Science.gov

Sample records for inferring speciation modes

  1. Inferring the geographic mode of speciation by contrasting autosomal and sex-linked genetic diversity.

    PubMed

    Chu, Jui-Hua; Wegmann, Daniel; Yeh, Chia-Fen; Lin, Rong-Chien; Yang, Xiao-Jun; Lei, Fu-Min; Yao, Cheng-Te; Zou, Fa-Sheng; Li, Shou-Hsien

    2013-11-01

    When geographic isolation drives speciation, concurrent termination of gene flow among genomic regions will occur immediately after the formation of the barrier between diverging populations. Alternatively, if speciation is driven by ecologically divergent selection, gene flow of selectively neutral genomic regions may go on between diverging populations until the completion of reproductive isolation. It may also lead to an unsynchronized termination of gene flow between genomic regions with different roles in the speciation process. Here, we developed a novel Approximate Bayesian Computation pipeline to infer the geographic mode of speciation by testing for a lack of postdivergence gene flow and a concurrent termination of gene flow in autosomal and sex-linked markers jointly. We applied this approach to infer the geographic mode of speciation for two allopatric highland rosefinches, the vinaceous rosefinch Carpodacus vinaceus and the Taiwan rosefinch C. formosanus from DNA polymorphisms of both autosomal and Z-linked loci. Our results suggest that the two rosefinch species diverged allopatrically approximately 0.5 Ma. Our approach allowed us further to infer that female effective population sizes are about five times larger than those of males, an estimate potentially useful when comparing the intensity of sexual selection across species.

  2. Learning about modes of speciation by computational approaches.

    PubMed

    Becquet, Céline; Przeworski, Molly

    2009-10-01

    How often do the early stages of speciation occur in the presence of gene flow? To address this enduring question, a number of recent papers have used computational approaches, estimating parameters of simple divergence models from multilocus polymorphism data collected in closely related species. Applications to a variety of species have yielded extensive evidence for migration, with the results interpreted as supporting the widespread occurrence of parapatric speciation. Here, we conduct a simulation study to assess the reliability of such inferences, using a program that we recently developed MCMC estimation of the isolation-migration model allowing for recombination (MIMAR) as well as the program isolation-migration (IM) of Hey and Nielsen (2004). We find that when one of many assumptions of the isolation-migration model is violated, the methods tend to yield biased estimates of the parameters, potentially lending spurious support for allopatric or parapatric divergence. More generally, our results highlight the difficulty in drawing inferences about modes of speciation from the existing computational approaches alone.

  3. Model inadequacy and mistaken inferences of trait-dependent speciation.

    PubMed

    Rabosky, Daniel L; Goldberg, Emma E

    2015-03-01

    Species richness varies widely across the tree of life, and there is great interest in identifying ecological, geographic, and other factors that affect rates of species proliferation. Recent methods for explicitly modeling the relationships among character states, speciation rates, and extinction rates on phylogenetic trees- BiSSE, QuaSSE, GeoSSE, and related models-have been widely used to test hypotheses about character state-dependent diversification rates. Here, we document the disconcerting ease with which neutral traits are inferred to have statistically significant associations with speciation rate. We first demonstrate this unfortunate effect for a known model assumption violation: shifts in speciation rate associated with a character not included in the model. We further show that for many empirical phylogenies, characters simulated in the absence of state-dependent diversification exhibit an even higher Type I error rate, indicating that the method is susceptible to additional, unknown model inadequacies. For traits that evolve slowly, the root cause appears to be a statistical framework that does not require replicated shifts in character state and diversification. However, spurious associations between character state and speciation rate arise even for traits that lack phylogenetic signal, suggesting that phylogenetic pseudoreplication alone cannot fully explain the problem. The surprising severity of this phenomenon suggests that many trait-diversification relationships reported in the literature may not be real. More generally, we highlight the need for diagnosing and understanding the consequences of model inadequacy in phylogenetic comparative methods.

  4. Speciational history of North American Haemorhous finches (Aves: Fringillidae) inferred from multilocus data.

    PubMed

    Smith, Brian Tilston; Bryson, Robert W; Chua, Vivien; Africa, Lia; Klicka, John

    2013-03-01

    We investigated species relationships and timing of speciation in North American Haemorhous finches by using a mitochondrial phylogeographic approach combined with a multilocus species tree reconstruction. Haemorhous purpureus and H. cassinii were strongly supported as sister taxa, and H. mexicanus was sister to H. purpureus+H. cassinii. Our divergence times indicated that diversification within Haemorhous occurred progressively from the Late Miocene into the Pleistocene. Our inferred pattern of speciation demonstrates the complexity of the origins of North American birds, and provides additional evidence that a single cause for speciation in closely related North American birds, such as Late Pleistocene glacial-interglacial cycles, is unlikely.

  5. Tempo and mode of speciation in Holacanthus angelfishes based on RADseq markers.

    PubMed

    Tariel, Juliette; Longo, Gary C; Bernardi, Giacomo

    2016-05-01

    In this study we estimated the timing of speciation events in a group of angelfishes using 1186 RADseq markers corresponding to 94,880 base pairs. The genus Holacanthus comprises seven species, including two clades of Panama trans-Isthmian geminates, which diverged approximately 3-3.5Mya. These clades diversified within the Tropical Eastern Pacific (TEP, three species) and Tropical Western Atlantic (TWA, two species) which our data suggest to have occurred within the past 1.5My in both ocean basins, but may have proceeded via different mechanisms. In the TEP, speciation is likely to have followed a peripatric pathway, while in the TWA, sister species are currently partially sympatric, thus raising the possibility of sympatric speciation. This study highlights the use of RADseq markers for estimating both divergence times and modes of speciation at a 1-3My timescale.

  6. Inferring Flare Loop Parameters with Measurements of Standing Sausage Modes

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2016-03-01

    Standing fast sausage modes in flare loops were suggested to account for a considerable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This study continues our investigation into the possibility of inverting the measured periods P and damping times τ of sausage modes to deduce the transverse Alfvén time R/v_{Ai}, density contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops. A generic dispersion relation governing linear sausage modes is derived for pressureless cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We show that in general the inversion problem is under-determined for QPP events where only a single sausage mode exists, whether the measurements are spatially resolved or unresolved. While R/v_{Ai} can be inferred to some extent, the range of possible steepness parameters may be too broad to be useful. However, for spatially resolved measurements where an additional mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and the internal Alfvén speed v_{Ai}. We show that at least for a recent QPP event that involves a fundamental kink mode in addition to a sausage one, flare loop parameters are well constrained even if the specific form of the transverse density distribution remains unknown. We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to infer flare loop parameters.

  7. Using thermal evolution profiles to infer tritium speciation in nuclear site metals: an aid to decommissioning.

    PubMed

    Croudace, Ian W; Warwick, Phil E; Kim, Daeji

    2014-09-16

    Understanding the association and retention of tritium in metals has significance in nuclear decommissioning programs and can lead to cost benefits through waste reduction and recycling of materials. To develop insights, a range of metals from two nuclear sites and one non-nuclear site were investigated which had different exposure histories. Tritium speciation in metals was inferred through incremental heating experiments over the range of 20-900 °C using a Raddec Pyrolyser instrument. Systematic differences in thermal desorption profiles were found for nonirradiated and irradiated metals. In nonirradiated metals (e.g., stainless steel and copper), it was found that significant tritium had become incorporated following prolonged exposure to tritiated water vapor (HTO) or tritium/hydrogen gas (HT) in nuclear facilities. This externally derived tritium enters metals by diffusion with a rate controlled by the metal composition and whether the surface of the metal had been sealed or coated prior to exposure. The tritium is normally trapped in hydrated oxides lying along grain boundaries. In irradiated metals, an additional type of tritium can form internally through neutron capture reactions. The amount formed depends on the concentration and distribution of trace lithium and boron in the metal as well as the integrated neutron flux. Liberating this kind of tritium typically requires temperatures above 800 °C. The pattern of tritium evolution derived from simple thermal desorption experiments allows reliable inferences to be drawn on the likely origin, location, and phases that trap tritium. Any weakly bound tritium liberated at temperatures of ~100 °C is indicative of mostly HTO interactions in the metal. Any strongly bound tritium liberated over the range of 600-900 °C is indicative of neutrogenic tritium formed via neutron capture by trace Li and B. Neutron capture by lithium is likely to be more significant than for boron based on lithium's higher trace

  8. Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.

    PubMed

    Leijs, Remko; van Nes, Egbert H; Watts, Chris H; Cooper, Steven J B; Humphreys, William F; Hogendoorn, Katja

    2012-01-01

    Evidence is growing that not only allopatric but also sympatric speciation can be important in the evolution of species. Sympatric speciation has most convincingly been demonstrated in laboratory experiments with bacteria, but field-based evidence is limited to a few cases. The recently discovered plethora of subterranean diving beetle species in isolated aquifers in the arid interior of Australia offers a unique opportunity to evaluate alternative modes of speciation. This naturally replicated evolutionary experiment started 10-5 million years ago, when climate change forced the surface species to occupy geographically isolated subterranean aquifers. Using phylogenetic analysis, we determine the frequency of aquifers containing closely related sister species. By comparing observed frequencies with predictions from different statistical models, we show that it is very unlikely that the high number of sympatrically occurring sister species can be explained by a combination of allopatric evolution and repeated colonisations alone. Thus, diversification has occurred within the aquifers and likely involved sympatric, parapatric and/or microallopatric speciation.

  9. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    PubMed Central

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  10. Theoretical studies of speciation and evolutionary inference. Annual progress report, October 1980-September 1981

    SciTech Connect

    Felsenstein, J.

    1981-09-01

    The past year has been a fairly active one, with several pending papers finally being published, along with the Bibliography of Theoretical Population Genetics. The Package for Inferring Phylogenies has enjoyed widespread distribution and popularity. A number of papers submitted in the last part of last year were accepted and are about to be published, and several new projects have resulted in new papers being submitted, in particular a major review article on numerical methods for inferring evolutionary trees. My involvement in development methods for analyzing DNA sequence data has increased.

  11. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes

    PubMed Central

    Geraldes, Armando; Basset, Patrick; Gibson, Barbara; Smith, Kimberly L.; Harr, Bettina; Yu, Hon-Tsen; Bulatova, Nina; Ziv, Yaron; Nachman, Michael W.

    2010-01-01

    Patterns of genetic differentiation among taxa at early stages of divergence provide an opportunity to make inferences about the history of speciation. Here, we conduct a survey of DNA-sequence polymorphism and divergence at loci on the autosomes, X chromosome, Y chromosome and mitochondrial DNA in samples of Mus domesticus, M. musculus and M. castaneus. We analyzed our data under a divergence with gene flow model and estimate that the effective population size of M. castaneus is 200 000–400 000, of M. domesticus is 100 000–200 000 and of M. musculus is 60 000–120 000. These data also suggest that these species started to diverge approximately 500 000 years ago. Consistent with this recent divergence, we observed considerable variation in the genealogical patterns among loci. For some loci, all alleles within each species formed a monophyletic group, while at other loci, species were intermingled on the phylogeny of alleles. This intermingling probably reflects both incomplete lineage sorting and gene flow after divergence. Likelihood ratio tests rejected a strict allopatric model with no gene flow in comparisons between each pair of species. Gene flow was asymmetric: no gene flow was detected into M. domesticus, while significant gene flow was detected into both M. castaneus and M. musculus. Finally, most of the gene flow occurred at autosomal loci, resulting in a significantly higher ratio of fixed differences to polymorphisms at the X and Y chromosomes relative to autosomes in some comparisons, or just the X chromosome in others, emphasizing the important role of the sex chromosomes in general and the X chromosome in particular in speciation. PMID:19121002

  12. Speciation of Iron in Silicic Glasses: Inferences From Spectroscopic Methods and TEM

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Menguy, N.

    2007-05-01

    Iron environment in silicic glasses has been investigated using optical absorption spectroscopy (OAS), X-ray Absorption Near Edge Structure (XANES), Electron Paramagnetic Resonance (EPR) and TEM. The samples are calco-alkaline silicic glasses from different localities and containing 0.5 to 2 wt% Fe. The redox state of iron in silicate glasses and the local environment around Fe2+ and Fe3+ is known to influence properties such as color or viscosity and crystal-liquid element partitioning, for glasses and melts, respectively. Considering eruption conditions, this information can give a better understanding of the cooling conditions and setting of lava flows. The spectra of silicic glasses are strongly different from that of synthetic glasses and tektites. All spectroscopic methods show the presence of Fe3+ and Fe2+ cations belonging to the glassy network associated with clustered superparamagnetic Fe-oxides. TEM data indicate that nanometric Fe-oxide clusters are poorly crystallized. The spectroscopic data on obsidians have been compared to those recorded on magnetite and synthetic glasses to assess the importance of Fe oxide clusters. These clusters are responsible for the variety of coloration of these obsidians. The speciation of iron in these glasses and associated clusters will be discussed in terms of formation conditions.

  13. Tempo and mode in fossil molluscs: Investigating organism-environment interactions, species, and speciation

    SciTech Connect

    Geary, D.H. )

    1992-01-01

    After 20 years of investigation into the tempo and mode of species-level change in the fossil record, it is clear that both punctuated equilibrium and phyletic gradualism occur, as do a variety of intermediate patterns. Important questions regarding the maintenance and diversification of species remain, however. The author documents a variety of evolutionary patterns from gastropods and bivalves, and uses these to discuss two basic issues: environment-organism interactions over time, and the importance of information on geographic variation. The tempo of morphological change is an expression of the interaction of organisms and their environment. The initial over which new species appear may be a geologic instant'' (Melanopsis gastropods), or may last 10[sup 4]--10[sup 5] years (Prunum gastropods), or 10[sup 6] years (Melanopsis). This wide range of intervals indicates a variety of tempos of environmental change, and/or different kinds of organismal responses. Analysis of geographic variation is of critical importance in understanding species and speciation, yet is lacking in many paleontological studies. An example of the utility of geographic information is a study of the muricid gastropod Acanthina, which demonstrates how a geographically localized form may spread through a species range. Another example involves a species of Pleuriocardia in stasis: geographic variation among roughly correlative samples greatly exceeds long-term temporal variation. Considerations of the mechanisms for stasis and change must take into account such intraspecific variation.

  14. Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a Mytilus hybrid zone.

    PubMed

    Roux, C; Fraïsse, C; Castric, V; Vekemans, X; Pogson, G H; Bierne, N

    2014-08-01

    The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.

  15. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  16. Inference of stress and texture from angular dependence of ultrasonic plate mode velocities

    NASA Technical Reports Server (NTRS)

    Thompson, R. B.; Smith, J. F.; Lee, S. S.

    1986-01-01

    The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.

  17. Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage φ6

    PubMed Central

    Chao, Lin; Rang, Camilla U.; Wong, Linda E.

    2002-01-01

    When a parent virus replicates inside its host, it must first use its own genome as the template for replication. However, once progeny genomes are produced, the progeny can in turn act as templates. Depending on whether the progeny genomes become templates, the distribution of mutants produced by an infection varies greatly. While information on the distribution is important for many population genetic models, it is also useful for inferring the replication mode of a virus. We have analyzed the distribution of mutants emerging from single bursts in the RNA bacteriophage φ6 and find that the distribution closely matches a Poisson distribution. The match suggests that replication in this bacteriophage is effectively by a stamping machine model in which the parental genome is the main template used for replication. However, because the distribution deviates slightly from a Poisson distribution, the stamping machine is not perfect and some progeny genomes must replicate. By fitting our data to a replication model in which the progeny genomes become replicative at a given rate or probability per round of replication, we estimated the rate to be very low and on the on the order of 10−4. We discuss whether different replication modes may confer an adaptive advantage to viruses. PMID:11884552

  18. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  19. Inference of Gene Flow in the Process of Speciation: An Efficient Maximum-Likelihood Method for the Isolation-with-Initial-Migration Model

    PubMed Central

    Costa, Rui J.; Wilkinson-Herbots, Hilde

    2017-01-01

    The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very sensitive to the model’s assumptions—including the assumption of constant gene flow until the present. This article is concerned with the isolation-with-initial-migration (IIM) model, which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used, by means of likelihood-ratio tests, to distinguish between alternative models representing the following divergence scenarios: (a) divergence with potentially asymmetric gene flow until the present, (b) divergence with potentially asymmetric gene flow until some point in the past and in isolation since then, and (c) divergence in complete isolation. We illustrate the procedure on pairs of Drosophila sequences from ∼30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this article. PMID:28193727

  20. Standing Sausage Modes in Nonuniform Magnetic Tubes: An Inversion Scheme for Inferring Flare Loop Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Xia; Li, Bo; Xiong, Ming; Yu, Hui; Guo, Ming-Zhe

    2015-10-01

    Standing sausage modes in flare loops are important for interpreting quasi-periodic pulsations (QPPs) in solar flare light curves. We propose an inversion scheme that consistently uses their periods P and damping times τ to diagnose flare loop parameters. We derive a generic dispersion relation governing linear sausage waves in pressure-less straight tubes, for which the transverse density inhomogeneity takes place in a layer of arbitrary width l and is of arbitrary form. We find that P and τ depend on the combination of [R/{v}{Ai},L/R,l/R,{ρ }{{i}}/{ρ }{{e}}], where R is the loop radius, L is the looplength, vAi is the internal Alfvén speed, and ρi/ρe is the density contrast. For all the density profiles examined, P and τ experience saturation when L/R ≫ 1, yielding an inversion curve in the [R/{v}{Ai},l/R,{ρ }{{i}}/{ρ }{{e}}] space with a specific density profile when L/R is sufficiently large. When applied to a spatially unresolved QPP event, the scheme yields that R/vAi is the best constrained, whereas l/R corresponds to the other extreme. For spatially resolved QPPs, while L/R ≫ 1 cannot be assumed beforehand, an inversion curve remains possible due to additional geometrical constraints. When a spatially resolved QPP event involves another mode, as is the case for a recent event, the full set of [{v}{Ai},l,{ρ }{{i}}/{ρ }{{e}}] can be inferred. We conclude that the proposed scheme provides a useful tool for magneto-seismologically exploiting QPPs.

  1. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals

    EPA Science Inventory

    The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...

  2. A new description of Earth's wobble modes using Clairaut coordinates 2: results and inferences on the core mode spectrum

    NASA Astrophysics Data System (ADS)

    Crossley, D. J.; Rochester, M. G.

    2014-09-01

    Numerical solutions are presented for the formulation of the linear momentum description of Earth's dynamics using Clairaut coordinates. We have developed a number of methods to integrate the equations of motion, including starting at the Earth's centre of mass, starting at finite radius and separating the displacement associated with the primary rigid rotation. We include rotation and ellipticity to second order up to spherical harmonic T_5^m, starting with the primary displacement T_1^m with m = ±1. We are able to confirm many of the previous results for models PREM (with no surface ocean) and 1066A, both in their original form and with neutrally stratified liquid cores. Our period search ranges from the near-seismic band [0.1 sidereal days (sd)] to 3500 sd, within which we have identified the four well-known wobble-nutation modes: the Free Core Nutation (retrograde) at -456 sd, the Free Inner Core Nutation (FICN, prograde) at 468 sd, the Chandler Wobble (prograde) at 402 sd, and the Inner Core Wobble (ICW, prograde) at about 2842 sd (7.8 yr) for neutral PREM. The latter value varies significantly with earth model and integration method. In addition we have verified to high accuracy the tilt-over mode at 1 sd within a factor 10-6. In an exhaustive search we found no additional near-diurnal wobble modes that could be identified as nutations. We show that the eigenfunctions for the as-yet-unidentified ICW are extremely sensitive to the details of the earth model, especially the core stability profile and there is no well-defined sense of its wobble relative to the mantle. Calculations are also done for a range of models derived from PREM with homogeneous layers, as well as with incompressible cores. For this kind of model the ICW ceases to have just a simple IC rigid motion when the fluid compressibility is either unchanged or multiplied by a factor 10; in this case the outer core exhibits oscillations that arise from an unstable fluid density stratification. For

  3. Models of speciation: where are we now?

    PubMed

    Gavrilets, Sergey

    2014-01-01

    Theory building is an integral part of biological research, in general, and of speciation research, in particular. Here, I review the modeling work on speciation done in the last 10 years or so, assessing the progress made and identifying areas where additional effort is required. Specific topics considered include evolutionary dynamics of genetic incompatibilities, spatial and temporal patterns of speciation, links to neutral theory of biodiversity, effects of multidimensionality of phenotype, sympatric and parapatric speciation, adaptive radiation, speciation by sexual conflict, and models tailored for specific biological systems. Particularly challenging questions for future theoretical research identified here are 1) incorporating gene regulatory networks in models describing accumulation of genetic incompatibilities; 2) integrating models of community ecology with those developed in speciation theory; 3) building models providing better insights on the dynamics of parapatric speciation; 4) modeling speciation in multidimensional ecological niches with mating preferences based on multidimensional mating cues and sexual characters; 5) linking microevolutionary processes with macroevolutionary patterns as observed in adaptive radiations and paleontological record; 6) modeling speciation in specific systems studied by empirical biologists; and 7) modeling human origins. The insights from dynamic models of speciation should be useful in developing statistical tools that would enable empiricists to infer the history of past evolutionary divergence and speciation from genomic data.

  4. Lightning on Venus inferred from whistler-mode waves in the ionosphere.

    PubMed

    Russell, C T; Zhang, T L; Delva, M; Magnes, W; Strangeway, R J; Wei, H Y

    2007-11-29

    The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.

  5. Testing Mendelian inheritance from field-collected parasites: Revealing duplicated loci enables correct inference of reproductive mode and mating system.

    PubMed

    Detwiler, Jillian T; Criscione, Charles D

    2011-09-01

    Cryptic aspects of parasite population biology, e.g., mating systems, are increasingly being inferred from polymorphic and co-dominant genetic markers such as microsatellite loci. Underlying the use of such co-dominant markers is the assumption of Mendelian inheritance. The failure to meet this assumption can lead to artifactual statistics and erroneous population inferences. Here, we illustrate the importance of testing the Mendelian segregation and assortment of genetic markers and demonstrate how field-collected samples can be utilised for this purpose. To examine the reproductive mode and mating system of hermaphroditic parasites, we developed microsatellites for the cestode, Oochoristica javaensis. Among loci, we found a bimodal distribution of F(IS) (a fixation index that quantifies the deviation from Hardy-Weinberg equilibrium within subpopulations) values where loci were either highly negative (close to -1) or highly positive (∼0.8). By conducting tests of Mendelian segregation from natural crosses, we determined that loci with negative F(IS) values were in fact duplicated loci that were amplified by a single primer pair. Genetic crosses also provided linkage data and indicated that the duplicated loci most likely arose via tandem duplications rather than whole genome/chromosome duplications. By correcting for the duplicated loci, we were able to correctly infer that O. javaensis has sexual reproduction, but the mating system is highly inbred. To assist others in testing Mendelian segregation and independent assortment from natural samples, we discuss the benefits and limitations, and provide guidelines for particular parasite systems amenable to the methods employed here.

  6. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference.

    PubMed

    Halas, Dominik; Simons, Andrew M

    2014-01-01

    Mitochondrial and nuclear introgression among closely related taxa can greatly complicate the process of determining their phylogenetic relationships. In the Central Highlands of North America, many fish taxa have undergone introgression; in this study, we demonstrate the existence of an unusual introgression event in the Etheostoma zonale species group. We used one mitochondrial and seven nuclear loci to determine the relationships of the taxa within the E. zonale group, and their degree of differentiation. We found evidence of multiple divergent populations within each species; much of the divergence within species has taken place during the Pleistocene. We also found evidence of a previously unknown cryptic species in the Upper Tennessee River which diverged from the remainder of the group during the Pliocene, and has undergone mitochondrial and nuclear introgression with E. zonale, in an apparent process of speciation reversal. We examined the effects that using varying types of recombination tests to eliminate the signal of recombination from nuclear loci would have on the phylogenetic placement of this introgressed lineage in our species tree analyses.

  7. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed Central

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-01-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone. PMID:12618417

  8. Modeling transportation of efavirenz: inference on possibility of mixed modes of transportation and kinetic solubility.

    PubMed

    Nemaura, Tafireyi

    2015-01-01

    Understanding drug transportation mechanisms in the human body is of paramount importance in modeling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600 mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of "kinetic solubility" of a solution. There is use of Ricker's model, and forms of the Hill's equation in modeling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs. concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion [passive transportation (EI )] and energy dependent system transportation (ED ) in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0 - 32.82 μg/ml.

  9. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    EPA Science Inventory

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  10. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  11. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  12. Speciation in fungal and oomycete plant pathogens.

    PubMed

    Restrepo, Silvia; Tabima, Javier F; Mideros, Maria F; Grünwald, Niklaus J; Matute, Daniel R

    2014-01-01

    The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.

  13. Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex.

    PubMed

    Leray, Matthieu; Beldade, Ricardo; Holbrook, Sally J; Schmitt, Russell J; Planes, Serge; Bernardi, Giacomo

    2010-05-01

    Long pelagic larval phases and the absence of physical barriers impede rapid speciation and contrast the high diversity observed in marine ecosystems such as coral reefs. In this study, we used the three-spot dascyllus (Dascyllus trimaculatus) species complex to evaluate speciation modes at the spatial scale of the Indo-Pacific. The complex includes four recognized species and four main color morphs that differ in distribution. Previous studies of the group using mitochondrial DNA revealed a noncongruence between color morphs and genetic groupings; with two of the color morphs grouped together and one color morph separated into three clades. Using extensive geographic sampling of 563 individuals and a combination of mitochondrial DNA sequences and 13 nuclear microsatellites, we defined population/species boundaries and inferred different speciation modes. The complex is composed of seven genetically distinct entities, some of which are distinct morphologically. Despite extensive dispersal abilities and an apparent lack of barriers, observed genetic partitions are consistent with allopatric speciation. However, ecological pressure, assortative mating, and sexual selection, were likely important during periods of geographical isolation. This study therefore suggests that primarily historical factors later followed by ecological factors caused divergence and speciation in this group of coral reef fish.

  14. Speciation in fishes.

    PubMed

    Bernardi, Giacomo

    2013-11-01

    The field of speciation has seen much renewed interest in the past few years, with theoretical and empirical advances that have moved it from a descriptive field to a predictive and testable one. The goal of this review is to provide a general background on research on speciation as it pertains to fishes. Three major components to the question are first discussed: the spatial, ecological and sexual factors that influence speciation mechanisms. We then move to the latest developments in the field of speciation genomics. Affordable and rapidly available, massively parallel sequencing data allow speciation studies to converge into a single comprehensive line of investigation, where the focus has shifted to the search for speciation genes and genomic islands of speciation. We argue that fish present a very diverse array of scenarios, making them an ideal model to study speciation processes.

  15. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  16. Early Asteroseismic Results from Kepler: Structural and Core Parameters of the Hot B Subdwarf KPD 1943+4058 as Inferred from g-mode Oscillations

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Randall, S. K.; Silvotti, R.; Østensen, R. H.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Borucki, W. J.; Koch, D.

    2010-08-01

    We present a seismic analysis of the pulsating hot B subdwarf KPD 1943+4058 (KIC 005807616) on the basis of the long-period, gravity-mode pulsations recently uncovered by Kepler. This is the first time that g-mode seismology can be exploited quantitatively for stars on the extreme horizontal branch, all previous successful seismic analyses having been confined so far to short-period, p-mode pulsators. We demonstrate that current models of hot B subdwarfs can quite well explain the observed g-mode periods, while being consistent with independent constraints provided by spectroscopy. We identify the 18 pulsations retained in our analysis as low-degree (ell = 1 and 2), intermediate-order (k = -9 through -58) g-modes. The periods (frequencies) are recovered, on average, at the 0.22% level, which is comparable to the best results obtained for p-mode pulsators. We infer the following structural and core parameters for KPD 1943+4058 (formal fitting uncertainties only): T eff = 28,050 ± 470 K, log g = 5.52 ± 0.03, M * = 0.496 ± 0.002 M sun, log (M env/M *) = -2.55 ± 0.07, log (1 - M core/M *) = -0.37 ± 0.01, and X core(C+O) = 0.261 ± 0.008. We additionally derive the age of the star since the zero-age extended horizontal branch 18.4 ± 1.0 Myr, the radius R = 0.203 ± 0.007 R sun, the luminosity L = 22.9 ± 3.13 L sun, the absolute magnitude MV = 4.21 ± 0.11, the reddening index E(B - V) = 0.094 ± 0.017, and the distance d = 1180 ± 95 pc.

  17. The rate test of speciation: estimating the likelihood of non-allopatric speciation from reproductive isolation rates in Drosophila.

    PubMed

    Yukilevich, Roman

    2014-04-01

    Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age-range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new "rate test of speciation" that estimates the likelihood of non-allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non-allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.

  18. Inferring Low-Mode Asymmetries from the Elastically Scattered Neutron Spectrum in Layered Cryogenic DT Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Sangster, T. C.; Stoeckl, C.; Frenje, J. A.; Gatu Johnson, M.

    2014-10-01

    High-resolution neutron spectroscopy is used to probe the areal density of layered cryogenic DT direct-drive implosions in inertial confinement fusion experiments on OMEGA. Advanced scintillation detectors record the neutron spectrum using time-of-flight techniques. The shape of the energy spectrum is fully determined by the neutron elastic scattering cross-section for spherically symmetric target configurations. Significant differences from the expected shape have been measured for some recent implosions, which indicate a deviation from a spherically symmetric fuel assembly. Neutron scattering with low-mode perturbations in the DT fuel assembly have been simulated in the Monte Carlo n-particle transport code. The experimental data shows good agreement with the model when the mass distribution of the compressed DT shell is highly asymmetric with one side having a factor-of-2 higher areal density. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia.

    PubMed

    Su, Yong-Chao; Chang, Yung-Hau; Smith, Deborah; Zhu, Ming-Sheng; Kuntner, Matjaž; Tso, I-Min

    2011-01-01

    The molecular phylogeny of the globally distributed golden orb spider genus Nephila (Nephilidae) was reconstructed to infer its speciation history, with a focus on SE Asian/W Pacific species. Five Asian, two Australian, four African, and one American species were included in the phylogenetic analyses. Other species in Nephilidae, Araneidae, and Tetragnathidae were included to assess their relationships with the genus Nephila, and one species from Uloboridae was used as the outgroup. Phylogenetic trees were reconstructed from one nuclear (18S) and two mitochondrial (COI and 16S) markers. Our molecular phylogeny shows that the widely distributed Asian/Australian species, N. pilipes, and an African species, N. constricta, form a clade that is sister to all other Nephila species. Nested in this Nephila clade are one clade with tropical and subtropical/temperate Asian/Australian species, and the other containing African and American species. The estimated divergence times suggest that diversification events within Nephila occurred during mid-Miocene to Pliocene (16 Mya-2 Mya), and these time periods were characterized by cyclic global warming/cooling events. According to Dispersal and Vicariance Analysis (DIVA), the ancestral range of the Asian/Australian clade was tropical Asia, and the ancestral range of the genus Nephila was either tropical Asia or Africa. We conclude that the speciation of the Asian/Australian Nephila species was driven by Neogene global cyclic climate changes. However, further population level studies comparing diversification patterns of sister species are needed to determine the mode of speciation of these species.

  20. Sex-biased gene flow in spectacled eiders (Anatidae): Inferences from molecular markers with contrasting modes of inheritance

    USGS Publications Warehouse

    Scribner, Kim T.; Petersen, Margaret R.; Fields, Raymond L.; Talbot, Sandra L.; Pearce, John M.; Chesser, Ronald K.

    2001-01-01

    Genetic markers that differ in mode of inheritance and rate of evolution (a sex-linked Z-specific microsatellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro- and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex-specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon-Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (ϕCT = 0.189, P < 0.01; ϕSC = 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex-linked: ϕST = 0.001, P > 0.05; biparentally inherited microsatellites: mean θ = 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10−4 and 1.28 × 10−2, respectively). Effective population size for mtDNA was estimated to be at least three

  1. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  2. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  3. Sympatric speciation by allochrony in a seabird

    PubMed Central

    Friesen, V. L.; Smith, A. L.; Gómez-Díaz, E.; Bolton, M.; Furness, R. W.; González-Solís, J.; Monteiro, L. R.

    2007-01-01

    The importance of sympatric speciation (the evolution of reproductive isolation between codistributed populations) in generating biodiversity is highly controversial. Whereas potential examples of sympatric speciation exist for plants, insects, and fishes, most theoretical models suggest that it requires conditions that are probably not common in nature, and only two possible cases have been described for tetrapods. One mechanism by which it could occur is through allochronic isolation—separation of populations by breeding time. Oceanodroma castro (the Madeiran or band-rumped storm-petrel) is a small seabird that nests on tropical and subtropical islands throughout the Atlantic and Pacific Oceans. In at least five archipelagos, different individuals breed on the same islands in different seasons. We compared variation in five microsatellite loci and the mitochondrial control region among 562 O. castro from throughout the species' range. We found that sympatric seasonal populations differ genetically within all five archipelagos and have ceased to exchange genes in two. Population and gene trees all indicate that seasonal populations within four of the archipelagos are more closely related to each other than to populations from the same season from other archipelagos; divergence of the fifth sympatric pair is too ancient for reliable inference. Thus, seasonal populations appear to have arisen sympatrically at least four times. This is the first evidence for sympatric speciation by allochrony in a tetrapod, and adds to growing indications that population differentiation and speciation can occur without geographic barriers to gene flow. PMID:18006662

  4. What Is Speciation?

    PubMed

    Shapiro, B Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-03-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation "in the act" and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent.

  5. What Is Speciation?

    PubMed Central

    Shapiro, B. Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-01-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation “in the act” and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent. PMID:27030977

  6. Ecological Inference

    NASA Astrophysics Data System (ADS)

    King, Gary; Rosen, Ori; Tanner, Martin A.

    2004-09-01

    This collection of essays brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half-decade has witnessed an explosion of research in ecological inference--the process of trying to infer individual behavior from aggregate data. Although uncertainties and information lost in aggregation make ecological inference one of the most problematic types of research to rely on, these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, by business in marketing research, and by governments in policy analysis.

  7. A genomic perspective on hybridization and speciation

    PubMed Central

    Payseur, Bret A.; Rieseberg, Loren H.

    2016-01-01

    Hybridization among diverging lineages is common in nature. Genomic data provide a special opportunity to characterize the history of hybridization and the genetic basis of speciation. We review existing methods and empirical studies to identify recent advances in the genomics of hybridization, as well as issues that need to be addressed. Notable progress has been made in the development of methods for detecting hybridization and inferring individual ancestries. However, few approaches reconstruct the magnitude and timing of gene flow, estimate the fitness of hybrids or incorporate knowledge of recombination rate. Empirical studies indicate that the genomic consequences of hybridization are complex, including a highly heterogeneous landscape of differentiation. Inferred characteristics of hybridization differ substantially among species groups. Loci showing unusual patterns – which may contribute to reproductive barriers – are usually scattered throughout the genome, with potential enrichment in sex chromosomes and regions of reduced recombination. We caution against the growing trend of interpreting genomic variation in summary statistics across genomes as evidence of differential gene flow. We argue that converting genomic patterns into useful inferences about hybridization will ultimately require models and methods that directly incorporate key ingredients of speciation, including the dynamic nature of gene flow, selection acting in hybrid populations and recombination rate variation. PMID:26836441

  8. How does climate influence speciation?

    PubMed

    Hua, Xia; Wiens, John J

    2013-07-01

    Variation in climatic conditions over space and time is thought to be an important driver of speciation. However, the role of climate has not been explored in the theoretical literature on speciation, and the theory underlying empirical studies of climate and speciation has come largely from informal, verbal models. In this study, we develop a quantitative model to test a relatively new but theoretically untested model of speciation (speciation via niche conservatism) and to examine the climatic conditions under which speciation via niche conservatism and speciation via niche divergence are most plausible. Our results have three broad implications for the study of speciation: (1) ecological similarity over time (niche conservatism) can be an important part of speciation, despite the traditional emphasis on ecological divergence, (2) long-term directional climate change promotes speciation via niche conservatism for species with low climatic-niche lability, whereas climatic oscillations promote speciation via niche divergence for species with high climatic-niche lability, and (3) population extinction can be a key component of speciation.

  9. Dispersal, Genetic Differentiation and Speciation in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Bilton, D. T.; Paula, J.; Bishop, J. D. D.

    2002-12-01

    For some of their occupants, estuaries represent spatially discrete habitats, isolated from each other by barriers to dispersal or physiological tolerance. We present contrasting strategies for the retention or export of larvae from their estuary of origin, and consider the implications these have on population structure and divergence. Reported patterns of genetic differentiation and inferred gene flow in estuarine taxa (principally animals) are reviewed, and difficulties in the interpretation of existing genetic data discussed. Species concepts and models of speciation relevant to estuaries are outlined, and patterns of speciation of estuarine taxa reviewed. It is concluded that estuarine environments tend to restrict gene flow and impose distinct selective regimes, generating physiologically adapted populations divergent from their marine counterparts, and the potential for in situ speciation in complete or partial isolation. The resulting taxa may represent sibling or cryptic species groups of truly estuarine origin, rather than simply estuarine populations of marine eurytopes.

  10. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  11. The evolutionary genetics of speciation.

    PubMed Central

    Coyne, J A; Orr, H A

    1998-01-01

    The last decade has brought renewed interest in the genetics of speciation, yielding a number of new models and empirical results. Defining speciation as 'the origin of reproductive isolation between two taxa', we review recent theoretical studies and relevant data, emphasizing the regular patterns seen among genetic analyses. Finally, we point out some important and tractable questions about speciation that have been neglected. PMID:9533126

  12. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    PubMed

    Marques, David A; Lucek, Kay; Meier, Joana I; Mwaiko, Salome; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2016-02-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  13. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

    PubMed Central

    Marques, David A.; Lucek, Kay; Meier, Joana I.; Mwaiko, Salome; Wagner, Catherine E.; Excoffier, Laurent; Seehausen, Ole

    2016-01-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  14. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  15. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience.

  16. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.

  17. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  18. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    PubMed Central

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-01-01

    Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area. PMID:25945706

  19. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  20. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  1. The drivers of tropical speciation.

    PubMed

    Smith, Brian Tilston; McCormack, John E; Cuervo, Andrés M; Hickerson, Michael J; Aleixo, Alexandre; Cadena, Carlos Daniel; Pérez-Emán, Jorge; Burney, Curtis W; Xie, Xiaoou; Harvey, Michael G; Faircloth, Brant C; Glenn, Travis C; Derryberry, Elizabeth P; Prejean, Jesse; Fields, Samantha; Brumfield, Robb T

    2014-11-20

    Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.

  2. Hitchhiking to Speciation

    PubMed Central

    Presgraves, Daven C.

