Science.gov

Sample records for inferring speciation modes

  1. Inferring the geographic mode of speciation by contrasting autosomal and sex-linked genetic diversity.

    PubMed

    Chu, Jui-Hua; Wegmann, Daniel; Yeh, Chia-Fen; Lin, Rong-Chien; Yang, Xiao-Jun; Lei, Fu-Min; Yao, Cheng-Te; Zou, Fa-Sheng; Li, Shou-Hsien

    2013-11-01

    When geographic isolation drives speciation, concurrent termination of gene flow among genomic regions will occur immediately after the formation of the barrier between diverging populations. Alternatively, if speciation is driven by ecologically divergent selection, gene flow of selectively neutral genomic regions may go on between diverging populations until the completion of reproductive isolation. It may also lead to an unsynchronized termination of gene flow between genomic regions with different roles in the speciation process. Here, we developed a novel Approximate Bayesian Computation pipeline to infer the geographic mode of speciation by testing for a lack of postdivergence gene flow and a concurrent termination of gene flow in autosomal and sex-linked markers jointly. We applied this approach to infer the geographic mode of speciation for two allopatric highland rosefinches, the vinaceous rosefinch Carpodacus vinaceus and the Taiwan rosefinch C. formosanus from DNA polymorphisms of both autosomal and Z-linked loci. Our results suggest that the two rosefinch species diverged allopatrically approximately 0.5 Ma. Our approach allowed us further to infer that female effective population sizes are about five times larger than those of males, an estimate potentially useful when comparing the intensity of sexual selection across species.

  2. Inferring speciation modes in a clade of Iberian chafers from rates of morphological evolution in different character systems

    PubMed Central

    Ahrens, Dirk; Ribera, Ignacio

    2009-01-01

    Background Studies of speciation mode based on phylogenies usually test the predicted effect on diversification patterns or on geographical distribution of closely related species. Here we outline an approach to infer the prevalent speciation mode in Iberian Hymenoplia chafers through the comparison of the evolutionary rates of morphological character systems likely to be related to sexual or ecological selection. Assuming that mitochondrial evolution is neutral and not related to measured phenotypic differences among the species, we contrast hypothetic outcomes of three speciation modes: 1) geographic isolation with subsequent random morphological divergence, resulting in overall change proportional to the mtDNA rate; 2) sexual selection on size and shape of the male intromittent organs, resulting in an evolutionary rate decoupled to that of the mtDNA; and 3) ecological segregation, reflected in character systems presumably related to ecological or biological adaptations, with rates decoupled from that of the mtDNA. Results The evolutionary rate of qualitative external body characters was significantly correlated to that of the mtDNA both for the overall root-to-tip patristic distances and the individual inter-node branches, as measured with standard statistics and the randomization of a global comparison metric (the z-score). The rate of the body morphospace was significantly correlated to that of the mtDNA only for the individual branches, but not for the patristic distances, while that of the paramere outline was significantly correlated with mtDNA rates only for the patristic distances but not for the individual branches. Conclusion Structural morphological characters, often used for species recognition, have evolved at a rate proportional to that of the mtDNA, with no evidence of directional or stabilising selection according to our measures. The change in body morphospace seems to have evolved randomly at short term, but the overall change is different from

  3. Learning about modes of speciation by computational approaches.

    PubMed

    Becquet, Céline; Przeworski, Molly

    2009-10-01

    How often do the early stages of speciation occur in the presence of gene flow? To address this enduring question, a number of recent papers have used computational approaches, estimating parameters of simple divergence models from multilocus polymorphism data collected in closely related species. Applications to a variety of species have yielded extensive evidence for migration, with the results interpreted as supporting the widespread occurrence of parapatric speciation. Here, we conduct a simulation study to assess the reliability of such inferences, using a program that we recently developed MCMC estimation of the isolation-migration model allowing for recombination (MIMAR) as well as the program isolation-migration (IM) of Hey and Nielsen (2004). We find that when one of many assumptions of the isolation-migration model is violated, the methods tend to yield biased estimates of the parameters, potentially lending spurious support for allopatric or parapatric divergence. More generally, our results highlight the difficulty in drawing inferences about modes of speciation from the existing computational approaches alone.

  4. Model inadequacy and mistaken inferences of trait-dependent speciation.

    PubMed

    Rabosky, Daniel L; Goldberg, Emma E

    2015-03-01

    Species richness varies widely across the tree of life, and there is great interest in identifying ecological, geographic, and other factors that affect rates of species proliferation. Recent methods for explicitly modeling the relationships among character states, speciation rates, and extinction rates on phylogenetic trees- BiSSE, QuaSSE, GeoSSE, and related models-have been widely used to test hypotheses about character state-dependent diversification rates. Here, we document the disconcerting ease with which neutral traits are inferred to have statistically significant associations with speciation rate. We first demonstrate this unfortunate effect for a known model assumption violation: shifts in speciation rate associated with a character not included in the model. We further show that for many empirical phylogenies, characters simulated in the absence of state-dependent diversification exhibit an even higher Type I error rate, indicating that the method is susceptible to additional, unknown model inadequacies. For traits that evolve slowly, the root cause appears to be a statistical framework that does not require replicated shifts in character state and diversification. However, spurious associations between character state and speciation rate arise even for traits that lack phylogenetic signal, suggesting that phylogenetic pseudoreplication alone cannot fully explain the problem. The surprising severity of this phenomenon suggests that many trait-diversification relationships reported in the literature may not be real. More generally, we highlight the need for diagnosing and understanding the consequences of model inadequacy in phylogenetic comparative methods.

  5. Inferring speciation and extinction rates under different sampling schemes.

    PubMed

    Höhna, Sebastian; Stadler, Tanja; Ronquist, Fredrik; Britton, Tom

    2011-09-01

    The birth-death process is widely used in phylogenetics to model speciation and extinction. Recent studies have shown that the inferred rates are sensitive to assumptions about the sampling probability of lineages. Here, we examine the effect of the method used to sample lineages. Whereas previous studies have assumed random sampling (RS), we consider two extreme cases of biased sampling: "diversified sampling" (DS), where tips are selected to maximize diversity and "cluster sampling (CS)," where sample diversity is minimized. DS appears to be standard practice, for example, in analyses of higher taxa, whereas CS may occur under special circumstances, for example, in studies of geographically defined floras or faunas. Using both simulations and analyses of empirical data, we show that inferred rates may be heavily biased if the sampling strategy is not modeled correctly. In particular, when a diversified sample is treated as if it were a random or complete sample, the extinction rate is severely underestimated, often close to 0. Such dramatic errors may lead to serious consequences, for example, if estimated rates are used in assessing the vulnerability of threatened species to extinction. Using Bayesian model testing across 18 empirical data sets, we show that DS is commonly a better fit to the data than complete, random, or cluster sampling (CS). Inappropriate modeling of the sampling method may at least partly explain anomalous results that have previously been attributed to variation over time in birth and death rates.

  6. Speciational history of North American Haemorhous finches (Aves: Fringillidae) inferred from multilocus data.

    PubMed

    Smith, Brian Tilston; Bryson, Robert W; Chua, Vivien; Africa, Lia; Klicka, John

    2013-03-01

    We investigated species relationships and timing of speciation in North American Haemorhous finches by using a mitochondrial phylogeographic approach combined with a multilocus species tree reconstruction. Haemorhous purpureus and H. cassinii were strongly supported as sister taxa, and H. mexicanus was sister to H. purpureus+H. cassinii. Our divergence times indicated that diversification within Haemorhous occurred progressively from the Late Miocene into the Pleistocene. Our inferred pattern of speciation demonstrates the complexity of the origins of North American birds, and provides additional evidence that a single cause for speciation in closely related North American birds, such as Late Pleistocene glacial-interglacial cycles, is unlikely.

  7. Tempo and mode of speciation in Holacanthus angelfishes based on RADseq markers.

    PubMed

    Tariel, Juliette; Longo, Gary C; Bernardi, Giacomo

    2016-05-01

    In this study we estimated the timing of speciation events in a group of angelfishes using 1186 RADseq markers corresponding to 94,880 base pairs. The genus Holacanthus comprises seven species, including two clades of Panama trans-Isthmian geminates, which diverged approximately 3-3.5Mya. These clades diversified within the Tropical Eastern Pacific (TEP, three species) and Tropical Western Atlantic (TWA, two species) which our data suggest to have occurred within the past 1.5My in both ocean basins, but may have proceeded via different mechanisms. In the TEP, speciation is likely to have followed a peripatric pathway, while in the TWA, sister species are currently partially sympatric, thus raising the possibility of sympatric speciation. This study highlights the use of RADseq markers for estimating both divergence times and modes of speciation at a 1-3My timescale.

  8. Inferring Flare Loop Parameters with Measurements of Standing Sausage Modes

    NASA Astrophysics Data System (ADS)

    Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui

    2016-03-01

    Standing fast sausage modes in flare loops were suggested to account for a considerable number of quasi-periodic pulsations (QPPs) in the light curves of solar flares. This study continues our investigation into the possibility of inverting the measured periods P and damping times τ of sausage modes to deduce the transverse Alfvén time R/v_{Ai}, density contrast ρi/ρe, and the steepness of the density distribution transverse to flare loops. A generic dispersion relation governing linear sausage modes is derived for pressureless cylinders where density inhomogeneity of arbitrary form takes place within the cylinder. We show that in general the inversion problem is under-determined for QPP events where only a single sausage mode exists, whether the measurements are spatially resolved or unresolved. While R/v_{Ai} can be inferred to some extent, the range of possible steepness parameters may be too broad to be useful. However, for spatially resolved measurements where an additional mode is present, it is possible to deduce self-consistently ρi/ρe, the profile steepness, and the internal Alfvén speed v_{Ai}. We show that at least for a recent QPP event that involves a fundamental kink mode in addition to a sausage one, flare loop parameters are well constrained even if the specific form of the transverse density distribution remains unknown. We conclude that spatially resolved, multi-mode QPP measurements need to be pursued to infer flare loop parameters.

  9. Using thermal evolution profiles to infer tritium speciation in nuclear site metals: an aid to decommissioning.

    PubMed

    Croudace, Ian W; Warwick, Phil E; Kim, Daeji

    2014-09-16

    Understanding the association and retention of tritium in metals has significance in nuclear decommissioning programs and can lead to cost benefits through waste reduction and recycling of materials. To develop insights, a range of metals from two nuclear sites and one non-nuclear site were investigated which had different exposure histories. Tritium speciation in metals was inferred through incremental heating experiments over the range of 20-900 °C using a Raddec Pyrolyser instrument. Systematic differences in thermal desorption profiles were found for nonirradiated and irradiated metals. In nonirradiated metals (e.g., stainless steel and copper), it was found that significant tritium had become incorporated following prolonged exposure to tritiated water vapor (HTO) or tritium/hydrogen gas (HT) in nuclear facilities. This externally derived tritium enters metals by diffusion with a rate controlled by the metal composition and whether the surface of the metal had been sealed or coated prior to exposure. The tritium is normally trapped in hydrated oxides lying along grain boundaries. In irradiated metals, an additional type of tritium can form internally through neutron capture reactions. The amount formed depends on the concentration and distribution of trace lithium and boron in the metal as well as the integrated neutron flux. Liberating this kind of tritium typically requires temperatures above 800 °C. The pattern of tritium evolution derived from simple thermal desorption experiments allows reliable inferences to be drawn on the likely origin, location, and phases that trap tritium. Any weakly bound tritium liberated at temperatures of ~100 °C is indicative of mostly HTO interactions in the metal. Any strongly bound tritium liberated over the range of 600-900 °C is indicative of neutrogenic tritium formed via neutron capture by trace Li and B. Neutron capture by lithium is likely to be more significant than for boron based on lithium's higher trace

  10. Hawthorn-infesting populations of Rhagoletis pomonella in Mexico and speciation mode plurality.

    PubMed

    Xie, Xianfa; Rull, Juan; Michel, Andrew P; Velez, Sebastian; Forbes, Andrew A; Lobo, Neil F; Aluja, Martin; Feder, Jeffrey L

    2007-05-01

    Categorizing speciation into dichotomous allopatric versus nonallopatric modes may not always adequately describe the geographic context of divergence for taxa. If some of the genetic changes generating inherent barriers to gene flow between populations evolved in geographic isolation, whereas others arose in sympatry, then the mode of divergence would be mixed. The apple maggot fly, Rhagoletis pomonella, has contributed to this emerging concept of a mixed speciation mode "plurality." Genetic studies have implied that a source of diapause life-history variation associated with inversions and contributing to sympatric host race formation and speciation for R. pomonella in the United States may have introgressed from the Eje Volcanico Trans Mexicano (EVTM; a.k.a. the Altiplano) in the past. A critical unresolved issue concerning the introgression hypothesis is how past gene flow occurred given the current 1200-km disjunction in the ranges of hawthorn-infesting flies in the EVTM region of Mexico and the southern extreme of the U.S. population in Texas. Here, we report the discovery of a hawthorn-infesting population of R. pomonella in the Sierra Madre Oriental Mountains (SMO) of Mexico. Sequence data from 15 nuclear loci and mitochondrial DNA imply that the SMO flies are related to, but still different from, U.S. and EVTM flies. The host affiliations, diapause characteristics, and phylogeography of the SMO population are consistent with it having served as a conduit for gene flow between Mexico and the United States. We also present evidence suggesting greater permeability of collinear versus rearranged regions of the genome to introgression, in accord with recent models of chromosomal speciation. We discuss the implications of the results in the context of speciation mode plurality. We do not argue for abandoning the terms sympatry or allopatry, but caution that categorizing divergence into either/or geographic modes may not describe the genetic origins of all

  11. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group).

    PubMed

    Dufresnes, Christophe; Brelsford, Alan; Crnobrnja-Isailović, Jelka; Tzankov, Nikolay; Lymberakis, Petros; Perrin, Nicolas

    2015-08-08

    Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.

  12. Evolution of Blind Beetles in Isolated Aquifers: A Test of Alternative Modes of Speciation

    PubMed Central

    Leijs, Remko; van Nes, Egbert H.; Watts, Chris H.; Cooper, Steven J. B.; Humphreys, William F.; Hogendoorn, Katja

    2012-01-01

    Evidence is growing that not only allopatric but also sympatric speciation can be important in the evolution of species. Sympatric speciation has most convincingly been demonstrated in laboratory experiments with bacteria, but field-based evidence is limited to a few cases. The recently discovered plethora of subterranean diving beetle species in isolated aquifers in the arid interior of Australia offers a unique opportunity to evaluate alternative modes of speciation. This naturally replicated evolutionary experiment started 10-5 million years ago, when climate change forced the surface species to occupy geographically isolated subterranean aquifers. Using phylogenetic analysis, we determine the frequency of aquifers containing closely related sister species. By comparing observed frequencies with predictions from different statistical models, we show that it is very unlikely that the high number of sympatrically occurring sister species can be explained by a combination of allopatric evolution and repeated colonisations alone. Thus, diversification has occurred within the aquifers and likely involved sympatric, parapatric and/or microallopatric speciation. PMID:22479581

  13. Evolution of blind beetles in isolated aquifers: a test of alternative modes of speciation.

    PubMed

    Leijs, Remko; van Nes, Egbert H; Watts, Chris H; Cooper, Steven J B; Humphreys, William F; Hogendoorn, Katja

    2012-01-01

    Evidence is growing that not only allopatric but also sympatric speciation can be important in the evolution of species. Sympatric speciation has most convincingly been demonstrated in laboratory experiments with bacteria, but field-based evidence is limited to a few cases. The recently discovered plethora of subterranean diving beetle species in isolated aquifers in the arid interior of Australia offers a unique opportunity to evaluate alternative modes of speciation. This naturally replicated evolutionary experiment started 10-5 million years ago, when climate change forced the surface species to occupy geographically isolated subterranean aquifers. Using phylogenetic analysis, we determine the frequency of aquifers containing closely related sister species. By comparing observed frequencies with predictions from different statistical models, we show that it is very unlikely that the high number of sympatrically occurring sister species can be explained by a combination of allopatric evolution and repeated colonisations alone. Thus, diversification has occurred within the aquifers and likely involved sympatric, parapatric and/or microallopatric speciation.

  14. Inferring phylogeny and speciation of Gymnosporangium species, and their coevolution with host plants

    PubMed Central

    Zhao, Peng; Liu, Fang; Li, Ying-Ming; Cai, Lei

    2016-01-01

    Gymnosporangium species (Pucciniaceae, Pucciniales) cause serious diseases and significant economic losses to apple cultivars. Most of the reported species are heteroecious and complete their life cycles on two different plant hosts belonging to two unrelated genera, i.e. Juniperus and Malus. However, the phylogenetic relationships among Gymnosporangium species and the evolutionary history of Gymnosporangium on its aecial and telial hosts were still undetermined. In this study, we recognized species based on rDNA sequence data by using coalescent method of generalized mixed Yule-coalescent (GMYC) and Poisson Tree Processes (PTP) models. The evolutionary relationships of Gymnosporangium species and their hosts were investigated by comparing the cophylogenetic analyses of Gymnosporangium species with Malus species and Juniperus species, respectively. The concordant results of GMYC and PTP analyses recognized 14 species including 12 known species and two undescribed species. In addition, host alternations of 10 Gymnosporangium species were uncovered by linking the derived sequences between their aecial and telial stages. This study revealed the evolutionary process of Gymnosporangium species, and clarified that the aecial hosts played more important roles than telial hosts in the speciation of Gymnosporangium species. Host switch, losses, duplication and failure to divergence all contributed to the speciation of Gymnosporangium species. PMID:27385413

  15. Theoretical studies of speciation and evolutionary inference. Annual progress report, October 1980-September 1981

    SciTech Connect

    Felsenstein, J.

    1981-09-01

    The past year has been a fairly active one, with several pending papers finally being published, along with the Bibliography of Theoretical Population Genetics. The Package for Inferring Phylogenies has enjoyed widespread distribution and popularity. A number of papers submitted in the last part of last year were accepted and are about to be published, and several new projects have resulted in new papers being submitted, in particular a major review article on numerical methods for inferring evolutionary trees. My involvement in development methods for analyzing DNA sequence data has increased.

  16. Inferring Speciation Processes from Patterns of Natural Variation in Microbial Genomes

    PubMed Central

    Krause, David J.; Whitaker, Rachel J.

    2015-01-01

    Microbial species concepts have long been the focus of contentious debate, fueled by technological limitations to the genetic resolution of species, by the daunting task of investigating phenotypic variation among individual microscopic organisms, and by a lack of understanding of gene flow in reproductively asexual organisms that are prone to promiscuous horizontal gene transfer. Population genomics, the emerging approach of analyzing the complete genomes of a multitude of closely related organisms, is poised to overcome these limitations by providing a window into patterns of genome variation revealing the evolutionary processes through which species diverge. This new approach is more than just an extension of previous multilocus sequencing technologies, in that it provides a comprehensive view of interacting evolutionary processes. Here we argue that the application of population genomic tools in a rigorous population genetic framework will help to identify the processes of microbial speciation and ultimately lead to a general species concept based on the unique biology and ecology of microorganisms. PMID:26316424

  17. Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes

    PubMed Central

    Geraldes, Armando; Basset, Patrick; Gibson, Barbara; Smith, Kimberly L.; Harr, Bettina; Yu, Hon-Tsen; Bulatova, Nina; Ziv, Yaron; Nachman, Michael W.

    2010-01-01

    Patterns of genetic differentiation among taxa at early stages of divergence provide an opportunity to make inferences about the history of speciation. Here, we conduct a survey of DNA-sequence polymorphism and divergence at loci on the autosomes, X chromosome, Y chromosome and mitochondrial DNA in samples of Mus domesticus, M. musculus and M. castaneus. We analyzed our data under a divergence with gene flow model and estimate that the effective population size of M. castaneus is 200 000–400 000, of M. domesticus is 100 000–200 000 and of M. musculus is 60 000–120 000. These data also suggest that these species started to diverge approximately 500 000 years ago. Consistent with this recent divergence, we observed considerable variation in the genealogical patterns among loci. For some loci, all alleles within each species formed a monophyletic group, while at other loci, species were intermingled on the phylogeny of alleles. This intermingling probably reflects both incomplete lineage sorting and gene flow after divergence. Likelihood ratio tests rejected a strict allopatric model with no gene flow in comparisons between each pair of species. Gene flow was asymmetric: no gene flow was detected into M. domesticus, while significant gene flow was detected into both M. castaneus and M. musculus. Finally, most of the gene flow occurred at autosomal loci, resulting in a significantly higher ratio of fixed differences to polymorphisms at the X and Y chromosomes relative to autosomes in some comparisons, or just the X chromosome in others, emphasizing the important role of the sex chromosomes in general and the X chromosome in particular in speciation. PMID:19121002

  18. Speciation of Iron in Silicic Glasses: Inferences From Spectroscopic Methods and TEM

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Menguy, N.

    2007-05-01

    Iron environment in silicic glasses has been investigated using optical absorption spectroscopy (OAS), X-ray Absorption Near Edge Structure (XANES), Electron Paramagnetic Resonance (EPR) and TEM. The samples are calco-alkaline silicic glasses from different localities and containing 0.5 to 2 wt% Fe. The redox state of iron in silicate glasses and the local environment around Fe2+ and Fe3+ is known to influence properties such as color or viscosity and crystal-liquid element partitioning, for glasses and melts, respectively. Considering eruption conditions, this information can give a better understanding of the cooling conditions and setting of lava flows. The spectra of silicic glasses are strongly different from that of synthetic glasses and tektites. All spectroscopic methods show the presence of Fe3+ and Fe2+ cations belonging to the glassy network associated with clustered superparamagnetic Fe-oxides. TEM data indicate that nanometric Fe-oxide clusters are poorly crystallized. The spectroscopic data on obsidians have been compared to those recorded on magnetite and synthetic glasses to assess the importance of Fe oxide clusters. These clusters are responsible for the variety of coloration of these obsidians. The speciation of iron in these glasses and associated clusters will be discussed in terms of formation conditions.

  19. Tempo and mode in fossil molluscs: Investigating organism-environment interactions, species, and speciation

    SciTech Connect

    Geary, D.H. )

    1992-01-01

    After 20 years of investigation into the tempo and mode of species-level change in the fossil record, it is clear that both punctuated equilibrium and phyletic gradualism occur, as do a variety of intermediate patterns. Important questions regarding the maintenance and diversification of species remain, however. The author documents a variety of evolutionary patterns from gastropods and bivalves, and uses these to discuss two basic issues: environment-organism interactions over time, and the importance of information on geographic variation. The tempo of morphological change is an expression of the interaction of organisms and their environment. The initial over which new species appear may be a geologic instant'' (Melanopsis gastropods), or may last 10[sup 4]--10[sup 5] years (Prunum gastropods), or 10[sup 6] years (Melanopsis). This wide range of intervals indicates a variety of tempos of environmental change, and/or different kinds of organismal responses. Analysis of geographic variation is of critical importance in understanding species and speciation, yet is lacking in many paleontological studies. An example of the utility of geographic information is a study of the muricid gastropod Acanthina, which demonstrates how a geographically localized form may spread through a species range. Another example involves a species of Pleuriocardia in stasis: geographic variation among roughly correlative samples greatly exceeds long-term temporal variation. Considerations of the mechanisms for stasis and change must take into account such intraspecific variation.

  20. Speciation in fungi.

    PubMed

    Giraud, Tatiana; Refrégier, Guislaine; Le Gac, Mickaël; de Vienne, Damien M; Hood, Michael E

    2008-06-01

    In this review on fungal speciation, we first contrast the issues of species definition and species criteria and show that by distinguishing the two concepts the approaches to studying the speciation can be clarified. We then review recent developments in the understanding of modes of speciation in fungi. Allopatric speciation raises no theoretical problem and numerous fungal examples exist from nature. We explain the theoretical difficulties raised by sympatric speciation, review the most recent models, and provide some natural examples consistent with speciation in sympatry. We describe the nature of prezygotic and postzygotic reproductive isolation in fungi and examine their evolution as functions of temporal and of the geographical distributions. We then review the theory and evidence for roles of cospeciation, host shifts, hybridization, karyotypic rearrangement, and epigenetic mechanisms in fungal speciation. Finally, we review the available data on the genetics of speciation in fungi and address the issue of speciation in asexual species.

  1. Chromosomal Speciation Revisited: Modes of Diversification in Australian Morabine Grasshoppers (Vandiemenella, viatica Species Group)

    PubMed Central

    Kawakami, Takeshi; Butlin, Roger K.; Cooper, Steven J. B.

    2011-01-01

    Chromosomal rearrangements can alter the rate and patterns of gene flow within or between species through a reduction in the fitness of chromosomal hybrids or by reducing recombination rates in rearranged areas of the genome. This concept, together with the observation that many species have structural variation in chromosomes, has led to the theory that the rearrangements may play a direct role in promoting speciation. Australian morabine grasshoppers (genus Vandiemenella, viatica species group) are an excellent model for studying the role of chromosomal rearrangement in speciation because they show extensive chromosomal variation, parapatric distribution patterns, and narrow hybrid zones at their boundaries. This species group stimulated development of one of the classic chromosomal speciation models, the stasipatric speciation model proposed by White in 1968. Our population genetic and phylogeographic analyses revealed extensive non-monophyly of chromosomal races along with historical and on-going gene introgression between them. These findings suggest that geographical isolation leading to the fixation of chromosomal variants in different geographic regions, followed by secondary contact, resulted in the present day parapatric distributions of chromosomal races. The significance of chromosomal rearrangements in the diversification of the viatica species group can be explored by comparing patterns of genetic differentiation between rearranged and co-linear parts of the genome. PMID:26467499

  2. Speciation below ground: Tempo and mode of diversification in a radiation of endogean ground beetles.

    PubMed

    Andújar, Carmelo; Pérez-González, Sergio; Arribas, Paula; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2017-09-19

    Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species' habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below-ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil. A time calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species-area-age relationships, and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long-term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area and age dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Can we continue to neglect genomic variation in introgression rates when inferring the history of speciation? A case study in a Mytilus hybrid zone.

    PubMed

    Roux, C; Fraïsse, C; Castric, V; Vekemans, X; Pogson, G H; Bierne, N

    2014-08-01

    The use of molecular data to reconstruct the history of divergence and gene flow between populations of closely related taxa represents a challenging problem. It has been proposed that the long-standing debate about the geography of speciation can be resolved by comparing the likelihoods of a model of isolation with migration and a model of secondary contact. However, data are commonly only fit to a model of isolation with migration and rarely tested against the secondary contact alternative. Furthermore, most demographic inference methods have neglected variation in introgression rates and assume that the gene flow parameter (Nm) is similar among loci. Here, we show that neglecting this source of variation can give misleading results. We analysed DNA sequences sampled from populations of the marine mussels, Mytilus edulis and M. galloprovincialis, across a well-studied mosaic hybrid zone in Europe and evaluated various scenarios of speciation, with or without variation in introgression rates, using an Approximate Bayesian Computation (ABC) approach. Models with heterogeneous gene flow across loci always outperformed models assuming equal migration rates irrespective of the history of gene flow being considered. By incorporating this heterogeneity, the best-supported scenario was a long period of allopatric isolation during the first three-quarters of the time since divergence followed by secondary contact and introgression during the last quarter. By contrast, constraining migration to be homogeneous failed to discriminate among any of the different models of gene flow tested. Our simulations thus provide statistical support for the secondary contact scenario in the European Mytilus hybrid zone that the standard coalescent approach failed to confirm. Our results demonstrate that genomic variation in introgression rates can have profound impacts on the biological conclusions drawn from inference methods and needs to be incorporated in future studies.

  4. Shear horizontal guided wave modes to infer the shear stiffness of adhesive bond layers.

    PubMed

    Le Crom, Bénédicte; Castaings, Michel

    2010-04-01

    This paper presents a non-destructive, ultrasonic technique to evaluate the quality of bonds between substrates. Shear-horizontally polarized (SH) wave modes are investigated to infer the shear stiffness of bonds, which is necessarily linked to the shear resistance that is a critical parameter for bonded structures. Numerical simulations are run for selecting the most appropriate SH wave modes, i.e., with higher sensitivity to the bond than to other components, and experiments are made for generating-detecting pre-selected SH wave modes and for measuring their phase velocities. An inverse problem is finally solved, consisting of the evaluation of the shear stiffness modulus of a bond layer at different curing times between a metallic plate and a composite patch, such assembly being investigated in the context of repair of aeronautical structures.

  5. Speciation, diversity, and Mode 1 technologies: the impact of variability selection.

    PubMed

    Grove, Matt

    2011-09-01

    Over geological timescales, organisms encounter periodic shifts in selective conditions driven by environmental change. The variability selection hypothesis suggests that increases in environmental fluctuation have led to the evolution of complex, flexible behaviours able to respond to novel and unpredictable adaptive settings. This hypothesis is tested via the framework of a single locus genetic model in which an invading 'versatilist' allele competes with two opposed specialists in a selection regime driven by a fluctuating environment, modelled initially as a sine wave and subsequently as an empirical climate curve covering the past 5 million years. Results demonstrate that generalist alleles achieve fixation in the sine wave environment, whilst versatilist alleles do so in the empirical environment, even at a range of very low fitness advantages over the basic generalist template. Variability selection is found to be a particularly strong force between approximately 2.5 and 1.2 Ma (millions of years ago). These results are discussed in relation to the spread of Oldowan lithics and the patterns of speciation and extinction documented in the hominin fossil record. It is suggested that the flexibility required for survival in a variable climatic regime may have been a stimulus to the development of the first stone tool technologies, whilst the ecological opportunities provided by heightened variability may have been a factor in prompting the hominin adaptive radiation evidenced during this period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Inference of stress and texture from angular dependence of ultrasonic plate mode velocities

    NASA Technical Reports Server (NTRS)

    Thompson, R. B.; Smith, J. F.; Lee, S. S.

    1986-01-01

    The theory for the angular dependence of the ultrasonic wave velocity in a symmetry plane of an orthorhombic, stressed material is presented. The two waves having polarizations in this plane are shown to have velocities which can be estimated from measurements of the SH sub 0 and S sub 0 guided modes of a thin plate: the relationship being exact for the SH sub 0 mode and requiring a 10% correction for the S sub 0 mode at long wavelength. It is then shown how stress and texture can be independently inferred from various features of the angular dependence of these two velocities. From the SH sub 0 data, the ability to determine the directions and differences in magnitudes of principal stresses is described and supported by experimental data on several materials. From a combination of the SH sub 0 and S sub 0 data, a procedure is proposed for determining the coefficients W sub 400, W sub 420 and W sub 440 of an expansion of the crystallite orientation distribution function in terms of generalized Legendre functions. Possible applications in process control are indicated.

  7. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  8. Distribution of Spontaneous Mutants and Inferences about the Replication Mode of the RNA Bacteriophage φ6

    PubMed Central

    Chao, Lin; Rang, Camilla U.; Wong, Linda E.

    2002-01-01

    When a parent virus replicates inside its host, it must first use its own genome as the template for replication. However, once progeny genomes are produced, the progeny can in turn act as templates. Depending on whether the progeny genomes become templates, the distribution of mutants produced by an infection varies greatly. While information on the distribution is important for many population genetic models, it is also useful for inferring the replication mode of a virus. We have analyzed the distribution of mutants emerging from single bursts in the RNA bacteriophage φ6 and find that the distribution closely matches a Poisson distribution. The match suggests that replication in this bacteriophage is effectively by a stamping machine model in which the parental genome is the main template used for replication. However, because the distribution deviates slightly from a Poisson distribution, the stamping machine is not perfect and some progeny genomes must replicate. By fitting our data to a replication model in which the progeny genomes become replicative at a given rate or probability per round of replication, we estimated the rate to be very low and on the on the order of 10−4. We discuss whether different replication modes may confer an adaptive advantage to viruses. PMID:11884552

  9. Inference of Gene Flow in the Process of Speciation: An Efficient Maximum-Likelihood Method for the Isolation-with-Initial-Migration Model

    PubMed Central

    Costa, Rui J.; Wilkinson-Herbots, Hilde

    2017-01-01

    The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very sensitive to the model’s assumptions—including the assumption of constant gene flow until the present. This article is concerned with the isolation-with-initial-migration (IIM) model, which drops precisely this assumption. In the IIM model, one ancestral population divides into two descendant subpopulations, between which there is an initial period of gene flow and a subsequent period of isolation. We derive a very fast method of fitting an extended version of the IIM model, which also allows for asymmetric gene flow and unequal population sizes. This is a maximum-likelihood method, applicable to data on the number of segregating sites between pairs of DNA sequences from a large number of independent loci. In addition to obtaining parameter estimates, our method can also be used, by means of likelihood-ratio tests, to distinguish between alternative models representing the following divergence scenarios: (a) divergence with potentially asymmetric gene flow until the present, (b) divergence with potentially asymmetric gene flow until some point in the past and in isolation since then, and (c) divergence in complete isolation. We illustrate the procedure on pairs of Drosophila sequences from ∼30,000 loci. The computing time needed to fit the most complex version of the model to this data set is only a couple of minutes. The R code to fit the IIM model can be found in the supplementary files of this article. PMID:28193727

  10. Standing Sausage Modes in Nonuniform Magnetic Tubes: An Inversion Scheme for Inferring Flare Loop Parameters

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Xia; Li, Bo; Xiong, Ming; Yu, Hui; Guo, Ming-Zhe

    2015-10-01

    Standing sausage modes in flare loops are important for interpreting quasi-periodic pulsations (QPPs) in solar flare light curves. We propose an inversion scheme that consistently uses their periods P and damping times τ to diagnose flare loop parameters. We derive a generic dispersion relation governing linear sausage waves in pressure-less straight tubes, for which the transverse density inhomogeneity takes place in a layer of arbitrary width l and is of arbitrary form. We find that P and τ depend on the combination of [R/{v}{Ai},L/R,l/R,{ρ }{{i}}/{ρ }{{e}}], where R is the loop radius, L is the looplength, vAi is the internal Alfvén speed, and ρi/ρe is the density contrast. For all the density profiles examined, P and τ experience saturation when L/R ≫ 1, yielding an inversion curve in the [R/{v}{Ai},l/R,{ρ }{{i}}/{ρ }{{e}}] space with a specific density profile when L/R is sufficiently large. When applied to a spatially unresolved QPP event, the scheme yields that R/vAi is the best constrained, whereas l/R corresponds to the other extreme. For spatially resolved QPPs, while L/R ≫ 1 cannot be assumed beforehand, an inversion curve remains possible due to additional geometrical constraints. When a spatially resolved QPP event involves another mode, as is the case for a recent event, the full set of [{v}{Ai},l,{ρ }{{i}}/{ρ }{{e}}] can be inferred. We conclude that the proposed scheme provides a useful tool for magneto-seismologically exploiting QPPs.

  11. Nested biological variation and speciation

    PubMed Central

    Foster, S. A.

    1998-01-01

    The modes of speciation that are thought to have contributed most to the generation of biodiversity require population differentiation as the initial stage in the speciation process. Consequently, a complete understanding of the mechanisms of speciation requires that the process be examined not just after speciation is complete, or nearly so, but also much earlier. Because reproductive isolation defines biological species, and it evolves slowly, study of the process may require a prohibitive span of time. Even if speciation could be observed directly, selection of populations in the process of speciation is typically difficult or impossible, because those that will ultimately undergo speciation cannot be distinguished from those that will differentiate but never assume the status of new biological species. One means of circumventing this problem is to study speciation in taxa comprising several sibling species, at least one of which exhibits extensive population differentiation. We illustrate this approach by exploring patterns of population variation in the post-glacial radiation of the threespine stickleback, Gasterosteus aculeatus. We focus on lacustrine populations and species within this complex, demonstrating parallel axes of divergence within populations, among populations and among species. The pattern that emerges is one of parallel relationships between phenotype and fitness at all three hierarchical levels, a pattern that facilitates exploration of the causes and consequences of speciation and secondary contact. A second outcome of this exploration is the observation that speciation can be the consequence of a cascade of effects, beginning with selection on trophic or other characteristics that in turn force the evolution of other population characteristics that precipitate speciation. Neither of these conclusions could have been reached without comparative studies of wild populations at several hierarchical levels, a conclusion reinforced by a brief

  12. A new description of Earth's wobble modes using Clairaut coordinates 2: results and inferences on the core mode spectrum

    NASA Astrophysics Data System (ADS)

    Crossley, D. J.; Rochester, M. G.

    2014-09-01

    Numerical solutions are presented for the formulation of the linear momentum description of Earth's dynamics using Clairaut coordinates. We have developed a number of methods to integrate the equations of motion, including starting at the Earth's centre of mass, starting at finite radius and separating the displacement associated with the primary rigid rotation. We include rotation and ellipticity to second order up to spherical harmonic T_5^m, starting with the primary displacement T_1^m with m = ±1. We are able to confirm many of the previous results for models PREM (with no surface ocean) and 1066A, both in their original form and with neutrally stratified liquid cores. Our period search ranges from the near-seismic band [0.1 sidereal days (sd)] to 3500 sd, within which we have identified the four well-known wobble-nutation modes: the Free Core Nutation (retrograde) at -456 sd, the Free Inner Core Nutation (FICN, prograde) at 468 sd, the Chandler Wobble (prograde) at 402 sd, and the Inner Core Wobble (ICW, prograde) at about 2842 sd (7.8 yr) for neutral PREM. The latter value varies significantly with earth model and integration method. In addition we have verified to high accuracy the tilt-over mode at 1 sd within a factor 10-6. In an exhaustive search we found no additional near-diurnal wobble modes that could be identified as nutations. We show that the eigenfunctions for the as-yet-unidentified ICW are extremely sensitive to the details of the earth model, especially the core stability profile and there is no well-defined sense of its wobble relative to the mantle. Calculations are also done for a range of models derived from PREM with homogeneous layers, as well as with incompressible cores. For this kind of model the ICW ceases to have just a simple IC rigid motion when the fluid compressibility is either unchanged or multiplied by a factor 10; in this case the outer core exhibits oscillations that arise from an unstable fluid density stratification. For

  13. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals

    EPA Science Inventory

    The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...

  14. Mode of Action for Reproductive and Hepatic Toxicity Inferred from a Genomic Study of Triazole Antifungals

    EPA Science Inventory

    The mode of action for the reproductive toxicity of triazole antifungals have been previously characterized by an observed increased in serum testosterone, hepatotoxicity, and reduced insemination and fertility indices. In order to refine our mechanistic understanding of these m...

  15. Lightning on Venus inferred from whistler-mode waves in the ionosphere.

    PubMed

    Russell, C T; Zhang, T L; Delva, M; Magnes, W; Strangeway, R J; Wei, H Y

    2007-11-29

    The occurrence of lightning in a planetary atmosphere enables chemical processes to take place that would not occur under standard temperatures and pressures. Although much evidence has been reported for lightning on Venus, some searches have been negative and the existence of lightning has remained controversial. A definitive detection would be the confirmation of electromagnetic, whistler-mode waves propagating from the atmosphere to the ionosphere. Here we report observations of Venus' ionosphere that reveal strong, circularly polarized, electromagnetic waves with frequencies near 100 Hz. The waves appear as bursts of radiation lasting 0.25 to 0.5 s, and have the expected properties of whistler-mode signals generated by lightning discharges in Venus' clouds.

  16. Models of speciation: where are we now?

    PubMed

    Gavrilets, Sergey

    2014-01-01

    Theory building is an integral part of biological research, in general, and of speciation research, in particular. Here, I review the modeling work on speciation done in the last 10 years or so, assessing the progress made and identifying areas where additional effort is required. Specific topics considered include evolutionary dynamics of genetic incompatibilities, spatial and temporal patterns of speciation, links to neutral theory of biodiversity, effects of multidimensionality of phenotype, sympatric and parapatric speciation, adaptive radiation, speciation by sexual conflict, and models tailored for specific biological systems. Particularly challenging questions for future theoretical research identified here are 1) incorporating gene regulatory networks in models describing accumulation of genetic incompatibilities; 2) integrating models of community ecology with those developed in speciation theory; 3) building models providing better insights on the dynamics of parapatric speciation; 4) modeling speciation in multidimensional ecological niches with mating preferences based on multidimensional mating cues and sexual characters; 5) linking microevolutionary processes with macroevolutionary patterns as observed in adaptive radiations and paleontological record; 6) modeling speciation in specific systems studied by empirical biologists; and 7) modeling human origins. The insights from dynamic models of speciation should be useful in developing statistical tools that would enable empiricists to infer the history of past evolutionary divergence and speciation from genomic data.

  17. Testing Mendelian inheritance from field-collected parasites: Revealing duplicated loci enables correct inference of reproductive mode and mating system.

    PubMed

    Detwiler, Jillian T; Criscione, Charles D

    2011-09-01

    Cryptic aspects of parasite population biology, e.g., mating systems, are increasingly being inferred from polymorphic and co-dominant genetic markers such as microsatellite loci. Underlying the use of such co-dominant markers is the assumption of Mendelian inheritance. The failure to meet this assumption can lead to artifactual statistics and erroneous population inferences. Here, we illustrate the importance of testing the Mendelian segregation and assortment of genetic markers and demonstrate how field-collected samples can be utilised for this purpose. To examine the reproductive mode and mating system of hermaphroditic parasites, we developed microsatellites for the cestode, Oochoristica javaensis. Among loci, we found a bimodal distribution of F(IS) (a fixation index that quantifies the deviation from Hardy-Weinberg equilibrium within subpopulations) values where loci were either highly negative (close to -1) or highly positive (∼0.8). By conducting tests of Mendelian segregation from natural crosses, we determined that loci with negative F(IS) values were in fact duplicated loci that were amplified by a single primer pair. Genetic crosses also provided linkage data and indicated that the duplicated loci most likely arose via tandem duplications rather than whole genome/chromosome duplications. By correcting for the duplicated loci, we were able to correctly infer that O. javaensis has sexual reproduction, but the mating system is highly inbred. To assist others in testing Mendelian segregation and independent assortment from natural samples, we discuss the benefits and limitations, and provide guidelines for particular parasite systems amenable to the methods employed here.

  18. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference.

