk.

  19. Contextual modulation of pain in masochists: involvement of the parietal operculum and insula

    PubMed Central

    Kamping, Sandra; Andoh, Jamila; Bomba, Isabelle C.; Diers, Martin; Diesch, Eugen; Flor, Herta

    2015-01-01

    Abstract Pain can be modulated by contextual stimuli, such as emotions, social factors, or specific bodily perceptions. We presented painful laser stimuli together with body-related masochistic visual stimuli to persons with and without preferred masochistic sexual behavior and used neutral, positive, and negative pictures with and without painful stimuli as control. Masochists reported substantially reduced pain intensity and unpleasantness in the masochistic context compared with controls but had unaltered pain perception in the other conditions. Functional magnetic resonance imaging revealed that masochists activated brain areas involved in sensory-discriminative processing rather than affective pain processing when they received painful stimuli on a masochistic background. The masochists compared with the controls displayed attenuated functional connectivity of the parietal operculum with the left and right insulae, the central operculum, and the supramarginal gyrus. Masochists additionally showed negative correlations between the duration of interest in masochistic activities and activation of areas involved in motor activity and affective processing. We propose that the parietal operculum serves as an important relay station that attenuates the affective-motivational aspects of pain in masochists. This novel mechanism of pain modulation might be related to multisensory integration and has important implications for the assessment and treatment of pain. PMID:26808014

  20. The eye and the hand: neural mechanisms and network models for oculomanual coordination in parietal cortex.

    PubMed

    Mascaro, Massimo; Battaglia-Mayer, Alexandra; Nasi, Lorenzo; Amit, Daniel J; Caminiti, Roberto

    2003-12-01

    The coordinated action of the eye and the hand is necessary for the successful performance of a large variety of motor tasks based on visual information. Although at the output level the neural control systems for the eye and the hand are largely segregated, in the parietal cortex of the macaque monkey there exist populations of neurons able to combine ocular and manual signals on the basis of their spatial congruence. An expression of this congruence is the clustering of eye- and hand-related preferred directions of these neurons into a restricted region of the workspace, defined as field of global tuning. This domain may represent a neural substrate for the early composition of commands for coordinated oculo-manual actions. Here we study two different prototypical network models integrating inputs about retinal target location, eye position and hand position. In the first one, we model the interaction of these different signals, as it occurs at the afferent level, in a feed-forward fashion. In the second model, we assume that recurrent interactions are responsible for their combination. Both models account surprisingly well for the experimentally observed global tuning fields of parietal neurons. When we compare them with the experimental findings, no significant difference emerges between the two. Experiments potentially able to discriminate between these models could be performed.

  1. Spatial effects of shifting prisms on properties of posterior parietal cortex neurons.

    PubMed

    Karkhanis, Anushree N; Heider, Barbara; Silva, Fabian Muñoz; Siegel, Ralph M

    2014-08-15

    The posterior parietal cortex contains neurons that respond to visual stimulation and motor behaviour. The objective of the current study was to test short-term adaptation in neurons in macaque area 7a and the dorsal prelunate during visually guided reaching using Fresnel prisms that displaced the visual field. The visual perturbation shifted the eye position and created a mismatch between perceived and actual reach location. Two non-human primates were trained to reach to visual targets before, during and after prism exposure while fixating the reach target in different locations. They were required to reach to the physical location of the reach target and not the perceived, displaced location. While behavioural adaptation to the prisms occurred within a few trials, the majority of neurons responded to the distortion either with substantial changes in spatial eye position tuning or changes in overall firing rate. These changes persisted even after prism removal. The spatial changes were not correlated with the direction of induced prism shift. The transformation of gain fields between conditions was estimated by calculating the translation and rotation in Euler angles. Rotations and translations of the horizontal and vertical spatial components occurred in a systematic manner for the population of neurons suggesting that the posterior parietal cortex retains a constant representation of the visual field remapping between experimental conditions.

  2. Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision

    PubMed Central

    Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter

    2016-01-01

    The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854

  3. Parietal subdural empyema as complication of acute odontogenic sinusitis: a case report

    PubMed Central

    2014-01-01

    Introduction To date intracranial complication caused by tooth extractions are extremely rare. In particular parietal subdural empyema of odontogenic origin has not been described. A literature review is presented here to emphasize the extreme rarity of this clinical entity. Case presentation An 18-year-old Caucasian man with a history of dental extraction developed dysarthria, lethargy, purulent rhinorrhea, and fever. A computed tomography scan demonstrated extensive sinusitis involving maxillary sinus, anterior ethmoid and frontal sinus on the left side and a subdural fluid collection in the temporal-parietal site on the same side. He underwent vancomycin, metronidazole and meropenem therapy, and subsequently left maxillary antrostomy, and frontal and maxillary sinuses toilette by an open approach. The last clinical control done after 3 months showed a regression of all symptoms. Conclusions The occurrence of subdural empyema is an uncommon but possible sequela of a complicated tooth extraction. A multidisciplinary approach involving otolaryngologist, neurosurgeons, clinical microbiologist, and neuroradiologist is essential. Antibiotic therapy with surgical approach is the gold standard treatment. PMID:25146384

  4. Parietal Bone Thickness and Vascular Diameters in Adult Modern Humans: A Survey on Cranial Remains.

    PubMed

    Eisová, Stanislava; Rangel de Lázaro, Gizéh; Píšová, Hana; Pereira-Pedro, Sofia; Bruner, Emiliano

    2016-07-01

    Cranial bone thickness varies among modern humans, and many factors influencing this variability remain unclear. Growth hormones and physical activity are thought to influence the vault thickness. Considering that both systemic factors and energy supply influence the vascular system, and taking into account the structural and biomechanical interaction between endocranial vessels and vault bones, in this study we evaluate the correlation between vascular and bone diameters. In particular, we tested the relationship between the thickness of the parietal bone (which is characterized, in modern humans, by a complex vascular network) and the lumen size of the middle meningeal and diploic vessels, in adult modern humans. Our results show no patent correlation between the thickness of parietal bone and the size of the main vascular channels. Values and distributions of the branching patterns, as well as anatomical relationships between vessels and bones, are also described in order to provide information concerning the arrangement of the endocranial vascular morphology. This information is relevant in both evolutionary and medical contexts. Anat Rec, 299:888-896, 2016. © 2016 Wiley Periodicals, Inc. PMID:27072555

  5. FURTHER OBSERVATIONS ON THE FINE STRUCTURE OF THE PARIETAL EYE OF LIZARDS

    PubMed Central

    Eakin, Richard M.; Westfall, Jane A.

    1960-01-01

    An electron microscopical study of the third eye of the Western Fence Lizard, Sceloporus occidentalis, fixed with 1 per cent osmium tetroxide, pH 7.4–7.6, for 16 to 20 hours at 0°C., revealed the following new facts. The fibrillar system of the retinal photoreceptor consists of nine double fibrils enclosed in a sheath. Pigment cells and lens cells possess similar systems. Two short cylindrical centrioles are associated with the fibrillar apparatus: one, from which striated rootlets extend inward, lies at the base of the fibrils, with the other at an oblique angle to the axis of the system. A Golgi complex, whorls of endoplasmic reticulum, lipid (?) droplets, and other organelles and inclusions in the photoreceptors are described. An axon leads from the base of the photoreceptor into the nervous layer of the retina which consists of many nerve fibers and large ganglion cells. Although the pattern of neural connections has not yet been determined, some synapses were found. The parietal nerve consists of about 250 non-medullated fibers. The capsule of the eye usually has a layer of iridocytes, which contain rows of guanine (?) rods. A few parietal eyes of the Granite Night Lizard, Xantusia henshawi, were also examined. Large lipid (?) droplets occur in the bases of their receptoral processes. PMID:13725484

  6. Biofidelic neck influences head kinematics of parietal and occipital impacts following short falls in infants

    PubMed Central

    Sullivan, Sarah; Coats, Brittany; Margulies, Susan S.