    2013-01-01

    The modern evolutionary synthesis codified the idea that species exist as distinct entities because intrinsic reproductive barriers prevent them from merging together. Understanding the origin of species therefore requires understanding the evolution and genetics of reproductive barriers between species. In most cases, speciation is an accident that happens as different populations adapt to different environments and, incidentally, come to differ in ways that render them reproductively incompatible. As with other reproductive barriers, the evolution and genetics of interspecific hybrid sterility and lethality were once also thought to evolve as pleiotripic side effects of adaptation. Recent work on the molecular genetics of speciation has raised an altogether different possibility—the genes that cause hybrid sterility and lethality often come to differ between species not because of adaptation to the external ecological environment but because of internal evolutionary arms races between selfish genetic elements and the genes of the host genome. Arguably one of the best examples supporting a role of ecological adaptation comes from a population of yellow monkey flowers, Mimulus guttatus, in Copperopolis, California, which recently evolved tolerance to soil contaminants from copper mines and simultaneously, as an incidental by-product, hybrid lethality in crosses with some off-mine populations. However, in new work, Wright and colleagues show that hybrid lethality is not a pleiotropic consequence of copper tolerance. Rather, the genetic factor causing hybrid lethality is tightly linked to copper tolerance and spread to fixation in Copperopolis by genetic hitchhiking. PMID:23468596

  3. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    SciTech Connect

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-04-21

    The structure of a tubulin-binding cofactor from L. major is reported and compared with yeast, plant and human orthologues. Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.

  4. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  5. Relationships and genetic consequences of contrasting modes of speciation among endemic species of Robinsonia (Asteraceae, Senecioneae) of the Juan Fernández Archipelago, Chile, based on AFLPs and SSRs.

    PubMed

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F

    2015-01-01

    This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago.

  6. Ecological speciation in Gambusia fishes.

    PubMed

    Langerhans, R Brian; Gifford, Matthew E; Joseph, Everton O

    2007-09-01

    Although theory indicates that natural selection can facilitate speciation as a by-product, demonstrating ongoing speciation via this by-product mechanism in nature has proven difficult. We examined morphological, molecular, and behavioral data to investigate ecology's role in incipient speciation for a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes. We show that adaptation to divergent predator regimes is driving ecological speciation as a by-product. Divergence in body shape, coupled with assortative mating for body shape, produces reproductive isolation that is twice as strong between populations inhabiting different predator regimes than between populations that evolved in similar ecological environments. Gathering analogous data on reproductive isolation at the interspecific level in the genus, we find that this mechanism of speciation may have been historically prevalent in Gambusia. These results suggest that speciation in nature can result as a by-product of divergence in ecologically important traits, producing interspecific patterns that persist long after speciation events have completed.

  7. Chronic speciation in periodical cicadas.

    PubMed

    Ritchie, M G.

    2001-02-01

    Allochronic speciation and reproductive character displacement are two intuitively attractive models of speciation. The first proposes that changes in the timing of life cycles produce new species, whereas the second suggests that speciation is due to the exaggeration of sexual isolation in sympatric populations. Clear examples of either process in nature remain elusive, despite some extensive searches. Two recent studies of mtDNA markers and behaviour of periodical cicadas in North America have identified a new species of cicada that seems to provide good evidence for the involvement of both processes in its origin.

  8. Reconstructing the history of selection during homoploid hybrid speciation.

    PubMed

    Karrenberg, Sophie; Lexer, Christian; Rieseberg, Loren H

    2007-06-01

    This study aims to identify selection pressures during the historical process of homoploid hybrid speciation in three Helianthus (sunflower) hybrid species. If selection against intrinsic genetic incompatibilities (fertility selection) or for important morphological/ecological traits (phenotypic selection) were important in hybrid speciation, we would expect this selection to have influenced the parentage of molecular markers or chromosomal segments in the hybrid species' genomes. To infer past selection, we compared the parentage of molecular markers in high-density maps of the three hybrid species with predicted marker parentage from an analysis of fertility selection in artificial hybrids and from the directions of quantitative trait loci effects with respect to the phenotypes of the hybrid species. Multiple logistic regression models were consistent with both fertility and phenotypic selection in all three species. To further investigate traits under selection, we used a permutation test to determine whether marker parentage predicted from groups of functionally related traits differed from neutral expectations. Our results suggest that trait groups associated with ecological divergence were under selection during hybrid speciation. This study presents a new method to test for selection and supports earlier claims that fertility selection and phenotypic selection on ecologically relevant traits have operated simultaneously during sunflower hybrid speciation.

  9. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  10. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation.

    PubMed

    Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent

    2015-02-01

    Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.

  11. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  12. Sexual conflict and speciation.

    PubMed Central

    Parker, G A; Partridge, L

    1998-01-01

    We review the significance of two forms of sexual conflict (different evolutionary interests of the two sexes) for genetic differentiation of populations and the evolution of reproductive isolation. Conflicting selection on the alleles at a single locus can occur in males and females if the sexes have different optima for a trait, and there are pleiotropic genetic correlations between the sexes for it. There will then be selection for sex limitation and hence sexual dimorphism. This sex limitation could break down in hybrids and reduce their fitness. Pleiotropic genetic correlations between the sexes could also affect the likelihood of mating in interpopulation encounters. Conflict can also occur between (sex-limited) loci that determine behaviour in males and those that determine behaviour in females. Reproductive isolation may occur by rapid coevolution of male trait and female mating preference. This would tend to generate assortative mating on secondary contact, hence promoting speciation. Sexual conflict resulting from sensory exploitation, polyspermy and the cost of mating could result in high levels of interpopulation mating. If females evolve resistance to make pre- and postmating manipulation, males from one population could be more successful with females from the other, because females would have evolved resistance to their own (but not to the allopatric) males. Between-locus sexual conflict could also occur as a result of conflict between males and females of different populations over the production of unfit hybrids. We develop models which show that females are in general selected to resist such matings and males to persist, and this could have a bearing on both the initial level of interpopulation matings and the likelihood that reinforcement will occur. In effect, selection on males usually acts to promote gene flow and to restrict premating isolation, whereas selection on females usually acts in the reverse direction. We review theoretical models

  13. Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-01-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to

  14. Possible incipient sympatric ecological speciation in blind mole rats (Spalax)

    PubMed Central

    Hadid, Yarin; Tzur, Shay; Pavlíček, Tomáš; Šumbera, Radim; Šklíba, Jan; Lövy, Matěj; Fragman-Sapir, Ori; Beiles, Avigdor; Arieli, Ran; Raz, Shmuel; Nevo, Eviatar

    2013-01-01

    Sympatric speciation has been controversial since it was first proposed as a mode of speciation. Subterranean blind mole rats (Spalacidae) are considered to speciate allopatrically or peripatrically. Here, we report a possible incipient sympatric adaptive ecological speciation in Spalax galili (2n = 52). The study microsite (0.04 km2) is sharply subdivided geologically, edaphically, and ecologically into abutting barrier-free ecologies divergent in rock, soil, and vegetation types. The Pleistocene Alma basalt abuts the Cretaceous Senonian Kerem Ben Zimra chalk. Only 28% of 112 plant species were shared between the soils. We examined mitochondrial DNA in the control region and ATP6 in 28 mole rats from basalt and in 14 from chalk habitats. We also sequenced the complete mtDNA (16,423 bp) of four animals, two from each soil type. Remarkably, the frequency of all major haplotype clusters (HC) was highly soil-biased. HCI and HCII are chalk biased. HC-III was abundant in basalt (36%) but absent in chalk; HC-IV was prevalent in basalt (46.5%) but was low (20%) in chalk. Up to 40% of the mtDNA diversity was edaphically dependent, suggesting constrained gene flow. We identified a homologous recombinant mtDNA in the basalt/chalk studied area. Phenotypically significant divergences differentiate the two populations, inhabiting different soils, in adaptive oxygen consumption and in the amount of outside-nest activity. This identification of a possible incipient sympatric adaptive ecological speciation caused by natural selection indirectly refutes the allopatric alternative. Sympatric ecological speciation may be more prevalent in nature because of abundant and sharply abutting divergent ecologies. PMID:23359700

  15. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  16. Arsenic Speciation in Geothermal Waters

    NASA Astrophysics Data System (ADS)

    Keller, N. S.; Stefansson, A.; Sigfusson, B.

    2011-12-01

    Various arsenic species have been observed or inferred in geothermal waters in recent years, in particular thio- and oxyanions. However their exact stoechiometry and their oxidation state has been subjected to a sustained debate over the last decade. Most of the As species seen in geothermal waters are unstable under laboratory conditions, thus it is crucial that appropriate sampling and analytical techniques are used in order to minimise post-sampling changes. The goals of this study were to determine how many As species can be seen in geothermal systems and how geochemical parameters control the number and relative abundance of the species. Furthermore, we tested the stability of the As-S compounds after sampling, in particular whether the traditionally used flash-freezing method quantitatively preserves the species. Samples were collected from wells at the Hellisheidi Power Plant and from natural hot springs in the Geysir Geothermal Area in SW Iceland. The samples were analysed on-site immediately after sampling by first separating the various As species by Ion Chromatography followed by quantification by Hydride-Generation Atomic Fluorescence Spectrometer (HG-AFS). Preliminary results show that analysis of the samples immediately after sampling is crucial, as sample storage and flash-freezing/thawing appear to modify the As speciation. Using the retention times of the analytes through the chromatographic column, a minimum of seven As species were observed. Two of the species are oxides of AsIII and AsV, based on the comparison of their retention times with standards. The other five species have yet to be unequivocally identified, but based on prior studies it is assumed that at least some of them are thioarsenic species with various S:O ratios, with longer retention times for increasing S:O. Clear differences can be seen between samples from Hellisheidi and Geysir. In the case of the oxyanions, only AsIII is present at Hellisheidi whereas both oxidation states

  17. Genomic Islands of Speciation in Anopheles gambiae

    PubMed Central

    Hahn, Matthew W; Nuzhdin, Sergey V

    2005-01-01

    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These “speciation islands” remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are

  18. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus

    PubMed Central

    2014-01-01

    Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in

  19. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  20. Are we analyzing speciation without prejudice?

    PubMed

    Johannesson, Kerstin

    2010-09-01

    Physical isolation has long been the null hypothesis of speciation, with exceptional evidence required to suggest speciation with gene flow. Following recent persuasive theoretical support and strong empirical examples of nonallopatric speciation, one might expect a changed view. However, a review of 73 recent empirical studies shows that when allopatric speciation is suggested, a nonallopatric alternative is rarely considered, whereas the opposite is true in studies suggesting sympatric speciation, indicating a biased treatment of different speciation models. Although increasing support for ecological speciation suggests natural selection as the most critical component of speciation, gene flow remains an issue. Methods for unbiased hypothesis testing are available, and the genetic and phylogeographic data required for appropriate tests can be generated. Focus on phylogenies and functions of individual genes have revealed strong idiosyncratic elements of speciation, such as single genes with possible allopatric origin that make significant contributions during nonallopatric phases of speciation. Hence a more complex picture of speciation is now emerging that will benefit from unbiased evaluation of both allopatric and sympatric mechanisms of speciation.

  1. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus

    PubMed Central

    2013-01-01

    Background Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation. PMID:24070215

  2. Mercury speciation modeling using site specific chemical and redox data from the TNXOD OU

    SciTech Connect

    Kaplan, D.I.

    2000-03-22

    The objective of this study was to evaluate mercury speciation under reducing conditions expected in sediments at the TNX Outfall Delta Operable Unit. These changes in speciation would then be used to infer whether mercury toxicity and mobility would be expected to be significantly altered under reducing conditions. The results from this work suggest that mercury would likely become more strongly retained by the solid phase under reducing conditions than under oxidizing conditions at the TNX Outfall Delta Site. Considering that experimental results indicate that mercury is extremely tightly bound to the solid phase under oxidizing conditions, little mercury mobility would therefore be expected under reducing conditions.

  3. How common is homoploid hybrid speciation?

    PubMed

    Schumer, Molly; Rosenthal, Gil G; Andolfatto, Peter

    2014-06-01

    Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed.

  4. Chromosome variation, genomics, speciation and evolution in Sceloporus lizards.

    PubMed

    Hall, W P

    2009-01-01

    The clade of the North American lizard genus Sceloporus and its relatives comprising the subfamily Phrynosomatinae (Iguanidae) includes perhaps 150 evolutionary lineages. The work reviewed here begins with the discovery of the concentration of Robertsonian chromosomal variability in Sceloporus more than 40 years ago and cytogenetic and genomic evidence of remarkable chromosomal variation within the S. grammicus complex associated with narrow zones of hybridization between different chromosomal races. These discoveries led to hypotheses about hybrid zones involving negative heterosis, possible modes of chromosomal speciation, and the potential roles of such speciation in phylogenesis. The radiation of Sceloporus has now been studied by many different workers extending and mapping the geographic distribution of cytogenetic and genomic variation to understand the biology of the chromosomal variation and to establish the phyletic relationships of the various lineages. The result is a robust phylogeny and a large and still growing database of genic, cytogenetic and other biological parameters. These materials provide a rich series of natural experiments to support both synthetic-comparative and analytical studies of the roles of chromosomal variation, hybrid zones and modes of speciation in phylogenesis and evolutionary success.

  5. Estimating the duration of speciation from phylogenies.

    PubMed

    Etienne, Rampal S; Morlon, Hélène; Lambert, Amaury

    2014-08-01

    Speciation is not instantaneous but takes time. The protracted birth-death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.

  6. Sensory drive in cichlid speciation.

    PubMed

    Maan, Martine E; Hofker, Kees D; van Alphen, Jacques J M; Seehausen, Ole

    2006-06-01

    The role of selection in speciation is a central yet poorly understood problem in evolutionary biology. The rapid radiations of extremely colorful cichlid fish in African lakes have fueled the hypothesis that sexual selection can drive species divergence without geographical isolation. Here we present experimental evidence for a mechanism by which sexual selection becomes divergent: in two sibling species from Lake Victoria, female mating preferences for red and blue male nuptial coloration coincide with their context-independent sensitivities to red and blue light, which in turn correspond to a difference in ambient light in the natural habitat of the species. These results suggest that natural selection on visual performance, favoring different visual properties in different spectral environments, may lead to divergent sexual selection on male nuptial coloration. This interplay of ecological and sexual selection along a light gradient may provide a mechanism of rapid speciation through divergent sensory drive.

  7. Homoploid hybrid speciation in animals.

    PubMed

    Mavárez, Jesús; Linares, Mauricio

    2008-10-01

    Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.

  8. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  9. Thermal adaptation and ecological speciation.

    PubMed

    Keller, I; Seehausen, O

    2012-02-01

    Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.

  10. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  11. Is Speciation Accompanied by Rapid Evolution? Insights from Comparing Reproductive and Nonreproductive Transcriptomes in Drosophila

    PubMed Central

    Jagadeeshan, Santosh; Haerty, Wilfried; Singh, Rama S.

    2011-01-01

    The tempo and mode of evolutionary change during speciation have remained contentious until recently. While much of the evidence claiming speciation is an abrupt and rapid process comes from fossil data, recent molecular phylogenetics show that the background of gradual evolution is often broken by accelerated rates of molecular evolution during speciation. However, what kinds of genes affect or are affected by speciation remains unexplored. Our analysis of 4843 protein-coding genes in five species of the Drosophila melanogaster subgroup shows that while ~70% of genes follow clock-like evolution, between 17–19.67% of loci show signatures of accelerated rates of evolution in recently formed species. These genes show 2-3-fold higher rates of substitution in recently diverged species compared to older species. This fraction of loci affects a diverse range of functions. Only a small proportion of reproductive genes experience speciation-related accelerated changes but many sex-and -reproduction related genes show an interesting pattern of persistent rapid evolution suggesting that sex-and-reproduction related genes are under constant selective pressures. The identification of loci associated with accelerated evolution allows us to address the mechanisms of rapid evolution and speciation, which in our study appears to be a combination of both selection and rapid demographical changes. PMID:21869936

  12. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.

    PubMed

    Servedio, Maria R

    2016-01-01

    Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.

  13. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages

    PubMed Central

    2010-01-01

    Background A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. PMID:20515493

  14. The geography and ecology of plant speciation: range overlap and niche divergence in sister species.

    PubMed

    Anacker, Brian L; Strauss, Sharon Y

    2014-03-07

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under 'budding' speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister-non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.

  15. The geography and ecology of plant speciation: range overlap and niche divergence in sister species

    PubMed Central

    Anacker, Brian L.; Strauss, Sharon Y.

    2014-01-01

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under ‘budding’ speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister–non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities

  16. Mercury speciation in seafood using isotope dilution analysis: a review.

    PubMed

    Clémens, Stéphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Guérin, Thierry

    2012-01-30

    Mercury is a toxic compound that can contaminate humans through food and especially via fish consumption. Mercury's toxicity depends on the species, with methylmercury being the most hazardous form for humans. Hg speciation analysis has been and remains a widely studied subject because of the potential difficulty of preserving the initial distribution of mercury species in the analysed sample. Accordingly, many analytical methods have been developed and most of them incur significant loss and/or cross-species transformations during sample preparation. Therefore, to monitor and correct artefact formations, quantification by isotope dilution is increasingly used and provides significant added value for analytical quality assurance and quality control. This review presents and discusses the two different modes of application of isotope dilution analysis for elemental speciation (i.e. species-unspecific isotope dilution analysis and species-specific isotope dilution analysis) and the different quantification techniques (i.e. classical and multiple spike isotope dilution analyses). Isotope tracers are thus used at different stages of sample preparation to determine the extent of inter-species transformations and correct such analytical artefacts. Finally, a synthesis of the principal methods used for mercury speciation in seafood using isotope dilution analysis is presented.

  17. Adaptive speciation theory: a conceptual review.

    PubMed

    Weissing, Franz J; Edelaar, Pim; van Doorn, G Sander

    2011-03-01

    Speciation-the origin of new species-is the source of the diversity of life. A theory of speciation is essential to link poorly understood macro-evolutionary processes, such as the origin of biodiversity and adaptive radiation, to well understood micro-evolutionary processes, such as allele frequency change due to natural or sexual selection. An important question is whether, and to what extent, the process of speciation is 'adaptive', i.e., driven by natural and/or sexual selection. Here, we discuss two main modelling approaches in adaptive speciation theory. Ecological models of speciation focus on the evolution of ecological differentiation through divergent natural selection. These models can explain the stable coexistence of the resulting daughter species in the face of interspecific competition, but they are often vague about the evolution of reproductive isolation. Most sexual selection models of speciation focus on the diversification of mating strategies through divergent sexual selection. These models can explain the evolution of prezygotic reproductive isolation, but they are typically vague on questions like ecological coexistence. By means of an integrated model, incorporating both ecological interactions and sexual selection, we demonstrate that disruptive selection on both ecological and mating strategies is necessary, but not sufficient, for speciation to occur. To achieve speciation, mating must at least partly reflect ecological characteristics. The interaction of natural and sexual selection is also pivotal in a model where sexual selection facilitates ecological speciation even in the absence of diverging female preferences. In view of these results, it is counterproductive to consider ecological and sexual selection models as contrasting and incompatible views on speciation, one being dominant over the other. Instead, an integrative perspective is needed to achieve a thorough and coherent understanding of adaptive speciation.

  18. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  19. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  20. Speciation in fungal and oomycete plant pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The process of speciation by definition involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed ...

  1. Speciation genetics: current status and evolving approaches.

    PubMed

    Wolf, Jochen B W; Lindell, Johan; Backström, Niclas

    2010-06-12

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.

  2. Rates of speciation in the fossil record.

    PubMed Central

    Sepkoski, J J

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges. PMID:11541734

  3. Rates of speciation in the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.

  4. Molecular models for actinide speciation

    SciTech Connect

    Clark, D.L.; Watkin, J.G.; Morris, D.E.; Berg, J.M.

    1994-06-01

    Much effort has been devoted to the development of sensitive spectroscopic techniques for the study of actinide speciation based on the sensitivity of f-f electronic absorption bands to oxidation state and ligation of the actinide ions. These efforts assume that data obtained in such studies will be interpretable in terms of changes in complexation of the metal center. However, the current understanding of 5f electronic structure is based on data from solid state doped single crystals. In those studies, the local coordination geometry about the central actinide ion is maintained in an almost perfect high-symmetry environment and will have little relevance for species in solution where deviations from perfect high symmetry tend to be the rule rather than the exception. The authors have developed a vigorous research program in the systematic preparation and spectroscopic characterization of synthetic actinide complexes (Th, U, Np, and Pu) in which they can control nuclearity, oxidation state, and molecular structure. These complexes have been used to determine how observable electronic transitions are perturbed in response to structural changes in the complex in solution. From the spectra obtained for these model complexes, the authors have found that the f-f transitions naturally fall into obvious groupings by coordination number and symmetry by which they can now differentiate between monomeric, dimeric, and trimeric species in solution. The study of radionuclide speciation is fundamentally important to the determination of radionuclide solubility in the groundwater at Yucca Mountain.

  5. The speciation of behavior analysis

    PubMed Central

    Rider, David P.

    1991-01-01

    The relationship between the Experimental Analysis of Behavior (EAB) and Applied Behavior Analysis (ABA) has been the subject of several editorials and commentaries in recent years. Various authors have argued that researchers in these two fields (a) have become isolated from each other, (b) face different requirements for survival in their respective fields, and (c) possess different skills to meet those requirements. The present paper provides an allegory for the relationship between EAB and ABA in terms of biological speciation. The conditions that have changed the relationship between EAB and ABA are parallel to those responsible for biological speciation: (a) isolation of some members of a species from the rest of the population, (b) different contingencies of survival for members of the two separate groups, and (c) divergence in the adaptive characteristics displayed by the two groups. When members of two different groups, descendants of common ancestors, no longer are capable of producing viable offspring by interbreeding, the different groups then represent different species. To the extent that members of the EAB group and members of the ABA group interact with each other only trivially, they each represent allegorically different species. Changes in the relationship between EAB and ABA are part of a natural process that takes place in many other sciences, and the course of that process can hardly be reversed by us. PMID:22478096

  6. Bird song, ecology and speciation.

    PubMed Central

    Slabbekoorn, Hans; Smith, Thomas B

    2002-01-01

    The study of bird song dialects was once considered the most promising approach for investigating the role of behaviour in reproductive divergence and speciation. However, after a series of studies yielding conflicting results, research in the field slowed significantly. Recent findings, on how ecological factors may lead to divergence in both song and morphology, necessitate a re-examination. We focus primarily on species with learned song, examine conflicting results in the literature and propose some potential new directions for future studies. We believe an integrative approach, including an examination of the role of ecology in divergent selection, is essential for gaining insight into the role of song in the evolution of assortative mating. Habitat-dependent selection on both song and fitness-related characteristics can lead to parallel divergence in these traits. Song may, therefore, provide females with acoustic cues to find males that are most fit for a particular habitat. In analysing the role of song learning in reproductive divergence, we focus on post-dispersal plasticity in a conceptual framework. We argue that song learning may initially constrain reproductive divergence, while in the later stages of population divergence it may promote speciation. PMID:12028787

  7. Speciation in Thaparocleidus (Monogenea: Dactylogyridae) Parasitizing Asian Pangasiid Catfishes

    PubMed Central

    Šimková, Andrea; Serbielle, Celine; Vanhove, Maarten P. M.; Morand, Serge

    2013-01-01

    The phylogeny of monogeneans of the genus Thaparocleidus that parasitize the gills of Pangasiidae in Borneo and Sumatra was inferred from molecular data to investigate parasite speciation. The phylogeny of the Pangasiidae was also reconstructed in order to investigate host-parasite coevolutionary history. The monophyly of Thaparocleidus parasitizing Pangasiidae was confirmed. Low intraspecies molecular variability was observed in three Thaparocleidus species collected from geographically distant localities. However, a high intraspecies molecular variability was observed in two Thaparocleidus species suggesting that these species represent a complex of species highly similar in morphology. Distance-based and tree-based methods revealed a significant global fit between parasite and host phylogenies. Parasite duplication (i.e., intrahost speciation) was recognized as the most common event in Thaparocleidus, while the numbers of cospeciation and host switches were lower and similar to each other. When collapsing nodes correspond to duplication cases, our results suggest host switches in the Thaparocleidus-Pangasiidae system precluding congruence between host and parasite trees. We found that the morphometric variability of the parasite attachment organ is not linked to phylogeny, suggesting that the attachment organ is under adaptive constraint. We showed that haptor morphometry is linked to host specificity, whereby nonspecific parasites display higher morphometric variability than specialists. PMID:24350263

  8. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies

    PubMed Central

    Potter, Sally; Bragg, Jason G.; Blom, Mozes P. K.; Deakin, Janine E.; Kirkpatrick, Mark; Eldridge, Mark D. B.; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to “chromosomal speciation.” Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation. PMID:28265284

  9. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  10. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data

    PubMed Central

    Silvestro, Daniele; Schnitzler, Jan; Liow, Lee Hsiang; Antonelli, Alexandre; Salamin, Nicolas

    2015-01-01

    The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes. PMID:24510972

  11. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data.

    PubMed

    Silvestro, Daniele; Schnitzler, Jan; Liow, Lee Hsiang; Antonelli, Alexandre; Salamin, Nicolas

    2014-05-01

    The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.

  12. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Nasuda, Shuhei

    2014-01-01

    Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.

  13. A phylogenetic test of sympatric speciation in the Hydrobatinae (Aves: Procellariiformes).

    PubMed

    Wallace, S J; Morris-Pocock, J A; González-Solís, J; Quillfeldt, P; Friesen, V L

    2017-02-01

    Phylogenetic relationships among species can provide insight into how new species arise. For example, careful consideration of both the phylogenetic and geographic distributions of species in a group can reveal the geographic models of speciation within the group. One such model, sympatric speciation, may be more common than previously thought. The Hydrobatinae (Aves: Procellariformes) is a diverse subfamily of Northern Hemisphere storm-petrels for which the taxonomy is unclear. Previous studies showed that Hydrobates (formally Oceanodroma) castro breeding in the Azores during the cool season is sister species to H. monteiroi, a hot season breeder at the same locations, which suggests sympatric speciation by allochrony. To test whether other species within the subfamily arose via sympatric speciation by allochrony, we sequenced the cytochrome b gene and five nuclear introns to estimate a phylogenetic tree using multispecies coalescent methods, and to test whether species breeding in the same geographic area are monophyletic. We found that speciation within the Hydrobatinae appears to have followed several geographic modes of divergence. Sympatric seasonal species in Japan likely did not arise through sympatric speciation, but allochrony may have played a role in the divergence of H. matsudairae, a cool season breeder, and H. monorhis, a hot season breeder. No other potential cases of sympatric speciation were discovered within the subfamily. Despite breeding in the same geographic area, hydrobatine storm-petrels breeding in Baja California (H. microsoma and H. melania) are each sister to a species breeding off the coast of Peru (H. tethys and H. markhami, respectively). In fact, antitropical sister species appear to have diverged at multiple times, suggesting allochronic divergence might be common. In addition, allopatry has likely played a role in divergence of H. furcata, a north Pacific breeder, and H. pelagius, a north Atlantic breeder. This study demonstrates

  14. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  15. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  16. Environmental harshness, latitude and incipient speciation.

    PubMed

    Weir, Jason T

    2014-02-01

    Are rates of evolution and speciation fastest where diversity is greatest - the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra-tropical regions. In this issue of Molecular Ecology, Botero et al. () test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.

  17. HieranoiDB: a database of orthologs inferred by Hieranoid

    PubMed Central

    Kaduk, Mateusz; Riegler, Christian; Lemp, Oliver; Sonnhammer, Erik L. L.

    2017-01-01

    HieranoiDB (http://hieranoiDB.sbc.su.se) is a freely available on-line database for hierarchical groups of orthologs inferred by the Hieranoid algorithm. It infers orthologs at each node in a species guide tree with the InParanoid algorithm as it progresses from the leaves to the root. Here we present a database HieranoiDB with a web interface that makes it easy to search and visualize the output of Hieranoid, and to download it in various formats. Searching can be performed using protein description, identifier or sequence. In this first version, orthologs are available for the 66 Quest for Orthologs reference proteomes. The ortholog trees are shown graphically and interactively with marked speciation and duplication nodes that show the inferred evolutionary scenario, and allow for correct extraction of predicted orthologs from the Hieranoid trees. PMID:27742821

  18. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara

    PubMed Central

    2013-01-01

    Introduction In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. Results The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. Conclusions The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this

  19. Multiple Instance Fuzzy Inference

    DTIC Science & Technology

    2015-12-02

    INFERENCE A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The...fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a...or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are

  20. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation.

  1. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert

    PubMed Central

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-01-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times. PMID:24558582

  2. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus

    PubMed Central

    Ferris, Kathleen G.; Sexton, Jason P.; Willis, John H.

    2014-01-01

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. PMID:24958929

  3. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert.

    PubMed

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-02-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (F ST = 0.35), and F ST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.

  4. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion.

    PubMed

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of "speciation in reverse".

  5. Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion

    PubMed Central

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of “speciation in reverse”. PMID:24626131

  6. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass.

    PubMed

    Matthews, Luke J; Arnold, Christian; Machanda, Zarin; Nunn, Charles L

    2011-04-22

    Body mass is thought to influence diversification rates, but previous studies have produced ambiguous results. We investigated patterns of diversification across 100 trees obtained from a new Bayesian inference of primate phylogeny that sampled trees in proportion to their posterior probabilities. First, we used simulations to assess the validity of previous studies that used linear models to investigate the links between IUCN Red List status and body mass. These analyses support the use of linear models for ordinal ranked data on threat status, and phylogenetic generalized linear models revealed a significant positive correlation between current extinction risk and body mass across our tree block. We then investigated historical patterns of speciation and extinction rates using a recently developed maximum-likelihood method. Specifically, we predicted that body mass correlates positively with extinction rate because larger bodied organisms reproduce more slowly, and body mass correlates negatively with speciation rate because smaller bodied organisms are better able to partition niche space. We failed to find evidence that extinction rates covary with body mass across primate phylogeny. Similarly, the speciation rate was generally unrelated to body mass, except in some tests that indicated an increase in the speciation rate with increasing body mass. Importantly, we discovered that our data violated a key assumption of sample randomness with respect to body mass. After correcting for this bias, we found no association between diversification rates and mass.

  7. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation.

    PubMed

    Martin, Christopher H; Cutler, Joseph S; Friel, John P; Dening Touokong, Cyrille; Coop, Graham; Wainwright, Peter C

    2015-06-01

    One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.

  8. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  9. Diploid versus haploid models of neutral speciation.

    PubMed

    Schneider, David M; Baptestini, Elizabeth M; de Aguiar, Marcus A M

    2016-03-01

    Neutral models of speciation based on isolation by distance and assortative mating, termed topopatric, have shown to be successful in describing abundance distributions and species-area relationships. Previous works have considered this type of process in the context of haploid genomes. Here we discuss the implementation of two schemes of dominance to analyze the effects of diploidy: a complete dominance model in which one allele dominates over the other and a perfect codominant model in which heterozygous genotypes give rise to a third phenotype. In the case of complete dominance, we observe that speciation requires stronger spatial inbreeding in comparison to the haploid model. For perfect codominance, instead, speciation demands stronger genetic assortativeness. Nevertheless, once speciation is established, the three models predict the same abundance distributions even at the quantitative level, revealing the robustness of the original mechanism to describe biodiversity features.

  10. Physicochemical speciation of lead in drinking water.

    PubMed

    Harrison, R M; Laxen, D P

    1980-08-21

    Recent studies have highlighted the importance of drinking water as a route of human exposure to lead. Whilst there are ample data on lead concentrations in drinking water, little is known of its physical and chemical forms (physicochemical speciation). Such information is important as the speciation of ingested lead influences the efficiency of absorption from the gastrointestinal tract. Knowledge of speciation should also provide a fuller understanding of the factors controlling the solubility of lead in potable waters and hence assist in devising the most cost-effective means of plumbosolvency control. We have determined experimentally the speciation of lead in three different tapwaters and report here diverse forms of dissolved and particle-associated lead, dependent primarily on the chemical matrix of the raw water.

  11. Inference in `poor` languages

    SciTech Connect

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  12. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification.

  13. Speciation of vanadium in soil.

    PubMed

    Połedniok, Justyna; Buhl, Franciszek

    2003-01-02

    A method for speciation of vanadium in soil is presented in this work. The sequential extraction analysis procedure of Tessier et al. for heavy metals was used for the vanadium separation. The method consists of sequential leaching of the soil samples to separate five fractions of metals: (1) exchangeable, (2) bound to carbonates, (3) bound to Fe-Mn oxides, (4) bound to organic matter and (5) residual. The leaching solutions of Tessier were used for the vanadium extraction, only for the residual fraction the HClO(4) was replaced with H(2)SO(4). The optimum conditions for leaching of vanadium from soil (weight of sample, concentration and volume of extractants, time of extraction) were chosen for each fraction. A sensitive, spectrophotometric method based on the ternary complex V(IV) with Chrome Azurol S and benzyldodecyldimethylammonium bromide (epsilon=7.1x10(4) l mol(-1) cm(-1)) was applied for the vanadium determination after separation of V(V) by solvent extraction using mesityl oxide and reduction of V(V) using ascorbic acid. This method was applied for vanadium speciation in soil from two different regions of Poland: Upper Silesia (industrial region) and Podlasie (agricultural region). The content of vanadium in the fractions of Upper Silesia soil was respectively (in 10(-3)%): I, 3.39; III, 4.53; IV, 10.70; V, 8.70 and it was the highest in the organic fraction, indicating input by anthropogenic activities. The content of vanadium in Podlasie soil was clearly lower and it was (in 10(-3)%): I, 2.07; III, 0.92; IV, 0.69; V, 1.23. The concentration of vanadium in fraction 2 of both soils was less than detection limit of applied method. The total content of vanadium in the five soil fractions was in good correlation with the total content of this element in both soils found after HF-H(2)SO(4) digestion. Analysis using the ICP-AES method gave comparable results.

  14. On speciation of VOC localization

    NASA Astrophysics Data System (ADS)

    Chen, S.; Chang, J.; Wang, J.

    2011-12-01

    Most of the gas-phase chemical mechanisms successfully used in gas-phase atmospheric chemical processes, such as CBM-Z, RADM2 or SAPRC-07, treat hundreds of VOC as lumped organic species by their chemical characteristics. Most of the model results are compared with total VOC observations, and it is not appropriate to compare lumped VOC simulations to observations even if there are separate VOC observations like Photochemical Assessment Monitoring Stations (PAMS). While the PAMS Air Quality Model (PAMS-AQM) is developed, separate organic species observed by PAMS without a doubt can be directly compared with model simulations. From the past case study (Chen et al., 2010), it shows a major and very significant finding in that detailed emissions of VOC in the existing emissions database are often in error in Taiwan or other countries due to the fact that the annual VOC emissions are classified into hundreds of species-specific emissions by using the speciation factors following the protocol of the U.S. EPA (AP-42). Based on all PAMS observations from 2006-2007, four base cases with well comparable meteorological simulations were selected for the unified correction for all sources in Taiwan. After the PAMS species emissions are modified, the diurnal patterns and simulation-observation correlation for most of the PAMS species are improved, and the concentration levels are more comparable with those of observations. More expanded case studies also revealed necessary corrections for the PAMS species emissions. Sensitivity analyses for lumped organic species with modified PAMS species emissions are also conducted. After modified PAMS emissions are added into lumped VOC emissions, there is an increase of only 10% of totally VOC emissions. While the sources of the lumped VOC emissions are changed, ozone formation shows no significant change with modified lumped VOC emissions. This helps to support the argument that for ozone simulation, the lumped VOC processes balance out

  15. Speciation dynamics during the global radiation of extant bats.

    PubMed

    Shi, Jeff J; Rabosky, Daniel L

    2015-06-01

    Species richness varies widely across extant clades, but the causes of this variation remain poorly understood. We investigate the role of diversification rate heterogeneity in shaping patterns of diversity across families of extant bats. To provide a robust framework for macroevolutionary inference, we assemble a time-calibrated, species-level phylogeny using a supermatrix of mitochondrial and nuclear sequence data. We analyze the phylogeny using a Bayesian method for modeling complex evolutionary dynamics. Surprisingly, we find that variation in family richness can largely be explained without invoking heterogeneous diversification dynamics. We document only a single well-supported shift in diversification dynamics across bats, occurring at the base of the subfamily Stenodermatinae. Bat diversity is phylogenetically imbalanced, but-contrary to previous hypotheses-this pattern is unexplained by any simple patterns of diversification rate heterogeneity. This discordance may indicate that diversification dynamics are more complex than can be captured using the statistical tools available for modeling data at this scale. We infer that bats as a whole are almost entirely united into one macroevolutionary cohort, with decelerating speciation through time. There is also a significant relationship between clade age and richness, suggesting that global bat diversity may still be expanding.

  16. Speciation rates decline through time in individual-based models of speciation and extinction.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-09-01

    A well-documented pattern in the fossil record is a long-term decline in the origination rate of new taxa after diversity rebounds from a mass extinction. The mechanisms for this pattern remain elusive. In this article, we investigate the macroevolutionary predictions of an individual-based birth-death model (BDI model) where speciation and extinction rates emerge from population dynamics. We start with the simplest neutral model in which every individual has the same per capita rates of birth, death, and speciation. Although the prediction of the simplest neutral model agrees qualitatively with the fossil pattern, the predicted decline in per-species speciation rates is too fast to explain the long-term trend in fossil data. We thus consider models with variation among species in per capita rates of speciation and a suite of alternative assumptions about the heritability of speciation rate. The results show that interspecific variation in per capita speciation rate can induce differences among species in their ability to resist extinction because a low speciation rate confers a small but important demographic advantage. As a consequence, the model predicts an appropriately slow temporal decline in speciation rates, which provides a mechanistic explanation for the fossil pattern.

  17. Ecological speciation in marine v. freshwater fishes.

    PubMed

    Puebla, O

    2009-10-01

    Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for

  18. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.

  19. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  20. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.

  1. Speciation without Pre-Defined Fitness Functions.

    PubMed

    Gras, Robin; Golestani, Abbas; Hendry, Andrew P; Cristescu, Melania E

    2015-01-01

    The forces promoting and constraining speciation are often studied in theoretical models because the process is hard to observe, replicate, and manipulate in real organisms. Most models analyzed to date include pre-defined functions influencing fitness, leaving open the question of how speciation might proceed without these built-in determinants. To consider the process of speciation without pre-defined functions, we employ the individual-based ecosystem simulation platform EcoSim. The environment is initially uniform across space, and an evolving behavioural model then determines how prey consume resources and how predators consume prey. Simulations including natural selection (i.e., an evolving behavioural model that influences survival and reproduction) frequently led to strong and distinct phenotypic/genotypic clusters between which hybridization was low. This speciation was the result of divergence between spatially-localized clusters in the behavioural model, an emergent property of evolving ecological interactions. By contrast, simulations without natural selection (i.e., behavioural model turned off) but with spatial isolation (i.e., limited dispersal) produced weaker and overlapping clusters. Simulations without natural selection or spatial isolation (i.e., behaviour model turned off and high dispersal) did not generate clusters. These results confirm the role of natural selection in speciation by showing its importance even in the absence of pre-defined fitness functions.