    PubMed

    Halas, Dominik; Simons, Andrew M

    2014-01-01

    Mitochondrial and nuclear introgression among closely related taxa can greatly complicate the process of determining their phylogenetic relationships. In the Central Highlands of North America, many fish taxa have undergone introgression; in this study, we demonstrate the existence of an unusual introgression event in the Etheostoma zonale species group. We used one mitochondrial and seven nuclear loci to determine the relationships of the taxa within the E. zonale group, and their degree of differentiation. We found evidence of multiple divergent populations within each species; much of the divergence within species has taken place during the Pleistocene. We also found evidence of a previously unknown cryptic species in the Upper Tennessee River which diverged from the remainder of the group during the Pliocene, and has undergone mitochondrial and nuclear introgression with E. zonale, in an apparent process of speciation reversal. We examined the effects that using varying types of recombination tests to eliminate the signal of recombination from nuclear loci would have on the phylogenetic placement of this introgressed lineage in our species tree analyses.

  19. Inferring modes of colonization for pest species using heterozygosity comparisons and a shared-allele test.

    PubMed Central

    Sved, J A; Yu, H; Dominiak, B; Gilchrist, A S

    2003-01-01

    Long-range dispersal of a species may involve either a single long-distance movement from a core population or spreading via unobserved intermediate populations. Where the new populations originate as small propagules, genetic drift may be extreme and gene frequency or assignment methods may not prove useful in determining the relation between the core population and outbreak samples. We describe computationally simple resampling methods for use in this situation to distinguish between the different modes of dispersal. First, estimates of heterozygosity can be used to test for direct sampling from the core population and to estimate the effective size of intermediate populations. Second, a test of sharing of alleles, particularly rare alleles, can show whether outbreaks are related to each other rather than arriving as independent samples from the core population. The shared-allele statistic also serves as a genetic distance measure that is appropriate for small samples. These methods were applied to data on a fruit fly pest species, Bactrocera tryoni, which is quarantined from some horticultural areas in Australia. We concluded that the outbreaks in the quarantine zone came from a heterogeneous set of genetically differentiated populations, possibly ones that overwinter in the vicinity of the quarantine zone. PMID:12618417

  20. Modeling transportation of efavirenz: inference on possibility of mixed modes of transportation and kinetic solubility.

    PubMed

    Nemaura, Tafireyi

    2015-01-01

    Understanding drug transportation mechanisms in the human body is of paramount importance in modeling Pharmacokinetic-Pharmacodynamic relationships. This work gives a novel general model of efavirenz transportation projections based on concentrations simulated from patients on a dose of 600 mg. The work puts forward a proposition that transportation can wholly be modeled by concentration and time in a uniform volumetric space. Furthermore, movement entities are used to inform the state of "kinetic solubility" of a solution. There is use of Ricker's model, and forms of the Hill's equation in modeling transportation. Characterization on the movement rates of solution particle are suggested in relation to advection rate of solution particle. At turning points on the transportation rate of solution particle vs. concentration curve, a suggestion of possibly change of dominance in the mode of transportation and saturation is made. There are four movement rates postulated at primary micro-level transportation, that are attributed to convection, diffusion [passive transportation (EI )] and energy dependent system transportation (ED ) in relation to advection. Furthermore, a new parameter is introduced which is defined as an advection rate constant of solution particle. It is postulated to be dependent on two rate constants of solution particle, that is a convection rate constant of solution particle and a saturable transportation rate constant of solution particle. At secondary micro-level transportation, the results show convection as sum of advection and saturable transportation. The kinetics of dissolution of efavirenz in the solution space is postulated. Relatively, a good level of kinetics of dissolution is projected in the concentration region 0 - 32.82 μg/ml.

  1. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    EPA Science Inventory

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  2. DOSE RESPONSE FROM HIGH THROUGHPUT GENE EXPRESSION STUDIES AND THE INFLUENCE OF TIME AND CELL LINE ON INFERRED MODE OF ACTION BY ONTOLOGIC ENRICHMENT (SOT)

    EPA Science Inventory

    Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...

  3. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  4. Special Speciation

    ERIC Educational Resources Information Center

    Countryman, Lyn L.; Maroo, Jill D.

    2015-01-01

    Considerable anecdotal evidence indicates that some of the most difficult concepts that both high school and undergraduate elementary-education students struggle with are those surrounding evolutionary principles, especially speciation. It's no wonder that entry-level biology students are confused, when biologists have multiple definitions of…

  5. Multiple player tracking in sports video: a dual-mode two-way bayesian inference approach with progressive observation modeling.

    PubMed

    Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong

    2011-06-01

    Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.

  6. Speciation in fungal and oomycete plant pathogens.

    PubMed

    Restrepo, Silvia; Tabima, Javier F; Mideros, Maria F; Grünwald, Niklaus J; Matute, Daniel R

    2014-01-01

    The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.

  7. Segmentation of plate coupling, fate of subduction fluids, and modes of arc magmatism in Cascadia, inferred from magnetotelluric resistivity

    USGS Publications Warehouse

    Wannamaker, Philip E.; Evans, Rob L.; Bedrosian, Paul A.; Unsworth, Martyn J.; Maris, Virginie; McGary, R. Shane

    2014-01-01

    Five magnetotelluric (MT) profiles have been acquired across the Cascadia subduction system and transformed using 2-D and 3-D nonlinear inversion to yield electrical resistivity cross sections to depths of ∼200 km. Distinct changes in plate coupling, subduction fluid evolution, and modes of arc magmatism along the length of Cascadia are clearly expressed in the resistivity structure. Relatively high resistivities under the coasts of northern and southern Cascadia correlate with elevated degrees of inferred plate locking, and suggest fluid- and sediment-deficient conditions. In contrast, the north-central Oregon coastal structure is quite conductive from the plate interface to shallow depths offshore, correlating with poor plate locking and the possible presence of subducted sediments. Low-resistivity fluidized zones develop at slab depths of 35–40 km starting ∼100 km west of the arc on all profiles, and are interpreted to represent prograde metamorphic fluid release from the subducting slab. The fluids rise to forearc Moho levels, and sometimes shallower, as the arc is approached. The zones begin close to clusters of low-frequency earthquakes, suggesting fluid controls on the transition to steady sliding. Under the northern and southern Cascadia arc segments, low upper mantle resistivities are consistent with flux melting above the slab plus possible deep convective backarc upwelling toward the arc. In central Cascadia, extensional deformation is interpreted to segregate upper mantle melts leading to underplating and low resistivities at Moho to lower crustal levels below the arc and nearby backarc. The low- to high-temperature mantle wedge transition lies slightly trenchward of the arc.

  8. Speciation as a sieve for ancestral polymorphism.

    PubMed

    Guerrero, Rafael F; Hahn, Matthew W

    2017-08-09

    Because they are considered rare, balanced polymorphisms are often discounted as crucial constituents of genome-wide variation in sequence diversity. Despite its perceived rarity, however, long-term balancing selection can elevate genetic diversity and significantly affect observed divergence between species. Here, we discuss how ancestral balanced polymorphisms can be "sieved" by the speciation process, which sorts them unequally across descendant lineages. After speciation, ancestral balancing selection is revealed by genomic regions of high divergence between species. This signature, which resembles that of other evolutionary processes, can potentially confound genomic studies of population divergence and inferences of "islands of speciation." © 2017 John Wiley & Sons Ltd.

  9. Allopatric divergence and speciation in coral reef fish: the three-spot dascyllus, Dascyllus trimaculatus, species complex.

    PubMed

    Leray, Matthieu; Beldade, Ricardo; Holbrook, Sally J; Schmitt, Russell J; Planes, Serge; Bernardi, Giacomo

    2010-05-01

    Long pelagic larval phases and the absence of physical barriers impede rapid speciation and contrast the high diversity observed in marine ecosystems such as coral reefs. In this study, we used the three-spot dascyllus (Dascyllus trimaculatus) species complex to evaluate speciation modes at the spatial scale of the Indo-Pacific. The complex includes four recognized species and four main color morphs that differ in distribution. Previous studies of the group using mitochondrial DNA revealed a noncongruence between color morphs and genetic groupings; with two of the color morphs grouped together and one color morph separated into three clades. Using extensive geographic sampling of 563 individuals and a combination of mitochondrial DNA sequences and 13 nuclear microsatellites, we defined population/species boundaries and inferred different speciation modes. The complex is composed of seven genetically distinct entities, some of which are distinct morphologically. Despite extensive dispersal abilities and an apparent lack of barriers, observed genetic partitions are consistent with allopatric speciation. However, ecological pressure, assortative mating, and sexual selection, were likely important during periods of geographical isolation. This study therefore suggests that primarily historical factors later followed by ecological factors caused divergence and speciation in this group of coral reef fish.

  10. Speciation in fishes.

    PubMed

    Bernardi, Giacomo

    2013-11-01

    The field of speciation has seen much renewed interest in the past few years, with theoretical and empirical advances that have moved it from a descriptive field to a predictive and testable one. The goal of this review is to provide a general background on research on speciation as it pertains to fishes. Three major components to the question are first discussed: the spatial, ecological and sexual factors that influence speciation mechanisms. We then move to the latest developments in the field of speciation genomics. Affordable and rapidly available, massively parallel sequencing data allow speciation studies to converge into a single comprehensive line of investigation, where the focus has shifted to the search for speciation genes and genomic islands of speciation. We argue that fish present a very diverse array of scenarios, making them an ideal model to study speciation processes.

  11. Early Asteroseismic Results from Kepler: Structural and Core Parameters of the Hot B Subdwarf KPD 1943+4058 as Inferred from g-mode Oscillations

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Charpinet, S.; Fontaine, G.; Brassard, P.; Green, E. M.; Randall, S. K.; Silvotti, R.; Østensen, R. H.; Kjeldsen, H.; Christensen-Dalsgaard, J.; Borucki, W. J.; Koch, D.

    2010-08-01

    We present a seismic analysis of the pulsating hot B subdwarf KPD 1943+4058 (KIC 005807616) on the basis of the long-period, gravity-mode pulsations recently uncovered by Kepler. This is the first time that g-mode seismology can be exploited quantitatively for stars on the extreme horizontal branch, all previous successful seismic analyses having been confined so far to short-period, p-mode pulsators. We demonstrate that current models of hot B subdwarfs can quite well explain the observed g-mode periods, while being consistent with independent constraints provided by spectroscopy. We identify the 18 pulsations retained in our analysis as low-degree (ell = 1 and 2), intermediate-order (k = -9 through -58) g-modes. The periods (frequencies) are recovered, on average, at the 0.22% level, which is comparable to the best results obtained for p-mode pulsators. We infer the following structural and core parameters for KPD 1943+4058 (formal fitting uncertainties only): T eff = 28,050 ± 470 K, log g = 5.52 ± 0.03, M * = 0.496 ± 0.002 M sun, log (M env/M *) = -2.55 ± 0.07, log (1 - M core/M *) = -0.37 ± 0.01, and X core(C+O) = 0.261 ± 0.008. We additionally derive the age of the star since the zero-age extended horizontal branch 18.4 ± 1.0 Myr, the radius R = 0.203 ± 0.007 R sun, the luminosity L = 22.9 ± 3.13 L sun, the absolute magnitude MV = 4.21 ± 0.11, the reddening index E(B - V) = 0.094 ± 0.017, and the distance d = 1180 ± 95 pc.

  12. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  13. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  14. The rate test of speciation: estimating the likelihood of non-allopatric speciation from reproductive isolation rates in Drosophila.

    PubMed

    Yukilevich, Roman

    2014-04-01

    Among the most debated subjects in speciation is the question of its mode. Although allopatric (geographical) speciation is assumed the null model, the importance of parapatric and sympatric speciation is extremely difficult to assess and remains controversial. Here I develop a novel approach to distinguish these modes of speciation by studying the evolution of reproductive isolation (RI) among taxa. I focus on the Drosophila genus, for which measures of RI are known. First, I incorporate RI into age-range correlations. Plots show that almost all cases of weak RI are between allopatric taxa whereas sympatric taxa have strong RI. This either implies that most reproductive isolation (RI) was initiated in allopatry or that RI evolves too rapidly in sympatry to be captured at incipient stages. To distinguish between these explanations, I develop a new "rate test of speciation" that estimates the likelihood of non-allopatric speciation given the distribution of RI rates in allopatry versus sympatry. Most sympatric taxa were found to have likely initiated RI in allopatry. However, two putative candidate species pairs for non-allopatric speciation were identified (5% of known Drosophila). In total, this study shows how using RI measures can greatly inform us about the geographical mode of speciation in nature.

  15. Inferring Low-Mode Asymmetries from the Elastically Scattered Neutron Spectrum in Layered Cryogenic DT Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Glebov, V. Yu.; Goncharov, V. N.; Sangster, T. C.; Stoeckl, C.; Frenje, J. A.; Gatu Johnson, M.

    2014-10-01

    High-resolution neutron spectroscopy is used to probe the areal density of layered cryogenic DT direct-drive implosions in inertial confinement fusion experiments on OMEGA. Advanced scintillation detectors record the neutron spectrum using time-of-flight techniques. The shape of the energy spectrum is fully determined by the neutron elastic scattering cross-section for spherically symmetric target configurations. Significant differences from the expected shape have been measured for some recent implosions, which indicate a deviation from a spherically symmetric fuel assembly. Neutron scattering with low-mode perturbations in the DT fuel assembly have been simulated in the Monte Carlo n-particle transport code. The experimental data shows good agreement with the model when the mass distribution of the compressed DT shell is highly asymmetric with one side having a factor-of-2 higher areal density. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Biogeography and speciation patterns of the golden orb spider genus Nephila (Araneae: Nephilidae) in Asia.

    PubMed

    Su, Yong-Chao; Chang, Yung-Hau; Smith, Deborah; Zhu, Ming-Sheng; Kuntner, Matjaž; Tso, I-Min

    2011-01-01

    The molecular phylogeny of the globally distributed golden orb spider genus Nephila (Nephilidae) was reconstructed to infer its speciation history, with a focus on SE Asian/W Pacific species. Five Asian, two Australian, four African, and one American species were included in the phylogenetic analyses. Other species in Nephilidae, Araneidae, and Tetragnathidae were included to assess their relationships with the genus Nephila, and one species from Uloboridae was used as the outgroup. Phylogenetic trees were reconstructed from one nuclear (18S) and two mitochondrial (COI and 16S) markers. Our molecular phylogeny shows that the widely distributed Asian/Australian species, N. pilipes, and an African species, N. constricta, form a clade that is sister to all other Nephila species. Nested in this Nephila clade are one clade with tropical and subtropical/temperate Asian/Australian species, and the other containing African and American species. The estimated divergence times suggest that diversification events within Nephila occurred during mid-Miocene to Pliocene (16 Mya-2 Mya), and these time periods were characterized by cyclic global warming/cooling events. According to Dispersal and Vicariance Analysis (DIVA), the ancestral range of the Asian/Australian clade was tropical Asia, and the ancestral range of the genus Nephila was either tropical Asia or Africa. We conclude that the speciation of the Asian/Australian Nephila species was driven by Neogene global cyclic climate changes. However, further population level studies comparing diversification patterns of sister species are needed to determine the mode of speciation of these species.

  17. Sex-biased gene flow in spectacled eiders (Anatidae): Inferences from molecular markers with contrasting modes of inheritance

    USGS Publications Warehouse

    Scribner, Kim T.; Petersen, Margaret R.; Fields, Raymond L.; Talbot, Sandra L.; Pearce, John M.; Chesser, Ronald K.

    2001-01-01

    Genetic markers that differ in mode of inheritance and rate of evolution (a sex-linked Z-specific microsatellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro- and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex-specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon-Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (ϕCT = 0.189, P < 0.01; ϕSC = 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex-linked: ϕST = 0.001, P > 0.05; biparentally inherited microsatellites: mean θ = 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10−4 and 1.28 × 10−2, respectively). Effective population size for mtDNA was estimated to be at least three

  18. Speciation history of three closely related oak gall wasps, Andricus mukaigawae, A. kashiwaphilus, and A. pseudoflos (Hymenoptera: Cynipidae) inferred from nuclear and mitochondrial DNA sequences.

    PubMed

    Wachi, Nakatada; Abe, Yoshihisa; Inomata, Nobuyuki; Szmidt, Alfred Edward; Tachida, Hidenori

    2012-10-01

    The Andricus mukaigawae complex of oak gall wasps is composed of cyclically parthenogenetic species: A. mukaigawae and Andricus kashiwaphilus, and a parthenogenetic species, Andricus pseudoflos. The component species differ in life history, host plant, karyotype, and asexual gall shape, although little difference is found in the external morphology of asexual adults. To understand the speciation history of this species complex, DNA sequences of one mitochondrial region and nine nuclear gene regions were investigated. The genetic relationship among the species suggested that a loss of sex occurred after host shift. Unexpectedly, two or three distinct groups in the parthenogenetic species, A. pseudoflos, were revealed by both mitochondrial and nuclear DNA data. Gene flow in nuclear genes from the species not infected by Wolbachia (A. kashiwaphilus) to the species infected by it (A. mukaigawae) was suggested by a method based on coalescent simulations. On the other hand, gene flow in mitochondrial genes was suggested to be in the opposite direction. These findings indicate possible involvement of Wolbachia infection in the speciation process of the A. mukaigawae complex. © 2012 Blackwell Publishing Ltd.

  19. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  20. Heteropatric speciation in a duck, Anas crecca.

    PubMed

    Winker, Kevin; McCracken, Kevin G; Gibson, Daniel D; Peters, Jeffrey L

    2013-12-01

    Heteropatric differentiation is a mode of speciation with gene flow in which divergence occurs between lineages that are in sympatry and allopatry at different times during cyclic spatial movements. Empirical evidence suggests that heteropatric differentiation may prove to be common among seasonally migratory organisms. We examined genetic differentiation between the sedentary Aleutian Islands population of green-winged teal (Anas crecca-nimia) and its close migratory relative, the Eurasian, or Old World (OW), Anas c. crecca population, a portion of which passes through the range of nimia during its seasonal migrations. We also examined its relationship with the parapatric North American, New World (NW), A. c. carolinensis population. Sequence data from eight nuclear introns and the mtDNA control region showed that the nimia-crecca divergence occurred much more recently than the deeper crecca-carolinensis split (~83 000 years vs. ~1.1 Myr). Despite considerable spatial overlap between crecca and nimia during seasonal migration, three key predictions of heteropatric differentiation are supported: significant genetic divergence (overall mean Φst  = 0.07), low gene flow (2Ne m ~ 1.8), and an effective population size in nimia that is not especially low (Ne  ~ 80 000 individuals). Similar levels of gene flow have come into nimia from carolinensis, but no detectable nuclear gene flow has gone out of nimia into either OW (crecca) or NW (carolinensis) populations. We infer that adaptations of these populations to local optima in different places (e.g. each matching their reproductive effort to different resource blooms) promote genetic isolation and divergence despite periods of sympatry between them, as the heteropatric model predicts. © 2013 John Wiley & Sons Ltd.

  1. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  2. Sympatric speciation by allochrony in a seabird

    PubMed Central

    Friesen, V. L.; Smith, A. L.; Gómez-Díaz, E.; Bolton, M.; Furness, R. W.; González-Solís, J.; Monteiro, L. R.

    2007-01-01

    The importance of sympatric speciation (the evolution of reproductive isolation between codistributed populations) in generating biodiversity is highly controversial. Whereas potential examples of sympatric speciation exist for plants, insects, and fishes, most theoretical models suggest that it requires conditions that are probably not common in nature, and only two possible cases have been described for tetrapods. One mechanism by which it could occur is through allochronic isolation—separation of populations by breeding time. Oceanodroma castro (the Madeiran or band-rumped storm-petrel) is a small seabird that nests on tropical and subtropical islands throughout the Atlantic and Pacific Oceans. In at least five archipelagos, different individuals breed on the same islands in different seasons. We compared variation in five microsatellite loci and the mitochondrial control region among 562 O. castro from throughout the species' range. We found that sympatric seasonal populations differ genetically within all five archipelagos and have ceased to exchange genes in two. Population and gene trees all indicate that seasonal populations within four of the archipelagos are more closely related to each other than to populations from the same season from other archipelagos; divergence of the fifth sympatric pair is too ancient for reliable inference. Thus, seasonal populations appear to have arisen sympatrically at least four times. This is the first evidence for sympatric speciation by allochrony in a tetrapod, and adds to growing indications that population differentiation and speciation can occur without geographic barriers to gene flow. PMID:18006662

  3. Selenometabolomics explored by speciation.

    PubMed

    Ogra, Yasumitsu; Anan, Yasumi

    2012-01-01

    Selenium (Se) belongs to the same group as sulfur in the periodic table but possesses certain chemical properties characteristic of a metal. It is an essential element in animals but becomes severely toxic when the amount ingested exceeds the required level. On the other hand, Se is not essential in plants although some plants are Se hyperaccumulators. Se changes into several chemical forms when metabolized. Thus, the identification of selenometabolites would enable us to formulate a metabolic chart of Se. Recently, speciation analysis by hyphenated techniques has contributed immensely to the study of selenometabolomes, i.e., the entirety of selenometabolites. Indeed, speciation has unveiled some unique selenometabolites in biological samples. The aim of this review is to present newly identified selenometabolites in animals and plants by speciation using hyphenated techniques and to delineate the perspectives of Se biology and toxicology from the viewpoint of speciation.

  4. What Is Speciation?

    PubMed Central

    Shapiro, B. Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-01-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation “in the act” and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent. PMID:27030977

  5. What Is Speciation?

    PubMed

    Shapiro, B Jesse; Leducq, Jean-Baptiste; Mallet, James

    2016-03-01

    Concepts and definitions of species have been debated by generations of biologists and remain controversial. Microbes pose a particular challenge because of their genetic diversity, asexual reproduction, and often promiscuous horizontal gene transfer (HGT). However, microbes also present an opportunity to study and understand speciation because of their rapid evolution, both in nature and in the lab, and small, easily sequenced genomes. Here, we review how microbial population genomics has enabled us to catch speciation "in the act" and how the results have challenged and enriched our concepts of species, with implications for all domains of life. We describe how recombination (including HGT and introgression) has shaped the genomes of nascent microbial, animal, and plant species and argue for a prominent role of natural selection in initiating and maintaining speciation. We ask how universal is the process of speciation across the tree of life, and what lessons can be drawn from microbes? Comparative genomics showing the extent of HGT in natural populations certainly jeopardizes the relevance of vertical descent (i.e., the species tree) in speciation. Nevertheless, we conclude that species do indeed exist as clusters of genetic and ecological similarity and that speciation is driven primarily by natural selection, regardless of the balance between horizontal and vertical descent.

  6. Extensive range overlap between heliconiine sister species: evidence for sympatric speciation in butterflies?

    PubMed

    Rosser, Neil; Kozak, Krzysztof M; Phillimore, Albert B; Mallet, James

    2015-06-30

    Sympatric speciation is today generally viewed as plausible, and some well-supported examples exist, but its relative contribution to biodiversity remains to be established. We here quantify geographic overlap of sister species of heliconiine butterflies, and use age-range correlations and spatial simulations of the geography of speciation to infer the frequency of sympatric speciation. We also test whether shifts in mimetic wing colour pattern, host plant use and climate niche play a role in speciation, and whether such shifts are associated with sympatry. Approximately a third of all heliconiine sister species pairs exhibit near complete range overlap, and analyses of the observed patterns of range overlap suggest that sympatric speciation contributes 32%-95% of speciation events. Müllerian mimicry colour patterns and host plant choice are highly labile traits that seem to be associated with speciation, but we find no association between shifts in these traits and range overlap. In contrast, climatic niches of sister species are more conserved. Unlike birds and mammals, sister species of heliconiines are often sympatric and our inferences using the most recent comparative methods suggest that sympatric speciation is common. However, if sister species spread rapidly into sympatry (e.g. due to their similar climatic niches), then assumptions underlying our methods would be violated. Furthermore, although we find some evidence for the role of ecology in speciation, ecological shifts did not show the associations with range overlap expected under sympatric speciation. We delimit species of heliconiines in three different ways, based on "strict and " "relaxed" biological species concepts (BSC), as well as on a surrogate for the widely-used "diagnostic" version of the phylogenetic species concept (PSC). We show that one reason why more sympatric speciation is inferred in heliconiines than in birds may be due to a different culture of species delimitation in the two

  7. Ecological Inference

    NASA Astrophysics Data System (ADS)

    King, Gary; Rosen, Ori; Tanner, Martin A.

    2004-09-01

    This collection of essays brings together a diverse group of scholars to survey the latest strategies for solving ecological inference problems in various fields. The last half-decade has witnessed an explosion of research in ecological inference--the process of trying to infer individual behavior from aggregate data. Although uncertainties and information lost in aggregation make ecological inference one of the most problematic types of research to rely on, these inferences are required in many academic fields, as well as by legislatures and the Courts in redistricting, by business in marketing research, and by governments in policy analysis.

  8. A genomic perspective on hybridization and speciation

    PubMed Central

    Payseur, Bret A.; Rieseberg, Loren H.

    2016-01-01

    Hybridization among diverging lineages is common in nature. Genomic data provide a special opportunity to characterize the history of hybridization and the genetic basis of speciation. We review existing methods and empirical studies to identify recent advances in the genomics of hybridization, as well as issues that need to be addressed. Notable progress has been made in the development of methods for detecting hybridization and inferring individual ancestries. However, few approaches reconstruct the magnitude and timing of gene flow, estimate the fitness of hybrids or incorporate knowledge of recombination rate. Empirical studies indicate that the genomic consequences of hybridization are complex, including a highly heterogeneous landscape of differentiation. Inferred characteristics of hybridization differ substantially among species groups. Loci showing unusual patterns – which may contribute to reproductive barriers – are usually scattered throughout the genome, with potential enrichment in sex chromosomes and regions of reduced recombination. We caution against the growing trend of interpreting genomic variation in summary statistics across genomes as evidence of differential gene flow. We argue that converting genomic patterns into useful inferences about hybridization will ultimately require models and methods that directly incorporate key ingredients of speciation, including the dynamic nature of gene flow, selection acting in hybrid populations and recombination rate variation. PMID:26836441

  9. Speciation and bifurcations.

    PubMed

    Volkenstein, M V; Livshits, M A

    1989-01-01

    The interrelations of physics and biology are discussed. It is shown that Darwin can be considered as one of the founders of the important field of contemporary physics called physics of dissipative structures or synergetics. The theories of gradual and punctual evolution are presented. The contradiction between these theories can be solved on the basis of molecular theory of evolution and on the basis of the phenomenological physical treatment. The general physical properties of living systems, considered as open systems being far from equilibrium, are listed and simple non-linear mathematical models describing gradual and punctual speciation are suggested. The usual pictures which present these two kinds of speciation can possess physico-mathematical sense. Punctuated speciation means bifurcation, a kind of non-equilibrium phase transition.

  10. Speciation genes in plants

    PubMed Central

    Rieseberg, Loren H.; Blackman, Benjamin K.

    2010-01-01

    Background Analyses of speciation genes – genes that contribute to the cessation of gene flow between populations – can offer clues regarding the ecological settings, evolutionary forces and molecular mechanisms that drive the divergence of populations and species. This review discusses the identities and attributes of genes that contribute to reproductive isolation (RI) in plants, compares them with animal speciation genes and investigates what these genes can tell us about speciation. Scope Forty-one candidate speciation genes were identified in the plant literature. Of these, seven contributed to pre-pollination RI, one to post-pollination, prezygotic RI, eight to hybrid inviability, and 25 to hybrid sterility. Genes, gene families and genetic pathways that were frequently found to underlie the evolution of RI in different plant groups include the anthocyanin pathway and its regulators (pollinator isolation), S RNase-SI genes (unilateral incompatibility), disease resistance genes (hybrid necrosis), chimeric mitochondrial genes (cytoplasmic male sterility), and pentatricopeptide repeat family genes (cytoplasmic male sterility). Conclusions The most surprising conclusion from this review is that identities of genes underlying both prezygotic and postzygotic RI are often predictable in a broad sense from the phenotype of the reproductive barrier. Regulatory changes (both cis and trans) dominate the evolution of pre-pollination RI in plants, whereas a mix of regulatory mutations and changes in protein-coding genes underlie intrinsic postzygotic barriers. Also, loss-of-function mutations and copy number variation frequently contribute to RI. Although direct evidence of positive selection on speciation genes is surprisingly scarce in plants, analyses of gene family evolution, along with theoretical considerations, imply an important role for diversifying selection and genetic conflict in the evolution of RI. Unlike in animals, however, most candidate speciation

  11. How does climate influence speciation?

    PubMed

    Hua, Xia; Wiens, John J

    2013-07-01

    Variation in climatic conditions over space and time is thought to be an important driver of speciation. However, the role of climate has not been explored in the theoretical literature on speciation, and the theory underlying empirical studies of climate and speciation has come largely from informal, verbal models. In this study, we develop a quantitative model to test a relatively new but theoretically untested model of speciation (speciation via niche conservatism) and to examine the climatic conditions under which speciation via niche conservatism and speciation via niche divergence are most plausible. Our results have three broad implications for the study of speciation: (1) ecological similarity over time (niche conservatism) can be an important part of speciation, despite the traditional emphasis on ecological divergence, (2) long-term directional climate change promotes speciation via niche conservatism for species with low climatic-niche lability, whereas climatic oscillations promote speciation via niche divergence for species with high climatic-niche lability, and (3) population extinction can be a key component of speciation.

  12. Primate diversification inferred from phylogenies and fossils.

    PubMed

    Herrera, James P

    2017-09-14

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: 1) diversification rates increased through time; 2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies consistently supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Inorganic iodine speciation in tropical Atlantic aerosol

    NASA Astrophysics Data System (ADS)

    Baker, A. R.

    2004-10-01

    The inorganic speciation of soluble iodine has been determined in size-fractionated aerosol samples collected from the tropical Atlantic Ocean in October/November 2002 during Meteor cruise 55, a pilot study of the German SOLAS programme. Iodide concentrations were appreciable (>0.4 pmol m-3) in the fine and coarse modes of all samples whereas iodate was occasionally below detection limit (~0.7 pmol m-3) in samples from northern hemisphere air and was undetectable in all samples from the southern hemisphere. Iodine was enriched, and chlorine and bromine depleted, relative to seasalt concentrations. The majority of Cl- loss was due to the seasalt displacement reaction. Halogen activation (I- + HOX + H+ = IX + H2O) may also have occurred, but did not result in net I- depletion in any aerosol fraction. The observed variations of iodine speciation cannot be reproduced by current models of aerosol iodine chemistry.

  14. Dispersal, Genetic Differentiation and Speciation in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Bilton, D. T.; Paula, J.; Bishop, J. D. D.

    2002-12-01

    For some of their occupants, estuaries represent spatially discrete habitats, isolated from each other by barriers to dispersal or physiological tolerance. We present contrasting strategies for the retention or export of larvae from their estuary of origin, and consider the implications these have on population structure and divergence. Reported patterns of genetic differentiation and inferred gene flow in estuarine taxa (principally animals) are reviewed, and difficulties in the interpretation of existing genetic data discussed. Species concepts and models of speciation relevant to estuaries are outlined, and patterns of speciation of estuarine taxa reviewed. It is concluded that estuarine environments tend to restrict gene flow and impose distinct selective regimes, generating physiologically adapted populations divergent from their marine counterparts, and the potential for in situ speciation in complete or partial isolation. The resulting taxa may represent sibling or cryptic species groups of truly estuarine origin, rather than simply estuarine populations of marine eurytopes.

  15. Speciation in ancient lakes.

    PubMed

    Martens, K

    1997-05-01

    About a dozen lakes in the world are up to three orders of magnitude older than most others. Lakes Tanganyika (East Africa) and Baikal (Siberia) have probably existed in some form for 12-20 million years, maybe more. Such lakes can have different origins, sizes, shapes, depths and limnologies, but, in contrast to short-lived (mostly post-glacial) lakes, they have exceptionally high faunal diversity and levels of endemicity. A multitude of and processes accounting for these explosive radiations have recently been documented, most of them based on particular groups in certain lakes, but comparative research can detect repeated patterns. No special speciafion mechanism, exclusive to ancient lakes has been demonstrated, although cases of ultra-rapid speciation have been documented. Extant diversity results not by simple accumulation, but by a complex process of immigration, speciation and extinction.

  16. The evolutionary genetics of speciation.

    PubMed Central

    Coyne, J A; Orr, H A

    1998-01-01

    The last decade has brought renewed interest in the genetics of speciation, yielding a number of new models and empirical results. Defining speciation as 'the origin of reproductive isolation between two taxa', we review recent theoretical studies and relevant data, emphasizing the regular patterns seen among genetic analyses. Finally, we point out some important and tractable questions about speciation that have been neglected. PMID:9533126

  17. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback.

    PubMed

    Marques, David A; Lucek, Kay; Meier, Joana I; Mwaiko, Salome; Wagner, Catherine E; Excoffier, Laurent; Seehausen, Ole

    2016-02-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

  18. Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback

    PubMed Central

    Marques, David A.; Lucek, Kay; Meier, Joana I.; Mwaiko, Salome; Wagner, Catherine E.; Excoffier, Laurent; Seehausen, Ole

    2016-01-01

    Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this. PMID:26925837

  19. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  20. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  1. Perceptual inference.

    PubMed

    Aggelopoulos, Nikolaos C

    2015-08-01

    Perceptual inference refers to the ability to infer sensory stimuli from predictions that result from internal neural representations built through prior experience. Methods of Bayesian statistical inference and decision theory model cognition adequately by using error sensing either in guiding action or in "generative" models that predict the sensory information. In this framework, perception can be seen as a process qualitatively distinct from sensation, a process of information evaluation using previously acquired and stored representations (memories) that is guided by sensory feedback. The stored representations can be utilised as internal models of sensory stimuli enabling long term associations, for example in operant conditioning. Evidence for perceptual inference is contributed by such phenomena as the cortical co-localisation of object perception with object memory, the response invariance in the responses of some neurons to variations in the stimulus, as well as from situations in which perception can be dissociated from sensation. In the context of perceptual inference, sensory areas of the cerebral cortex that have been facilitated by a priming signal may be regarded as comparators in a closed feedback loop, similar to the better known motor reflexes in the sensorimotor system. The adult cerebral cortex can be regarded as similar to a servomechanism, in using sensory feedback to correct internal models, producing predictions of the outside world on the basis of past experience.

  2. Song evolution, speciation, and vocal learning in passerine birds.

    PubMed

    Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P

    2017-03-01

    Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  3. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    PubMed Central

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-01-01

    Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area. PMID:25945706

  4. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  5. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  6. The drivers of tropical speciation.

    PubMed

    Smith, Brian Tilston; McCormack, John E; Cuervo, Andrés M; Hickerson, Michael J; Aleixo, Alexandre; Cadena, Carlos Daniel; Pérez-Emán, Jorge; Burney, Curtis W; Xie, Xiaoou; Harvey, Michael G; Faircloth, Brant C; Glenn, Travis C; Derryberry, Elizabeth P; Prejean, Jesse; Fields, Samantha; Brumfield, Robb T

    2014-11-20

    Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.

  7. Lead Speciation in Microorganisms.

    PubMed

    Stewart, Theodora J

    2017-04-10

    The biogeochemical cycles of lead (Pb) have been largely affected by anthropogenic activities as a result of its high natural abundance and use over the centuries [1]. At sites more strongly impacted by urbanization [2] and mining [3], Pb is found at high nano to low micromolar concentrations in surface waters, and can be significantly higher in soil and sediment [4]. Microorganisms are found everywhere and their responses to Pb exposure can range from resistant to highly sensitive [5, 6]. These varying levels of toxicity can be attributed to the cellular handling of Pb, making it important to understand the role of intracellular Pb speciation for more accurate toxicity predictions.

  8. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden "jewels" in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  9. Statistical Inference

    NASA Astrophysics Data System (ADS)

    Khan, Shahjahan

    Often scientific information on various data generating processes are presented in the from of numerical and categorical data. Except for some very rare occasions, generally such data represent a small part of the population, or selected outcomes of any data generating process. Although, valuable and useful information is lurking in the array of scientific data, generally, they are unavailable to the users. Appropriate statistical methods are essential to reveal the hidden “jewels” in the mess of the row data. Exploratory data analysis methods are used to uncover such valuable characteristics of the observed data. Statistical inference provides techniques to make valid conclusions about the unknown characteristics or parameters of the population from which scientifically drawn sample data are selected. Usually, statistical inference includes estimation of population parameters as well as performing test of hypotheses on the parameters. However, prediction of future responses and determining the prediction distributions are also part of statistical inference. Both Classical or Frequentists and Bayesian approaches are used in statistical inference. The commonly used Classical approach is based on the sample data alone. In contrast, increasingly popular Beyesian approach uses prior distribution on the parameters along with the sample data to make inferences. The non-parametric and robust methods are also being used in situations where commonly used model assumptions are unsupported. In this chapter,we cover the philosophical andmethodological aspects of both the Classical and Bayesian approaches.Moreover, some aspects of predictive inference are also included. In the absence of any evidence to support assumptions regarding the distribution of the underlying population, or if the variable is measured only in ordinal scale, non-parametric methods are used. Robust methods are employed to avoid any significant changes in the results due to deviations from the model

  10. The structure of tubulin-binding cofactor A from Leishmania major infers a mode of association during the early stages of microtubule assembly

    SciTech Connect

    Barrack, Keri L.; Fyfe, Paul K.; Hunter, William N.

    2015-04-21

    The structure of a tubulin-binding cofactor from L. major is reported and compared with yeast, plant and human orthologues. Tubulin-binding cofactor A (TBCA) participates in microtubule formation, a key process in eukaryotic biology to create the cytoskeleton. There is little information on how TBCA might interact with β-tubulin en route to microtubule biogenesis. To address this, the protozoan Leishmania major was targeted as a model system. The crystal structure of TBCA and comparisons with three orthologous proteins are presented. The presence of conserved features infers that electrostatic interactions that are likely to involve the C-terminal tail of β-tubulin are key to association. This study provides a reagent and template to support further work in this area.

  11. Relationships and genetic consequences of contrasting modes of speciation among endemic species of Robinsonia (Asteraceae, Senecioneae) of the Juan Fernández Archipelago, Chile, based on AFLPs and SSRs.

    PubMed

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F

    2015-01-01

    This study analyses and compares the genetic signatures of anagenetic and cladogenetic speciation in six species of the genus Robinsonia (Asteraceae, Senecioneae), endemic to the Juan Fernández Islands, Chile. Population genetic structure was analyzed by amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) markers from 286 and 320 individuals, respectively, in 28 populations. Each species is genetically distinct. Previous hypotheses of classification among these species into subgenera and sections, via morphological, phytochemical, isozymic and internal transcribed spacer (ITS) data, have been confirmed, except that R. saxatilis appears to be related to R. gayana rather than R. evenia. Analysis of phylogenetic results and biogeographic context suggests that five of these species have originated by cladogenesis and adaptive radiation on the older Robinson Crusoe Island. The sixth species, R. masafuerae, restricted to the younger Alejandro Selkirk Island, is closely related to and an anagenetic derivative of R. evenia from Robinson Crusoe. Microsatellite and AFLP data reveal considerable genetic variation among the cladogenetically derived species of Robinsonia, but within each the genetic variation is lower, highlighting presumptive genetic isolation and rapid radiation. The anagenetically derived R. masafuerae harbors a level of genetic variation similar to that of its progenitor, R. evenia. This is the first direct comparison of the genetic consequences of anagenetic and cladogenetic speciation in plants of an oceanic archipelago. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function

    PubMed Central

    Louder, Mark K.; Gorman, Jason; Lu, Gabriel; McLellan, Jason S.; Stuckey, Jonathan; Zhu, Jiang; Burton, Dennis R.; Koff, Wayne C.; Mascola, John R.; Kwong, Peter D.

    2013-01-01

    Dozens of broadly neutralizing HIV-1 antibodies have been isolated in the last few years from the sera of HIV-1-infected individuals. Only a limited number of regions on the HIV-1 spike, however, are recognized by these antibodies. One of these regions (N332) is characterized by an N-linked glycan at residue 332 on HIV-1 gp120 and is recognized by antibody 2G12 and by the recently reported antibodies PGT121-137, the latter isolated from three donors. To investigate the diversity in mode of antibody recognition at the N332 site, we used functional complementation between antibody heavy and light chains as a means of assessing similarity in mode of recognition. We examined a matrix of 12 PGT-heavy chains with each of 12 PGT-light chains. Expression in 96-well format for the 144 antibodies (132 chimeric and 12 wild-type) was generally consistent (58±10 µg/ml). In contrast, recognition of HIV-1 gp120 was bimodal: when the source of heavy and light chains was from the same donor, recognition was good; when sources of heavy and light chains were from different donors, recognition was poor. Moreover, neutralization of HIV-1 strains SF162.LS and TRO.11 generally followed patterns of gp120 recognition. These results are consistent with published sequence, mutational, and structural findings, all of which indicate that N332-directed neutralizing antibodies from different donors utilize different modes of recognition, and provide support for a correlation between functional complementation of antibody heavy and light chains and similarity in antibody mode of recognition. Overall, our results add to the growing body of evidence that the human immune system is capable of recognizing the N332-region of HIV-1 gp120 in diverse ways. PMID:23431362

  13. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  14. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  15. Ecological speciation in Gambusia fishes.

    PubMed

    Langerhans, R Brian; Gifford, Matthew E; Joseph, Everton O

    2007-09-01

    Although theory indicates that natural selection can facilitate speciation as a by-product, demonstrating ongoing speciation via this by-product mechanism in nature has proven difficult. We examined morphological, molecular, and behavioral data to investigate ecology's role in incipient speciation for a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes. We show that adaptation to divergent predator regimes is driving ecological speciation as a by-product. Divergence in body shape, coupled with assortative mating for body shape, produces reproductive isolation that is twice as strong between populations inhabiting different predator regimes than between populations that evolved in similar ecological environments. Gathering analogous data on reproductive isolation at the interspecific level in the genus, we find that this mechanism of speciation may have been historically prevalent in Gambusia. These results suggest that speciation in nature can result as a by-product of divergence in ecologically important traits, producing interspecific patterns that persist long after speciation events have completed.

  16. Chronic speciation in periodical cicadas.

    PubMed

    Ritchie, M G.