    2015-01-01

    Falls are a major cause of traumatic head injury in children. Understanding head kinematics during low height falls is essential for evaluating injury risk and designing mitigating strategies. Typically, these measurements are made with commercial anthropomorphic infant surrogates, but these surrogates are designed based on adult biomechanical data. In this study, we improve upon the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck bending and tensile data. We then measure head kinematics following head-first falls onto 4 impact surfaces from 3 fall heights with occipital and parietal head impact locations. The biofidelic skull compliance and neck properties of the improved infant surrogate significantly influenced the measured kinematic loads, decreasing the measured impact force and peak angular accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct kinematic responses in primary head rotation direction and the magnitude of the rotational velocities and accelerations, with larger angular velocities as the head rebounded after occipital impacts. Further evaluations of injury risk due to short falls should take into account the impact surface and head impact location, in addition to the fall height. PMID:26072183

  7. Reduced glucose metabolism in temporo-parietal cortices of women with borderline personality disorder.

    PubMed

    Lange, Claudia; Kracht, Lutz; Herholz, Karl; Sachsse, Ulrich; Irle, Eva

    2005-07-30

    Individuals with borderline personality disorder (BPD) and posttraumatic stress disorder (PTSD) often experience dissociative symptoms. Evidence is increasing that stress-related hyperglutamatergic states may contribute to dissociative symptoms and neurodegeneration in temporo-parietal cortical areas. Seventeen young women with BPD who had been exposed to severe childhood physical/sexual abuse and presented with pronounced dissociative symptoms underwent (18)fluoro-2-deoxyglucose positron emission tomography (FDG-PET). Nine healthy, matched volunteers served as comparison subjects. Borderline subjects displayed reduced FDG uptake (as analyzed by SPM) in the right temporal pole/anterior fusiform gyrus and in the left precuneus and posterior cingulate cortex. Impaired memory performance among borderline subjects was significantly correlated with metabolic activity in ventromedial and lateral temporal cortices. Our results demonstrate regional hypometabolism in temporal and medial parietal cortical regions known to be involved in episodic memory consolidation and retrieval. Currently, the precuneus/posterior cingulate cortex is modeled as part of a network of tonically active brain regions that continuously gather information about the world around and within us. Decreased resting metabolic rate of these regions may reflect dissociative symptoms and possibly also identity disturbances and interpersonal difficulties of individuals with BPD.

  8. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    PubMed

    Kagawa, Tomonori; Narita, Noriyuki; Iwaki, Sunao; Kawasaki, Shingo; Kamiya, Kazunobu; Minakuchi, Shunsuke

    2014-01-01

    A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  9. Polarized distribution of IQGAP proteins in gastric parietal cells and their roles in regulated epithelial cell secretion.

    PubMed

    Zhou, Rihong; Guo, Zhen; Watson, Charles; Chen, Emily; Kong, Rong; Wang, Wenxian; Yao, Xuebiao

    2003-03-01

    Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.

  10. Reduced alpha-gamma phase amplitude coupling over right parietal cortex is associated with implicit visuomotor sequence learning.

    PubMed

    Tzvi, Elinor; Verleger, Rolf; Münte, Thomas F; Krämer, Ulrike M

    2016-11-01

    Implicit visuomotor sequence learning is important for our daily life, e.g., when writing or playing an instrument. Previous research identified a network of cortical regions that is relevant for motor sequence learning, namely primary motor cortex, premotor cortex, superior parietal cortex, and subcortical regions, including basal ganglia and cerebellum. Here, we investigated learning-related changes in oscillatory activity (theta, alpha and gamma power) and cross-frequency interactions (theta- and alpha-gamma phase-amplitude coupling) within cortical regions during sensorimotor memory formation. EEG was recorded from a large group of participants (n=73) performing the serial reaction time task (SRTT). Posterior parietal alpha power was larger early-on during sequence learning and smaller in later sessions. Alpha/low-gamma (8-13Hz and 30-48Hz) phase-amplitude coupling (PAC) was significantly smaller during sequence learning over right superior parietal cortex and frontal cortex. During the transition from sequential stimuli to random stimuli, participants made more errors, indicating that they still implicitly attempted to implement the learned motor sequence. At the same time, alpha/low-gamma phase-amplitude coupling was found to be smaller during the transition relative to later random trials. Our results show that learning and implementing a learned motor sequence reduces alpha/low-gamma PAC over parietal and frontal cortex. Fronto-parietal alpha/low-gamma PAC might be relevant for visuomotor mapping which becomes less relevant once the motor sequence has been encoded. PMID:27403869

  11. Aneurysm in the anterior inferior cerebellar artery-posterior inferior cerebellar artery variant: Case report and review of literature

    PubMed Central

    Akhtar, Saad; Azeem, Abdul; Jiwani, Amyna; Javed, Gohar

    2016-01-01

    Introduction There are variations in the anatomy of the vertebrobasilar system amongst which the Anterior Inferior Cerebellar Artery-Posterior Inferior Cerebellar Artery (AICA-PICA) variant is thought to have a prevalence of 20–24% (based on retrospective studies). Despite this, aneurysms of the AICA-PICA variant are rare. We present a case of an AICA-PICA aneurysm and discuss its presentation and management, along with a review of literature. Presentation of case We describe the case of a 35 year old female who presented with signs of meningismus. On the basis of radiological imaging it was initially misdiagnosed as a thrombosed arteriovenous malformation (AVM). The patient was eventually discharged with a plan of interval imaging and interventional radiology (if required). The patient presented again with similar signs and symptoms. Re-evaluation of imaging revealed an aneurysm of the AICA-PICA variant which was managed surgically. Discussion Aneurysms of the AICA-PICA variant are rare. The radiological features and surgical management represent a unique clinical entity and are discussed below. Conclusion The prevalence of the AICA-PICA variant might be high but aneurysms in this vessel are rare. The scant knowledge available on this subject makes it a diagnostic difficulty. PMID:27017276

  12. FoxP2 expression in the cerebellum and inferior olive: development of the transverse stripe-shaped expression pattern in the mouse cerebellar cortex.

    PubMed

    Fujita, Hirofumi; Sugihara, Izumi

    2012-02-15

    Many molecules are expressed heterogeneously in subpopulations of cerebellar Purkinje cells (PCs) and inferior olive (IO) neurons during development or in adulthood. These expression patterns are often organized in longitudinal stripes in the cerebellar cortex, which may be related to functional compartmentalization. FoxP2, a transcription factor, is expressed in PCs and IO neurons, but the details of its expression pattern remain unclear. Here we examined FoxP2 expression patterns systematically by immunostaining serial sections of the hindbrain from embryonic day 14.5 to adulthood in mice. FoxP2 was highly expressed in virtually all PCs at and before postnatal day 6 (P6), except for those in the flocculus and small parts of the nodulus (vermal lobule X), where FoxP2 expression was moderate or absent. After P6, FoxP2 expression gradually diminished in PCs in some areas. In adults, FoxP2 was expressed, less intensely than in earlier stages, in subsets of PCs that were mostly arranged transversely along the folial apices. In contrast, FoxP2 was expressed intensely in most IO neurons during development and in adulthood. FoxP2 was also expressed in a small population of neurons in the cerebellar nuclei. FoxP2 expression in adult rats and chicks was generally comparable to that in adult mice, suggesting evolutionary conservation of the expression pattern. Thus, the FoxP2 expression pattern reflects new transverse compartmentalization in the adult cerebellar cortex, although its functional significance remains unclear.

  13. ['Non-inferiority' trials. Tips for the critical reader. Research methodology 3].

    PubMed

    Soonawala, Darius; Dekkers, Olaf M

    2012-01-01

    The aim of non-inferiority trials is to show that a new treatment is not less effective than standard treatment, in other words 'non-inferior'. The non-inferiority margin should be determined before a study commences. This margin determines the maximal magnitude of difference in effectiveness permissible if it is to be concluded that a new treatment is not less effective than the standard treatment. There is usually a good reason for a non-inferiority design. For example, because the new treatment is easier to use, provides better cost-effectiveness or has fewer side effects. The reader of a non-inferiority trial should consider a number of aspects critically: (a) the reason for use of this study design, (b) the assumed benefit of the new treatment, (c) the rationale for the choice of non-inferiority margin and (d) the choice of the standard therapy with which the new treatment is compared.

  14. Posttransplant Complex Inferior Venacava Balloon Dilatation After Hepatic Vein Stenting

    SciTech Connect

    Kohli, Vikas; Wadhawan, Manav; Gupta, Subhash; Roy, Vipul

    2010-02-15

    Orthotopic and living related liver transplantation is an established mode of treatment of end-stage liver disease. One of the major causes of postoperative complications is vascular anastomotic stenosis. One such set of such complications relates to hepatic vein, inferior vena cava (IVC), or portal vein stenosis, with a reported incidence of 1-3%. The incidence of vascular complications is reported to be higher in living donor versus cadaveric liver transplants. We encountered a patient with hepatic venous outflow tract obstruction, where the hepatic vein had been previously stented, but the patient continued to have symptoms due to additional IVC obstruction. The patient required double-balloon dilatation of the IVC simultaneously from the internal jugular vein and IVC.