  2. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-07-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contribution function, gridded frequency distributions, and concentration-back trajectory models. Combustion sources (e.g., coal combustion, biomass burning, and vehicular, industrial and waste incineration emissions), crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River valley in the US and throughout China, metal smelters, mercury evasion from the ocean and the Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. Multivariate models are suitable for receptor locations with intensive air monitoring because they require long-term collocated and simultaneous measurements of speciated atmospheric Hg and ancillary pollutants. The multivariate models provide more insight about the types of Hg emission sources and Hg processes that could affect speciated atmospheric Hg at a receptor location, whereas back trajectory receptor models are mainly ideal for identifying potential regional Hg source locations impacting elevated Hg concentrations. Interpretation of the multivariate model output to sources can be

  3. Hydroxyl speciation in felsic magmas

    NASA Astrophysics Data System (ADS)

    Malfait, Wim J.; Xue, Xianyu

    2014-09-01

    The hydroxyl speciation of hydrous, metaluminous potassium and calcium aluminosilicate glasses was investigated by 27Al-1H cross polarization and quantitative 1H MAS NMR spectroscopy. Al-OH is present in both the potassium and the calcium aluminosilicate glasses and its 1H NMR partial spectrum was derived from the 27Al-1H cross polarization data. For the calcium aluminosilicate glasses, the abundance of Al-OH could not be determined because of the low spectral resolution. For the potassium aluminosilicate glasses, the fraction of Al-OH was quantified by fitting its partial spectrum to the quantitative 1H NMR spectra. The degree of aluminum avoidance and the relative tendency for Si-O-Si, Si-O-Al and Al-O-Al bonds to hydrolyze were derived from the measured species abundances. Compared to the sodium, lithium and calcium systems, potassium aluminosilicate glasses display a much stronger degree of aluminum avoidance and a stronger tendency for the Al-O-Al linkages to hydrolyze. Combining our results with those for sodium aluminosilicate glasses (Malfait and Xue, 2010a), we predict that the hydroxyl groups in rhyolitic and phonolitic magmas are predominantly present as Si-OH (84-89% and 68-78%, respectively), but with a significant fraction of Al-OH (11-16% and 22-32%, respectively). For both rhyolitic and phonolitic melts, the AlOH/(AlOH + SiOH) ratio is likely smaller than the Al/(Al + Si) ratio for the lower end of the natural temperature range but may approach the Al/(Al + Si) ratio at higher temperatures.

  4. Neural Correlates of Species-Typical Illogical Cognitive Bias in Human Inference

    ERIC Educational Resources Information Center

    Ogawa, Akitoshi; Yamazaki, Yumiko; Ueno, Kenichi; Cheng, Kang; Iriki, Atsushi

    2010-01-01

    The ability to think logically is a hallmark of human intelligence, yet our innate inferential abilities are marked by implicit biases that often lead to illogical inference. For example, given AB ("if A then B"), people frequently but fallaciously infer the inverse, BA. This mode of inference, called symmetry, is logically invalid because,…

  5. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Kirk, Nordstrom D.

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  6. Monte Carlo simulations of parapatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  7. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, R.C.; Taylor, H.E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  8. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae).

    PubMed

    Marques, I; Draper, D; López-Herranz, M L; Garnatje, T; Segarra-Moragues, J G; Catalán, P

    2016-11-03

    Apart from the overwhelming cases of allopolyploidization, the impact of speciation through homoploid hybridization is becoming more relevant than previously thought. Much less is known, however, about the impact of climate changes as a driven factor of speciation. To investigate these issues, we selected Festuca picoeuropeana, an hypothetical natural hybrid between the diploid species F. eskia and F. gautieri that occurs in two different mountain ranges (Cantabrian Mountains and Pyrenees) separated by more than 400 km. To unravel the outcomes of this mode of speciation and the impact of climate during speciation we used a multidisciplinary approach combining genome size and chromosome counts, data from an extensive nuclear genotypic analysis, plastid sequences and ecological niche models (ENM). Our results show that the same homoploid hybrid was originated independently in the two mountain ranges, being currently isolated from both parents and producing viable seeds. Parental species had the opportunity to contact as early as 21000 years ago although niche divergence occurs nowadays as result of a climate-driven shift. A high degree of niche divergence was observed between the hybrid and its parents and no recent introgression or backcrossed hybrids were detected, supporting the current presence of reproductive isolation barriers between these species.

  9. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae)

    PubMed Central

    Marques, I.; Draper, D.; López-Herranz, M. L.; Garnatje, T.; Segarra-Moragues, J. G.; Catalán, P.

    2016-01-01

    Apart from the overwhelming cases of allopolyploidization, the impact of speciation through homoploid hybridization is becoming more relevant than previously thought. Much less is known, however, about the impact of climate changes as a driven factor of speciation. To investigate these issues, we selected Festuca picoeuropeana, an hypothetical natural hybrid between the diploid species F. eskia and F. gautieri that occurs in two different mountain ranges (Cantabrian Mountains and Pyrenees) separated by more than 400 km. To unravel the outcomes of this mode of speciation and the impact of climate during speciation we used a multidisciplinary approach combining genome size and chromosome counts, data from an extensive nuclear genotypic analysis, plastid sequences and ecological niche models (ENM). Our results show that the same homoploid hybrid was originated independently in the two mountain ranges, being currently isolated from both parents and producing viable seeds. Parental species had the opportunity to contact as early as 21000 years ago although niche divergence occurs nowadays as result of a climate-driven shift. A high degree of niche divergence was observed between the hybrid and its parents and no recent introgression or backcrossed hybrids were detected, supporting the current presence of reproductive isolation barriers between these species. PMID:27808118

  10. Mistaking geography for biology: inferring processes from species distributions.

    PubMed

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity).

  11. Speciation on Oceanic Islands: Rapid Adaptive Divergence vs. Cryptic Speciation in a Guadalupe Island Songbird (Aves: Junco)

    PubMed Central

    Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja

    2013-01-01

    The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated “cryptic” lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving

  12. Speciation on oceanic islands: rapid adaptive divergence vs. cryptic speciation in a Guadalupe Island songbird (Aves: Junco).

    PubMed

    Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja

    2013-01-01

    The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated "cryptic" lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving

  13. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  14. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  15. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  16. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  17. Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series

    PubMed Central

    Bunje, Paul ME; Barluenga, Marta; Meyer, Axel

    2007-01-01

    Background Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples. Results In order to assess the validity and reliability of inferences based on different genetic samples, we have analyzed fish from several lakes in Nicaragua sampled at three different times over 16 years. In addition, this time series allows us to analyze the population genetic changes that have occurred between lakes, where allopatric speciation has operated, as well as between different species within lakes, some of which have originated by sympatric speciation. Focusing on commonly used genetic markers, we have analyzed both DNA sequences from the complete mitochondrial control region as well as nuclear DNA variation at ten microsatellite loci from these populations, sampled thrice in a 16 year time period, to develop a robust estimate of the population genetic history of these diversifying lineages. Conclusion The conclusions from previous work are well supported by our comprehensive analysis. In particular, we find that the genetic diversity of derived crater lake populations is lower than that of the source population regardless of when and how each population was sampled. Furthermore, changes in various estimates of genetic diversity within lakes

  18. The Bayes Inference Engine

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.

    1996-04-01

    The authors are developing a computer application, called the Bayes Inference Engine, to provide the means to make inferences about models of physical reality within a Bayesian framework. The construction of complex nonlinear models is achieved by a fully object-oriented design. The models are represented by a data-flow diagram that may be manipulated by the analyst through a graphical programming environment. Maximum a posteriori solutions are achieved using a general, gradient-based optimization algorithm. The application incorporates a new technique of estimating and visualizing the uncertainties in specific aspects of the model.

  19. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  20. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  1. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  2. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  3. Speciation through the learning of habitat features.

    PubMed

    Beltman, J B; Haccou, P

    2005-05-01

    Learning of environmental features can influence both mating behaviour and the location where young are produced. This may lead to speciation in three steps: (i) colonization of a new habitat, (ii) genetic divergence of the two groups by adaptation to the habitats, and (iii) a decrease of genetic mixing between the lineages (similar to reinforcement). In a previous paper we showed that steps (i) and (ii) occur readily for a wide range of fixed mating and habitat preferences. Here, we study whether this can ultimately lead to speciation through selective changes in these preferences. We show that this indeed occurs, and, furthermore, it is very general: for a large class of models there is selection toward producing young more frequently in the natal habitat. Once habitat preference is strong, there is selection toward stronger assortative mating. Even when steps (i) and (ii) initially fail, genetic divergence may succeed at a later evolutionary stage, after which a decrease of genetic mixing completes speciation. Our results show that speciation by the learning of habitat features is an extremely effective mechanism.

  4. Diploid hybrid speciation in Penstemon (Scrophulariaceae)

    PubMed Central

    Wolfe, Andrea D.; Xiang, Qiu-Yun; Kephart, Susan R.

    1998-01-01

    Hybrid speciation has played a significant role in the evolution of angiosperms at the polyploid level. However, relatively little is known about the importance of hybrid speciation at the diploid level. Two species of Penstemon have been proposed as diploid hybrid derivatives based on morphological data, artificial crossing studies, and pollinator behavior observations: Penstemon spectabilis (derived from hybridization between Penstemon centranthifolius and Penstemon grinnellii) and Penstemon clevelandii (derived from hybridization between P. centranthifolius and P. spectabilis). Previous studies were inconclusive regarding the purported hybrid nature of these species because of a lack of molecular markers sufficient to differentiate the parental taxa in the hybrid complex. We developed hypervariable nuclear markers using inter-simple sequence repeat banding patterns to test these classic hypotheses of diploid hybrid speciation in Penstemon. Each species in the hybrid complex was genetically distinct, separated by 10–42 species-specific inter-simple sequence repeat markers. Our data do not support the hybrid origin of P. spectabilis but clearly support the diploid hybrid origin of P. clevelandii. Our results further suggest that the primary reason diploid hybrid speciation is so difficult to detect is the lack of molecular markers able to differentiate parental taxa from one another, particularly with recently diverged species. PMID:9560237

  5. Actinide speciation in relation to biological processes.

    PubMed

    Ansoborlo, Eric; Prat, Odette; Moisy, Philippe; Den Auwer, Christophe; Guilbaud, Philippe; Carriere, M; Gouget, Barbara; Duffield, John; Doizi, Denis; Vercouter, Thomas; Moulin, Christophe; Moulin, Valérie

    2006-11-01

    In case of accidental release of radionuclides into the environment, actinides represent a severe health risk to human beings following internal contamination (inhalation, ingestion or wound). For a better understanding of the actinide behaviour in man (in term of metabolism, retention, excretion) and in specific biological systems (organs, cells or biochemical pathways), it is of prime importance to have a good knowledge of the relevant actinide solution chemistry and biochemistry, in particular of the thermodynamic constants needed for computing actinide speciation. To a large extent, speciation governs bioavailability and toxicity of elements and has a significant impact on the mechanisms by which toxics accumulate in cell compartments and organs and by which elements are transferred and transported from cell to cell. From another viewpoint, speciation is the prerequisite for the design and success of potential decorporation therapies. The purpose of this review is to present the state of the art of actinide knowledge within biological media. It is also to discuss how actinide speciation can be determined or predicted and to highlight the areas where information is lacking with the aim to encourage new research efforts.

  6. Pervaporation: a useful tool for speciation analysis

    NASA Astrophysics Data System (ADS)

    Luque de Castro, M. D.; Papaefstathiou, I.

    1998-02-01

    The application of pervaporation as both an auxiliary and a fundamental device for speciation analysis in liquid and solid samples is discussed. Examples of various determinations, including the coupling of the technique to both a gas chromatograph and flow-injection configurations, applied mostly to environmental and biological samples, are presented, giving clear evidence of the double role of the pervaporation process.

  7. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  8. Inference as Prediction

    ERIC Educational Resources Information Center

    Watson, Jane

    2007-01-01

    Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…

  9. Adding to the Mercury Speciation Toolbox

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Northrup, P. A.; Chidambaram, D.; Kalb, P. D.

    2007-12-01

    Mercury was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge, TN in the 1950s and 1960s. A large portion of the waste Hg entered the environment and continues to move throughout the sub-surface and surface waters in the area. Environmental management of Hg contamination within this complex hydrologic system, where Hg speciation and the mobile fraction have been found to vary widely, will require ongoing characterization and predictive modeling of Hg speciation. State-of-the-art spectroscopic tools that can directly probe Hg speciation in preserved aqueous and sediment samples with greater sensitivity, however, are required to determine rates and mechanisms of biogeochemical reactions. We will present the first results demonstrating the use of x-ray absorption spectroscopy (XAS) at the Hg M5 edge (2295 eV) to fingerprint Hg species. Heavy-metal M5 absorption edges can have very sharp features due to local electron transitions, and therefore, we are developing this edge as a tool for quantitative measurement of Hg species. In addition, sulfur speciation using the sulfur K absorption edge, which is at a similar energy (2472 eV), can be measured in the same scan as the Hg M5 edge. Potentially important organic and inorganic sulfur species (sulfide, disulfide, elemental sulfur, sulfite and sulfate) are readily differentiated, and thereby, provides an independent method for monitoring the redox state of the system along with changes in S-Hg bonding. We will also present x-ray microprobe 2-D concentration maps of Hg and other elements at the grain and pore scales to identify its microscopic distribution and chemical associations. When used in combination with established sequential extraction and direct spectroscopic methods, the addition of XAS at the Hg M5 edge should provide a significant advancement in the determination of Hg speciation in complex biogeochemical environments.

  10. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves).

    PubMed

    Wang, Ning; Liang, Bin; Wang, Jichao; Yeh, Chia-Fen; Liu, Yang; Liu, Yanlin; Liang, Wei; Yao, Cheng-Te; Li, Shou-Hsien

    2016-09-01

    Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process.

  11. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory.

    PubMed

    Farré, Marta; Micheletti, Diego; Ruiz-Herrera, Aurora

    2013-04-01

    A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.

  12. Recombination Rates and Genomic Shuffling in Human and Chimpanzee—A New Twist in the Chromosomal Speciation Theory

    PubMed Central

    Farré, Marta; Micheletti, Diego; Ruiz-Herrera, Aurora

    2013-01-01

    A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human–chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human–chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals. PMID:23204393

  13. Motion Information Inferring Scheme for Multi-View Video Coding

    NASA Astrophysics Data System (ADS)

    Koo, Han-Suh; Jeon, Yong-Joon; Jeon, Byeong-Moon

    This letter proposes a motion information inferring scheme for multi-view video coding motivated by the idea that the aspect of motion vector between the corresponding positions in the neighboring view pair is quite similar. The proposed method infers the motion information from the corresponding macroblock in the neighboring view after RD optimization with the existing prediction modes. This letter presents evaluation showing that the method significantly enhances the efficiency especially at high bit rates.

  14. Gastropod diversification and community structuring processes in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-09-01

    The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental

  15. Chromium speciation in coal and biomass co-combustion products.

    PubMed

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  16. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).

    PubMed

    Bueno-Silva, Marlus; Boeger, Walter A; Pie, Marcio R

    2011-05-01

    unreported mode of adaptive speciation that helps to understand its rate of diversification.

  17. Optical Inference Machines

    DTIC Science & Technology

    1988-06-27

    de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the

  18. Active inference and learning.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity.

  19. Multimodel inference and adaptive management

    USGS Publications Warehouse

    Rehme, S.E.; Powell, L.A.; Allen, C.R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  20. Speciation Effect in the Penna Aging Model

    NASA Astrophysics Data System (ADS)

    Łaszkiewicz, A.; Szymczak, Sz.; Cebrat, S.

    We have simulated the evolution of diploid, sexually reproducing populations using the Penna model of aging. We have noted that diminishing the recombination frequency during the gamete production generates a specific diversity of genomes in the populations. When two populations independently evolving for some time were mixed in one environmental niche of the limited size and crossbreeding between them was allowed, the average lifespan of hybrids was significantly shorter than the lifespan of the individuals of parental lines. Another effect of higher hybrid mortality is the faster elimination of one parental line from the shared environment. The two populations living in one environment co-exist much longer if they are genetically separated — they compete as two species instead of crossbreeding. This effect can be considered as the first step to speciation — any barrier eliminating crossbreeding between these populations, leading to speciation, would favor the populations.

  1. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  2. Does speciation matter for tungsten ecotoxicology?

    PubMed

    Strigul, Nikolay

    2010-09-01

    Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.

  3. First passage time to allopatric speciation

    PubMed Central

    Yamaguchi, Ryo; Iwasa, Yoh

    2013-01-01

    Allopatric speciation is a mechanism to evolve reproductive isolation; it is caused by the accumulation of genetic differences between populations while they are geographically isolated. Here, we studied a simple stochastic model for the time until speciation caused by geographical isolation in fragmented populations that experience recurrent but infrequent migration between subpopulations. We assumed that mating incompatibility is controlled by a number of loci that behave as neutral characters in the accumulation of novel mutations within each population. Genetic distance between populations was defined as the number of incompatibility-controlling loci that differ between them. Genetic distance increases through the separate accumulation of mutations in different populations, but decreases after a successful migration event followed by genetic mixing between migrants and residents. We calculated the time to allopatric speciation, which occurs when the genetic distance exceeds a specified threshold. If the number of invasive individuals relative to the resident population is not very large, diffusion approximation provides an accurate prediction. There is an intermediate optimal rate of migration that maximizes the rate of species creation by recurrent invasion and diversification. We also examined cases that involved more than two populations. PMID:24516714

  4. Arsenic speciation and sorption in natural environments

    USGS Publications Warehouse

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  5. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology.

    PubMed

    Chaverri, Priscila; Samuels, Gary J

    2013-10-01

    Host jumps by microbial symbionts are often associated with bursts of species diversification driven by the exploitation of new adaptive zones. The objective of this study was to infer the evolution of habitat preference (decaying plants, soil, living fungi, and living plants), and nutrition mode (saprotrophy and mycoparasitism) in the fungal genus Trichoderma to elucidate possible interkingdom host jumps and shifts in ecology. Host and ecological role shifts were inferred by phylogenetic analyses and ancestral character reconstructions. The results support several interkingdom host jumps and also show that the preference for a particular habitat was gained or lost multiple times. Diversification analysis revealed that mycoparasitism is associated with accelerated speciation rates, which then suggests that this trait may be linked to the high number of species in Trichoderma. In this study it was also possible to infer the cryptic roles that endophytes or soil inhabitants play in their hosts by evaluating their closest relatives and determining their most recent ancestors. Findings from this study may have implications for understanding certain evolutionary processes such as species radiations in some hyperdiverse groups of fungi, and for more applied fields such as the discovery and development of novel biological control strategies.

  6. Speciation of challenging elements in food by atomic spectrometry.

    PubMed

    Ruzik, Lena

    2012-05-15

    The review addresses trends in speciation analysis of challenging - rather rarely examined despite their importance for human health - elements in foodstuffs with special attention prior to sample preparation. Elements of interest are cobalt, iodine, manganese, iron, zinc, copper and molybdenum belong to the group of elements still appealed for searching their speciation despite extremely small contents in foodstuffs. Advantages and weaknesses of recommended procedures are overviewed and discussed, highlighting state-of-the-art speciation methodologies developed so far in the field.

  7. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  8. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  9. Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, Torsten; Albrecht, Christian; Wilke, Thomas

    2016-05-01

    The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the "metacommunity speciation model".The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes - environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological

  10. Evaluation of Regenerated Catalyst for Mercury Speciation

    SciTech Connect

    Dennis Laudal

    2007-06-01

    In March of 2005, U.S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR). Mercury from coal-fired power plants was to be reduced from the current 48 to 38 tons/yr by 2010 and then 15 tons/yr by 2018. It is expected that the first phase reduction of {approx}21% will be achieved by cobenefits that will occur as a result of installing additional selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems to meet the new Clean Air Interstate Rule (CAIR). Detroit Edison (DTE) is installing SCR at all four units at its Monroe Station and will eventually install wet-FGD systems. As such, the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and DTE have contracted with the Energy & Environmental Research Center (EERC) to determine the extent of mercury oxidation that occurs at Monroe Station. The EERC originally did mercury speciation sampling at Monroe Station in 2004 and then went back in 2005 to determine if any changes occurred as a result of catalyst aging. During the second test, in addition to measuring the mercury speciation at the inlet and outlet of the SCR, the EERC also completed sampling at a location between the catalyst layers. The results are shown in Table 1. In Table 1, the results show that {approx}40% of the Hg was in oxidized form (Hg{sup 2+}) at the inlet and nearly 100% Hg{sup 2+} at the outlet. The results at the midpoint were between 40% and 100%. As part of their overall strategy to reduce SCR costs, utilities and SCR vendors are attempting to regenerate catalyst layers that have degenerated over time. If these regenerated catalysts are used, the question remains as to the effect this process will have on the ability of these catalysts to oxidize mercury as well as reduce NO{sub x}. The current project is designed to measure the Hg speciation across an SCR using a regenerated catalyst. The results were compared to previous results to determine what, if any, changes

  11. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.

  12. Inferring Horizontal Gene Transfer

    PubMed Central

    Lassalle, Florent; Dessimoz, Christophe

    2015-01-01

    Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646

  13. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  14. Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia.

    PubMed

    Rix, Michael G; Harvey, Mark S

    2012-01-01

    The rainforests, wet sclerophyll forests and temperate heathlands of the Australian mesic zone are home to a diverse and highly endemic biota, including numerous old endemic lineages restricted to refugial, mesic biomes. A growing number of phylogeographic studies have attempted to explain the origins and diversification of the Australian mesic zone biota, in order to test and better understand the mode and tempo of historical speciation within Australia. Assassin spiders (family Archaeidae) are a lineage of iconic araneomorph spiders, characterised by their antiquity, remarkable morphology and relictual biogeography on the southern continents. The Australian assassin spider fauna is characterised by a high diversity of allopatric species, many of which are restricted to individual mountains or montane systems, and all of which are closely tied to mesic and/or refugial habitats in the east and extreme south-west of mainland Australia. We tested the phylogeny and vicariant biogeography of the Australian Archaeidae (genus Austrarchaea Forster & Platnick), using a multi-locus molecular approach. Fragments from six mitochondrial genes (COI, COII, tRNA-K, tRNA-D, ATP8, ATP6) and one nuclear protein-coding gene (Histone H3) were used to infer phylogenetic relationships and to explore the phylogeographic origins of the diverse Australian fauna. Bayesian analyses of the complete molecular dataset, along with differentially-partitioned Bayesian and parsimony analyses of a smaller concatenated dataset, revealed the presence of three major Australian lineages, each with non-overlapping distributions in north-eastern Queensland, mid-eastern Australia and southern Australia, respectively. Divergence date estimation using mitochondrial data and a rate-calibrated relaxed molecular clock revealed that major lineages diverged in the early Tertiary period, prior to the final rifting of Australia from East Antarctica. Subsequent speciation occurred during the Miocene (23-5.3 million

  15. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax

    PubMed Central

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A.; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-01-01

    an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection]. PMID:26340990

  16. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    PubMed

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].

  17. BIE: Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-12-01

    The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.

  18. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  19. The quest for the solar g modes

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Belkacem, K.; Broomhall, A.-M.; Chaplin, W. J.; Gough, D. O.; Houdek, G.; Provost, J.; Baudin, F.; Boumier, P.; Elsworth, Y.; García, R. A.; Andersen, B. N.; Finsterle, W.; Fröhlich, C.; Gabriel, A.; Grec, G.; Jiménez, A.; Kosovichev, A.; Sekii, T.; Toutain, T.; Turck-Chièze, S.

    2010-02-01

    Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.

  20. SERIES - Satellite Emission Range Inferred Earth Surveying

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Spitzmesser, D. J.; Buennagel, L. A.

    1983-01-01

    The Satellite Emission Range Inferred Earth Surveying (SERIES) concept is based on the utilization of NAVSTAR Global Positioning System (GPS) radio transmissions without any satellite modifications and in a totally passive mode. The SERIES stations are equipped with lightweight 1.5 m diameter dish antennas mounted on trailers. A series baseline measurement accuracy demonstration is considered, taking into account a 100 meter baseline estimation from approximately one hour of differential Doppler data. It is planned to conduct the next phase of experiments on a 150 m baseline. Attention is given to details regarding future baseline measurement accuracy demonstrations, aspects of ionospheric calibration in connection with subdecimeter baseline accuracy requirements of geodesy, and advantages related to the use of the differential Doppler or pseudoranging mode.

  1. Complementary arsenic speciation methods: A review

    NASA Astrophysics Data System (ADS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  2. Investigations of copper speciation and bioavailability

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1995-12-31

    Speciation, or form in which copper occurs, can effect the bioavailability and therefore, the toxicity of that element. One needs to determine the bioavailable forms of copper in sediment/water effects on organisms. In both water and sediment experiments, physical/chemical factors influencing copper speciation were evaluated and related to organism responses. Ten day aqueous experiments encompassing a range of pH (6.5--8.1), alkalinity (10--70 mg/L as CaCO{sub 3}), hardness (10--70 mg/L as CaCO{sub 3}) and conductivity (30--300 umhos/cm) were conducted using Hyalella azteca. Amphipod survival was evaluated relative to changes in water characteristics and concomitant changes in copper speciation as measured using atomic adsorption spectroscopy (AA) for acid extractable copper, and differential pulse anodic stripping voltammetry (DPASV) for labile copper. Ten day LC50s based on AA measured copper concentrations ranged from 42 to 142 ug/L Cu, and LC50s based on DPASV measured copper concentrations ranged from 17.4--24.8 ug/L Cu. Ten day sediment experiments encompassing a range of sediment pH, organic carbon content, acid volatile sulfides and redox concentrations were also conducted using H. azteca. Overlying water (AA and DPASV) and sediment copper concentrations (AA) were measured and evaluated relative to organism survival. Ten day sediment test LC50s based on DPASV measured copper concentrations in overlying water were 18.5 and 18 ug/L Cu for experiments in sandy and silty sediments, respectively. Organism survival, used as a measure of bioavailable copper, was evaluated in relation to measured copper species concentrations and used to develop guidelines for predicting copper toxicity in freshwater systems.

  3. Bayes factors and multimodel inference

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.

  4. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  5. Speciation and release kinetics of zinc in contaminated paddy soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Zinc is an important nutrient for plants, but it can be toxic at high concentrations. The solubility and speciation of Zn is controlled by many factors, especially soil pH and Eh, which can vary in lowland rice culture. This study determined Zn speciation and release kinetics in Cd-Zn co-contamina...

  6. Arsenic speciation in natural sulfidic geothermal waters

    NASA Astrophysics Data System (ADS)

    Keller, Nicole S.; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    The speciation of arsenic in natural sulfidic geothermal waters was studied using chemical analyses and thermodynamic aqueous speciation calculations. Samples were collected in three geothermal systems in Iceland, having contrasting H2S concentrations in the reservoir (high vs. low). The sampled waters contained 7-116 ppb As and <0.01-77.6 ppm H2S with pH of 8.56-9.60. The analytical setup used for the determination of arsenic species (Ion Chromatography-Hydride Generation Atomic Fluorescence Spectrometry, IC-HG-AFS) was field-deployed and the samples analyzed within ∼5 min of sampling in order to prevent changes upon storage, which were shown to be considerable regardless of the sample storage method used. Nine aqueous arsenic species were detected, among others arsenite (HnAsO3n-3), thioarsenite (HnAsS3n-3), arsenate (HnAsO4n-3), monothioarsenate (HnAsSO3n-3), dithioarsenate (HnAsS2O2n-3), trithioarsenate (HnAsS3O) and tetrathioarsenate (HnAsS4n-3). The results of the measured aqueous arsenic speciation in the natural geothermal waters and comparison with thermodynamic calculations reveal that the predominant factors determining the species distribution are sulfide concentration and pH. In alkaline waters with low sulfide concentrations the predominant species are AsIII oxyanions. This can be seen in samples from a liquid-only well, tapping water that is H2S-poor and free of oxygen. At intermediate sulfide concentration AsIII and AsV thio species become important and predominate at high sulfide concentration, as seen in two-phase well waters, which have high H2S concentrations in the reservoir. Upon oxidation, for instance due to mixing of the reservoir fluid with oxygenated water upon ascent to the surface, AsV oxyanions form, as well as AsV thio complexes if the sulfide concentration is intermediate to high. This oxidation process can be seen in samples from hot springs in the Geysir geothermal area. While the thermodynamic modeling allows for a first

  7. Orthologous repeats and mammalian phylogenetic inference

    PubMed Central

    Bashir, Ali; Ye, Chun; Price, Alkes L.; Bafna, Vineet

    2005-01-01

    Determining phylogenetic relationships between species is a difficult problem, and many phylogenetic relationships remain unresolved, even among eutherian mammals. Repetitive elements provide excellent markers for phylogenetic analysis, because their mode of evolution is predominantly homoplasy-free and unidirectional. Historically, phylogenetic studies using repetitive elements have relied on biological methods such as PCR analysis, and computational inference is limited to a few isolated repeats. Here, we present a novel computational method for inferring phylogenetic relationships from partial sequence data using orthologous repeats. We apply our method to reconstructing the phylogeny of 28 mammals, using more than 1000 orthologous repeats obtained from sequence data available from the NISC Comparative Sequencing Program. The resulting phylogeny has robust bootstrap numbers, and broadly matches results from previous studies which were obtained using entirely different data and methods. In addition, we shed light on some of the debatable aspects of the phylogeny. With rapid expansion of available partial sequence data, computational analysis of repetitive elements holds great promise for the future of phylogenetic inference. PMID:15998912

  8. Speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a species of conservation concern

    PubMed Central

    Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan

    2014-01-01

    The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285

  9. Homoploid hybrid speciation and genome evolution via chromosome sorting

    PubMed Central

    Lukhtanov, Vladimir A.; Shapoval, Nazar A.; Anokhin, Boris A.; Saifitdinova, Alsu F.; Kuznetsova, Valentina G.

    2015-01-01

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization. PMID:25925097

  10. Homoploid hybrid speciation and genome evolution via chromosome sorting.

    PubMed

    Lukhtanov, Vladimir A; Shapoval, Nazar A; Anokhin, Boris A; Saifitdinova, Alsu F; Kuznetsova, Valentina G

    2015-05-22

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.

  11. Global Population Genetic Structure of Caenorhabditis remanei Reveals Incipient Speciation

    PubMed Central

    Dey, Alivia; Jeon, Yong; Wang, Guo-Xiu; Cutter, Asher D.

    2012-01-01

    Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus–multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system. PMID:22649079

  12. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.

  13. Chapter A5. Section 6.4.A. Arsenic Speciation

    USGS Publications Warehouse

    Garbarino, John R.

    2005-01-01

    Two sample-processing methods (field speciation and laboratory speciation) used at the USGS National Water Quality Laboratory (NWQL) are specific to sample analysis by inductively coupled plasma-mass spectrometry (ICP-MS) for determining the concentration of inorganic and organic arsenic species in a water sample. The field-speciation method requires NWQL Schedule 1729. The laboratory-speciation method requires use either of NWQL Schedule 1730, 1731, or 1732, as appropriate for study objectives. For either the field- or laboratory-speciation method, prior knowledge is needed of sample matrix-composition characteristics (that is, major-ion concentrations in filtered samples). Major-ion data are necessary to determine (1) the volume of ethylenediaminetetraacetic acid (EDTA) that will be required for sample preservation, and (2) if sample dilution is required.

  14. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  15. Minimizing Modes for Smart Selection in Sketching/Drawing Interfaces

    NASA Astrophysics Data System (ADS)

    Saund, Eric; Lank, Edward

    User interface modes are ubiquitous in both mouse-keyboard and pen-based user interfaces, but the requirement for prior setting of a user interface mode before performing an action imposes a persistent drag on system usability. This chapter reviews our research in approaches to avoiding prior deliberate mode setting while still allowing overloading of fundamental tap and gesture operations. We analyze the human-machine dynamics of UI protocols through a graphical notation called the Interaction Flow Diagram. Our framework offers a pyramid of methods ranging from simple UI design techniques, through recognition of gestures and canvas content, to modeling of user knowledge and goals. These are represented in four methods: Overloaded Loop Selection to infer rectangle versus lasso selection mode; the Inferred Mode Protocol for Inferring Draw/Select Mode; the Sloppy Selection method for inferring intended content of an ambiguous selection; and the Cycle Tap Selection Method for exploiting structure recognition.

  16. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  17. Speciation network in Laurasiatheria: retrophylogenomic signals.

    PubMed

    Doronina, Liliya; Churakov, Gennady; Kuritzin, Andrej; Shi, Jingjing; Baertsch, Robert; Clawson, Hiram; Schmitz, Juergen

    2017-03-15

    Rapid species radiation due to adaptive changes or occupation of new ecospaces challenges our understanding of ancestral speciation and the relationships of modern species. At the molecular level, rapid radiation with successive speciations over short time periods - too short to fix polymorphic alleles - is described as incomplete lineage sorting. Incomplete lineage sorting leads to random fixation of genetic markers and hence random signals of relationships in phylogenetic reconstructions. The situation is further complicated when you consider that the genome is a mosaic of ancestral and modern incompletely sorted sequence blocks that leads to reconstructed affiliations to one or the other relatives depending on the fixation of their shared ancestral polymorphic alleles. The laurasiatherian relationships among Chiroptera, Perissodactyla, Cetartiodactyla, and Carnivora present a prime example for such enigmatic affiliations. We performed whole-genome screenings for phylogenetically diagnostic retrotransposon insertions involving the representatives bat (Chiroptera), horse (Perissodactyla), cow (Cetartiodactyla), and dog (Carnivora), and extracted among 162 thousand preselected cases 102 virtually noise-free, phylogenetically informative retroelements to draw a complete picture of the highly complex evolutionary relations within Laurasiatheria. All possible evolutionary scenarios received considerable retrotransposon support, leaving us with a network of affiliations. However, the Cetartiodactyla-Carnivora relationship as well as the basal position of Chiroptera and an ancestral laurasiatherian hybridization process did exhibit some very clear, distinct signals. The significant accordance of retrotransposon presence/absence patterns and flanking nucleotide changes suggest an important influence of mosaic genome structures in the reconstruction of species histories.

  18. Speciation of animal fat: Needs and challenges.

    PubMed

    Hsieh, Yun-Hwa Peggy; Ofori, Jack Appiah

    2017-05-24

    The use of pork fat is a concern for Muslims and Jews, who for religious reasons avoid consuming anything that is pig-derived. The use of bovine materials, including beef fat, is prohibited in Hinduism and may also pose a risk of carrying the infectious agent for bovine spongiform encephalopathy. Vegetable oils are sometimes adulterated with animal fat or pork fat with beef fat for economic gain. The development of methods to determine the species origin of fat has therefore become a priority due to the complex and global nature of the food trade, which creates opportunities for the fraudulent use of these animal fats as food ingredients. However, determining the species origin of fats in processed foods or composite blends is an arduous task as the adulterant has a composition that is very similar to that of the original fat or oil. This review examines some of the methods that have been developed for fat speciation, including both fat-based and DNA-based methods, their shortcomings, and the need for additional alternatives. Protein-based methods, specifically immunoassays targeting residual proteins in adipose tissue, that are being explored by researchers as a new tool for fat speciation will also be discussed.

  19. Gene regulation and speciation in house mice

    PubMed Central

    Mack, Katya L.; Campbell, Polly; Nachman, Michael W.

    2016-01-01

    One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was characterized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found extensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive selection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. PMID:26833790

  20. Improving Inferences from Multiple Methods.

    ERIC Educational Resources Information Center

    Shotland, R. Lance; Mark, Melvin M.

    1987-01-01

    Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…

  1. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  2. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  3. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  4. Social Inference Through Technology

    NASA Astrophysics Data System (ADS)

    Oulasvirta, Antti

    Awareness cues are computer-mediated, real-time indicators of people’s undertakings, whereabouts, and intentions. Already in the mid-1970 s, UNIX users could use commands such as “finger” and “talk” to find out who was online and to chat. The small icons in instant messaging (IM) applications that indicate coconversants’ presence in the discussion space are the successors of “finger” output. Similar indicators can be found in online communities, media-sharing services, Internet relay chat (IRC), and location-based messaging applications. But presence and availability indicators are only the tip of the iceberg. Technological progress has enabled richer, more accurate, and more intimate indicators. For example, there are mobile services that allow friends to query and follow each other’s locations. Remote monitoring systems developed for health care allow relatives and doctors to assess the wellbeing of homebound patients (see, e.g., Tang and Venables 2000). But users also utilize cues that have not been deliberately designed for this purpose. For example, online gamers pay attention to other characters’ behavior to infer what the other players are like “in real life.” There is a common denominator underlying these examples: shared activities rely on the technology’s representation of the remote person. The other human being is not physically present but present only through a narrow technological channel.

  5. Speciation, faunal affinities and geographical dispersal of black flies (Diptera: Simuliidae) in the Oriental Region.

    PubMed

    Takaoka, Hiroyuki

    2017-02-01

    The simuliid fauna of the Oriental Region is reviewed in comparison with those in five other zoogeographical regions. It is relatively young, represented by only one genus Simulium, which is regarded as the most specialized among 26 genera of the family Simuliidae. The Oriental Region has the second largest simuliid fauna with 524 species or 23.8% of the world total of 2204 extant species. This species richness is associated with a high speciation index (15.4), reflected especially by the high speciation rates of two dominant subgenera Gomphostilbia and Simulium although the number of lineages in the Oriental Region is moderate (34 or 20.6% of the total 165). The Oriental fauna has relationships with all other zoogeographical regions at the lineage level, having the highest affinity index (31.9) with the Palearctic Region. It is inferred that eight of 10 Oriental subgenera moved during the ice ages from the Palaearctic to the Oriental Regions; the subgenus Gomphostilbia evolved into 11 species-groups and underwent species radiation in the Oriental Region. On the other hand, two other subgenera, Nevermannia and Simulium, moved southward during the ice ages after evolving into species-groups. In the post-ice ages, most lineages retreated northward, with different portions of species left in the Oriental Region, although some lineages failed to retreat and survived as relict lineages in the Oriental Region.

  6. Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae).

    PubMed

    Veith, M; Kosuch, J; Vences, M

    2003-02-01

    Oscillating glacial cycles over the past 2.4 million years are proposed to have had a major impact on the diversity of contemporary species communities. We used mitochondrial and nuclear DNA sequence data to infer phylogenetic relationships within Western Palearctic brown frogs and to test the influence of Pliocene and Pleistocene climatic changes on their evolution. We sequenced 1976bp of the mitochondrial genes 16S rRNA and cytochrome b and of the nuclear rhodopsin gene for all current species and subspecies. Based on an established allozyme clock for Western Palearctic water frogs and substitution rate constancy among water frogs and brown frogs, we calibrated a molecular clock for 1425bp of the 16S and rhodopsin genes. We applied this clock to date speciation events among brown frogs. Western Palearctic brown frogs underwent a basal post-Messinian radiation about 4 million years ago (mya) into five major clades: three monotypic lineages (Rana dalmatina, Rana latastei, Rana graeca), an Anatolian lineage, and a lineage comprising Rana italica, Rana arvalis, and all Iberian taxa. Polytypic lineages radiated further in concordance with the onset of climatic oscillations ca. 3.2, 2.0, and 1.0-0.6 mya, respectively. The dated fossil record corroborates our paleobiogeographic scenario. We conclude that drastic climatic changes followed by successive temperature oscillations "trapped" most brown frog species in their southern European glacial refugia with enough time to speciate. Substantial dispersal was only possible during extensive interglacial periods of a constant subtropical climate.