    2001-02-01

    Allochronic speciation and reproductive character displacement are two intuitively attractive models of speciation. The first proposes that changes in the timing of life cycles produce new species, whereas the second suggests that speciation is due to the exaggeration of sexual isolation in sympatric populations. Clear examples of either process in nature remain elusive, despite some extensive searches. Two recent studies of mtDNA markers and behaviour of periodical cicadas in North America have identified a new species of cicada that seems to provide good evidence for the involvement of both processes in its origin.

  17. Reconstructing the history of selection during homoploid hybrid speciation.

    PubMed

    Karrenberg, Sophie; Lexer, Christian; Rieseberg, Loren H

    2007-06-01

    This study aims to identify selection pressures during the historical process of homoploid hybrid speciation in three Helianthus (sunflower) hybrid species. If selection against intrinsic genetic incompatibilities (fertility selection) or for important morphological/ecological traits (phenotypic selection) were important in hybrid speciation, we would expect this selection to have influenced the parentage of molecular markers or chromosomal segments in the hybrid species' genomes. To infer past selection, we compared the parentage of molecular markers in high-density maps of the three hybrid species with predicted marker parentage from an analysis of fertility selection in artificial hybrids and from the directions of quantitative trait loci effects with respect to the phenotypes of the hybrid species. Multiple logistic regression models were consistent with both fertility and phenotypic selection in all three species. To further investigate traits under selection, we used a permutation test to determine whether marker parentage predicted from groups of functionally related traits differed from neutral expectations. Our results suggest that trait groups associated with ecological divergence were under selection during hybrid speciation. This study presents a new method to test for selection and supports earlier claims that fertility selection and phenotypic selection on ecologically relevant traits have operated simultaneously during sunflower hybrid speciation.

  18. Computational methods for Gene Orthology inference

    PubMed Central

    Kristensen, David M.; Wolf, Yuri I.; Mushegian, Arcady R.

    2011-01-01

    Accurate inference of orthologous genes is a pre-requisite for most comparative genomics studies, and is also important for functional annotation of new genomes. Identification of orthologous gene sets typically involves phylogenetic tree analysis, heuristic algorithms based on sequence conservation, synteny analysis, or some combination of these approaches. The most direct tree-based methods typically rely on the comparison of an individual gene tree with a species tree. Once the two trees are accurately constructed, orthologs are straightforwardly identified by the definition of orthology as those homologs that are related by speciation, rather than gene duplication, at their most recent point of origin. Although ideal for the purpose of orthology identification in principle, phylogenetic trees are computationally expensive to construct for large numbers of genes and genomes, and they often contain errors, especially at large evolutionary distances. Moreover, in many organisms, in particular prokaryotes and viruses, evolution does not appear to have followed a simple ‘tree-like’ mode, which makes conventional tree reconciliation inapplicable. Other, heuristic methods identify probable orthologs as the closest homologous pairs or groups of genes in a set of organisms. These approaches are faster and easier to automate than tree-based methods, with efficient implementations provided by graph-theoretical algorithms enabling comparisons of thousands of genomes. Comparisons of these two approaches show that, despite conceptual differences, they produce similar sets of orthologs, especially at short evolutionary distances. Synteny also can aid in identification of orthologs. Often, tree-based, sequence similarity- and synteny-based approaches can be combined into flexible hybrid methods. PMID:21690100

  19. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  20. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  1. A comparative analysis of island floras challenges taxonomy-based biogeographical models of speciation.

    PubMed

    Igea, Javier; Bogarín, Diego; Papadopulos, Alexander S T; Savolainen, Vincent

    2015-02-01

    Speciation on islands, and particularly the divergence of species in situ, has long been debated. Here, we present one of the first, complete assessments of the geographic modes of speciation for the flora of a small oceanic island. Cocos Island (Costa Rica) is pristine; it is located 550 km off the Pacific coast of Central America. It harbors 189 native plant species, 33 of which are endemic. Using phylogenetic data from insular and mainland congeneric species, we show that all of the endemic species are derived from independent colonization events rather than in situ speciation. This is in sharp contrast to the results of a study carried out in a comparable system, Lord Howe Island (Australia), where as much as 8.2% of the plant species were the product of sympatric speciation. Differences in physiography and age between the islands may be responsible for the contrasting patterns of speciation observed. Importantly, comparing phylogenetic assessments of the modes of speciation with taxonomy-based measures shows that widely used island biogeography approaches overestimate rates of in situ speciation.

  2. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus.

    PubMed

    Bentley, Joanne; Verboom, G Anthony; Bergh, Nicola G

    2014-02-13

    The role of tectonic uplift in stimulating speciation in South Africa's only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species' relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species' range distributions to estimate mode of speciation across two subclades in the genus. The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in sympatric species of Macowania indicates

  3. Hybridization Reveals the Evolving Genomic Architecture of Speciation

    PubMed Central

    Kronforst, Marcus R.; Hansen, Matthew E.B.; Crawford, Nicholas G.; Gallant, Jason R.; Zhang, Wei; Kulathinal, Rob J.; Kapan, Durrell D.; Mullen, Sean P.

    2014-01-01

    SUMMARY The rate at which genomes diverge during speciation is unknown, as are the physical dynamics of the process. Here, we compare full genome sequences of 32 butterflies, representing five species from a hybridizing Heliconius butterfly community, to examine genome-wide patterns of introgression and infer how divergence evolves during the speciation process. Our analyses reveal that initial divergence is restricted to a small fraction of the genome, largely clustered around known wing-patterning genes. Over time, divergence evolves rapidly, due primarily to the origin of new divergent regions. Furthermore, divergent genomic regions display signatures of both selection and adaptive introgression, demonstrating the link between microevolutionary processes acting within species and the origin of species across macroevolutionary timescales. Our results provide a uniquely comprehensive portrait of the evolving species boundary due to the role that hybridization plays in reducing the background accumulation of divergence at neutral sites. PMID:24183670

  4. Sexual conflict and speciation.

    PubMed Central

    Parker, G A; Partridge, L

    1998-01-01

    We review the significance of two forms of sexual conflict (different evolutionary interests of the two sexes) for genetic differentiation of populations and the evolution of reproductive isolation. Conflicting selection on the alleles at a single locus can occur in males and females if the sexes have different optima for a trait, and there are pleiotropic genetic correlations between the sexes for it. There will then be selection for sex limitation and hence sexual dimorphism. This sex limitation could break down in hybrids and reduce their fitness. Pleiotropic genetic correlations between the sexes could also affect the likelihood of mating in interpopulation encounters. Conflict can also occur between (sex-limited) loci that determine behaviour in males and those that determine behaviour in females. Reproductive isolation may occur by rapid coevolution of male trait and female mating preference. This would tend to generate assortative mating on secondary contact, hence promoting speciation. Sexual conflict resulting from sensory exploitation, polyspermy and the cost of mating could result in high levels of interpopulation mating. If females evolve resistance to make pre- and postmating manipulation, males from one population could be more successful with females from the other, because females would have evolved resistance to their own (but not to the allopatric) males. Between-locus sexual conflict could also occur as a result of conflict between males and females of different populations over the production of unfit hybrids. We develop models which show that females are in general selected to resist such matings and males to persist, and this could have a bearing on both the initial level of interpopulation matings and the likelihood that reinforcement will occur. In effect, selection on males usually acts to promote gene flow and to restrict premating isolation, whereas selection on females usually acts in the reverse direction. We review theoretical models

  5. Demographic Divergence History of Pied Flycatcher and Collared Flycatcher Inferred from Whole-Genome Re-sequencing Data

    PubMed Central

    Nadachowska-Brzyska, Krystyna; Burri, Reto; Olason, Pall I.; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2013-01-01

    Profound knowledge of demographic history is a prerequisite for the understanding and inference of processes involved in the evolution of population differentiation and speciation. Together with new coalescent-based methods, the recent availability of genome-wide data enables investigation of differentiation and divergence processes at unprecedented depth. We combined two powerful approaches, full Approximate Bayesian Computation analysis (ABC) and pairwise sequentially Markovian coalescent modeling (PSMC), to reconstruct the demographic history of the split between two avian speciation model species, the pied flycatcher and collared flycatcher. Using whole-genome re-sequencing data from 20 individuals, we investigated 15 demographic models including different levels and patterns of gene flow, and changes in effective population size over time. ABC provided high support for recent (mode 0.3 my, range <0.7 my) species divergence, declines in effective population size of both species since their initial divergence, and unidirectional recent gene flow from pied flycatcher into collared flycatcher. The estimated divergence time and population size changes, supported by PSMC results, suggest that the ancestral species persisted through one of the glacial periods of middle Pleistocene and then split into two large populations that first increased in size before going through severe bottlenecks and expanding into their current ranges. Secondary contact appears to have been established after the last glacial maximum. The severity of the bottlenecks at the last glacial maximum is indicated by the discrepancy between current effective population sizes (20,000–80,000) and census sizes (5–50 million birds) of the two species. The recent divergence time challenges the supposition that avian speciation is a relatively slow process with extended times for intrinsic postzygotic reproductive barriers to evolve. Our study emphasizes the importance of using genome-wide data to

  6. Possible incipient sympatric ecological speciation in blind mole rats (Spalax)

    PubMed Central

    Hadid, Yarin; Tzur, Shay; Pavlíček, Tomáš; Šumbera, Radim; Šklíba, Jan; Lövy, Matěj; Fragman-Sapir, Ori; Beiles, Avigdor; Arieli, Ran; Raz, Shmuel; Nevo, Eviatar

    2013-01-01

    Sympatric speciation has been controversial since it was first proposed as a mode of speciation. Subterranean blind mole rats (Spalacidae) are considered to speciate allopatrically or peripatrically. Here, we report a possible incipient sympatric adaptive ecological speciation in Spalax galili (2n = 52). The study microsite (0.04 km2) is sharply subdivided geologically, edaphically, and ecologically into abutting barrier-free ecologies divergent in rock, soil, and vegetation types. The Pleistocene Alma basalt abuts the Cretaceous Senonian Kerem Ben Zimra chalk. Only 28% of 112 plant species were shared between the soils. We examined mitochondrial DNA in the control region and ATP6 in 28 mole rats from basalt and in 14 from chalk habitats. We also sequenced the complete mtDNA (16,423 bp) of four animals, two from each soil type. Remarkably, the frequency of all major haplotype clusters (HC) was highly soil-biased. HCI and HCII are chalk biased. HC-III was abundant in basalt (36%) but absent in chalk; HC-IV was prevalent in basalt (46.5%) but was low (20%) in chalk. Up to 40% of the mtDNA diversity was edaphically dependent, suggesting constrained gene flow. We identified a homologous recombinant mtDNA in the basalt/chalk studied area. Phenotypically significant divergences differentiate the two populations, inhabiting different soils, in adaptive oxygen consumption and in the amount of outside-nest activity. This identification of a possible incipient sympatric adaptive ecological speciation caused by natural selection indirectly refutes the allopatric alternative. Sympatric ecological speciation may be more prevalent in nature because of abundant and sharply abutting divergent ecologies. PMID:23359700

  7. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  8. Arsenic Speciation in Geothermal Waters

    NASA Astrophysics Data System (ADS)

    Keller, N. S.; Stefansson, A.; Sigfusson, B.

    2011-12-01

    Various arsenic species have been observed or inferred in geothermal waters in recent years, in particular thio- and oxyanions. However their exact stoechiometry and their oxidation state has been subjected to a sustained debate over the last decade. Most of the As species seen in geothermal waters are unstable under laboratory conditions, thus it is crucial that appropriate sampling and analytical techniques are used in order to minimise post-sampling changes. The goals of this study were to determine how many As species can be seen in geothermal systems and how geochemical parameters control the number and relative abundance of the species. Furthermore, we tested the stability of the As-S compounds after sampling, in particular whether the traditionally used flash-freezing method quantitatively preserves the species. Samples were collected from wells at the Hellisheidi Power Plant and from natural hot springs in the Geysir Geothermal Area in SW Iceland. The samples were analysed on-site immediately after sampling by first separating the various As species by Ion Chromatography followed by quantification by Hydride-Generation Atomic Fluorescence Spectrometer (HG-AFS). Preliminary results show that analysis of the samples immediately after sampling is crucial, as sample storage and flash-freezing/thawing appear to modify the As speciation. Using the retention times of the analytes through the chromatographic column, a minimum of seven As species were observed. Two of the species are oxides of AsIII and AsV, based on the comparison of their retention times with standards. The other five species have yet to be unequivocally identified, but based on prior studies it is assumed that at least some of them are thioarsenic species with various S:O ratios, with longer retention times for increasing S:O. Clear differences can be seen between samples from Hellisheidi and Geysir. In the case of the oxyanions, only AsIII is present at Hellisheidi whereas both oxidation states

  9. Iron Speciation in Urban Dust

    SciTech Connect

    E Elzinga; Y Gao; J Fitts; R Tappero

    2011-12-31

    An improved understanding of anthropogenic impacts on ocean fertility requires knowledge of anthropogenic dust mineralogy and associated Fe speciation as a critical step toward developing Fe solubility models constrained by mineralogical composition. This study explored the utility of micro-focused X-ray absorption spectroscopy ({mu}-XAS) in characterizing the speciation of Fe in urban dust samples. A micro-focused beam of 10 x 7 {micro}m made possible the measurement of the Fe K edge XAS spectra of individual dust particles in the PM5.6 size fraction collected in Newark, New Jersey, USA. Spectral analysis indicated the presence of mixtures of Fe-containing minerals within individual dust particles; we observed significant magnetite content along with other Fe(III)-(hydr)oxide minerals which could not be conclusively identified. Our data indicate that detailed quantitative determination of Fe speciation requires extended energy scans to constrain the types and relative abundance of Fe species present. We observe heterogeneity in Fe speciation at the dust particle level, which underscores the importance of analyzing a statistically adequate number of particles within each dust sample. Where possible, {mu}-XAS measurements should be complemented with additional characterization techniques such as {mu}-XRD and bulk XAS to obtain a comprehensive picture of the Fe speciation in dust materials. X-ray microprobes should be used to complement bulk methods used to determine particle composition, methods that fail to record particle heterogeneity.

  10. Genomic Islands of Speciation in Anopheles gambiae

    PubMed Central

    Hahn, Matthew W; Nuzhdin, Sergey V

    2005-01-01

    The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae), provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These “speciation islands” remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral isolation are

  11. Ecology, sexual selection and speciation.

    PubMed

    Maan, Martine E; Seehausen, Ole

    2011-06-01

    The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research. © 2011 Blackwell Publishing Ltd/CNRS.

  12. Erosive processes after tectonic uplift stimulate vicariant and adaptive speciation: evolution in an Afrotemperate-endemic paper daisy genus

    PubMed Central

    2014-01-01

    Background The role of tectonic uplift in stimulating speciation in South Africa’s only alpine zone, the Drakensberg, has not been explicitly examined. Tectonic processes may influence speciation both through the creation of novel habitats and by physically isolating plant populations. We use the Afrotemperate endemic daisy genus Macowania to explore the timing and mode (geographic versus adaptive) of speciation in this region. Between sister species pairs we expect high morphological divergence where speciation has happened in sympatry (adaptive) while with geographic (vicariant) speciation we may expect to find less morphological divergence and a greater degree of allopatry. A dated molecular phylogenetic hypothesis for Macowania elucidates species’ relationships and is used to address the potential impact of uplift on diversification. Morphological divergence of a small sample of reproductive and vegetative characters, used as a proxy for adaptive divergence, is measured against species’ range distributions to estimate mode of speciation across two subclades in the genus. Results The Macowania crown age is consistent with the hypothesis of post-uplift diversification, and we find evidence for both vicariant and adaptive speciation between the two subclades within Macowania. Both subclades exhibit strong signals of range allopatry, suggesting that geographic isolation was important in speciation. One subclade, associated with dry, rocky environments at high altitudes, shows very little morphological and ecological differentiation but high range allopatry. The other subclade occupies a greater variety of habitats and exhibits far greater morphological differentiation, but contains species with overlapping distribution ranges. Conclusions Species in Macowania are likely to have diversified in response to tectonic uplift, and we invoke uplift and uplift-mediated erosion as the main drivers of speciation. The greater relative morphological divergence in

  13. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation.

  14. Are we analyzing speciation without prejudice?

    PubMed

    Johannesson, Kerstin

    2010-09-01

    Physical isolation has long been the null hypothesis of speciation, with exceptional evidence required to suggest speciation with gene flow. Following recent persuasive theoretical support and strong empirical examples of nonallopatric speciation, one might expect a changed view. However, a review of 73 recent empirical studies shows that when allopatric speciation is suggested, a nonallopatric alternative is rarely considered, whereas the opposite is true in studies suggesting sympatric speciation, indicating a biased treatment of different speciation models. Although increasing support for ecological speciation suggests natural selection as the most critical component of speciation, gene flow remains an issue. Methods for unbiased hypothesis testing are available, and the genetic and phylogeographic data required for appropriate tests can be generated. Focus on phylogenies and functions of individual genes have revealed strong idiosyncratic elements of speciation, such as single genes with possible allopatric origin that make significant contributions during nonallopatric phases of speciation. Hence a more complex picture of speciation is now emerging that will benefit from unbiased evaluation of both allopatric and sympatric mechanisms of speciation.

  15. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus

    PubMed Central

    2013-01-01

    Background Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation. PMID:24070215

  16. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus.

    PubMed

    Frantz, Laurent A F; Schraiber, Joshua G; Madsen, Ole; Megens, Hendrik-Jan; Bosse, Mirte; Paudel, Yogesh; Semiadi, Gono; Meijaard, Erik; Li, Ning; Crooijmans, Richard P M A; Archibald, Alan L; Slatkin, Montgomery; Schook, Lawrence B; Larson, Greger; Groenen, Martien A M

    2013-01-01

    Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.

  17. Mercury speciation modeling using site specific chemical and redox data from the TNXOD OU

    SciTech Connect

    Kaplan, D.I.

    2000-03-22

    The objective of this study was to evaluate mercury speciation under reducing conditions expected in sediments at the TNX Outfall Delta Operable Unit. These changes in speciation would then be used to infer whether mercury toxicity and mobility would be expected to be significantly altered under reducing conditions. The results from this work suggest that mercury would likely become more strongly retained by the solid phase under reducing conditions than under oxidizing conditions at the TNX Outfall Delta Site. Considering that experimental results indicate that mercury is extremely tightly bound to the solid phase under oxidizing conditions, little mercury mobility would therefore be expected under reducing conditions.

  18. How common is homoploid hybrid speciation?

    PubMed

    Schumer, Molly; Rosenthal, Gil G; Andolfatto, Peter

    2014-06-01

    Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed.

  19. Chromosome variation, genomics, speciation and evolution in Sceloporus lizards.

    PubMed

    Hall, W P

    2009-01-01

    The clade of the North American lizard genus Sceloporus and its relatives comprising the subfamily Phrynosomatinae (Iguanidae) includes perhaps 150 evolutionary lineages. The work reviewed here begins with the discovery of the concentration of Robertsonian chromosomal variability in Sceloporus more than 40 years ago and cytogenetic and genomic evidence of remarkable chromosomal variation within the S. grammicus complex associated with narrow zones of hybridization between different chromosomal races. These discoveries led to hypotheses about hybrid zones involving negative heterosis, possible modes of chromosomal speciation, and the potential roles of such speciation in phylogenesis. The radiation of Sceloporus has now been studied by many different workers extending and mapping the geographic distribution of cytogenetic and genomic variation to understand the biology of the chromosomal variation and to establish the phyletic relationships of the various lineages. The result is a robust phylogeny and a large and still growing database of genic, cytogenetic and other biological parameters. These materials provide a rich series of natural experiments to support both synthetic-comparative and analytical studies of the roles of chromosomal variation, hybrid zones and modes of speciation in phylogenesis and evolutionary success.

  20. Cryptic speciation in a model invertebrate chordate.

    PubMed

    Caputi, Luigi; Andreakis, Nikos; Mastrototaro, Francesco; Cirino, Paola; Vassillo, Mauro; Sordino, Paolo

    2007-05-29

    We applied independent species concepts to clarify the phylogeographic structure of the ascidian Ciona intestinalis, a powerful model system in chordate biology and for comparative genomic studies. Intensive research with this marine invertebrate is based on the assumption that natural populations globally belong to a single species. Therefore, understanding the true taxonomic classification may have implications for experimental design and data management. Phylogenies inferred from mitochondrial and nuclear DNA markers accredit the existence of two cryptic species: C. intestinalis sp. A, genetically homogeneous, distributed in the Mediterranean, northeast Atlantic, and Pacific, and C. intestinalis sp. B, geographically structured and encountered in the North Atlantic. Species-level divergence is further entailed by cross-breeding estimates. C. intestinalis A and B from allopatric populations cross-fertilize, but hybrids remain infertile because of defective gametogenesis. Although anatomy illustrates an overall interspecific similarity lacking in diagnostic features, we provide consistent tools for in-field and in-laboratory species discrimination. Finding of two cryptic taxa in C. intestinalis raises interest in a new tunicate genome as a gateway to studies in speciation and ecological adaptation of chordates.

  1. Estimating the duration of speciation from phylogenies.

    PubMed

    Etienne, Rampal S; Morlon, Hélène; Lambert, Amaury

    2014-08-01

    Speciation is not instantaneous but takes time. The protracted birth-death diversification model incorporates this fact and predicts the often observed slowdown of lineage accumulation toward the present. The mathematical complexity of the protracted speciation model has barred estimation of its parameters until recently a method to compute the likelihood of phylogenetic branching times under this model was outlined (Lambert et al. ). Here, we implement this method and study using simulated phylogenies of extant species how well we can estimate the model parameters (rate of initiation of speciation, rate of extinction of incipient and good species, and rate of completion of speciation) as well as the duration of speciation, which is a combination of the aforementioned parameters. We illustrate our approach by applying it to a primate phylogeny. The simulations show that phylogenies often do not contain enough information to provide unbiased estimates of the speciation-initiation rate and the extinction rate, but the duration of speciation can be estimated without much bias. The estimate of the duration of speciation for the primate clade is consistent with literature estimates. We conclude that phylogenies combined with the protracted speciation model provide a promising way to estimate the duration of speciation.

  2. Homoploid hybrid speciation in animals.

    PubMed

    Mavárez, Jesús; Linares, Mauricio

    2008-10-01

    Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.

  3. Sensory drive in cichlid speciation.

    PubMed

    Maan, Martine E; Hofker, Kees D; van Alphen, Jacques J M; Seehausen, Ole

    2006-06-01

    The role of selection in speciation is a central yet poorly understood problem in evolutionary biology. The rapid radiations of extremely colorful cichlid fish in African lakes have fueled the hypothesis that sexual selection can drive species divergence without geographical isolation. Here we present experimental evidence for a mechanism by which sexual selection becomes divergent: in two sibling species from Lake Victoria, female mating preferences for red and blue male nuptial coloration coincide with their context-independent sensitivities to red and blue light, which in turn correspond to a difference in ambient light in the natural habitat of the species. These results suggest that natural selection on visual performance, favoring different visual properties in different spectral environments, may lead to divergent sexual selection on male nuptial coloration. This interplay of ecological and sexual selection along a light gradient may provide a mechanism of rapid speciation through divergent sensory drive.

  4. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  5. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    EPA Science Inventory

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  6. Thermal adaptation and ecological speciation.

    PubMed

    Keller, I; Seehausen, O

    2012-02-01

    Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.

  7. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  8. Is Speciation Accompanied by Rapid Evolution? Insights from Comparing Reproductive and Nonreproductive Transcriptomes in Drosophila

    PubMed Central

    Jagadeeshan, Santosh; Haerty, Wilfried; Singh, Rama S.

    2011-01-01

    The tempo and mode of evolutionary change during speciation have remained contentious until recently. While much of the evidence claiming speciation is an abrupt and rapid process comes from fossil data, recent molecular phylogenetics show that the background of gradual evolution is often broken by accelerated rates of molecular evolution during speciation. However, what kinds of genes affect or are affected by speciation remains unexplored. Our analysis of 4843 protein-coding genes in five species of the Drosophila melanogaster subgroup shows that while ~70% of genes follow clock-like evolution, between 17–19.67% of loci show signatures of accelerated rates of evolution in recently formed species. These genes show 2-3-fold higher rates of substitution in recently diverged species compared to older species. This fraction of loci affects a diverse range of functions. Only a small proportion of reproductive genes experience speciation-related accelerated changes but many sex-and -reproduction related genes show an interesting pattern of persistent rapid evolution suggesting that sex-and-reproduction related genes are under constant selective pressures. The identification of loci associated with accelerated evolution allows us to address the mechanisms of rapid evolution and speciation, which in our study appears to be a combination of both selection and rapid demographical changes. PMID:21869936

  9. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages

    PubMed Central

    2010-01-01

    Background A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. Results Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (λ) and relative extinction rates (ε) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). Conclusions In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis. PMID:20515493

  10. Geography, assortative mating, and the effects of sexual selection on speciation with gene flow.

    PubMed

    Servedio, Maria R

    2016-01-01

    Theoretical and empirical research on the evolution of reproductive isolation have both indicated that the effects of sexual selection on speciation with gene flow are quite complex. As part of this special issue on the contributions of women to basic and applied evolutionary biology, I discuss my work on this question in the context of a broader assessment of the patterns of sexual selection that lead to, versus inhibit, the speciation process, as derived from theoretical research. In particular, I focus on how two factors, the geographic context of speciation and the mechanism leading to assortative mating, interact to alter the effect that sexual selection through mate choice has on speciation. I concentrate on two geographic contexts: sympatry and secondary contact between two geographically separated populations that are exchanging migrants and two mechanisms of assortative mating: phenotype matching and separate preferences and traits. I show that both of these factors must be considered for the effects of sexual selection on speciation to be inferred.

  11. The geography and ecology of plant speciation: range overlap and niche divergence in sister species

    PubMed Central

    Anacker, Brian L.; Strauss, Sharon Y.

    2014-01-01

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under ‘budding’ speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister–non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities

  12. The geography and ecology of plant speciation: range overlap and niche divergence in sister species.

    PubMed

    Anacker, Brian L; Strauss, Sharon Y

    2014-03-07

    A goal of evolutionary biology is to understand the roles of geography and ecology in speciation. The recent shared ancestry of sister species can leave a major imprint on their geographical and ecological attributes, possibly revealing processes involved in speciation. We examined how ecological similarity, range overlap and range asymmetry are related to time since divergence of 71 sister species pairs in the California Floristic Province (CFP). We found that plants exhibit strikingly different age-range correlation patterns from those found for animals; the latter broadly support allopatric speciation as the primary mode of speciation. By contrast, plant sisters in the CFP were sympatric in 80% of cases and range sizes of sisters differed by a mean of 10-fold. Range overlap and range asymmetry were greatest in younger sisters. These results suggest that speciation mechanisms broadly grouped under 'budding' speciation, in which a larger ranged progenitor gives rise to a smaller ranged derivative species, are probably common. The ecological and reproductive similarity of sisters was significantly greater than that of sister-non-sister congeners for every trait assessed. However, shifts in at least one trait were present in 93% of the sister pairs; habitat and soil shifts were especially common. Ecological divergence did not increase with range overlap contrary to expectations under character displacement in sympatry. Our results suggest that vicariant speciation is more ubiquitous in animals than plants, perhaps owing to the sensitivity of plants to fine-scale environmental heterogeneity. Despite high levels of range overlap, ecological shifts in the process of budding speciation may result in low rates of fine-scale spatial co-occurrence. These results have implications for ecological studies of trait evolution and community assembly; despite high levels of sympatry, sister taxa and potentially other close relatives, may be missing from local communities.

  13. Mercury speciation in seafood using isotope dilution analysis: a review.

    PubMed

    Clémens, Stéphanie; Monperrus, Mathilde; Donard, Olivier F X; Amouroux, David; Guérin, Thierry

    2012-01-30

    Mercury is a toxic compound that can contaminate humans through food and especially via fish consumption. Mercury's toxicity depends on the species, with methylmercury being the most hazardous form for humans. Hg speciation analysis has been and remains a widely studied subject because of the potential difficulty of preserving the initial distribution of mercury species in the analysed sample. Accordingly, many analytical methods have been developed and most of them incur significant loss and/or cross-species transformations during sample preparation. Therefore, to monitor and correct artefact formations, quantification by isotope dilution is increasingly used and provides significant added value for analytical quality assurance and quality control. This review presents and discusses the two different modes of application of isotope dilution analysis for elemental speciation (i.e. species-unspecific isotope dilution analysis and species-specific isotope dilution analysis) and the different quantification techniques (i.e. classical and multiple spike isotope dilution analyses). Isotope tracers are thus used at different stages of sample preparation to determine the extent of inter-species transformations and correct such analytical artefacts. Finally, a synthesis of the principal methods used for mercury speciation in seafood using isotope dilution analysis is presented.

  14. Adaptive speciation theory: a conceptual review.

    PubMed

    Weissing, Franz J; Edelaar, Pim; van Doorn, G Sander

    2011-03-01

    Speciation-the origin of new species-is the source of the diversity of life. A theory of speciation is essential to link poorly understood macro-evolutionary processes, such as the origin of biodiversity and adaptive radiation, to well understood micro-evolutionary processes, such as allele frequency change due to natural or sexual selection. An important question is whether, and to what extent, the process of speciation is 'adaptive', i.e., driven by natural and/or sexual selection. Here, we discuss two main modelling approaches in adaptive speciation theory. Ecological models of speciation focus on the evolution of ecological differentiation through divergent natural selection. These models can explain the stable coexistence of the resulting daughter species in the face of interspecific competition, but they are often vague about the evolution of reproductive isolation. Most sexual selection models of speciation focus on the diversification of mating strategies through divergent sexual selection. These models can explain the evolution of prezygotic reproductive isolation, but they are typically vague on questions like ecological coexistence. By means of an integrated model, incorporating both ecological interactions and sexual selection, we demonstrate that disruptive selection on both ecological and mating strategies is necessary, but not sufficient, for speciation to occur. To achieve speciation, mating must at least partly reflect ecological characteristics. The interaction of natural and sexual selection is also pivotal in a model where sexual selection facilitates ecological speciation even in the absence of diverging female preferences. In view of these results, it is counterproductive to consider ecological and sexual selection models as contrasting and incompatible views on speciation, one being dominant over the other. Instead, an integrative perspective is needed to achieve a thorough and coherent understanding of adaptive speciation.

  15. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  16. Speciation genetics: current status and evolving approaches.

    PubMed

    Wolf, Jochen B W; Lindell, Johan; Backström, Niclas

    2010-06-12

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues.

  17. Speciation in fungal and oomycete plant pathogens

    USDA-ARS?s Scientific Manuscript database

    The process of speciation by definition involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed ...

  18. Speciation genetics: current status and evolving approaches

    PubMed Central

    Wolf, Jochen B. W.; Lindell, Johan; Backström, Niclas

    2010-01-01

    The view of species as entities subjected to natural selection and amenable to change put forth by Charles Darwin and Alfred Wallace laid the conceptual foundation for understanding speciation. Initially marred by a rudimental understanding of hereditary principles, evolutionists gained appreciation of the mechanistic underpinnings of speciation following the merger of Mendelian genetic principles with Darwinian evolution. Only recently have we entered an era where deciphering the molecular basis of speciation is within reach. Much focus has been devoted to the genetic basis of intrinsic postzygotic isolation in model organisms and several hybrid incompatibility genes have been successfully identified. However, concomitant with the recent technological advancements in genome analysis and a newfound interest in the role of ecology in the differentiation process, speciation genetic research is becoming increasingly open to non-model organisms. This development will expand speciation research beyond the traditional boundaries and unveil the genetic basis of speciation from manifold perspectives and at various stages of the splitting process. This review aims at providing an extensive overview of speciation genetics. Starting from key historical developments and core concepts of speciation genetics, we focus much of our attention on evolving approaches and introduce promising methodological approaches for future research venues. PMID:20439277

  19. Rates of speciation in the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.

  20. Rates of speciation in the fossil record.

    PubMed Central

    Sepkoski, J J

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges. PMID:11541734

  1. Rates of speciation in the fossil record

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1998-01-01

    Data from palaeontology and biodiversity suggest that the global biota should produce an average of three new species per year. However, the fossil record shows large variation around this mean. Rates of origination have declined through the Phanerozoic. This appears to have been largely a function of sorting among higher taxa (especially classes), which exhibit characteristic rates of speciation (and extinction) that differ among them by nearly an order of magnitude. Secular decline of origination rates is hardly constant, however; many positive deviations reflect accelerated speciation during rebounds from mass extinctions. There has also been general decline in rates of speciation within major taxa through their histories, although rates have tended to remain higher among members in tropical regions. Finally, pulses of speciation appear sometimes to be associated with climate change, although moderate oscillations of climate do not necessarily promote speciation despite forcing changes in species' geographical ranges.

  2. The speed of ecological speciation.

    PubMed

    Hendry, Andrew P; Nosil, Patrik; Rieseberg, Loren H

    2007-06-01

    Adaptation can occur on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation (ecological speciation). From the intersection of these two premises follows the prediction that reproductive isolation can evolve on ecological time-scales. We explore this possibility in theory and in nature. Finding few relevant studies, we examine each in some detail. THEORY: Several models have demonstrated that ecological differences can drive the evolution of partial reproductive barriers in dozens to hundreds of generations. Barriers likely to evolve quickly include dispersal rate, habitat preference and selection against migrants/hybrids. PLANTS: Adjacent populations adapting to different fertilizer treatments or to mine tailings can develop reproductive barriers within at least 100 generations. These barriers include differences in flowering time and selection against migrants/hybrids. INVERTEBRATES: Populations on native and introduced host plants can manifest reproductive barriers in dozens to hundreds of generations. These barriers include local host preference and selection against migrants/hybrids. VERTEBRATES: Salmon adapting to divergent breeding environments can show restricted gene flow within at least 14 generations. Birds evolving different migratory routes can mate assortatively within at least 10-20 generations. Hybrid sculpins can become isolated from their ancestral species within at least 20-200 generations. Ecological speciation can commence within dozens of generations. How far it goes is an important question for future research.

  3. The speed of ecological speciation

    PubMed Central

    HENDRY, ANDREW P.; NOSIL, PATRIK; RIESEBERG, LOREN H.

    2008-01-01

    Summary Adaptation can occur on ecological time-scales (contemporary evolution) and adaptive divergence can cause reproductive isolation (ecological speciation). From the intersection of these two premises follows the prediction that reproductive isolation can evolve on ecological time-scales. We explore this possibility in theory and in nature. Finding few relevant studies, we examine each in some detail. Theory Several models have demonstrated that ecological differences can drive the evolution of partial reproductive barriers in dozens to hundreds of generations. Barriers likely to evolve quickly include dispersal rate, habitat preference and selection against migrants/hybrids. Plants Adjacent populations adapting to different fertilizer treatments or to mine tailings can develop reproductive barriers within at least 100 generations. These barriers include differences in flowering time and selection against migrants/hybrids. Invertebrates Populations on native and introduced host plants can manifest reproductive barriers in dozens to hundreds of generations. These barriers include local host preference and selection against migrants/hybrids. Vertebrates Salmon adapting to divergent breeding environments can show restricted gene flow within at least 14 generations. Birds evolving different migratory routes can mate assortatively within at least 10–20 generations. Hybrid sculpins can become isolated from their ancestral species within at least 20–200 generations. Ecological speciation can commence within dozens of generations. How far it goes is an important question for future research. PMID:19096732

  4. The speciation of behavior analysis

    PubMed Central

    Rider, David P.

    1991-01-01

    The relationship between the Experimental Analysis of Behavior (EAB) and Applied Behavior Analysis (ABA) has been the subject of several editorials and commentaries in recent years. Various authors have argued that researchers in these two fields (a) have become isolated from each other, (b) face different requirements for survival in their respective fields, and (c) possess different skills to meet those requirements. The present paper provides an allegory for the relationship between EAB and ABA in terms of biological speciation. The conditions that have changed the relationship between EAB and ABA are parallel to those responsible for biological speciation: (a) isolation of some members of a species from the rest of the population, (b) different contingencies of survival for members of the two separate groups, and (c) divergence in the adaptive characteristics displayed by the two groups. When members of two different groups, descendants of common ancestors, no longer are capable of producing viable offspring by interbreeding, the different groups then represent different species. To the extent that members of the EAB group and members of the ABA group interact with each other only trivially, they each represent allegorically different species. Changes in the relationship between EAB and ABA are part of a natural process that takes place in many other sciences, and the course of that process can hardly be reversed by us. PMID:22478096

  5. Molecular models for actinide speciation

    SciTech Connect

    Clark, D.L.; Watkin, J.G.; Morris, D.E.; Berg, J.M.

    1994-06-01

    Much effort has been devoted to the development of sensitive spectroscopic techniques for the study of actinide speciation based on the sensitivity of f-f electronic absorption bands to oxidation state and ligation of the actinide ions. These efforts assume that data obtained in such studies will be interpretable in terms of changes in complexation of the metal center. However, the current understanding of 5f electronic structure is based on data from solid state doped single crystals. In those studies, the local coordination geometry about the central actinide ion is maintained in an almost perfect high-symmetry environment and will have little relevance for species in solution where deviations from perfect high symmetry tend to be the rule rather than the exception. The authors have developed a vigorous research program in the systematic preparation and spectroscopic characterization of synthetic actinide complexes (Th, U, Np, and Pu) in which they can control nuclearity, oxidation state, and molecular structure. These complexes have been used to determine how observable electronic transitions are perturbed in response to structural changes in the complex in solution. From the spectra obtained for these model complexes, the authors have found that the f-f transitions naturally fall into obvious groupings by coordination number and symmetry by which they can now differentiate between monomeric, dimeric, and trimeric species in solution. The study of radionuclide speciation is fundamentally important to the determination of radionuclide solubility in the groundwater at Yucca Mountain.

  6. Bird song, ecology and speciation.

    PubMed Central

    Slabbekoorn, Hans; Smith, Thomas B

    2002-01-01

    The study of bird song dialects was once considered the most promising approach for investigating the role of behaviour in reproductive divergence and speciation. However, after a series of studies yielding conflicting results, research in the field slowed significantly. Recent findings, on how ecological factors may lead to divergence in both song and morphology, necessitate a re-examination. We focus primarily on species with learned song, examine conflicting results in the literature and propose some potential new directions for future studies. We believe an integrative approach, including an examination of the role of ecology in divergent selection, is essential for gaining insight into the role of song in the evolution of assortative mating. Habitat-dependent selection on both song and fitness-related characteristics can lead to parallel divergence in these traits. Song may, therefore, provide females with acoustic cues to find males that are most fit for a particular habitat. In analysing the role of song learning in reproductive divergence, we focus on post-dispersal plasticity in a conceptual framework. We argue that song learning may initially constrain reproductive divergence, while in the later stages of population divergence it may promote speciation. PMID:12028787

  7. Reconciling diversification: random pulse models of speciation and extinction.

    PubMed

    Ricklefs, Robert E

    2014-08-01

    Inferring the underlying speciation-extinction dynamics of a clade from the phylogenetic relationships of contemporary species has proven difficult, primarily because the record of extinction is absent. Moreover, models of diversification tend to emphasize either time homogeneity or gradual trends in speciation and extinction rates. In contrast, the fossil records of many groups exhibit repeated increase and decrease of species richness within clades. Modeling this dynamic in the structure of phylogenetic trees has had limited application. Here, I consider the idea that pulses of diversification followed by declines in clade size-such pulses having short life spans in evolutionary time-occur frequently and more or less randomly among lineages. I suggest that this model might characterize diversification quite generally. Analyses of a recent phylogeny of the ovenbirds and treecreepers (Aves: Furnariidae) supports the random pulse model in that ancestral lineages at 15, 10, and 5 Ma exhibit diversification rate heterogeneity, but the sizes of ancestral and descendant lineages are uncorrelated. Simulations of such a process and its manifestations in reconstructed phylogenies would help to characterize diversification pulses in an abstract sense and draw attention to the underlying biological processes that produce them.

  8. Speciation in Thaparocleidus (Monogenea: Dactylogyridae) parasitizing Asian Pangasiid catfishes.

    PubMed

    Simková, Andrea; Serbielle, Celine; Pariselle, Antoine; Vanhove, Maarten P M; Morand, Serge

    2013-01-01

    The phylogeny of monogeneans of the genus Thaparocleidus that parasitize the gills of Pangasiidae in Borneo and Sumatra was inferred from molecular data to investigate parasite speciation. The phylogeny of the Pangasiidae was also reconstructed in order to investigate host-parasite coevolutionary history. The monophyly of Thaparocleidus parasitizing Pangasiidae was confirmed. Low intraspecies molecular variability was observed in three Thaparocleidus species collected from geographically distant localities. However, a high intraspecies molecular variability was observed in two Thaparocleidus species suggesting that these species represent a complex of species highly similar in morphology. Distance-based and tree-based methods revealed a significant global fit between parasite and host phylogenies. Parasite duplication (i.e., intrahost speciation) was recognized as the most common event in Thaparocleidus, while the numbers of cospeciation and host switches were lower and similar to each other. When collapsing nodes correspond to duplication cases, our results suggest host switches in the Thaparocleidus-Pangasiidae system precluding congruence between host and parasite trees. We found that the morphometric variability of the parasite attachment organ is not linked to phylogeny, suggesting that the attachment organ is under adaptive constraint. We showed that haptor morphometry is linked to host specificity, whereby nonspecific parasites display higher morphometric variability than specialists.