  15. Infrahepatic inferior vena cava agenesis with bilateral renal vein thrombosis.

    PubMed

    Skeik, Nedaa; Wickstrom, Kelly K; Schumacher, Clark W; Sullivan, Timothy M

    2013-10-01

    Congenital anomalies of the inferior vena cava (IVC) are rare and are estimated to be present in 0.07-8.7% of the general population. IVC agenesis (IVCA) is found in approximately 5% of cases of unprovoked lower extremity deep vein thrombosis in patients <30 years of age. Renal vein thrombosis (RVT) is an extremely rare and unusual presentation of IVCA. We report a unique case of a 23-year-old previously healthy man presenting with infrahepatic IVCA-induced bilateral RVT with azygos and hemiazygos continuation. To our knowledge, this is the third reported case in the literature of IVCA-induced RVT and the first to affect the bilateral renal veins in the absence of any other thrombogenic risk factors or any lower extremity venous complications. We also present a literature review of IVCA-induced vein thrombosis and highlight the lack of literature to manage this condition.

  16. Inhibition and the right inferior frontal cortex: one decade on.

    PubMed

    Aron, Adam R; Robbins, Trevor W; Poldrack, Russell A

    2014-04-01

    In our TICS Review in 2004, we proposed that a sector of the right inferior frontal cortex (rIFC) in humans is critical for inhibiting response tendencies. Here we survey new evidence, discuss ongoing controversies, and provide an updated theory. We propose that the rIFC (along with one or more fronto-basal-ganglia networks) is best characterized as a brake. This brake can be turned on in different modes (totally, to outright suppress a response; or partially, to pause), and in different contexts (externally, by stop or salient signals; or internally, by goals). We affirm inhibition as a central component of executive control that relies upon the rIFC and associated networks, and explain why rIFC disruption could generally underpin response control disorders.

  17. Anesthetic Efficacy of Bupivacaine Solutions in Inferior Alveolar Nerve Block

    PubMed Central

    Volpato, Maria Cristina; Ranali, José; Ramacciato, Juliana Cama; de Oliveira, Patrícia Cristine; Ambrosano, Glaúcia Maria Bovi; Groppo, Francisco Carlos

    2005-01-01

    The purpose of this study was to compare the anesthetic efficacy of 2 bupivacaine solutions. Twenty-two volunteers randomly received in a crossover, double-blinded manner 2 inferior alveolar nerve blocks with 1.8 mL of racemic bupivacaine and a mixture of 75% levobupivacaine and 25% dextrobupivacaine, both 0.5% and with 1 : 200,000 epinephrine. Before and after the injection, the first mandibular pre-molar was evaluated every 2 minutes until no response to the maximal output (80 reading) of the pulp tester and then again every 20 minutes. Data were analyzed using the Wilcoxon paired test and the paired t test. No differences were found between the solutions for onset and duration of pulpal anesthesia and duration of soft tissue anesthesia (P > .05). It was concluded that the solutions have similar anesthetic efficacy. PMID:16596912

  18. Auditory recognition memory is inferior to visual recognition memory

    PubMed Central

    Cohen, Michael A.; Horowitz, Todd S.; Wolfe, Jeremy M.

    2009-01-01

    Visual memory for scenes is surprisingly robust. We wished to examine whether an analogous ability exists in the auditory domain. Participants listened to a variety of sound clips and were tested on their ability to distinguish old from new clips. Stimuli ranged from complex auditory scenes (e.g., talking in a pool hall) to isolated auditory objects (e.g., a dog barking) to music. In some conditions, additional information was provided to help participants with encoding. In every situation, however, auditory memory proved to be systematically inferior to visual memory. This suggests that there exists either a fundamental difference between auditory and visual stimuli, or, more plausibly, an asymmetry between auditory and visual processing. PMID:19307569

  19. Scorpion envenomation-induced acute thrombotic inferior myocardial infarction.

    PubMed

    Baykan, Ahmet Oytun; Gür, Mustafa; Acele, Armağan; Şeker, Taner; Çaylı, Murat

    2016-01-01

    The occurrence of a serious cardiac emergency following scorpion envenomation has rarely been reported and, when so, mostly presented as non-ST segment elevation myocardial infarction, cardiogenic shock, or myocarditis. Possible mechanisms include imbalance in blood pressure and coronary vasospasm caused by the combination of sympathetic excitation, scorpion venom-induced release of catecholamines, and the direct effect of the toxin on the myocardium. We report a case of a 55-year-old man who presented with acute inferior wall myocardial infarction (MI) within 2 h of being stung by a scorpion. Coronary angiogram revealed total thrombotic occlusion of the left circumflex artery, which was treated successfully with glycoprotein IIb/IIIa inhibitor, thrombus aspiration, antivenom serum, and supportive therapy. Therefore, life-threatening MI can complicate the clinical course during some types of scorpion envenomation and should be managed as an acute coronary syndrome. PMID:26875137

  20. Evidence of Mirror Neurons in Human Inferior Frontal Gyrus

    PubMed Central

    Kilner, James M.; Neal, Alice; Weiskopf, Nikolaus; Friston, Karl J.; Frith, Chris D.

    2009-01-01

    There is much current debate about the existence of mirror neurons in humans. To identify mirror neurons in the inferior frontal gyrus (IFG) of humans we employed a repetition suppression paradigm while measuring neural activity with functional magnetic resonance imaging. Subjects either executed or observed a series of actions. Here we show that in the IFG, responses were suppressed both when an executed action was followed by the same rather than a different observed action and when an observed action was followed by the same rather than a different executed action. This pattern of responses is consistent with that predicted by mirror neurons and is evidence of mirror neurons in the human IFG. PMID:19675249

  1. Indications, Management, and Complications of Temporary Inferior Vena Cava Filters

    SciTech Connect

    Linsenmaier, Ulrich; Rieger, Johannes; Schenk, Franz; Rock, Clemens; Mangel, Eugen; Pfeifer, Klaus Juergen

    1998-11-15

    Purpose: We describe the results of a preliminary prospective study using different recently developed temporary and retrievable inferior vena cava (IVC) filters. Methods: Fifty temporary IVC filters (Guenther, Guenther Tulip, Antheor) were inserted in 47 patients when the required period of protection against pulmonary embolism (PE) was estimated to be less than 2 weeks. The indications were documented deep vein thrombosis (DVT) and temporary contraindications for anticoagulation, a high risk for PE, and PE despite DVT prophylaxis. Results: Filters were removed 1-12 days after placement and nine (18%) had captured thrombi. Complications were one PE during and after removal of a filter, two minor filter migrations, and one IVC thrombosis. Conclusion: Temporary filters are effective in trapping clots and protecting against PE, and the complication rate does not exceed that of permanent filters. They are an alternative when protection from PE is required temporarily, and should be considered in patients with a normal life expectancy.

  2. Sensitivity of rat inferior colliculus neurons to frequency distributions.

    PubMed

    Herrmann, Björn; Parthasarathy, Aravindakshan; Han, Emily X; Obleser, Jonas; Bartlett, Edward L

    2015-11-01

    Stimulus-specific adaptation refers to a neural response reduction to a repeated stimulus that does not generalize to other stimuli. However, stimulus-specific adaptation appears to be influenced by additional factors. For example, the statistical distribution of tone frequencies has recently been shown to dynamically alter stimulus-specific adaptation in human auditory cortex. The present study investigated whether statistical stimulus distributions also affect stimulus-specific adaptation at an earlier stage of the auditory hierarchy. Neural spiking activity and local field potentials were recorded from inferior colliculus neurons of rats while tones were presented in oddball sequences that formed two different statistical contexts. Each sequence consisted of a repeatedly presented tone (standard) and three rare deviants of different magnitudes (small, moderate, large spectral change). The critical manipulation was the relative probability with which large spectral changes occurred. In one context the probability was high (relative to all deviants), while it was low in the other context. We observed larger responses for deviants compared with standards, confirming previous reports of increased response adaptation for frequently presented tones. Importantly, the statistical context in which tones were presented strongly modulated stimulus-specific adaptation. Physically and probabilistically identical stimuli (moderate deviants) in the two statistical contexts elicited different response magnitudes consistent with neural gain changes and thus neural sensitivity adjustments induced by the spectral range of a stimulus distribution. The data show that already at the level of the inferior colliculus stimulus-specific adaptation is dynamically altered by the statistical context in which stimuli occur. PMID:26354316

  3. [Solitary fibrous tumor of the parietal pleura resected by video-assisted thoracic surgery; report of a case].