  7. Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida)

    PubMed Central

    2014-01-01

    Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg’s P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic. PMID:24581044

  8. Genetic consequences of cladogenetic vs. anagenetic speciation in endemic plants of oceanic islands

    PubMed Central

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J.; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F.

    2015-01-01

    Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pattern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In contrast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is anagenesis, whereby the founding population changes genetically and morphologically over time primarily through mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archipelago, which contains two principal islands of differing geological ages. This article summarizes population genetic results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162 and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia (Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating anagenetically show high levels of genetic variation within the island population and no geographic genetic partitioning. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species that have been derived anagenetically on the younger island (1–2 Ma) contain less genetic variation than those that have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species on the older island is greater than among similarly derived species on the younger island. An important point is that the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence occurs. PMID:26311732

  9. Genetic consequences of cladogenetic vs. anagenetic speciation in endemic plants of oceanic islands.

    PubMed

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F

    2015-08-26

    Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pattern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In contrast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is anagenesis, whereby the founding population changes genetically and morphologically over time primarily through mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archipelago, which contains two principal islands of differing geological ages. This article summarizes population genetic results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162 and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia (Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating anagenetically show high levels of genetic variation within the island population and no geographic genetic partitioning. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species that have been derived anagenetically on the younger island (1-2 Ma) contain less genetic variation than those that have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species on the older island is greater than among similarly derived species on the younger island. An important point is that the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence occurs.

  10. Iodine Speciation in Marine Aerosol of the Atlantic Ocean (AMT21)

    NASA Astrophysics Data System (ADS)

    Yodle, Chan; von Glasow, Roland; Baker, Alex

    2014-05-01

    Iodine chemistry in marine aerosol plays important roles in the marine boundary layer such as ozone destruction and new aerosol particle formation. In both cases, the speciation of iodine is an important factor in determining the role of iodine in these processes. Iodine has a complex chemistry in the gas and aerosol phases and to date the interactions and roles of individual iodine species are not well understood. This study will present results of a research cruise from the Atlantic Ocean, AMT21, which travelled from Avonmouth in the UK to Punta Arenas, Chile during September to November 2011. Aerosol samples were collected for 24 hours onto pre-cleaned glass fibre filters with a flow rate of ~1 m3 min-1, using a total suspended particulate sampler. Collected aerosol samples were extracted into ultra-pure water using mechanical shaking at room temperature. Iodine speciation in these extracts was measured using ion-chromatography coupled to Inductively Coupled Plasma-Spectrometry (IC-ICP-MS). Soluble organic iodine (SOI) was then determined by differences between the sum of inorganic iodine (iodide and iodate) and total soluble iodine determined by ICP-MS. Chemical analysis of major ions was also analysed by ion chromatography. Back trajectories were used to categorise air masses of aerosol, according to their origins and transport pathways. Results show considerable differences in the iodine speciation of fine and coarse aerosol particles. These differences of iodine proportions in both aerosol modes agree well with previous studies in the Atlantic. Iodate was dominant species in coarse mode aerosol, its concentration ranged from 4.4 to 58.4 pmol m-3 (median proportion 80%), while SOI and iodide were found in lower concentrations. SOI concentrations ranged from 0.5 to 6.4 pmol m-3 (median proportion 12%) and iodide concentrations ranged from 0.6 to 4.6 pmol m-3 (median proportion 9%) respectively. For fine mode aerosol, lower iodate concentrations were observed

  11. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus.

    PubMed

    Ting, C T; Tsaur, S C; Wu, C I

    2000-05-09

    Molecular differentiation between races or closely related species is often incongruent with the reproductive divergence of the taxa of interest. Shared ancient polymorphism and/or introgression during secondary contact may be responsible for the incongruence. At loci contributing to speciation, these two complications should be minimized (1, 2); hence, their variation may more faithfully reflect the history of the species' reproductive differentiation. In this study, we analyzed DNA polymorphism at the Odysseus (OdsH) locus of hybrid sterility between Drosophila mauritiana and Drosophila simulans and were able to verify such a prediction. Interestingly, DNA variation only a short distance away (1.8 kb) appears not to be influenced by the forces that shape the recent evolution of the OdsH coding region. This locus thus may represent a test case of inferring phylogeny of very closely related species.

  12. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains.

    PubMed

    Bray, Timothy C; Bocak, Ladislav

    2016-09-16

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km(2) highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.

  13. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains

    PubMed Central

    Bray, Timothy C.; Bocak, Ladislav

    2016-01-01

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km2 highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna. PMID:27633844

  14. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains

    NASA Astrophysics Data System (ADS)

    Bray, Timothy C.; Bocak, Ladislav

    2016-09-01

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km2 highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.

  15. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  16. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  17. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  18. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences.

    PubMed

    Massardo, Darli; Fornel, Rodrigo; Kronforst, Marcus; Gonçalves, Gislene Lopes; Moreira, Gilson Rudinei Pires

    2015-01-01

    The tribe Heliconiini (Lepidoptera: Nymphalidae) is a diverse group of butterflies distributed throughout the Neotropics, which has been studied extensively, in particular the genus Heliconius. However, most of the other lineages, such as Dione, which are less diverse and considered basal within the group, have received little attention. Basic information, such as species limits and geographical distributions remain uncertain for this genus. Here we used multilocus DNA sequence data and the geographical distribution analysis across the entire range of Dione in the Neotropical region in order to make inferences on the evolutionary history of this poorly explored lineage. Bayesian time-tree reconstruction allows inferring two major diversification events in this tribe around 25mya. Lineages thought to be ancient, such as Dione and Agraulis, are as recent as Heliconius. Dione formed a monophyletic clade, sister to the genus Agraulis. Dione juno, D. glycera and D. moneta were reciprocally monophyletic and formed genetic clusters, with the first two more close related than each other in relation to the third. Divergence time estimates support the hypothesis that speciation in Dione coincided with both the rise of Passifloraceae (the host plants) and the uplift of the Andes. Since the sister species D. glycera and D. moneta are specialized feeders on passion-vine lineages that are endemic to areas located either within or adjacent to the Andes, we inferred that they co-speciated with their host plants during this vicariant event.

  19. Lead Speciation in remote Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Plöger, A.; van den Berg, C. M. G.

    2003-04-01

    In natural waters trace metals can become complexed by organic matter. This complexation can change the geochemistry of the metals by preventing them being scavenged, thereby increasing their residence time in the water column. The chemical speciation of trace metals also affects the bioavalability and their toxicological impact on organisms. It is therefore important to determine the chemical speciation of trace metals as well as their concentrations. Mountain lakes have been less studied in the past than other lakes- partly because of their remoteness and partly because they were perceived to be unpolluted and undisturbed. But work so far on mountain lakes has shown that most sites are affected and threatened, for example by transboundary air pollutants like trace metals. One of the important features that distinguishes these lakes from lowland lakes at similar latitudes is the fact that they may be isolated from the atmosphere for six months or more during the winter by a thick ice cover. Also, as these lakes are remote from direct anthropogenic influences, they reflect the regional distribution of pollutants transferred via the atmosphere. For this work, under the framework of the EMERGE (European Mountain lake Ecosystems: Regionalisation, diaGnostic and socio-economic Evaluation) programme, two remote mountain lakes have been studied in detail, with water sampling taking place at different times of the year to investigate possible seasonal differences in lead concentrations and speciation. Results so far have shown that lead-complexing ligand concentrations are in excess to dissolved lead concentrations, indicating that dissolved lead probably occurs fully complexed in these lakes. Therefore the toxic fraction is likely to be less than the dissolved lead concentration. Also, lead concentrations at the time of the spring thaw are higher than autumn concentrations just before ice cover, indicating that a significant proportion of fallout onto the lake catchment

  20. A Japanese view on speciation: "Sumiwake" explosive speciation of the cichlids in Lake Victoria.

    PubMed

    Kawamiya, Nobuo

    2003-01-01

    Imanishi's "mental" (cerebral) view of speciation is presented, in Mizuhata's revision. The key concept here is the "ethological partition" of the species. Members of each species=society (etho-species) share the same mental (brain) software, irrespective of their genetic structure. Cerebral animals perform active programmed selection, not to be confused with passive, non-programmed "natural selection" as in Neo-Darwinism. The program includes mating-choice of peculiar characters, distinct from the Neo-Darwinian sexual selection supposed due to the specific choosy genes. Speciation can occur, as a "partition of species=society", with bifurcation of mate-choosing program in the parent species. A main promoter for this bifurcation is species-specific "passion" for especially significant characters: long necks, ornamental antlers, ocelli feathers, bright nuptial colors etc. The cichlids in Lake Victoria achieved explosive speciation, while retaining their genetic homogeneity completely. Therefore it is illogical to attribute this divergence to extraordinary mutations in "action controlling genes". The origin of species=society (etho-species) can trace along to the Cambrian Period.

  1. Genetics of ecological divergence during speciation

    PubMed Central

    Arnegard, Matthew E.; McGee, Matthew D.; Matthews, Blake; Marchinko, Kerry B.; Conte, Gina L.; Kabir, Sahriar; Bedford, Nicole; Bergek, Sara; Chan, Yingguang Frank; Jones, Felicity C.; Kingsley, David M.; Peichel, Catherine L.; Schluter, Dolph

    2014-01-01

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Though this process is a major generator of biodiversity, its genetic basis remains poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but that depend on the ecological context. PMID:24909991

  2. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    SciTech Connect

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  3. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    PubMed Central

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  4. Mercury speciation in the Adriatic Sea.

    PubMed

    Kotnik, Jože; Horvat, Milena; Ogrinc, Nives; Fajon, Vesna; Žagar, Dušan; Cossa, Daniel; Sprovieri, Francesca; Pirrone, Nicola

    2015-07-15

    Mercury and its speciation were studied in surface and deep waters of the Adriatic Sea. Several mercury species (i.e. DGM – dissolved gaseous Hg, RHg – reactive Hg, THg – total Hg, MeHg – monomethyl Hg and DMeHg – dimethylmercury) together with other water parameters were measured in coastal and open sea deep water profiles. THg concentrations in the water column, as well as in sediments and pore waters, were the highest in the northern, most polluted part of the Adriatic Sea as the consequence of Hg mining in Idrija and the heavy industry of northern Italy. Certain profiles in the South Adriatic Pit exhibit an increase of DGM just over the bottom due to its diffusion from sediment as a consequence of microbial and/or tectonic activity. Furthermore, a Hg mass balance for the Adriatic Sea was calculated based on measurements and literature data.

  5. Carbon speciation and surface tension of fog

    USGS Publications Warehouse

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  6. Spatially Resolved Sulfur Speciation in Urban Soils

    NASA Astrophysics Data System (ADS)

    Brettholle, M.; Gleber, S.-C.; Mekiffer, B.; Legnini, D.; McNulty, I.; Vogt, S.; Wessolek, G.; Thieme, J.

    2011-09-01

    A combination of x-ray microscopy, elemental mapping, and XANES spectroscopy at the K-absorption edge of sulfur was used to analyze the elemental and particulate composition of an urban soil loaded with building rubble from WWII, exemplarily from Berlin, Germany. This combination of element specific high-resolution microscopy with high spectral resolution capabilities allows for the determination of elemental composition as well as chemical speciation and is therefore well suited for the analysis of highly heterogeneous environmental samples. Different soil and debris constituents could be assigned to elemental distribution patterns within collected fluorescence maps, allowing for a detailed analysis of the sulfur pool and release from war debris in subsequent studies. A detailed understanding of this sulfur lixiviation is central to preserve urban water quality.

  7. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  8. Speciation of arsenic in sulfidic waters

    PubMed Central

    Wilkin, Richard T; Wallschläger, Dirk; Ford, Robert G

    2003-01-01

    Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH)30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH)30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  9. Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards.

    PubMed

    Lavretsky, Philip; Dacosta, Jeffrey M; Hernández-Baños, Blanca E; Engilis, Andrew; Sorenson, Michael D; Peters, Jeffrey L

    2015-11-01

    Speciation is a continuous and dynamic process, and studying organisms during the early stages of this process can aid in identifying speciation mechanisms. The mallard (Anas platyrhynchos) and Mexican duck (A. [p.] diazi) are two recently diverged taxa with a history of hybridization and controversial taxonomy. To understand their evolutionary history, we conducted genomic scans to characterize patterns of genetic diversity and divergence across the mitochondrial DNA (mtDNA) control region, 3523 autosomal loci and 172 Z-linked sex chromosome loci. Between the two taxa, Z-linked loci (ΦST  = 0.088) were 5.2 times more differentiated than autosomal DNA (ΦST  = 0.017) but comparable to mtDNA (ΦST  = 0.092). This elevated Z differentiation deviated from neutral expectations inferred from simulated data that incorporated demographic history and differences in effective population sizes between marker types. Furthermore, 3% of Z-linked loci, compared to <0.1% of autosomal loci, were detected as outlier loci under divergent selection with elevated relative (ΦST ) and absolute (dXY ) estimates of divergence. In contrast, the ratio of Z-linked and autosomal differentiation among the seven Mexican duck sampling locations was close to 1:1 (ΦST  = 0.018 for both markers). We conclude that between mallards and Mexican ducks, divergence at autosomal markers is largely neutral, whereas greater divergence on the Z chromosome (or some portions thereof) is likely the product of selection that has been important in speciation. Our results contribute to a growing body of literature indicating elevated divergence on the Z chromosome and its likely importance in avian speciation.

  10. Assessing models of speciation under different biogeographic scenarios; An empirical study using multi-locus and RNA-seq analyses

    USGS Publications Warehouse

    Edwards, Taylor; Tollis, Marc; Hsieh, PingHsun; Gutenkunst, Ryan N.; Liu, Zhen; Kusumi, Kenro; Culver, Melanie; Murphy, Robert W.

    2016-01-01

    Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA-seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best-fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).

  11. Aluminium speciation in effluents and receiving waters.

    PubMed

    Gardner, M J; Comber, S D W

    2003-12-01

    The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.

  12. Correcting for sequencing error in maximum likelihood phylogeny inference.

    PubMed

    Kuhner, Mary K; McGill, James

    2014-11-04

    Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue.

  13. Bayesian Inference of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Weinberg, M.; Katz, N.

    2011-01-01

    Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.

  14. Degradation monitoring using probabilistic inference

    NASA Astrophysics Data System (ADS)

    Alpay, Bulent

    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing

  15. Statistical Inference in Graphical Models

    DTIC Science & Technology

    2008-06-17

    Probabilistic Network Library ( PNL ). While not fully mature, PNL does provide the most commonly-used algorithms for inference and learning with the efficiency...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms...mature and has been used for research purposes for several years, it is written in MATLAB and thus is not suitable to be used in real-time settings. PNL

  16. Statistical Inference: The Big Picture.

    PubMed

    Kass, Robert E

    2011-02-01

    Statistics has moved beyond the frequentist-Bayesian controversies of the past. Where does this leave our ability to interpret results? I suggest that a philosophy compatible with statistical practice, labelled here statistical pragmatism, serves as a foundation for inference. Statistical pragmatism is inclusive and emphasizes the assumptions that connect statistical models with observed data. I argue that introductory courses often mis-characterize the process of statistical inference and I propose an alternative "big picture" depiction.

  17. Bayesian Inference: with ecological applications

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  18. Inferring the Why in Images

    DTIC Science & Technology

    2014-01-01

    images. To our knowledge, this challenging problem has not yet been extensively explored in computer vision. We present a novel learning based...automatically infers why people are performing actions in images by learning from visual data and written language. ∗denotes equal contribution 1 Report...explored in computer vision. We present a novel learning based framework that uses high-level visual recognition to infer why people are performing

  19. SPECIATE Version 4.5 Database Development Documentation

    EPA Science Inventory

    This product updated SPECIATE 4.4 with new emission profiles to address high priority Agency data gaps and to included new, more accurate emission profiles generated by research underway within and outside the Agency.

  20. A model of sympatric speciation through assortative mating

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Guardiani, Carlo

    2005-03-01

    A microscopic model is developed, within the frame of the theory of quantitative traits, to study the combined effect of competition and assortativity on the sympatric speciation process, i.e., speciation in the absence of geographical barriers. Two components of fitness are considered: a static one that describes adaptation to environmental factors not related to the population itself, and a dynamic one that accounts for interactions between organisms, e.g. competition. A simulated annealing technique was applied in order to speed up simulations. The simulations show that both in the case of flat and steep static fitness landscapes, competition and assortativity do exert a synergistic effect on speciation. We also show that competition acts as a stabilizing force against extinction due to random sampling in a finite population. Finally, evidence is shown that speciation can be seen as a phase transition.

  1. Male competition fitness landscapes predict both forward and reverse speciation.

    PubMed

    Keagy, Jason; Lettieri, Liliana; Boughman, Janette W

    2016-01-01

    Speciation is facilitated when selection generates a rugged fitness landscape such that populations occupy different peaks separated by valleys. Competition for food resources is a strong ecological force that can generate such divergent selection. However, it is unclear whether intrasexual competition over resources that provide mating opportunities can generate rugged fitness landscapes that foster speciation. Here we use highly variable male F2 hybrids of benthic and limnetic threespine sticklebacks, Gasterosteus aculeatus Linnaeus, 1758, to quantify the male competition fitness landscape. We find that disruptive sexual selection generates two fitness peaks corresponding closely to the male phenotypes of the two parental species, favouring divergence. Most surprisingly, an additional region of high fitness favours novel hybrid phenotypes that correspond to those observed in a recent case of reverse speciation after anthropogenic disturbance. Our results reveal that sexual selection through male competition plays an integral role in both forward and reverse speciation.

  2. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  3. Active inference, communication and hermeneutics☆

    PubMed Central

    Friston, Karl J.; Frith, Christopher D.

    2015-01-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007

  4. Active inference, communication and hermeneutics.

    PubMed

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa.

  5. Causal inference and developmental psychology.

    PubMed

    Foster, E Michael

    2010-11-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether the risk factor actually causes outcomes. Random assignment is not possible in many instances, and for that reason, psychologists must rely on observational studies. Such studies identify associations, and causal interpretation of such associations requires additional assumptions. Research in developmental psychology generally has relied on various forms of linear regression, but this methodology has limitations for causal inference. Fortunately, methodological developments in various fields are providing new tools for causal inference-tools that rely on more plausible assumptions. This article describes the limitations of regression for causal inference and describes how new tools might offer better causal inference. This discussion highlights the importance of properly identifying covariates to include (and exclude) from the analysis. This discussion considers the directed acyclic graph for use in accomplishing this task. With the proper covariates having been chosen, many of the available methods rely on the assumption of "ignorability." The article discusses the meaning of ignorability and considers alternatives to this assumption, such as instrumental variables estimation. Finally, the article considers the use of the tools discussed in the context of a specific research question, the effect of family structure on child development.

  6. Sulfur Speciation and Extraction in Jet A (Briefing Charts)

    DTIC Science & Technology

    2015-08-16

    collected with Agilent Technologies 6890N Gas Chromatography System and Agilent Technologies 355 Sulfur Chemiluminescence Detector attachment • Method ...Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Sulfur Speciation and Extraction in Jet A (Briefing Charts) 5a...239.18 DISTRIBUTION A: Approved for public release. Distribution is unlimited. Sulfur Speciation and Extraction in Jet A 16 August 2015 Kevin

  7. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address).

    PubMed

    Schluter, Dolph

    2016-01-01

    Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.

  8. How humans drive speciation as well as extinction.

    PubMed

    Bull, J W; Maron, M

    2016-06-29

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity.

  9. How humans drive speciation as well as extinction

    PubMed Central

    Maron, M.

    2016-01-01

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. PMID:27358365

  10. Ecological Impacts of Reverse Speciation in Threespine Stickleback.

    PubMed

    Rudman, Seth M; Schluter, Dolph

    2016-02-22

    Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function.

  11. Can environmental change affect host/parasite-mediated speciation?

    PubMed

    Brunner, Franziska S; Eizaguirre, Christophe

    2016-08-01

    Parasitism can be a driver of species divergence and thereby significantly alter species formation processes. While we still need to better understand how parasite-mediated speciation functions, it is even less clear how this process is affected by environmental change. Both rapid and gradual changes of the environment can modify host immune responses, parasite virulence and the specificity of their interactions. They will thereby change host-parasite evolutionary trajectories and the potential for speciation in both hosts and parasites. Here, we summarise mechanisms of host-parasite interactions affecting speciation and subsequently consider their susceptibility to environmental changes. We mainly focus on the effects of temperature change and nutrient input to ecosystems as they are major environmental stressors. There is evidence for both disruptive and accelerating effects of those pressures on speciation that seem to be context-dependent. A prerequisite for parasite-driven host speciation is that parasites significantly alter the host's Darwinian fitness. This can rapidly lead to divergent selection and genetic adaptation; however, it is likely preceded by more short-term plastic and transgenerational effects. Here, we also consider how these first responses and their susceptibility to environmental changes could lead to alterations of the species formation process and may provide alternative pathways to speciation.

  12. Geographical range and speciation in fossil and living molluscs.

    PubMed Central

    Jablonski, David; Roy, Kaustuv

    2003-01-01

    The notion of a positive relation between geographical range and speciation rate or speciation probability may go back to Darwin, but a negative relation between these parameters is equally plausible. Here, we test these alternatives in fossil and living molluscan taxa. Late Cretaceous gastropod genera exhibit a strong negative relation between the geographical ranges of constituent species and speciation rate per species per million years; this result is robust to sampling biases against small-bodied taxa and is not attributable to phylogenetic effects. They also exhibit weak inverse or non-significant relations between geographical range and (i) the total number of species produced over the 18 million year timeframe, and (ii) the number of species in a single timeplane. Sister-group comparisons using extant molluscan species also show a non-significant relation between median geographical range and species richness of genera. These results support the view that the factors promoting broad geographical ranges also tend to damp speciation rates. They also demonstrate that a strong inverse relation between per-species speciation rate and geographical range need not be reflected in analyses conducted within a single timeplane, underscoring the inadequacy of treating net speciation as a proxy for raw per-taxon rates. PMID:12639320

  13. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  14. Speciation and Health Risks of Atmospheric Nanoparticulates

    NASA Astrophysics Data System (ADS)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease. The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated

  15. Chemical PM2.5 Speciation in Major Cities Worldwide

    NASA Astrophysics Data System (ADS)

    Snider, Graydon; Weagle, Crystal; Brauer, Michael; Cohen, Aaron; Gibson, Mark; Liu, Yang; Martins, Vanderlei; Rudich, Yinon; Martin, Randall

    2016-04-01

    We examined the chemical composition of fine particulate matter (PM2.5) across 13 globally dispersed urban locations (including Atlanta, Buenos Aires, Beijing, Manila, and Dhaka), as part of the Surface PARTiculate mAtter Network (SPARTAN). At each site sampling was conducted over 4 to 24 months for the years 2013 to 2015. Analysis of filter samples revealed that several PM2.5 chemical components varied by more than an order of magnitude between sites. Ammonium sulfate ranged from 2 μg m-3 (Ilorin) to 17 μg m-3 (Kanpur). Ammonium nitrate ranged from 0.2 μg m-3 (Atlanta) to 6.7 μg m-3 (Kanpur). Effective black carbon ranged from 0.4 μg m-3 (Atlanta) to 5 μg m-3 (Dhaka and Kanpur). The all-site mean values of major PM2.5 constituents were ammonium sulfate (20 ± 10 %), crustal material (12 ± 6.5%), effective black carbon (10 ± 7.4 %), ammonium nitrate (3.7 ± 2.5%), sea salt (2.2 ± 1.5%), trace element oxides (0.9 ± 0.7 %), water (7.2 ± 3.0%) and residue materials (44 ± 24%). Based on the evaluation with collocated studies we treated residue material as mostly organic. Major ions generally agreed well with previous studies at the same urban locations (e.g. sulfate fractions agreed within 4% for eight out of 11 collocation comparisons). Enhanced crustal material (CM) concentrations with high Zn:Al ratios at large cities (e.g. Hanoi, Dhaka, Manila) imply significant anthropogenic CM contributions that deserve more attention. Detailed chemical speciation also aided our characterization of site-specific PM2.5 water retention. The expected water contribution to aerosols was calculated via the hygroscopicity parameter for each filter. Hourly PM2.5 at specified relative humidity (35%) was inferred from nephelometer measurements of light scatter at ambient relative humidity and 9-day filter measurements of PM2.5 mass. Our PM2.5 estimates compared favorably with a beta attenuation monitor (BAM) at the nearby US embassy in Beijing, with a coefficient of variation

  16. Aluminum speciation in crustal fluids revisited

    NASA Astrophysics Data System (ADS)

    Tagirov, Boris; Schott, Jacques

    2001-11-01

    Aluminum speciation in crustal fluids is assessed by means of standard thermodynamic properties at 25°C, 1 bar, and revised Helgeson-Kirkham-Flowers (HKF) (Tanger J. C. IV and Helgeson H. C., "Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes," Am. J. Sci. 288, 19-98, 1988) equations of state parameters for aqueous species in the system Al-O-H-Na-Si-Cl-F-SO 4 derived from recent experimental data with the help of isocoulombic reactions and correlations among parameters in the HKF model. In acidic to neutral hydrothermal solutions and for fluorine concentrations in excess of 1 ppm, the fluoride complexes AlF n3-n dominate Al speciation at temperature (T) < 100°C, whereas the hydroxide fluoride species Al(OH) 2F (aq)0 and AlOHF 20(aq) are dominant up to ˜400°C. In high-temperature (T > 300°C) hydrothermal and metamorphic fluids, aluminum mobility is considerably enhanced by formation of NaAl(OH) 3F (aq)0 and NaAl(OH) 2F 20(aq) ion paired mixed species. NaAl(OH) 2F 20(aq) controls Al transport in granite-derived fluids and during greisenization. At alkaline pH, Al(OH) 4-, Al(OH) 3H 3SiO 4-, and the NaAl(OH) 40(aq) ion-pair are the dominant Al species. Thermodynamic calculations show that as a result of strong interactions of Al(aq) with NaOH, NaF, HF, and SiO 2(aq) present in crustal fluids, the concentrations of aluminum in equilibrium with Al-bearing minerals can be several orders of magnitude higher than those calculated assuming that only Al hydroxyde complexes are formed. Interactions with these components are likely to be responsible for aluminum mobility during hydrothermal and metamorphic reactions.

  17. Statistical inference and string theory

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.

    2015-09-01

    In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.

  18. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  19. Ice sheets promote speciation in boreal birds.

    PubMed

    Weir, Jason T; Schluter, Dolph

    2004-09-22

    The premise that Pleistocene ice ages played an important role in generating present-day species diversity has been challenged by genetic data indicating that most of the youngest terrestrial species on Earth coalesced long before major glacial advances. However, study has been biased towards faunas distributed at low latitudes that were not directly fragmented by advancing ice sheets. Using mitochondrial sequence divergence and a molecular clock, we compared the coalescence times of pairs of avian species belonging to superspecies complexes from the high-latitude boreal forest with those of sub-boreal and tropical avifaunas of the New World. Remarkably, all coalescence events in boreal superspecies date to the Pleistocene, providing direct evidence that speciation was commonly initiated during recent glacial periods. A pattern of endemism in boreal superspecies plausibly links the timing of divergence to the fragmentation of the boreal forest by ice sheets during the Mid- and Late Pleistocene. In contrast to the boreal superspecies, only 56% of sub-boreal and 46% of tropical superspecies members coalesced during the Pleistocene, suggesting that avifaunas directly fragmented by ice sheets experienced rapid rates of diversification, whereas those distributed farther south were affected to a lesser extent. One explanation for the absence of pre-Pleistocene superspecies in boreal avifaunas is that strong selection pressures operated in boreal refugia, causing superspecies members to achieve ecological differentiation at an accelerated rate.

  20. Ice sheets promote speciation in boreal birds.

    PubMed Central

    Weir, Jason T.; Schluter, Dolph

    2004-01-01

    The premise that Pleistocene ice ages played an important role in generating present-day species diversity has been challenged by genetic data indicating that most of the youngest terrestrial species on Earth coalesced long before major glacial advances. However, study has been biased towards faunas distributed at low latitudes that were not directly fragmented by advancing ice sheets. Using mitochondrial sequence divergence and a molecular clock, we compared the coalescence times of pairs of avian species belonging to superspecies complexes from the high-latitude boreal forest with those of sub-boreal and tropical avifaunas of the New World. Remarkably, all coalescence events in boreal superspecies date to the Pleistocene, providing direct evidence that speciation was commonly initiated during recent glacial periods. A pattern of endemism in boreal superspecies plausibly links the timing of divergence to the fragmentation of the boreal forest by ice sheets during the Mid- and Late Pleistocene. In contrast to the boreal superspecies, only 56% of sub-boreal and 46% of tropical superspecies members coalesced during the Pleistocene, suggesting that avifaunas directly fragmented by ice sheets experienced rapid rates of diversification, whereas those distributed farther south were affected to a lesser extent. One explanation for the absence of pre-Pleistocene superspecies in boreal avifaunas is that strong selection pressures operated in boreal refugia, causing superspecies members to achieve ecological differentiation at an accelerated rate. PMID:15347509

  1. Selenium speciation in flue desulfurization residues.

    PubMed

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.

  2. Speciated hydrocarbon emissions from small utility engines.

    PubMed

    Reisel, J R; Kellner, T A; Neusen, K F

    2000-04-01

    Partially speciated hydrocarbon (HC) emissions data from several small utility engines, as measured by a Fourier Transform Infrared analyzer, are presented. The engines considered have nominal horsepower ratings between 3.7 and 9.3 kW. Both side-valve and overhead-valve engines are studied, and four different fuels are used in the engines. The results indicate that the small HCs present in the exhaust tend to be in the form of either methane or unsaturated HCs. Other small alkanes, such as ethane and propane, are present in only relatively small concentrations. In terms of ozone formation potential, the HCs in the form of methane will lead to little ozone, but the distribution of the C2 and C3 species is not ideal from an ozone reduction stand-point. It is also found that the presence of oxygen in the fuels appears to lead to somewhat more complete combustion, although the effects are not large. Finally, the overhead-valve engines appear to have lower HC emissions than side-valve engines, which is primarily due to higher operating A/F ratios and the engine geometry.

  3. The biological speciation and toxicokinetics of aluminum.

    PubMed Central

    DeVoto, E; Yokel, R A

    1994-01-01

    This review discusses recent literature on the chemical and physiological factors that influence the absorption, distribution, and excretion of aluminum in mammals, with particular regard to gastrointestinal absorption and speciation in plasma. Humans encounter aluminum, a ubiquitous yet highly insoluble element in most forms, in foods, drinking water, and pharmaceuticals. Exposure also occurs by inhalation of dust and aerosols, particularly in occupational settings. Absorption from the gut depends largely on pH and the presence of complexing ligands, particularly carboxylic acids, with which the metal can form absorbable neutral aluminum species. Uremic animals and humans experience higher than normal body burdens of aluminum despite increased urinary clearance of the metal. In plasma, 80-90% of aluminum binds to transferrin, an iron-transport protein for which receptors exist in many tissue. The remaining fraction of plasma aluminum takes the form of small-molecule hydroxy species and small complexes with carboxylic acids, phosphate, and, to a much lesser degree, amino acids. Most of these species have not been observed in vivo but are predicted from equilibrium models derived from potentiometric methods and NMR investigations. These models predict that the major small-molecule aluminum species under plasma conditions are charged and hence unavailable for uptake into tissues. PMID:9738208

  4. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  5. Locative inferences in medical texts.

    PubMed

    Mayer, P S; Bailey, G H; Mayer, R J; Hillis, A; Dvoracek, J E

    1987-06-01

    Medical research relies on epidemiological studies conducted on a large set of clinical records that have been collected from physicians recording individual patient observations. These clinical records are recorded for the purpose of individual care of the patient with little consideration for their use by a biostatistician interested in studying a disease over a large population. Natural language processing of clinical records for epidemiological studies must deal with temporal, locative, and conceptual issues. This makes text understanding and data extraction of clinical records an excellent area for applied research. While much has been done in making temporal or conceptual inferences in medical texts, parallel work in locative inferences has not been done. This paper examines the locative inferences as well as the integration of temporal, locative, and conceptual issues in the clinical record understanding domain by presenting an application that utilizes two key concepts in its parsing strategy--a knowledge-based parsing strategy and a minimal lexicon.

  6. Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra.

    PubMed

    Loera, Israel; Sosa, Victoria; Ickert-Bond, Stefanie M

    2012-11-01

    A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.

  7. Speciation of triphenyltin compounds using Moessbauer spectroscopy. Final report

    SciTech Connect

    Eng, G.

    1993-11-01

    Organotin compounds have been used widely as the active agent in antifouling marine paints. Organotin compounds, i.e., tributyltin compounds (TBTs) and triphenyltin compounds (TPTs) have been found to be effective in preventing the unwanted attachment and development of aquatic organisms such as barnacles, sea grass and hydroids on ships, hulls and underwater surfaces. However, these organotin compounds have been found to be toxic to non-targeted marine species as well. While speciation of tributyltins in environmental water systems has received much attention in the literature, little information concerning the speciation of triphenyltins is found. Therefore, it would be important to study the fate of TPTs in the aquatic environment, particularly in sediments, both oxic and anoxic, in order to obtain speciation data. Since marine estuaries consist of areas with varying salinity and pH, it is important to investigate the speciation of these compounds under varying salinity conditions. In addition, evaluation of the speciation of these compounds as a function of pH would give an insight into how these compounds might interact with sediments in waters where industrial chemical run-offs can affect the pH of the estuarine environment. Finally, since organotins are present in both salt and fresh water environments, the speciation of the organotins in seawater and distilled water should also be studied. Moessbauer spectroscopy would provide a preferred method to study the speciation of triphenyltins as they leach from marine paints into the aquatic environment. Compounds used in this study are those triphenyltin compounds that are commonly incorporated into marine paints such as triphenyltin fluoride (TPTF), triphenyltin acetate (TPTOAc), triphenyltin chloride (TPTCl) and triphenyltin hydroxide (TPTOH).

  8. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

    USGS Publications Warehouse

    Nakazato, Takuya; Rieseberg, Loren H.; Wood, Troy E.

    2013-01-01

    One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,’ all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally.

  9. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  10. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

    PubMed Central

    Nakazato, T; Rieseberg, L H; Wood, T E

    2013-01-01

    One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,' all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally. PMID:23652565

  11. Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation

    PubMed Central

    Lemaire, Benny; Vandamme, Peter; Merckx, Vincent; Smets, Erik; Dessein, Steven

    2011-01-01

    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis. PMID:21915326

  12. How sympatric is speciation in the Howea palms of Lord Howe Island?

    PubMed

    Babik, Wiesław; Butlin, Roger K; Baker, William J; Papadopulos, Alexander S T; Boulesteix, Matthieu; Anstett, Marie-Charlotte; Lexer, Christian; Hutton, Ian; Savolainen, Vincent

    2009-09-01

    The two species of the palm genus Howea (Arecaceae) from Lord Howe Island, a minute volcanic island in the Tasman Sea, are now regarded as one of the most compelling examples of sympatric speciation, although this view is still disputed by some authors. Population genetic and ecological data are necessary to provide a more coherent and comprehensive understanding of this emerging model system. Here, we analyse data on abundance, juvenile recruitment, pollination mode and genetic variation and structure in both species. We find that Howea forsteriana is less abundant than Howea belmoreana. The genetic data based on amplified fragment length polymorphisms markers indicate similar levels of variation in the two species, despite the estimated census population size of H. belmoreana being three times larger than that of H. forsteriana. Genetic structure within species is low although some weak isolation by distance is detectable. Gene flow between species appears to be extremely limited and restricted to early-generation hybrids - only three admixed individuals, classified as F2s or first generation backcrosses to a parental species, were found among sampled palms. We conclude that speciation in Howea was indeed sympatric, although under certain strict definitions it may be called parapatric.

  13. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes.

    PubMed

    Andrew, Rose L; Rieseberg, Loren H

    2013-09-01

    Early in speciation, as populations undergo the transition from local adaptation to incipient species, is when a number of transient, but potentially important, processes appear to be most easily detected. These include signatures of selective sweeps that can point to asymmetry in selection between habitats, divergence hitchhiking, and associations of adaptive genes with environments. In a genomic comparison of ecotypes of the prairie sunflower, Helianthus petiolaris, occurring at Great Sand Dunes National Park and Preserve (Colorado), we found that selective sweeps were mainly restricted to the dune ecotype and that there was variation across the genome in whether proximity to the nondune population constrained or promoted divergence. The major regions of divergence were few and large between ecotypes, in contrast with an interspecific comparison between H. petiolaris and a sympatric congener, Helianthus annuus. In general, the large regions of divergence observed in the ecotypic comparison swamped locus-specific associations with environmental variables. In both comparisons, regions of high divergence occurred in portions of the genetic map with high marker density, probably reflecting regions of low recombination. The difference in genomic distributions of highly divergent regions between ecotypic and interspecific comparisons highlights the value of studies spanning the spectrum of speciation in related taxa.

  14. Did pollination shifts drive diversification in southern African Gladiolus? Evaluating the model of pollinator-driven speciation.

    PubMed

    Valente, Luis M; Manning, John C; Goldblatt, Peter; Vargas, Pablo

    2012-07-01

    The pollinator-driven ecological speciation model has frequently been invoked to explain plant richness in biodiversity hotspots. Here, by focusing on Gladiolus (260 species), a flagship example of a clade with diverse pollination biology, we test the hypothesis that high species diversity in southern Africa, one of the world's most floristically rich regions, has primarily been driven by ecological shifts in pollination systems. We use phylogenetic methods to estimate rates of transition between the seven highly specialized pollination strategies in Gladiolus. We find that pollination systems have evolved multiple times and that some pollination strategies arose by a variety of evolutionary pathways. Pollination shifts account for up to one-third of all lineage splitting events in the genus, providing partial support for the pollinator-driven speciation model. Transitions from the ancestral pollination mode to derived systems have also resulted in increased rates of diversification, suggesting that certain pollination systems may speed up speciation processes, independently of pollination shifts per se. This study suggests that frequent pollination shifts have played a role in driving high phenotypic and species diversity but indicates that additional factors need to be invoked to account for the spectacular diversification in southern African Gladiolus.

  15. How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in New World ratsnakes (tribe Lampropeltini)?

    PubMed

    Burbrink, Frank T; Pyron, R Alexander

    2010-04-01

    Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within-subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World approximately 24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.

  16. Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes.