  9. Speciation in Thaparocleidus (Monogenea: Dactylogyridae) Parasitizing Asian Pangasiid Catfishes

    PubMed Central

    Šimková, Andrea; Serbielle, Celine; Vanhove, Maarten P. M.; Morand, Serge

    2013-01-01

    The phylogeny of monogeneans of the genus Thaparocleidus that parasitize the gills of Pangasiidae in Borneo and Sumatra was inferred from molecular data to investigate parasite speciation. The phylogeny of the Pangasiidae was also reconstructed in order to investigate host-parasite coevolutionary history. The monophyly of Thaparocleidus parasitizing Pangasiidae was confirmed. Low intraspecies molecular variability was observed in three Thaparocleidus species collected from geographically distant localities. However, a high intraspecies molecular variability was observed in two Thaparocleidus species suggesting that these species represent a complex of species highly similar in morphology. Distance-based and tree-based methods revealed a significant global fit between parasite and host phylogenies. Parasite duplication (i.e., intrahost speciation) was recognized as the most common event in Thaparocleidus, while the numbers of cospeciation and host switches were lower and similar to each other. When collapsing nodes correspond to duplication cases, our results suggest host switches in the Thaparocleidus-Pangasiidae system precluding congruence between host and parasite trees. We found that the morphometric variability of the parasite attachment organ is not linked to phylogeny, suggesting that the attachment organ is under adaptive constraint. We showed that haptor morphometry is linked to host specificity, whereby nonspecific parasites display higher morphometric variability than specialists. PMID:24350263

  10. Genetic mechanisms of allopolyploid speciation through hybrid genome doubling: novel insights from wheat (Triticum and Aegilops) studies.

    PubMed

    Matsuoka, Yoshihiro; Takumi, Shigeo; Nasuda, Shuhei

    2014-01-01

    Polyploidy, which arises through complex genetic and ecological processes, is an important mode of plant speciation. This review provides an overview of recent advances in understanding why plant polyploid species are so ubiquitous and diverse. We consider how the modern framework for understanding genetic mechanisms of speciation could be used to study allopolyploid speciation that occurs through hybrid genome doubling, that is, whole genome doubling of interspecific F1 hybrids by the union of male and female unreduced gametes. We outline genetic and ecological mechanisms that may have positive or negative impacts on the process of allopolyploid speciation through hybrid genome doubling. We also discuss the current status of studies on the underlying genetic mechanisms focusing on the wheat (Triticum and Aegilops) hybrid-specific reproductive phenomena that are well known but deserve renewed attention from an evolutionary viewpoint.

  11. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies.

    PubMed

    Potter, Sally; Bragg, Jason G; Blom, Mozes P K; Deakin, Janine E; Kirkpatrick, Mark; Eldridge, Mark D B; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.

  12. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies

    PubMed Central

    Potter, Sally; Bragg, Jason G.; Blom, Mozes P. K.; Deakin, Janine E.; Kirkpatrick, Mark; Eldridge, Mark D. B.; Moritz, Craig

    2017-01-01

    The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to “chromosomal speciation.” Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation. PMID:28265284

  13. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation.

    PubMed

    Rabosky, Daniel L; Santini, Francesco; Eastman, Jonathan; Smith, Stephen A; Sidlauskas, Brian; Chang, Jonathan; Alfaro, Michael E

    2013-01-01

    Several evolutionary theories predict that rates of morphological change should be positively associated with the rate at which new species arise. For example, the theory of punctuated equilibrium proposes that phenotypic change typically occurs in rapid bursts associated with speciation events. However, recent phylogenetic studies have found little evidence linking these processes in nature. Here we demonstrate that rates of species diversification are highly correlated with the rate of body size evolution across the 30,000+ living species of ray-finned fishes that comprise the majority of vertebrate biological diversity. This coupling is a general feature of fish evolution and transcends vast differences in ecology and body-plan organization. Our results may reflect a widespread speciational mode of character change in living fishes. Alternatively, these findings are consistent with the hypothesis that phenotypic 'evolvability'-the capacity of organisms to evolve-shapes the dynamics of speciation through time at the largest phylogenetic scales.

  14. A phylogenetic test of sympatric speciation in the Hydrobatinae (Aves: Procellariiformes).

    PubMed

    Wallace, S J; Morris-Pocock, J A; González-Solís, J; Quillfeldt, P; Friesen, V L

    2017-02-01

    Phylogenetic relationships among species can provide insight into how new species arise. For example, careful consideration of both the phylogenetic and geographic distributions of species in a group can reveal the geographic models of speciation within the group. One such model, sympatric speciation, may be more common than previously thought. The Hydrobatinae (Aves: Procellariformes) is a diverse subfamily of Northern Hemisphere storm-petrels for which the taxonomy is unclear. Previous studies showed that Hydrobates (formally Oceanodroma) castro breeding in the Azores during the cool season is sister species to H. monteiroi, a hot season breeder at the same locations, which suggests sympatric speciation by allochrony. To test whether other species within the subfamily arose via sympatric speciation by allochrony, we sequenced the cytochrome b gene and five nuclear introns to estimate a phylogenetic tree using multispecies coalescent methods, and to test whether species breeding in the same geographic area are monophyletic. We found that speciation within the Hydrobatinae appears to have followed several geographic modes of divergence. Sympatric seasonal species in Japan likely did not arise through sympatric speciation, but allochrony may have played a role in the divergence of H. matsudairae, a cool season breeder, and H. monorhis, a hot season breeder. No other potential cases of sympatric speciation were discovered within the subfamily. Despite breeding in the same geographic area, hydrobatine storm-petrels breeding in Baja California (H. microsoma and H. melania) are each sister to a species breeding off the coast of Peru (H. tethys and H. markhami, respectively). In fact, antitropical sister species appear to have diverged at multiple times, suggesting allochronic divergence might be common. In addition, allopatry has likely played a role in divergence of H. furcata, a north Pacific breeder, and H. pelagius, a north Atlantic breeder. This study demonstrates

  15. Hierarchical cosmic shear power spectrum inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.; Kiessling, Alina; Wandelt, Benjamin; Hoffmann, Till

    2016-02-01

    We develop a Bayesian hierarchical modelling approach for cosmic shear power spectrum inference, jointly sampling from the posterior distribution of the cosmic shear field and its (tomographic) power spectra. Inference of the shear power spectrum is a powerful intermediate product for a cosmic shear analysis, since it requires very few model assumptions and can be used to perform inference on a wide range of cosmological models a posteriori without loss of information. We show that joint posterior for the shear map and power spectrum can be sampled effectively by Gibbs sampling, iteratively drawing samples from the map and power spectrum, each conditional on the other. This approach neatly circumvents difficulties associated with complicated survey geometry and masks that plague frequentist power spectrum estimators, since the power spectrum inference provides prior information about the field in masked regions at every sampling step. We demonstrate this approach for inference of tomographic shear E-mode, B-mode and EB-cross power spectra from a simulated galaxy shear catalogue with a number of important features; galaxies distributed on the sky and in redshift with photometric redshift uncertainties, realistic random ellipticity noise for every galaxy and a complicated survey mask. The obtained posterior distributions for the tomographic power spectrum coefficients recover the underlying simulated power spectra for both E- and B-modes.

  16. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data

    PubMed Central

    Silvestro, Daniele; Schnitzler, Jan; Liow, Lee Hsiang; Antonelli, Alexandre; Salamin, Nicolas

    2015-01-01

    The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes. PMID:24510972

  17. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data.

    PubMed

    Silvestro, Daniele; Schnitzler, Jan; Liow, Lee Hsiang; Antonelli, Alexandre; Salamin, Nicolas

    2014-05-01

    The temporal dynamics of species diversity are shaped by variations in the rates of speciation and extinction, and there is a long history of inferring these rates using first and last appearances of taxa in the fossil record. Understanding diversity dynamics critically depends on unbiased estimates of the unobserved times of speciation and extinction for all lineages, but the inference of these parameters is challenging due to the complex nature of the available data. Here, we present a new probabilistic framework to jointly estimate species-specific times of speciation and extinction and the rates of the underlying birth-death process based on the fossil record. The rates are allowed to vary through time independently of each other, and the probability of preservation and sampling is explicitly incorporated in the model to estimate the true lifespan of each lineage. We implement a Bayesian algorithm to assess the presence of rate shifts by exploring alternative diversification models. Tests on a range of simulated data sets reveal the accuracy and robustness of our approach against violations of the underlying assumptions and various degrees of data incompleteness. Finally, we demonstrate the application of our method with the diversification of the mammal family Rhinocerotidae and reveal a complex history of repeated and independent temporal shifts of both speciation and extinction rates, leading to the expansion and subsequent decline of the group. The estimated parameters of the birth-death process implemented here are directly comparable with those obtained from dated molecular phylogenies. Thus, our model represents a step towards integrating phylogenetic and fossil information to infer macroevolutionary processes.

  18. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  19. Environmental harshness, latitude and incipient speciation.

    PubMed

    Weir, Jason T

    2014-02-01

    Are rates of evolution and speciation fastest where diversity is greatest - the tropics? A commonly accepted theory links the latitudinal diversity gradient to a speciation pump model whereby the tropics produce species at a faster rate than extra-tropical regions. In this issue of Molecular Ecology, Botero et al. () test the speciation pump model using subspecies richness patterns for more than 9000 species of birds and mammals as a proxy for incipient speciation opportunity. Rather than using latitudinal centroids, the authors investigate the role of various environmental correlates of latitude as drivers of subspecies richness. Their key finding points to environmental harshness as a positive predictor of subspecies richness. The authors link high subspecies richness in environmental harsh areas to increased opportunities for geographic range fragmentation and/or faster rates of trait evolution as drivers of incipient speciation. Because environmental harshness generally increases with latitude, these results suggest that opportunity for incipient speciation is lowest where species richness is highest. The authors interpret this finding as incompatible with the view of the tropics as a cradle of diversity. Their results are consistent with a growing body of evidence that reproductive isolation and speciation occur fastest at high latitudes.

  20. Sexual conflict promotes speciation in insects

    PubMed Central

    Arnqvist, Göran; Edvardsson, Martin; Friberg, Urban; Nilsson, Tina

    2000-01-01

    Speciation rates among extant lineages of organisms vary extensively, but our understanding of the causes of this variation and, therefore, the processes of speciation is still remarkably incomplete. Both theoretical and empirical studies have indicated that sexual selection is important in speciation, but earlier discussions have focused almost exclusively on the potential role of female mate choice. Recent findings of postmating reproductive conflicts of interest between the sexes suggest a quite different route to speciation. Such conflicts may lead to perpetual antagonistic coevolution between males and females and may thus generate rapid evolutionary divergence of traits involved in reproduction. Here, we assess this hypothesis by contrasting pairs of related groups of insect species differing in the opportunity for postmating sexual conflict. Groups where females mate with many males exhibited speciation rates four times as high as in related groups where females mate only once. Our results not only highlight the general importance of postmating sexual selection in speciation, but also support the recent suggestion that sexual conflict is a key engine of speciation. PMID:10984538

  1. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara

    PubMed Central

    2013-01-01

    Introduction In the past decade ecological speciation has been recognized as having an important role in the diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host plants and, as such, they are prone to experience reproductive isolation linked with host plant association that could ultimately lead to species formation. The generality of such a scenario remains to be tested through macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera, feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these characters have accompanied speciation events. Results The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in agreement with predictions from scenarios in which geographic isolation accounts for speciation events, geographic overlap between species increased significantly with time elapsed since their separation. Conclusions The history of Cinara offers a different perspective on the mode of speciation of aphids than that provided by classic models such as the pea aphid. In this

  2. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert

    PubMed Central

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-01-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (FST = 0.35), and FST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times. PMID:24558582

  3. Evidence for nonallopatric speciation among closely related sympatric Heliotropium species in the Atacama Desert.

    PubMed

    Luebert, Federico; Jacobs, Pit; Hilger, Hartmut H; Muller, Ludo A H

    2014-02-01

    The genetic structure of populations of closely related, sympatric species may hold the signature of the geographical mode of the speciation process. In fully allopatric speciation, it is expected that genetic differentiation between species is homogeneously distributed across the genome. In nonallopatric speciation, the genomes may remain undifferentiated to a large extent. In this article, we analyzed the genetic structure of five sympatric species from the plant genus Heliotropium in the Atacama Desert. We used amplified fragment length polymorphisms (AFLPs) to characterize the genetic structure of these species and evaluate their genetic differentiation as well as the number of loci subject to positive selection using divergence outlier analysis (DOA). The five species form distinguishable groups in the genetic space, with zones of overlap, indicating that they are possibly not completely isolated. Among-species differentiation accounts for 35% of the total genetic differentiation (F ST = 0.35), and F ST between species pairs is positively correlated with phylogenetic distance. DOA suggests that few loci are subject to positive selection, which is in line with a scenario of nonallopatric speciation. These results support the idea that sympatric species of Heliotropium sect. Cochranea are under an ongoing speciation process, characterized by a fluctuation of population ranges in response to pulses of arid and humid periods during Quaternary times.

  4. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus

    PubMed Central

    Ferris, Kathleen G.; Sexton, Jason P.; Willis, John H.

    2014-01-01

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. PMID:24958929

  5. Speciation on a local geographic scale: the evolution of a rare rock outcrop specialist in Mimulus.

    PubMed

    Ferris, Kathleen G; Sexton, Jason P; Willis, John H

    2014-08-05

    Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  6. Speciation reversal in European whitefish (Coregonus lavaretus (L.)) caused by competitor invasion.

    PubMed

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of "speciation in reverse".

  7. Phylogeographical and speciation patterns in subterranean worm lizards of the genus Blanus (Amphisbaenia: Blanidae).

    PubMed

    Albert, E M; Zardoya, R; García-París, M

    2007-04-01

    The peculiar lifestyle of subterranean reptiles must determine their modes of speciation and diversification. To further understand the evolutionary biology of subterranean reptiles, we studied the phylogeny of worm lizards of the genus Blanus and the phylogeography of its Iberian representatives. We used mitochondrial (ND4 and 16S rRNA) and nuclear (anonymous) partial gene sequences to resolve phylogenetic relationships within Blanus. The Eastern Mediterranean Blanus strauchi was recovered as sister group of Western Mediterranean species. Iberian and North African Blanus were recovered as reciprocally monophyletic groups. The same genes were used to determine phylogeography of 47 populations of Blanus cinereus. Mitochondrial and nuclear sequence data recovered two highly supported Iberian clades. Parapatry and high sequence divergences between them suggest that these clades may represent independent taxonomic units. A molecular clock was calibrated considering that the split between Iberian and North African Blanus was due to the re-opening of the Betic Strait in the Upper Tortonian (8-9 million years ago). Differentiation between the two Iberian clades was estimated to date back to 5.2 million years ago. The Central Iberian clade included five mitochondrial haplotype lineages (A-E). Geographical ranges of two of them broadly overlap in the central Iberian plateau. After testing alternative hypotheses, the most likely explanation for this striking phylogeographical pattern involves recent dispersal of one of the lineages (C) over the geographical range of the other (B). The inferred recent dispersal of this fossorial reptile is explained in terms of demographic advantages associated to underground lifestyle.

  8. Speciation Reversal in European Whitefish (Coregonus lavaretus (L.)) Caused by Competitor Invasion

    PubMed Central

    Bhat, Shripathi; Amundsen, Per-Arne; Knudsen, Rune; Gjelland, Karl Øystein; Fevolden, Svein-Erik; Bernatchez, Louis; Præbel, Kim

    2014-01-01

    Invasion of exotic species has caused the loss of biodiversity and imparts evolutionary and ecological changes in the introduced systems. In northern Fennoscandia, European whitefish (Coregonus lavaretus (L.)) is a highly polymorphic species displaying adaptive radiations into partially reproductively isolated and thus genetically differentiated sympatric morphs utilizing the planktivorous and benthivorous food niche in many lakes. In 1993, Lake Skrukkebukta was invaded by vendace (Coregonus albula (L.)) which is a zooplanktivorous specialist. The vendace displaced the densely rakered whitefish from its preferred pelagic niche to the benthic habitat harbouring the large sparsely rakered whitefish. In this study, we investigate the potential influence of the vendace invasion on the breakdown of reproductive isolation between the two whitefish morphs. We inferred the genotypic and phenotypic differentiation between the two morphs collected at the arrival (1993) and 15 years after (2008) the vendace invasion using 16 microsatellite loci and gill raker numbers, the most distinctive adaptive phenotypic trait between them. The comparison of gill raker number distributions revealed two modes growing closer over 15 years following the invasion. Bayesian analyses of genotypes revealed that the two genetically distinct whitefish morphs that existed in 1993 had collapsed into a single population in 2008. The decline in association between the gill raker numbers and admixture values over 15 years corroborates the findings from the Bayesian analysis. Our study thus suggests an apparent decrease of reproductive isolation in a morph-pair of European whitefish within 15 years (≃ 3 generations) following the invasion of a superior trophic competitor (vendace) in a subarctic lake, reflecting a situation of “speciation in reverse”. PMID:24626131

  9. HieranoiDB: a database of orthologs inferred by Hieranoid

    PubMed Central

    Kaduk, Mateusz; Riegler, Christian; Lemp, Oliver; Sonnhammer, Erik L. L.

    2017-01-01

    HieranoiDB (http://hieranoiDB.sbc.su.se) is a freely available on-line database for hierarchical groups of orthologs inferred by the Hieranoid algorithm. It infers orthologs at each node in a species guide tree with the InParanoid algorithm as it progresses from the leaves to the root. Here we present a database HieranoiDB with a web interface that makes it easy to search and visualize the output of Hieranoid, and to download it in various formats. Searching can be performed using protein description, identifier or sequence. In this first version, orthologs are available for the 66 Quest for Orthologs reference proteomes. The ortholog trees are shown graphically and interactively with marked speciation and duplication nodes that show the inferred evolutionary scenario, and allow for correct extraction of predicted orthologs from the Hieranoid trees. PMID:27742821

  10. Speciation gradients and the distribution of biodiversity.

    PubMed

    Schluter, Dolph; Pennell, Matthew W

    2017-05-31

    Global patterns of biodiversity are influenced by spatial and environmental variations in the rate at which new species form. We relate variations in speciation rates to six key patterns of biodiversity worldwide, including the species-area relationship, latitudinal gradients in species and genetic diversity, and between-habitat differences in species richness. Although they sometimes mirror biodiversity patterns, recent rates of speciation, at the tip of the tree of life, are often highest where species richness is low. Speciation gradients therefore shape, but are also shaped by, biodiversity gradients and are often more useful for predicting future patterns of biodiversity than for interpreting the past.

  11. Multiple Instance Fuzzy Inference

    DTIC Science & Technology

    2015-12-02

    Zhang, Xin Chen, and Wei-Bang Chen, “An online multiple instance learn - ing system for semantic image retrieval,” in Multimedia Workshops, 2007. ISMW...INFERENCE A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The...fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a

  12. Primate extinction risk and historical patterns of speciation and extinction in relation to body mass.

    PubMed

    Matthews, Luke J; Arnold, Christian; Machanda, Zarin; Nunn, Charles L

    2011-04-22

    Body mass is thought to influence diversification rates, but previous studies have produced ambiguous results. We investigated patterns of diversification across 100 trees obtained from a new Bayesian inference of primate phylogeny that sampled trees in proportion to their posterior probabilities. First, we used simulations to assess the validity of previous studies that used linear models to investigate the links between IUCN Red List status and body mass. These analyses support the use of linear models for ordinal ranked data on threat status, and phylogenetic generalized linear models revealed a significant positive correlation between current extinction risk and body mass across our tree block. We then investigated historical patterns of speciation and extinction rates using a recently developed maximum-likelihood method. Specifically, we predicted that body mass correlates positively with extinction rate because larger bodied organisms reproduce more slowly, and body mass correlates negatively with speciation rate because smaller bodied organisms are better able to partition niche space. We failed to find evidence that extinction rates covary with body mass across primate phylogeny. Similarly, the speciation rate was generally unrelated to body mass, except in some tests that indicated an increase in the speciation rate with increasing body mass. Importantly, we discovered that our data violated a key assumption of sample randomness with respect to body mass. After correcting for this bias, we found no association between diversification rates and mass.

  13. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation.

    PubMed

    Martin, Christopher H; Cutler, Joseph S; Friel, John P; Dening Touokong, Cyrille; Coop, Graham; Wainwright, Peter C

    2015-06-01

    One of the most celebrated examples of sympatric speciation in nature are monophyletic radiations of cichlid fishes endemic to Cameroon crater lakes. However, phylogenetic inference of monophyly may not detect complex colonization histories involving some allopatric isolation, such as double invasions obscured by genome-wide gene flow. Population genomic approaches are better suited to test hypotheses of sympatric speciation in these cases. Here, we use comprehensive sampling from all four sympatric crater lake cichlid radiations in Cameroon and outgroups across Africa combined with next-generation sequencing to genotype tens of thousands of SNPs. We find considerable evidence of gene flow between all four radiations and neighboring riverine populations after initial colonization. In a few cases, some sympatric species are more closely related to outgroups than others, consistent with secondary gene flow facilitating their speciation. Our results do not rule out sympatric speciation in Cameroon cichlids, but rather reveal a complex history of speciation with gene flow, including allopatric and sympatric phases, resulting in both reproductively isolated species and incipient species complexes. The best remaining non-cichlid examples of sympatric speciation all involve assortative mating within microhabitats. We speculate that this feature may be necessary to complete the process of sympatric speciation in nature.

  14. Diploid versus haploid models of neutral speciation.

    PubMed

    Schneider, David M; Baptestini, Elizabeth M; de Aguiar, Marcus A M

    2016-03-01

    Neutral models of speciation based on isolation by distance and assortative mating, termed topopatric, have shown to be successful in describing abundance distributions and species-area relationships. Previous works have considered this type of process in the context of haploid genomes. Here we discuss the implementation of two schemes of dominance to analyze the effects of diploidy: a complete dominance model in which one allele dominates over the other and a perfect codominant model in which heterozygous genotypes give rise to a third phenotype. In the case of complete dominance, we observe that speciation requires stronger spatial inbreeding in comparison to the haploid model. For perfect codominance, instead, speciation demands stronger genetic assortativeness. Nevertheless, once speciation is established, the three models predict the same abundance distributions even at the quantitative level, revealing the robustness of the original mechanism to describe biodiversity features.

  15. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited.

    PubMed

    Brown, Judith D; O'Neill, Rachel J

    2010-01-01

    Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.

  16. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  17. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  18. Physicochemical speciation of lead in drinking water.

    PubMed

    Harrison, R M; Laxen, D P

    1980-08-21

    Recent studies have highlighted the importance of drinking water as a route of human exposure to lead. Whilst there are ample data on lead concentrations in drinking water, little is known of its physical and chemical forms (physicochemical speciation). Such information is important as the speciation of ingested lead influences the efficiency of absorption from the gastrointestinal tract. Knowledge of speciation should also provide a fuller understanding of the factors controlling the solubility of lead in potable waters and hence assist in devising the most cost-effective means of plumbosolvency control. We have determined experimentally the speciation of lead in three different tapwaters and report here diverse forms of dissolved and particle-associated lead, dependent primarily on the chemical matrix of the raw water.

  19. Inference in `poor` languages

    SciTech Connect

    Petrov, S.

    1996-10-01

    Languages with a solvable implication problem but without complete and consistent systems of inference rules (`poor` languages) are considered. The problem of existence of finite complete and consistent inference rule system for a ``poor`` language is stated independently of the language or rules syntax. Several properties of the problem arc proved. An application of results to the language of join dependencies is given.

  20. Refining the conditions for sympatric ecological speciation.

    PubMed

    Débarre, F

    2012-12-01

    Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni- or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene-type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert-Plante & Hendry, 2011, J. Evol. Biol. 24: 2186-2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification.

  1. The ecological genetics of homoploid hybrid speciation.

    PubMed

    Gross, B L; Rieseberg, L H

    2005-01-01

    Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology's role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies.

  2. The Ecological Genetics of Homoploid Hybrid Speciation

    PubMed Central

    Gross, B. L.; Rieseberg, L. H.

    2008-01-01

    Our understanding of homoploid hybrid speciation has advanced substantially since this mechanism of species formation was codified 50 years ago. Early theory and research focused almost exclusively on the importance of chromosomal rearrangements, but it later became evident that natural selection, specifically ecological selection, might play a major role as well. In light of this recent shift, we present an evaluation of ecology’s role in homoploid hybrid speciation, with an emphasis on the genetics underlying ecological components of the speciation process. We briefly review new theoretical developments related to the ecology of homoploid hybrid speciation; propose a set of explicit, testable questions that must be answered to verify the role of ecological selection in homoploid hybrid speciation; discuss published work with reference to these questions; and also report new data supporting the importance of ecological selection in the origin of the homoploid hybrid sunflower species Helianthus deserticola. Overall, theory and empirical evidence gathered to date suggest that ecological selection is a major factor promoting homoploid hybrid speciation, with the strongest evidence coming from genetic studies. PMID:15618301

  3. Radiation and divergence in the Rhagoletis pomonella species complex: inferences from DNA sequence data.

    PubMed

    Xie, X; Michel, A P; Schwarz, D; Rull, J; Velez, S; Forbes, A A; Aluja, M; Feder, J L

    2008-05-01

    Here, we investigate the evolutionary history and pattern of genetic divergence in the Rhagoletis pomonella (Diptera: Tephritidae) sibling species complex, a model for sympatric speciation via host plant shifting, using 11 anonymous nuclear genes and mtDNA. We report that DNA sequence results largely coincide with those of previous allozyme studies. Rhagoletis cornivora was basal in the complex, distinguished by fixed substitutions at all loci. Gene trees did not provide reciprocally monophyletic relationships among US populations of R. pomonella, R. mendax, R. zephyria and the undescribed flowering dogwood fly. However, private alleles were found for these taxa for certain loci. We discuss the implications of the results with respect to identifiable genetic signposts (stages) of speciation, the mosaic nature of genomic differentiation distinguishing formative species and a concept of speciation mode plurality involving a biogeographic contribution to sympatric speciation in the R. pomonella complex.

  4. On speciation of VOC localization

    NASA Astrophysics Data System (ADS)

    Chen, S.; Chang, J.; Wang, J.

    2011-12-01

    Most of the gas-phase chemical mechanisms successfully used in gas-phase atmospheric chemical processes, such as CBM-Z, RADM2 or SAPRC-07, treat hundreds of VOC as lumped organic species by their chemical characteristics. Most of the model results are compared with total VOC observations, and it is not appropriate to compare lumped VOC simulations to observations even if there are separate VOC observations like Photochemical Assessment Monitoring Stations (PAMS). While the PAMS Air Quality Model (PAMS-AQM) is developed, separate organic species observed by PAMS without a doubt can be directly compared with model simulations. From the past case study (Chen et al., 2010), it shows a major and very significant finding in that detailed emissions of VOC in the existing emissions database are often in error in Taiwan or other countries due to the fact that the annual VOC emissions are classified into hundreds of species-specific emissions by using the speciation factors following the protocol of the U.S. EPA (AP-42). Based on all PAMS observations from 2006-2007, four base cases with well comparable meteorological simulations were selected for the unified correction for all sources in Taiwan. After the PAMS species emissions are modified, the diurnal patterns and simulation-observation correlation for most of the PAMS species are improved, and the concentration levels are more comparable with those of observations. More expanded case studies also revealed necessary corrections for the PAMS species emissions. Sensitivity analyses for lumped organic species with modified PAMS species emissions are also conducted. After modified PAMS emissions are added into lumped VOC emissions, there is an increase of only 10% of totally VOC emissions. While the sources of the lumped VOC emissions are changed, ozone formation shows no significant change with modified lumped VOC emissions. This helps to support the argument that for ozone simulation, the lumped VOC processes balance out

  5. Speciation of vanadium in soil.

    PubMed

    Połedniok, Justyna; Buhl, Franciszek

    2003-01-02

    A method for speciation of vanadium in soil is presented in this work. The sequential extraction analysis procedure of Tessier et al. for heavy metals was used for the vanadium separation. The method consists of sequential leaching of the soil samples to separate five fractions of metals: (1) exchangeable, (2) bound to carbonates, (3) bound to Fe-Mn oxides, (4) bound to organic matter and (5) residual. The leaching solutions of Tessier were used for the vanadium extraction, only for the residual fraction the HClO(4) was replaced with H(2)SO(4). The optimum conditions for leaching of vanadium from soil (weight of sample, concentration and volume of extractants, time of extraction) were chosen for each fraction. A sensitive, spectrophotometric method based on the ternary complex V(IV) with Chrome Azurol S and benzyldodecyldimethylammonium bromide (epsilon=7.1x10(4) l mol(-1) cm(-1)) was applied for the vanadium determination after separation of V(V) by solvent extraction using mesityl oxide and reduction of V(V) using ascorbic acid. This method was applied for vanadium speciation in soil from two different regions of Poland: Upper Silesia (industrial region) and Podlasie (agricultural region). The content of vanadium in the fractions of Upper Silesia soil was respectively (in 10(-3)%): I, 3.39; III, 4.53; IV, 10.70; V, 8.70 and it was the highest in the organic fraction, indicating input by anthropogenic activities. The content of vanadium in Podlasie soil was clearly lower and it was (in 10(-3)%): I, 2.07; III, 0.92; IV, 0.69; V, 1.23. The concentration of vanadium in fraction 2 of both soils was less than detection limit of applied method. The total content of vanadium in the five soil fractions was in good correlation with the total content of this element in both soils found after HF-H(2)SO(4) digestion. Analysis using the ICP-AES method gave comparable results.

  6. Speciation rates decline through time in individual-based models of speciation and extinction.

    PubMed

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-09-01

    A well-documented pattern in the fossil record is a long-term decline in the origination rate of new taxa after diversity rebounds from a mass extinction. The mechanisms for this pattern remain elusive. In this article, we investigate the macroevolutionary predictions of an individual-based birth-death model (BDI model) where speciation and extinction rates emerge from population dynamics. We start with the simplest neutral model in which every individual has the same per capita rates of birth, death, and speciation. Although the prediction of the simplest neutral model agrees qualitatively with the fossil pattern, the predicted decline in per-species speciation rates is too fast to explain the long-term trend in fossil data. We thus consider models with variation among species in per capita rates of speciation and a suite of alternative assumptions about the heritability of speciation rate. The results show that interspecific variation in per capita speciation rate can induce differences among species in their ability to resist extinction because a low speciation rate confers a small but important demographic advantage. As a consequence, the model predicts an appropriately slow temporal decline in speciation rates, which provides a mechanistic explanation for the fossil pattern.

  7. Ecological speciation in marine v. freshwater fishes.

    PubMed

    Puebla, O

    2009-10-01

    Absolute barriers to dispersal are not common in marine systems, and the prevalence of planktonic larvae in marine taxa provides potential for gene flow across large geographic distances. These observations raise the fundamental question in marine evolutionary biology as to whether geographic and oceanographic barriers alone can account for the high levels of species diversity observed in marine environments such as coral reefs, or whether marine speciation also operates in the presence of gene flow between diverging populations. In this respect, the ecological hypothesis of speciation, in which reproductive isolation results from divergent or disruptive natural selection, is of particular interest because it may operate in the presence of gene flow. Although important insights into the process of ecological speciation in aquatic environments have been provided by the study of freshwater fishes, comparatively little is known about the possibility of ecological speciation in marine teleosts. In this study, the evidence consistent with different aspects of the ecological hypothesis of speciation is evaluated in marine fishes. Molecular approaches have played a critical role in the development of speciation hypotheses in marine fishes, with a role of ecology suggested by the occurrence of sister clades separated by ecological factors, rapid cladogenesis or the persistence of genetically and ecologically differentiated species in the presence of gene flow. Yet, ecological speciation research in marine fishes is still largely at an exploratory stage. Cases where the major ingredients of ecological speciation, namely a source of natural divergent or disruptive selection, a mechanism of reproductive isolation and a link between the two have been explicitly documented are few. Even in these cases, specific predictions of the ecological hypothesis of speciation remain largely untested. Recent developments in the study of freshwater fishes illustrate the potential for

  8. Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago

    PubMed Central

    Johansson, Helena

    2010-01-01

    From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species

  9. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.

  10. Speciation by Symbiosis: the Microbiome and Behavior.

    PubMed

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species.

  11. Speciation by Symbiosis: the Microbiome and Behavior

    PubMed Central

    Shropshire, J. Dylan

    2016-01-01

    ABSTRACT Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. PMID:27034284

  12. Speciation without Pre-Defined Fitness Functions.

    PubMed

    Gras, Robin; Golestani, Abbas; Hendry, Andrew P; Cristescu, Melania E

    2015-01-01

    The forces promoting and constraining speciation are often studied in theoretical models because the process is hard to observe, replicate, and manipulate in real organisms. Most models analyzed to date include pre-defined functions influencing fitness, leaving open the question of how speciation might proceed without these built-in determinants. To consider the process of speciation without pre-defined functions, we employ the individual-based ecosystem simulation platform EcoSim. The environment is initially uniform across space, and an evolving behavioural model then determines how prey consume resources and how predators consume prey. Simulations including natural selection (i.e., an evolving behavioural model that influences survival and reproduction) frequently led to strong and distinct phenotypic/genotypic clusters between which hybridization was low. This speciation was the result of divergence between spatially-localized clusters in the behavioural model, an emergent property of evolving ecological interactions. By contrast, simulations without natural selection (i.e., behavioural model turned off) but with spatial isolation (i.e., limited dispersal) produced weaker and overlapping clusters. Simulations without natural selection or spatial isolation (i.e., behaviour model turned off and high dispersal) did not generate clusters. These results confirm the role of natural selection in speciation by showing its importance even in the absence of pre-defined fitness functions.

  13. Arsenic Speciation in Groundwater: Role of Thioanions

    NASA Astrophysics Data System (ADS)

    Wilkin, R. T.; Ford, R. G.; Beak, D. G.

    2008-12-01

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsenic is mainly present as arsenate. In the subsurface, reducing conditions frequently prevail and arsenite species dominate. At sites where groundwater remediation is necessary, understanding arsenic speciation is critical, especially when technologies that strategically manipulate redox conditions are used. In sulfate-reducing environments and where free sulfide is available thioarsenic species are known to exist, yet compared to the oxyanion species of arsenic little is know about the formation, structure, chemistry, and stability of arsenic thioanions in the environment. In particular, data are lacking that pertain to the redox behavior of arsenate and arsenite in the presence of aqueous sulfide and at variable pH. In this presentation, results are discussed of recent speciation studies using extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge spectroscopy (XANES), and chromatographic analysis. Data from both experimental and field systems will be presented. Results indicate that both thioarsenite and thioarsenate species exist and both forms of thioarsenic species need to be considered in sulfidic environments. This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.

  14. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-07-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contribution function, gridded frequency distributions, and concentration-back trajectory models. Combustion sources (e.g., coal combustion, biomass burning, and vehicular, industrial and waste incineration emissions), crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River valley in the US and throughout China, metal smelters, mercury evasion from the ocean and the Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. Multivariate models are suitable for receptor locations with intensive air monitoring because they require long-term collocated and simultaneous measurements of speciated atmospheric Hg and ancillary pollutants. The multivariate models provide more insight about the types of Hg emission sources and Hg processes that could affect speciated atmospheric Hg at a receptor location, whereas back trajectory receptor models are mainly ideal for identifying potential regional Hg source locations impacting elevated Hg concentrations. Interpretation of the multivariate model output to sources can be

  15. Hydroxyl speciation in felsic magmas

    NASA Astrophysics Data System (ADS)

    Malfait, Wim J.; Xue, Xianyu

    2014-09-01

    The hydroxyl speciation of hydrous, metaluminous potassium and calcium aluminosilicate glasses was investigated by 27Al-1H cross polarization and quantitative 1H MAS NMR spectroscopy. Al-OH is present in both the potassium and the calcium aluminosilicate glasses and its 1H NMR partial spectrum was derived from the 27Al-1H cross polarization data. For the calcium aluminosilicate glasses, the abundance of Al-OH could not be determined because of the low spectral resolution. For the potassium aluminosilicate glasses, the fraction of Al-OH was quantified by fitting its partial spectrum to the quantitative 1H NMR spectra. The degree of aluminum avoidance and the relative tendency for Si-O-Si, Si-O-Al and Al-O-Al bonds to hydrolyze were derived from the measured species abundances. Compared to the sodium, lithium and calcium systems, potassium aluminosilicate glasses display a much stronger degree of aluminum avoidance and a stronger tendency for the Al-O-Al linkages to hydrolyze. Combining our results with those for sodium aluminosilicate glasses (Malfait and Xue, 2010a), we predict that the hydroxyl groups in rhyolitic and phonolitic magmas are predominantly present as Si-OH (84-89% and 68-78%, respectively), but with a significant fraction of Al-OH (11-16% and 22-32%, respectively). For both rhyolitic and phonolitic melts, the AlOH/(AlOH + SiOH) ratio is likely smaller than the Al/(Al + Si) ratio for the lower end of the natural temperature range but may approach the Al/(Al + Si) ratio at higher temperatures.

  16. Neural Correlates of Species-Typical Illogical Cognitive Bias in Human Inference

    ERIC Educational Resources Information Center

    Ogawa, Akitoshi; Yamazaki, Yumiko; Ueno, Kenichi; Cheng, Kang; Iriki, Atsushi

    2010-01-01

    The ability to think logically is a hallmark of human intelligence, yet our innate inferential abilities are marked by implicit biases that often lead to illogical inference. For example, given AB ("if A then B"), people frequently but fallaciously infer the inverse, BA. This mode of inference, called symmetry, is logically invalid because,…

  17. Neural Correlates of Species-Typical Illogical Cognitive Bias in Human Inference

    ERIC Educational Resources Information Center

    Ogawa, Akitoshi; Yamazaki, Yumiko; Ueno, Kenichi; Cheng, Kang; Iriki, Atsushi

    2010-01-01

    The ability to think logically is a hallmark of human intelligence, yet our innate inferential abilities are marked by implicit biases that often lead to illogical inference. For example, given AB ("if A then B"), people frequently but fallaciously infer the inverse, BA. This mode of inference, called symmetry, is logically invalid because,…

  18. Trace metal speciation in natural waters: Computational vs. analytical

    USGS Publications Warehouse

    Nordstrom, D. Kirk

    1996-01-01

    Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various

  19. [XANES study of lead speciation in duckweed].

    PubMed

    Chu, Bin-Bin; Luo, Li-Qiang; Xu, Tao; Yuan, Jing; Sun, Jian-Ling; Zeng, Yuan; Ma, Yan-Hong; Yi, Shan

    2012-07-01

    Qixiashan lead-zinc mine of Nanjing was one of the largest lead zinc deposits in East China Its exploitation has been over 50 years, and the environmental pollution has also been increasing. The lead concentration in the local environment was high, but lead migration and toxic mechanism has not been clear. Therefore, biogeochemistry research of the lead zinc mine was carried out. Using ICP-MS and Pb-L III edge XANES, lead concentration and speciation were analyzed respectively, and duckweed which can tolerate and enriched heavy metals was found in the pollution area. The results showed that the lead concentration of duckweed was 39.4 mg x kg(-1). XANES analysis and linear combination fit indicated that lead stearate and lead sulfide accounted for 65% and 36.9% respectively in the lead speciation of duckweed, suggesting that the main lead speciation of duckweed was sulfur-containing lead-organic acid.

  20. Considerations in As analysis and speciation

    USGS Publications Warehouse

    Edwards, M.; Patel, S.; McNeil, L.; Chen, H.W.; Frey, M.; Eaton, A.D.; Antweiler, R.C.; Taylor, H.E.

    1998-01-01

    This article summarizes recent experiences in arsenic (As) quantification, preservation, and speciation developed during AWWA Research Foundation (AWWARF) and Water Industry Technical Action Fund (WITAF) projects. The goal of this article is to alert analysts and decision-makers to potential problems in As analysis and speciation, because there appear to be several unresolved problems with routine analytical approaches. In true split drinking water samples As was quantified by three accepted analytical methods in three laboratories. The techniques used were graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation inductively coupled plasma-emission spectrometry (HG-ICP-AES). Experimental findings are organized into sections on As analysis, particulate As in water supplies, and examination of As speciation methods.

  1. Monte Carlo simulations of parapatric speciation

    NASA Astrophysics Data System (ADS)

    Schwämmle, V.; Sousa, A. O.; de Oliveira, S. M.

    2006-06-01

    Parapatric speciation is studied using an individual-based model with sexual reproduction. We combine the theory of mutation accumulation for biological ageing with an environmental selection pressure that varies according to the individuals geographical positions and phenotypic traits. Fluctuations and genetic diversity of large populations are crucial ingredients to model the features of evolutionary branching and are intrinsic properties of the model. Its implementation on a spatial lattice gives interesting insights into the population dynamics of speciation on a geographical landscape and the disruptive selection that leads to the divergence of phenotypes. Our results suggest that assortative mating is not an obligatory ingredient to obtain speciation in large populations at low gene flow.

  2. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae)

    PubMed Central

    Marques, I.; Draper, D.; López-Herranz, M. L.; Garnatje, T.; Segarra-Moragues, J. G.; Catalán, P.

    2016-01-01

    Apart from the overwhelming cases of allopolyploidization, the impact of speciation through homoploid hybridization is becoming more relevant than previously thought. Much less is known, however, about the impact of climate changes as a driven factor of speciation. To investigate these issues, we selected Festuca picoeuropeana, an hypothetical natural hybrid between the diploid species F. eskia and F. gautieri that occurs in two different mountain ranges (Cantabrian Mountains and Pyrenees) separated by more than 400 km. To unravel the outcomes of this mode of speciation and the impact of climate during speciation we used a multidisciplinary approach combining genome size and chromosome counts, data from an extensive nuclear genotypic analysis, plastid sequences and ecological niche models (ENM). Our results show that the same homoploid hybrid was originated independently in the two mountain ranges, being currently isolated from both parents and producing viable seeds. Parental species had the opportunity to contact as early as 21000 years ago although niche divergence occurs nowadays as result of a climate-driven shift. A high degree of niche divergence was observed between the hybrid and its parents and no recent introgression or backcrossed hybrids were detected, supporting the current presence of reproductive isolation barriers between these species. PMID:27808118

  3. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae).

    PubMed

    Marques, I; Draper, D; López-Herranz, M L; Garnatje, T; Segarra-Moragues, J G; Catalán, P

    2016-11-03

    Apart from the overwhelming cases of allopolyploidization, the impact of speciation through homoploid hybridization is becoming more relevant than previously thought. Much less is known, however, about the impact of climate changes as a driven factor of speciation. To investigate these issues, we selected Festuca picoeuropeana, an hypothetical natural hybrid between the diploid species F. eskia and F. gautieri that occurs in two different mountain ranges (Cantabrian Mountains and Pyrenees) separated by more than 400 km. To unravel the outcomes of this mode of speciation and the impact of climate during speciation we used a multidisciplinary approach combining genome size and chromosome counts, data from an extensive nuclear genotypic analysis, plastid sequences and ecological niche models (ENM). Our results show that the same homoploid hybrid was originated independently in the two mountain ranges, being currently isolated from both parents and producing viable seeds. Parental species had the opportunity to contact as early as 21000 years ago although niche divergence occurs nowadays as result of a climate-driven shift. A high degree of niche divergence was observed between the hybrid and its parents and no recent introgression or backcrossed hybrids were detected, supporting the current presence of reproductive isolation barriers between these species.