    PubMed

    Hayama, Makio; Maeda, Hiroya

    2010-06-01

    A 35-year-old male was admitted to our hospital for further examination of abnormal shadow on chest X-ray. Contrast-enhanced chest computed tomography (CT) showed a clear-shaped tumor with homogenous enhancement, measuring 25 x 20 mm in size, which had enlarged, compared with chest CT of 2 years before. The tumor appeared to be based partially on the parietal pleura. Under the diagnosis of solitary fibrous tumor (SFT) originated from the visceral or parietal pleura, video-assisted thoracic surgery (VATS) was performed. Under thoracoscopy, the tumor was pedunculated and arose from the parietal pleura. The tumor was resected completely. The pathologic findings revealed proliferation of spindle cells and collagen fibers without malignant aspects. Immuno-histochemical findings showed positive immunostaining for CD34 and vimentin in the tumor cells. These findings confirmed that the tumor was SFT.

  4. Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure.

    PubMed

    Thomas, Monzy; George, Nysia I; Saini, Upasana T; Patterson, Tucker A; Hanig, Joseph P; Bowyer, John F

    2010-08-01

    Amphetamine (AMPH) is used to treat attention deficit and hyperactivity disorders, but it can produce neurotoxicity and adverse vascular effects at high doses. The endoplasmic reticulum (ER) stress response (ERSR) entails the unfolded protein response, which helps to avoid or minimize ER dysfunction. ERSR is often associated with toxicities resulting from the accumulation of unfolded or misfolded proteins and has been associated with methamphetamine toxicity in the striatum. The present study evaluates the effect of AMPH on several ERSR elements in meninges and associated vasculature (MAV), parietal cortex, and striatum. Adult, male Sprague-Dawley rats were exposed to saline, environmentally induced hyperthermia (EIH) or four consecutive doses of AMPH that produce hyperthermia. Expression changes (mRNA and protein levels) of key ERSR-related genes in MAV, striatum, and parietal cortex at 3 h or 1 day postdosing were monitored. AMPH increased the expression of some ERSR-related genes in all tissues. Atf4 (activating transcription factor 4, an indicator of Perk pathway activation), Hspa5/Grp78 (Glucose regulated protein 78, master regulator of ERSR), Pdia4 (protein disulfide isomerase, protein-folding enzyme), and Nfkb1 (nuclear factor of kappa b, ERSR sensor) mRNA increased significantly in MAV and parietal cortex 3 h after AMPH. In striatum, Atf4 and Hspa5/Grp78 mRNA significantly increased 3 h after AMPH, but Pdia4 and Nfkb11 did not. Thus, AMPH caused a robust activation of the Perk pathway in all tissues, but significant Ire1 pathway activation occurred only after AMPH treatment in the parietal cortex and striatum. Ddit3/Chop, a downstream effector of the ERSR pathway related to the neurotoxicity, was only increased in striatum and parietal cortex. Conversely, Pdia4, an enzyme protective in the ERSR, was only increased in MAV. The overall ERSR manifestation varied significantly between MAV, striatum, and parietal cortex after a neurotoxic exposure to AMPH.

  5. Aberrant Parietal Cortex Developmental Trajectories in Girls With Turner Syndrome and Related Visual–Spatial Cognitive Development: A Preliminary Study

    PubMed Central

    Green, Tamar; Chromik, Lindsay C.; Mazaika, Paul K.; Fierro, Kyle; Raman, Mira M.; Lazzeroni, Laura C.; Hong, David S.; Reiss, Allan L.

    2015-01-01

    Turner syndrome (TS) arises from partial or complete absence of the X-chromosome in females. Girls with TS show deficits in visual–spatial skills as well as reduced brain volume and surface area in the parietal cortex which supports these cognitive functions. Thus, measuring the developmental trajectory of the parietal cortex and the associated visual–spatial cognition in TS may provide novel insights into critical brain-behavior associations. In this longitudinal study, we acquired structural MRI data and assessed visual–spatial skills in 16 (age: 8.23 ±2.5) girls with TS and 13 age-matched controls over two time-points. Gray and white matter volume, surface area and cortical thickness were calculated from surfaced based segmentation of bilateral parietal cortices, and the NEPSY Arrows subtest was used to assess visual–spatial ability. Volumetric and cognitive scalars were modeled to obtain estimates of age-related change. The results show aberrant growth of white matter volume (P =0.011, corrected) and surface area (P =0.036, corrected) of the left superior parietal regions during childhood in girls with TS. Other parietal sub-regions were significantly smaller in girls with TS at both time-points but did not show different growth trajectories relative to controls. Furthermore, we found that visual–spatial skills showed a widening deficit for girls with TS relative to controls (P =0.003). Young girls with TS demonstrate an aberrant trajectory of parietal cortical and cognitive development during childhood. Elucidating aberrant neurodevelopmental trajectories in this population is critical for determining specific stages of brain maturation that are particularly dependent on TS-related genetic and hormonal factor. PMID:25044604

  6. Paroxysmal posterior variant alien hand syndrome associated with parietal lobe infarction: case presentation.

    PubMed

    Demiryürek, Bekir Enes; Gündogdu, Aslı Aksoy; Acar, Bilgehan Atılgan; Alagoz, Aybala Neslihan

    2016-10-01

    Alien hand syndrome (AHS) is an involuntary and rare neurological disorder emerges at upper extremity. AHS is a disconnection syndrome with the symptoms of losing sense of agency and sense of ownership, and presence of involuntary autonomic motor activity. There are frontal, callosal and posterior types of AHS and each of them occurs depend on the lesions of different of the brain. Posterior variant is a rarely encountered AHS type compared to others. AHS, generally regarded as persistent, but rarely maybe observed as paroxysmal. In this article, we present 71 year old patient with right posterior parietal lobe infarction and developed posterior variant AHS on left arm 1 month after discharge from the hospital. To discriminate AHS from conditions such as extrapyramidal movement disorders and epileptic seizures that take part in differential diagnosis should be kept in mind by the clinicians. Wrong and unnecessary treatments could be prevented in this way.

  7. Neuronal representation of saccadic error in macaque posterior parietal cortex (PPC).

    PubMed

    Zhou, Yang; Liu, Yining; Lu, Haidong; Wu, Si; Zhang, Mingsha

    2016-01-01

    Motor control, motor learning, self-recognition, and spatial perception all critically depend on the comparison of motor intention to the actually executed movement. Despite our knowledge that the brainstem-cerebellum plays an important role in motor error detection and motor learning, the involvement of neocortex remains largely unclear. Here, we report the neuronal computation and representation of saccadic error in macaque posterior parietal cortex (PPC). Neurons with persistent pre- and post-saccadic response (PPS) represent the intended end-position of saccade; neurons with late post-saccadic response (LPS) represent the actual end-position of saccade. Remarkably, after the arrival of the LPS signal, the PPS neurons' activity becomes highly correlated with the discrepancy between intended and actual end-position, and with the probability of making secondary (corrective) saccades. Thus, this neuronal computation might underlie the formation of saccadic error signals in PPC for speeding up saccadic learning and leading the occurrence of secondary saccade. PMID:27097103

  8. Temporary Interference over the Posterior Parietal Cortices Disrupts Thermoregulatory Control in Humans

    PubMed Central

    Gallace, Alberto; Soravia, Giovanna; Cattaneo, Zaira; Moseley, G. Lorimer; Vallar, Giuseppe

    2014-01-01

    The suggestion has recently been made that certain higher-order cortical areas involved in supporting multisensory representations of the body, and of the space around it, might also play a role in controlling thermoregulatory functions. Here we demonstrate that temporary interference with the function of one of these areas, the posterior parietal cortex, by repetitive transcranial magnetic stimulation, results in a decrease in limb temperature. By contrast, interference with the activity of a sensory-specific area (the primary somatosensory cortex) had no effect on temperature. The results of this experiment suggest that associative multisensory brain areas might exert a top-down modulation over basic physiological control. Such a function might be part of a larger neural circuit responsible for maintaining the integrity of the body at both a homeostatic and a psychological level. PMID:24622382

  9. Paroxysmal posterior variant alien hand syndrome associated with parietal lobe infarction: case presentation.

    PubMed

    Demiryürek, Bekir Enes; Gündogdu, Aslı Aksoy; Acar, Bilgehan Atılgan; Alagoz, Aybala Neslihan

    2016-10-01

    Alien hand syndrome (AHS) is an involuntary and rare neurological disorder emerges at upper extremity. AHS is a disconnection syndrome with the symptoms of losing sense of agency and sense of ownership, and presence of involuntary autonomic motor activity. There are frontal, callosal and posterior types of AHS and each of them occurs depend on the lesions of different of the brain. Posterior variant is a rarely encountered AHS type compared to others. AHS, generally regarded as persistent, but rarely maybe observed as paroxysmal. In this article, we present 71 year old patient with right posterior parietal lobe infarction and developed posterior variant AHS on left arm 1 month after discharge from the hospital. To discriminate AHS from conditions such as extrapyramidal movement disorders and epileptic seizures that take part in differential diagnosis should be kept in mind by the clinicians. Wrong and unnecessary treatments could be prevented in this way. PMID:27668023

  10. Functional definitions of parietal areas in human and non-human primates

    PubMed Central

    Orban, Guy A.