    PubMed

    Robertson, D Ross; Karg, Frances; Leao de Moura, Rodrigo; Victor, Benjamin C; Bernardi, Giacomo

    2006-09-01

    Relationships based on mtDNA and nDNA sequences were used to assess effects of two major geographic barriers (the >30 myo Atlantic ocean and the approximately 11 myo Amazon-Orinoco outflow) on speciation among Atlantic parrotfishes (Sparisoma and Nicholsina). Allopatric distributions of sister taxa implicate isolating actions of both barriers in all recent speciation in these fishes, with no clear indications that any speciation resulted from other mechanisms. Molecular clock estimates of the timing of lineage splits indicate that both barriers acted by limiting dispersal well after they formed, although the Amazon barrier also may have been a vicariance agent. Fluctuations in sealevel, climate, and ocean-current dynamics over the past approximately 10 my likely produced marked variation in the effectiveness of both barriers, but particularly the Amazon barrier, allowing intermittent dispersal leading to establishment and allopatric speciation. A dynamic Amazon barrier represents a major engine of West Atlantic faunal enrichment that has repeatedly facilitated bidirectional dispersal, allopatric speciation, and remixing of the Caribbean and Brazilian faunas.

  17. Speciation with gene flow on Lord Howe Island

    PubMed Central

    Papadopulos, Alexander S. T.; Baker, William J.; Crayn, Darren; Butlin, Roger K.; Kynast, Ralf G.; Hutton, Ian; Savolainen, Vincent

    2011-01-01

    Understanding the processes underlying the origin of species is a fundamental goal of biology. It is widely accepted that speciation requires an interruption of gene flow between populations: ongoing gene exchange is considered a major hindrance to population divergence and, ultimately, to the evolution of new species. Where a geographic barrier to reproductive isolation is lacking, a biological mechanism for speciation is required to counterbalance the homogenizing effect of gene flow. Speciation with initially strong gene flow is thought to be extremely rare, and few convincing empirical examples have been published. However, using phylogenetic, karyological, and ecological data for the flora of a minute oceanic island (Lord Howe Island, LHI), we demonstrate that speciation with gene flow may, in fact, be frequent in some instances and could account for one in five of the endemic plant species of LHI. We present 11 potential instances of species divergence with gene flow, including an in situ radiation of five species of Coprosma (Rubiaceae, the coffee family). These results, together with the speciation of Howea palms on LHI, challenge current views on the origin of species diversity. PMID:21730151

  18. Extreme changes to gene expression associated with homoploid hybrid speciation.

    PubMed

    Hegarty, Matthew J; Barker, Gary L; Brennan, Adrian C; Edwards, Keith J; Abbott, Richard J; Hiscock, Simon J

    2009-03-01

    Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus. Comparisons of gene expression between S. aethnensis, S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus, suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus. We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants.

  19. On the origin of species by sympatric speciation

    NASA Astrophysics Data System (ADS)

    Dieckmann, Ulf; Doebeli, Michael

    1999-07-01

    Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties,. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.

  20. Bromine speciation in hydrous haplogranitic melts up to 7 GPa

    NASA Astrophysics Data System (ADS)

    Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.

    2013-12-01

    Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.

  1. Pleistocene phylogeographic effects on avian populations and the speciation process.

    PubMed Central

    Avise, J C; Walker, D

    1998-01-01

    Pleistocene biogeographic events have traditionally been ascribed a major role in promoting speciations and in sculpting the present-day diversity and distributions of vertebrate taxa. However, this paradigm has recently come under challenge from a review of interspecific mtDNA genetic distances in birds: most sister-species separations dated to the Pliocene. Here we summarize the literature on intraspecific mtDNA phylogeographic patterns in birds and reinterpret the molecular evidence bearing on Pleistocene influences. At least 37 of the 63 avian species surveyed (59%) are sundered into recognizable phylogeographic units, and 28 of these separations (76%) trace to the Pleistocene. Furthermore, use of phylogroup separation times within species as minimum estimates of 'speciation durations' also indicates that many protracted speciations, considered individually, probably extended through time from Pliocene origins to Pleistocene completions. When avian speciation is viewed properly as an extended temporal process rather than as a point event, Pleistocene conditions appear to have played an active role both in initiating major phylogeographic separations within species, and in completing speciations that had been inaugurated earlier. Whether the Pleistocene was exceptional in these regards compared with other geological times remains to be determined. PMID:9569664

  2. Sexual selection drives speciation in an Amazonian frog

    USGS Publications Warehouse

    Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.

    2007-01-01

    One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.

  3. How Forgetting Aids Heuristic Inference

    ERIC Educational Resources Information Center

    Schooler, Lael J.; Hertwig, Ralph

    2005-01-01

    Some theorists, ranging from W. James (1890) to contemporary psychologists, have argued that forgetting is the key to proper functioning of memory. The authors elaborate on the notion of beneficial forgetting by proposing that loss of information aids inference heuristics that exploit mnemonic information. To this end, the authors bring together 2…

  4. Science Shorts: Observation versus Inference

    ERIC Educational Resources Information Center

    Leager, Craig R.

    2008-01-01

    When you observe something, how do you know for sure what you are seeing, feeling, smelling, or hearing? Asking students to think critically about their encounters with the natural world will help to strengthen their understanding and application of the science-process skills of observation and inference. In the following lesson, students make…

  5. The mechanisms of temporal inference

    NASA Technical Reports Server (NTRS)

    Fox, B. R.; Green, S. R.

    1987-01-01

    The properties of a temporal language are determined by its constituent elements: the temporal objects which it can represent, the attributes of those objects, the relationships between them, the axioms which define the default relationships, and the rules which define the statements that can be formulated. The methods of inference which can be applied to a temporal language are derived in part from a small number of axioms which define the meaning of equality and order and how those relationships can be propagated. More complex inferences involve detailed analysis of the stated relationships. Perhaps the most challenging area of temporal inference is reasoning over disjunctive temporal constraints. Simple forms of disjunction do not sufficiently increase the expressive power of a language while unrestricted use of disjunction makes the analysis NP-hard. In many cases a set of disjunctive constraints can be converted to disjunctive normal form and familiar methods of inference can be applied to the conjunctive sub-expressions. This process itself is NP-hard but it is made more tractable by careful expansion of a tree-structured search space.

  6. Statistical inference and Aristotle's Rhetoric.

    PubMed

    Macdonald, Ranald R

    2004-11-01

    Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.

  7. Word Learning as Bayesian Inference

    ERIC Educational Resources Information Center

    Xu, Fei; Tenenbaum, Joshua B.

    2007-01-01

    The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…

  8. Starfish: Robust spectroscopic inference tools

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.

    2015-05-01

    Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

  9. Improving Explanatory Inferences from Assessments

    ERIC Educational Resources Information Center

    Diakow, Ronli Phyllis

    2013-01-01

    This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…

  10. Perceptual Inference and Autistic Traits

    ERIC Educational Resources Information Center

    Skewes, Joshua C; Jegindø, Else-Marie; Gebauer, Line

    2015-01-01

    Autistic people are better at perceiving details. Major theories explain this in terms of bottom-up sensory mechanisms or in terms of top-down cognitive biases. Recently, it has become possible to link these theories within a common framework. This framework assumes that perception is implicit neural inference, combining sensory evidence with…

  11. A speciation gene for left-right reversal in snails results in anti-predator adaptation.

    PubMed

    Hoso, Masaki; Kameda, Yuichi; Wu, Shu-Ping; Asami, Takahiro; Kato, Makoto; Hori, Michio

    2010-01-01

    How speciation genes can spread in a population is poorly understood. In land snails, a single gene for left-right reversal could be responsible for instant speciation, because dextral and sinistral snails have difficulty in mating. However, the traditional two-locus speciation model predicts that a mating disadvantage for the reversal should counteract this speciation. In this study, we show that specialized snake predation of the dextral majority drives prey speciation by reversal. Our experiments demonstrate that sinistral Satsuma snails (Stylommatophora: Camaenidae) survive predation by Pareas iwasakii (Colubroidea: Pareatidae). Worldwide biogeography reveals that stylommatophoran snail speciation by reversal has been accelerated in the range of pareatid snakes, especially in snails that gain stronger anti-snake defense and reproductive isolation from dextrals by sinistrality. Molecular phylogeny of Satsuma snails further provides intriguing evidence of repetitive speciation under snake predation. Our study demonstrates that a speciation gene can be fixed in populations by positive pleiotropic effects on survival.

  12. Pressure dependence of the speciation of dissolved water in rhyolitic melts

    NASA Astrophysics Data System (ADS)

    Hui, Hejiu; Zhang, Youxue; Xu, Zhengjiu; Behrens, Harald

    2008-07-01

    Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H 2O and hydroxyl group, H 2O m + O ⇌ 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant ( K) is independent of total H 2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H 2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H 2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.

  13. Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant.

    PubMed

    Nies, G; Reusch, T B H

    2005-01-01

    Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant.

  14. Neptunium redox speciation at the illite surface

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Banik, Nidhu lal; Lützenkirchen, Johannes; Marquardt, Christian Michael; Dardenne, Kathy; Schild, Dieter; Rothe, Joerg; Diascorn, Alexandre; Kupcik, Tomas; Schäfer, Thorsten; Geckeis, Horst

    2015-03-01

    Neptunium (Np(V)) sorption onto a purified illite is investigated as a function of pH (3-10) and [NpVO2+]tot(3 × 10-8-3 × 10-4 M) in 0.1 M NaCl under Ar atmosphere. After about one week reaction time, only insignificant variation of Np sorption is observed and the establishment of reaction equilibrium can be assumed. Surprisingly, solid-liquid distribution ratios (Rd) are clearly higher than those measured for Np(V) sorption onto illite under aerobic conditions. The observation that Rd increases with decreasing pe (pe = -log ae-) suggests partial reduction to Np(IV), although measured redox potentials (pe values) at a first glance suggest the predominance of Np(V). Reduction to Np(IV) at the illite surface could indeed be confirmed by X-ray absorption near-edge spectroscopy (XANES). Np speciation in presence of the purified Na-illite under given conditions is consistently described by applying the 2 sites protolysis non-electrostatic surface complexation and cation exchange model. Measured pe data are taken to calculate Np redox state and surface complexation constants for Np(IV) are derived by applying a data fitting procedure. Constants are very consistent with results obtained by applying an existing linear free energy relationship (LFER). Taking Np(IV) surface complexation constants into account shifts the calculated Np(V)/Np(IV) redox borderline in presence of illite surfaces by 3-5 pe units (0.2-0.3 V) towards redox neutral conditions. Our study suggests that Np(V) reduction in presence of a sorbing mineral phase is thermodynamically favored.

  15. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  16. Rapid acceleration of plant speciation during the Anthropocene.

    PubMed

    Thomas, Chris D

    2015-08-01

    Speciation rates need to be considered when estimating human impacts on the numbers of species on Earth, given that past mass extinctions have been followed by the accelerated origination of new taxa. Here, I suggest that the Anthropocene is already exhibiting a greatly accelerated plant speciation rate due to agriculture, horticulture, and the human-mediated transport of species, followed by hybridisation. For example, more new plant species have come into existence in Europe over the past three centuries than have been documented as becoming extinct over the same period, even though most new hybrid-origin species are likely to remain undetected. Current speciation rates are unusually high and they could be higher than during or after previous mass extinctions.

  17. The relationship of selenium tolerance and speciation in Lecythidaceae species.

    PubMed

    Németh, Anikó; García Reyes, Juan Francisco; Kosáry, Judit; Dernovics, Mihály

    2013-12-01

    Comparative study of selenium (Se) speciation in hyperaccumulator plants offers an interesting challenge from the analytical point of view. In our study the application of a sophisticated sample clean-up procedure and the combination of elemental and molecular mass spectrometric methods led to the identification of several new selenocompounds. The difference between the Se speciation of the primary accumulator Lecythis minor and the secondary accumulator Bertholletia excelsa confirmed the current opinion that the speciation pattern in hyperaccumulator plants is principally related to the mechanism of accumulation and not to taxonomy. The most abundant new selenocompounds were found to be the derivatives of selenohomocysteine (SeHCy) and selenomethionine (SeMet), including fatty acid metabolism related compounds. A series of SeHCy derived species containing multiple Se atoms (>2) was also detected and their structures were validated by the synthesis of their S-Se analogues.

  18. Computer simulations of sympatric speciation in a simple food web

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss

    2005-07-01

    Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.

  19. Plutonium Speciation in Support of Oxidative-Leaching Demonstration Test

    SciTech Connect

    Sinkov, Sergey I.

    2007-10-31

    Bechtel National, Inc. (BNI) is evaluating the plutonium speciation in caustic solutions that reasonably represent the process streams from the oxidative-leaching demonstration test. Battelle—Pacific Northwest Division (PNWD) was contracted to develop a spectrophotometric method to measure plutonium speciation at submicromolar (< 10-6 M) concentrations in alkaline solutions in the presence of chromate and carbonate. Data obtained from the testing will be used to identify the oxidation state of Pu(IV), Pu(V), and Pu(VI) species, which potentially could exist in caustic leachates. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan TSS A-219 to evaluate the speciation of chromium, plutonium, and manganese before and after oxidative leaching. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract MOA: 24590-QL-HC9-WA49-00001.

  20. Inference of Population History by Coupling Exploratory and Model-Driven Phylogeographic Analyses

    PubMed Central

    Garrick, Ryan C.; Caccone, Adalgisa; Sunnucks, Paul

    2010-01-01

    Understanding the nature, timing and geographic context of historical events and population processes that shaped the spatial distribution of genetic diversity is critical for addressing questions relating to speciation, selection, and applied conservation management. Cladistic analysis of gene trees has been central to phylogeography, but when coupled with approaches that make use of different components of the information carried by DNA sequences and their frequencies, the strength and resolution of these inferences can be improved. However, assessing concordance of inferences drawn using different analytical methods or genetic datasets, and integrating their outcomes, can be challenging. Here we overview the strengths and limitations of different types of genetic data, analysis methods, and approaches to historical inference. We then turn our attention to the potentially synergistic interactions among widely-used and emerging phylogeographic analyses, and discuss some of the ways that spatial and temporal concordance among inferences can be assessed. We close this review with a brief summary and outlook on future research directions. PMID:20480016

  1. Towards General Algorithms for Grammatical Inference

    NASA Astrophysics Data System (ADS)

    Clark, Alexander

    Many algorithms for grammatical inference can be viewed as instances of a more general algorithm which maintains a set of primitive elements, which distributionally define sets of strings, and a set of features or tests that constrain various inference rules. Using this general framework, which we cast as a process of logical inference, we re-analyse Angluin's famous lstar algorithm and several recent algorithms for the inference of context-free grammars and multiple context-free grammars. Finally, to illustrate the advantages of this approach, we extend it to the inference of functional transductions from positive data only, and we present a new algorithm for the inference of finite state transducers.

  2. Patterns of plant speciation in the Cape floristic region.

    PubMed

    van der Niet, Timotheüs; Johnson, Steven D

    2009-04-01

    Plant species have accumulated in the Cape region of southern Africa to a much greater degree than in areas of equivalent size in the rest of the subcontinent. Although this could be a consequence simply of lower extinction rates in the Cape, most researchers have invoked high rates of ecological speciation, driven by unique aspects of the Cape environment, as the primary explanation for this richness. To assess these ideas, we analyzed the frequencies of ecological shifts among 188 sister species pairs obtained from molecular phylogenies of eight Cape clades. Ecological shifts were evident in 80% of sister species pairs, with general habitat, pollinator, and fire-survival strategy shifts being especially frequent. Contrary to an established idea that shifts in soil type are frequently associated with speciation of Cape taxa, these shifts were relatively rare, occurring in just 17% of species pairs. More cases of sister species divergence are accompanied solely by floral than by vegetative diversification, suggesting an important role for pollinator-driven speciation. In an analysis of two large orchid genera that have radiated in both the Cape and the rest of southern Africa, the frequency of ecological shifts (general habitat, soil type, altitude and flowering time), did not differ between sister species pairs in the Cape region and those outside it. Despite suggestions that Cape plants tend to have small range sizes and show fine-scale patterns of speciation, range size did not differ significantly between species in the Cape and those outside it. We conclude that ecological speciation is likely to have been important for radiation of the Cape flora, but there is no evidence as yet for special "Cape" patterns of ecological speciation.

  3. Sexual selection and speciation in mammals, butterflies and spiders.

    PubMed Central

    Gage, Matthew J G; Parker, Geoffrey A; Nylin, Soren; Wiklund, Christer

    2002-01-01

    Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation

  4. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  5. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  6. XANES Identification of Plutonium Speciation in RFETS Samples

    SciTech Connect

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  7. Hybrid speciation and independent evolution in lineages of alpine butterflies.

    PubMed

    Nice, Chris C; Gompert, Zachariah; Fordyce, James A; Forister, Matthew L; Lucas, Lauren K; Buerkle, C Alex

    2013-04-01

    The power of hybridization between species to generate variation and fuel adaptation is poorly understood despite long-standing interest. There is, however, increasing evidence that hybridization often generates biodiversity, including via hybrid speciation. We tested the hypothesis of hybrid speciation in butterflies occupying extreme, high-altitude habitats in four mountain ranges in western North America with an explicit, probabilistic model, and genome-wide DNA sequence data. Using this approach, in concert with ecological experiments and observations and morphological data, we document three lineages of hybrid origin. These lineages have different genome admixture proportions and distinctive trait combinations that suggest unique and independent evolutionary histories.

  8. [Speciation and its mechanisms: conceptual background and recent advances].

    PubMed

    Colley, Eduardo; Fischer, Marta Luciane

    2013-10-01

    This paper presents a historical approach on general concepts of speciation and its mechanisms, from the primordial ideas to the most recent theories that seek to elucidate the origin of biodiversity. It is common knowledge that speciation is a controversial and complex issue that encompasses virtually all the lines of research of biology, in addition to geology and paleontology. The main objective of the paper is to clarify the theoretical concepts on the origin of the animal species, in the chronological order in which they became established throughout the whole of the development of evolutionary biology as a science.

  9. Sympatric speciation: compliance with phenotype diversification from a single genotype.

    PubMed Central

    Kaneko, K; Yomo, T

    2000-01-01

    A novel mechanism for sympatric speciation that takes into account complex bioprocesses within each individual organism is proposed. According to dynamical systems theory, organisms with identical genotypes can possess differentiated physiological states and may coexist 'symbiotically' through appropriate mutual interaction. With mutations, the phenotypically differentiated organisms gradually come to possess distinct genotypes while maintaining their symbiotic relationship. This symbiotic speciation is robust against sexual recombination, because offspring of mixed parentage with intermediate genotypes are less fit than their parents. This leads to sterility of the hybrid. Accordingly, a basis for mating preference also arises. PMID:11133025

  10. Two Androdioecious and One Dioecious New Species of Pristionchus (Nematoda: Diplogastridae): New Reference Points for the Evolution of Reproductive Mode

    PubMed Central

    Kanzaki, Natsumi; Ragsdale, Erik J.; Herrmann, Matthias; Susoy, Vladislav

    2013-01-01

    Rhabditid nematodes are one of a few animal taxa in which androdioecious reproduction, involving hermaphrodites and males, is found. In the genus Pristionchus, several cases of androdioecy are known, including the model species P. pacificus. A comprehensive understanding of the evolution of reproductive mode depends on dense taxon sampling and careful morphological and phylogenetic reconstruction. In this article, two new androdioecious species, P. boliviae n. sp. and P. mayeri n. sp., and one gonochoristic outgroup, P. atlanticus n. sp., are described on morphological, molecular, and biological evidence. Their phylogenetic relationships are inferred from 26 ribosomal protein genes and a partial SSU rRNA gene. Based on current representation, the new androdioecious species are sister taxa, indicating either speciation from an androdioecious ancestor or rapid convergent evolution in closely related species. Male sexual characters distinguish the new species, and new characters for six closely related Pristionchus species are presented. Male papillae are unusually variable in P. boliviae n. sp. and P. mayeri n. sp., consistent with the predictions of “selfing syndrome.” Description and phylogeny of new androdioecious species, supported by fuller outgroup representation, establish new reference points for mechanistic studies in the Pristionchus system by expanding its comparative context. PMID:24115783

  11. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods.

    PubMed

    Sharma, Ajay; Gaidamakova, Elena K; Matrosova, Vera Y; Bennett, Brian; Daly, Michael J; Hoffman, Brian M

    2013-04-09

    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.

  12. A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Exploring Host Plant Family Shifts and Allopatry as Drivers of Speciation

    PubMed Central

    Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.

    2015-01-01

    Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different

  13. Statistical learning and selective inference

    PubMed Central

    Taylor, Jonathan; Tibshirani, Robert J.

    2015-01-01

    We describe the problem of “selective inference.” This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have “cherry-picked”—searched for the strongest associations—means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis. PMID:26100887

  14. Causal inference based on counterfactuals

    PubMed Central

    Höfler, M

    2005-01-01

    Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397

  15. Statistical learning and selective inference.

    PubMed

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  16. Inferring Centrality from Network Snapshots

    NASA Astrophysics Data System (ADS)

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

  17. Network Plasticity as Bayesian Inference

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2015-01-01

    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099

  18. Bayesian Inference on Proportional Elections

    PubMed Central

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  19. System Support for Forensic Inference

    NASA Astrophysics Data System (ADS)

    Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan

    Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.

  20. Inferring Centrality from Network Snapshots

    PubMed Central

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data. PMID:28098166

  1. Bayesian inference for agreement measures.

    PubMed

    Vidal, Ignacio; de Castro, Mário

    2016-08-25

    The agreement of different measurement methods is an important issue in several disciplines like, for example, Medicine, Metrology, and Engineering. In this article, some agreement measures, common in the literature, were analyzed from a Bayesian point of view. Posterior inferences for such agreement measures were obtained based on well-known Bayesian inference procedures for the bivariate normal distribution. As a consequence, a general, simple, and effective method is presented, which does not require Markov Chain Monte Carlo methods and can be applied considering a great variety of prior distributions. Illustratively, the method was exemplified using five objective priors for the bivariate normal distribution. A tool for assessing the adequacy of the model is discussed. Results from a simulation study and an application to a real dataset are also reported.

  2. Inference of reversible tree languages.

    PubMed

    López, Damián; Sempere, José M; García, Pedro

    2004-08-01

    In this paper, we study the notion of k-reversibility and k-testability when regular tree languages are involved. We present an inference algorithm for learning a k-testable tree language that runs in polynomial time with respect to the size of the sample used. We also study the tree language classes in relation to other well known ones, and some properties of these languages are proven.

  3. Fast, Flexible, Rational Inductive Inference

    DTIC Science & Technology

    2013-08-23

    learning phonetic categories – the sounds that make up speech – learning the words that those sounds appear in provides sufficiently strong constraints...first to be able to infer realistic phonetic categories directly from simulated speech data. Objective 2.2: Forming feature-based representations...lexicon in phonetic category acquisition. Psychological Review. Griffiths, T. L., Austerweil, J. L., & Berthiaume, V. G. (2012). Comparing the

  4. Cortical circuits for perceptual inference.

    PubMed

    Friston, Karl; Kiebel, Stefan

    2009-10-01

    This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs.

  5. An introduction to causal inference.

    PubMed

    Pearl, Judea

    2010-02-26

    This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.

  6. Children's and adults' evaluation of the certainty of deductive inferences, inductive inferences, and guesses.

    PubMed

    Pillow, Bradford H

    2002-01-01

    Two experiments investigated kindergarten through fourth-grade children's and adults' (N = 128) ability to (1) evaluate the certainty of deductive inferences, inductive inferences, and guesses; and (2) explain the origins of inferential knowledge. When judging their own cognitive state, children in first grade and older rated deductive inferences as more certain than guesses; but when judging another person's knowledge, children did not distinguish valid inferences from invalid inferences and guesses until fourth grade. By third grade, children differentiated their own deductive inferences from inductive inferences and guesses, but only adults both differentiated deductive inferences from inductive inferences and differentiated inductive inferences from guesses. Children's recognition of their own inferences may contribute to the development of knowledge about cognitive processes, scientific reasoning, and a constructivist epistemology.

  7. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  8. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA

    NASA Astrophysics Data System (ADS)

    Haque, S. E.; Johannesson, K. H.

    2006-05-01

    Arsenic (As) concentrations and speciation were determined in groundwaters along a flow-path in the Upper Floridan aquifer (UFA) to investigate the biogeochemical “evolution“ of As in this relatively pristine aquifer. Dissolved inorganic As species were separated in the field using anion-exchange chromatography and subsequently analyzed by inductively coupled plasma mass spectrometry. Total As concentrations are higher in the recharge area groundwaters compared to down-gradient portions of UFA. Redox conditions vary from relatively oxic to anoxic along the flow-path. Mobilization of As species in UFA groundwaters is influenced by ferric iron reduction and subsequent dissolution, sulfate reduction, and probable pyrite precipitation that are inferred from the data to occur along distinct regions of the flow-path. In general, the distribution of As species are consistent with equilibrium thermodynamics, such that arsenate dominates in more oxidizing waters near the recharge area, and arsenite predominates in the progressively reducing groundwaters beyond the recharge area.

  9. Mode coupling in solar spicule oscillations

    NASA Astrophysics Data System (ADS)

    Fazel, Zahra

    2016-01-01

    In a real medium which has oscillations, the perturbations can cause an energy transfer between different modes. A perturbation, which is interpreted as an interaction between the modes, is inferred to be mode coupling. The mode coupling process in an inhomogeneous medium such as solar spicules may lead to the coupling of kink waves to local Alfvén waves. This coupling occurs in practically any conditions when there is smooth variation in density in the radial direction. This process is seen as the decay of transverse kink waves in the medium. To study the damping of kink waves due to mode coupling, a 2.5-dimensional numerical simulation of the initial wave is considered in spicules. The initial perturbation is assumed to be in a plane perpendicular to the spicule axis. The considered kink wave is a standing wave which shows an exponential damping in the inhomogeneous layer after the mode coupling occurs.

  10. The evolution of transmission mode

    PubMed Central

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  11. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    SciTech Connect

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  12. Plant evolution: pulses of extinction and speciation in gymnosperm diversity.

    PubMed

    Davis, Charles C; Schaefer, Hanno

    2011-12-20

    Living gymnosperms represent the survivors of ancient seed plant lineages whose fossil record reaches back 270 million years. Two recent studies find that recent pulses of extinction and speciation have shaped today's gymnosperm diversity, contradicting the widespread assumption that gymnosperms have remained largely unchanged for tens of millions of years.

  13. Latitude, elevational climatic zonation and speciation in New World vertebrates

    PubMed Central

    Cadena, Carlos Daniel; Kozak, Kenneth H.; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M.; Bowie, Rauri C. K.; Carnaval, Ana C.; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E.; Sanders, Nathan J.; Schneider, Christopher J.; VanDerWal, Jeremy; Zamudio, Kelly R.; Graham, Catherine H.

    2012-01-01

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions. PMID:21632626

  14. Latitude, elevational climatic zonation and speciation in New World vertebrates.

    PubMed

    Cadena, Carlos Daniel; Kozak, Kenneth H; Gómez, Juan Pablo; Parra, Juan Luis; McCain, Christy M; Bowie, Rauri C K; Carnaval, Ana C; Moritz, Craig; Rahbek, Carsten; Roberts, Trina E; Sanders, Nathan J; Schneider, Christopher J; VanDerWal, Jeremy; Zamudio, Kelly R; Graham, Catherine H

    2012-01-07

    Many biodiversity hotspots are located in montane regions, especially in the tropics. A possible explanation for this pattern is that the narrow thermal tolerances of tropical species and greater climatic stratification of tropical mountains create more opportunities for climate-associated parapatric or allopatric speciation in the tropics relative to the temperate zone. However, it is unclear whether a general relationship exists among latitude, climatic zonation and the ecology of speciation. Recent taxon-specific studies obtained different results regarding the role of climate in speciation in tropical versus temperate areas. Here, we quantify overlap in the climatic distributions of 93 pairs of sister species of mammals, birds, amphibians and reptiles restricted to either the New World tropics or to the Northern temperate zone. We show that elevational ranges of tropical- and temperate-zone species do not differ from one another, yet the temperature range experienced by species in the temperate zone is greater than for those in the tropics. Moreover, tropical sister species tend to exhibit greater similarity in their climatic distributions than temperate sister species. This pattern suggests that evolutionary conservatism in the thermal niches of tropical taxa, coupled with the greater thermal zonation of tropical mountains, may result in increased opportunities for allopatric isolation, speciation and the accumulation of species in tropical montane regions. Our study exemplifies the power of combining phylogenetic and spatial datasets of global climatic variation to explore evolutionary (rather than purely ecological) explanations for the high biodiversity of tropical montane regions.

  15. Microscale characterization of sulfur speciation in lake sediments.

    PubMed

    Zeng, Teng; Arnold, William A; Toner, Brandy M

    2013-02-05

    Prairie pothole lakes (PPLs) are naturally sulfur-enriched wetlands in the glaciated prairie region of North America. High sulfate levels and dynamic hydrogeochemistry in combination render PPLs a unique environment to explore the speciation of sedimentary sulfur (S). The goals of this research were to define and quantify the solid-phase S pools in PPL sediments and track seasonal dynamics of S speciation. A quantitative X-ray microprobe method was developed based on S 1s X-ray absorption near-edge structure (XANES) spectroscopy and multienergy X-ray fluorescence mapping. Three S pools-pyritic S, reduced organic S (organic mono- and disulfide), and oxidized S (inorganic sulfate, ester sulfate, and sulfonate)-were identified in PPL sediments. No significant seasonal variation was evident for total S, but S speciation showed a seasonal response. During the spring-summer transition, the reduced organic S decreased from 55 to 15 mol %, with a concomitant rise in the oxidized S. During the summer-fall transition, the trend reversed and the reduced organic S grew to 75 mol % at the expense of the oxidized S. The pyritic S, on the other hand, remained relatively constant (∼22 mol %) over time. The seasonal changes in S speciation have strong potential to force the cycling of elements such as mercury in prairie wetlands.

  16. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

    PubMed

    Mittelbach, Gary G; Schemske, Douglas W; Cornell, Howard V; Allen, Andrew P; Brown, Jonathan M; Bush, Mark B; Harrison, Susan P; Hurlbert, Allen H; Knowlton, Nancy; Lessios, Harilaos A; McCain, Christy M; McCune, Amy R; McDade, Lucinda A; McPeek, Mark A; Near, Thomas J; Price, Trevor D; Ricklefs, Robert E; Roy, Kaustuv; Sax, Dov F; Schluter, Dolph; Sobel, James M; Turelli, Michael

    2007-04-01

    A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.

  17. Cytonuclear incompatibility contributes to the early stages of speciation.

    PubMed

    Barnard-Kubow, Karen B; So, Nina; Galloway, Laura F

    2016-12-01

    Genetic incompatibility is a hallmark of speciation. Cytonuclear incompatibilities are proposed to be among the first genetic barriers to arise during speciation. Accordingly, reproductive isolation (RI) within species should be heavily influenced by interactions between the organelle and nuclear genomes. However, there are few clear examples of cytonuclear incompatibility within a species. Here, we show substantial postzygotic RI in first-generation hybrids between differentiated populations of an herbaceous plant (up to 92% reduction in fitness). RI was primarily due to germination and survival, with moderate RI for pollen viability. RI for survival was asymmetric and caused by cytonuclear incompatibility, with the strength of incompatibility linearly related to chloroplast genetic distance. This cytonuclear incompatibility may be the result of a rapidly evolving plastid genome. Substantial asymmetric RI was also found for germination, but was not associated with cytonuclear incompatibility, indicating endosperm or maternal-zygote incompatibilities. These results demonstrate that cytonuclear incompatibility contributes to RI within species, suggesting that initial rates of speciation could be influenced by rates of organelle evolution. However, other genetic incompatibilities are equally important, indicating that even at early stages, speciation can be a complex process involving multiple genes and incompatibilities.

  18. Metacommunity speciation models and their implications for diversification theory.

    PubMed

    Hubert, Nicolas; Calcagno, Vincent; Etienne, Rampal S; Mouquet, Nicolas

    2015-08-01

    The emergence of new frameworks combining evolutionary and ecological dynamics in communities opens new perspectives on the study of speciation. By acknowledging the relative contribution of local and regional dynamics in shaping the complexity of ecological communities, metacommunity theory sheds a new light on the mechanisms underlying the emergence of species. Three integrative frameworks have been proposed, involving neutral dynamics, niche theory, and life history trade-offs respectively. Here, we review these frameworks of metacommunity theory to emphasise that: (1) studies on speciation and community ecology have converged towards similar general principles by acknowledging the central role of dispersal in metacommunities dynamics, (2) considering the conditions of emergence and maintenance of new species in communities has given rise to new models of speciation embedded in the metacommunity theory, (3) studies of diversification have shifted from relating phylogenetic patterns to landscapes spatial and ecological characteristics towards integrative approaches that explicitly consider speciation in a mechanistic ecological framework. We highlight several challenges, in particular the need for a better integration of the eco-evolutionary consequences of dispersal and the need to increase our understanding on the relative rates of evolutionary and ecological changes in communities.

  19. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  20. Speciation And Bioavailability Of Zinc In Amended Sediments

    EPA Science Inventory

    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...

  1. Lead Speciation And Bioavailability In Apatite-Amended Sediments

    EPA Science Inventory

    The in situ sequestration of lead (Pb) in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS) with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions ...

  2. Speciation Mapping of Environmental Samples Using XANES Imaging

    EPA Science Inventory

    Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...

  3. The secondary contact phase of allopatric speciation in Darwin's finches

    PubMed Central

    Grant, Peter R.; Grant, B. Rosemary

    2009-01-01

    Speciation, the process by which two species form from one, involves the development of reproductive isolation of two divergent lineages. Here, we report the establishment and persistence of a reproductively isolated population of Darwin's finches on the small Galápagos Island of Daphne Major in the secondary contact phase of speciation. In 1981, an immigrant medium ground finch (Geospiza fortis) arrived on the island. It was unusually large, especially in beak width, sang an unusual song, and carried some Geospiza scandens alleles. We followed the fate of this individual and its descendants for seven generations over a period of 28 years. In the fourth generation, after a severe drought, the lineage was reduced to a single brother and sister, who bred with each other. From then on this lineage, inheriting unusual song, morphology, and a uniquely homozygous marker allele, was reproductively isolated, because their own descendants bred with each other and with no other member of the resident G. fortis population. These observations agree with some expectations of an ecological theory of speciation in that a barrier to interbreeding arises as a correlated effect of adaptive divergence in morphology. However, the important, culturally transmitted, song component of the barrier appears to have arisen by chance through an initial imperfect copying of local song by the immigrant. The study reveals additional stochastic elements of speciation, in which divergence is initiated in allopatry; immigration to a new area of a single male hybrid and initial breeding with a rare hybrid female. PMID:19918081

  4. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  5. Capillary electrophoresis application in metal speciation and complexation characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  6. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  7. LINKING WATERFOWL WITH CONTAMINANT SPECIATION IN RIPARIAN SOILS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 38, Linking Waterfowl with Contaminant Speciation in Riparian Soils, implemented and funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U...

  8. Chiral speciation of selenoamino acids in biological samples.

    PubMed

    Chen, Beibei; He, Man; Zhong, Cheng; Hu, Bin

    2014-10-10

    In this paper, the "state of the art" of chiral speciation of selenoamino acids (SeAAs) in biological samples is critically reviewed. The significance and the features of such studies are highlighted. A special focus lies on chiral speciation of SeAAs by hyphenation techniques in which a chiral separation method (such as gas chromatography (GC), high performance liquid chromatography (HPLC) and capillary electrophoresis (CE)) is on-line coupled with an elemental specific detector, especially inductively coupled plasma mass spectrometry (ICP-MS). The advances in the development and application of hyphenation techniques in chiral speciation of SeAAs in biological samples are summarized and a perspective for future developments including sophisticated and innovative applications is discussed. Overall, HPLC-ICP-MS is more applicable than GC/CE-ICP-MS for chiral speciation of SeAAs. In the future, more novel chiral HPLC methods with high enantio-resolution, low cost and robustness, and their more applications in real biological samples analysis are expected.

  9. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  10. Comparative tests of the role of dewlap size in Anolis lizard speciation.

    PubMed

    Ingram, Travis; Harrison, Alexis; Mahler, D Luke; Castañeda, María Del Rosario; Glor, Richard E; Herrel, Anthony; Stuart, Yoel E; Losos, Jonathan B

    2016-12-28

    Phenotypic traits may be linked to speciation in two distinct ways: character values may influence the rate of speciation or diversification in the trait may be associated with speciation events. Traits involved in signal transmission, such as the dewlap of Anolis lizards, are often involved in the speciation process. The dewlap is an important visual signal with roles in species recognition and sexual selection, and dewlaps vary among species in relative size as well as colour and pattern. We compile a dataset of relative dewlap size digitized from photographs of 184 anole species from across the genus' geographical range. We use phylogenetic comparative methods to test two hypotheses: that larger dewlaps are associated with higher speciation rates, and that relative dewlap area diversifies according to a speciational model of evolution. We find no evidence of trait-dependent speciation, indicating that larger signals do not enhance any role the dewlap has in promoting speciation. Instead, we find a signal of mixed speciational and gradual trait evolution, with a particularly strong signal of speciational change in the dewlaps of mainland lineages. This indicates that dewlap size diversifies in association with the speciation process, suggesting that divergent selection may play a role in the macroevolution of this signalling trait.

  11. Peripatric speciation of an endemic species driven by Pleistocene climate change: The case of the Mexican prairie dog (Cynomys mexicanus).

    PubMed

    Castellanos-Morales, Gabriela; Gámez, Niza; Castillo-Gámez, Reyna A; Eguiarte, Luis E

    2016-01-01

    The hypothesis that endemic species could have originated by the isolation and divergence of peripheral populations of widespread species can be tested through the use of ecological niche models (ENMs) and statistical phylogeography. The joint use of these tools provides complementary perspectives on historical dynamics and allows testing hypotheses regarding the origin of endemic taxa. We used this approach to infer the historical processes that have influenced the origin of a species endemic to the Mexican Plateau (Cynomys mexicanus) and its divergence from a widespread ancestor (Cynomys ludovicianus), and to test whether this endemic species originated through peripatric speciation. We obtained genetic data for 295 individuals for two species of black-tailed prairie dogs (C. ludovicianus and C. mexicanus). Genetic data consisted of mitochondrial DNA sequences (cytochrome b and control region), and 10 nuclear microsatellite loci. We estimated dates of divergence between species and between lineages within each species and performed ecological niche modelling (Present, Last Glacial Maximum and Last Interglacial) to determine changes in the distribution range of both species during the Pleistocene. Finally, we used Bayesian inference methods (DIYABC) to test different hypotheses regarding the divergence and demographic history of these species. Data supported the hypothesis of the origin of C. mexicanus from a peripheral population isolated during the Pleistocene [∼230,000 years ago (0.1-0.43 Ma 95% HPD)], with a Pleistocene-Holocene (∼9,000-11,000 years ago) population expansion (∼10-fold increase in population size). We identified the presence of two possible refugia in the southern area of the distribution range of C. ludovicianus and another, consistent with the distribution range of C. mexicanus. Our analyses suggest that Pleistocene climate change had a strong impact in the distribution of these species, promoting peripatric speciation for the origin of

  12. Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events.