  4. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  5. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  6. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  7. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  8. Speciation on Oceanic Islands: Rapid Adaptive Divergence vs. Cryptic Speciation in a Guadalupe Island Songbird (Aves: Junco)

    PubMed Central

    Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja

    2013-01-01

    The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated “cryptic” lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving

  9. Speciation on oceanic islands: rapid adaptive divergence vs. cryptic speciation in a Guadalupe Island songbird (Aves: Junco).

    PubMed

    Aleixandre, Pau; Hernández Montoya, Julio; Milá, Borja

    2013-01-01

    The evolutionary divergence of island populations, and in particular the tempo and relative importance of neutral and selective factors, is of central interest to the study of speciation. The rate of phenotypic evolution upon island colonization can vary greatly among taxa, and cases of convergent evolution can further confound the inference of correct evolutionary histories. Given the potential lability of phenotypic characters, molecular dating of insular lineages analyzed in a phylogenetic framework provides a critical tool to test hypotheses of phenotypic divergence since colonization. The Guadalupe junco is the only insular form of the polymorphic dark-eyed junco (Junco hyemalis), and shares eye and plumage color with continental morphs, yet presents an enlarged bill and reduced body size. Here we use variation in mtDNA sequence, morphological traits and song variables to test whether the Guadalupe junco evolved rapidly following a recent colonization by a mainland form of the dark-eyed junco, or instead represents a well-differentiated "cryptic" lineage adapted to the insular environment through long-term isolation, with plumage coloration a result of evolutionary convergence. We found high mtDNA divergence of the island lineage with respect to both continental J. hyemalis and J. phaeonotus, representing a history of isolation of about 600,000 years. The island lineage was also significantly differentiated in morphological and male song variables. Moreover, and contrary to predictions regarding diversity loss on small oceanic islands, we document relatively high levels of both haplotypic and song-unit diversity on Guadalupe Island despite long-term isolation in a very small geographic area. In contrast to prevailing taxonomy, the Guadalupe junco is an old, well-differentiated evolutionary lineage, whose similarity to mainland juncos in plumage and eye color is due to evolutionary convergence. Our findings confirm the role of remote islands in driving

  10. Mistaking geography for biology: inferring processes from species distributions.

    PubMed

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  11. Arsenic speciation in manufactured seafood products.

    PubMed

    Vélez, D; Montoro, R

    1998-09-01

    The literature on the speciation of arsenic (As) in seafoods was critically reviewed. Most research has been directed toward fresh seafood products with few papers dealing with As speciation in manufactured seafoods. Predictions concerning As species made on the basis of fresh seafood products cannot be extrapolated to manufactured seafoods. Therefore, due to the numerous species of As, the scarcity of data concerning their presence in foods, the transformations each species may undergo during industrial processing and cooking, and the lack of legislation on permitted As levels in seafood products, As species in manufactured seafood products need to be determined and quantified.

  12. Instrumentation for Aerosol and Gas Speciation

    NASA Technical Reports Server (NTRS)

    Coggiola, Michael J.

    1998-01-01

    Using support from NASA Grant No. NAG 2-963, SRI International successfully completed the project, entitled, 'Instrumentation for Aerosol and Gas Speciation.' This effort (SRI Project 7383) covered the design, fabrication, testing, and deployment of a real-time aerosol speciation instrument in NASA's DC-8 aircraft during the Spring 1996 SUbsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS) mission. This final technical report describes the pertinent details of the instrument design, its abilities, its deployment during SUCCESS and the data acquired from the mission, and the post-mission calibration, data reduction, and analysis.

  13. Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series

    PubMed Central

    Bunje, Paul ME; Barluenga, Marta; Meyer, Axel

    2007-01-01

    Background Speciation often occurs in complex or uncertain temporal and spatial contexts. Processes such as reinforcement, allopatric divergence, and assortative mating can proceed at different rates and with different strengths as populations diverge. The Central American Midas cichlid fish species complex is an important case study for understanding the processes of speciation. Previous analyses have demonstrated that allopatric processes led to species formation among the lakes of Nicaragua as well as sympatric speciation that is occurring within at least one crater lake. However, since speciation is an ongoing process and sampling genetic diversity of such lineages can be biased by collection scheme or random factors, it is important to evaluate the robustness of conclusions drawn on individual time samples. Results In order to assess the validity and reliability of inferences based on different genetic samples, we have analyzed fish from several lakes in Nicaragua sampled at three different times over 16 years. In addition, this time series allows us to analyze the population genetic changes that have occurred between lakes, where allopatric speciation has operated, as well as between different species within lakes, some of which have originated by sympatric speciation. Focusing on commonly used genetic markers, we have analyzed both DNA sequences from the complete mitochondrial control region as well as nuclear DNA variation at ten microsatellite loci from these populations, sampled thrice in a 16 year time period, to develop a robust estimate of the population genetic history of these diversifying lineages. Conclusion The conclusions from previous work are well supported by our comprehensive analysis. In particular, we find that the genetic diversity of derived crater lake populations is lower than that of the source population regardless of when and how each population was sampled. Furthermore, changes in various estimates of genetic diversity within lakes

  14. The Bayes Inference Engine

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.

    1996-04-01

    The authors are developing a computer application, called the Bayes Inference Engine, to provide the means to make inferences about models of physical reality within a Bayesian framework. The construction of complex nonlinear models is achieved by a fully object-oriented design. The models are represented by a data-flow diagram that may be manipulated by the analyst through a graphical programming environment. Maximum a posteriori solutions are achieved using a general, gradient-based optimization algorithm. The application incorporates a new technique of estimating and visualizing the uncertainties in specific aspects of the model.

  15. Measurement Error Calibration in Mixed-Mode Sample Surveys

    ERIC Educational Resources Information Center

    Buelens, Bart; van den Brakel, Jan A.

    2015-01-01

    Mixed-mode surveys are known to be susceptible to mode-dependent selection and measurement effects, collectively referred to as mode effects. The use of different data collection modes within the same survey may reduce selectivity of the overall response but is characterized by measurement errors differing across modes. Inference in sample surveys…

  16. Speciation through the learning of habitat features.

    PubMed

    Beltman, J B; Haccou, P

    2005-05-01

    Learning of environmental features can influence both mating behaviour and the location where young are produced. This may lead to speciation in three steps: (i) colonization of a new habitat, (ii) genetic divergence of the two groups by adaptation to the habitats, and (iii) a decrease of genetic mixing between the lineages (similar to reinforcement). In a previous paper we showed that steps (i) and (ii) occur readily for a wide range of fixed mating and habitat preferences. Here, we study whether this can ultimately lead to speciation through selective changes in these preferences. We show that this indeed occurs, and, furthermore, it is very general: for a large class of models there is selection toward producing young more frequently in the natal habitat. Once habitat preference is strong, there is selection toward stronger assortative mating. Even when steps (i) and (ii) initially fail, genetic divergence may succeed at a later evolutionary stage, after which a decrease of genetic mixing completes speciation. Our results show that speciation by the learning of habitat features is an extremely effective mechanism.

  17. Pervaporation: a useful tool for speciation analysis

    NASA Astrophysics Data System (ADS)

    Luque de Castro, M. D.; Papaefstathiou, I.

    1998-02-01

    The application of pervaporation as both an auxiliary and a fundamental device for speciation analysis in liquid and solid samples is discussed. Examples of various determinations, including the coupling of the technique to both a gas chromatograph and flow-injection configurations, applied mostly to environmental and biological samples, are presented, giving clear evidence of the double role of the pervaporation process.

  18. Characterization of Technetium Speciation in Cast Stone

    SciTech Connect

    Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

    2013-11-11

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

  19. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  20. ELEMENTAL SPECIATION IN ENVIRONMENTAL EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    Arsenic and tin are two trace metals where exposure assessments have moved towards a speciation based approach because the toxicity is very chemical form dependent. This toxicity difference can be one of many factors which influence the formulation of certain regulations. For a...

  1. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  2. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  3. Ecological speciation in tropical reef fishes

    PubMed Central

    Rocha, Luiz A; Robertson, D. Ross; Roman, Joe; Bowen, Brian W

    2005-01-01

    The high biodiversity in tropical seas provides a long-standing challenge to allopatric speciation models. Physical barriers are few in the ocean and larval dispersal is often extensive, a combination that should reduce opportunities for speciation. Yet coral reefs are among the most species-rich habitats in the world, indicating evolutionary processes beyond conventional allopatry. In a survey of mtDNA sequences of five congeneric west Atlantic reef fishes (wrasses, genus Halichoeres) with similar dispersal potential, we observed phylogeographical patterns that contradict expectations of geographical isolation, and instead indicate a role for ecological speciation. In Halichoeres bivittatus and the species pair Halichoeres radiatus/brasiliensis, we observed strong partitions (3.4% and 2.3% divergence, respectively) between adjacent and ecologically distinct habitats, but high genetic connectivity between similar habitats separated by thousands of kilometres. This habitat partitioning is maintained even at a local scale where H. bivittatus lineages are segregated between cold- and warm-water habitats in both Bermuda and Florida. The concordance of evolutionary partitions with habitat types, rather than conventional biogeographical barriers, indicates parapatric ecological speciation, in which adaptation to alternative environmental conditions in adjacent locations overwhelms the homogenizing effect of dispersal. This mechanism can explain the long-standing enigma of high biodiversity in coral reef faunas. PMID:15817431

  4. Diploid hybrid speciation in Penstemon (Scrophulariaceae)

    PubMed Central

    Wolfe, Andrea D.; Xiang, Qiu-Yun; Kephart, Susan R.

    1998-01-01

    Hybrid speciation has played a significant role in the evolution of angiosperms at the polyploid level. However, relatively little is known about the importance of hybrid speciation at the diploid level. Two species of Penstemon have been proposed as diploid hybrid derivatives based on morphological data, artificial crossing studies, and pollinator behavior observations: Penstemon spectabilis (derived from hybridization between Penstemon centranthifolius and Penstemon grinnellii) and Penstemon clevelandii (derived from hybridization between P. centranthifolius and P. spectabilis). Previous studies were inconclusive regarding the purported hybrid nature of these species because of a lack of molecular markers sufficient to differentiate the parental taxa in the hybrid complex. We developed hypervariable nuclear markers using inter-simple sequence repeat banding patterns to test these classic hypotheses of diploid hybrid speciation in Penstemon. Each species in the hybrid complex was genetically distinct, separated by 10–42 species-specific inter-simple sequence repeat markers. Our data do not support the hybrid origin of P. spectabilis but clearly support the diploid hybrid origin of P. clevelandii. Our results further suggest that the primary reason diploid hybrid speciation is so difficult to detect is the lack of molecular markers able to differentiate parental taxa from one another, particularly with recently diverged species. PMID:9560237

  5. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  6. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  7. Actinide speciation in relation to biological processes.

    PubMed

    Ansoborlo, Eric; Prat, Odette; Moisy, Philippe; Den Auwer, Christophe; Guilbaud, Philippe; Carriere, M; Gouget, Barbara; Duffield, John; Doizi, Denis; Vercouter, Thomas; Moulin, Christophe; Moulin, Valérie

    2006-11-01

    In case of accidental release of radionuclides into the environment, actinides represent a severe health risk to human beings following internal contamination (inhalation, ingestion or wound). For a better understanding of the actinide behaviour in man (in term of metabolism, retention, excretion) and in specific biological systems (organs, cells or biochemical pathways), it is of prime importance to have a good knowledge of the relevant actinide solution chemistry and biochemistry, in particular of the thermodynamic constants needed for computing actinide speciation. To a large extent, speciation governs bioavailability and toxicity of elements and has a significant impact on the mechanisms by which toxics accumulate in cell compartments and organs and by which elements are transferred and transported from cell to cell. From another viewpoint, speciation is the prerequisite for the design and success of potential decorporation therapies. The purpose of this review is to present the state of the art of actinide knowledge within biological media. It is also to discuss how actinide speciation can be determined or predicted and to highlight the areas where information is lacking with the aim to encourage new research efforts.

  8. Inference as Prediction

    ERIC Educational Resources Information Center

    Watson, Jane

    2007-01-01

    Inference, or decision making, is seen in curriculum documents as the final step in a statistical investigation. For a formal statistical enquiry this may be associated with sophisticated tests involving probability distributions. For young students without the mathematical background to perform such tests, it is still possible to draw informal…

  9. Adding to the Mercury Speciation Toolbox

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Northrup, P. A.; Chidambaram, D.; Kalb, P. D.

    2007-12-01

    Mercury was used to separate lithium-6 isotope for weapons production at the Y-12 Plant in Oak Ridge, TN in the 1950s and 1960s. A large portion of the waste Hg entered the environment and continues to move throughout the sub-surface and surface waters in the area. Environmental management of Hg contamination within this complex hydrologic system, where Hg speciation and the mobile fraction have been found to vary widely, will require ongoing characterization and predictive modeling of Hg speciation. State-of-the-art spectroscopic tools that can directly probe Hg speciation in preserved aqueous and sediment samples with greater sensitivity, however, are required to determine rates and mechanisms of biogeochemical reactions. We will present the first results demonstrating the use of x-ray absorption spectroscopy (XAS) at the Hg M5 edge (2295 eV) to fingerprint Hg species. Heavy-metal M5 absorption edges can have very sharp features due to local electron transitions, and therefore, we are developing this edge as a tool for quantitative measurement of Hg species. In addition, sulfur speciation using the sulfur K absorption edge, which is at a similar energy (2472 eV), can be measured in the same scan as the Hg M5 edge. Potentially important organic and inorganic sulfur species (sulfide, disulfide, elemental sulfur, sulfite and sulfate) are readily differentiated, and thereby, provides an independent method for monitoring the redox state of the system along with changes in S-Hg bonding. We will also present x-ray microprobe 2-D concentration maps of Hg and other elements at the grain and pore scales to identify its microscopic distribution and chemical associations. When used in combination with established sequential extraction and direct spectroscopic methods, the addition of XAS at the Hg M5 edge should provide a significant advancement in the determination of Hg speciation in complex biogeochemical environments.

  10. Motion Information Inferring Scheme for Multi-View Video Coding

    NASA Astrophysics Data System (ADS)

    Koo, Han-Suh; Jeon, Yong-Joon; Jeon, Byeong-Moon

    This letter proposes a motion information inferring scheme for multi-view video coding motivated by the idea that the aspect of motion vector between the corresponding positions in the neighboring view pair is quite similar. The proposed method infers the motion information from the corresponding macroblock in the neighboring view after RD optimization with the existing prediction modes. This letter presents evaluation showing that the method significantly enhances the efficiency especially at high bit rates.

  11. Recombination Rates and Genomic Shuffling in Human and Chimpanzee—A New Twist in the Chromosomal Speciation Theory

    PubMed Central

    Farré, Marta; Micheletti, Diego; Ruiz-Herrera, Aurora

    2013-01-01

    A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human–chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human–chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals. PMID:23204393

  12. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory.

    PubMed

    Farré, Marta; Micheletti, Diego; Ruiz-Herrera, Aurora

    2013-04-01

    A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.

  13. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves).

    PubMed

    Wang, Ning; Liang, Bin; Wang, Jichao; Yeh, Chia-Fen; Liu, Yang; Liu, Yanlin; Liang, Wei; Yao, Cheng-Te; Li, Shou-Hsien

    2016-09-01

    Because of their isolation, continental islands (e.g., Madagascar) are often thought of as ideal systems to study allopatric speciation. However, many such islands have been connected intermittently to their neighboring continent during recent periods of glaciation, which may cause frequent contact between the diverging populations on the island and continent. As a result, the speciation processes on continental islands may not meet the prerequisites for strictly allopatric speciation. We used multiple lines of evidence to re-evaluate the taxonomic status of the Hainan Hwamei (Leucodioptron canorum owstoni), which is endemic to Hainan, the largest continental island in the South China Sea. Our analysis of mitochondrial DNA and twelve nuclear loci suggests that the Hainan Hwamei can be regarded as an independent species (L. owstoni); the morphological traits of the Hainan Hwamei also showed significant divergence from those of their mainland sister taxon, the Chinese Hwamei (L. canorum). We also inferred the divergence history of the Hainan and Chinese Hwamei to see whether their divergence was consistent with a strictly allopatric model. Our results suggest that the two Hwameis split only 0.2 million years ago with limited asymmetrical post-divergence gene flow. This implies that the Hainan Hwamei is an incipient species and that speciation occurred through ecologically divergent selection and/or assortative mating rather than a strictly allopatric process.

  14. Gastropod diversification and community structuring processes in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Albrecht, C.; Wilke, T.

    2015-09-01

    The Balkan Lake Ohrid is the oldest and most speciose freshwater lacustrine system in Europe. However, it remains unclear whether the diversification of its endemic taxa is mainly driven by neutral processes, environmental factors, or species interactions. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics. Such a unifying framework - the metacommunity speciation model - considers how community assembly affects diversification and vice versa by assessing the relative contribution of the three main community assembly processes, dispersal limitation, environmental filtering, and species interaction. The current study therefore used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process based metacommunity analyses. Specifically, the study aimed at (i) identifying the relative importance of the three community assembly processes and (ii) to test whether the importance of these individual processes changes gradually with lake depth or whether they are distinctively related to eco-zones. Based on specific simulation steps for each of the three processes, it could be demonstrated that dispersal limitation had the strongest influence on gastropod community structures in Lake Ohrid. However, it was not the exclusive assembly process but acted together with the other two processes - environmental filtering, and species interaction. In fact, the relative importance of the three community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter. The study thus corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community structure) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental

  15. Chromium speciation in coal and biomass co-combustion products.

    PubMed

    Stam, Arthur F; Meij, Ruud; Te Winkel, Henk; Eijk, Ronald J van; Huggins, Frank E; Brem, Gerrit

    2011-03-15

    Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.

  16. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae).

    PubMed

    Bueno-Silva, Marlus; Boeger, Walter A; Pie, Marcio R

    2011-05-01

    unreported mode of adaptive speciation that helps to understand its rate of diversification.

  17. Optical Inference Machines

    DTIC Science & Technology

    1988-06-27

    de olf nessse end Id e ;-tl Sb ieeI smleo) ,Optical Artificial Intellegence ; Optical inference engines; Optical logic; Optical informationprocessing...common. They arise in areas such as expert systems and other artificial intelligence systems. In recent years, the computer science language PROLOG has...cal processors should in principle be well suited for : I artificial intelligence applications. In recent years, symbolic logic processing. , the

  18. Inferring Microbial Fitness Landscapes

    DTIC Science & Technology

    2016-02-25

    the foundational work on the mathematical analysis of these diffusion equations , and established the needed connections with stochastic differential ...SECURITY CLASSIFICATION OF: Microbes and viruses evolve. Their evolution is often more rapid and of greater practical importance than our own evolution ...infer from data the determinants of microbial evolution with sufficient resolution that we can quantify 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND

  19. Active inference and learning.

    PubMed

    Friston, Karl; FitzGerald, Thomas; Rigoli, Francesco; Schwartenbeck, Philipp; O'Doherty, John; Pezzulo, Giovanni

    2016-09-01

    This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity.

  20. Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology.

    PubMed

    Chaverri, Priscila; Samuels, Gary J

    2013-10-01

    Host jumps by microbial symbionts are often associated with bursts of species diversification driven by the exploitation of new adaptive zones. The objective of this study was to infer the evolution of habitat preference (decaying plants, soil, living fungi, and living plants), and nutrition mode (saprotrophy and mycoparasitism) in the fungal genus Trichoderma to elucidate possible interkingdom host jumps and shifts in ecology. Host and ecological role shifts were inferred by phylogenetic analyses and ancestral character reconstructions. The results support several interkingdom host jumps and also show that the preference for a particular habitat was gained or lost multiple times. Diversification analysis revealed that mycoparasitism is associated with accelerated speciation rates, which then suggests that this trait may be linked to the high number of species in Trichoderma. In this study it was also possible to infer the cryptic roles that endophytes or soil inhabitants play in their hosts by evaluating their closest relatives and determining their most recent ancestors. Findings from this study may have implications for understanding certain evolutionary processes such as species radiations in some hyperdiverse groups of fungi, and for more applied fields such as the discovery and development of novel biological control strategies.

  1. Plutonium Speciation, Solubilization and Migration in Soils

    SciTech Connect

    Neu, Mary P.; Haire, Richard G.

    2002-06-01

    The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium in soils for 50 years. To properly control Pu migration in soils within Federal sites and onto public lands, better evaluate the public risk, and design effective remediation strategies, a fundamental understanding of Pu speciation and environmental transport is needed. The key scientific goals of this project are: to determine Pu concentrations and speciation at contaminated DOE sites; to study the formation, stability, and structural and spectroscopic features of environmentally relevant Pu species; to determine the mechanism(s) of interaction between Pu and Mn/Fe minerals and the potential release of Pu via redox cycling; and to model the environmental behavior of plutonium. Our goal is to use characterization, thermodynamic, mineral interaction, and mobility data to develop better models of radionuclide transport and risk assessment, and to enable the development of science-based decontamination strategies.

  2. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  3. Does speciation matter for tungsten ecotoxicology?

    PubMed

    Strigul, Nikolay

    2010-09-01

    Tungsten is a widely used transition metal that has not been thoroughly investigated with regards to its ecotoxicological effects. Tungsten anions polymerize in environmental systems as well as under physiological conditions in living organisms. These polymerization/condensation reactions result in the development of several types of stable polyoxoanions. Certain chemical properties (in particular redox and acidic properties) differentiate these polyanions from monotungstates. However, our current state of knowledge on tungsten toxicology, biological and environmental effects is based entirely on experiments where monotungstates were used and assumed by the authors to be the form of tungsten that was present and that produced the observed effect. Recent discoveries indicate that tungsten speciation may be important to ecotoxicology. New results obtained by different research groups demonstrate that polytungstates develop and persist in environmental systems, and that polyoxotungstates are much more toxic than monotungstates. This paper reviews the available toxicological information from the standpoint of tungsten speciation and identifies knowledge gaps and pertinent future research directions.

  4. Speciation Effect in the Penna Aging Model

    NASA Astrophysics Data System (ADS)

    Łaszkiewicz, A.; Szymczak, Sz.; Cebrat, S.

    We have simulated the evolution of diploid, sexually reproducing populations using the Penna model of aging. We have noted that diminishing the recombination frequency during the gamete production generates a specific diversity of genomes in the populations. When two populations independently evolving for some time were mixed in one environmental niche of the limited size and crossbreeding between them was allowed, the average lifespan of hybrids was significantly shorter than the lifespan of the individuals of parental lines. Another effect of higher hybrid mortality is the faster elimination of one parental line from the shared environment. The two populations living in one environment co-exist much longer if they are genetically separated — they compete as two species instead of crossbreeding. This effect can be considered as the first step to speciation — any barrier eliminating crossbreeding between these populations, leading to speciation, would favor the populations.

  5. Towards Context Sensitive Information Inference.

    ERIC Educational Resources Information Center

    Song, D.; Bruza, P. D.

    2003-01-01

    Discusses information inference from a psychologistic stance and proposes an information inference mechanism that makes inferences via computations of information flow through an approximation of a conceptual space. Highlights include cognitive economics of information processing; context sensitivity; and query models for information retrieval.…

  6. Multimodel inference and adaptive management

    USGS Publications Warehouse

    Rehme, S.E.; Powell, L.A.; Allen, C.R.

    2011-01-01

    Ecology is an inherently complex science coping with correlated variables, nonlinear interactions and multiple scales of pattern and process, making it difficult for experiments to result in clear, strong inference. Natural resource managers, policy makers, and stakeholders rely on science to provide timely and accurate management recommendations. However, the time necessary to untangle the complexities of interactions within ecosystems is often far greater than the time available to make management decisions. One method of coping with this problem is multimodel inference. Multimodel inference assesses uncertainty by calculating likelihoods among multiple competing hypotheses, but multimodel inference results are often equivocal. Despite this, there may be pressure for ecologists to provide management recommendations regardless of the strength of their study’s inference. We reviewed papers in the Journal of Wildlife Management (JWM) and the journal Conservation Biology (CB) to quantify the prevalence of multimodel inference approaches, the resulting inference (weak versus strong), and how authors dealt with the uncertainty. Thirty-eight percent and 14%, respectively, of articles in the JWM and CB used multimodel inference approaches. Strong inference was rarely observed, with only 7% of JWM and 20% of CB articles resulting in strong inference. We found the majority of weak inference papers in both journals (59%) gave specific management recommendations. Model selection uncertainty was ignored in most recommendations for management. We suggest that adaptive management is an ideal method to resolve uncertainty when research results in weak inference.

  7. First passage time to allopatric speciation

    PubMed Central

    Yamaguchi, Ryo; Iwasa, Yoh

    2013-01-01

    Allopatric speciation is a mechanism to evolve reproductive isolation; it is caused by the accumulation of genetic differences between populations while they are geographically isolated. Here, we studied a simple stochastic model for the time until speciation caused by geographical isolation in fragmented populations that experience recurrent but infrequent migration between subpopulations. We assumed that mating incompatibility is controlled by a number of loci that behave as neutral characters in the accumulation of novel mutations within each population. Genetic distance between populations was defined as the number of incompatibility-controlling loci that differ between them. Genetic distance increases through the separate accumulation of mutations in different populations, but decreases after a successful migration event followed by genetic mixing between migrants and residents. We calculated the time to allopatric speciation, which occurs when the genetic distance exceeds a specified threshold. If the number of invasive individuals relative to the resident population is not very large, diffusion approximation provides an accurate prediction. There is an intermediate optimal rate of migration that maximizes the rate of species creation by recurrent invasion and diversification. We also examined cases that involved more than two populations. PMID:24516714

  8. Arsenic speciation and sorption in natural environments

    USGS Publications Warehouse

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  9. Darwin's finches: Population variation and sympatric speciation

    PubMed Central

    Grant, B. R.; Grant, P. R.

    1979-01-01

    The classical model of the adaptive radiation of Darwin's finches is one of repeated speciation in allopatry. Evidence presented here suggests that sympatric specification may have contributed to the radiation. On Isla Genovesa Geospiza conirostris displays several features that are consistent with a model of sympatric speciation. Males are polymorphic in song type. Those singing song A have significantly longer bills than those singing song B. The two groups of males forage in different ways that are functionally associated with the bill differences, particularly in the nonbreeding season when food is probably limiting. Territories of mated song A and song B males alternate in space, whereas territories of unmated males do not. This suggests that females can discriminate between males on the basis of song and position, and the pattern is consistent with a hypothesis of assortative mating within song groups. The population is therefore polymorphic; the morphs occupy different niches in which they may be separately regulated and they could be on the way to achieving full reproductive isolation through assortive mating. It is suggested that the population may oscillate between fission and fusion tendencies due to a changing selection regime in this variable and unpredictable environment. There is no evidence that one of the morphs originated allopatrically and then immigrated to Genovesa. The possibility of sympatric speciation being partly responsible for the adaptive radiation, dismissed more than 30 years ago, should be reinstated. PMID:16592654

  10. Darwin's finches: Population variation and sympatric speciation.

    PubMed

    Grant, B R; Grant, P R

    1979-05-01

    The classical model of the adaptive radiation of Darwin's finches is one of repeated speciation in allopatry. Evidence presented here suggests that sympatric specification may have contributed to the radiation. On Isla Genovesa Geospiza conirostris displays several features that are consistent with a model of sympatric speciation. Males are polymorphic in song type. Those singing song A have significantly longer bills than those singing song B. The two groups of males forage in different ways that are functionally associated with the bill differences, particularly in the nonbreeding season when food is probably limiting. Territories of mated song A and song B males alternate in space, whereas territories of unmated males do not. This suggests that females can discriminate between males on the basis of song and position, and the pattern is consistent with a hypothesis of assortative mating within song groups. The population is therefore polymorphic; the morphs occupy different niches in which they may be separately regulated and they could be on the way to achieving full reproductive isolation through assortive mating. It is suggested that the population may oscillate between fission and fusion tendencies due to a changing selection regime in this variable and unpredictable environment. There is no evidence that one of the morphs originated allopatrically and then immigrated to Genovesa. The possibility of sympatric speciation being partly responsible for the adaptive radiation, dismissed more than 30 years ago, should be reinstated.

  11. Floral symmetry affects speciation rates in angiosperms.

    PubMed Central

    Sargent, Risa D.

    2004-01-01

    Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollinators to approaching a flower from a single direction facilitates specific placement of pollen on the pollinator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally symmetrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator-mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation. PMID:15156918

  12. Speciation of challenging elements in food by atomic spectrometry.

    PubMed

    Ruzik, Lena

    2012-05-15

    The review addresses trends in speciation analysis of challenging - rather rarely examined despite their importance for human health - elements in foodstuffs with special attention prior to sample preparation. Elements of interest are cobalt, iodine, manganese, iron, zinc, copper and molybdenum belong to the group of elements still appealed for searching their speciation despite extremely small contents in foodstuffs. Advantages and weaknesses of recommended procedures are overviewed and discussed, highlighting state-of-the-art speciation methodologies developed so far in the field.

  13. Soil properties controlling Zn speciation and fractionation in contaminated soils

    NASA Astrophysics Data System (ADS)

    Jacquat, Olivier; Voegelin, Andreas; Kretzschmar, Ruben

    2009-09-01

    We determined the speciation of Zn in 49 field soils differing widely in pH (4.1-7.7) and total Zn content (251-30,090 mg/kg) by using extended X-ray absorption fine structure (EXAFS) spectroscopy. All soils had been contaminated since several decades by inputs of aqueous Zn with runoff-water from galvanized power line towers. Pedogenic Zn species identified by EXAFS spectroscopy included Zn in hydroxy-interlayered minerals (Zn-HIM), Zn-rich phyllosilicates, Zn-layered double hydroxide (Zn-LDH), hydrozincite, and octahedrally and tetrahedrally coordinated sorbed or complexed Zn. Zn-HIM was only observed in (mostly acidic) soils containing less than 2000 mg/kg of Zn, reflecting the high affinity but limited sorption capacity of HIM. Zn-bearing precipitates, such as Zn-LDH and Zn-rich trioctahedral phyllosilicates, became more dominant with increasing pH and increasing total Zn content relative to available adsorption sites. Zn-LDH was the most abundant Zn-precipitate and was detected in soils with pH > 5.2. Zn-rich phyllosilicates were detected even at lower soil pH, but were generally less abundant than Zn-LDH. Hydrozincite was only identified in two calcareous soils with extremely high Zn contents. In addition to Zn-LDH, large amounts of Zn in highly contaminated soils were mainly accumulated as sorbed/complexed Zn in tetrahedral coordination. Soils grouped according to their Zn speciation inferred from EXAFS spectroscopy mainly differed with respect to soil pH and total Zn content. Clear differences were observed with respect to Zn fractionation by sequential extraction: From Zn-HIM containing soils, most of the total Zn was recovered in the exchangeable and the most recalcitrant fractions. In contrast, from soils containing the highest percentage of Zn-precipitates, Zn was mainly extracted in intermediate extraction steps. The results of this study demonstrate that soil pH and Zn contamination level relative to available adsorption sites are the most important

  14. Assembly processes of gastropod community change with horizontal and vertical zonation in ancient Lake Ohrid: a metacommunity speciation perspective

    NASA Astrophysics Data System (ADS)

    Hauffe, Torsten; Albrecht, Christian; Wilke, Thomas

    2016-05-01

    The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the "metacommunity speciation model".The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes - environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological

  15. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  16. Visual Inference Programming

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Timucin, Dogan; Rabbette, Maura; Curry, Charles; Allan, Mark; Lvov, Nikolay; Clanton, Sam; Pilewskie, Peter

    2002-01-01

    The goal of visual inference programming is to develop a software framework data analysis and to provide machine learning algorithms for inter-active data exploration and visualization. The topics include: 1) Intelligent Data Understanding (IDU) framework; 2) Challenge problems; 3) What's new here; 4) Framework features; 5) Wiring diagram; 6) Generated script; 7) Results of script; 8) Initial algorithms; 9) Independent Component Analysis for instrument diagnosis; 10) Output sensory mapping virtual joystick; 11) Output sensory mapping typing; 12) Closed-loop feedback mu-rhythm control; 13) Closed-loop training; 14) Data sources; and 15) Algorithms. This paper is in viewgraph form.

  17. Nanotechnology and statistical inference

    NASA Astrophysics Data System (ADS)

    Vesely, Sara; Vesely, Leonardo; Vesely, Alessandro

    2017-08-01

    We discuss some problems that arise when applying statistical inference to data with the aim of disclosing new func-tionalities. A predictive model analyzes the data taken from experiments on a specific material to assess the likelihood that another product, with similar structure and properties, will exhibit the same functionality. It doesn't have much predictive power if vari-ability occurs as a consequence of a specific, non-linear behavior. We exemplify our discussion on some experiments with biased dice.

  18. Inferring Mealy Machines

    NASA Astrophysics Data System (ADS)

    Shahbaz, Muzammil; Groz, Roland

    Automata learning techniques are getting significant importance for their applications in a wide variety of software engineering problems, especially in the analysis and testing of complex systems. In recent studies, a previous learning approach [1] has been extended to synthesize Mealy machine models which are specifically tailored for I/O based systems. In this paper, we discuss the inference of Mealy machines and propose improvements that reduces the worst-time learning complexity of the existing algorithm. The gain over the complexity of the proposed algorithm has also been confirmed by experimentation on a large set of finite state machines.

  19. The geographical pattern of speciation and floral diversification in the neotropics: the tribe sinningieae (gesneriaceae) as a case study.

    PubMed

    Perret, Mathieu; Chautems, Alain; Spichiger, Rodolphe; Barraclough, Timothy G; Savolainen, Vincent

    2007-07-01

    The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.

  20. Evaluation of Regenerated Catalyst for Mercury Speciation

    SciTech Connect

    Dennis Laudal

    2007-06-01

    In March of 2005, U.S. Environmental Protection Agency (EPA) promulgated the Clean Air Mercury Rule (CAMR). Mercury from coal-fired power plants was to be reduced from the current 48 to 38 tons/yr by 2010 and then 15 tons/yr by 2018. It is expected that the first phase reduction of {approx}21% will be achieved by cobenefits that will occur as a result of installing additional selective catalytic reduction (SCR) and flue gas desulfurization (FGD) systems to meet the new Clean Air Interstate Rule (CAIR). Detroit Edison (DTE) is installing SCR at all four units at its Monroe Station and will eventually install wet-FGD systems. As such, the Electric Power Research Institute (EPRI), the U.S. Department of Energy (DOE), and DTE have contracted with the Energy & Environmental Research Center (EERC) to determine the extent of mercury oxidation that occurs at Monroe Station. The EERC originally did mercury speciation sampling at Monroe Station in 2004 and then went back in 2005 to determine if any changes occurred as a result of catalyst aging. During the second test, in addition to measuring the mercury speciation at the inlet and outlet of the SCR, the EERC also completed sampling at a location between the catalyst layers. The results are shown in Table 1. In Table 1, the results show that {approx}40% of the Hg was in oxidized form (Hg{sup 2+}) at the inlet and nearly 100% Hg{sup 2+} at the outlet. The results at the midpoint were between 40% and 100%. As part of their overall strategy to reduce SCR costs, utilities and SCR vendors are attempting to regenerate catalyst layers that have degenerated over time. If these regenerated catalysts are used, the question remains as to the effect this process will have on the ability of these catalysts to oxidize mercury as well as reduce NO{sub x}. The current project is designed to measure the Hg speciation across an SCR using a regenerated catalyst. The results were compared to previous results to determine what, if any, changes

  1. The quest for the solar g modes

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Belkacem, K.; Broomhall, A.-M.; Chaplin, W. J.; Gough, D. O.; Houdek, G.; Provost, J.; Baudin, F.; Boumier, P.; Elsworth, Y.; García, R. A.; Andersen, B. N.; Finsterle, W.; Fröhlich, C.; Gabriel, A.; Grec, G.; Jiménez, A.; Kosovichev, A.; Sekii, T.; Toutain, T.; Turck-Chièze, S.

    2010-02-01

    Solar gravity modes (or g modes)—oscillations of the solar interior on which buoyancy acts as the restoring force—have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well-observed acoustic modes (or p modes). The relative high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this article, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made—from both data and data-analysis perspectives—to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.

  2. Robustness to divergence time underestimation when inferring species trees from estimated gene trees.

    PubMed

    DeGiorgio, Michael; Degnan, James H

    2014-01-01

    To infer species trees from gene trees estimated from phylogenomic data sets, tractable methods are needed that can handle dozens to hundreds of loci. We examine several computationally efficient approaches-MP-EST, STAR, STEAC, STELLS, and STEM-for inferring species trees from gene trees estimated using maximum likelihood (ML) and Bayesian approaches. Among the methods examined, we found that topology-based methods often performed better using ML gene trees and methods employing coalescent times typically performed better using Bayesian gene trees, with MP-EST, STAR, STEAC, and STELLS outperforming STEM under most conditions. We examine why the STEM tree (also called GLASS or Maximum Tree) is less accurate on estimated gene trees by comparing estimated and true coalescence times, performing species tree inference using simulations, and analyzing a great ape data set keeping track of false positive and false negative rates for inferred clades. We find that although true coalescence times are more ancient than speciation times under the multispecies coalescent model, estimated coalescence times are often more recent than speciation times. This underestimation can lead to increased bias and lack of resolution with increased sampling (either alleles or loci) when gene trees are estimated with ML. The problem appears to be less severe using Bayesian gene-tree estimates.

  3. Speciation and host-parasite relationships in the parasite genus Gyrodactylus (Monogenea, Platyhelminthes) infecting gobies of the genus Pomatoschistus (Gobiidae, Teleostei).

    PubMed

    Huyse, Tine; Audenaert, Vanessa; Volckaert, Filip A M

    2003-12-01

    Using species-level phylogenies, the speciation mode of Gyrodactylus species infecting a single host genus was evaluated. Eighteen Gyrodactylus species were collected from gobies of the genus Pomatoschistus and sympatric fish species across the distribution range of the hosts. The V4 region of the ssrRNA and the internal transcribed spacers encompassing the 5.8S rRNA gene were sequenced; by including published sequences a total of 30 species representing all subgenera were used in the data analyses. The molecular phylogeny did not support the morphological groupings into subgenera as based on the excretory system, suggesting that the genus needs systematic revisions. Paraphyly of the total Gyrodactylus fauna of the gobies indicates that at least two independent colonisation events were involved, giving rise to two separate groups, belonging to the subgenus Mesonephrotus and Paranephrotus, respectively. The most recent association probably originated from a host switching event from Gyrodactylus arcuatus, which parasitises three-spined stickleback, onto Pomatoschistus gobies. These species are highly host-specific and form a monophyletic group, two possible "signatures" of co-speciation. Host specificity was lower in the second group. The colonising capacity of these species is illustrated by a host jump from gobiids to another fish order (Anguilliformes), supporting the hypothesis of a European origin of Gyrodactylus anguillae and its intercontinental introduction by the eel trade. Thus, allopatric speciation seems to be the dominant mode of speciation in this host-parasite system, with a possible case of sympatric speciation.

  4. Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia.

    PubMed

    Rix, Michael G; Harvey, Mark S

    2012-01-01

    The rainforests, wet sclerophyll forests and temperate heathlands of the Australian mesic zone are home to a diverse and highly endemic biota, including numerous old endemic lineages restricted to refugial, mesic biomes. A growing number of phylogeographic studies have attempted to explain the origins and diversification of the Australian mesic zone biota, in order to test and better understand the mode and tempo of historical speciation within Australia. Assassin spiders (family Archaeidae) are a lineage of iconic araneomorph spiders, characterised by their antiquity, remarkable morphology and relictual biogeography on the southern continents. The Australian assassin spider fauna is characterised by a high diversity of allopatric species, many of which are restricted to individual mountains or montane systems, and all of which are closely tied to mesic and/or refugial habitats in the east and extreme south-west of mainland Australia. We tested the phylogeny and vicariant biogeography of the Australian Archaeidae (genus Austrarchaea Forster & Platnick), using a multi-locus molecular approach. Fragments from six mitochondrial genes (COI, COII, tRNA-K, tRNA-D, ATP8, ATP6) and one nuclear protein-coding gene (Histone H3) were used to infer phylogenetic relationships and to explore the phylogeographic origins of the diverse Australian fauna. Bayesian analyses of the complete molecular dataset, along with differentially-partitioned Bayesian and parsimony analyses of a smaller concatenated dataset, revealed the presence of three major Australian lineages, each with non-overlapping distributions in north-eastern Queensland, mid-eastern Australia and southern Australia, respectively. Divergence date estimation using mitochondrial data and a rate-calibrated relaxed molecular clock revealed that major lineages diverged in the early Tertiary period, prior to the final rifting of Australia from East Antarctica. Subsequent speciation occurred during the Miocene (23-5.3 million

  5. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    PubMed Central

    Blakemore, James D.; Hull, Jonathan F.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pKa values is obtained by fitting the data to a standard pKa model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pKa values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts. PMID:22585306

  6. Testing gradual and speciational models of evolution in extant taxa: the example of ratites.

    PubMed

    Laurin, M; Gussekloo, S W S; Marjanović, D; Legendre, L; Cubo, J

    2012-02-01

    Ever since Eldredge and Gould proposed their model of punctuated equilibria, evolutionary biologists have debated how often this model is the best description of nature and how important it is compared to the more gradual models of evolution expected from natural selection and the neo-Darwinian paradigm. Recently, Cubo proposed a method to test whether morphological data in extant ratites are more compatible with a gradual or with a speciational model (close to the punctuated equilibrium model). As shown by our simulations, a new method to test the mode of evolution of characters (involving regression of standardized contrasts on their expected standard deviation) is easier to implement and more powerful than the previously proposed method, but the Mesquite module comet (aimed at investigating evolutionary models using comparative data) performs better still. Uncertainties in branch length estimates are probably the largest source of potential error. Cubo hypothesized that heterochronic mechanisms may underlie morphological changes in bone shape during the evolution of ratites. He predicted that the outcome of these changes may be consistent with a speciational model of character evolution because heterochronic changes can be instantaneous in terms of geological time. Analysis of a more extensive data set confirms his prediction despite branch length uncertainties: evolution in ratites has been mostly speciational for shape-related characters. However, it has been mostly gradual for size-related ones. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. Parapatric divergence of sympatric morphs in a salamander: incipient speciation on Long Island?