    2016-01-01

    Establishing homologies between cortical areas in animal models and humans lies at the heart of translational neuroscience, as it demonstrates how knowledge obtained from these models can be applied to the human brain. Here, we review progress in using parallel functional imaging to ascertain homologies between parietal areas of human and non-human primates, species sharing similar behavioural repertoires. The human homologues of several areas along monkey IPS involved in action planning and observation, such as AIP, LIP and CIP, as well as those of opercular areas (SII complex), have been defined. In addition, uniquely human areas, such as the tool-use area in left anterior supramarginal gyrus, have also been identified. PMID:27053755

  11. Broad domain generality in focal regions of frontal and parietal cortex

    PubMed Central

    Fedorenko, Evelina; Duncan, John; Kanwisher, Nancy

    2013-01-01

    Unlike brain regions that respond selectively to specific kinds of information content, a number of frontal and parietal regions are thought to be domain- and process-general: that is, active during a wide variety of demanding cognitive tasks. However, most previous evidence for this functional generality in humans comes from methods that overestimate activation overlap across tasks. Here we present functional MRI evidence from single-subject analyses for broad functional generality of a specific set of brain regions: the same sets of voxels are engaged across tasks ranging from arithmetic to storing information in working memory, to inhibiting irrelevant information. These regions have a specific topography, often lying directly adjacent to domain-specific regions. Thus, in addition to domain-specific brain regions tailored to solve particular problems of longstanding importance to our species, the human brain also contains a set of functionally general regions that plausibly endow us with the cognitive flexibility necessary to solve novel problems. PMID:24062451

  12. Parietal and bi-occipital lobe infarction confounded by ethanol-induced optic neuropathy.

    PubMed

    Tornatore, C W; Townsend, J C; Selvin, G J

    1991-08-01

    A frequent occurrence in geriatric and chronically ill patients is the exhibition of several simultaneously occurring and confounding health problems. This paper reports the case of a 61-year-old-white male who presented with an extensive history of multiple brain infarcts, hemiparesis, personality changes and varied visual complaints. Tests in the neurooptometric work-up for this patient included static automated perimetry, stereoacuity and optokinetic nystagmus evaluation. The results were suggestive of multiple cerebrovascular accidents which included the right and left occipital lobes as well as the right parietal lobe. This clinical picture was complicated by the presence of nutritional or ethanol-induced optic neuropathy. Emphasis was placed on a detailed sequential history of events and a complete neurological and optometric evaluation to ascertain the multiple foci of cortical infarction. Corroboration of clinical findings was obtained by computerized axial tomography (CT scan).

  13. Parietal and early visual cortices encode working memory content across mental transformations.

    PubMed

    Christophel, Thomas B; Cichy, Radoslaw M; Hebart, Martin N; Haynes, John-Dylan

    2015-02-01

    Active and flexible manipulations of memory contents "in the mind's eye" are believed to occur in a dedicated neural workspace, frequently referred to as visual working memory. Such a neural workspace should have two important properties: The ability to store sensory information across delay periods and the ability to flexibly transform sensory information. Here we used a combination of functional MRI and multivariate decoding to indentify such neural representations. Subjects were required to memorize a complex artificial pattern for an extended delay, then rotate the mental image as instructed by a cue and memorize this transformed pattern. We found that patterns of brain activity already in early visual areas and posterior parietal cortex encode not only the initially remembered image, but also the transformed contents after mental rotation. Our results thus suggest that the flexible and general neural workspace supporting visual working memory can be realized within posterior brain regions.

  14. Object vision to hand action in macaque parietal, premotor, and motor cortices

    PubMed Central

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. DOI: http://dx.doi.org/10.7554/eLife.15278.001 PMID:27458796

  15. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human.

    PubMed

    Aflalo, Tyson; Kellis, Spencer; Klaes, Christian; Lee, Brian; Shi, Ying; Pejsa, Kelsie; Shanfield, Kathleen; Hayes-Jackson, Stephanie; Aisen, Mindy; Heck, Christi; Liu, Charles; Andersen, Richard A

    2015-05-22

    Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients.

  16. Early planning activity in frontal and parietal cortex in a simplified task

    PubMed Central

    Andersen, Richard A.

    2015-01-01

    Cortical planning activity has traditionally been probed with visual targets. However, external sensory signals might obscure early correlates of internally generated plans. We devised a nonspatial decision-making task in which the monkey is encouraged to decide randomly whether to reach or saccade in the absence of sensory stimuli. Neurons in frontal and parietal planning areas (in and around the arcuate and intraparietal sulci) showed responses predictive of the monkey's upcoming movement at early stages during the planning process. Neurons predicted the animal's future movements several seconds beforehand, sometimes before the trial even began. These data cast new light on the role of the cerebral cortex in the action planning process, when the animal is free to decide on his own actions in the absence of extraneous sensory cues. PMID:25761951

  17. Distinct Roles of the Prefrontal and Posterior Parietal Cortices in Response Inhibition.

    PubMed

    Zhou, Xin; Qi, Xue-Lian; Constantinidis, Christos

    2016-03-29

    The dorsolateral prefrontal cortex and posterior parietal cortex have been implicated in the planning of movements and inhibition of inappropriate responses, though their precise roles in these functions are not known. To address this question, we trained monkeys to perform memory-guided saccade and anti-saccade tasks and compared neural responses in the same animals. A population of neurons with no motor responses was also activated by a stimulus appearing out of the receptive field and could therefore mediate vector inversion. These neurons were found almost exclusively in the prefrontal cortex. Prefrontal cortical activity better predicted the level of performance in the task. Representation of the saccade goal also peaked in the prefrontal cortex at a time that was predictive of reaction time. These results suggest that the prefrontal cortex is the primary site of vector inversion in the cerebral cortex and explain the importance of this area in response inhibition. PMID:26997283

  18. Bilateral parietal cortex damage does not impair associative memory for paired stimuli.

    PubMed

    Berryhill, Marian E; Drowos, David B; Olson, Ingrid R

    2009-10-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for nonverbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and, instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  19. Dissociable parietal regions facilitate successful retrieval of recently learned and personally familiar information.

    PubMed

    Elman, Jeremy A; Cohn-Sheehy, Brendan I; Shimamura, Arthur P

    2013-03-01

    In fMRI analyses, the posterior parietal cortex (PPC) is particularly active during the successful retrieval of episodic memory. To delineate the neural correlates of episodic retrieval more succinctly, we compared retrieval of recently learned spatial locations (photographs of buildings) with retrieval of previously familiar locations (photographs of familiar campus buildings). Episodic retrieval of recently learned locations activated a circumscribed region within the ventral PPC (anterior angular gyrus and adjacent regions in the supramarginal gyrus) as well as medial PPC regions (posterior cingulated gyrus and posterior precuneus). Retrieval of familiar locations activated more posterior regions in the ventral PPC (posterior angular gyrus, LOC) and more anterior regions in the medial PPC (anterior precuneus and retrosplenial cortex). These dissociable effects define more precisely PPC regions involved in the retrieval of recent, contextually bound information as opposed to regions involved in other processes, such as visual imagery, scene reconstruction, and self-referential processing.