    PubMed

    Rosato, Marcela; Moreno-Saiz, Juan C; Galián, José A; Rosselló, Josep A

    2015-11-16

    Several genome duplications have been identified in the evolution of seed plants, providing unique systems for studying karyological processes promoting diversification and speciation. Knowledge about the number of ribosomal DNA (rDNA) loci, together with their chromosomal distribution and structure, provides clues about organismal and molecular evolution at various phylogenetic levels. In this work, we aim to elucidate the evolutionary dynamics of karyological and rDNA site-number variation in all known taxa of subtribe Vellinae, showing a complex scenario of ancestral and more recent polyploid events. Specifically, we aim to infer the ancestral chromosome numbers and patterns of chromosome number variation, assess patterns of variation of both 45S and 5S rDNA families, trends in site-number change of rDNA loci within homoploid and polyploid series, and reconstruct the evolutionary history of rDNA site number using a phylogenetic hypothesis as a framework. The best-fitting model of chromosome number evolution with a high likelihood score suggests that the Vellinae core showing x = 17 chromosomes arose by duplication events from a recent x = 8 ancestor. Our survey suggests more complex patterns of polyploid evolution than previously noted for Vellinae. High polyploidization events (6x, 8x) arose independently in the basal clade Vella castrilensis-V. lucentina, where extant diploid species are unknown. Reconstruction of ancestral rDNA states in Vellinae supports the inference that the ancestral number of loci in the subtribe was two for each multigene family, suggesting that an overall tendency towards a net loss of 5S rDNA loci occurred during the splitting of Vellinae ancestors from the remaining Brassiceae lineages. A contrasting pattern for rDNA site change in both paleopolyploid and neopolyploid species was linked to diversification of Vellinae lineages. This suggests dynamic and independent changes in rDNA site number during speciation processes and a

  13. Microevolution and speciation in Thalassiosira weissflogii (Bacillariophyta).

    PubMed

    Sorhannus, Ulf; Ortiz, Joseph D; Wolf, Matthias; Fox, Martin G

    2010-04-01

    In this study five different molecular markers were used to: (1) infer the phylogeographic differentiation of Thalassiosira weissflogii in the Atlantic and Pacific Oceans; and (2) address the biological species status of the inferred geographic lineages. The results of the ribosomal RNA data analyses suggested that the Hawaiian isolate evolved first after which the Indonesian and the Atlantic/California strains diverged. In contrast, the tree derived from the partial sexually induced gene 1 (Sig1) data exhibited an initial divergence between the Eastern Atlantic/Western Atlantic/California and the Hawaiian/Indonesian groups after which the latter evolved into the Hawaiian and Indonesian lineages. The partial beta-tubulin phylogeny discerns an early "split" between an Eastern Atlantic/Western Atlantic clade and an Indonesia/California/Hawaii group which later differentiated into distinct Hawaiian and Indonesian/California "branches". The number of compensatory base changes (CBCs) in the ITS2 indicated that the "Atlantic group", including the California isolate, constituted a single reproductive unit and that the Indonesian and Hawaiian T. weissflogii are two different biological species with regard to each other and to the "Atlantic clade". The beta-tubulin tree contradicts the reproductive units recovered by the compensatory base change analysis due to the close affinity of the California and Indonesia strains whereas the sexually induced gene 1 phylogeny supports the existence of three biological species, despite exhibiting a temporal sequence of geographic diversification that is different from that seen in topologies derived from the ribosomal RNA data. It is hypothesized that the tree derived from the sexually induced gene 1 reflects the relative order of the evolution of reproductive isolation in the different T. weissflogii strains while the lineages in the other phylogenies depict time elapsed since common ancestry. The current investigation is the first to

  14. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  15. Statistical inference for inverse problems

    NASA Astrophysics Data System (ADS)

    Bissantz, Nicolai; Holzmann, Hajo

    2008-06-01

    In this paper we study statistical inference for certain inverse problems. We go beyond mere estimation purposes and review and develop the construction of confidence intervals and confidence bands in some inverse problems, including deconvolution and the backward heat equation. Further, we discuss the construction of certain hypothesis tests, in particular concerning the number of local maxima of the unknown function. The methods are illustrated in a case study, where we analyze the distribution of heliocentric escape velocities of galaxies in the Centaurus galaxy cluster, and provide statistical evidence for its bimodality.

  16. sick: The Spectroscopic Inference Crank

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.

    2016-03-01

    There exists an inordinate amount of spectral data in both public and private astronomical archives that remain severely under-utilized. The lack of reliable open-source tools for analyzing large volumes of spectra contributes to this situation, which is poised to worsen as large surveys successively release orders of magnitude more spectra. In this article I introduce sick, the spectroscopic inference crank, a flexible and fast Bayesian tool for inferring astrophysical parameters from spectra. sick is agnostic to the wavelength coverage, resolving power, or general data format, allowing any user to easily construct a generative model for their data, regardless of its source. sick can be used to provide a nearest-neighbor estimate of model parameters, a numerically optimized point estimate, or full Markov Chain Monte Carlo sampling of the posterior probability distributions. This generality empowers any astronomer to capitalize on the plethora of published synthetic and observed spectra, and make precise inferences for a host of astrophysical (and nuisance) quantities. Model intensities can be reliably approximated from existing grids of synthetic or observed spectra using linear multi-dimensional interpolation, or a Cannon-based model. Additional phenomena that transform the data (e.g., redshift, rotational broadening, continuum, spectral resolution) are incorporated as free parameters and can be marginalized away. Outlier pixels (e.g., cosmic rays or poorly modeled regimes) can be treated with a Gaussian mixture model, and a noise model is included to account for systematically underestimated variance. Combining these phenomena into a scalar-justified, quantitative model permits precise inferences with credible uncertainties on noisy data. I describe the common model features, the implementation details, and the default behavior, which is balanced to be suitable for most astronomical applications. Using a forward model on low-resolution, high signal

  17. Universum Inference and Corpus Homogeneity

    NASA Astrophysics Data System (ADS)

    Vogel, Carl; Lynch, Gerard; Janssen, Jerom

    Universum Inference is re-interpreted for assessment of corpus homogeneity in computational stylometry. Recent stylometric research quantifies strength of characterization within dramatic works by assessing the homogeneity of corpora associated with dramatic personas. A methodological advance is suggested to mitigate the potential for the assessment of homogeneity to be achieved by chance. Baseline comparison analysis is constructed for contributions to debates by nonfictional participants: the corpus analyzed consists of transcripts of US Presidential and Vice-Presidential debates from the 2000 election cycle. The corpus is also analyzed in translation to Italian, Spanish and Portuguese. Adding randomized categories makes assessments of homogeneity more conservative.

  18. Redox speciation and biogeochemical gradients: Assessing spatial niches and monitoring dynamics in natural systems with voltammetric microelectrodes

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Lorenson, G. W.; Eastmann, D. A.; Macalady, J. L.

    2005-12-01

    Biogeochemical gradients may be described by the spatial distribution of redox species distributed in water, where overlap of electron donors and acceptors out of equilibrium defines available sources of potential energy and essentially determines possible microbial metabolisms. Observed changes in redox speciation along a gradient associated with microbial biofilms may additionally provide some environmental basis for assessing physiology of sampled microorganisms. Voltammetric microelectrodes have been used in a variety of environments to describe the links between ecology and geochemistry (Luther et al., 2001). Recent work in Yellowstone National Park hydrothermal waters, the Frassassi caves in central Italy (a sulfidic cave system), and Green Lake in New York (a meromictic lake) have expanded our abilities to use microelectrodes for assessing As(III) concentrations and uncovering more details of sulfur speciation in a wide range of natural waters. We are using these data to design redox-specific culture media, make inferences about microbial physiology, constrain biogeochemical gradients over very fine scales, and observe dynamics in biogeochemical systems. Describing microbial communities and the geochemical environments that surround them at appropriate scales is of importance to begin assessing the links between microbial activity and geochemical cycling. Diversity in an environment may be better assessed if we first know how many different geochemical environments there are in that environment and if the microbial ecology in those environments is essentially independent from environments neighboring it. Because microelectrodes measure multiple redox species simultaneously and do so in matter of seconds, they are also useful in monitoring the dynamics of a biogeochemical system, which will be of use in studying the response of communities to perturbation. We will present results showing the characterization of lateral and vertical gradients over different

  19. Speciation with gene flow in whiptail lizards from a Neotropical xeric biome.

    PubMed

    Oliveira, Eliana F; Gehara, Marcelo; São-Pedro, Vinícius A; Chen, Xin; Myers, Edward A; Burbrink, Frank T; Mesquita, Daniel O; Garda, Adrian A; Colli, Guarino R; Rodrigues, Miguel T; Arias, Federico J; Zaher, Hussam; Santos, Rodrigo M L; Costa, Gabriel C

    2015-12-01

    Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process.

  20. Abundance and Speciation of Water and Sulfate at Gusev Crater and Meridiani Planum

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Clark, B. C.; Klingelhoefer, G.; Gellert, R.; Rodionov, D.; Schroeder, C.; deSouza, P.; Yen, A.

    2005-01-01

    A major science goal of the Mars Exploration Rover (MER) mission is to search for evidence of water activity, and direct mineralogical evidence for aqueous activity has been reported for Meridiani Planum in the form of the iron sulfate hydroxide mineral jarosite and at Gusev crater in the form of goethite. The Spirit and Opportunity rovers have each collected 110+ Moessbauer (MB) and 75+ Alpha Particle X-Ray Spectrometer (APXS) spectra from Gusev crater and Meridiani Planum [1 - 4]. In this abstract, we use mineralogical and elemental data, primarily from the Moessbauer and APXS instruments, to infer the speciation and estimate the abundance of sulfate and water (as either the H2O molecule or the hydroxyl anion) at Gusev crater and Meridiani Planum. Throughout the abstract, we adopt a format for mineral formulas that shows water explicitly rather than the usual practice of structure-based formulas (e.g., for goethite we write Fe2O3xH2O instead of FeOOH).

  1. Bayesian inference for OPC modeling

    NASA Astrophysics Data System (ADS)

    Burbine, Andrew; Sturtevant, John; Fryer, David; Smith, Bruce W.

    2016-03-01

    The use of optical proximity correction (OPC) demands increasingly accurate models of the photolithographic process. Model building and inference techniques in the data science community have seen great strides in the past two decades which make better use of available information. This paper aims to demonstrate the predictive power of Bayesian inference as a method for parameter selection in lithographic models by quantifying the uncertainty associated with model inputs and wafer data. Specifically, the method combines the model builder's prior information about each modelling assumption with the maximization of each observation's likelihood as a Student's t-distributed random variable. Through the use of a Markov chain Monte Carlo (MCMC) algorithm, a model's parameter space is explored to find the most credible parameter values. During parameter exploration, the parameters' posterior distributions are generated by applying Bayes' rule, using a likelihood function and the a priori knowledge supplied. The MCMC algorithm used, an affine invariant ensemble sampler (AIES), is implemented by initializing many walkers which semiindependently explore the space. The convergence of these walkers to global maxima of the likelihood volume determine the parameter values' highest density intervals (HDI) to reveal champion models. We show that this method of parameter selection provides insights into the data that traditional methods do not and outline continued experiments to vet the method.

  2. Bayesian inference for radio observations

    NASA Astrophysics Data System (ADS)

    Lochner, Michelle; Natarajan, Iniyan; Zwart, Jonathan T. L.; Smirnov, Oleg; Bassett, Bruce A.; Oozeer, Nadeem; Kunz, Martin

    2015-06-01

    New telescopes like the Square Kilometre Array (SKA) will push into a new sensitivity regime and expose systematics, such as direction-dependent effects, that could previously be ignored. Current methods for handling such systematics rely on alternating best estimates of instrumental calibration and models of the underlying sky, which can lead to inadequate uncertainty estimates and biased results because any correlations between parameters are ignored. These deconvolution algorithms produce a single image that is assumed to be a true representation of the sky, when in fact it is just one realization of an infinite ensemble of images compatible with the noise in the data. In contrast, here we report a Bayesian formalism that simultaneously infers both systematics and science. Our technique, Bayesian Inference for Radio Observations (BIRO), determines all parameters directly from the raw data, bypassing image-making entirely, by sampling from the joint posterior probability distribution. This enables it to derive both correlations and accurate uncertainties, making use of the flexible software MEQTREES to model the sky and telescope simultaneously. We demonstrate BIRO with two simulated sets of Westerbork Synthesis Radio Telescope data sets. In the first, we perform joint estimates of 103 scientific (flux densities of sources) and instrumental (pointing errors, beamwidth and noise) parameters. In the second example, we perform source separation with BIRO. Using the Bayesian evidence, we can accurately select between a single point source, two point sources and an extended Gaussian source, allowing for `super-resolution' on scales much smaller than the synthesized beam.

  3. Quantum Inference on Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Yoder, Theodore; Low, Guang Hao; Chuang, Isaac

    2014-03-01

    Because quantum physics is naturally probabilistic, it seems reasonable to expect physical systems to describe probabilities and their evolution in a natural fashion. Here, we use quantum computation to speedup sampling from a graphical probability model, the Bayesian network. A specialization of this sampling problem is approximate Bayesian inference, where the distribution on query variables is sampled given the values e of evidence variables. Inference is a key part of modern machine learning and artificial intelligence tasks, but is known to be NP-hard. Classically, a single unbiased sample is obtained from a Bayesian network on n variables with at most m parents per node in time (nmP(e) - 1 / 2) , depending critically on P(e) , the probability the evidence might occur in the first place. However, by implementing a quantum version of rejection sampling, we obtain a square-root speedup, taking (n2m P(e) -1/2) time per sample. The speedup is the result of amplitude amplification, which is proving to be broadly applicable in sampling and machine learning tasks. In particular, we provide an explicit and efficient circuit construction that implements the algorithm without the need for oracle access.

  4. Dopamine, Affordance and Active Inference

    PubMed Central

    Friston, Karl J.; Shiner, Tamara; FitzGerald, Thomas; Galea, Joseph M.; Adams, Rick; Brown, Harriet; Dolan, Raymond J.; Moran, Rosalyn; Stephan, Klaas Enno; Bestmann, Sven

    2012-01-01

    The role of dopamine in behaviour and decision-making is often cast in terms of reinforcement learning and optimal decision theory. Here, we present an alternative view that frames the physiology of dopamine in terms of Bayes-optimal behaviour. In this account, dopamine controls the precision or salience of (external or internal) cues that engender action. In other words, dopamine balances bottom-up sensory information and top-down prior beliefs when making hierarchical inferences (predictions) about cues that have affordance. In this paper, we focus on the consequences of changing tonic levels of dopamine firing using simulations of cued sequential movements. Crucially, the predictions driving movements are based upon a hierarchical generative model that infers the context in which movements are made. This means that we can confuse agents by changing the context (order) in which cues are presented. These simulations provide a (Bayes-optimal) model of contextual uncertainty and set switching that can be quantified in terms of behavioural and electrophysiological responses. Furthermore, one can simulate dopaminergic lesions (by changing the precision of prediction errors) to produce pathological behaviours that are reminiscent of those seen in neurological disorders such as Parkinson's disease. We use these simulations to demonstrate how a single functional role for dopamine at the synaptic level can manifest in different ways at the behavioural level. PMID:22241972

  5. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events.

    PubMed

    Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H

    2015-06-01

    Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics.

  6. Co-Inheritance Analysis within the Domains of Life Substantially Improves Network Inference by Phylogenetic Profiling.

    PubMed

    Shin, Junha; Lee, Insuk

    2015-01-01

    Phylogenetic profiling, a network inference method based on gene inheritance profiles, has been widely used to construct functional gene networks in microbes. However, its utility for network inference in higher eukaryotes has been limited. An improved algorithm with an in-depth understanding of pathway evolution may overcome this limitation. In this study, we investigated the effects of taxonomic structures on co-inheritance analysis using 2,144 reference species in four query species: Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Homo sapiens. We observed three clusters of reference species based on a principal component analysis of the phylogenetic profiles, which correspond to the three domains of life-Archaea, Bacteria, and Eukaryota-suggesting that pathways inherit primarily within specific domains or lower-ranked taxonomic groups during speciation. Hence, the co-inheritance pattern within a taxonomic group may be eroded by confounding inheritance patterns from irrelevant taxonomic groups. We demonstrated that co-inheritance analysis within domains substantially improved network inference not only in microbe species but also in the higher eukaryotes, including humans. Although we observed two sub-domain clusters of reference species within Eukaryota, co-inheritance analysis within these sub-domain taxonomic groups only marginally improved network inference. Therefore, we conclude that co-inheritance analysis within domains is the optimal approach to network inference with the given reference species. The construction of a series of human gene networks with increasing sample sizes of the reference species for each domain revealed that the size of the high-accuracy networks increased as additional reference species genomes were included, suggesting that within-domain co-inheritance analysis will continue to expand human gene networks as genomes of additional species are sequenced. Taken together, we propose that co-inheritance analysis

  7. Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting.

    PubMed

    Jones, Graham; Sagitov, Serik; Oxelman, Bengt

    2013-05-01

    Polyploidy is an important speciation mechanism, particularly in land plants. Allopolyploid species are formed after hybridization between otherwise intersterile parental species. Recent theoretical progress has led to successful implementation of species tree models that take population genetic parameters into account. However, these models have not included allopolyploid hybridization and the special problems imposed when species trees of allopolyploids are inferred. Here, 2 new models for the statistical inference of the evolutionary history of allopolyploids are evaluated using simulations and demonstrated on 2 empirical data sets. It is assumed that there has been a single hybridization event between 2 diploid species resulting in a genomic allotetraploid. The evolutionary history can be represented as a species network or as a multilabeled species tree, in which some pairs of tips are labeled with the same species. In one of the models (AlloppMUL), the multilabeled species tree is inferred directly. This is the simplest model and the most widely applicable, since fewer assumptions are made. The second model (AlloppNET) incorporates the hybridization event explicitly which means that fewer parameters need to be estimated. Both models are implemented in the BEAST framework. Simulations show that both models are useful and that AlloppNET is more accurate if the assumptions it is based on are valid. The models are demonstrated on previously analyzed data from the genera Pachycladon (Brassicaceae) and Silene (Caryophyllaceae).

  8. Speciation of mercury and mode of transport from placer gold mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    Historic placer gold mining in the Clear Creek tributary to the Sacramento River (Redding, CA) has highly impacted the hydrology and ecology of an important salmonid spawning stream. Restoration of the watershed utilized dredge tailings contaminated with mercury (Hg) introduced during gold mining, posing the possibility of persistent Hg release to the surrounding environment, including the San Francisco Bay Delta. Column experiments have been performed to evaluate the extent of Hg transport under chemical conditions potentially similar to those in river restoration projects utilizing dredge tailings such as at Clear Creek. Physicochemical perturbations, in the form of shifts in column influent ionic strength and the presence of a low molecular weight organic acid, were applied to coarse and fine sand placer tailings containing 109-194 and 69-90 ng of Hg/g, respectively. Significant concentrations of mercury, up to 16 ??g/L, leach from these sediments in dissolved and particle-associated forms. Sequential chemical extractions (SCE) of these tailings indicate that elemental Hg initially introduced during gold mining has been transformed to readily soluble species, such as mercury oxides and chlorides (3-4%), intermediately extractable phases that likely include (in)organic sorption complexes and amalgams (75-87%), and fractions of highly insoluble forms such as mercury sulfides (6-20%; e.g., cinnabar and metacinnabar). Extended X-ray absorption fine structure (EXAFS) spectroscopic analysis of colloids obtained from column effluent identified cinnabar particles as the dominant mobile mercury-bearing phase. The fraction of intermediately extractable Hg phases also likely includes mobile colloids to which Hg is adsorbed. ?? 2005 American Chemical Society.

  9. Spontaneous Trait Inferences on Social Media

    PubMed Central

    Utz, Sonja

    2016-01-01

    The present research investigates whether spontaneous trait inferences occur under conditions characteristic of social media and networking sites: nonextreme, ostensibly self-generated content, simultaneous presentation of multiple cues, and self-paced browsing. We used an established measure of trait inferences (false recognition paradigm) and a direct assessment of impressions. Without being asked to do so, participants spontaneously formed impressions of people whose status updates they saw. Our results suggest that trait inferences occurred from nonextreme self-generated content, which is commonly found in social media updates (Experiment 1) and when nine status updates from different people were presented in parallel (Experiment 2). Although inferences did occur during free browsing, the results suggest that participants did not necessarily associate the traits with the corresponding status update authors (Experiment 3). Overall, the findings suggest that spontaneous trait inferences occur on social media. We discuss implications for online communication and research on spontaneous trait inferences. PMID:28123646

  10. Inferring echolocation in ancient bats.

    PubMed

    Simmons, Nancy B; Seymour, Kevin L; Habersetzer, Jörg; Gunnell, Gregg F

    2010-08-19

    Laryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear. They examined the oldest and most primitive known bat, Onychonycteris finneyi (early Eocene, USA), and argued that it showed evidence of this stylohyal-tympanic articulation, from which they concluded that O. finneyi may have been capable of echolocation. We disagree with their interpretation of key fossil data and instead argue that O. finneyi was probably not an echolocating bat.

  11. Motion Inference During +Gz Acceleration

    DTIC Science & Technology

    2006-09-01

    AFRL-HW-WP-TP-2006-0091 Motion Inference During +Gz Acceleration Lloyd D . Tripp Jr. Richard A. McKinley Robert L. Esken Air Force Research Laboratory...5c. PROGRAM ELEMENT NUMBER 62202F 6. AUTHOR(S) 5d. PROJECT NUMBER Lloyd D . Tripp Jr 7184 Richard A. McKinley 5e. TASK NUMBER Robert L. Esken 03 5f...CD A Cj CL.C2 C 0~ 0. D 0 0~G)C00.E)’ca)4-100 ( 0 Eo12 E a 0 0L0mm 0a0 " C0 U) U) LUr o CLI.,a @ .- . : ) 0 " 0 C CL.. 70 E- 0 M 0.0 toE-C .- 0)c .2 0UL

  12. Inferred properties of stellar granulation

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1985-06-01

    Apparent characteristics of stellar granulation in F and G main-sequence stars are inferred directly from observed spectral-line asymmetries and from comparisons of numerical simulations with the observations: (1) the apparent granulation velocity increases with effective temperature, (2) the dispersion of granule velocities about their mean velocity of rise increases with the apparent granulation velocity, (3) the mean velocity of rise of granules must be less than the total line broadening, (4) the apparent velocity difference between granules and dark lanes corresponds to the granulation velocity deduced from stellar line bisectors, (5) the dark lanes show velocities of fall approximately twice as large as the granule rise velocities, (6) the light contributed to the stellar flux by the granules is four to ten times more than the light from the dark lanes. Stellar rotation is predicted to produce distortions in the line bisectors which may give information on the absolute velocity displacements of the line bisectors. 37 references.

  13. Synaptic Computation Underlying Probabilistic Inference

    PubMed Central

    Soltani, Alireza; Wang, Xiao-Jing

    2010-01-01

    In this paper we propose that synapses may be the workhorse of neuronal computations that underlie probabilistic reasoning. We built a neural circuit model for probabilistic inference when information provided by different sensory cues needs to be integrated, and the predictive powers of individual cues about an outcome are deduced through experience. We found that bounded synapses naturally compute, through reward-dependent plasticity, the posterior probability that a choice alternative is correct given that a cue is presented. Furthermore, a decision circuit endowed with such synapses makes choices based on the summated log posterior odds and performs near-optimal cue combination. The model is validated by reproducing salient observations of, and provide insights into, a monkey experiment using a categorization task. Our model thus suggests a biophysical instantiation of the Bayesian decision rule, while predicting important deviations from it similar to ‘base-rate neglect’ observed in human studies when alternatives have unequal priors. PMID:20010823

  14. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    SciTech Connect

    Robinson, J.W.; Skelly, E.M.

    1982-01-01

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant form of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.

  15. Optimisation of the storage of natural freshwaters before organotin speciation.

    PubMed

    Bancon-Montigny, C; Lespes, G; Potin-Gautier, M

    2001-01-01

    The speciation of organotin compounds is essential due to the species-dependent toxicity, especially in natural waters. Precautions have to be taken during sampling and storage of waters in order to prevent degradations and losses. Experimental design methodology has been used to study the conditions of stability of organotins after water sampling in rivers. The modelling of results allows the determination of optimal conditions of preservation. After acidification at pH = 4 with nitric acid, the storage in polyethylene containers at 4 degrees C in the dark is suitable to preserve the most degradable trisubstituted (butyl- and phenyl-) species over 1 month. These conditions of sampling and storage are applied to two different freshwaters. The rate of species decomposition appears to be only dependent on the water nature, whatever the organotin concentrations in the sample. Speciation could be so preserved between 1 and 3 months.

  16. Speciation of uranium in compartments of living cells.

    PubMed

    Geipel, Gerhard; Viehweger, Katrin

    2015-06-01

    Depleted uranium used as ammunition corrodes in the environment forming mineral phases and then dissolved uranium species like uranium carbonates (Schimmack et al., in Radiat Environ Biophys 46:221-227, 2007) and hydroxides. These hydroxide species were contacted with plant cells (canola). After 24 h contact time the cells were fractionated and the uranium speciation in the fraction was determined by time resolved laser-induced fluorescence spectroscopy at room temperature as well at 150 K. It could be shown that the uranium speciation in the fractions is different to that in the nutrient solution. Comparison of the emission bands with literature data allows assignment of the uranium binding forms.

  17. Speciation of Fe in ambient aerosol and cloudwater

    SciTech Connect

    Siefert, Ronald Lyn

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  18. Cooperative breeding in oscine passerines: does sociality inhibit speciation?

    PubMed Central

    Cockburn, Andrew

    2003-01-01

    Cooperative breeding in birds is much more prevalent than has been previously realized, occurring in 18.5% of oscine passerines known to have biparental care, and is the predominant social system of some ancient oscine clades. Cooperation is distributed unevenly in clades that contain both cooperative and pair breeders, and is usually confined to a few related genera in which it can be ubiquitous. Cooperative clades are species poor compared with pair-breeding clades, because pair breeders evolve migratory habits, speciate on oceanic islands and are more likely to have distributions spread across more than one biogeographic region. These differences reflect the increased capacity for colonization by pair breeders because their young disperse. Thus cooperative breeding has macroevolutionary consequences by restricting rates of speciation and macroecological implications by influencing the assembly of island and migrant faunas. PMID:14613606

  19. Metal accumulation by stream bryophytes, related to chemical speciation.

    PubMed

    Tipping, E; Vincent, C D; Lawlor, A J; Lofts, S

    2008-12-01

    Metal accumulation by aquatic bryophytes was investigated using data for headwater streams of differing chemistry. The Windermere Humic Aqueous Model (WHAM) was applied to calculate chemical speciation, including competitive proton and metal interactions with external binding sites on the plants. The speciation modelling approach gives smaller deviations between observed and predicted bryophyte contents of Cu, Zn, Cd and Pb than regressions based on total filtered metal concentrations. If all four metals, and Ni, are considered together, the WHAM predictions are superior at the 1% level. Optimised constants for bryophyte binding by the trace metals are similar to those for humic substances and simple carboxylate ligands. Bryophyte contents of Na, Mg and Ca are approximately explained by binding at external sites, while most of the K is intracellular. Oxide phases account for some of the Al, and most of the Mn, Fe and Co.

  20. Speciation of uranium(VI) sorption complexes on montmorillonite

    SciTech Connect

    Chisholm-Brause, C.J.; Morris, D.E.; Richard, R.E.

    1992-05-01

    Environmental contaminant releases that contain uranium are among the most serious problems that must be confronted by restoration programs. To facilitate restoration, information concerning the speciation of uranium is needed. Under oxidizing conditions, dissolved uranium is predominantly in the U(VI) (uranyl) form and is quite mobile in the environment, however sorption onto soils may retard its movement. In this study, we have investigated the effects of changes in solution speciation on the nature of uranyl sorption complexes on montmorillonite, a common soil constituent. Aqueous U(VI) solutions between pH 3 to 7 were batch-equilibrated with montmorillonite for several days; specific pH values were selected such that the solutions consisted of dominantly monomeric, oligomeric, or a mix of monomeric and oligomeric aqueous uranyl species. Emission spectroscopy was used to investigate the nature of U(VI) sorbed to montmorillonite.

  1. SUBSURFACE MOBILE PLUTONIUM SPECIATION: SAMPLING ARTIFACTS FOR GROUNDWATER COLLOIDS

    SciTech Connect

    Kaplan, D.; Buesseler, K.

    2010-06-29

    A recent review found several conflicting conclusions regarding colloid-facilitated transport of radionuclides in groundwater and noted that colloids can both facilitate and retard transport. Given these contrasting conclusions and the profound implications even trace concentrations of plutonium (Pu) have on the calculated risk posed to human health, it is important that the methodology used to sample groundwater colloids be free of artifacts. The objective of this study was: (1) to conduct a field study and measure Pu speciation, ({sup 239}Pu and {sup 240}Pu for reduced-Pu{sub aq}, oxidized-Pu{sub aq}, reduced-Pu{sub colloid}, and oxidized-Pu{sub colloid}), in a Savannah River Site (SRS) aquifer along a pH gradient in F-Area, (2) to determine the impact of pumping rate on Pu concentration, Pu speciation, and Pu isotopic ratios, (3) determine the impact of delayed sample processing (as opposed to processing directly from the well).

  2. The frequency of polyploid speciation in vascular plants

    PubMed Central

    Wood, Troy E.; Takebayashi, Naoki; Barker, Michael S.; Mayrose, Itay; Greenspoon, Philip B.; Rieseberg, Loren H.

    2009-01-01

    Since its discovery in 1907, polyploidy has been recognized as an important phenomenon in vascular plants, and several lines of evidence indicate that most, if not all, plant species ultimately have a polyploid ancestry. However, previous estimates of the frequency of polyploid speciation suggest that the formation and establishment of neopolyploid species is rare. By combining information from the botanical community's vast cytogenetic and phylogenetic databases, we establish that 15% of angiosperm and 31% of fern speciation events are accompanied by ploidy increase. These frequency estimates are higher by a factor of four than earlier estimates and lead to a standing incidence of polyploid species within genera of 35% (n = 1,506). Despite this high incidence, we find no direct evidence that polyploid lines, once established, enjoy greater net species diversification. Thus, the widespread occurrence of polyploid taxa appears to result from the substantial contribution of polyploidy to cladogenesis, but not from subsequent increases in diversification rates of polyploid lines. PMID:19667210

  3. An expert system shell for inferring vegetation characteristics: Implementation of additional techniques (task E)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann

    1992-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented. Some techniques operate on sample data at a single wavelength. The techniques previously incorporated in VEG for other subgoals operated on data at a single wavelength so implementing the additional single wavelength techniques required no changes to the structure of VEG. Two techniques which use data at multiple wavelengths to infer proportion ground cover were also implemented. This work involved modifying the structure of VEG so that multiple wavelength techniques could be incorporated. All the new techniques were tested using both the VEG 'Research Mode' and the 'Automatic Mode.'

  4. Dipole modes with depressed amplitudes in red giants are mixed modes

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Belkacem, K.; Pinçon, C.; Takata, M.; Vrard, M.; Barban, C.; Goupil, M.-J.; Kallinger, T.; Samadi, R.

    2017-02-01

    Context. Seismic observations with the space-borne Kepler mission have shown that a number of evolved stars exhibit low-amplitude dipole modes, which is referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong magnetic field in the stellar core of those stars. Subsequently, and based on this scenario, the prevalence of high magnetic fields in evolved stars has been inferred. It should be noted, however, that this conclusion remains indirect. Aims: We intend to study the properties of mode depression in evolved stars, which is a necessary condition before reaching conclusions about the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes. Methods: We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for deriving model-independent conclusions on the dipole mode damping. We use a simple model to explain how mode visibilities are connected to the extra damping seen in depressed modes. Results: Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result, observed in more than 90% of the bright stars (mV ≤ 11), invalidates the hypothesis that depressed dipole modes result from the suppression of the oscillation in the radiative core of the stars. Observations also show that, except for visibility, seismic properties of the stars with depressed modes are equivalent to those of normal stars. The measurement of the extra damping that is responsible for the reduction of mode amplitudes, without any prior on its physical nature, potentially provides an efficient tool for elucidating the mechanism responsible for the mode depression. Conclusions: The mixed nature of the depressed modes in red giants and their unperturbed global seismic

  5. Inference-Based Teacher Professionalism: How Professional Practitioners in Religious Education Reflect in Action

    ERIC Educational Resources Information Center

    Heil, Stefan; Ziebertz, Hans-Georg

    2004-01-01

    A theory of professional action is developed based on the 3 modes of inference: abduction, induction, and deduction. The theory explains how professionals reflect in action by combining a single case to their professional repertoire. With teachers in religious education (RE), the problem is focused on how they link students' new and individual…

  6. Plutonium speciation in water from Mono Lake, California

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-01-01

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  7. Plutonium speciation in water from Mono Lake, California

    SciTech Connect

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-12-23

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  8. Pu speciation in actual and simulated aged wastes

    SciTech Connect

    Lezama-pacheco, Juan S; Conradson, Steven D

    2008-01-01

    X-ray Absorption Fine Structure Spectroscopy (XAFS) at the Pu L{sub II/III} edge was used to determine the speciation of this element in (1) Hanford Z-9 Pu crib samples, (2) deteriorated waste resins from a chloride process ion-exchange purification line, and (3) the sediments from two Waste Isolation Pilot Plant Liter Scale simulant brine systems. The Pu speciation in all of these samples except one is within the range previously displayed by PuO{sub 2+x-2y}(OH){sub y}{center_dot}zH{sub 2}O compounds, which is expected based on the putative thermodynamic stability of this system for Pu equilibrated with excess H{sub 2}O and O{sub 2} under environmental conditions. The primary exception was a near neutral brine experiment that displayed evidence for partial substitution of the normal O-based ligands with Cl{sup -} and a concomitant expansion of the Pu-Pu distance relative to the much more highly ordered Pu near neighbor shell in PuO{sub 2}. However, although the Pu speciation was not necessarily unusual, the Pu chemistry identified via the history of these samples did exhibit unexpected patterns, the most significant of which may be that the presence of the Pu(V)-oxo species may decrease rather than increase the overall solubility of these compounds. Several additional aspects of the Pu speciation have also not been previously observed in laboratory-based samples. The molecular environmental chemistry of Pu is therefore likely to be more complicated than would be predicted based solely on the behavior of PuO{sub 2} under laboratory conditions.

  9. Possible method for dissolved organic carbon speciation in forest soils

    NASA Astrophysics Data System (ADS)

    Drabek, O.; Tejnecký, V.; Ash, C.; Hubova, P.; Boruvka, L.

    2013-12-01

    Dissolved organic carbon (DOC) is a natural part of dissolved organic matter and it plays an important role in the biogeochemistry of soil processes. Low Molecular Mass Organic Acids (LMMOA) are an essential part of DOC. These acids play a key role in chemical processes that affect the entire soil environment. Knowing the amount of DOC and the speciation of LMMOA is required for realistic equilibrium modelling of soil chemical processes and transport mechanisms. There have been a number of proposed methods for the quantitative analysis of DOC and for speciation of LMMOA. The first aim of this contribution is to introduce and test a modified spectroscopic method for the determination of water-extractable organic carbon (WEOC) from forest soils. In general this method is based on the oxidization of WEOC by chromium-sulphuric acid. The presented method can be used as an economical alternative to the classical, more financially demanding elemental analysis. However, the main aim is to test the reliability of the method for LMMOA speciation. Ion exchange chromatography (IC) with hydroxide elution has proven to be a useful tool for the determination of LMMOA in many different water-based samples. However, the influence of multivalent cations (often present in environmental samples) on IC results has not yet been sufficiently studied. In order to assess the influence of Al, Fe, Mn, Mg and Ca on the amount of LMMOA determined by IC, an extensive set of model solutions was prepared and immediately analysed by means of IC. Moreover, the influence of pH on determined amounts of LMMOA in model solutions and representative soil aqueous extracts was investigated. These experimental results were compared to expected values and also to results provided by the chemical equilibrium model - PHREEQC. Based on the above listed research, some modifications to the common IC method for LMMOA speciation are presented.

  10. Sulfur Speciation in the Martian Regolith Component in Shergottite Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, Laurence E.; Sutton, S.; Huth, J.

    2009-01-01

    We have shown that Gas-Rich Impact-Melt (GRIM) glasses in Shergotty, Zagami, and EET79001 (Lith A and Lith B) contain Martian regolith components that were molten during impact and quenched into glasses in voids of host rock materials based on neutron-capture isotopes, i.e., Sm-150 excesses and Sm-149 deficits in Sm, and Kr-80 excesses produced from Br [1, 2]. These GRIM glasses are rich in S-bearing secondary minerals [3.4]. Evidence for the occurrence of CaSO4 and S-rich aluminosilicates in these glasses is provided by CaO-SO3 and Al2O3-SO3 correlations, which are consistent with the finding of gypsum laths protruding from the molten glass in EET79001 (Lith A) [5]. However, in the case of GRIM glasses from EET79001 (Lith B), Shergotty and Zagami, we find a different set of secondary minerals that show a FeO-SO3 correlation (but no MgOSO3 correlation), instead of CaO-SO3 and Al2O3-SO3 correlations observed in Lith A. These results might indicate different fluidrock interactions near the shergottite source region on Mars. The speciation of sulfur in these salt assemblages was earlier studied by us using XANES techniques [6], where we found that Lith B predominantly contains Fe-sulfide globules (with some sulfate). On the other hand, Lith A showed predominantly Casulfite/ sulfate with some FeS. Furthermore, we found Fe to be present as Fe2+ indicating little oxidation, if any, in these glasses. To examine the sulfide-sulfate association in these glasses, we studied their Fe/Ni ratios with a view to find diagnostic clues for the source fluid. The Fe-sulfide mineral (Fe(0.93)Ni(0.3)S) in EET79001, Lith A is pyrrhotite [7, 8]. It yields an Fe/Ni ratio of 31. In Shergotty, pyrrhotite occurs with a molar ratio of Fe:S of 0.94 and a Ni abundance of 0.12% yielding a Fe/Ni ratio of approx.500 [8]. In this study, we determined a NiO content of approx.0.1% and FeO/NiO ratio of approx.420 in S-rich globules in #507 (EET79001, Lith B) sample using FE-SEM. In the same sample

  11. Generic comparison of protein inference engines.

    PubMed

    Claassen, Manfred; Reiter, Lukas; Hengartner, Michael O; Buhmann, Joachim M; Aebersold, Ruedi

    2012-04-01

    Protein identifications, instead of peptide-spectrum matches, constitute the biologically relevant result of shotgun proteomics studies. How to appropriately infer and report protein identifications has triggered a still ongoing debate. This debate has so far suffered from the lack of appropriate performance measures that allow us to objectively assess protein inference approaches. This study describes an intuitive, generic and yet formal performance measure and demonstrates how it enables experimentalists to select an optimal protein inference strategy for a given collection of fragment ion spectra. We applied the performance measure to systematically explore the benefit of excluding possibly unreliable protein identifications, such as single-hit wonders. Therefore, we defined a family of protein inference engines by extending a simple inference engine by thousands of pruning variants, each excluding a different specified set of possibly unreliable identifications. We benchmarked these protein inference engines on several data sets representing different proteomes and mass spectrometry platforms. Optimally performing inference engines retained all high confidence spectral evidence, without posterior exclusion of any type of protein identifications. Despite the diversity of studied data sets consistently supporting this rule, other data sets might behave differently. In order to ensure maximal reliable proteome coverage for data sets arising in other studies we advocate abstaining from rigid protein inference rules, such as exclusion of single-hit wonders, and instead consider several protein inference approaches and assess these with respect to the presented performance measure in the specific application context.