    PubMed

    Fisher-Reid, M Caitlin; Engstrom, Tag N; Kuczynski, Caitlin A; Stephens, Patrick R; Wiens, John J

    2013-09-01

    Speciation is often categorized based on geographic modes (allopatric, parapatric or sympatric). Although it is widely accepted that species can arise in allopatry and then later become sympatrically or parapatrically distributed, patterns in the opposite direction are also theoretically possible (e.g. sympatric lineages or ecotypes becoming parapatric), but such patterns have not been shown at a macrogeographic scale. Here, we analyse genetic, climatic, ecological and morphological data and show that two typically sympatric colour morphs of the salamander Plethodon cinereus (redback and leadback) appear to have become parapatrically distributed on Long Island, New York, with pure-redback populations in the west and pure-leadback populations in the east (and polymorphic populations in between and on the mainland). In addition, the pure-leadback populations in eastern Long Island are genetically, ecologically and morphologically divergent from both mainland and other Long Island populations, suggesting the possibility of incipient speciation. This parapatric separation seems to be related to the different ecological preferences of the two morphs, preferences which are present on the mainland and across Long Island. These results potentially support the idea that spatial segregation of sympatric ecotypes may sometimes play an important part in parapatric speciation. © 2013 John Wiley & Sons Ltd.

  8. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea

    PubMed Central

    Pereyra, Ricardo T; Bergström, Lena; Kautsky, Lena; Johannesson, Kerstin

    2009-01-01

    Background Theory predicts that speciation can be quite rapid. Previous examples comprise a wide range of organisms such as sockeye salmon, polyploid hybrid plants, fruit flies and cichlid fishes. However, few studies have shown natural examples of rapid evolution giving rise to new species in marine environments. Results Using microsatellite markers, we show the evolution of a new species of brown macroalga (Fucus radicans) in the Baltic Sea in the last 400 years, well after the formation of this brackish water body ~8–10 thousand years ago. Sympatric individuals of F. radicans and F. vesiculosus (bladder wrack) show significant reproductive isolation. Fucus radicans, which is endemic to the Baltic, is most closely related to Baltic Sea F. vesiculosus among north Atlantic populations, supporting the hypothesis of a recent divergence. Fucus radicans exhibits considerable clonal reproduction, probably induced by the extreme conditions of the Baltic. This reproductive mode is likely to have facilitated the rapid foundation of the new taxon. Conclusion This study represents an unparalleled example of rapid speciation in a species-poor open marine ecosystem and highlights the importance of increasing our understanding on the role of these habitats in species formation. This observation also challenges presumptions that rapid speciation takes place only in hybrid plants or in relatively confined geographical places such as postglacial or crater lakes, oceanic islands or rivers. PMID:19335884

  9. Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea.

    PubMed

    Pereyra, Ricardo T; Bergström, Lena; Kautsky, Lena; Johannesson, Kerstin

    2009-03-31

    Theory predicts that speciation can be quite rapid. Previous examples comprise a wide range of organisms such as sockeye salmon, polyploid hybrid plants, fruit flies and cichlid fishes. However, few studies have shown natural examples of rapid evolution giving rise to new species in marine environments. Using microsatellite markers, we show the evolution of a new species of brown macroalga (Fucus radicans) in the Baltic Sea in the last 400 years, well after the formation of this brackish water body ~8-10 thousand years ago. Sympatric individuals of F. radicans and F. vesiculosus (bladder wrack) show significant reproductive isolation. Fucus radicans, which is endemic to the Baltic, is most closely related to Baltic Sea F. vesiculosus among north Atlantic populations, supporting the hypothesis of a recent divergence. Fucus radicans exhibits considerable clonal reproduction, probably induced by the extreme conditions of the Baltic. This reproductive mode is likely to have facilitated the rapid foundation of the new taxon. This study represents an unparalleled example of rapid speciation in a species-poor open marine ecosystem and highlights the importance of increasing our understanding on the role of these habitats in species formation. This observation also challenges presumptions that rapid speciation takes place only in hybrid plants or in relatively confined geographical places such as postglacial or crater lakes, oceanic islands or rivers.

  10. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis

    PubMed Central

    Feder, Jeffrey L.; Xie, Xianfa; Rull, Juan; Velez, Sebastian; Forbes, Andrew; Leung, Brian; Dambroski, Hattie; Filchak, Kenneth E.; Aluja, Martin

    2005-01-01

    The Rhagoletis pomonella sibling species complex is a model for sympatric speciation by means of host plant shifting. However, genetic variation aiding the sympatric radiation of the group in the United States may have geographic roots. Inversions on chromosomes 1-3 affecting diapause traits adapting flies to differences in host fruiting phenology appear to exist in the United States because of a series of secondary introgression events from Mexico. Here, we investigate whether these inverted regions of the genome may have subsequently evolved to become more recalcitrant to introgression relative to collinear regions, consistent with new models for chromosomal speciation. As predicted by the models, gene trees for six nuclear loci mapping to chromosomes other than 1-3 tended to have shallower node depths separating Mexican and U.S. haplotypes relative to an outgroup sequence than nine genes residing on chromosomes 1-3. We discuss the implications of secondary contact and differential introgression with respect to sympatric host race formation and speciation in Rhagoletis, reconciling some of the seemingly dichotomous views of Mayr, Dobzhansky, and Bush concerning modes of divergence. PMID:15851672

  11. Moment inference from tomograms

    USGS Publications Warehouse

    Day-Lewis, F. D.; Chen, Y.; Singha, K.

    2007-01-01

    Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.

  12. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.

  13. Inferring Horizontal Gene Transfer

    PubMed Central

    Lassalle, Florent; Dessimoz, Christophe

    2015-01-01

    Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages [1]. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events. PMID:26020646

  14. Capillary microextraction (CME) and its application to trace elements analysis and their speciation.

    PubMed

    Hu, Bin; Zheng, Fei; He, Man; Zhang, Nan

    2009-09-14

    As a solvent-free miniaturized sample preparation technique, capillary microextraction (CME) has been hyphenated with different analytical instruments for trace elements analysis of environmental, biological, food and pharmaceutical samples. This review discusses the fundamentals and recent development of CME, including the theoretical basis, extraction modes (packed, open-tubular and monolithic CME) and capillary materials for CME. The emphasis is placed on the application of CME to trace/ultra-trace elements analysis and their speciation. Existing coating/monolithic materials used for CME are summarized together with a detailed overview of their preparation methods.

  15. Speciation versus phenotypic plasticity in coral inhabiting barnacles: Darwin's observations in an ecological context.

    PubMed

    Mokady, O; Loya, Y; Achituv, Y; Geffen, E; Graur, D; Rozenblatt, S; Brickner, I

    1999-09-01

    Speciation and phenotypic plasticity are two extreme strategic modes enabling a given taxon to populate a broad ecological niche. One of the organismal models which stimulated Darwin's ideas on speciation was the Cirripedia (barnacles), to which he dedicated a large monograph. In several cases, including the coral-inhabiting barnacle genera Savignium and Cantellius (formerly Pyrgoma and Creusia, respectively), Darwin assigned barnacle specimens to morphological "varieties" (as opposed to species) within a genus. Despite having been the subject of taxonomic investigations and revisions ever since, the significance of these varieties has never been examined with respect to host-associated speciation processes. Here we provide evidence from molecular (12S mt rDNA sequences) and micromorphological (SEM) studies, suggesting that these closely related barnacle genera utilize opposite strategies for populating a suite of live-coral substrates. Cantellius demonstrates a relatively low genetic variability, despite inhabiting a wide range of corals. The species C. pallidus alone was found on three coral families, belonging to distinct higher-order classification units. In contrast, Savignium barnacles exhibit large between- and within-species variations with respect to both micromorphology and DNA sequences, with S. dentatum "varieties" clustering phylogenetically according to their coral host species (all of which are members of a single family). Thus, whereas Savignium seems to have undergone intense host-associated speciation over a relatively narrow taxonomic range of hosts, Cantellius shows phenotypic plasticity over a much larger range. This dichotomy correlates with differences in life-history parameters between these barnacle taxa, including host-infestation characteristics, reproductive strategies, and larval trophic type.

  16. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax

    PubMed Central

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A.; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-01-01

    an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection]. PMID:26340990

  17. Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax.

    PubMed

    Li, Kexin; Hong, Wei; Jiao, Hengwu; Wang, Guo-Dong; Rodriguez, Karl A; Buffenstein, Rochelle; Zhao, Yang; Nevo, Eviatar; Zhao, Huabin

    2015-09-22

    important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].

  18. SERIES - Satellite Emission Range Inferred Earth Surveying

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.; Spitzmesser, D. J.; Buennagel, L. A.

    1983-01-01

    The Satellite Emission Range Inferred Earth Surveying (SERIES) concept is based on the utilization of NAVSTAR Global Positioning System (GPS) radio transmissions without any satellite modifications and in a totally passive mode. The SERIES stations are equipped with lightweight 1.5 m diameter dish antennas mounted on trailers. A series baseline measurement accuracy demonstration is considered, taking into account a 100 meter baseline estimation from approximately one hour of differential Doppler data. It is planned to conduct the next phase of experiments on a 150 m baseline. Attention is given to details regarding future baseline measurement accuracy demonstrations, aspects of ionospheric calibration in connection with subdecimeter baseline accuracy requirements of geodesy, and advantages related to the use of the differential Doppler or pseudoranging mode.

  19. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  20. BIE: Bayesian Inference Engine

    NASA Astrophysics Data System (ADS)

    Weinberg, Martin D.

    2013-12-01

    The Bayesian Inference Engine (BIE) is an object-oriented library of tools written in C++ designed explicitly to enable Bayesian update and model comparison for astronomical problems. To facilitate "what if" exploration, BIE provides a command line interface (written with Bison and Flex) to run input scripts. The output of the code is a simulation of the Bayesian posterior distribution from which summary statistics e.g. by taking moments, or determine confidence intervals and so forth, can be determined. All of these quantities are fundamentally integrals and the Markov Chain approach produces variates heta distributed according to P( heta|D) so moments are trivially obtained by summing of the ensemble of variates.

  1. Complementary arsenic speciation methods: A review

    NASA Astrophysics Data System (ADS)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  2. Mercury speciation analysis in terrestrial animal tissues.

    PubMed

    Berzas Nevado, J J; Rodríguez Martín-Doimeadios, R C; Guzmán Bernardo, F J; Rodríguez Fariñas, N; Patiño Ropero, M J

    2012-09-15

    No previous analytical procedures are available and validated for mercury speciation analysis in terrestrial animal tissues. This analysis is a difficult task both because the expected concentrations are low, since important accumulation process are not likely to occur, and also because there are not commercially available certified reference material. Thus, an analytical methodology has been developed and validated for mercury speciation for the specific case of terrestrial animal tissues. The proposed method is based on the quantitative extraction of the species by closed-vessel microwave assisted heating with an alkaline reagent, followed by ethylation. The ethylated derivatives were then submitted to head-space solid phase microextraction with a 100 μm polidimethylsiloxane-coated fiber, and desorbed onto a gas chromatograph coupled to atomic fluorescence detection via pyrolysis unit (HS-SPME-GC-pyro-AFS). Procedural detection limits were 31.8 ng g(-1) and 52.5 ng g(-1) for CH(3)Hg(+) and Hg(2+), respectively, for liver and 35.3 ng g(-1) and 58.1 ng g(-1) for CH(3)Hg(+) and Hg(2+), respectively, for kidney. These limits of detection are 5.5 and 6 times better than the obtained without solid phase microextraction for CH(3)Hg(+) and Hg(2+), respectively. The methodology was found linear up to 120 μg L(-1) and reproducible from one day to the following. It was validated with certified reference materials NCS ZC 71001 (beef liver) and BCR No 186 (pig kidney) for total mercury, calculated as the sum of species, and with spiked red deer liver and kidney for speciation. Finally, it was applied to the analysis of samples of red deer liver, red deer kidney and wild boar kidney coming from the Almadén's mercury mining area (Ciudad Real, Spain), the longest and largest producer of mercury in the world until its closure in 2002. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Investigations of copper speciation and bioavailability

    SciTech Connect

    Deaver, E.; Rodgers, J.H. Jr.

    1995-12-31

    Speciation, or form in which copper occurs, can effect the bioavailability and therefore, the toxicity of that element. One needs to determine the bioavailable forms of copper in sediment/water effects on organisms. In both water and sediment experiments, physical/chemical factors influencing copper speciation were evaluated and related to organism responses. Ten day aqueous experiments encompassing a range of pH (6.5--8.1), alkalinity (10--70 mg/L as CaCO{sub 3}), hardness (10--70 mg/L as CaCO{sub 3}) and conductivity (30--300 umhos/cm) were conducted using Hyalella azteca. Amphipod survival was evaluated relative to changes in water characteristics and concomitant changes in copper speciation as measured using atomic adsorption spectroscopy (AA) for acid extractable copper, and differential pulse anodic stripping voltammetry (DPASV) for labile copper. Ten day LC50s based on AA measured copper concentrations ranged from 42 to 142 ug/L Cu, and LC50s based on DPASV measured copper concentrations ranged from 17.4--24.8 ug/L Cu. Ten day sediment experiments encompassing a range of sediment pH, organic carbon content, acid volatile sulfides and redox concentrations were also conducted using H. azteca. Overlying water (AA and DPASV) and sediment copper concentrations (AA) were measured and evaluated relative to organism survival. Ten day sediment test LC50s based on DPASV measured copper concentrations in overlying water were 18.5 and 18 ug/L Cu for experiments in sandy and silty sediments, respectively. Organism survival, used as a measure of bioavailable copper, was evaluated in relation to measured copper species concentrations and used to develop guidelines for predicting copper toxicity in freshwater systems.

  4. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  5. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  6. Speciation and release kinetics of zinc in contaminated paddy soils

    USDA-ARS?s Scientific Manuscript database

    Zinc is an important nutrient for plants, but it can be toxic at high concentrations. The solubility and speciation of Zn is controlled by many factors, especially soil pH and Eh, which can vary in lowland rice culture. This study determined Zn speciation and release kinetics in Cd-Zn co-contamina...

  7. Arsenic speciation in natural sulfidic geothermal waters

    NASA Astrophysics Data System (ADS)

    Keller, Nicole S.; Stefánsson, Andri; Sigfússon, Bergur

    2014-10-01

    The speciation of arsenic in natural sulfidic geothermal waters was studied using chemical analyses and thermodynamic aqueous speciation calculations. Samples were collected in three geothermal systems in Iceland, having contrasting H2S concentrations in the reservoir (high vs. low). The sampled waters contained 7-116 ppb As and <0.01-77.6 ppm H2S with pH of 8.56-9.60. The analytical setup used for the determination of arsenic species (Ion Chromatography-Hydride Generation Atomic Fluorescence Spectrometry, IC-HG-AFS) was field-deployed and the samples analyzed within ∼5 min of sampling in order to prevent changes upon storage, which were shown to be considerable regardless of the sample storage method used. Nine aqueous arsenic species were detected, among others arsenite (HnAsIIIO3n-3), thioarsenite (HnAsIIIS3n-3), arsenate (HnAsVO4n-3), monothioarsenate (HnAsVSO3n-3), dithioarsenate (HnAsVS2O2n-3), trithioarsenate (HnAsVS3O n - 3) and tetrathioarsenate (HnAsVS4n-3). The results of the measured aqueous arsenic speciation in the natural geothermal waters and comparison with thermodynamic calculations reveal that the predominant factors determining the species distribution are sulfide concentration and pH. In alkaline waters with low sulfide concentrations the predominant species are AsIII oxyanions. This can be seen in samples from a liquid-only well, tapping water that is H2S-poor and free of oxygen. At intermediate sulfide concentration AsIII and AsV thio species become important and predominate at high sulfide concentration, as seen in two-phase well waters, which have high H2S concentrations in the reservoir. Upon oxidation, for instance due to mixing of the reservoir fluid with oxygenated water upon ascent to the surface, AsV oxyanions form, as well as AsV thio complexes if the sulfide concentration is intermediate to high. This oxidation process can be seen in samples from hot springs in the Geysir geothermal area. While the thermodynamic modeling allows

  8. Speciation of arsenic in biological samples.

    PubMed

    Mandal, Badal Kumar; Ogra, Yasumitsu; Anzai, Kazunori; Suzuki, Kazuo T

    2004-08-01

    Speciation of arsenicals in biological samples is an essential tool to gain insight into its distribution in tissues and its species-specific toxicity to target organs. Biological samples (urine, hair, fingernail) examined in the present study were collected from 41 people of West Bengal, India, who were drinking arsenic (As)-contaminated water, whereas 25 blood and urine samples were collected from a population who stopped drinking As contaminated water 2 years before the blood collection. Speciation of arsenicals in urine, water-methanol extract of freeze-dried red blood cells (RBCs), trichloroacetic acid treated plasma, and water extract of hair and fingernail was carried out by high-performance liquid chromatography (HPLC)-inductively coupled argon plasma mass spectrometry (ICP MS). Urine contained arsenobetaine (AsB, 1.0%), arsenite (iAs(III), 11.3), arsenate (iAs(V), 10.1), monomethylarsonous acid (MMA(III), 6.6), monomethylarsonic acid (MMA(V), 10.5), dimethylarsinous acid (DMA(III), 13.0), and dimethylarsinic acid (DMA(V), 47.5); fingernail contained iAs(III) (62.4%), iAs(V) (20.2), MMA(V) (5.7), DMA(III) (8.9), and DMA(V) (2.8); hair contained iAs(III) (58.9%), iAs(V) (34.8), MMA(V) (2.9), and DMA(V) (3.4); RBCs contained AsB (22.5%) and DMA(V) (77.5); and blood plasma contained AsB (16.7%), iAs(III) (21.1), MMA(V) (27.1), and DMA(V) (35.1). MMA(III), DMA(III), and iAs(V) were not found in any plasma and RBCs samples, but urine contained all of them. Arsenic in urine, fingernails, and hair are positively correlated with water As, suggesting that any of these measurements could be considered as a biomarker to As exposure. Status of urine and exogenous contamination of hair urgently need speciation of As in these samples, but speciation of As in nail is related to its total As (tAs) concentration. Therefore, total As concentrations of nails could be considered as biomarker to As exposure in the endemic areas.

  9. Speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a species of conservation concern

    PubMed Central

    Gottscho, Andrew D; Marks, Sharyn B; Jennings, W Bryan

    2014-01-01

    The North American deserts were impacted by both Neogene plate tectonics and Quaternary climatic fluctuations, yet it remains unclear how these events influenced speciation in this region. We tested published hypotheses regarding the timing and mode of speciation, population structure, and demographic history of the Mojave Fringe-toed Lizard (Uma scoparia), a sand dune specialist endemic to the Mojave Desert of California and Arizona. We sampled 109 individual lizards representing 22 insular dune localities, obtained DNA sequences for 14 nuclear loci, and found that U. scoparia has low genetic diversity relative to the U. notata species complex, comparable to that of chimpanzees and southern elephant seals. Analyses of genotypes using Bayesian clustering algorithms did not identify discrete populations within U. scoparia. Using isolation-with-migration (IM) models and a novel coalescent-based hypothesis testing approach, we estimated that U. scoparia diverged from U. notata in the Pleistocene epoch. The likelihood ratio test and the Akaike Information Criterion consistently rejected nested speciation models that included parameters for migration and population growth of U. scoparia. We reject the Neogene vicariance hypothesis for the speciation of U. scoparia and define this species as a single evolutionarily significant unit for conservation purposes. PMID:25360285

  10. Bayes factors and multimodel inference

    USGS Publications Warehouse

    Link, W.A.; Barker, R.J.; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    Multimodel inference has two main themes: model selection, and model averaging. Model averaging is a means of making inference conditional on a model set, rather than on a selected model, allowing formal recognition of the uncertainty associated with model choice. The Bayesian paradigm provides a natural framework for model averaging, and provides a context for evaluation of the commonly used AIC weights. We review Bayesian multimodel inference, noting the importance of Bayes factors. Noting the sensitivity of Bayes factors to the choice of priors on parameters, we define and propose nonpreferential priors as offering a reasonable standard for objective multimodel inference.

  11. Orthologous repeats and mammalian phylogenetic inference

    PubMed Central

    Bashir, Ali; Ye, Chun; Price, Alkes L.; Bafna, Vineet

    2005-01-01

    Determining phylogenetic relationships between species is a difficult problem, and many phylogenetic relationships remain unresolved, even among eutherian mammals. Repetitive elements provide excellent markers for phylogenetic analysis, because their mode of evolution is predominantly homoplasy-free and unidirectional. Historically, phylogenetic studies using repetitive elements have relied on biological methods such as PCR analysis, and computational inference is limited to a few isolated repeats. Here, we present a novel computational method for inferring phylogenetic relationships from partial sequence data using orthologous repeats. We apply our method to reconstructing the phylogeny of 28 mammals, using more than 1000 orthologous repeats obtained from sequence data available from the NISC Comparative Sequencing Program. The resulting phylogeny has robust bootstrap numbers, and broadly matches results from previous studies which were obtained using entirely different data and methods. In addition, we shed light on some of the debatable aspects of the phylogeny. With rapid expansion of available partial sequence data, computational analysis of repetitive elements holds great promise for the future of phylogenetic inference. PMID:15998912

  12. Global Population Genetic Structure of Caenorhabditis remanei Reveals Incipient Speciation

    PubMed Central

    Dey, Alivia; Jeon, Yong; Wang, Guo-Xiu; Cutter, Asher D.

    2012-01-01

    Mating system transitions dramatically alter the evolutionary trajectories of genomes that can be revealed by contrasts of species with disparate modes of reproduction. For such transitions in Caenorhabditis nematodes, some major causes of genome variation in selfing species have been discerned. And yet, we have only limited understanding of species-wide population genetic processes for their outcrossing relatives, which represent the reproductive state of the progenitors of selfing species. Multilocus–multipopulation sequence polymorphism data provide a powerful means to uncover the historical demography and evolutionary processes that shape genomes. Here we survey nucleotide polymorphism across the X chromosome for three populations of the outcrossing nematode Caenorhabditis remanei and demonstrate its divergence from a fourth population describing a closely related new species from China, C. sp. 23. We find high genetic variation globally and within each local population sample. Despite geographic barriers and moderate genetic differentiation between Europe and North America, considerable gene flow connects C. remanei populations. We discovered C. sp. 23 while investigating C. remanei, observing strong genetic differentiation characteristic of reproductive isolation that was confirmed by substantial F2 hybrid breakdown in interspecific crosses. That C. sp. 23 represents a distinct biological species provides a cautionary example of how standard practice can fail for mating tests of species identity in this group. This species pair permits full application of divergence population genetic methods to obligately outcrossing species of Caenorhabditis and also presents a new focus for interrogation of the genetics and evolution of speciation with the Caenorhabditis model system. PMID:22649079

  13. Homoploid hybrid speciation and genome evolution via chromosome sorting

    PubMed Central

    Lukhtanov, Vladimir A.; Shapoval, Nazar A.; Anokhin, Boris A.; Saifitdinova, Alsu F.; Kuznetsova, Valentina G.

    2015-01-01

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization. PMID:25925097

  14. Homoploid hybrid speciation and genome evolution via chromosome sorting.

    PubMed

    Lukhtanov, Vladimir A; Shapoval, Nazar A; Anokhin, Boris A; Saifitdinova, Alsu F; Kuznetsova, Valentina G

    2015-05-22

    Genomes of numerous diploid plant and animal species possess traces of interspecific crosses, and many researches consider them as support for homoploid hybrid speciation (HHS), a process by which a new reproductively isolated species arises through hybridization and combination of parts of the parental genomes, but without an increase in ploidy. However, convincing evidence for a creative role of hybridization in the origin of reproductive isolation between hybrid and parental forms is extremely limited. Here, through studying Agrodiaetus butterflies, we provide proof of a previously unknown mode of HHS based on the formation of post-zygotic reproductive isolation via hybridization of chromosomally divergent parental species and subsequent fixation of a novel combination of chromosome fusions/fissions in hybrid descendants. We show that meiotic segregation, operating in the hybrid lineage, resulted in the formation of a new diploid genome, drastically rearranged in terms of chromosome number. We also demonstrate that during the heterozygous stage of the hybrid species formation, recombination was limited between rearranged chromosomes of different parental origin, representing evidence that the reproductive isolation was a direct consequence of hybridization.

  15. Sympatric speciation as a consequence of male pregnancy in seahorses

    PubMed Central

    Jones, Adam G.; Moore, Glenn I.; Kvarnemo, Charlotta; Walker, DeEtte; Avise, John C.

    2003-01-01

    The phenomenon of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) undeniably has sculpted the course of behavioral evolution in these fishes. Here we explore another potentially important but previously unrecognized consequence of male pregnancy: a predisposition for sympatric speciation. We present microsatellite data on genetic parentage that show that seahorses mate size-assortatively in nature. We then develop a quantitative genetic model based on these empirical findings to demonstrate that sympatric speciation indeed can occur under this mating regime in response to weak disruptive selection on body size. We also evaluate phylogenetic evidence bearing on sympatric speciation by asking whether tiny seahorse species are sister taxa to large sympatric relatives. Overall, our results indicate that sympatric speciation is a plausible mechanism for the diversification of seahorses, and that assortative mating (in this case as a result of male parental care) may warrant broader attention in the speciation process for some other taxonomic groups as well. PMID:12732712

  16. Linking emergence of fungal plant diseases and ecological speciation

    PubMed Central

    Giraud, Tatiana; Gladieux, Pierre; Gavrilets, Sergey

    2010-01-01

    Emerging diseases represent a growing worldwide problem accompanying global environmental changes, and there is tremendous interest in identifying the factors controlling the appearance and spread of these diseases. Here, we discuss emerging fungal plant diseases, and argue that they often result from host shift speciation, a particular case of ecological speciation. We consider the factors controlling local adaptation and ecological speciation and show that certain life-history traits of many fungal plant pathogens are conducive for rapid ecological speciation, thus favoring the emergence of novel pathogen species adapted to new hosts. We argue that placing the problem of emerging fungal diseases of plants within the context of ecological speciation can significantly improve our understanding of the biological mechanisms governing emergence of such diseases. PMID:20434790

  17. Chapter A5. Section 6.4.A. Arsenic Speciation

    USGS Publications Warehouse

    Garbarino, John R.

    2005-01-01

    Two sample-processing methods (field speciation and laboratory speciation) used at the USGS National Water Quality Laboratory (NWQL) are specific to sample analysis by inductively coupled plasma-mass spectrometry (ICP-MS) for determining the concentration of inorganic and organic arsenic species in a water sample. The field-speciation method requires NWQL Schedule 1729. The laboratory-speciation method requires use either of NWQL Schedule 1730, 1731, or 1732, as appropriate for study objectives. For either the field- or laboratory-speciation method, prior knowledge is needed of sample matrix-composition characteristics (that is, major-ion concentrations in filtered samples). Major-ion data are necessary to determine (1) the volume of ethylenediaminetetraacetic acid (EDTA) that will be required for sample preservation, and (2) if sample dilution is required.

  18. Ephemeral ecological speciation and the latitudinal biodiversity gradient.

    PubMed

    Cutter, Asher D; Gray, Jeremy C

    2016-10-01

    The richness of biodiversity in the tropics compared to high-latitude parts of the world forms one of the most globally conspicuous patterns in biology, and yet few hypotheses aim to explain this phenomenon in terms of explicit microevolutionary mechanisms of speciation and extinction. We link population genetic processes of selection and adaptation to speciation and extinction by way of their interaction with environmental factors to drive global scale macroecological patterns. High-latitude regions are both cradle and grave with respect to species diversification. In particular, we point to a conceptual equivalence of "environmental harshness" and "hard selection" as eco-evolutionary drivers of local adaptation and ecological speciation. By describing how ecological speciation likely occurs more readily at high latitudes, with such nascent species especially prone to extinction by fusion, we derive the ephemeral ecological speciation hypothesis as an integrative mechanistic explanation for latitudinal gradients in species turnover and the net accumulation of biodiversity.

  19. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations

    PubMed Central

    Szöllősi, Gergely J.; Boussau, Bastien; Abby, Sophie S.; Tannier, Eric; Daubin, Vincent

    2012-01-01

    The timing of the evolution of microbial life has largely remained elusive due to the scarcity of prokaryotic fossil record and the confounding effects of the exchange of genes among possibly distant species. The history of gene transfer events, however, is not a series of individual oddities; it records which lineages were concurrent and thus provides information on the timing of species diversification. Here, we use a probabilistic model of genome evolution that accounts for differences between gene phylogenies and the species tree as series of duplication, transfer, and loss events to reconstruct chronologically ordered species phylogenies. Using simulations we show that we can robustly recover accurate chronologically ordered species phylogenies in the presence of gene tree reconstruction errors and realistic rates of duplication, transfer, and loss. Using genomic data we demonstrate that we can infer rooted species phylogenies using homologous gene families from complete genomes of 10 bacterial and archaeal groups. Focusing on cyanobacteria, distinguished among prokaryotes by a relative abundance of fossils, we infer the maximum likelihood chronologically ordered species phylogeny based on 36 genomes with 8,332 homologous gene families. We find the order of speciation events to be in full agreement with the fossil record and the inferred phylogeny of cyanobacteria to be consistent with the phylogeny recovered from established phylogenomics methods. Our results demonstrate that lateral gene transfers, detected by probabilistic models of genome evolution, can be used as a source of information on the timing of evolution, providing a valuable complement to the limited prokaryotic fossil record. PMID:23043116

  20. Age-Dependent Speciation Can Explain the Shape of Empirical Phylogenies

    PubMed Central

    Hagen, Oskar; Hartmann, Klaas; Steel, Mike; Stadler, Tanja

    2015-01-01

    Tens of thousands of phylogenetic trees, describing the evolutionary relationships between hundreds of thousands of taxa, are readily obtainable from various databases. From such trees, inferences can be made about the underlying macroevolutionary processes, yet remarkably these processes are still poorly understood. Simple and widely used evolutionary null models are problematic: Empirical trees show very different imbalance between the sizes of the daughter clades of ancestral taxa compared to what models predict. Obtaining a simple evolutionary model that is both biologically plausible and produces the imbalance seen in empirical trees is a challenging problem, to which none of the existing models provide a satisfying answer. Here we propose a simple, biologically plausible macroevolutionary model in which the rate of speciation decreases with species age, whereas extinction rates can vary quite generally. We show that this model provides a remarkable fit to the thousands of trees stored in the online database TreeBase. The biological motivation for the identified age-dependent speciation process may be that recently evolved taxa often colonize new regions or niches and may initially experience little competition. These new taxa are thus more likely to give rise to further new taxa than a taxon that has remained largely unchanged and is, therefore, well adapted to its niche. We show that age-dependent speciation may also be the result of different within-species populations following the same laws of lineage splitting to produce new species. As the fit of our model to the tree database shows, this simple biological motivation provides an explanation for a long standing problem in macroevolution. PMID:25575504

  1. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection

    PubMed Central

    Hobolth, Asger; Dutheil, Julien Y.; Hawks, John; Schierup, Mikkel H.; Mailund, Thomas

    2011-01-01

    We search the complete orangutan genome for regions where humans are more closely related to orangutans than to chimpanzees due to incomplete lineage sorting (ILS) in the ancestor of human and chimpanzees. The search uses our recently developed coalescent hidden Markov model (HMM) framework. We find ILS present in ∼1% of the genome, and that the ancestral species of human and chimpanzees never experienced a severe population bottleneck. The existence of ILS is validated with simulations, site pattern analysis, and analysis of rare genomic events. The existence of ILS allows us to disentangle the time of isolation of humans and orangutans (the speciation time) from the genetic divergence time, and we find speciation to be as recent as 9–13 million years ago (Mya; contingent on the calibration point). The analyses provide further support for a recent speciation of human and chimpanzee at ∼4 Mya and a diverse ancestor of human and chimpanzee with an effective population size of about 50,000 individuals. Posterior decoding infers ILS for each nucleotide in the genome, and we use this to deduce patterns of selection in the ancestral species. We demonstrate the effect of background selection in the common ancestor of humans and chimpanzees. In agreement with predictions from population genetics, ILS was found to be reduced in exons and gene-dense regions when we control for confounding factors such as GC content and recombination rate. Finally, we find the broad-scale recombination rate to be conserved through the complete ape phylogeny. PMID:21270173

  2. Genetic consequences of anagenetic speciation in Acer okamotoanum (Sapindaceae) on Ullung Island, Korea

    PubMed Central

    Takayama, Koji; Sun, Byung-Yun; Stuessy, Tod F.

    2012-01-01

    Background and Aim Anagenesis (also known as phyletic speciation) is an important process of speciation in endemic species of oceanic islands. We investigated genetic variation in Acer okamotoanum, an anagenetically derived species endemic to Ullung Island, South Korea, to infer genetic consequences of anagenesis in comparison with other groups that have undergone cladogenesis (and adaptive radiation). Methods We examined genetic variation based on eight polymorphic microsatellite markers from 145 individuals of A. okamotoanum and 134 individuals of its putative progenitor A. mono. We employed standard population genetic analyses, clustering analyses, Bayesian clustering analyses in STRUCTURE and bottleneck analyses. Key Results Based on both the Neighbor–Joining tree and Bayesian clustering analyses, clear genetic distinctions were found between the two species. Genetic diversity in terms of allelic richness and heterozygosity shows slightly lower levels in A. okamotoanum in comparison with A. mono. Bayesian clustering analyses showed a relatively high F-value in the cluster of A. okamotoanum, suggesting a strong episode of genetic drift during colonization and speciation. There was no clear evidence of a bottleneck based on allelic frequency distribution and excess of observed heterozygotes, but the M-ratio indicated a historical bottleneck in several populations of A. okamotoanum. No geographical genetic structure within the island was found, and the genetic variation among populations of A. okamotoanum was quite low. Conclusions We hypothesized that genetic consequences of oceanic-endemic plants derived via anagenesis would be quite different from those derived via cladogenesis. Populations of A. okamotoanum form a cluster and are clearly differentiated from A. mono, which suggests a single origin for the anagenetically derived island endemic. No pattern of geographical differentiation of populations occurs in A. okamotoanum, which supports the concept of

  3. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT ...

    EPA Pesticide Factsheets

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI vehicle tested in this study utilized slightly different fuel injection technology: Vehicle 1 used a 2.4 liter, naturally aspirated, wall-guided GDI; Vehicle 2 used a 1.8 liter, turbocharged GDI engine; Vehicle 3 used a 1.5 liter, turbocharged, spray-guided GDI engine. Vehicle testing was conducted in a temperature controlled chassis dynamometer test cell at 22 °C over the EPA Federal Test Procedure (FTP) and a portion of the Supplemental FTP (SFTP). The FTP was conducted as a three phase cycle with a cold start, hot transient, and warm start phase (also known as the FTP-75 driving cycle). The SFTP consisted of the US06 driving cycle (conducted without the vehicle’s air conditioning on), which provides a more aggressive driving pattern than the FTP. The vehicles operated on 10 percent ethanol blended gasoline (E10). VOC emissions from diluted vehicle exhaust were sampled over each FTP phase and over the Supplemental FTP with SUMMA canisters for EPA Method TO-15 analysis and with DNPH cartridges for carbonyl analysis by EPA Method TO-11A. This presentation will report the impact of driving cycle and GDI technology on speciated MSAT emissions. MSAT emission rates will be compared

  4. Speciation of animal fat: Needs and challenges.

    PubMed

    Hsieh, Yun-Hwa Peggy; Ofori, Jack Appiah

    2017-05-24

    The use of pork fat is a concern for Muslims and Jews, who for religious reasons avoid consuming anything that is pig-derived. The use of bovine materials, including beef fat, is prohibited in Hinduism and may also pose a risk of carrying the infectious agent for bovine spongiform encephalopathy. Vegetable oils are sometimes adulterated with animal fat or pork fat with beef fat for economic gain. The development of methods to determine the species origin of fat has therefore become a priority due to the complex and global nature of the food trade, which creates opportunities for the fraudulent use of these animal fats as food ingredients. However, determining the species origin of fats in processed foods or composite blends is an arduous task as the adulterant has a composition that is very similar to that of the original fat or oil. This review examines some of the methods that have been developed for fat speciation, including both fat-based and DNA-based methods, their shortcomings, and the need for additional alternatives. Protein-based methods, specifically immunoassays targeting residual proteins in adipose tissue, that are being explored by researchers as a new tool for fat speciation will also be discussed.

  5. Gene regulation and speciation in house mice

    PubMed Central

    Mack, Katya L.; Campbell, Polly; Nachman, Michael W.

    2016-01-01

    One approach to understanding the process of speciation is to characterize the genetic architecture of post-zygotic isolation. As gene regulation requires interactions between loci, negative epistatic interactions between divergent regulatory elements might underlie hybrid incompatibilities and contribute to reproductive isolation. Here, we take advantage of a cross between house mouse subspecies, where hybrid dysfunction is largely unidirectional, to test several key predictions about regulatory divergence and reproductive isolation. Regulatory divergence between Mus musculus musculus and M. m. domesticus was characterized by studying allele-specific expression in fertile hybrid males using mRNA-sequencing of whole testes. We found extensive regulatory divergence between M. m. musculus and M. m. domesticus, largely attributable to cis-regulatory changes. When both cis and trans changes occurred, they were observed in opposition much more often than expected under a neutral model, providing strong evidence of widespread compensatory evolution. We also found evidence for lineage-specific positive selection on a subset of genes related to transcriptional regulation. Comparisons of fertile and sterile hybrid males identified a set of genes that were uniquely misexpressed in sterile individuals. Lastly, we discovered a nonrandom association between these genes and genes showing evidence of compensatory evolution, consistent with the idea that regulatory interactions might contribute to Dobzhansky-Muller incompatibilities and be important in speciation. PMID:26833790

  6. Air toxics speciation of landfill gas

    SciTech Connect

    Potas, T.A.

    1998-12-31

    USEPA`s AP-42, emission factor reference manual lists 27 hazardous air pollutants that have been determined to be present in gas generated at landfills. Different AP-42 values are given for some air toxic compounds generated from municipal solid waste, industrial waste, and hazardous waste. This paper compares data compiled from five landfill gas sampling projects in parts per million with the AP-42 data. The sampling took place at landfills containing municipal solid waste and non-hazardous industrial waste. Sampling was performed according to the Tier 2 testing procedures for total non-methane organic compound concentrations described in the New Source Performance Standards Subpart WWW for Municipal Solid Waste Landfills. The speciation analysis was conducted by EPA Method TO-14. The list of TO-14 compounds for the speciation analysis was extended to include, at a minimum, all 27 AP-42 listed hazardous air pollutant compounds. The landfills included sites from across the country. The paper describes data quality and the effect of landfill age on some individual air toxic concentrations. The author also comments on the agreement between the total non-methane organic compound concentration and the total molecular weight equivalent concentration of the individual compound concentrations. In general, the concentration values were similar for the AP-42 compounds, although several AP-42 compounds were not detected.

  7. Global patterns of speciation and diversity.

    PubMed

    de Aguiar, M A M; Baranger, M; Baptestini, E M; Kaufman, L; Bar-Yam, Y

    2009-07-16

    In recent years, strikingly consistent patterns of biodiversity have been identified over space, time, organism type and geographical region. A neutral theory (assuming no environmental selection or organismal interactions) has been shown to predict many patterns of ecological biodiversity. This theory is based on a mechanism by which new species arise similarly to point mutations in a population without sexual reproduction. Here we report the simulation of populations with sexual reproduction, mutation and dispersal. We found simulated time dependence of speciation rates, species-area relationships and species abundance distributions consistent with the behaviours found in nature. From our results, we predict steady speciation rates, more species in one-dimensional environments than two-dimensional environments, three scaling regimes of species-area relationships and lognormal distributions of species abundance with an excess of rare species and a tail that may be approximated by Fisher's logarithmic series. These are consistent with dependences reported for, among others, global birds and flowering plants, marine invertebrate fossils, ray-finned fishes, British birds and moths, North American songbirds, mammal fossils from Kansas and Panamanian shrubs. Quantitative comparisons of specific cases are remarkably successful. Our biodiversity results provide additional evidence that species diversity arises without specific physical barriers. This is similar to heavy traffic flows, where traffic jams can form even without accidents or barriers.

  8. Speciation network in Laurasiatheria: retrophylogenomic signals.

    PubMed

    Doronina, Liliya; Churakov, Gennady; Kuritzin, Andrej; Shi, Jingjing; Baertsch, Robert; Clawson, Hiram; Schmitz, Juergen

    2017-03-15

    Rapid species radiation due to adaptive changes or occupation of new ecospaces challenges our understanding of ancestral speciation and the relationships of modern species. At the molecular level, rapid radiation with successive speciations over short time periods - too short to fix polymorphic alleles - is described as incomplete lineage sorting. Incomplete lineage sorting leads to random fixation of genetic markers and hence random signals of relationships in phylogenetic reconstructions. The situation is further complicated when you consider that the genome is a mosaic of ancestral and modern incompletely sorted sequence blocks that leads to reconstructed affiliations to one or the other relatives depending on the fixation of their shared ancestral polymorphic alleles. The laurasiatherian relationships among Chiroptera, Perissodactyla, Cetartiodactyla, and Carnivora present a prime example for such enigmatic affiliations. We performed whole-genome screenings for phylogenetically diagnostic retrotransposon insertions involving the representatives bat (Chiroptera), horse (Perissodactyla), cow (Cetartiodactyla), and dog (Carnivora), and extracted among 162 thousand preselected cases 102 virtually noise-free, phylogenetically informative retroelements to draw a complete picture of the highly complex evolutionary relations within Laurasiatheria. All possible evolutionary scenarios received considerable retrotransposon support, leaving us with a network of affiliations. However, the Cetartiodactyla-Carnivora relationship as well as the basal position of Chiroptera and an ancestral laurasiatherian hybridization process did exhibit some very clear, distinct signals. The significant accordance of retrotransposon presence/absence patterns and flanking nucleotide changes suggest an important influence of mosaic genome structures in the reconstruction of species histories.