  20. Surface Reconstruction from Parallel Curves with Application to Parietal Bone Fracture Reconstruction

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Ridzuan Yahya, Zainor

    2016-01-01

    Maxillofacial trauma are common, secondary to road traffic accident, sports injury, falls and require sophisticated radiological imaging to precisely diagnose. A direct surgical reconstruction is complex and require clinical expertise. Bio-modelling helps in reconstructing surface model from 2D contours. In this manuscript we have constructed the 3D surface using 2D Computerized Tomography (CT) scan contours. The fracture part of the cranial vault are reconstructed using GC1 rational cubic Ball curve with three free parameters, later the 2D contours are flipped into 3D with equidistant z component. The constructed surface is represented by contours blending interpolant. At the end of this manuscript a case report of parietal bone fracture is also illustrated by employing this method with a Graphical User Interface (GUI) illustration. PMID:26967643

  1. Bilateral Parietal Cortex Damage Does Not Impair Associative Memory for Paired Stimuli

    PubMed Central

    Berryhill, Marian E.; Drowos, David B.; Olson, Ingrid R.

    2010-01-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word-pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for non-verbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  2. Task-specific versus generalized mnemonic representations in parietal and prefrontal cortices.

    PubMed

    Sarma, Arup; Masse, Nicolas Y; Wang, Xiao-Jing; Freedman, David J

    2016-01-01

    Our ability to learn a wide range of behavioral tasks is essential for responding appropriately to sensory stimuli according to behavioral demands, but the underlying neural mechanism has been rarely examined by neurophysiological recordings in the same subjects across learning. To understand how learning new behavioral tasks affects neuronal representations, we recorded from posterior parietal cortex (PPC) before and after training on a visual motion categorization task. We found that categorization training influenced cognitive encoding in PPC, with a marked enhancement of memory-related delay-period encoding during the categorization task that was absent during a motion discrimination task before categorization training. In contrast, the prefrontal cortex (PFC) exhibited strong delay-period encoding during both discrimination and categorization tasks. This reveals a dissociation between PFC's and PPC's roles in working memory, with general engagement of PFC across multiple tasks, in contrast with more task-specific mnemonic encoding in PPC. PMID:26595652

  3. [Signal transudation pathways in parietal cells of the gastric mucosa in experimental stomach ulcer].

    PubMed

    Ostapchenko, L I; Drobins'ka, O V; Chaĭka, V O; Bohun, L I; Bohdanova, O V; Kot, L I; Haĭda, L M

    2009-01-01

    The goal of the presented work was the research of signal transduction mechanism in the rat gastric parietal cells under stomach ulcer conditions. In these cells activation of adenylate cyclase (increase of cAMP level and proteinkinase A activity) and phosphoinositide (increases [Ca2+]i; cGMP and phoshatidylinocitole levels; proteinkinase C, proteinkinase G, and calmodulin-dependent-proteinkinase activity) of signals pathway was shown. An increase of plasma membrane phospholipids (PC, PS, PE, PI, LPC) level was shown. Under conditions of influence of the stress factor the membran enzymes activity (H+, K+ -ATPase, 5'-AMPase, Na+, K+ -ATPase, Ca2+, Mg2+ -ATPase and H+, K+ -ATPase) was considerably increased. The intensification of lipid peroxidation processes in rats was demonstrated.

  4. Object vision to hand action in macaque parietal, premotor, and motor cortices.

    PubMed

    Schaffelhofer, Stefan; Scherberger, Hansjörg

    2016-01-01

    Grasping requires translating object geometries into appropriate hand shapes. How the brain computes these transformations is currently unclear. We investigated three key areas of the macaque cortical grasping circuit with microelectrode arrays and found cooperative but anatomically separated visual and motor processes. The parietal area AIP operated primarily in a visual mode. Its neuronal population revealed a specialization for shape processing, even for abstract geometries, and processed object features ultimately important for grasping. Premotor area F5 acted as a hub that shared the visual coding of AIP only temporarily and switched to highly dominant motor signals towards movement planning and execution. We visualize these non-discrete premotor signals that drive the primary motor cortex M1 to reflect the movement of the grasping hand. Our results reveal visual and motor features encoded in the grasping circuit and their communication to achieve transformation for grasping. PMID:27458796

  5. Differential contribution of superior parietal and dorsal-lateral prefrontal cortices in copying.

    PubMed

    Averbeck, Bruno B; Crowe, David A; Chafee, Matthew V; Georgopoulos, Apostolos P

    2009-03-01

    In this study we examined the differential contribution of superior parietal cortex (SPC) and caudal dorsal-lateral prefrontal cortex (dlPFC) to drawing geometrical shapes. Monkeys were trained to draw triangles, squares, trapezoids and inverted triangles while we recorded the activity of small ensembles of neurons in caudal area 46 and areas 5 and 2 of parietal cortex. We analyzed the drawing factors encoded by individual neurons by fitting a step-wise general-linear model using as our dependent variable the firing rate averaged over segments of the produced trajectories. This analysis demonstrated that both cognitive (shape and segment serial position) and motor (maximum speed, position and direction of segment) factors modulated the activity of individual neurons. Furthermore, SPC had an enriched representation of both shape and motor factors, with the motor enrichment being stronger than the shape enrichment. Following this we used the activity in the simultaneously recorded neural ensembles to predict the hand velocity. In these analyses we found that the prediction of the hand velocity was better when we estimated different linear decoding functions for each shape than when we estimated a single function across shapes, although it was a subtle effect. Furthermore, we also found that ensembles of caudal dlPFC neurons carried considerable information about hand velocity, a purely motor factor. However, the SPC ensembles carried more information at the ensemble level as a function of the ensemble size than the caudal dlPFC ensembles, although the differences were not dramatic. Finally, an analysis of the response latencies of individual neurons showed that the caudal dlPFC representation was more sensory than the SPC representation, which was equally sensory and motor. Thus, this neurophysiological evidence suggests that both SPC and caudal dlPFC have a role in drawing, but that SPC plays a larger role in both the cognitive and the motor components.

  6. Training Transfers the Limits on Perception from Parietal to Ventral Cortex

    PubMed Central

    Chang, Dorita H.F.; Mevorach, Carmel; Kourtzi, Zoe; Welchman, Andrew E.

    2014-01-01

    Summary Visually guided behavior depends on (1) extracting and (2) discriminating signals from complex retinal inputs, and these perceptual skills improve with practice [1]. For instance, training on aerial reconnaissance facilitated World War II Allied military operations [2]; analysts pored over stereoscopic photographs, becoming expert at (1) segmenting pictures into meaningful items to break camouflage from (noisy) backgrounds, and (2) discriminating fine details to distinguish V-weapons from innocuous pylons. Training is understood to optimize neural circuits that process scene features (e.g., orientation) for particular purposes (e.g., judging position) [3–6]. Yet learning is most beneficial when it generalizes to other settings [7, 8] and is critical in recovery after adversity [9], challenging understanding of the circuitry involved. Here we used repetitive transcranial magnetic stimulation (rTMS) to infer the functional organization supporting learning generalization in the human brain. First, we show dissociable contributions of the posterior parietal cortex (PPC) versus lateral occipital (LO) circuits: extracting targets from noise is disrupted by PPC stimulation, in contrast to judging feature differences, which is affected by LO rTMS. Then, we demonstrate that training causes striking changes in this circuit: after feature training, identifying a target in noise is not disrupted by PPC stimulation but instead by LO stimulation. This indicates that training shifts the limits on perception from parietal to ventral brain regions and identifies a critical neural circuit for visual learning. We suggest that generalization is implemented by supplanting dynamic processing conducted in the PPC with specific feature templates stored in the ventral cortex. PMID:25283780

  7. The capacity constraint in the prefrontal and parietal regions for coordinating dual arithmetic tasks.

    PubMed

    Kuo, Bo-Cheng; Yeh, Yei-Yu; Chen, Der-Yow; Liang, Keng Chen; Chen, Jyh-Horng

    2008-03-14

    Using a dual-serial-arithmetic paradigm, we examined whether a capacity limitation constrains the neural activation that underlies dual-task performance. Six conditions were run in the experiment (the baseline, single-addition, single-subtraction, dual-addition, dual-subtraction, and the dual-operation condition). In the baseline condition, participants were asked to remember the initial pair of numbers and ignore subsequent stimuli. In the single-addition and single-subtraction conditions, participants had to calculate a running total over a series of stimuli. In the dual-addition and dual-subtraction conditions, they had to do two arithmetic tasks involving the same operand (e.g., + 2 and + 7, - 3 and - 5). Participants performed one addition and one subtraction task (e.g., + 2 and - 7, - 3 and + 5) in the dual-operation condition. The functional magnetic resonance imaging results showed strict left prefrontal and parietal regions in the single-addition condition and bilateral activation in the single-subtraction condition. Greater activation in the prefrontal and parietal regions was observed in both the dual-operation condition and the dual-addition condition in comparison to the single-addition condition. No greater activation was observed in either the dual-operation condition or dual-subtraction condition in comparison to the single-subtraction condition. These results suggest a constraint imposed by a limit in capacity for the neural activity subserving dual-task performance when one of the tasks places high resource demands on the executive network.