  12. Field speciation of chromium with a sequential injection lab-on-valve incorporating a bismuthate immobilized micro-column.

    PubMed

    Yang, Mei; Li, Jin-Xiang; Wang, Jian-Hua

    2007-07-31

    A fully automated and portable analyzer for field speciation of inorganic chromium in wastewater was developed. The instrument consists of a micro-sequential injection lab-on-valve (LOV) system and a miniature USB2000 spectrophotometer. A multi-purpose flow cell was incorporated on one side of the main body of the LOV, which offers vast potentials and versatilities in its compatibility with various detection modes. On-line oxidation of trivalent chromium was performed on a bismuthate immobilized silica micro-column reactor integrated in the LOV. When determining Cr(VI), its chromogenic reaction with 1,5-diphenylcarbazide (DPC) was facilitated in the flow cell and the absorbance was monitored in situ at 548 nm via optical fibers. While for the quantification of total chromium, Cr(III) was oxidized on-line by aspirating sample solution through the oxidizing column reactor, followed by chromogenic reaction with DPC and the absorbance was monitored in the flow cell. With a sampling volume of 200 microl, the detection limits of 5.6 microg l(-1) for Cr(VI) and 6.8 microg l(-1) for total chromium were achieved along with a sampling frequency of 60 h(-1). A R.S.D. value of 2.0% was recorded at 32 microg l(-1) of Cr(VI). The practical applicability of the speciation analyzer was validated by analyzing Cr(VI) and total chromium contents in two certified reference materials. The feasibility of performing rapid field speciation of chromium in wastewater samples was also demonstrated.

  13. Geologic drivers of late ordovician faunal change in laurentia: investigating links between tectonics, speciation, and biotic invasions.

    PubMed

    Wright, David F; Stigall, Alycia L

    2013-01-01

    Geologic process, including tectonics and global climate change, profoundly impact the evolution of life because they have the propensity to facilitate episodes of biogeographic differentiation and influence patterns of speciation. We investigate causal links between a dramatic faunal turnover and two dominant geologic processes operating within Laurentia during the Late Ordovician: the Taconian Orogeny and GICE related global cooling. We utilize a novel approach for elucidating the relationship between biotic and geologic changes using a time-stratigraphic, species-level evolutionary framework for articulated brachiopods from North America. Phylogenetic biogeographic analyses indicate a fundamental shift in speciation mode-from a vicariance to dispersal dominated macroevolutionary regime-across the boundary between the Sandbian to Katian Stages. This boundary also corresponds to the onset of renewed intensification of tectonic activity and mountain building, the development of an upwelling zone that introduced cool, nutrient-rich waters into the epieric seas of eastern Laurentia, and the GICE isotopic excursion. The synchronicity of these dramatic geologic, oceanographic, and macroevolutionary changes supports the influence of geologic events on biological evolution. Together, the renewed tectonic activity and oceanographic changes facilitated fundamental changes in habitat structure in eastern North America that reduced opportunities for isolation and vicariance. They also facilitated regional biotic dispersal of taxa that led to the subsequent establishment of extrabasinal (=invasive) species and may have led to a suppression of speciation within Laurentian faunas. Phylogenetic biogeographic analysis further indicates that the Richmondian Invasion was a multidirectional regional invasion event that involved taxa immigrating into the Cincinnati region from basins located near the continental margins and within the continental interior.

  14. Hybrid speciation in angiosperms: parental divergence drives ploidy

    PubMed Central

    Paun, Ovidiu; Forest, Félix; Fay, Michael F.; Chase, Mark W.

    2010-01-01

    Summary Hybridization and polyploidy are now hypothesized to have regularly stimulated speciation in angiosperms, but individual or combined involvement of these two processes seems to involve significant differences in pathways of formation, establishment and evolutionary consequences of resulting lineages. We evaluate here the classical cytological hypothesis that ploidy in hybrid speciation is governed by the extent of chromosomal rearrangements among parental species. Within a phylogenetic framework, we calculate genetic divergence indices for 50 parental species pairs and use these indices as surrogates for the overall degree of genomic divergence (i.e. as proxy for assessments of dissimilarity of the parental chromosomes). The results confirm that genomic differentiation between progenitor taxa influences the likelihood of diploid (homoploid) versus polyploid hybrid speciation because genetic divergence between parents of polyploids is found to be significantly greater than in the case of homoploid hybrid species. We argue that this asymmetric relationship may be reinforced immediately after hybrid formation, during stabilization and establishment. Underlying mechanisms potentially producing this pattern are discussed. PMID:19220761

  15. Speciation Progress: A Case Study on the Bushcricket Poecilimon veluchianus

    PubMed Central

    Eweleit, Lucienne; Reinhold, Klaus; Sauer, Jan

    2015-01-01

    Different mechanisms such as selection or genetic drift permitted e.g. by geographical isolation can lead to differentiation of populations and could cause subsequent speciation. The two subspecies of Poecilimon veluchianus, a bushcricket endemic to central Greece, show a parapatric distribution and are partially reproductively isolated. Therefore, P. veluchianus is suitable to investigate an ongoing speciation process. We based our analysis on sequences of the internal transcribed spacer (ITS) and the mitochondrial control region (CR). The population genetic analysis based on the nuclear marker ITS revealed a barrier to gene flow within the range of Poecilimon veluchianus, which corresponds well to the described subspecies. In contrast to the results based on the nuclear ITS marker, the mitochondrial CR marker does not clearly support the separation into two subspecies with restricted gene flow and a clear contact zone. Furthermore, we could identify isolation by distance (IBD) as one important mechanism responsible for the observed genetic structure (based on the ITS marker). The population genetic analysis based on the nuclear marker ITS also suggests the existence of hybrids in the wild. Furthermore, the simultaneous lack of strong prezygotic barriers and the presence of postzygotic mating barriers, observed in previous laboratory experiments, suggest that a secondary contact after an allopatric phase is more likely than parapatric speciation. PMID:26436732

  16. Tree of Life Reveals Clock-Like Speciation and Diversification

    PubMed Central

    Hedges, S. Blair; Marin, Julie; Suleski, Michael; Paymer, Madeline; Kumar, Sudhir

    2015-01-01

    Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process. PMID:25739733

  17. Selenium speciation in framboidal and euhedral pyrites in shales.

    PubMed

    Matamoros-Veloza, Adriana; Peacock, Caroline L; Benning, Liane G

    2014-08-19

    The release of Se from shales is poorly understood because its occurrence, distribution, and speciation in the various components of shale are unknown. To address this gap we combined bulk characterization, sequential extractions, and spatially resolved μ-focus spectroscopic analyses and investigated the occurrence and distribution of Se and other associated elements (Fe, As, Cr, Ni, and Zn) and determined the Se speciation at the μ-scale in typical, low bulk Se containing shales. Our results revealed Se primarily correlated with the pyrite fraction with exact Se speciation highly dependent on pyrite morphology. In euhedral pyrites, we found Se(-II) substitutes for S in the mineral structure. However, we also demonstrate that Se is associated with framboidal pyrite grains as a discrete, independent FeSex phase. The presence of this FeSex species has major implications for Se release, because FeSex species oxidize much faster than Se substituted in the euhedral pyrite lattice. Thus, such an FeSex species will enhance and control the dynamics of Se weathering and release into the aqueous environment.

  18. Arsenic speciation in freshwater snails and its life cycle variation.

    PubMed

    Lai, Vivian W-M; Kanaki, Katerina; Pergantis, Spiros A; Cullen, William R; Reimer, Kenneth J

    2012-03-01

    Terrestrial snails are consumed by humans occasionally and they are an important food source for many creatures including fish and birds. Little is known about arsenic speciation in these gastropods, let alone life cycle variations. Here we report on the arsenic speciation in freshwater snails from Pender Island and Vancouver Island, B.C., Canada, which was determined on methanol/water extracts (43-59% extraction efficiency) by using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and HPLC-electrospray tandem mass spectrometry. The tetramethylarsonium ion, oxo-arsenosugars and thio-arsenosugars are the main arsenic species encountered. Arsenobetaine, which is commonly found in the marine environment, is minor. Live bearing snails Viviparidae sp. from Pender Island were maintained in aquaria and the arsenic speciation in the unborn, newly born, and adult animals was monitored. Oxo-arsenosugars predominate in the adults, whereas thio-arsenosugars seem to predominate in juveniles, suggesting that these arsenicals are snail metabolites.

  19. The 'shape' of phylogenies under simple random speciation models

    NASA Astrophysics Data System (ADS)

    Steel, Mike; McKenzie, Andy

    We describe some discrete structural properties of evolutionary trees generated under simple null models of speciation, such as the Yule model. These models have been used as priors in Bayesian approaches to phylogenetic analysis, and also to test hypotheses concerning the speciation process. Here we describe new results for four properties of trees generated under such models. Firstly, for a rooted tree generated by the Yule model we describe the probability distribution on the depth (number of edges from the root) of the most recent common ancestor of a random subset of k species. Secondly, for trees generated under the Yule and uniform models, we describe the induced distribution they generate on the number Cn of cherries in the tree, where a cherry is a pair of leaves each of which is adjacent to a common ancestor. Next we show that, for trees generated under the Yule model, the approximate position of the root can be estimated from the associated unrooted tree, even for trees with a large number of leaves. Finally, we analyse a biologically-motivated extension of the Yule model and describe its distribution on tree shapes when speciation occurs in rapid bursts.

  20. Recent advances in arsenic bioavailability, transport, and speciation in rice.

    PubMed

    Wang, Xin; Peng, Bo; Tan, Changyin; Ma, Lena; Rathinasabapathi, Bala

    2015-04-01

    Widespread arsenic (As) contamination in paddy rice (Oryza sativa) from both geologic and anthropogenic origins is an increasing concern globally. Substantial efforts have been made to elucidate As transformation and uptake processes in rhizosphere and metabolism in rice plant, which provides an essential foundation for the development of mitigation strategies. However, a range of crucial mechanisms from As mobilization in rhizosphere to transport to grains remain poorly understood. To provide new insight into the underlying mechanisms of As accumulation in rice, a range of new perspectives on As bioavailability, transport pathways, and in situ speciation are reviewed here. Specifically, the prominent effects of water regime, Fe plaque, and biochar on As mobilization in rice rhizosphere are discussed critically. An updated understanding of arsenite (AsIII) and methylated As transport from root to vascular bundle and grain is integrated and discussed in detail. Special attention is given to As speciation and distribution in rice grain with potential coping strategies being provided and discussed. Future research priorities are also identified. The new insight into As bioavailability, transport and speciation in rice would lead to a better understanding of As contamination in rice. They would also provide useful strategies from agronomic measures to genetic engineering for more effective restriction of As transport and accumulation in food chain.

  1. Strategies in Seismic Inference of Supergranular Flows on the Sun

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Jishnu; Hanasoge, Shravan M.

    2016-08-01

    Observations of the solar surface reveal the presence of flows with length scales of around 35 Mm, commonly referred to as supergranules. Inferring the subsurface flow profile of supergranules from measurements of the surface and photospheric wavefield is an important challenge faced by helioseismology. Traditionally, the inverse problem has been approached by studying the linear response of seismic waves in a horizontally translationally invariant background to the presence of the supergranule; following an iterative approach that does not depend on horizontal translational invariance might perform better, since the misfit can be analyzed post iterations. In this work, we construct synthetic observations using a reference supergranule and invert for the flow profile using surface measurements of travel times of waves belonging to modal ridges f (surface gravity) and p 1 through p 7 (acoustic). We study the extent to which individual modes and their combinations contribute to infer the flow. We show that this method of nonlinear iterative inversion tends to underestimate the flow velocities, as well as inferring a shallower flow profile, with significant deviations from the reference supergranule near the surface. We carry out a similar analysis for a sound-speed perturbation and find that analogous near-surface deviations persist, although the iterations converge faster and more accurately. We conclude that a better approach to inversion would be to expand the supergranule profile in an appropriate basis, thereby reducing the number of parameters being inverted for and appropriately regularizing them.

  2. Artificial life and speciation, a case study: heterochromatin and speciation in the Microtus savii Group (Rodentia-Arvicolinae).

    PubMed

    Cordelli, Alessandro; Cerrai, Paola; Galleni, Lodovico

    2003-01-01

    Artificial life is a tool which is used for simulation of peculiar cases of evolutionary events. The main characteristic of artificial life is that with this technique it is possible to simulate for a high number of generations the evolution of a population of individuals. Each individual is characterised by a small number of parameters, but each individual has its own evolutive story. So far it is possible to simulate the evolution of a population of some thousands specimens, for a high number of generations. The realistic aspect of the simulation is that each specimen is taken individually. In our opinion this instrument is very useful to simulate the evolution of the hybrids barrier during speciation. For this reason it is applied to a peculiar case of speciation, that of the Savi pine vole (Microtus savii) whose experimental data were recently investigated.

  3. Protein inference: A protein quantification perspective.

    PubMed

    He, Zengyou; Huang, Ting; Liu, Xiaoqing; Zhu, Peijun; Teng, Ben; Deng, Shengchun

    2016-08-01

    In mass spectrometry-based shotgun proteomics, protein quantification and protein identification are two major computational problems. To quantify the protein abundance, a list of proteins must be firstly inferred from the raw data. Then the relative or absolute protein abundance is estimated with quantification methods, such as spectral counting. Until now, most researchers have been dealing with these two processes separately. In fact, the protein inference problem can be regarded as a special protein quantification problem in the sense that truly present proteins are those proteins whose abundance values are not zero. Some recent published papers have conceptually discussed this possibility. However, there is still a lack of rigorous experimental studies to test this hypothesis. In this paper, we investigate the feasibility of using protein quantification methods to solve the protein inference problem. Protein inference methods aim to determine whether each candidate protein is present in the sample or not. Protein quantification methods estimate the abundance value of each inferred protein. Naturally, the abundance value of an absent protein should be zero. Thus, we argue that the protein inference problem can be viewed as a special protein quantification problem in which one protein is considered to be present if its abundance is not zero. Based on this idea, our paper tries to use three simple protein quantification methods to solve the protein inference problem effectively. The experimental results on six data sets show that these three methods are competitive with previous protein inference algorithms. This demonstrates that it is plausible to model the protein inference problem as a special protein quantification task, which opens the door of devising more effective protein inference algorithms from a quantification perspective. The source codes of our methods are available at: http://code.google.com/p/protein-inference/.

  4. ISSUES IN SIMULATING ELEMENTAL MERCURY AIR/WATER EXCHANGE AND AQUEOUS MONOMETHYLMERCURY SPECIATION

    EPA Science Inventory

    This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury air/water exchange and aqueous environmental monomethylmercury speciation.

  5. Revisiting the particular role of host shifts in initiating insect speciation.

    PubMed

    Forbes, Andrew A; Devine, Sara N; Hippee, Alaine C; Tvedte, Eric S; Ward, Anna K G; Widmayer, Heather A; Wilson, Caleb J

    2017-01-04

    The notion that shifts to new hosts can initiate insect speciation is more than 150 years old, yet widespread conflation with paradigms of sympatric speciation has led to confusion about how much support exists for this hypothesis. Here, we review 85 insect systems and evaluate the relationship between host shifting, reproductive isolation, and speciation. We sort insects into five categories: (1) systems in which a host shift has initiated speciation; (2) systems in which a host shift has made a contribution to speciation; (3) systems in which a host shift has caused the evolution of new reproductive isolating barriers; (4) systems with host-associated genetic differences; and (5) systems with no evidence of host-associated genetic differences. We find host-associated genetic structure in 65 systems, 43 of which show that host shifts have resulted in the evolution of new reproductive barriers. Twenty-six of the latter also support a role for host shifts in speciation, including eight studies that definitively support the hypothesis that a host shift has initiated speciation. While this review is agnostic as to the fraction of all insect speciation events to which host shifts have contributed, it clarifies that host shifts absolutely can and do initiate speciation.

  6. A complex speciation-richness relationship in a simple neutral model.

    PubMed

    Desjardins-Proulx, Philippe; Gravel, Dominique

    2012-08-01

    Speciation is the "elephant in the room" of community ecology. As the ultimate source of biodiversity, its integration in ecology's theoretical corpus is necessary to understand community assembly. Yet, speciation is often completely ignored or stripped of its spatial dimension. Recent approaches based on network theory have allowed ecologists to effectively model complex landscapes. In this study, we use this framework to model allopatric and parapatric speciation in networks of communities. We focus on the relationship between speciation, richness, and the spatial structure of communities. We find a strong opposition between speciation and local richness, with speciation being more common in isolated communities and local richness being higher in more connected communities. Unlike previous models, we also find a transition to a positive relationship between speciation and local richness when dispersal is low and the number of communities is small. We use several measures of centrality to characterize the effect of network structure on diversity. The degree, the simplest measure of centrality, is the best predictor of local richness and speciation, although it loses some of its predictive power as connectivity grows. Our framework shows how a simple neutral model can be combined with network theory to reveal complex relationships between speciation, richness, and the spatial organization of populations.

  7. Speciation and diversity on tropical rocky shores: a global phylogeny of snails of the genus Echinolittorina.

    PubMed

    Williams, S T; Reid, D G

    2004-10-01

    A phylogenetic approach to the origin and maintenance of species diversity ideally requires the sampling of all species within a clade, confirmation that they are evolutionarily distinct entities, and knowledge of their geographical distributions. In the marine tropics such studies have mostly been of fish and reef-associated organisms, usually with high dispersal. In contrast, snails of the genus Echinolittorina (Littorinidae) are restricted to rocky shores, have a four-week pelagic development (and recorded dispersal up to 1400 km), and show different evolutionary patterns. We present a complete molecular phylogeny of Echinolittorina, derived from Bayesian analysis of sequences from nuclear 28S rRNA and mitochondrial 12S rRNA and COI genes (nodal support indicated by posterior probabilities, maximum likelihood, and neighbor-joining bootstrap). This consists of 59 evolutionarily significant units (ESUs), including all 50 known taxonomic species. The 26 ESUs found in the Indo-West Pacific region form a single clade, whereas the eastern Pacific and Atlantic species are basal. The earliest fossil occurred in the Tethys during the middle Eocene and we suggest that the Indo-West Pacific clade has been isolated since closure of the Tethyan seaway in the early Miocene. The geographical distributions of all species (based on more than 3700 locality records) appear to be circumscribed by barriers of low temperature, unsuitable sedimentary habitat, stretches of open water exceeding about 1400 km, and differences in oceanographic conditions on the continuum between oceanic and continental. The geographical ranges of sister species show little or no overlap, indicating that the speciation mode is predominantly allopatric. Furthermore, range expansion following speciation appears to have been limited, because a high degree of allopatry is maintained through three to five branching points of the phylogeny. This may be explained by infrequent long-distance colonization, habitat

  8. Mercury Speciation by X-ray Absorption Fine Structure Spectroscopy and Sequential Chemical Extractions: A Comparison of Speciation Methods

    USGS Publications Warehouse

    Kim, C.S.; Bloom, N.S.; Rytuba, J.J.; Brown, Gordon E.

    2003-01-01

    Determining the chemical speciation of mercury in contaminated mining and industrial environments is essential for predicting its solubility, transport behavior, and potential bioavailability as well as for designing effective remediation strategies. In this study, two techniques for determining Hg speciation-X-ray absorption fine structure (XAFS) spectroscopy and sequential chemical extractions (SCE)-are independently applied to a set of samples with Hg concentrations ranging from 132 to 7539 mg/kg to determine if the two techniques provide comparable Hg speciation results. Generally, the proportions of insoluble HgS (cinnabar, metacinnabar) and HgSe identified by XAFS correlate well with the proportion of Hg removed in the aqua regia extraction demonstrated to remove HgS and HgSe. Statistically significant (> 10%) differences are observed however in samples containing more soluble Hg-containing phases (HgCl2, HgO, Hg3S2O 4). Such differences may be related to matrix, particle size, or crystallinity effects, which could affect the apparent solubility of Hg phases present. In more highly concentrated samples, microscopy techniques can help characterize the Hg-bearing species in complex multiphase natural samples.

  9. A Comparison of Two Student Instructional Rating Forms Utilizing High-Inference Versus Moderate Inference Items.

    ERIC Educational Resources Information Center

    Wilson, Pamela W.

    Two types of items used in student evaluations of college teaching were compared: high-inference items, which require considerable inferring from what is seen or heard in the classroom to labelling of teacher behavior; and moderate-inference items, such as "teacher listens carefully." Two instruments were administered to random halves of…

  10. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  11. Evaluation of comprehensive two-dimensional gas chromatography with flame photometric detection: potential application for sulfur speciation in shale oil.

    PubMed

    Mitrevski, Blagoj; Amer, Mohammad W; Chaffee, Alan L; Marriott, Philip J

    2013-11-25

    Flame photometric detection in the sulfur channel has been evaluated for sulfur speciation and quantification in comprehensive two-dimensional gas chromatography [GC × GC-FPD(S)] for S-compound speciation in shale extracts. Signal non-linearity and potential quenching effects were reportedly major limitations of this detector for analysis of sulfur in complex matrices. However, reliable linear relationships with correlation coefficient >0.99 can be obtained if the sum of the square root of each modulation slice in GC × GC is plotted vs. sulfur concentration. Furthermore, the quenching effects are reduced due to essentially complete separation of S-containing components from the hydrocarbon matrix. An increase of S/N of up to 150 times has been recorded for benzothiophene and dibenzothiophene in GC × GC-FPD when compared to GC-FPD due to the modulation process. As a consequence, 10 times lower detection limits were observed in the former mode. The applicability of the method was demonstrated using shale oil sample extracts. Three sulfur classes were completely separated and the target class (thiophenes) was successfully quantified after the rest of the sample was diverted to the second detector by using a heart-cut strategy. Based on the proposed method, 70% of the sulfur in the shale oil was assigned to the thiophenes, 24% to benzothiophenes, and 5% to dibenzothiophene compounds.

  12. Forward and Backward Inference in Spatial Cognition

    PubMed Central

    Penny, Will D.; Zeidman, Peter; Burgess, Neil

    2013-01-01

    This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference in a single probabilistic model. Inference is implemented using a common set of ‘lower-level’ computations involving forward and backward inference over time. For example, to estimate where you are in a known environment, forward inference is used to optimally combine location estimates from path integration with those from sensory input. To decide which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions, forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the route and estimate control signals that produce the required trajectory. We propose that these computations are reflected in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the above computational processes onto lateral and medial entorhinal cortex and hippocampus. PMID:24348230

  13. Application of Transformations in Parametric Inference

    ERIC Educational Resources Information Center

    Brownstein, Naomi; Pensky, Marianna

    2008-01-01

    The objective of the present paper is to provide a simple approach to statistical inference using the method of transformations of variables. We demonstrate performance of this powerful tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and statistical inference for the stress-strength systems.…

  14. Scalar Inferences in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chevallier, Coralie; Wilson, Deirdre; Happe, Francesca; Noveck, Ira

    2010-01-01

    On being told "John or Mary will come", one might infer that "not both" of them will come. Yet the semantics of "or" is compatible with a situation where both John and Mary come. Inferences of this type, which enrich the semantics of "or" from an "inclusive" to an "exclusive" interpretation, have been extensively studied in linguistic pragmatics.…

  15. The Reasoning behind Informal Statistical Inference

    ERIC Educational Resources Information Center

    Makar, Katie; Bakker, Arthur; Ben-Zvi, Dani

    2011-01-01

    Informal statistical inference (ISI) has been a frequent focus of recent research in statistics education. Considering the role that context plays in developing ISI calls into question the need to be more explicit about the reasoning that underpins ISI. This paper uses educational literature on informal statistical inference and philosophical…

  16. Local and Global Thinking in Statistical Inference

    ERIC Educational Resources Information Center

    Pratt, Dave; Johnston-Wilder, Peter; Ainley, Janet; Mason, John

    2008-01-01

    In this reflective paper, we explore students' local and global thinking about informal statistical inference through our observations of 10- to 11-year-olds, challenged to infer the unknown configuration of a virtual die, but able to use the die to generate as much data as they felt necessary. We report how they tended to focus on local changes…

  17. Forward and backward inference in spatial cognition.

    PubMed

    Penny, Will D; Zeidman, Peter; Burgess, Neil

    2013-01-01

    This paper shows that the various computations underlying spatial cognition can be implemented using statistical inference in a single probabilistic model. Inference is implemented using a common set of 'lower-level' computations involving forward and backward inference over time. For example, to estimate where you are in a known environment, forward inference is used to optimally combine location estimates from path integration with those from sensory input. To decide which way to turn to reach a goal, forward inference is used to compute the likelihood of reaching that goal under each option. To work out which environment you are in, forward inference is used to compute the likelihood of sensory observations under the different hypotheses. For reaching sensory goals that require a chaining together of decisions, forward inference can be used to compute a state trajectory that will lead to that goal, and backward inference to refine the route and estimate control signals that produce the required trajectory. We propose that these computations are reflected in recent findings of pattern replay in the mammalian brain. Specifically, that theta sequences reflect decision making, theta flickering reflects model selection, and remote replay reflects route and motor planning. We also propose a mapping of the above computational processes onto lateral and medial entorhinal cortex and hippocampus.

  18. Inferring Learners' Knowledge from Their Actions

    ERIC Educational Resources Information Center

    Rafferty, Anna N.; LaMar, Michelle M.; Griffiths, Thomas L.

    2015-01-01

    Watching another person take actions to complete a goal and making inferences about that person's knowledge is a relatively natural task for people. This ability can be especially important in educational settings, where the inferences can be used for assessment, diagnosing misconceptions, and providing informative feedback. In this paper, we…

  19. Symbolic transfer entropy: inferring directionality in biosignals.

    PubMed

    Staniek, Matthäus; Lehnertz, Klaus

    2009-12-01

    Inferring directional interactions from biosignals is of crucial importance to improve understanding of dynamical interdependences underlying various physiological and pathophysiological conditions. We here present symbolic transfer entropy as a robust measure to infer the direction of interactions between multidimensional dynamical systems. We demonstrate its performance in quantifying driver-responder relationships in a network of coupled nonlinear oscillators and in the human epileptic brain.

  20. Predictive Inferences are Represented as Hypothetical Facts

    ERIC Educational Resources Information Center

    Campion, Nicolas

    2004-01-01

    Three experiments examined the processing of predictive and deductive inferences elicited by narrative texts. In Experiment 1, lexical decision responses indicated that these inferences were activated during reading. In Experiment 2, sentences expressing that an event had ''maybe'' taken place were shown to be appropriate in verifying predictive…

  1. Causal Inferences during Text Comprehension and Production.

    ERIC Educational Resources Information Center

    Kemper, Susan

    As comprehension failure results whenever readers are unable to infer missing causal connections, recent comprehension research has focused both on assessing the inferential complexity of texts and on investigating students' developing ability to infer causal relationships. Studies have demonstrated that texts rely on four types of causal…

  2. Measuring the Inference Load of a Text.

    ERIC Educational Resources Information Center

    Kemper, Susan

    1983-01-01

    A new approach to measuring readability is proposed based on the analysis of texts as causally connected chains of actions, physical states, and mental states. Using the inference load formula reflecting the difficulty readers have in inferring causal connections, the difficulty of texts can be adjusted for readers differing in skill or knowledge.…

  3. Causal inference in economics and marketing.

    PubMed

    Varian, Hal R

    2016-07-05

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual-a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.

  4. The Impact of Disablers on Predictive Inference

    ERIC Educational Resources Information Center

    Cummins, Denise Dellarosa

    2014-01-01

    People consider alternative causes when deciding whether a cause is responsible for an effect (diagnostic inference) but appear to neglect them when deciding whether an effect will occur (predictive inference). Five experiments were conducted to test a 2-part explanation of this phenomenon: namely, (a) that people interpret standard predictive…

  5. Genetic Network Inference Using Hierarchical Structure

    PubMed Central

    Kimura, Shuhei; Tokuhisa, Masato; Okada-Hatakeyama, Mariko

    2016-01-01

    Many methods for inferring genetic networks have been proposed, but the regulations they infer often include false-positives. Several researchers have attempted to reduce these erroneous regulations by proposing the use of a priori knowledge about the properties of genetic networks such as their sparseness, scale-free structure, and so on. This study focuses on another piece of a priori knowledge, namely, that biochemical networks exhibit hierarchical structures. Based on this idea, we propose an inference approach that uses the hierarchical structure in a target genetic network. To obtain a reasonable hierarchical structure, the first step of the proposed approach is to infer multiple genetic networks from the observed gene expression data. We take this step using an existing method that combines a genetic network inference method with a bootstrap method. The next step is to extract a hierarchical structure from the inferred networks that is consistent with most of the networks. Third, we use the hierarchical structure obtained to assign confidence values to all candidate regulations. Numerical experiments are also performed to demonstrate the effectiveness of using the hierarchical structure in the genetic network inference. The improvement accomplished by the use of the hierarchical structure is small. However, the hierarchical structure could be used to improve the performances of many existing inference methods. PMID:26941653

  6. Saturn's ionosphere - Inferred electron densities

    NASA Astrophysics Data System (ADS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1984-04-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densities measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings. Previously announced in STAR as N84-17102

  7. Active Inference: A Process Theory.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; Pezzulo, Giovanni

    2017-01-01

    This article describes a process theory based on active inference and belief propagation. Starting from the premise that all neuronal processing (and action selection) can be explained by maximizing Bayesian model evidence-or minimizing variational free energy-we ask whether neuronal responses can be described as a gradient descent on variational free energy. Using a standard (Markov decision process) generative model, we derive the neuronal dynamics implicit in this description and reproduce a remarkable range of well-characterized neuronal phenomena. These include repetition suppression, mismatch negativity, violation responses, place-cell activity, phase precession, theta sequences, theta-gamma coupling, evidence accumulation, race-to-bound dynamics, and transfer of dopamine responses. Furthermore, the (approximately Bayes' optimal) behavior prescribed by these dynamics has a degree of face validity, providing a formal explanation for reward seeking, context learning, and epistemic foraging. Technically, the fact that a gradient descent appears to be a valid description of neuronal activity means that variational free energy is a Lyapunov function for neuronal dynamics, which therefore conform to Hamilton's principle of least action.

  8. Reinforcement learning or active inference?

    PubMed

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  9. Reinforcement Learning or Active Inference?

    PubMed Central

    Friston, Karl J.; Daunizeau, Jean; Kiebel, Stefan J.

    2009-01-01

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain. PMID:19641614

  10. Saturn's ionosphere: Inferred electron densities

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1983-01-01

    During the two Voyager encounters with Saturn, radio bursts were detected which appear to have originated from atmospheric lightning storms. Although these bursts generally extended over frequencies from as low as 100 kHz to the upper detection limit of the instrument, 40 MHz, they often exhibited a sharp but variable low frequency cutoff below which bursts were not detected. We interpret the variable low-frequency extent of these bursts to be due to the reflection of the radio waves as they propagate through an ionosphere which varies with local time. We obtain estimates of electron densities at a variety of latitude and local time locations. These compare well with the dawn and dusk densitis measured by the Pioneer 11 Voyager Radio Science investigations, and with model predictions for dayside densities. However, we infer a two-order-of-magnitude diurnal variation of electron density, which had not been anticipated by theoretical models of Saturn's ionosphere, and an equally dramatic extinction of ionospheric electron density by Saturn's rings.

  11. Redshift data and statistical inference

    NASA Technical Reports Server (NTRS)

    Newman, William I.; Haynes, Martha P.; Terzian, Yervant

    1994-01-01

    Frequency histograms and the 'power spectrum analysis' (PSA) method, the latter developed by Yu & Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We provide a formal analysis of these two classes of methods, including controlled numerical experiments, to better understand their proper use and application. In particular, we note that typical published applications of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a sequence of random numbers from observational data which, it is claimed, is exponentially distributed with unit mean and variance, essentially independent of the distribution of the original data. We show that the derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of the mean and variance. Although the derived variable may be reasonably described by an exponential distribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we examine a number of astronomical examples wherein these methods have been used giving rise to widespread acceptance of statistically unconfirmed conclusions.

  12. Causal Inference in Public Health

    PubMed Central

    Glass, Thomas A.; Goodman, Steven N.; Hernán, Miguel A.; Samet, Jonathan M.

    2014-01-01

    Causal inference has a central role in public health; the determination that an association is causal indicates the possibility for intervention. We review and comment on the long-used guidelines for interpreting evidence as supporting a causal association and contrast them with the potential outcomes framework that encourages thinking in terms of causes that are interventions. We argue that in public health this framework is more suitable, providing an estimate of an action’s consequences rather than the less precise notion of a risk factor’s causal effect. A variety of modern statistical methods adopt this approach. When an intervention cannot be specified, causal relations can still exist, but how to intervene to change the outcome will be unclear. In application, the often-complex structure of causal processes needs to be acknowledged and appropriate data collected to study them. These newer approaches need to be brought to bear on the increasingly complex public health challenges of our globalized world. PMID:23297653

  13. Three Roads Diverged? Routes To Phylogeographic Inference

    PubMed Central

    Bloomquist, Erik W.; Lemey, Philippe

    2010-01-01

    Phylogeographic methods enable inference of the geographical history of genetic lineages. Recent examples successfully explore the patterns of human migration and the origins and spread of viral pandemics. Nevertheless, longstanding disagreement exists over the use and validity of certain phylogeographic inference methodologies. In this paper, we highlight three distinct frameworks for phylogeographic inference to give a taste of this disagreement. Each of the three approaches presents a different viewpoint on phylogeography, most fundamentally how we view the relationship between the inferred history of the sample and the history of the population the sample is embedded in. Satisfactory resolution of this relationship between history of the tree and history of the population remains a challenge for all but the most trivial models of phylogeographic processes. Intriguingly, we believe that some recent methods that entirely side-step inference about the history of the population will eventually help the field toward this goal. PMID:20863591

  14. Inference-based constraint satisfaction supports explanation

    SciTech Connect

    Sqalli, M.H.; Freuder, E.C.

    1996-12-31

    Constraint satisfaction problems are typically solved using search, augmented by general purpose consistency inference methods. This paper proposes a paradigm shift in which inference is used as the primary problem solving method, and attention is focused on special purpose, domain specific inference methods. While we expect this approach to have computational advantages, we emphasize here the advantages of a solution method that is more congenial to human thought processes. Specifically we use inference-based constraint satisfaction to support explanations of the problem solving behavior that are considerably more meaningful than a trace of a search process would be. Logic puzzles are used as a case study. Inference-based constraint satisfaction proves surprisingly powerful and easily extensible in this domain. Problems drawn from commercial logic puzzle booklets are used for evaluation. Explanations are produced that compare well with the explanations provided by these booklets.

  15. Prions, Radionuclides and Clays: Impact of clay interlayer "acidity" on toxic compound speciation

    NASA Astrophysics Data System (ADS)

    Charlet, L.; Hureau, C.; Sobolev, O.; Cuello, G.; Chapron, Y.

    2007-05-01

    The physical and chemical processes that are the basis of contaminant retardation in clay rich medium, such as soil or nuclear waste repository, have been studied at the molecular level by a combination of molecular dynamics (MD), electron paramagnetic spectroscopy (EPR) and neutron diffraction with isotopic substitution (NDIS). The speciation of contaminants such as Sm, a radionuclide analogue, and Cu, bound to Prion protein (PrP), has been studied upon adsorption in clay interlayers. We used as molecular probe the P5-Cu(II) complex, where the P5 pentapeptide(92-96 PrP residues) represents one of the five Cu(II) binding site present in PrP, the key protein involved in diseases known as transmissible spongiform encephalopathies. In both cases, the pH of the interlayer has been inferred from the metal ion coordination, here used as a molecular reporter. In circum neutral pH waters, samarium is present as Sm(OH)3° species and should not be adsorbed in clay interlayer by "cation exchange" unless its hydrolysis is altered. Samarium NDIS results indicate that whether the number of oxygen nearest neighbours varies only from 8.5 to 7, as Sm penetrates the interlayer, the number of hydrogen nearest neighbours drops from 12 to 6. The high affinity of clay for Sm shows that a change in Sm hydrolysis occurs in the clay interlayer, but is directly followed by the formation of a surface complex with montmorillonite siloxane plane functional groups which prevents the determination of a "local pH". Conversely, has been found to be a much more sensitive interlayer water pH probe. and this peptide domain is involved in the misfolding of the protein,a transconformation which may lead to the pathogenic PrPSc form. We have therefore studied by EPR spectroscopy the adsorption of Cu(II)-P5 complexes on montmorillonite, and found the clay to have a large and selective adsorption capacity for the various [Cu(P5)H-n](2-n)+ complexes where n is the number of deprotonated amido function

  16. Causal inference in obesity research.

    PubMed

    Franks, P W; Atabaki-Pasdar, N

    2017-03-01

    Obesity is a risk factor for a plethora of severe morbidities and premature death. Most supporting evidence comes from observational studies that are prone to chance, bias and confounding. Even data on the protective effects of weight loss from randomized controlled trials will be susceptible to confounding and bias if treatment assignment cannot be masked, which is usually the case with lifestyle and surgical interventions. Thus, whilst obesity is widely considered the major modifiable risk factor for many chronic diseases, its causes and consequences are often difficult to determine. Addressing this is important, as the prevention and treatment of any disease requires that interventions focus on causal risk factors. Disease prediction, although not dependent on knowing the causes, is nevertheless enhanced by such knowledge. Here, we provide an overview of some of the barriers to causal inference in obesity research and discuss analytical approaches, such as Mendelian randomization, that can help to overcome these obstacles. In a systematic review of the literature in this field, we found: (i) probable causal relationships between adiposity and bone health/disease, cancers (colorectal, lung and kidney cancers), cardiometabolic traits (blood pressure, fasting insulin, inflammatory markers and lipids), uric acid concentrations, coronary heart disease and venous thrombosis (in the presence of pulmonary embolism), (ii) possible causal relationships between adiposity and gray matter volume, depression and common mental disorders, oesophageal cancer, macroalbuminuria, end-stage renal disease, diabetic kidney disease, nuclear cataract and gall stone disease, and (iii) no evidence for causal relationships between adiposity and Alzheimer's disease, pancreatic cancer, venous thrombosis (in the absence of pulmonary embolism), liver function and periodontitis.

  17. Inferring Mantle From Basalt Composition

    NASA Astrophysics Data System (ADS)

    Stracke, A.