  9. Relative Bioavailability and Bioaccessability and Speciation of ...

    EPA Pesticide Factsheets

    Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R

  10. Raman study of aluminum speciation in simulated alkaline nuclear waste.

    PubMed

    Johnston, Cliff T; Agnew, Stephen F; Schoonover, Jon R; Kenney, John W; Page, Bobbi; Osborn, Jill; Corbin, Rob

    2002-06-01

    The chemistry of concentrated sodium aluminate solutions stored in many of the large, underground storage tanks containing high-level waste (HLW) at the Hanford and Savannah River Nuclear Reservations is an area of recent research interest. Not only is the presence of aluminate in solution important for continued safe storage of these wastes, the nature of both solid and solution aluminum oxyhydroxides is important for waste pretreatment. Moreover, for many tanks that have leaked high aluminum waste in the past, little is known about the speciation of Al in the soil. In this study, Raman spectroscopy has been used to investigate the speciation of the aqueous species in the Al2O3-Na2O-H2O system over a wide range of solution compositions and hydration. A ternary phase diagram has been used to correlate the observed changes in the spectra with the composition of the solution and with dimerization of aluminate that occurs at elevated aluminate concentrations (>1.5 M). Dimerization is evidenced by growth of new Al-O stretching bands at 535 and 695 cm(-1) at the expense of the aluminate monomer band at 620 cm(-1). The spectrum of water was strongly influenced by the high concentrations of Na+ and OH- (>17 M). Upon increasing the concentration of NaOH in solution, the delta-(H-O-H) bending band of water (v2 mode) increased in frequency to 1663 cm(-1), indicating that the water contained in the concentrated caustic solution was more strongly hydrogen bonded at the higher base content. In addition, the sharp, well-resolved band at 3610 cm(-1), assigned to the v(O-H) of free OH-, increased in intensity with increasing NaOH. Analysis of the v(O-H) bands in the 3800-2600 cm(-1) region supported the overall increase in hydrogen bonding as evidenced by the increase in relative intensity of a strongly hydrated water band at 3118 cm(-1). Taking into consideration the activity of water, the molar concentrations of the monomeric and dimeric aluminate species were estimated using

  11. Climatic oscillations triggered post-Messinian speciation of Western Palearctic brown frogs (Amphibia, Ranidae).

    PubMed

    Veith, M; Kosuch, J; Vences, M

    2003-02-01

    Oscillating glacial cycles over the past 2.4 million years are proposed to have had a major impact on the diversity of contemporary species communities. We used mitochondrial and nuclear DNA sequence data to infer phylogenetic relationships within Western Palearctic brown frogs and to test the influence of Pliocene and Pleistocene climatic changes on their evolution. We sequenced 1976bp of the mitochondrial genes 16S rRNA and cytochrome b and of the nuclear rhodopsin gene for all current species and subspecies. Based on an established allozyme clock for Western Palearctic water frogs and substitution rate constancy among water frogs and brown frogs, we calibrated a molecular clock for 1425bp of the 16S and rhodopsin genes. We applied this clock to date speciation events among brown frogs. Western Palearctic brown frogs underwent a basal post-Messinian radiation about 4 million years ago (mya) into five major clades: three monotypic lineages (Rana dalmatina, Rana latastei, Rana graeca), an Anatolian lineage, and a lineage comprising Rana italica, Rana arvalis, and all Iberian taxa. Polytypic lineages radiated further in concordance with the onset of climatic oscillations ca. 3.2, 2.0, and 1.0-0.6 mya, respectively. The dated fossil record corroborates our paleobiogeographic scenario. We conclude that drastic climatic changes followed by successive temperature oscillations "trapped" most brown frog species in their southern European glacial refugia with enough time to speciate. Substantial dispersal was only possible during extensive interglacial periods of a constant subtropical climate.

  12. Molecular phylogenetics of the holly leafminers (Diptera: Agromyzidae: Phytomyza): species limits, speciation, and dietary specialization.

    PubMed

    Scheffer, S J; Wiegmann, B M

    2000-11-01

    A molecular phylogenetic analysis was conducted to determine relationships and to investigate character evolution in the Phytomyza ilicis group of leafmining flies on hollies (Aquifoliaceae: Ilex). A total of 2207 bp of the mitochondrial cytochrome oxidase I and II genes were sequenced for all known holly leafminers, as well as for several undescribed members of this group. Maximum-parsimony analysis of the sequence data indicates that these leafminers form a monophyletic group with the inclusion of an undescribed leafminer that feeds on the distantly related plant Gelsemium sempevirens (Loganiaceae). Species boundaries of previously known and of undescribed holly leafmining species were confirmed with the molecular data, with one exception. Optimization of variable ecological and morphological characters onto the most parsimonious phylogeny suggests that these traits are evolutionarily labile, requiring multiple instances of convergence and/or reversal to explain their evolutionary history. Speciation in holly leafminers is associated with host shifts and appears to involve colonization of new hosts more often than cospeciation as the hosts diverge. Monophagy is the most common feeding pattern in holly leafminers, and more generalized feeding is inferred to have evolved at least two separate times, possibly as a prelude to speciation. Copyright 2000 Academic Press.

  13. Evidence of cryptic and pseudocryptic speciation in the Paracalanus parvus species complex (Crustacea, Copepoda, Calanoida)

    PubMed Central

    2014-01-01

    Introduction Many marine planktonic crustaceans such as copepods have been considered as widespread organisms. However, the growing evidence for cryptic and pseudo-cryptic speciation has emphasized the need of re-evaluating the status of copepod species complexes in molecular and morphological studies to get a clearer picture about pelagic marine species as evolutionary units and their distributions. This study analyses the molecular diversity of the ecologically important Paracalanus parvus species complex. Its seven currently recognized species are abundant and also often dominant in marine coastal regions worldwide from temperate to tropical oceans. Results COI and Cytochrome b sequences of 160 specimens of the Paracalanus parvus complex from all oceans were obtained. Furthermore, 42 COI sequences from GenBank were added for the genetic analyses. Thirteen distinct molecular operational taxonomic units (MOTU) and two single sequences were revealed with cladistic analyses (Maximum Likelihood, Bayesian Inference), of which seven were identical with results from species delimitation methods (barcode gaps, ABDG, GMYC, Rosenberg’s P(AB)). In total, 10 to 12 putative species were detected and could be placed in three categories: (1) temperate geographically isolated, (2) warm-temperate to tropical wider spread and (3) circumglobal warm-water species. Conclusions The present study provides evidence of cryptic or pseudocryptic speciation in the Paracalanus parvus complex. One major insight is that the species Paracalanus parvus s.s. is not panmictic, but may be restricted in its distribution to the northeastern Atlantic. PMID:24581044

  14. Molybdenum speciation and burial pathway in weakly sulfidic environments: Insights from XAFS

    NASA Astrophysics Data System (ADS)

    Wagner, Meghan; Chappaz, Anthony; Lyons, Timothy W.

    2017-06-01

    Sedimentary molybdenum (Mo) accumulation is a robust proxy for sulfidic conditions in both modern and ancient aquatic systems and has been used to infer changing marine redox chemistry throughout Earth's history. Accurate interpretation of any proxy requires a comprehensive understanding of its biogeochemical cycling, but knowledge gaps remain concerning the geochemical mechanism(s) leading to Mo burial in anoxic sediments. Better characterization of Mo speciation should provide mechanistic insight into sedimentary Mo accumulation, and therefore in this study we investigate Mo speciation from both modern (Castle Lake, USA) and ancient (Doushantuo Formation, China) environments using X-ray Absorption Near Edge Structure (XANES) spectroscopy. By utilizing a series of laboratory-synthesized oxythiomolybdate complexes-many containing organic ligands-we expand the number of available standards to encompass a greater range of known Mo chemistry and test the linkage between Mo and total organic carbon (TOC). In weakly euxinic systems ([H2S(aq)] < 11 μM), or where sulfide is restricted to pore waters, natural samples are best represented by a linear combination of MoO3, MoOxS4-x2- (intermediate thiomolybdates), and [MoOx(cat)4-x]2- (cat = catechol, x = 2 or 3). These results suggest a revised model for how Mo accumulates in weakly sulfidic sediments, including a previously unrecognized role for organic matter in early sequestration of Mo and a de-emphasized importance for MoS42- (tetrathiomolybdate).

  15. Speciation, faunal affinities and geographical dispersal of black flies (Diptera: Simuliidae) in the Oriental Region.

    PubMed

    Takaoka, Hiroyuki

    2017-02-01

    The simuliid fauna of the Oriental Region is reviewed in comparison with those in five other zoogeographical regions. It is relatively young, represented by only one genus Simulium, which is regarded as the most specialized among 26 genera of the family Simuliidae. The Oriental Region has the second largest simuliid fauna with 524 species or 23.8% of the world total of 2204 extant species. This species richness is associated with a high speciation index (15.4), reflected especially by the high speciation rates of two dominant subgenera Gomphostilbia and Simulium although the number of lineages in the Oriental Region is moderate (34 or 20.6% of the total 165). The Oriental fauna has relationships with all other zoogeographical regions at the lineage level, having the highest affinity index (31.9) with the Palearctic Region. It is inferred that eight of 10 Oriental subgenera moved during the ice ages from the Palaearctic to the Oriental Regions; the subgenus Gomphostilbia evolved into 11 species-groups and underwent species radiation in the Oriental Region. On the other hand, two other subgenera, Nevermannia and Simulium, moved southward during the ice ages after evolving into species-groups. In the post-ice ages, most lineages retreated northward, with different portions of species left in the Oriental Region, although some lineages failed to retreat and survived as relict lineages in the Oriental Region.

  16. Magadi tilapia ecological specialization: filling the early gap in the speciation continuum.

    PubMed

    Pinho, Catarina; Faria, Rui

    2016-04-01

    Cichlid fish are well known for their high speciation rates, which are usually accompanied by spectacular and rapid diversification in eco-morphological and secondary sexual traits. This is best illustrated by the famous repeated explosive radiations in the African Great Lakes Tanganyika, Malawi and Victoria, each lake harbouring several hundreds of mostly endemic species. Correspondingly, cichlids diversified very rapidly in many other lakes across their range. Although the larger radiations, unparalleled in vertebrates, are certainly the most intriguing, they are also the most intricate and difficult to address because of their complex nature. This is where smaller, simpler systems may prove to be the most useful. In this issue of Molecular Ecology, Kavembe et al. (2016) report very recent genetic diversification accompanied by ecological specialization in cichlids of the small and ecologically extreme Lake Magadi, in Kenya. Combining geometric morphometrics, stable isotope analysis, population genomics using RADSeq data and coalescent-based modelling techniques, the authors characterize the eco-morphological differences between genetically distinct populations of Magadi tilapia (Alcolapia grahami), which are consistent with the different environmental conditions they experience, and infer their history of divergence. The simplicity of the focal system and the use of a multidisciplinary approach make this work particularly important for our understanding of the early stages of speciation, in both cichlids and other organisms. © 2016 John Wiley & Sons Ltd.

  17. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  18. Improving Inferences from Multiple Methods.

    ERIC Educational Resources Information Center

    Shotland, R. Lance; Mark, Melvin M.

    1987-01-01

    Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…

  19. Feature Inference Learning and Eyetracking

    ERIC Educational Resources Information Center

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  20. Learning to Observe "and" Infer

    ERIC Educational Resources Information Center

    Hanuscin, Deborah L.; Park Rogers, Meredith A.

    2008-01-01

    Researchers describe the need for students to have multiple opportunities and social interaction to learn about the differences between observation and inference and their role in developing scientific explanations (Harlen 2001; Simpson 2000). Helping children develop their skills of observation and inference in science while emphasizing the…

  1. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  2. Causal Inference in Retrospective Studies.

    ERIC Educational Resources Information Center

    Holland, Paul W.; Rubin, Donald B.

    1988-01-01

    The problem of drawing causal inferences from retrospective case-controlled studies is considered. A model for causal inference in prospective studies is applied to retrospective studies. Limitations of case-controlled studies are formulated concerning relevant parameters that can be estimated in such studies. A coffee-drinking/myocardial…

  3. Causal Inference and Developmental Psychology

    ERIC Educational Resources Information Center

    Foster, E. Michael

    2010-01-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether…

  4. Improving Inferences from Multiple Methods.

    ERIC Educational Resources Information Center

    Shotland, R. Lance; Mark, Melvin M.

    1987-01-01

    Multiple evaluation methods (MEMs) can cause an inferential challenge, although there are strategies to strengthen inferences. Practical and theoretical issues involved in the use by social scientists of MEMs, three potential problems in drawing inferences from MEMs, and short- and long-term strategies for alleviating these problems are outlined.…

  5. Iodine Speciation in Marine Aerosol of the Atlantic Ocean (AMT21)

    NASA Astrophysics Data System (ADS)

    Yodle, Chan; von Glasow, Roland; Baker, Alex

    2014-05-01

    Iodine chemistry in marine aerosol plays important roles in the marine boundary layer such as ozone destruction and new aerosol particle formation. In both cases, the speciation of iodine is an important factor in determining the role of iodine in these processes. Iodine has a complex chemistry in the gas and aerosol phases and to date the interactions and roles of individual iodine species are not well understood. This study will present results of a research cruise from the Atlantic Ocean, AMT21, which travelled from Avonmouth in the UK to Punta Arenas, Chile during September to November 2011. Aerosol samples were collected for 24 hours onto pre-cleaned glass fibre filters with a flow rate of ~1 m3 min-1, using a total suspended particulate sampler. Collected aerosol samples were extracted into ultra-pure water using mechanical shaking at room temperature. Iodine speciation in these extracts was measured using ion-chromatography coupled to Inductively Coupled Plasma-Spectrometry (IC-ICP-MS). Soluble organic iodine (SOI) was then determined by differences between the sum of inorganic iodine (iodide and iodate) and total soluble iodine determined by ICP-MS. Chemical analysis of major ions was also analysed by ion chromatography. Back trajectories were used to categorise air masses of aerosol, according to their origins and transport pathways. Results show considerable differences in the iodine speciation of fine and coarse aerosol particles. These differences of iodine proportions in both aerosol modes agree well with previous studies in the Atlantic. Iodate was dominant species in coarse mode aerosol, its concentration ranged from 4.4 to 58.4 pmol m-3 (median proportion 80%), while SOI and iodide were found in lower concentrations. SOI concentrations ranged from 0.5 to 6.4 pmol m-3 (median proportion 12%) and iodide concentrations ranged from 0.6 to 4.6 pmol m-3 (median proportion 9%) respectively. For fine mode aerosol, lower iodate concentrations were observed

  6. Genetic consequences of cladogenetic vs. anagenetic speciation in endemic plants of oceanic islands

    PubMed Central

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J.; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F.

    2015-01-01

    Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pattern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In contrast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is anagenesis, whereby the founding population changes genetically and morphologically over time primarily through mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archipelago, which contains two principal islands of differing geological ages. This article summarizes population genetic results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162 and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia (Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating anagenetically show high levels of genetic variation within the island population and no geographic genetic partitioning. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species that have been derived anagenetically on the younger island (1–2 Ma) contain less genetic variation than those that have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species on the older island is greater than among similarly derived species on the younger island. An important point is that the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence occurs. PMID:26311732

  7. Genetic consequences of cladogenetic vs. anagenetic speciation in endemic plants of oceanic islands.

    PubMed

    Takayama, Koji; López-Sepúlveda, Patricio; Greimler, Josef; Crawford, Daniel J; Peñailillo, Patricio; Baeza, Marcelo; Ruiz, Eduardo; Kohl, Gudrun; Tremetsberger, Karin; Gatica, Alejandro; Letelier, Luis; Novoa, Patricio; Novak, Johannes; Stuessy, Tod F

    2015-08-26

    Adaptive radiation is a common mode of speciation among plants endemic to oceanic islands. This pattern is one of cladogenesis, or splitting of the founder population, into diverse lineages in divergent habitats. In contrast, endemic species have also evolved primarily by simple transformations from progenitors in source regions. This is anagenesis, whereby the founding population changes genetically and morphologically over time primarily through mutation and recombination. Gene flow among populations is maintained in a homogeneous environment with no splitting events. Genetic consequences of these modes of speciation have been examined in the Juan Fernández Archipelago, which contains two principal islands of differing geological ages. This article summarizes population genetic results (nearly 4000 analyses) from examination of 15 endemic species, involving 1716 and 1870 individuals in 162 and 163 populations (with amplified fragment length polymorphisms and simple sequence repeats, respectively) in the following genera: Drimys (Winteraceae), Myrceugenia (Myrtaceae), Rhaphithamnus (Verbenaceae), Robinsonia (Asteraceae, Senecioneae) and Erigeron (Asteraceae, Astereae). The results indicate that species originating anagenetically show high levels of genetic variation within the island population and no geographic genetic partitioning. This contrasts with cladogenetic species that show less genetic diversity within and among populations. Species that have been derived anagenetically on the younger island (1-2 Ma) contain less genetic variation than those that have anagenetically speciated on the older island (4 Ma). Genetic distinctness among cladogenetically derived species on the older island is greater than among similarly derived species on the younger island. An important point is that the total genetic variation within each genus analysed is comparable, regardless of whether adaptive divergence occurs. Published by Oxford University Press on behalf of the

  8. Social Inference Through Technology

    NASA Astrophysics Data System (ADS)

    Oulasvirta, Antti

    Awareness cues are computer-mediated, real-time indicators of people’s undertakings, whereabouts, and intentions. Already in the mid-1970 s, UNIX users could use commands such as “finger” and “talk” to find out who was online and to chat. The small icons in instant messaging (IM) applications that indicate coconversants’ presence in the discussion space are the successors of “finger” output. Similar indicators can be found in online communities, media-sharing services, Internet relay chat (IRC), and location-based messaging applications. But presence and availability indicators are only the tip of the iceberg. Technological progress has enabled richer, more accurate, and more intimate indicators. For example, there are mobile services that allow friends to query and follow each other’s locations. Remote monitoring systems developed for health care allow relatives and doctors to assess the wellbeing of homebound patients (see, e.g., Tang and Venables 2000). But users also utilize cues that have not been deliberately designed for this purpose. For example, online gamers pay attention to other characters’ behavior to infer what the other players are like “in real life.” There is a common denominator underlying these examples: shared activities rely on the technology’s representation of the remote person. The other human being is not physically present but present only through a narrow technological channel.

  9. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus.

    PubMed

    Ting, C T; Tsaur, S C; Wu, C I

    2000-05-09

    Molecular differentiation between races or closely related species is often incongruent with the reproductive divergence of the taxa of interest. Shared ancient polymorphism and/or introgression during secondary contact may be responsible for the incongruence. At loci contributing to speciation, these two complications should be minimized (1, 2); hence, their variation may more faithfully reflect the history of the species' reproductive differentiation. In this study, we analyzed DNA polymorphism at the Odysseus (OdsH) locus of hybrid sterility between Drosophila mauritiana and Drosophila simulans and were able to verify such a prediction. Interestingly, DNA variation only a short distance away (1.8 kb) appears not to be influenced by the forces that shape the recent evolution of the OdsH coding region. This locus thus may represent a test case of inferring phylogeny of very closely related species.

  10. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains

    NASA Astrophysics Data System (ADS)

    Bray, Timothy C.; Bocak, Ladislav

    2016-09-01

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km2 highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.

  11. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains.

    PubMed

    Bray, Timothy C; Bocak, Ladislav

    2016-09-16

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km(2) highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna.

  12. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains

    PubMed Central

    Bray, Timothy C.; Bocak, Ladislav

    2016-01-01

    We demonstrate the controversial origin of a biological species within an area of a few kilometres in the absence of physical barriers. We employed nuclear rRNA/mitochondrial and genome-wide SNP approaches to infer relationships of four species of net-winged beetles characterised by female neoteny. Three species are distributed at low elevations and a single population colonised a 40 km2 highland plateau and established distinct biological species despite incomplete genetic isolation. The speciation process is extreme in the highly localised spatial scale, due to the low dispersal power of neotenics, and provides clear support for a microallopatric model based on ecological conditions. In contrast with neutral evolution in a homogenous environment, as demonstrated by the genetic divergence and morphological similarity of two widely distributed low-mountain species, the environmental characteristics of the high-mountain plateau led to the origin of a species adapted to the local mimetic pattern and characterised by morphologically distinct genitalia. We conclude that the low dispersal propensity promotes neutral genetic differentiation in the first stage, but environmental characteristics play an important role the final phase of the speciation process. The unexpected speciation at such an extreme geographic scale points to the in situ origin and uniqueness of the mountain fauna. PMID:27633844

  13. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  14. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  15. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  16. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  17. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  18. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  19. Diversification of the silverspot butterflies (Nymphalidae) in the Neotropics inferred from multi-locus DNA sequences.

    PubMed

    Massardo, Darli; Fornel, Rodrigo; Kronforst, Marcus; Gonçalves, Gislene Lopes; Moreira, Gilson Rudinei Pires

    2015-01-01

    The tribe Heliconiini (Lepidoptera: Nymphalidae) is a diverse group of butterflies distributed throughout the Neotropics, which has been studied extensively, in particular the genus Heliconius. However, most of the other lineages, such as Dione, which are less diverse and considered basal within the group, have received little attention. Basic information, such as species limits and geographical distributions remain uncertain for this genus. Here we used multilocus DNA sequence data and the geographical distribution analysis across the entire range of Dione in the Neotropical region in order to make inferences on the evolutionary history of this poorly explored lineage. Bayesian time-tree reconstruction allows inferring two major diversification events in this tribe around 25mya. Lineages thought to be ancient, such as Dione and Agraulis, are as recent as Heliconius. Dione formed a monophyletic clade, sister to the genus Agraulis. Dione juno, D. glycera and D. moneta were reciprocally monophyletic and formed genetic clusters, with the first two more close related than each other in relation to the third. Divergence time estimates support the hypothesis that speciation in Dione coincided with both the rise of Passifloraceae (the host plants) and the uplift of the Andes. Since the sister species D. glycera and D. moneta are specialized feeders on passion-vine lineages that are endemic to areas located either within or adjacent to the Andes, we inferred that they co-speciated with their host plants during this vicariant event.

  20. The role of ecological divergence in speciation between intertidal and subtidal Scoloplos armiger (Polychaeta, Orbiniidae)

    NASA Astrophysics Data System (ADS)

    Kruse, Inken; Strasser, Matthias; Thiermann, Frank

    2004-02-01

    The concept of ecological speciation implies that habitat differences may split a species by strong selection and rapid adaptation even under sympatric conditions. Studies on the polychaete Scoloplos armiger in the Wadden Sea (North Sea) indicate sibling species existing in sympatry: the intertidal 'Type I' with holobenthic development out of egg cocoons and the subtidal 'Type S' producing pelagic larvae. In the current study, Types I and S are compared in habitat-related traits of reproductive timing and physiological response to hypoxia and sulphide. Spawnings of Type I and Type S recorded over six years overlap in spring and both appear to be triggered by a rise in seawater temperature above 5 °C. Type S exhibits an additional autumn spawning (at seawater temperatures around 10 °C) which was previously unknown and is absent in Type I. The overall abundance of pelagic larvae in the Wadden Sea is higher in spring than in autumn. Tolerance of both sulphide and hypoxia was lower in Type S than in Type I. This correlates with a 5 to 10-fold lower sulphide concentration in the subtidal compared to the intertidal habitat. Physiological tolerance and divergence in developmental mode appear as traits which may have led to reproductive isolation between Type I and Type S. Their role in allopatric and sympatric speciation scenarios in S. armiger is discussed. Since the pelagic dispersal mode has been neglected so far, a reassessment of population dynamics models for S. armiger is suggested.

  1. Arsenic speciation in rice cereals for infants.

    PubMed

    Juskelis, Rima; Li, Wanxing; Nelson, Jenny; Cappozzo, Jack C

    2013-11-13

    The aim of this study was to conduct a survey of arsenic (As) content in rice cereals for infants. The analysis was based on the FDA Elemental Analysis Manual (EAM 4.11). An inductively coupled plasma mass spectrometer (ICP-MS) was used to determine total As. Due to the different toxicities of the chemical forms of arsenic, the ICP-MS coupled to a high-performance liquid chromatograph (HPLC) was used to perform As speciation. The total and speciated arsenic was determined in 31 different infant rice cereals sold in U.S. supermarkets. The mass fraction of total inorganic As (iAs; sum of arsenite As(III) and arsenate As(V)) concentrations ranged between 55.5 ± 1.3 and 158.0 ± 6.0 μg/kg. The average total arsenic and iAs concentrations in infant rice cereal were 174.4 and 101.4 μg/kg, respectively. There was no substantial difference in iAs levels between organic and conventional rice cereals. The mixed-grain rice cereal contained the least total (105 μg/kg) and inorganic arsenic (63 μg/kg). The major detected organoarsenical species was dimethylarsinic acid (DMA). Monomethylarsonic acid (MMA) was not detected, or only trace levels were found. Spiked sample percent recoveries for iAs, DMA, and MMA ranged from a low of 97.3% for iAs to a high of 115.0% for DMA. Results for speciated and total As in the National Institute of Standards and Technology standard reference material rice flour (NIST SRM 1568) were in good agreement with certified values. In the NIST SRM 1568 sample (n = 5) repeatability (%RSD) was 2.8% for iAs, 1.7% for DMA and species sum, and 5.3% for the total arsenic by As total method. The average percent mass balance was 99.9 ± 6.3% for the NIST SRM 1568 sample. This study provides new and much needed information on arsenic levels in rice-based infant cereals.

  2. Lead Speciation in remote Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Plöger, A.; van den Berg, C. M. G.

    2003-04-01

    In natural waters trace metals can become complexed by organic matter. This complexation can change the geochemistry of the metals by preventing them being scavenged, thereby increasing their residence time in the water column. The chemical speciation of trace metals also affects the bioavalability and their toxicological impact on organisms. It is therefore important to determine the chemical speciation of trace metals as well as their concentrations. Mountain lakes have been less studied in the past than other lakes- partly because of their remoteness and partly because they were perceived to be unpolluted and undisturbed. But work so far on mountain lakes has shown that most sites are affected and threatened, for example by transboundary air pollutants like trace metals. One of the important features that distinguishes these lakes from lowland lakes at similar latitudes is the fact that they may be isolated from the atmosphere for six months or more during the winter by a thick ice cover. Also, as these lakes are remote from direct anthropogenic influences, they reflect the regional distribution of pollutants transferred via the atmosphere. For this work, under the framework of the EMERGE (European Mountain lake Ecosystems: Regionalisation, diaGnostic and socio-economic Evaluation) programme, two remote mountain lakes have been studied in detail, with water sampling taking place at different times of the year to investigate possible seasonal differences in lead concentrations and speciation. Results so far have shown that lead-complexing ligand concentrations are in excess to dissolved lead concentrations, indicating that dissolved lead probably occurs fully complexed in these lakes. Therefore the toxic fraction is likely to be less than the dissolved lead concentration. Also, lead concentrations at the time of the spring thaw are higher than autumn concentrations just before ice cover, indicating that a significant proportion of fallout onto the lake catchment

  3. A Japanese view on speciation: "Sumiwake" explosive speciation of the cichlids in Lake Victoria.

    PubMed

    Kawamiya, Nobuo

    2003-01-01

    Imanishi's "mental" (cerebral) view of speciation is presented, in Mizuhata's revision. The key concept here is the "ethological partition" of the species. Members of each species=society (etho-species) share the same mental (brain) software, irrespective of their genetic structure. Cerebral animals perform active programmed selection, not to be confused with passive, non-programmed "natural selection" as in Neo-Darwinism. The program includes mating-choice of peculiar characters, distinct from the Neo-Darwinian sexual selection supposed due to the specific choosy genes. Speciation can occur, as a "partition of species=society", with bifurcation of mate-choosing program in the parent species. A main promoter for this bifurcation is species-specific "passion" for especially significant characters: long necks, ornamental antlers, ocelli feathers, bright nuptial colors etc. The cichlids in Lake Victoria achieved explosive speciation, while retaining their genetic homogeneity completely. Therefore it is illogical to attribute this divergence to extraordinary mutations in "action controlling genes". The origin of species=society (etho-species) can trace along to the Cambrian Period.

  4. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    SciTech Connect

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  5. Mercury speciation in the Adriatic Sea.

    PubMed

    Kotnik, Jože; Horvat, Milena; Ogrinc, Nives; Fajon, Vesna; Žagar, Dušan; Cossa, Daniel; Sprovieri, Francesca; Pirrone, Nicola

    2015-07-15

    Mercury and its speciation were studied in surface and deep waters of the Adriatic Sea. Several mercury species (i.e. DGM – dissolved gaseous Hg, RHg – reactive Hg, THg – total Hg, MeHg – monomethyl Hg and DMeHg – dimethylmercury) together with other water parameters were measured in coastal and open sea deep water profiles. THg concentrations in the water column, as well as in sediments and pore waters, were the highest in the northern, most polluted part of the Adriatic Sea as the consequence of Hg mining in Idrija and the heavy industry of northern Italy. Certain profiles in the South Adriatic Pit exhibit an increase of DGM just over the bottom due to its diffusion from sediment as a consequence of microbial and/or tectonic activity. Furthermore, a Hg mass balance for the Adriatic Sea was calculated based on measurements and literature data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Plutonium Speciation, Solubilization, and Migration in Soils

    SciTech Connect

    Neu, Mary P.; Smith, Donna M.; Ginder-Vogle, Matt

    2001-06-19

    The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium (Pu) in soils for 50 years. To properly control Pu migration in soils within Federal sites and onto public lands, better evaluate the public risk, and design effective remediation strategies, a fundamental understanding of Pu speciation and environmental transport is needed. This type of information is increasingly important as the remediation and decommissioning plans for actinide-contaminated sites includes in situ stabilization or clean-up to a particular level of residual contamination. Long-term stewardship of the sites and return of these sites to public use will require more accurate predictions of contamination stability and mobility than is possible using current information.

  7. Spatially Resolved Sulfur Speciation in Urban Soils

    NASA Astrophysics Data System (ADS)

    Brettholle, M.; Gleber, S.-C.; Mekiffer, B.; Legnini, D.; McNulty, I.; Vogt, S.; Wessolek, G.; Thieme, J.

    2011-09-01

    A combination of x-ray microscopy, elemental mapping, and XANES spectroscopy at the K-absorption edge of sulfur was used to analyze the elemental and particulate composition of an urban soil loaded with building rubble from WWII, exemplarily from Berlin, Germany. This combination of element specific high-resolution microscopy with high spectral resolution capabilities allows for the determination of elemental composition as well as chemical speciation and is therefore well suited for the analysis of highly heterogeneous environmental samples. Different soil and debris constituents could be assigned to elemental distribution patterns within collected fluorescence maps, allowing for a detailed analysis of the sulfur pool and release from war debris in subsequent studies. A detailed understanding of this sulfur lixiviation is central to preserve urban water quality.

  8. Carbon speciation and surface tension of fog

    USGS Publications Warehouse

    Capel, P.D.; Gunde, R.; Zurcher, F.; Giger, W.

    1990-01-01

    The speciation of carbon (dissolved/particulate, organic/inorganic) and surface tension of a number of radiation fogs from the urban area of Zurich, Switzerland, were measured. The carbon species were dominated by "dissolved" organic carbon (DOC; i.e., the fraction that passes through a filter), which was typically present at levels of 40-200 mg/L. Less than 10% of the DOC was identified as specific individual organic compounds. Particulate organic carbon (POC) accounted for 26-41% of the mass of the particles, but usually less than 10% of the total organic carbon mass. Inorganic carbon species were relatively minor. The surface tensions of all the measured samples were less than pure water and were correlated with their DOC concentrations. The combination of high DOC and POC and low surface tension suggests a mechanism for the concentration of hydrophobic organic contaminants in the fog droplet, which have been observed by numerous investigators. ?? 1990 American Chemical Society.

  9. Genetics of ecological divergence during speciation

    PubMed Central

    Arnegard, Matthew E.; McGee, Matthew D.; Matthews, Blake; Marchinko, Kerry B.; Conte, Gina L.; Kabir, Sahriar; Bedford, Nicole; Bergek, Sara; Chan, Yingguang Frank; Jones, Felicity C.; Kingsley, David M.; Peichel, Catherine L.; Schluter, Dolph

    2014-01-01

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Though this process is a major generator of biodiversity, its genetic basis remains poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but that depend on the ecological context. PMID:24909991

  10. Horizontal Gene Transfer, Dispersal and Haloarchaeal Speciation

    PubMed Central

    Papke, R. Thane; Corral, Paulina; Ram-Mohan, Nikhil; de la Haba, Rafael R.; Sánchez-Porro, Cristina; Makkay, Andrea; Ventosa, Antonio

    2015-01-01

    The Halobacteria are a well-studied archaeal class and numerous investigations are showing how their diversity is distributed amongst genomes and geographic locations. Evidence indicates that recombination between species continuously facilitates the arrival of new genes, and within species, it is frequent enough to spread acquired genes amongst all individuals in the population. To create permanent independent diversity and generate new species, barriers to recombination are probably required. The data support an interpretation that rates of evolution (e.g., horizontal gene transfer and mutation) are faster at creating geographically localized variation than dispersal and invasion are at homogenizing genetic differences between locations. Therefore, we suggest that recurrent episodes of dispersal followed by variable periods of endemism break the homogenizing forces of intrapopulation recombination and that this process might be the principal stimulus leading to divergence and speciation in Halobacteria. PMID:25997110

  11. Chemical speciation of radionuclides migrating in groundwaters

    SciTech Connect

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., {sup 60}Co and {sup 106}Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters.

  12. Speciation of organotin in environmental sediment samples.

    PubMed

    Ceulemans, M; Slaets, S; Adams, F

    1998-07-01

    An optimized sample preparation procedure for organotin speciation in sediment samples has been applied to the analysis of sediments collected in the environment. The method is based on tropolone complexation of the ionic organotins, followed by extraction into a hexane-ethylacetate mixture and derivatization by NaBEt(4). The method was applied to the determination of organotin in various harbour, shipyard and dry-dock sediments in Belgium. Butyltin compounds were detected in all samples analyzed, often at high mg kg(-1) levels. A limited number of samples showed the presence of phenyltin compounds. Further, the method was adapted to the analysis of river sediments sampled from the vicinity of shipyards. Butyltin concentrations were detected at the microg kg(-1) level in the majority of samples.

  13. [Arsenic speciation in edible plants: a review].

    PubMed

    Liu, Xiao-juan; Lin, Ai-jun; Sun, Guo-xin; Liu, Yun-xia; Liu, Wen-ju

    2010-07-01

    Arsenic (As) is a ubiquitous chemical element in environment, and the increasingly serious As pollution is highly concerned all over the world. China has been considered as one of the countries and regions with serious As pollution in the world by the World Health Organization (WHO). Recent studies indicated that food is one of the major contributors of As in human diets. Edible plants are essential in the diet structure in human life, which often contain high level of As. However, the total As in food can not exactly reflect the toxicity of As, while As speciation closely relates to the As bio-toxicity. Inorganic arsenic is verified as the carcinogen based on human epidemiological data. This paper reviewed the As species in edible plants, their bio-toxicity, and analytical methods.

  14. Speciation of arsenic in sulfidic waters

    PubMed Central

    Wilkin, Richard T; Wallschläger, Dirk; Ford, Robert G

    2003-01-01

    Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH)30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH)30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  15. Speciation genomics and a role for the Z chromosome in the early stages of divergence between Mexican ducks and mallards.

    PubMed

    Lavretsky, Philip; Dacosta, Jeffrey M; Hernández-Baños, Blanca E; Engilis, Andrew; Sorenson, Michael D; Peters, Jeffrey L

    2015-11-01

    Speciation is a continuous and dynamic process, and studying organisms during the early stages of this process can aid in identifying speciation mechanisms. The mallard (Anas platyrhynchos) and Mexican duck (A. [p.] diazi) are two recently diverged taxa with a history of hybridization and controversial taxonomy. To understand their evolutionary history, we conducted genomic scans to characterize patterns of genetic diversity and divergence across the mitochondrial DNA (mtDNA) control region, 3523 autosomal loci and 172 Z-linked sex chromosome loci. Between the two taxa, Z-linked loci (ΦST  = 0.088) were 5.2 times more differentiated than autosomal DNA (ΦST  = 0.017) but comparable to mtDNA (ΦST  = 0.092). This elevated Z differentiation deviated from neutral expectations inferred from simulated data that incorporated demographic history and differences in effective population sizes between marker types. Furthermore, 3% of Z-linked loci, compared to <0.1% of autosomal loci, were detected as outlier loci under divergent selection with elevated relative (ΦST ) and absolute (dXY ) estimates of divergence. In contrast, the ratio of Z-linked and autosomal differentiation among the seven Mexican duck sampling locations was close to 1:1 (ΦST  = 0.018 for both markers). We conclude that between mallards and Mexican ducks, divergence at autosomal markers is largely neutral, whereas greater divergence on the Z chromosome (or some portions thereof) is likely the product of selection that has been important in speciation. Our results contribute to a growing body of literature indicating elevated divergence on the Z chromosome and its likely importance in avian speciation. © 2015 John Wiley & Sons Ltd.

  16. Radiation and speciation of pelagic organisms during periods of global warming: the case of the common minke whale, Balaenoptera acutorostrata.

    PubMed

    Pastene, Luis A; Goto, Mutsuo; Kanda, Naohisa; Zerbini, Alexandre N; Kerem, Dan; Watanabe, Kazuo; Bessho, Yoshitaka; Hasegawa, Masami; Nielsen, Rasmus; Larsen, Finn; Palsbøll, Per J

    2007-04-01

    How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean-surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale (Balaenoptera bonaerensis) and common minke whale (Balaenoptera acutorostrata) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control-region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis. Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re-establishment of the polar-equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity

  17. Assessing models of speciation under different biogeographic scenarios; An empirical study using multi-locus and RNA-seq analyses

    USGS Publications Warehouse

    Edwards, Taylor; Tollis, Marc; Hsieh, PingHsun; Gutenkunst, Ryan N.; Liu, Zhen; Kusumi, Kenro; Culver, Melanie; Murphy, Robert W.

    2016-01-01

    Evolutionary biology often seeks to decipher the drivers of speciation, and much debate persists over the relative importance of isolation and gene flow in the formation of new species. Genetic studies of closely related species can assess if gene flow was present during speciation, because signatures of past introgression often persist in the genome. We test hypotheses on which mechanisms of speciation drove diversity among three distinct lineages of desert tortoise in the genus Gopherus. These lineages offer a powerful system to study speciation, because different biogeographic patterns (physical vs. ecological segregation) are observed at opposing ends of their distributions. We use 82 samples collected from 38 sites, representing the entire species' distribution and generate sequence data for mtDNA and four nuclear loci. A multilocus phylogenetic analysis in *BEAST estimates the species tree. RNA-seq data yield 20,126 synonymous variants from 7665 contigs from two individuals of each of the three lineages. Analyses of these data using the demographic inference package ∂a∂i serve to test the null hypothesis of no gene flow during divergence. The best-fit demographic model for the three taxa is concordant with the *BEAST species tree, and the ∂a∂i analysis does not indicate gene flow among any of the three lineages during their divergence. These analyses suggest that divergence among the lineages occurred in the absence of gene flow and in this scenario the genetic signature of ecological isolation (parapatric model) cannot be differentiated from geographic isolation (allopatric model).

  18. Plutonium Speciation, Solubilization, and Migration in soils

    SciTech Connect

    Neu, Mary; Haire, Richard G.

    1999-06-01

    The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium in soils for 50 years. To properly control Pu migration in soils within Federal sites and onto public lands, better evaluate the public risk, and design effective remediation strategies, a fundamental understanding of Pu speciation and environmental transport, and release mechanisms is needed. The key scientific goals of this project are: to determine Pu concentrations and speciation at a contaminated DOE site; to study the formation, stability, and structural and spectroscopic features of environmentally relevant Pu species; to determine the mechanism(s) of interaction between Pu and Mn/Fe minerals and the potential release of Pu via redox cycling; and to model the environmental behavior of plutonium. Our long-term goal is to use characterization, thermodynamic, mineral interaction, and mobility data to develop better models of radionuclide transport and risk assessment, and to enable the development of science-based decontamination strategies. This research will fill important gaps between basic actinide science and the problems impeding site clean-up, plutonium disposition, and accurate risk assessment. Information gained will allow for the development of technologies and clean-up approaches targeting particular plutonium contaminants and improved assessment of risks associated with actinide migration, site remediation, and decontamination. By combining very specific study of plutonium at the Rocky Flats Environmental Test Site (RFETS), a well characterized contaminated site, with laboratory studies on the most important plutonium and mineral component systems, we will provide essential knowledge of contaminant characteristics and distinguish critical geochemical processes and mechanisms.

  19. Nitrogen speciation in mantle and crustal fluids

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Keppler, Hans

    2014-03-01

    Seventy-nine experiments have been carried out at 600-1400 °C, 2-35 kbar, and oxygen fugacities ranging from the Fe-FeO to the Re-ReO2 buffer to investigate the nitrogen speciation in mantle and crustal N-H-O fluids. Laser Raman analyses of fluid inclusions trapped in situ in quartz and olivine crystals show that N2 and/or NH3 are the only detectable nitrogen species in the fluids at the conditions of the present study. The results further show that in the fluids of the oxidized shallow upper mantle, nitrogen is mostly present as N2, while in the deep reduced upper mantle, NH3 is the dominant nitrogen species. Nitrogen speciation in subduction zone fluids is also calculated from the experimental data to constrain the efficiency of nitrogen recycling. The data show that a hot, oxidized slab is an efficient barrier for deep nitrogen subduction, while a cold, reduced slab would favor recycling nitrogen into the deep mantle. The nitrogen species in magmatic fluids of mid-ocean ridge basalt and arc magmas are predominantly N2, but a significant fraction of nitrogen can be NH3 at certain conditions. The nitrogen species in fluids released from the solidifying magma ocean and the reduced young mantle may have been mostly NH3. The release of such fluids may have created a reduced atmosphere on the every early Earth, with an elevated concentration of NH3. This may not only resolve the faint young Sun paradox but may also have created favorable conditions for the formation of biomolecules through Miller-Urey type reactions.