  8. Causal interactions between fronto-parietal central executive and default-mode networks in humans

    PubMed Central

    Chen, Ashley C.; Oathes, Desmond J.; Chang, Catie; Bradley, Travis; Zhou, Zheng-Wei; Williams, Leanne M.; Glover, Gary H.; Deisseroth, Karl; Etkin, Amit

    2013-01-01

    Information processing during human cognitive and emotional operations is thought to involve the dynamic interplay of several large-scale neural networks, including the fronto-parietal central executive network (CEN), cingulo-opercular salience network (SN), and the medial prefrontal-medial parietal default mode networks (DMN). It has been theorized that there is a causal neural mechanism by which the CEN/SN negatively regulate the DMN. Support for this idea has come from correlational neuroimaging studies; however, direct evidence for this neural mechanism is lacking. Here we undertook a direct test of this mechanism by combining transcranial magnetic stimulation (TMS) with functional MRI to causally excite or inhibit TMS-accessible prefrontal nodes within the CEN or SN and determine consequent effects on the DMN. Single-pulse excitatory stimulations delivered to only the CEN node induced negative DMN connectivity with the CEN and SN, consistent with the CEN/SN’s hypothesized negative regulation of the DMN. Conversely, low-frequency inhibitory repetitive TMS to the CEN node resulted in a shift of DMN signal from its normally low-frequency range to a higher frequency, suggesting disinhibition of DMN activity. Moreover, the CEN node exhibited this causal regulatory relationship primarily with the medial prefrontal portion of the DMN. These findings significantly advance our understanding of the causal mechanisms by which major brain networks normally coordinate information processing. Given that poorly regulated information processing is a hallmark of most neuropsychiatric disorders, these findings provide a foundation for ways to study network dysregulation and develop brain stimulation treatments for these disorders. PMID:24248372

  9. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.

    PubMed

    Göttlich, Martin; Krämer, Ulrike M; Kordon, Andreas; Hohagen, Fritz; Zurowski, Bartosz

    2014-11-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty. PMID:25044747

  10. Evolution of mammalian sensorimotor cortex: thalamic projections to parietal cortical areas in Monodelphis domestica

    PubMed Central

    Dooley, James C.; Franca, João G.; Seelke, Adele M. H.; Cooke, Dylan F.; Krubitzer, Leah A.

    2015-01-01

    The current experiments build upon previous studies designed to reveal the network of parietal cortical areas present in the common mammalian ancestor. Understanding this ancestral network is essential for highlighting the basic somatosensory circuitry present in all mammals, and how this basic plan was modified to generate species specific behaviors. Our animal model, the short-tailed opossum (Monodelphis domestica), is a South American marsupial that has been proposed to have a similar ecological niche and morphology to the earliest common mammalian ancestor. In this investigation, we injected retrograde neuroanatomical tracers into the face and body representations of primary somatosensory cortex (S1), the rostral and caudal somatosensory fields (SR and SC), as well as a multimodal region (MM). Projections from different architectonically defined thalamic nuclei were then quantified. Our results provide further evidence to support the hypothesized basic mammalian plan of thalamic projections to S1, with the lateral and medial ventral posterior thalamic nuclei (VPl and VPm) projecting to S1 body and S1 face, respectively. Additional strong projections are from the medial division of posterior nucleus (Pom). SR receives projections from several midline nuclei, including the medial dorsal, ventral medial nucleus, and Pom. SC and MM show similar patterns of connectivity, with projections from the ventral anterior and ventral lateral nuclei, VPm and VPl, and the entire posterior nucleus (medial and lateral). Notably, MM is distinguished from SC by relatively dense projections from the dorsal division of the lateral geniculate nucleus and pulvinar. We discuss the finding that S1 of the short-tailed opossum has a similar pattern of projections as other marsupials and mammals, but also some distinct projections not present in other mammals. Further we provide additional support for a primitive posterior parietal cortex which receives input from multiple modalities. PMID

  11. Spatial and Temporal Eye–Hand Coordination Relies on the Parietal Reach Region

    PubMed Central

    Hauschild, Markus; Wilke, Melanie; Andersen, Richard A.

    2014-01-01

    Coordinated eye movements are crucial for precision control of our hands. A commonly believed neural mechanism underlying eye–hand coordination is interaction between the neural networks controlling each effector, exchanging, and matching information, such as movement target location and onset time. Alternatively, eye–hand coordination may result simply from common inputs to independent eye and hand control pathways. Thus far, it remains unknown whether and where either of these two possible mechanisms exists. A candidate location for the former mechanism, interpathway communication, includes the posterior parietal cortex (PPC) where distinct effector-specific areas reside. If the PPC were within the network for eye–hand coordination, perturbing it would affect both eye and hand movements that are concurrently planned. In contrast, if eye–hand coordination arises solely from common inputs, perturbing one effector pathway, e.g., the parietal reach region (PRR), would not affect the other effector. To test these hypotheses, we inactivated part of PRR in the macaque, located in the medial bank of the intraparietal sulcus encompassing the medial intraparietal area and area 5V. When each effector moved alone, PRR inactivation shortened reach but not saccade amplitudes, compatible with the known reach-selective activity of PRR. However, when both effectors moved concurrently, PRR inactivation shortened both reach and saccade amplitudes, and decoupled their reaction times. Therefore, consistent with the interpathway communication hypothesis, we propose that the planning of concurrent eye and hand movements causes the spatial information in PRR to influence the otherwise independent eye control pathways, and that their temporal coupling requires an intact PRR. PMID:25232123

  12. Computer modeling of gastric parietal cell: significance of canalicular space, gland lumen, and variable canalicular [K+].

    PubMed

    Crothers, James M; Forte, John G; Machen, Terry E

    2016-05-01

    A computer model, constructed for evaluation of integrated functioning of cellular components involved in acid secretion by the gastric parietal cell, has provided new interpretations of older experimental evidence, showing the functional significance of a canalicular space separated from a mucosal bath by a gland lumen and also shedding light on basolateral Cl(-) transport. The model shows 1) changes in levels of parietal cell secretion (with stimulation or H-K-ATPase inhibitors) result mainly from changes in electrochemical driving forces for apical K(+) and Cl(-) efflux, as canalicular [K(+)] ([K(+)]can) increases or decreases with changes in apical H(+)/K(+) exchange rate; 2) H-K-ATPase inhibition in frog gastric mucosa would increase [K(+)]can similarly with low or high mucosal [K(+)], depolarizing apical membrane voltage similarly, so electrogenic H(+) pumping is not indicated by inhibition causing similar increase in transepithelial potential difference (Vt) with 4 and 80 mM mucosal K(+); 3) decreased H(+) secretion during strongly mucosal-positive voltage clamping is consistent with an electroneutral H-K-ATPase being inhibited by greatly decreased [K(+)]can (Michaelis-Menten mechanism); 4) slow initial change ("long time-constant transient") in current or Vt with clamping of Vt or current involves slow change in [K(+)]can; 5) the Na(+)-K(+)-2Cl(-) symporter (NKCC) is likely to have a significant role in Cl(-) influx, despite evidence that it is not necessary for acid secretion; and 6) relative contributions of Cl(-)/HCO3 (-) exchanger (AE2) and NKCC to Cl(-) influx would differ greatly between resting and stimulated states, possibly explaining reported differences in physiological characteristics of stimulated open-circuit Cl(-) secretion (≈H(+)) and resting short-circuit Cl(-) secretion (>H(+)).

  13. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    PubMed Central

    Bulea, Thomas C.; Kim, Jonghyun; Damiano, Diane L.; Stanley, Christopher J.; Park, Hyung-Soon

    2015-01-01

    Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG) recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training. PMID:26029077

  14. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder.