    2014-12-01

    Isotope ratios in oceanic basalts, first reported by Gast and co-workers 50 years ago, are unique tracers of mantle composition, because they are expected to mirror the composition of their mantle sources. While the latter is certainly true for homogeneous sources, the plethora of studies over the last 50 years have shown that mantle sources are isotopically heterogeneous on different length scales. Isotopic differences exist between basalts from different ocean basins, volcanoes of individual ocean islands, lava flows of a single volcano, and even in μm sized melt inclusions in a single mineral grain. Diffusion, which acts to homogenize isotopic heterogeneity over Gyr timescales, limits the length scale of isotopic heterogeneity in the mantle to anywhere between several mm to 10s of meters. Melting regions, however, are typically several 100 km wide and up to 100 km deep. The scale of melting is thus generally orders of magnitude larger than the scale of isotopic heterogeneity. How partial melts mix during melting, melt transport, and melt storage then inevitably influences how isotopic heterogeneity is conveyed from source to melt. The isotopic composition of oceanic basalts hence provides an integrated signal of isotopically diverse melts. Recent mixing models and observed isotopic differences between source (abyssal peridotites) and melts (MORB) show that the range of isotopic heterogeneity of erupted melts need NOT directly reflect that of their source(s), nor need observed isotopic endmembers in source and melts be congruent. Many geochemical models, however, implicitly assume equivalence of source and melt composition. Especially when attempting to infer spatial patterns of isotopic heterogeneity in the mantle from those observed in erupted melts, or for linking isotopic diversity to geophysical structures in the mantle requires a more profound understanding to what extent erupted melts represent the isotopic composition of their mantle sources.

  18. Speciation slowing down in widespread and long-living tree taxa: insights from the tropical timber tree genus Milicia (Moraceae)

    PubMed Central

    Daïnou, K; Mahy, G; Duminil, J; Dick, C W; Doucet, J-L; Donkpégan, A S L; Pluijgers, M; Sinsin, B; Lejeune, P; Hardy, O J

    2014-01-01

    The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically. PMID:24549110

  19. Population genomic signatures of divergent adaptation, gene flow and hybrid speciation in the rapid radiation of Lake Victoria cichlid fishes.

    PubMed

    Keller, I; Wagner, C E; Greuter, L; Mwaiko, S; Selz, O M; Sivasundar, A; Wittwer, S; Seehausen, O

    2013-06-01

    Adaptive radiations are an important source of biodiversity and are often characterized by many speciation events in very short succession. It has been proposed that the high speciation rates in these radiations may be fuelled by novel genetic combinations produced in episodes of hybridization among the young species. The role of such hybridization events in the evolutionary history of a group can be investigated by comparing the genealogical relationships inferred from different subsets of loci, but such studies have thus far often been hampered by shallow genetic divergences, especially in young adaptive radiations, and the lack of genome-scale molecular data. Here, we use a genome-wide sampling of SNPs identified within restriction site-associated DNA (RAD) tags to investigate the genomic consistency of patterns of shared ancestry and adaptive divergence among five sympatric cichlid species of two genera, Pundamilia and Mbipia, which form part of the massive adaptive radiation of cichlids in the East African Lake Victoria. Species pairs differ along several axes: male nuptial colouration, feeding ecology, depth distribution, as well as the morphological traits that distinguish the two genera and more subtle morphological differences. Using outlier scan approaches, we identify signals of divergent selection between all species pairs with a number of loci showing parallel patterns in replicated contrasts either between genera or between male colour types. We then create SNP subsets that we expect to be characterized to different extents by selection history and neutral processes and describe phylogenetic and population genetic patterns across these subsets. These analyses reveal very different evolutionary histories for different regions of the genome. To explain these results, we propose at least two intergeneric hybridization events (between Mbipia spp. and Pundamilia spp.) in the evolutionary history of these five species that would have lead to the evolution

  20. Inferring genetic networks from microarray data.

    SciTech Connect

    May, Elebeoba Eni; Davidson, George S.; Martin, Shawn Bryan; Werner-Washburne, Margaret C.; Faulon, Jean-Loup Michel

    2004-06-01

    In theory, it should be possible to infer realistic genetic networks from time series microarray data. In practice, however, network discovery has proved problematic. The three major challenges are: (1) inferring the network; (2) estimating the stability of the inferred network; and (3) making the network visually accessible to the user. Here we describe a method, tested on publicly available time series microarray data, which addresses these concerns. The inference of genetic networks from genome-wide experimental data is an important biological problem which has received much attention. Approaches to this problem have typically included application of clustering algorithms [6]; the use of Boolean networks [12, 1, 10]; the use of Bayesian networks [8, 11]; and the use of continuous models [21, 14, 19]. Overviews of the problem and general approaches to network inference can be found in [4, 3]. Our approach to network inference is similar to earlier methods in that we use both clustering and Boolean network inference. However, we have attempted to extend the process to better serve the end-user, the biologist. In particular, we have incorporated a system to assess the reliability of our network, and we have developed tools which allow interactive visualization of the proposed network.

  1. Statistical Physics of High Dimensional Inference

    NASA Astrophysics Data System (ADS)

    Advani, Madhu; Ganguli, Surya

    To model modern large-scale datasets, we need efficient algorithms to infer a set of P unknown model parameters from N noisy measurements. What are fundamental limits on the accuracy of parameter inference, given limited measurements, signal-to-noise ratios, prior information, and computational tractability requirements? How can we combine prior information with measurements to achieve these limits? Classical statistics gives incisive answers to these questions as the measurement density α =N/P --> ∞ . However, modern high-dimensional inference problems, in fields ranging from bio-informatics to economics, occur at finite α. We formulate and analyze high-dimensional inference analytically by applying the replica and cavity methods of statistical physics where data serves as quenched disorder and inferred parameters play the role of thermal degrees of freedom. Our analysis reveals that widely cherished Bayesian inference algorithms such as maximum likelihood and maximum a posteriori are suboptimal in the modern setting, and yields new tractable, optimal algorithms to replace them as well as novel bounds on the achievable accuracy of a large class of high-dimensional inference algorithms. Thanks to Stanford Graduate Fellowship and Mind Brain Computation IGERT grant for support.

  2. On Bayesian Inductive Inference & Predictive Estimation

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John; Smelyanskiy, Vadim

    2004-01-01

    We investigate Bayesian inference and the Principle of Maximum Entropy (PME) as methods for doing inference under uncertainty. This investigation is primarily through concrete examples that have been previously investigated in the literature. We find that it is possible to do Bayesian inference and PME inference using the same information, despite claims to the contrary, but that the results are not directly comparable. This is because Bayesian inference yields a probability density function (pdf) over the unknown model parameters, whereas PME yields point estimates. If mean estimates are extracted from the Bayesian pdfs, the resulting parameter estimates can differ radically from the PME values and also from the Maximum Likelihood values. We conclude that these differences are due to the Bayesian inference not assuming anything beyond the given prior probabilities and the data, whereas PME implicitly assumes that the given constraints are the only constraints that are operating. Since this assumption can be wrong, PME values may have to be revised when subsequent data shows evidence for more constraints. The entropy concentration previously "proved" by E. T. Jaynes is shown to be in error. Further, we show that PME is a generalized form of independence assumption, and so can be a very powerful method of inference when the variables being investigated are largely independent of each other.

  3. Linguistic Markers of Inference Generation While Reading.

    PubMed

    Clinton, Virginia; Carlson, Sarah E; Seipel, Ben

    2016-06-01

    Words can be informative linguistic markers of psychological constructs. The purpose of this study is to examine associations between word use and the process of making meaningful connections to a text while reading (i.e., inference generation). To achieve this purpose, think-aloud data from third-fifth grade students ([Formula: see text]) reading narrative texts were hand-coded for inferences. These data were also processed with a computer text analysis tool, Linguistic Inquiry and Word Count, for percentages of word use in the following categories: cognitive mechanism words, nonfluencies, and nine types of function words. Findings indicate that cognitive mechanisms were an independent, positive predictor of connections to background knowledge (i.e., elaborative inference generation) and nonfluencies were an independent, negative predictor of connections within the text (i.e., bridging inference generation). Function words did not provide unique variance towards predicting inference generation. These findings are discussed in the context of a cognitive reflection model and the differences between bridging and elaborative inference generation. In addition, potential practical implications for intelligent tutoring systems and computer-based methods of inference identification are presented.

  4. Selenium speciation influences bioaccumulation in Limnodynastes peronii tadpoles.

    PubMed

    Lanctôt, C M; Melvin, S D; Cresswell, T

    2017-03-12

    Despite being essential for animal health and fitness, Se has a relatively narrow range between deficiency and toxicity, and excess Se can cause a variety of adverse effects in aquatic organisms. Amphibians are particularly vulnerable to contaminants during larval aquatic life stage, because they can accumulate toxic ions through various routes including skin, gills, lungs and digestive tract. Few attempts have been made to understand the tissue-specific accumulation of trace elements, including the impacts of chemical speciation in developing amphibian larvae. We used radiolabelled (75)Se to explore the biokinetics and tissue distributions of the two dominant forms occurring in surface waters, selenite (SeIV) and selenate (SeVI). Tadpoles of the native Australian frog Limnodynastes peronii were exposed to Se in both forms, and live-animal gamma spectroscopy was used to track accumulation and retention over time. Tissue biodistributions were also quantified at the end of the uptake and depuration phases. Results showed the bioconcentration of SeIV to be 3 times greater compared to SeVI, but rates of elimination were similar for both forms. This suggests a change of Se speciation within the organism prior to excretion. Depuration kinetics were best described by a one-phase exponential decay model, and tadpoles retained approximately 19% of the accumulated Se after 12 days of depuration in clean water. Selenium bioaccumulation was greatest in digestive and excretory organs, as well as the eye, which may directly relate to previously reported Se-induced impairments. Results demonstrate how the use of radiotracing techniques can significantly improve our understanding of trace element toxicokinetics and tissue distributions in developing amphibians. From an environmental monitoring perspective, the findings highlight the importance of considering chemical speciation as this could influence the accuracy of risk assessment.

  5. Models of selection, isolation, and gene flow in speciation.

    PubMed

    Hart, Michael W

    2014-10-01

    Many marine ecologists aspire to use genetic data to understand how selection and demographic history shape the evolution of diverging populations as they become reproductively isolated species. I propose combining two types of genetic analysis focused on this key early stage of the speciation process to identify the selective agents directly responsible for population divergence. Isolation-with-migration (IM) models can be used to characterize reproductive isolation between populations (low gene flow), while codon models can be used to characterize selection for population differences at the molecular level (especially positive selection for high rates of amino acid substitution). Accessible transcriptome sequencing methods can generate the large quantities of data needed for both types of analysis. I highlight recent examples (including our work on fertilization genes in sea stars) in which this confluence of interest, models, and data has led to taxonomically broad advances in understanding marine speciation at the molecular level. I also highlight new models that incorporate both demography and selection: simulations based on these theoretical advances suggest that polymorphisms shared among individuals (a key source of information in IM models) may lead to false-positive evidence of selection (in codon models), especially during the early stages of population divergence and speciation that are most in need of study. The false-positive problem may be resolved through a combination of model improvements plus experiments that document the phenotypic and fitness effects of specific polymorphisms for which codon models and IM models indicate selection and reproductive isolation (such as genes that mediate sperm-egg compatibility at fertilization).

  6. Mass spectrometic study of speciation in aluminium-fluoroquinolone solutions.

    PubMed

    Cvijovic, Mirjana; Di Marco, Valerio; Traldi, Pietro; Stankov, Milena J; Djurdjevic, Predrag

    2012-01-01

    Fluoroquinolones (FQLs) are synthetic antibacterial agents containing a 4-oxo-1,4-dihydroquinoline skeleton. When concomintantly administered with other drugs which may contain metal ions, particularly Al(3+) (antacids, phosphate binders, vaccines etc) they may form metal-drug complexes. Pharmacokinetic studies showed that aluminium-quinolone interactions lead to reduced bio- availability and altered activity of the drug with possible development of the toxic effects of aluminum ion. Reliable speciation in Al(3+) - quinolone systems at micromolar concentration level is needed to better understand pharmaco- and toxicokinetics of the FQLs in the presence of Al. In this work, the speciation in solutions containing Al(3+) and FQL family members (fleroxacin, moxifloxacin and ciprofloxacin) was studied by electrospray mass spectrometry (ESI-MS), ESI-MS/MS, and laser desorption ionization (LDI) MS. The dominating species identified in all the three Al(3+)-FQL solutions, at ca 30-50 µmol L(-1) total Al concentration and 2:1 to 1:3 metal-to-ligand ratio in the pH range 3.0- 6.0, were the ions related to the complexes AlL(2+), AlL(2)(+) and AlL(3)(0) (L = ligand in the monodeprotonated form). Mixed protonated and hydroxo complexes were also formed at lower and higher pH values respectively and, as expected, dimeric and polymeric species were not observed in ESI spectra. LDI measurements confirmed the existence of the mononuclear complexes found by ESI, and indicated the formation of polymeric species. The ion [2Al(3+) +5(-)](+) was identified with all three FQLs. This ionic species most probably arises from Al(2)L(2) by clustering with free ligand anions. Comparison of literature potentiometric data with mass spectral data indicated good agreement between speciation schemes. The obtained results suggest the presence of strong interaction between FQLs and Al(3+) which may be important in affecting absorption of these drugs in the gastrointestinal tract.

  7. EFFECTS OF PH AND COMPETING ANIONS ON THE SOLUTION SPECIATION OF ARSENIC BY ION EXCHANGE RESINS

    EPA Science Inventory

    Anion-exchange resins (AER) are used to differentiate As(V) and As(III) by retaining As(V) and allowing As(III) to pass through. AERs allow rapid speciation of As in the field which precludes the effects sample preservation on As speciation. Aqueous environmental samples contai...

  8. SPECIATION OF ORGANICS IN WATER WITH RAMAN SPECTROSCOPY: UTILITY OF IONIC STRENGTH VARIATION

    EPA Science Inventory

    We have developed and are applying an experimental and mathematical method for describing the micro-speciation of complex organic contaminants in aqueous media. For our case, micro-speciation can be defined as qualitative and quantitative identification of all discrete forms of ...

  9. GEOCHEM-EZ: a chemical speciation program with greater power and flexibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GEOCHEM –EZ is a multi-functional chemical speciation program, which was designed to replace the existing GEOCHEM-PC, a program that can only be used on DOS consoles. Chemical speciation programs, such as GEOCHEM (Sposito and Mattigod, 1980) and GEOCHEM-PC (Parker et al., 1995), have been excellent ...

  10. A STUDY OF GAS-PHASE MERCURY SPECIATION USING DETAILED CHEMICAL KINETICS

    EPA Science Inventory

    Mercury (Hg) speciation in combustion-generated flue gas is modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for chlorination and oxidation of key flue-gas components, including elemental mercury. Results indica...

  11. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  12. Speciation is associated with changing ornamentation rather than stronger sexual selection.

    PubMed

    Gomes, Ana Cristina R; Sorenson, Michael D; Cardoso, Gonçalo C

    2016-12-01

    Although sexual ornamentation mediates reproductive isolation, comparative evidence does not support the hypothesis that stronger sexual selection promotes speciation. Prior analyses have neglected the possibility that decreases in ornamentation may also promote speciation, such that both increases and decreases in the strength of sexual selection and associated changes in ornamentation promote speciation. To test this hypothesis, we studied color ornamentation in one of the largest and fastest avian radiations, the estrildid finches. We show that more ornamented lineages do not speciate more, even though they tend to have faster rates of ornamental evolution, whereas changes in ornamentation (i.e., increases or decreases) are associated with speciation. This indicates that divergence in sexually selected ornamentation, rather than stronger sexual selection, promotes or is otherwise associated with speciation. We also show that gregariousness and investment in reproduction are related to the elaboration of some ornamental traits, suggesting ecological influences on speciation mediated by ornamentation. We conclude that past work focusing specifically on the strength of sexual selection may have greatly underestimated the importance of sexual ornamentation for speciation.

  13. EPA’s SPECIATE 4.4 Database - Development and Uses

    EPA Science Inventory

    SPECIATE is the EPA's repository of TOG, PM, and Other Gases speciation profiles of air pollution sources. It includes weight fractions of both organic species and PM and provides data in consistent units. Species include metals, ions, elements, and organic and inorganic compound...

  14. Speciated organic VOC and PM emissions from peat burns

    EPA Pesticide Factsheets

    Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples were acquired from Alligator River (AR) and Pocosin Lakes (PL) National Wildlife Refuges. This dataset is associated with the following publication:George , I., R. Black, J. Walker , C. Geron , J. Aurell , M. Hays , W. Preston, and B. Gullett. Volatile and semivolatile organic compounds in laboratory peat fire emissions. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 132: 163-170, (2016).

  15. Biotoxicity of mercury as influenced by mercury(II) speciation.

    PubMed

    Farrell, R E; Germida, J J; Huang, P M

    1990-10-01

    Integration of physicochemical procedures for studying mercury(II) speciation with microbiological procedures for studying the effects of mercury on bacterial growth allows evaluation of ionic factors (e.g., pH and ligand species and concentration) which affect biotoxicity. A Pseudomonas fluorescens strain capable of methylating inorganic Hg(II) was isolated from sediment samples collected at Buffalo Pound Lake in Saskatchewan, Canada. The effect of pH and ligand species on the toxic response (i.e., 50% inhibitory concentration [IC50]) of the P. fluorescens isolated to mercury were determined and related to the aqueous speciation of Hg(II). It was determined that the toxicities of different mercury salts were influenced by the nature of the co-ion. At a given pH level, mercuric acetate and mercuric nitrate yielded essentially the same IC50s; mercuric chloride, on the other hand, always produced lower IC50s. For each Hg salt, toxicity was greatest at pH 6.0 and decreased significantly (P = 0.05) at pH 7.0. Increasing the pH to 8.0 had no effect on the toxicity of mercuric acetate or mercuric nitrate but significantly (P = 0.05) reduced the toxicity of mercuric chloride. The aqueous speciation of Hg(II) in the synthetic growth medium M-IIY (a minimal salts medium amended to contain 0.1% yeast extract and 0.1% glycerol) was calculated by using the computer program GEOCHEM-PC with a modified data base. Results of the speciation calculations indicated that complexes of Hg(II) with histidine [Hg(H-HIS)HIS+ and Hg(H-HIS)2(2+)], chloride (HgCl+, HgCl2(0), HgClOH0, and HgCl3-), phosphate (HgHPO4(0), ammonia (HgNH3(2+), glycine [Hg(GLY)+], alanine [Hg(ALA)+], and hydroxyl ion (HgOH+) were the Hg species primarily responsible for toxicity in the M-IIY medium. The toxicity of mercuric nitrate at pH 8.0 was unaffected by the addition of citrate, enhanced by the addition of chloride, and reduced by the addition of cysteine. In the chloride-amended system, HgCl+, HgCl2(0), and Hg

  16. Colonization and speciation of cave animals in the Philippines

    NASA Astrophysics Data System (ADS)

    Husana, D.; Yamamuro, M.; Kase, T.

    2012-12-01

    Island-like situation of caves resulted to species isolation while organism's phenotypic plasticity allows the animal to cope with the cave's environment. These conditions eventually lead to organism's speciation through genetic differentiation. Combined morphological and molecular analyses provided insights on the speciation events and colonization of the subterranean ecosystem. Morphological analysis of hypogean species, known as troglobite, and its epigean congeners showed the interesting differences in their characters. Troglobite exhibited cave adaptations such as degenerated eyesight, enlargement or elongation of ambulatory organs, loss of pigmentation and development of other useful organs that favors their survival in the dark cave environment. Molecular clock estimation based on the substitution rate of 0.88% per million years established for 16S rRNA for the grapsid crab genus Sesarma suggested that the troglobitic Sundathelphusa species colonized the cave habitat in Samar Island in the late Miocene epoch and started to diverge from its epigean ancestor ca. 5.92 mya. Interestingly, the five species of the genus Sundathelphusa from Bohol Island comprising of both hypogean and epigean species (S. cavernicola, S. sottoae, S. vediniki, S. urichi and S. boex) occupy a single clade with divergence time from its sister clade ca. 2.58 mya. This phenomenon suggests two possible interpretations of the existence of Bohol species: (1) they belong to a single species with regular genetic flow from their surface relative and that their character differences can be best interpreted as ecophenotypic, or, (2) the speciation event was very rapid and quite recent. Mitochondrial DNA sequences of 430 base pairs of the large subunit rRNA (16S rRNA) revealed the phylogenetic relationships of the genus Sundathelphusa suggesting a multiple colonizations of caves. The speciation events coincided with the timing of the eustatic sea level fluctuation and geologic changes in the

  17. Fe, Ni and Zn speciation, in airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Thiodjio Sendja, Bridinette; Aquilanti, Giuliana; Vassura, Ivano; Giorgetti, Marco

    2016-05-01

    The study of elemental speciation in atmospheric particulate matter is important for the assessment of the source of the particle as well for the evaluation of its toxicity. XANES data at Fe, Ni, and Zn K-edges are recorded on a sample of urban dust (from the Rimini area of Emilia Romagna region, Italy) deposited on a filter and on the NIST standard reference material 1648. Using linear combination fitting we give an indication of the chemical species of the three metals present in the samples.

  18. Inference and the introductory statistics course

    NASA Astrophysics Data System (ADS)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-10-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its hypothetical probabilistic reasoning process is examined in some depth. We argue that the revolution in the teaching of inference must begin. We also discuss some perplexing issues, problematic areas and some new insights into language conundrums associated with introducing the logic of inference through randomization methods.

  19. Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria).

    PubMed

    Geml, J; Laursen, G A; O'neill, K; Nusbaum, H C; Taylor, D L

    2006-01-01

    Amanita muscaria sensu lato has a wide geographic distribution, occurring in Europe, Asia, Africa, Australia, New Zealand, and North, Central and South America. Previous phylogenetic work by others indicates three geographic clades (i.e. 'Eurasian', 'Eurasian-alpine' and 'North American' groups) within A. muscaria. However, the historical dispersal patterns of A. muscaria remained unclear. In our project, we collected specimens from arctic, boreal and humid temperate regions in Alaska, and generated DNA sequence data from the protein-coding beta-tubulin gene and the internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA repeat. Homologous sequences from additional A. muscaria isolates were downloaded from GenBank. We conducted phylogenetic and nested clade analyses (NCA) to reveal the phylogeographic history of the species complex. Although phylogenetic analyses confirmed the existence of the three above-mentioned clades, representatives of all three groups were found to occur sympatrically in Alaska, suggesting that they represent cryptic phylogenetic species with partially overlapping geographic distributions rather than being allopatric populations. All phylogenetic species share at least two morphological varieties with other species, suggesting ancestral polymorphism in pileus and wart colour pre-dating their speciations. The ancestral population of A. muscaria likely evolved in the Siberian-Beringian region and underwent fragmentation as inferred from NCA and the coalescent analyses. The data suggest that these populations later evolved into species, expanded their range in North America and Eurasia. In addition to range expansions, populations of all three species remained in Beringia and adapted to the cooling climate.

  20. Speciation and dissolution of hydrogen in the proto-lunar disk

    NASA Astrophysics Data System (ADS)

    Pahlevan, Kaveh; Karato, Shun-ichiro; Fegley, Bruce

    2016-07-01

    Despite very high temperatures accompanying lunar origin, indigenous water in the form of OH has been unambiguously observed in Apollo samples in recent years. Such observations have prompted questions about the abundance and distribution of lunar hydrogen. Here, we investigate the related question of the origin of lunar H: is the hydrogen observed a remnant of a much larger initial inventory that was inherited from a ;wet; Earth but partly depleted during the process of origin, or was primordial hydrogen quantitatively lost from the lunar material, with water being delivered to lunar reservoirs via subsequent impacts after the origins sequence? Motivated by recent results pointing to a limited extent of hydrogen escape from the gravity field of the Earth during lunar origin, we apply a newly developed thermodynamic model of liquid-vapor silicates to the proto-lunar disk to interrogate the behavior of H as a trace element in the energetic aftermath of the giant impact. We find that: (1) pre-existing H-bearing molecules are rapidly dissociated at the temperatures considered (3100-4200 K) and vaporized hydrogen predominantly exists as OH(v), H(v) and MgOH(v) for nearly the full range of thermal states encountered in the proto-lunar disk, (2) despite such a diversity in the vapor speciation - which reduces the water fugacity and favors hydrogen exsolution from co-existing liquids - the equilibration of the vapor atmosphere with the disk liquid results in significant dissolution of H into proto-lunar magmas, and (3) equilibrium H isotopic fractionation in this setting is limited to <10 per mil and the ;terrestrial; character of lunar D/H recently inferred should extend to such a precision if liquid-vapor equilibration in the proto-lunar disk is the process that gave rise to lunar hydrogen. Taken together, these results implicate dissolution as the process responsible for establishing lunar H abundances.

  1. Influence of ligands on metal speciation, transport and toxicity in a tropical river during wet (monsoon) period.

    PubMed

    Gogoi, Anindita; Tushara Chaminda, G G; An, Alicia K J; Snow, Daniel D; Li, Yusong; Kumar, Manish

    2016-11-01

    Metal speciation and transport are seldom assessed in densely populated Tropical River. An evaluation of the phase distribution for Copper (Cu), Lead (Pb) and Zinc (Zn) along with chemical speciation, variance with different water quality parameters and toxicity were conducted in the Brahmaputra River of India from upstream to downstream during wet (monsoon) periods in July 2014. Results indicated that metal free ions and carbonates were dominant in the inorganic fractions whereas metal concentrations were negligible in the anionic inorganic fractions. Due to high sediment load in the river during monsoon, metals were substantially higher in the particulate fractions than in the aqueous phase. Partition coefficient for Cu (3.1-6.1), Pb (3.4-6.5) and Zn (3.5-6.9), demonstrated strong adsorption of the metals on suspended matter. Q-mode hierarchical cluster analysis (HCA) illustrated groupings mainly governed by quality parameters rather than by the river course. R-mode results imply selectivity of the affinities of metals for different ligands. Health risk index (HRI) values were less than 1 for dissolved metal for Cu, Pb and Zn while it was greater than 1 for total metal for Pb and Cu indicating potential human health risk. The study demonstrated that binding of metals with naturally occurring dissolved organic matter or suspended particulate matter affects metal bioavailability in river during wet periods when sediment load is particularly high. A combination of empirical, computational and statistical relationships between ionic species and fractions of metals provided greater certitude in identifying the resemblance among the different locations of the river.

  2. Minimal effects of latitude on present-day speciation rates in New World birds.

    PubMed

    Rabosky, Daniel L; Title, Pascal O; Huang, Huateng

    2015-06-22

    The tropics contain far greater numbers of species than temperate regions, suggesting that rates of species formation might differ systematically between tropical and non-tropical areas. We tested this hypothesis by reconstructing the history of speciation in New World (NW) land birds using BAMM, a Bayesian framework for modelling complex evolutionary dynamics on phylogenetic trees. We estimated marginal distributions of present-day speciation rates for each of 2571 species of birds. The present-day rate of speciation varies approximately 30-fold across NW birds, but there is no difference in the rate distributions for tropical and temperate taxa. Using macroevolutionary cohort analysis, we demonstrate that clades with high tropical membership do not produce species more rapidly than temperate clades. For nearly any value of present-day speciation rate, there are far more species in the tropics than the temperate zone. Any effects of latitude on speciation rate are marginal in comparison to the dramatic variation in rates among clades.

  3. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean

  4. Inferring Bottlenecks from Genome-Wide Samples of Short Sequence Blocks

    PubMed Central

    Bunnefeld, Lynsey; Frantz, Laurent A. F.; Lohse, Konrad

    2015-01-01

    The advent of the genomic era has necessitated the development of methods capable of analyzing large volumes of genomic data efficiently. Being able to reliably identify bottlenecks—extreme population size changes of short duration—not only is interesting in the context of speciation and extinction but also matters (as a null model) when inferring selection. Bottlenecks can be detected in polymorphism data via their distorting effect on the shape of the underlying genealogy. Here, we use the generating function of genealogies to derive the probability of mutational configurations in short sequence blocks under a simple bottleneck model. Given a large number of nonrecombining blocks, we can compute maximum-likelihood estimates of the time and strength of the bottleneck. Our method relies on a simple summary of the joint distribution of polymorphic sites. We extend the site frequency spectrum by counting mutations in frequency classes in short sequence blocks. Using linkage information over short distances in this way gives greater power to detect bottlenecks than the site frequency spectrum and potentially opens up a wide range of demographic histories to blockwise inference. Finally, we apply our method to genomic data from a species of pig (Sus cebifrons) endemic to islands in the center and west of the Philippines to estimate whether a bottleneck occurred upon island colonization and compare our scheme to Li and Durbin’s pairwise sequentially Markovian coalescent (PSMC) both for the pig data and using simulations. PMID:26341659

  5. In-situ speciation of Ni and Zn in freshwaters: comparison between DGT measurements and speciation models.

    PubMed

    Zhang, Hao

    2004-03-01

    The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 +/- 2.5 nM; Ni, 23.5 +/- 0.9 nM) and labile organic (Zn, 43.1 +/- 2.9 nM; Ni, 11.2 +/- 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components.

  6. Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals

    SciTech Connect

    M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

    2011-12-31

    We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

  7. An inference engine for embedded diagnostic systems

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.; Brewster, Larry T.

    1987-01-01

    The implementation of an inference engine for embedded diagnostic systems is described. The system consists of two distinct parts. The first is an off-line compiler which accepts a propositional logical statement of the relationship between facts and conclusions and produces data structures required by the on-line inference engine. The second part consists of the inference engine and interface routines which accept assertions of fact and return the conclusions which necessarily follow. Given a set of assertions, it will generate exactly the conclusions which logically follow. At the same time, it will detect any inconsistencies which may propagate from an inconsistent set of assertions or a poorly formulated set of rules. The memory requirements are fixed and the worst case execution times are bounded at compile time. The data structures and inference algorithms are very simple and well understood. The data structures and algorithms are described in detail. The system has been implemented on Lisp, Pascal, and Modula-2.

  8. Experimental evidence for circular inference in schizophrenia

    NASA Astrophysics Data System (ADS)

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S.; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to `see what we expect' (through descending loops), to `expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ.

  9. Bayesian Cosmological inference beyond statistical isotropy

    NASA Astrophysics Data System (ADS)

    Souradeep, Tarun; Das, Santanu; Wandelt, Benjamin

    2016-10-01

    With advent of rich data sets, computationally challenge of inference in cosmology has relied on stochastic sampling method. First, I review the widely used MCMC approach used to infer cosmological parameters and present a adaptive improved implementation SCoPE developed by our group. Next, I present a general method for Bayesian inference of the underlying covariance structure of random fields on a sphere. We employ the Bipolar Spherical Harmonic (BipoSH) representation of general covariance structure on the sphere. We illustrate the efficacy of the method with a principled approach to assess violation of statistical isotropy (SI) in the sky maps of Cosmic Microwave Background (CMB) fluctuations. The general, principled, approach to a Bayesian inference of the covariance structure in a random field on a sphere presented here has huge potential for application to other many aspects of cosmology and astronomy, as well as, more distant areas of research like geosciences and climate modelling.

  10. Experimental evidence for circular inference in schizophrenia

    PubMed Central

    Jardri, Renaud; Duverne, Sandrine; Litvinova, Alexandra S; Denève, Sophie

    2017-01-01

    Schizophrenia (SCZ) is a complex mental disorder that may result in some combination of hallucinations, delusions and disorganized thinking. Here SCZ patients and healthy controls (CTLs) report their level of confidence on a forced-choice task that manipulated the strength of sensory evidence and prior information. Neither group's responses can be explained by simple Bayesian inference. Rather, individual responses are best captured by a model with different degrees of circular inference. Circular inference refers to a corruption of sensory data by prior information and vice versa, leading us to ‘see what we expect' (through descending loops), to ‘expect what we see' (through ascending loops) or both. Ascending loops are stronger for SCZ than CTLs and correlate with the severity of positive symptoms. Descending loops correlate with the severity of negative symptoms. Both loops correlate with disorganized symptoms. The findings suggest that circular inference might mediate the clinical manifestations of SCZ. PMID:28139642

  11. Causal inference in economics and marketing

    PubMed Central

    Varian, Hal R.

    2016-01-01

    This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. PMID:27382144

  12. Operation of the Bayes Inference Engine

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.

    1998-07-27

    The authors have developed a computer application, called the Bayes Inference Engine, to enable one to make inferences about models of a physical object from radiographs taken of it. In the BIE calculational models are represented by a data-flow diagram that can be manipulated by the analyst in a graphical-programming environment. The authors demonstrate the operation of the BIE in terms of examples of two-dimensional tomographic reconstruction including uncertainty estimation.

  13. Evolutionary site-number changes of ribosomal DNA loci during speciation: complex scenarios of ancestral and more recent polyploid events

    PubMed Central

    Rosato, Marcela; Moreno-Saiz, Juan C.; Galián, José A.; Rosselló, Josep A.

    2015-01-01

    Several genome duplications have been identified in the evolution of seed plants, providing unique systems for studying karyological processes promoting diversification and speciation. Knowledge about the number of ribosomal DNA (rDNA) loci, together with their chromosomal distribution and structure, provides clues about organismal and molecular evolution at various phylogenetic levels. In this work, we aim to elucidate the evolutionary dynamics of karyological and rDNA site-number variation in all known taxa of subtribe Vellinae, showing a complex scenario of ancestral and more recent polyploid events. Specifically, we aim to infer the ancestral chromosome numbers and patterns of chromosome number variation, assess patterns of variation of both 45S and 5S rDNA families, trends in site-number change of rDNA loci within homoploid and polyploid series, and reconstruct the evolutionary history of rDNA site number using a phylogenetic hypothesis as a framework. The best-fitting model of chromosome number evolution with a high likelihood score suggests that the Vellinae core showing x = 17 chromosomes arose by duplication events from a recent x = 8 ancestor. Our survey suggests more complex patterns of polyploid evolution than previously noted for Vellinae. High polyploidization events (6x, 8x) arose independently in the basal clade Vella castrilensis–V. lucentina, where extant diploid species are unknown. Reconstruction of ancestral rDNA states in Vellinae supports the inference that the ancestral number of loci in the subtribe was two for each multigene family, suggesting that an overall tendency towards a net loss of 5S rDNA loci occurred during the splitting of Vellinae ancestors from the remaining Brassiceae lineages. A contrasting pattern for rDNA site change in both paleopolyploid and neopolyploid species was linked to diversification of Vellinae lineages. This suggests dynamic and independent changes in rDNA site number during speciation processes and a

  14. Rapid biological speciation driven by tectonic evolution in New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, Dave; Upton, Phaedra; Burridge, Christopher P.; Wallis, Graham P.; Waters, Jonathan M.

    2016-02-01

    Collisions between tectonic plates lead to the rise of new mountain ranges that can separate biological populations and ultimately result in new species. However, the identification of links between tectonic mountain-building and biological speciation is confounded by environmental and ecological factors. Thus, there are surprisingly few well-documented examples of direct tectonic controls on terrestrial biological speciation. Here we present examples from New Zealand, where the rapid evolution of 18 species of freshwater fishes has resulted from parallel tectonic landscape evolution. We use numerical models to reconstruct changes in the deep crustal structure and surface drainage catchments of the southern island of New Zealand over the past 25 million years. We show that the island and mountain topography evolved in six principal tectonic zones, which have distinct drainage catchments that separated fish populations. We use new and existing phylogenetic analyses of freshwater fish populations, based on over 1,000 specimens from more than 400 localities, to show that fish genomes can retain evidence of this tectonic landscape development, with a clear correlation between geologic age and extent of DNA sequence divergence. We conclude that landscape evolution has controlled on-going biological diversification over the past 25 million years.

  15. Timing and rate of speciation in Agave (Agavaceae).

    PubMed

    Good-Avila, Sara V; Souza, Valeria; Gaut, Brandon S; Eguiarte, Luis E

    2006-06-13

    The Agave (Agavaceae) are keystone species of semiarid to arid regions where the geographic center of origin is Mexico but whose populations spread from the southwestern U.S. through Central America, the Caribbean, and into northern South America. Our analyses indicate that Agave is a young genus, between 7.8 and 10.1 million years old, and yet it harbors the most species of any genera in the family. Of the eight genera in the family, Agave is paraphyletic with respect to three of them, and these four genera are often grouped into a genus termed Agave sensu lato, which harbors 208 of the 293 recognized species in the Agavaceae. In this article, we examine the phylogenetic limits of Agave sensu lato and present analyses elucidating the origin and rate of speciation in the group. These analyses lead to some new insights into the phylogenetic limits of Agave, indicate an estimated age of the family between 20 and 26 million years and an age of the Agave sensu lato of speciation were significantly elevated between 8 and 6 million years ago and then again between 3 and 2.5 million years ago. We discuss the potential for both monocarpy and the evolution of a generalist pollination system, largely dependent on nectarivorous bat species, as possible driving factors in the radiation of the group.

  16. Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?

    PubMed

    Machado-Schiaffino, Gonzalo; Kautt, Andreas F; Torres-Dowdall, Julian; Baumgarten, Lukas; Henning, Frederico; Meyer, Axel

    2017-01-30

    Sympatric speciation has been debated in evolutionary biology for decades. Although it has gained in acceptance recently, still only a handful of empirical examples are seen as valid (e.g. crater lake cichlids). In this study, we disentangle the role of hypertrophied lips in the repeated adaptive radiations of Nicaraguan crater lake cichlid fish. We assessed the role of disruptive selection and assortative mating during the early stages of divergence and found a functional trade-off in feeding behaviour between thick- and thin-lipped ecotypes, suggesting that this trait is a target of disruptive selection. Thick-lipped fish perform better on nonevasive prey at the cost of a poorer performance on evasive prey. Using enclosures in the wild, we found that thick-lipped fish perform significantly better in rocky than in sandy habitats. We found almost no mixed pairs during two breeding seasons and hence significant assortative mating. Genetic differentiation between ecotypes seems to be related to the time since colonization, being subtle in L. Masaya (1600 generations ago) and absent in the younger L. Apoyeque (<600 generations ago). Genome-wide differentiation between ecotypes was higher in the old source lakes than in the young crater lakes. Our results suggest that hypertrophied lips might be promoting incipient sympatric speciation through divergent selection (ecological divergence in feeding performance) and nonrandom mating (assortative mating) in the young Nicaraguan crater lakes. Nonetheless, further manipulative experiments are needed in order to confirm the role of hypertrophied lips as the main cue for assortative mating.

  17. Astatine standard redox potentials and speciation in acidic medium.

    PubMed

    Champion, J; Alliot, C; Renault, E; Mokili, B M; Chérel, M; Galland, N; Montavon, G

    2010-01-14

    A combined experimental and theoretical approach is used to define astatine (At) speciation in acidic aqueous solution and to answer the two main questions raised from literature data: does At(0) exist in aqueous solution and what is the chemical form of At(+III), if it exists. The experimental approach considers that a given species is characterized by its distribution coefficient (D) experimentally determined in a biphasic system. The change in speciation arising from a change in experimental conditions is observed by a change in D value. The theoretical approach involves quasi-relativistic quantum chemistry calculations. The results show that At at the oxidation state 0 cannot exist in aqueous solution. The three oxidation states present in the range of water stability are At(-I), At(+I), and At(+III) and exist as At(-), At(+), and At