    PubMed

    Göttlich, Martin; Krämer, Ulrike M; Kordon, Andreas; Hohagen, Fritz; Zurowski, Bartosz

    2014-11-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent intrusive thoughts and ritualized, repetitive behaviors, or mental acts. Convergent experimental evidence from neuroimaging and neuropsychological studies supports an orbitofronto-striato-thalamo-cortical dysfunction in OCD. Moreover, an over excitability of the amygdala and over monitoring of thoughts and actions involving the anterior cingulate, frontal and parietal cortex has been proposed as aspects of pathophysiology in OCD. We chose a data driven, graph theoretical approach to investigate brain network organization in 17 unmedicated OCD patients and 19 controls using resting-state fMRI. OCD patients showed a decreased connectivity of the limbic network to several other brain networks: the basal ganglia network, the default mode network, and the executive/attention network. The connectivity within the limbic network was also found to be decreased in OCD patients compared to healthy controls. Furthermore, we found a stronger connectivity of brain regions within the executive/attention network in OCD patients. This effect was positively correlated with disease severity. The decreased connectivity of limbic regions (amygdala, hippocampus) may be related to several neurocognitive deficits observed in OCD patients involving implicit learning, emotion processing and expectation, and processing of reward and punishment. Limbic disconnection from fronto-parietal regions relevant for (re)-appraisal may explain why intrusive thoughts become and/or remain threatening to patients but not to healthy subjects. Hyperconnectivity within the executive/attention network might be related to OCD symptoms such as excessive monitoring of thoughts and behavior as a dysfunctional strategy to cope with threat and uncertainty.

  15. Distinct contribution of the parietal and temporal cortex to hand configuration and contextual judgements about tools.

    PubMed

    Andres, Michael; Pelgrims, Barbara; Olivier, Etienne

    2013-09-01

    Neuropsychological studies showed that manipulatory and semantic knowledge can be independently impaired in patients with upper-limb apraxia, leading to different tool use disorders. The present study aimed to dissociate the brain regions involved in judging the hand configuration or the context associated to tool use. We focussed on the left supramarginalis gyrus (SMG) and left middle temporal gyrus (MTG), whose activation, as evidenced by functional magnetic resonance imaging (fMRI) studies, suggests that they may play a critical role in tool use. The distinctive location of SMG in the dorsal visual stream led us to postulate that this parietal region could play a role in processing incoming information about tools to shape hand posture. In contrast, we hypothesized that MTG, because of its interconnections with several cortical areas involved in semantic memory, could contribute to retrieving semantic information necessary to create a contextual representation of tool use. To test these hypotheses, we used neuronavigated transcranial magnetic stimulation (TMS) to interfere transiently with the function of either left SMG or left MTG in healthy participants performing judgement tasks about either hand configuration or context of tool use. We found that SMG virtual lesions impaired hand configuration but not contextual judgements, whereas MTG lesions selectively interfered with judgements about the context of tool use while leaving hand configuration judgements unaffected. This double dissociation demonstrates that the ability to infer a context of use or a hand posture from tool perception relies on distinct processes, performed in the temporal and parietal regions. The present findings suggest that tool use disorders caused by SMG lesions will be characterized by difficulties in selecting the appropriate hand posture for tool use, whereas MTG lesions will yield difficulties in using tools in the appropriate context.

  16. Tagging cortical networks in emotion: a topographical analysis

    PubMed Central

    Keil, Andreas; Costa, Vincent; Smith, J. Carson; Sabatinelli, Dean; McGinnis, E. Menton; Bradley, Margaret M.; Lang, Peter J.

    2013-01-01

    Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re-entrant connectivity originating in higher-order cortical and/or limbic structures. The present study used dense-array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady-state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower-tier visual cortex, a network of occipito-temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. PMID:21954087

  17. Sustained and transient language control in the bilingual brain.

    PubMed

    Wang, Yapeng; Kuhl, Patricia K; Chen, Chunhui; Dong, Qi

    2009-08-01

    Bilingual speakers must have effective neural mechanisms to control and manage their two languages, but it is unknown whether bilingual language control includes different control components. Using mixed blocked and event-related designs, the present study explored the sustained and transient neural control of two languages during language processing. 15 Chinese-English bilingual speakers were scanned when they performed language switching tasks. The results showed that, compared to the single language condition, sustained bilingual control (mixed language condition) induced activation in the bilateral inferior frontal, middle prefrontal and frontal gyri (BA 45/46). In contrast, relative to the no switch condition, transient bilingual control (language switching condition) activated the left inferior parietal lobule (BA 2/40), superior parietal lobule (BA 7), and middle frontal gyrus (BA 11/46). Importantly, the right superior parietal activity correlated with the magnitude of the mixing cost, and the left inferior and superior parietal activity covaried with the magnitude of the asymmetric switching costs. These results suggest that sustained and transient language control induced differential lateral activation patterns, and that sustained and transient activities in the human brain modulate the behavioral costs during switching-related language control.

  18. The extreme capsule in humans and rethinking of the language circuitry.

    PubMed

    Makris, Nikos; Pandya, Deepak N

    2009-02-01

    Experimental and imaging studies in monkeys have outlined various long association fiber pathways within the fronto-temporo-parietal region. In the present study, the trajectory of the extreme capsule (EmC) fibers has been delineated in five human subjects using DT-MRI tractography. The EmC seems to be a long association fiber pathway, which courses between the inferior frontal region and the superior temporal gyrus extending into the inferior parietal lobule. Comparison of EmC fibers with the adjacent association fiber pathway, the middle longitudinal fascicle (MdLF), in the same subjects reveals that EmC is located in a medial and rostral position relative to MdLF flanking in part the medial wall of the insula. The EmC can also be differentiated from other neighboring fiber pathways such as the external capsule, uncinate fascicle, arcuate fascicle, superior longitudinal fascicles II and III, and the inferior longitudinal fascicle. Given the location of EmC within the language zone, specifically Broca's area in the frontal lobe, and Wernicke's area in the temporal lobe and inferior parietal lobule, it is suggested that the extreme capsule could have a role in language function. PMID:19104833

  19. Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity

    PubMed Central

    Boccia, Maddalena; Piccardi, Laura; Palermo, Liana; Nori, Raffaella; Palmiero, Massimiliano

    2015-01-01

    Many studies have assessed the neural underpinnings of creativity, failing to find a clear anatomical localization. We aimed to provide evidence for a multi-componential neural system for creativity. We applied a general activation likelihood estimation (ALE) meta-analysis to 45 fMRI studies. Three individual ALE analyses were performed to assess creativity in different cognitive domains (Musical, Verbal, and Visuo-spatial). The general ALE revealed that creativity relies on clusters of activations in the bilateral occipital, parietal, frontal, and temporal lobes. The individual ALE revealed different maximal activation in different domains. Musical creativity yields activations in the bilateral medial frontal gyrus, in the left cingulate gyrus, middle frontal gyrus, and inferior parietal lobule and in the right postcentral and fusiform gyri. Verbal creativity yields activations mainly located in the left hemisphere, in the prefrontal cortex, middle and superior temporal gyri, inferior parietal lobule, postcentral and supramarginal gyri, middle occipital gyrus, and insula. The right inferior frontal gyrus and the lingual gyrus were also activated. Visuo-spatial creativity activates the right middle and inferior frontal gyri, the bilateral thalamus and the left precentral gyrus. This evidence suggests that creativity relies on multi-componential neural networks and that different creativity domains depend on different brain regions. PMID:26322002

  20. Motor imagery of hand actions: Decoding the content of motor imagery from brain activity in frontal and parietal motor areas.

    PubMed

    Pilgramm, Sebastian; de Haas, Benjamin; Helm, Fabian; Zentgraf, Karen; Stark, Rudolf; Munzert, Jörn; Krüger, Britta

    2016-01-01

    How motor maps are organized while imagining actions is an intensely debated issue. It is particularly unclear whether motor imagery relies on action-specific representations in premotor and posterior parietal cortices. This study tackled this issue by attempting to decode the content of motor imagery from spatial patterns of Blood Oxygen Level Dependent (BOLD) signals recorded in the frontoparietal motor imagery network. During fMRI-scanning, 20 right-handed volunteers worked on three experimental conditions and one baseline condition. In the experimental conditions, they had to imagine three different types of right-hand actions: an aiming movement, an extension-flexion movement, and a squeezing movement. The identity of imagined actions was decoded from the spatial patterns of BOLD signals they evoked in premotor and posterior parietal cortices using multivoxel pattern analysis. Results showed that the content of motor imagery (i.e., the action type) could be decoded significantly above chance level from the spatial patterns of BOLD signals in both frontal (PMC, M1) and parietal areas (SPL, IPL, IPS). An exploratory searchlight analysis revealed significant clusters motor- and motor-associated cortices, as well as in visual cortices. Hence, the data provide evidence that patterns of activity within premotor and posterior parietal cortex vary systematically with the specific type of hand action being imagined. PMID:26452176