  20. Aluminium speciation in effluents and receiving waters.

    PubMed

    Gardner, M J; Comber, S D W

    2003-12-01

    The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.

  1. Correcting for sequencing error in maximum likelihood phylogeny inference.

    PubMed

    Kuhner, Mary K; McGill, James

    2014-11-04

    Accurate phylogenies are critical to taxonomy as well as studies of speciation processes and other evolutionary patterns. Accurate branch lengths in phylogenies are critical for dating and rate measurements. Such accuracy may be jeopardized by unacknowledged sequencing error. We use simulated data to test a correction for DNA sequencing error in maximum likelihood phylogeny inference. Over a wide range of data polymorphism and true error rate, we found that correcting for sequencing error improves recovery of the branch lengths, even if the assumed error rate is up to twice the true error rate. Low error rates have little effect on recovery of the topology. When error is high, correction improves topological inference; however, when error is extremely high, using an assumed error rate greater than the true error rate leads to poor recovery of both topology and branch lengths. The error correction approach tested here was proposed in 2004 but has not been widely used, perhaps because researchers do not want to commit to an estimate of the error rate. This study shows that correction with an approximate error rate is generally preferable to ignoring the issue.

  2. Degradation monitoring using probabilistic inference

    NASA Astrophysics Data System (ADS)

    Alpay, Bulent

    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing

  3. Inferring handedness from lithic evidence.

    PubMed

    Rugg, G; Mullane, M

    2001-07-01

    Until recently research into the origins of human handedness has been hampered by the lack of valid techniques for inferring handedness in pre-modern populations. A method developed by Toth for inferring handedness from lithic evidence, based on orientation of the cortex on lithic flakes, has produced promising results. However, this method is limited in applicability and has a variable signal to noise ratio. The authors describe a separate method, based on the orientation of the cone of percussion in lithic flakes, for inferring handedness from the lithic evidence. This method complements the cortex method. Some preliminary experimental evidence is presented which indicates that handedness can be inferred from lithic evidence using the cone of percussion method. Suggestions for further research are made.

  4. Bayesian Inference of Galaxy Morphology

    NASA Astrophysics Data System (ADS)

    Yoon, Ilsang; Weinberg, M.; Katz, N.

    2011-01-01

    Reliable inference on galaxy morphology from quantitative analysis of ensemble galaxy images is challenging but essential ingredient in studying galaxy formation and evolution, utilizing current and forthcoming large scale surveys. To put galaxy image decomposition problem in broader context of statistical inference problem and derive a rigorous statistical confidence levels of the inference, I developed a novel galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes) that exploits recent developments in Bayesian computation to provide full posterior probability distributions and reliable confidence intervals for all parameters. I will highlight the significant improvements in galaxy image decomposition using GALPHAT, over the conventional model fitting algorithms and introduce the GALPHAT potential to infer the statistical distribution of galaxy morphological structures, using ensemble posteriors of galaxy morphological parameters from the entire galaxy population that one studies.

  5. SPECIATE Version 4.5 Database Development Documentation

    EPA Science Inventory

    This product updated SPECIATE 4.4 with new emission profiles to address high priority Agency data gaps and to included new, more accurate emission profiles generated by research underway within and outside the Agency.

  6. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  7. SPECIATE Version 4.5 Database Development Documentation

    EPA Science Inventory

    This product updated SPECIATE 4.4 with new emission profiles to address high priority Agency data gaps and to included new, more accurate emission profiles generated by research underway within and outside the Agency.

  8. A model of sympatric speciation through assortative mating

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco; Guardiani, Carlo

    2005-03-01

    A microscopic model is developed, within the frame of the theory of quantitative traits, to study the combined effect of competition and assortativity on the sympatric speciation process, i.e., speciation in the absence of geographical barriers. Two components of fitness are considered: a static one that describes adaptation to environmental factors not related to the population itself, and a dynamic one that accounts for interactions between organisms, e.g. competition. A simulated annealing technique was applied in order to speed up simulations. The simulations show that both in the case of flat and steep static fitness landscapes, competition and assortativity do exert a synergistic effect on speciation. We also show that competition acts as a stabilizing force against extinction due to random sampling in a finite population. Finally, evidence is shown that speciation can be seen as a phase transition.

  9. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  10. Polyploidy in relation to plant evolution and speciation

    USDA-ARS?s Scientific Manuscript database

    Polyploidy is a dominant force in plant evolution and speciation. Allopolyploids, resulting from interspecific or intergeneric hybridization coupled with chromosome doubling, are preponderant in nature. For the meiotic and reproductive stability of the allopolyploids, a precise genetic control of ...

  11. Male competition fitness landscapes predict both forward and reverse speciation.

    PubMed

    Keagy, Jason; Lettieri, Liliana; Boughman, Janette W

    2016-01-01

    Speciation is facilitated when selection generates a rugged fitness landscape such that populations occupy different peaks separated by valleys. Competition for food resources is a strong ecological force that can generate such divergent selection. However, it is unclear whether intrasexual competition over resources that provide mating opportunities can generate rugged fitness landscapes that foster speciation. Here we use highly variable male F2 hybrids of benthic and limnetic threespine sticklebacks, Gasterosteus aculeatus Linnaeus, 1758, to quantify the male competition fitness landscape. We find that disruptive sexual selection generates two fitness peaks corresponding closely to the male phenotypes of the two parental species, favouring divergence. Most surprisingly, an additional region of high fitness favours novel hybrid phenotypes that correspond to those observed in a recent case of reverse speciation after anthropogenic disturbance. Our results reveal that sexual selection through male competition plays an integral role in both forward and reverse speciation.

  12. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  13. Bayesian Inference: with ecological applications

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  14. Statistical Inference: The Big Picture.

    PubMed

    Kass, Robert E

    2011-02-01

    Statistics has moved beyond the frequentist-Bayesian controversies of the past. Where does this leave our ability to interpret results? I suggest that a philosophy compatible with statistical practice, labelled here statistical pragmatism, serves as a foundation for inference. Statistical pragmatism is inclusive and emphasizes the assumptions that connect statistical models with observed data. I argue that introductory courses often mis-characterize the process of statistical inference and I propose an alternative "big picture" depiction.

  15. Active inference, communication and hermeneutics☆

    PubMed Central

    Friston, Karl J.; Frith, Christopher D.

    2015-01-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others – during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions – both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then – in principle – they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. PMID:25957007

  16. Active inference, communication and hermeneutics.

    PubMed

    Friston, Karl J; Frith, Christopher D

    2015-07-01

    Hermeneutics refers to interpretation and translation of text (typically ancient scriptures) but also applies to verbal and non-verbal communication. In a psychological setting it nicely frames the problem of inferring the intended content of a communication. In this paper, we offer a solution to the problem of neural hermeneutics based upon active inference. In active inference, action fulfils predictions about how we will behave (e.g., predicting we will speak). Crucially, these predictions can be used to predict both self and others--during speaking and listening respectively. Active inference mandates the suppression of prediction errors by updating an internal model that generates predictions--both at fast timescales (through perceptual inference) and slower timescales (through perceptual learning). If two agents adopt the same model, then--in principle--they can predict each other and minimise their mutual prediction errors. Heuristically, this ensures they are singing from the same hymn sheet. This paper builds upon recent work on active inference and communication to illustrate perceptual learning using simulated birdsongs. Our focus here is the neural hermeneutics implicit in learning, where communication facilitates long-term changes in generative models that are trying to predict each other. In other words, communication induces perceptual learning and enables others to (literally) change our minds and vice versa. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Causal inference and developmental psychology.

    PubMed

    Foster, E Michael

    2010-11-01

    Causal inference is of central importance to developmental psychology. Many key questions in the field revolve around improving the lives of children and their families. These include identifying risk factors that if manipulated in some way would foster child development. Such a task inherently involves causal inference: One wants to know whether the risk factor actually causes outcomes. Random assignment is not possible in many instances, and for that reason, psychologists must rely on observational studies. Such studies identify associations, and causal interpretation of such associations requires additional assumptions. Research in developmental psychology generally has relied on various forms of linear regression, but this methodology has limitations for causal inference. Fortunately, methodological developments in various fields are providing new tools for causal inference-tools that rely on more plausible assumptions. This article describes the limitations of regression for causal inference and describes how new tools might offer better causal inference. This discussion highlights the importance of properly identifying covariates to include (and exclude) from the analysis. This discussion considers the directed acyclic graph for use in accomplishing this task. With the proper covariates having been chosen, many of the available methods rely on the assumption of "ignorability." The article discusses the meaning of ignorability and considers alternatives to this assumption, such as instrumental variables estimation. Finally, the article considers the use of the tools discussed in the context of a specific research question, the effect of family structure on child development.

  18. Abductive inference and delusional belief.

    PubMed

    Coltheart, Max; Menzies, Peter; Sutton, John

    2010-01-01

    Delusional beliefs have sometimes been considered as rational inferences from abnormal experiences. We explore this idea in more detail, making the following points. First, the abnormalities of cognition that initially prompt the entertaining of a delusional belief are not always conscious and since we prefer to restrict the term "experience" to consciousness we refer to "abnormal data" rather than "abnormal experience". Second, we argue that in relation to many delusions (we consider seven) one can clearly identify what the abnormal cognitive data are which prompted the delusion and what the neuropsychological impairment is which is responsible for the occurrence of these data; but one can equally clearly point to cases where this impairment is present but delusion is not. So the impairment is not sufficient for delusion to occur: a second cognitive impairment, one that affects the ability to evaluate beliefs, must also be present. Third (and this is the main thrust of our paper), we consider in detail what the nature of the inference is that leads from the abnormal data to the belief. This is not deductive inference and it is not inference by enumerative induction; it is abductive inference. We offer a Bayesian account of abductive inference and apply it to the explanation of delusional belief.

  19. Sulfur Speciation and Extraction in Jet A (Briefing Charts)

    DTIC Science & Technology

    2015-08-16

    collected with Agilent Technologies 6890N Gas Chromatography System and Agilent Technologies 355 Sulfur Chemiluminescence Detector attachment • Method ...Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Sulfur Speciation and Extraction in Jet A (Briefing Charts) 5a...239.18 DISTRIBUTION A: Approved for public release. Distribution is unlimited. Sulfur Speciation and Extraction in Jet A 16 August 2015 Kevin

  20. Speciation, Ecological Opportunity, and Latitude (American Society of Naturalists Address).

    PubMed

    Schluter, Dolph

    2016-01-01

    Evolutionary hypotheses to explain the greater numbers of species in the tropics than the temperate zone include greater age and area, higher temperature and metabolic rates, and greater ecological opportunity. These ideas make contrasting predictions about the relationship between speciation processes and latitude, which I elaborate and evaluate. Available data suggest that per capita speciation rates are currently highest in the temperate zone and that diversification rates (speciation minus extinction) are similar between latitudes. In contrast, clades whose oldest analyzed dates precede the Eocene thermal maximum, when the extent of the tropics was much greater than today, tend to show highest speciation and diversification rates in the tropics. These findings are consistent with age and area, which is alone among hypotheses in predicting a time trend. Higher recent speciation rates in the temperate zone than the tropics suggest an additional response to high ecological opportunity associated with low species diversity. These broad patterns are compelling but provide limited insights into underlying mechanisms, arguing that studies of speciation processes along the latitudinal gradient will be vital. Using threespine stickleback in depauperate northern lakes as an example, I show how high ecological opportunity can lead to rapid speciation. The results support a role for ecological opportunity in speciation, but its importance in the evolution of the latitudinal gradient remains uncertain. I conclude that per capita evolutionary rates are no longer higher in the tropics than the temperate zone. Nevertheless, the vast numbers of species that have already accumulated in the tropics ensure that total rate of species production remains highest there. Thus, tropical evolutionary momentum helps to perpetuate the steep latitudinal biodiversity gradient.

  1. Can environmental change affect host/parasite-mediated speciation?

    PubMed

    Brunner, Franziska S; Eizaguirre, Christophe

    2016-08-01

    Parasitism can be a driver of species divergence and thereby significantly alter species formation processes. While we still need to better understand how parasite-mediated speciation functions, it is even less clear how this process is affected by environmental change. Both rapid and gradual changes of the environment can modify host immune responses, parasite virulence and the specificity of their interactions. They will thereby change host-parasite evolutionary trajectories and the potential for speciation in both hosts and parasites. Here, we summarise mechanisms of host-parasite interactions affecting speciation and subsequently consider their susceptibility to environmental changes. We mainly focus on the effects of temperature change and nutrient input to ecosystems as they are major environmental stressors. There is evidence for both disruptive and accelerating effects of those pressures on speciation that seem to be context-dependent. A prerequisite for parasite-driven host speciation is that parasites significantly alter the host's Darwinian fitness. This can rapidly lead to divergent selection and genetic adaptation; however, it is likely preceded by more short-term plastic and transgenerational effects. Here, we also consider how these first responses and their susceptibility to environmental changes could lead to alterations of the species formation process and may provide alternative pathways to speciation.

  2. Geographical range and speciation in fossil and living molluscs.

    PubMed Central

    Jablonski, David; Roy, Kaustuv

    2003-01-01

    The notion of a positive relation between geographical range and speciation rate or speciation probability may go back to Darwin, but a negative relation between these parameters is equally plausible. Here, we test these alternatives in fossil and living molluscan taxa. Late Cretaceous gastropod genera exhibit a strong negative relation between the geographical ranges of constituent species and speciation rate per species per million years; this result is robust to sampling biases against small-bodied taxa and is not attributable to phylogenetic effects. They also exhibit weak inverse or non-significant relations between geographical range and (i) the total number of species produced over the 18 million year timeframe, and (ii) the number of species in a single timeplane. Sister-group comparisons using extant molluscan species also show a non-significant relation between median geographical range and species richness of genera. These results support the view that the factors promoting broad geographical ranges also tend to damp speciation rates. They also demonstrate that a strong inverse relation between per-species speciation rate and geographical range need not be reflected in analyses conducted within a single timeplane, underscoring the inadequacy of treating net speciation as a proxy for raw per-taxon rates. PMID:12639320

  3. How humans drive speciation as well as extinction

    PubMed Central

    Maron, M.

    2016-01-01

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation—and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon ‘no net loss’ conservation literature—considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. PMID:27358365

  4. How humans drive speciation as well as extinction.

    PubMed

    Bull, J W; Maron, M

    2016-06-29

    A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity. © 2016 The Author(s).

  5. Ecological Impacts of Reverse Speciation in Threespine Stickleback.

    PubMed

    Rudman, Seth M; Schluter, Dolph

    2016-02-22

    Young species are highly prone to extinction via increased gene flow after human-caused environmental changes. This mechanism of biodiversity loss, often termed reverse speciation or introgressive extinction, is of exceptional interest because the parent species are typically highly differentiated ecologically. Reverse speciation events are potentially powerful case studies for the role of evolution in driving ecological changes, as the phenotypic shifts associated with introgressive extinction can be large and they occur over particularly short timescales. Furthermore, reverse speciation can lead to novel phenotypes, which may in turn produce novel ecological effects. Here we investigate the ecological shift associated with reverse speciation in threespine stickleback fish using a field study and a replicated experiment. We find that an instance of introgressive extinction had cascading ecological consequences that altered the abundance of both aquatic prey and the pupating aquatic insects that emerged into the terrestrial ecosystem. The community and ecosystem impacts of reverse speciation were novel, and yet they were also predictable based on ecological and morphological considerations. The study suggests that knowledge about the community ecology and changes in functional morphology of a dominant species may lead to some predictive power for the ecological effects of evolutionary change. Moreover, the rapid nature and resultant ecological impacts associated with reverse speciation demonstrates the interplay between biodiversity, evolutionary change, and ecosystem function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Optimal inference with suboptimal models: Addiction and active Bayesian inference

    PubMed Central

    Schwartenbeck, Philipp; FitzGerald, Thomas H.B.; Mathys, Christoph; Dolan, Ray; Wurst, Friedrich; Kronbichler, Martin; Friston, Karl

    2015-01-01

    When casting behaviour as active (Bayesian) inference, optimal inference is defined with respect to an agent’s beliefs – based on its generative model of the world. This contrasts with normative accounts of choice behaviour, in which optimal actions are considered in relation to the true structure of the environment – as opposed to the agent’s beliefs about worldly states (or the task). This distinction shifts an understanding of suboptimal or pathological behaviour away from aberrant inference as such, to understanding the prior beliefs of a subject that cause them to behave less ‘optimally’ than our prior beliefs suggest they should behave. Put simply, suboptimal or pathological behaviour does not speak against understanding behaviour in terms of (Bayes optimal) inference, but rather calls for a more refined understanding of the subject’s generative model upon which their (optimal) Bayesian inference is based. Here, we discuss this fundamental distinction and its implications for understanding optimality, bounded rationality and pathological (choice) behaviour. We illustrate our argument using addictive choice behaviour in a recently described ‘limited offer’ task. Our simulations of pathological choices and addictive behaviour also generate some clear hypotheses, which we hope to pursue in ongoing empirical work. PMID:25561321

  7. Speciation and Health Risks of Atmospheric Nanoparticulates

    NASA Astrophysics Data System (ADS)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (<100 nm), which contains trace iron and polycyclic aromatic hydrocarbons that can traverse into human organs via the lungs, initiate inflammation, and lead to disease. The traditional approach of reducing the total mass of emitted material is beginning to reach its limit of effectiveness for mitigating the negative health impacts of particulate matter. There is a need for chemical speciation of particulate matter that will allow the identification of the chemical and physical properties of particulates by source, the creation of well-controlled proxy particles with those properties for testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated

  8. Sulfur speciation in natural hydrothermal waters, Iceland

    NASA Astrophysics Data System (ADS)

    Kaasalainen, Hanna; Stefánsson, Andri

    2011-05-01

    The speciation of aqueous dissolved sulfur was determined in hydrothermal waters in Iceland. The waters sampled included hot springs, acid-sulfate pools and mud pots, sub-boiling well discharges and two-phase wells. The water temperatures ranged from 4 to 210 °C, the pH T was between 2.20 and 9.30 at the discharge temperature and the SO 4 and Cl concentrations were 0.020-52.7 and <0.01-10.0 mmol kg -1, respectively. The analyses were carried out on-site within ˜10 min of sampling using ion chromatography (IC) for sulfate (SO 42-), thiosulfate (S 2O 32-) and polythionates (S xO 62-) and titration and/or colorimetry for total dissolved sulfide (S 2-). Sulfite (SO 32-) could also be determined in a few cases using IC. Alternatively, for few samples in remote locations the sulfur oxyanions were stabilized on a resin on site following elution and analysis by IC in the laboratory. Dissolved sulfate and with few exceptions also S 2- were detected in all samples with concentrations of 0.02-52.7 mmol kg -1 and <1-4100 μmol kg -1, respectively. Thiosulfate was detected in 49 samples of the 73 analyzed with concentrations in the range of <1-394 μmol kg -1 (S-equivalents). Sulfite was detected in few samples with concentrations in the range of <1-3 μmol kg -1. Thiosulfate and SO 32- were not detected in <100 °C well waters and S 2O 32- was observed only at low concentrations (<1-8 μmol kg -1) in ˜200 °C well waters. In alkaline and neutral pH hot springs, S 2O 32- was present in significant concentrations sometimes corresponding to up to 23% of total dissolved sulfur (S TOT). In steam-heated acid-sulfate waters, S 2O 32- was not a significant sulfur species. The results demonstrate that S 2O 32- and SO 32- do not occur in the deeper parts of <150 °C hydrothermal systems and only in trace concentrations in ˜200-300 °C systems. Upon ascent to the surface and mixing with oxygenated ground and surface waters and/or dissolution of atmospheric O 2, S 2- is degassed and

  9. Chemical PM2.5 Speciation in Major Cities Worldwide

    NASA Astrophysics Data System (ADS)

    Snider, Graydon; Weagle, Crystal; Brauer, Michael; Cohen, Aaron; Gibson, Mark; Liu, Yang; Martins, Vanderlei; Rudich, Yinon; Martin, Randall

    2016-04-01

    We examined the chemical composition of fine particulate matter (PM2.5) across 13 globally dispersed urban locations (including Atlanta, Buenos Aires, Beijing, Manila, and Dhaka), as part of the Surface PARTiculate mAtter Network (SPARTAN). At each site sampling was conducted over 4 to 24 months for the years 2013 to 2015. Analysis of filter samples revealed that several PM2.5 chemical components varied by more than an order of magnitude between sites. Ammonium sulfate ranged from 2 μg m-3 (Ilorin) to 17 μg m-3 (Kanpur). Ammonium nitrate ranged from 0.2 μg m-3 (Atlanta) to 6.7 μg m-3 (Kanpur). Effective black carbon ranged from 0.4 μg m-3 (Atlanta) to 5 μg m-3 (Dhaka and Kanpur). The all-site mean values of major PM2.5 constituents were ammonium sulfate (20 ± 10 %), crustal material (12 ± 6.5%), effective black carbon (10 ± 7.4 %), ammonium nitrate (3.7 ± 2.5%), sea salt (2.2 ± 1.5%), trace element oxides (0.9 ± 0.7 %), water (7.2 ± 3.0%) and residue materials (44 ± 24%). Based on the evaluation with collocated studies we treated residue material as mostly organic. Major ions generally agreed well with previous studies at the same urban locations (e.g. sulfate fractions agreed within 4% for eight out of 11 collocation comparisons). Enhanced crustal material (CM) concentrations with high Zn:Al ratios at large cities (e.g. Hanoi, Dhaka, Manila) imply significant anthropogenic CM contributions that deserve more attention. Detailed chemical speciation also aided our characterization of site-specific PM2.5 water retention. The expected water contribution to aerosols was calculated via the hygroscopicity parameter for each filter. Hourly PM2.5 at specified relative humidity (35%) was inferred from nephelometer measurements of light scatter at ambient relative humidity and 9-day filter measurements of PM2.5 mass. Our PM2.5 estimates compared favorably with a beta attenuation monitor (BAM) at the nearby US embassy in Beijing, with a coefficient of variation

  10. Aluminum speciation in crustal fluids revisited

    NASA Astrophysics Data System (ADS)

    Tagirov, Boris; Schott, Jacques

    2001-11-01

    Aluminum speciation in crustal fluids is assessed by means of standard thermodynamic properties at 25°C, 1 bar, and revised Helgeson-Kirkham-Flowers (HKF) (Tanger J. C. IV and Helgeson H. C., "Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes," Am. J. Sci. 288, 19-98, 1988) equations of state parameters for aqueous species in the system Al-O-H-Na-Si-Cl-F-SO 4 derived from recent experimental data with the help of isocoulombic reactions and correlations among parameters in the HKF model. In acidic to neutral hydrothermal solutions and for fluorine concentrations in excess of 1 ppm, the fluoride complexes AlF n3-n dominate Al speciation at temperature (T) < 100°C, whereas the hydroxide fluoride species Al(OH) 2F (aq)0 and AlOHF 20(aq) are dominant up to ˜400°C. In high-temperature (T > 300°C) hydrothermal and metamorphic fluids, aluminum mobility is considerably enhanced by formation of NaAl(OH) 3F (aq)0 and NaAl(OH) 2F 20(aq) ion paired mixed species. NaAl(OH) 2F 20(aq) controls Al transport in granite-derived fluids and during greisenization. At alkaline pH, Al(OH) 4-, Al(OH) 3H 3SiO 4-, and the NaAl(OH) 40(aq) ion-pair are the dominant Al species. Thermodynamic calculations show that as a result of strong interactions of Al(aq) with NaOH, NaF, HF, and SiO 2(aq) present in crustal fluids, the concentrations of aluminum in equilibrium with Al-bearing minerals can be several orders of magnitude higher than those calculated assuming that only Al hydroxyde complexes are formed. Interactions with these components are likely to be responsible for aluminum mobility during hydrothermal and metamorphic reactions.

  11. Iodine speciation in rain, snow and aerosols

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Lai, S. C.; Petri, M.; Biester, H.; Hoffmann, T.

    2008-10-01

    Iodine oxides, such as iodate, should be the only thermodynamically stable sink species for iodine in the troposphere. However, field observations have increasingly found very little iodate and significant amounts of iodide and soluble organically bound iodine (SOI) in precipitation and aerosols. The aim of this study was to investigate iodine speciation, including the organic fraction, in rain, snow, and aerosols in an attempt to further clarify aqueous phase iodine chemistry. Diurnal aerosol samples were taken with a 5 stage cascade impactor and a virtual impactor (PM2.5) from the Mace Head research station, Ireland, during summer 2006. Rain was collected from Australia, New Zealand, Patagonia, Germany, Ireland, and Switzerland and snow was obtained from Greenland, Germany, Switzerland, and New Zealand. Aerosols were extracted from the filters with water and all samples were analysed for total soluble iodine (TSI) by inductively coupled plasma mass spectrometry (ICP-MS) and iodine speciation was determined by coupling an ion chromatography unit to the ICP-MS. The median concentration of TSI in aerosols from Mace Head was 222 pmol m-3 (summed over all impactor stages) of which the majority was associated with the SOI fraction (median day: 90±4%, night: 94±2% of total iodine). Iodide exhibited higher concentrations than iodate (median 6% vs. 1.2% of total iodine), and displayed significant enrichment during the day compared to the night. Interestingly, up to 5 additional, presumably anionic iodo-organic peaks were observed in all IC-ICP-MS chromatograms, composing up to 15% of the TSI. Soluble organically bound iodine was also the dominant fraction in all rain and snow samples, with lesser amounts of iodide and iodate (iodate was particularly low in snow). Two of the same unidentified peaks found in aerosols were also observed in precipitation from both Southern and Northern Hemispheres. This suggests that these species are transferred from the aerosols into

  12. Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae).

    PubMed

    Kelly, Laura J; Leitch, Andrew R; Clarkson, James J; Hunter, Robin B; Knapp, Sandra; Chase, Mark W

    2010-04-01

    Reticulate evolution may function both at the species level, through homoploid and polyploid hybridization, and below the species level, through inter and intragenic recombination. These processes represent challenges for the reconstruction of evolutionary relationships between species, because they cannot be represented adequately with bifurcating trees. We use data from low-copy nuclear genes to evaluate long-standing hypotheses of homoploid (interspecific) hybrid speciation in Nicotiana (Solanaceae) and reconstruct a complex series of reticulation events that have been important in the evolutionary history of this genus. Hybrid origins for three diploid species (Nicotiana glauca, N. linearis, and N. spegazzinii) are inferred on the basis of gene tree incongruence, evidence for interallelic recombination between likely parental alleles, and support for incompatible splits in Lento plots. Phylogenetic analysis of recombinant gene sequences illustrates that recombinants may be resolved with one of their progenitor lineages with a high posterior probability under Bayesian inference, and thus there is no indication of the conflict between phylogenetic signals that results from reticulation. Our results illustrate the importance of hybridization in shaping evolution in Nicotiana and also show that intragenic recombination may be relatively common. This finding demonstrates that it is important to investigate the possibility of recombination when aiming to detect hybrids from DNA-sequence data and reconstruct patterns of reticulate evolution between species.

  13. Statistical inference and string theory

    NASA Astrophysics Data System (ADS)

    Heckman, Jonathan J.

    2015-09-01

    In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.

  14. Selenium speciation in flue desulfurization residues.

    PubMed

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk.

  15. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  16. Speciated hydrocarbon emissions from small utility engines.

    PubMed

    Reisel, J R; Kellner, T A; Neusen, K F

    2000-04-01

    Partially speciated hydrocarbon (HC) emissions data from several small utility engines, as measured by a Fourier Transform Infrared analyzer, are presented. The engines considered have nominal horsepower ratings between 3.7 and 9.3 kW. Both side-valve and overhead-valve engines are studied, and four different fuels are used in the engines. The results indicate that the small HCs present in the exhaust tend to be in the form of either methane or unsaturated HCs. Other small alkanes, such as ethane and propane, are present in only relatively small concentrations. In terms of ozone formation potential, the HCs in the form of methane will lead to little ozone, but the distribution of the C2 and C3 species is not ideal from an ozone reduction stand-point. It is also found that the presence of oxygen in the fuels appears to lead to somewhat more complete combustion, although the effects are not large. Finally, the overhead-valve engines appear to have lower HC emissions than side-valve engines, which is primarily due to higher operating A/F ratios and the engine geometry.

  17. Ice sheets promote speciation in boreal birds.

    PubMed

    Weir, Jason T; Schluter, Dolph

    2004-09-22

    The premise that Pleistocene ice ages played an important role in generating present-day species diversity has been challenged by genetic data indicating that most of the youngest terrestrial species on Earth coalesced long before major glacial advances. However, study has been biased towards faunas distributed at low latitudes that were not directly fragmented by advancing ice sheets. Using mitochondrial sequence divergence and a molecular clock, we compared the coalescence times of pairs of avian species belonging to superspecies complexes from the high-latitude boreal forest with those of sub-boreal and tropical avifaunas of the New World. Remarkably, all coalescence events in boreal superspecies date to the Pleistocene, providing direct evidence that speciation was commonly initiated during recent glacial periods. A pattern of endemism in boreal superspecies plausibly links the timing of divergence to the fragmentation of the boreal forest by ice sheets during the Mid- and Late Pleistocene. In contrast to the boreal superspecies, only 56% of sub-boreal and 46% of tropical superspecies members coalesced during the Pleistocene, suggesting that avifaunas directly fragmented by ice sheets experienced rapid rates of diversification, whereas those distributed farther south were affected to a lesser extent. One explanation for the absence of pre-Pleistocene superspecies in boreal avifaunas is that strong selection pressures operated in boreal refugia, causing superspecies members to achieve ecological differentiation at an accelerated rate.

  18. Ice sheets promote speciation in boreal birds.

    PubMed Central

    Weir, Jason T.; Schluter, Dolph

    2004-01-01

    The premise that Pleistocene ice ages played an important role in generating present-day species diversity has been challenged by genetic data indicating that most of the youngest terrestrial species on Earth coalesced long before major glacial advances. However, study has been biased towards faunas distributed at low latitudes that were not directly fragmented by advancing ice sheets. Using mitochondrial sequence divergence and a molecular clock, we compared the coalescence times of pairs of avian species belonging to superspecies complexes from the high-latitude boreal forest with those of sub-boreal and tropical avifaunas of the New World. Remarkably, all coalescence events in boreal superspecies date to the Pleistocene, providing direct evidence that speciation was commonly initiated during recent glacial periods. A pattern of endemism in boreal superspecies plausibly links the timing of divergence to the fragmentation of the boreal forest by ice sheets during the Mid- and Late Pleistocene. In contrast to the boreal superspecies, only 56% of sub-boreal and 46% of tropical superspecies members coalesced during the Pleistocene, suggesting that avifaunas directly fragmented by ice sheets experienced rapid rates of diversification, whereas those distributed farther south were affected to a lesser extent. One explanation for the absence of pre-Pleistocene superspecies in boreal avifaunas is that strong selection pressures operated in boreal refugia, causing superspecies members to achieve ecological differentiation at an accelerated rate. PMID:15347509

  19. Coevolution, local adaptation and ecological speciation.

    PubMed

    Thompson, John N

    2016-11-01

    Coevolution is one of the major processes organizing the earth's biodiversity, but it remains unclear when and how it may generate species diversity. The study by Parchman et al. () in this issue of Molecular Ecology provides the clearest evidence to date that divergent local adaptation in a coevolving interaction may lead to speciation on one side of an interaction but not necessarily on the other side. Red crossbills in North America have diversified into ecotypes that specialize on different conifer species, use different calls and vary in the extent to which they are nomadic or sedentary. This new study evaluated genomic divergence among nine crossbill ecotypes. The authors found low overall genomic divergence among many of the ecotypes, but the sedentary South Hills crossbills, which are specialized to eat the seeds of a unique population of lodgepole pines, showed substantial divergence from other crossbills at a small number of genomic regions. These results corroborate past studies showing local coadaptation of the morphological traits of South Hills crossbills and lodgepole pines, and premating isolation of the South Hills crossbills from other populations. Together, the past and new results suggest that local coevolution with lodgepole pines has led to reduced gene flow between South Hills crossbills and other crossbills. © 2016 John Wiley & Sons Ltd.

  20. Speciation and phylogeography of giant petrels Macronectes.

    PubMed

    Techow, N M S M; O'Ryan, C; Phillips, R A; Gales, R; Marin, M; Patterson-Fraser, D; Quintana, F; Ritz, M S; Thompson, D R; Wanless, R M; Weimerskirch, H; Ryan, P G

    2010-02-01

    We examine global phylogeography of the two forms of giant petrel Macronectes spp. Although previously considered to be a single taxon, and despite debate over the status of some populations and the existence of minimal genetic data (one mitochondrial cytochrome b sequence per form), the current consensus based on morphology is that there are two species, Northern Giant Petrel M. halli and Southern Giant Petrel M. giganteus. This study examined genetic variation at cytochrome b as well as six microsatellite loci in giant petrels from 22 islands, representing most island groups at which the two species breed. Both markers support separate species status, although sequence divergence in cytochrome b was only 0.42% (corrected). Divergence was estimated to have occurred approximately 0.2mya, but with some colonies apparently separated for longer (up to 0.5 my). Three clades were found within giant petrels, which separated approximately 0.7mya, with the Southern Giant Petrel paraphyletic to a monophyletic Northern Giant Petrel. There was evidence of past fragmentation during the Pleistocene, with subsequent secondary contact within Southern Giant Petrels. The analysis also suggested a period of past population expansion that corresponded roughly to the timing of speciation and the separation of an ancestral giant petrel population from the fulmar Fulmarus clade. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Geographically multifarious phenotypic divergence during speciation

    PubMed Central

    Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L

    2013-01-01

    Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669

  2. The biological speciation and toxicokinetics of aluminum.

    PubMed Central

    DeVoto, E; Yokel, R A

    1994-01-01

    This review discusses recent literature on the chemical and physiological factors that influence the absorption, distribution, and excretion of aluminum in mammals, with particular regard to gastrointestinal absorption and speciation in plasma. Humans encounter aluminum, a ubiquitous yet highly insoluble element in most forms, in foods, drinking water, and pharmaceuticals. Exposure also occurs by inhalation of dust and aerosols, particularly in occupational settings. Absorption from the gut depends largely on pH and the presence of complexing ligands, particularly carboxylic acids, with which the metal can form absorbable neutral aluminum species. Uremic animals and humans experience higher than normal body burdens of aluminum despite increased urinary clearance of the metal. In plasma, 80-90% of aluminum binds to transferrin, an iron-transport protein for which receptors exist in many tissue. The remaining fraction of plasma aluminum takes the form of small-molecule hydroxy species and small complexes with carboxylic acids, phosphate, and, to a much lesser degree, amino acids. Most of these species have not been observed in vivo but are predicted from equilibrium models derived from potentiometric methods and NMR investigations. These models predict that the major small-molecule aluminum species under plasma conditions are charged and hence unavailable for uptake into tissues. PMID:9738208

  3. Investigating syn- vs. post-eruption hydration mechanisms of the 2012 Havre submarine explosive eruption: Water speciation analysis of pumiceous rhyolitic glass

    NASA Astrophysics Data System (ADS)

    Mitchell, S. J.; McIntosh, I. M.; Houghton, B. F.; Shea, T.; Carey, R.

    2016-12-01

    Volatiles preserved in volcanic glass can record the quenching, fragmentation and solubility conditions during an explosive eruption. The VEI-5 2012 eruption of Havre volcano, which produced >1.5 km3 of rhyolite, provides exciting new insight into deep-submarine explosive eruptions. With no direct observations of the eruption at the 900 mbsl vent, the analysis and interpretation of volatile concentrations and speciation within pyroclasts is essential to constraining the eruption style and quenching mechanisms in this understudied environment. We present here the first detailed water speciation data for a large submarine explosive eruption. Water concentrations were measured in pyroclasts from known deposit localities across the Havre stratigraphic succession after ROV collection in 2015. Variations in total water concentration (H2OT) within pyroclasts were determined using high spatial resolution (1 - 2 µm) micro-Raman spectroscopy and water speciation (molecular water (H2Om) and OH) concentrations were measured using Fourier-transform infrared spectroscopy. H2OT concentrations are consistent between Raman and FTIR analysis, ranging from 0.1 - 1.5 wt % H2OT over different stratigraphic units. Comparison of water speciation data with speciation models suggests the Havre pyroclasts experienced secondary, non-magmatic hydration. Since OH is unaltered by secondary hydration, OH concentrations aid in the interpretation of quench depths and inferring of eruption mechanisms. The variability of excess H2Om across units suggests a more complex glass-hydration mechanism during the eruption instead of exclusively post-eruption, low-temperature secondary rehydration. The young sample ages are inconsistent with our current understanding of low-temperature H2O-diffusivity timescales, implying faster secondary rehydration in a higher-temperature submarine setting. We here explore potentially novel syn-eruptive, higher-temperature hydration mechanisms for deep-submarine pumice.

  4. Speciation of triphenyltin compounds using Moessbauer spectroscopy. Final report

    SciTech Connect

    Eng, G.

    1993-11-01

    Organotin compounds have been used widely as the active agent in antifouling marine paints. Organotin compounds, i.e., tributyltin compounds (TBTs) and triphenyltin compounds (TPTs) have been found to be effective in preventing the unwanted attachment and development of aquatic organisms such as barnacles, sea grass and hydroids on ships, hulls and underwater surfaces. However, these organotin compounds have been found to be toxic to non-targeted marine species as well. While speciation of tributyltins in environmental water systems has received much attention in the literature, little information concerning the speciation of triphenyltins is found. Therefore, it would be important to study the fate of TPTs in the aquatic environment, particularly in sediments, both oxic and anoxic, in order to obtain speciation data. Since marine estuaries consist of areas with varying salinity and pH, it is important to investigate the speciation of these compounds under varying salinity conditions. In addition, evaluation of the speciation of these compounds as a function of pH would give an insight into how these compounds might interact with sediments in waters where industrial chemical run-offs can affect the pH of the estuarine environment. Finally, since organotins are present in both salt and fresh water environments, the speciation of the organotins in seawater and distilled water should also be studied. Moessbauer spectroscopy would provide a preferred method to study the speciation of triphenyltins as they leach from marine paints into the aquatic environment. Compounds used in this study are those triphenyltin compounds that are commonly incorporated into marine paints such as triphenyltin fluoride (TPTF), triphenyltin acetate (TPTOAc), triphenyltin chloride (TPTCl) and triphenyltin hydroxide (TPTOH).

  5. Diversification in North American arid lands: niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra.

    PubMed

    Loera, Israel; Sosa, Victoria; Ickert-Bond, Stefanie M

    2012-11-01

    A lineage of 12 arid land shrubby species in the gymnosperm genus Ephedra (Gnetales) from North America is used to evaluate the influence of climate on speciation. With a long evolutionary history, and a well documented fossil record this lineage is an ideal model for understanding the process of speciation under a niche conservatism scenario. Using seven DNA molecular markers, Bayesian inference is carried out to uncover sister species and to estimate time of divergence of the lineages. Ecological niche models are generated for four parapatric and sympatric sister species and two analyses of niche evolution are performed, one based on ecological niche models and another using raw data and multivariate analysis. As previous analyses suggest, the diversification of North America Ephedra species may be the result of a recent secondary radiation. Both parapatric and sympatric species diverged mostly in a scenario of climatic niche conservatism. However, we also found strong evidence for niche divergence for one of the sister species pairs (E. californica-E. trifurca). Moreover, the multivariate analysis found environmental differences for some variables between sister species. The estimated divergence time of three pairs of sister species distributed in southwestern North America (E. cutleri-E. aspera, E. californica-E. trifurca and E. torreyana-E. viridis) is inferred to have occurred in the Late Miocene to Pliocene and for the sister species pair E. antisyphilitica-E. coryi distributed in the southern United States and northeastern Mexico, it was inferred from the Pliocene to Pleistocene. The orogenetic and climatic changes documented for these regions related to expansion of arid lands, may have contributed to the diversification in North American Ephedra, rather than adaptations to new climatic conditions.

  6. [Influence of Dissimilatory Iron Reduction on the Speciation and Bioavailability of Heavy Metals in Soil].

    PubMed

    Si, You-bin; Wang, Juan

    2015-09-01

    Fe(III) dissimilatory reduction by microbes is an important process of producing energy in the oxidation of organic compounds under anaerobic condition with Fe(III) as the terminal electron acceptor and Fe(II) as the reduction product. This process is of great significance in element biogeochemical cycle. Iron respiration has been described as one of the most ancient forms of microbial metabolism on the earth, which is bound up with material cycle in water, soil and sediments. Dissimilatory iron reduction plays important roles in heavy metal form transformation and the remediation of heavy metal and radionuclide contaminated soils. In this paper, we summarized the research progress of iron reduction in the natural environment, and discussed the influence and the mechanism of dissimilatory iron reduction on the speciation and bioavailability of heavy metals in soil. The effects of dissimilatory iron reduction on the speciation of heavy metals may be attributed to oxidation and reduction, methytation and immobilization of heavy metals in relation to their bioavailability in soils. The mechanisms of Fe(III) dissimilatory reduction on heavy metal form transformation contain biological and chemical interactions, but the mode of interaction remains to be further investigated.

  7. Changing Hafnium Speciation in Aqueous Sulfate Solutions: A High-Energy X-ray Scattering Study

    SciTech Connect

    Kalaji, Ali; Skanthakumar, S.; Kanatzidis, Mercouri G.; Mitchell, John F.; Soderholm, L.

    2014-06-16

    The relationship of solution speciation and the structures of corresponding precipitates is examined for an aqueous Hf4+ . sulfate series. High-energy X-ray scattering (HEXS) and Raman spectroscopy data are used to probe atomic correlations in solutions. Hf4+ in acidic perchlorate solution shows no evidence of a mononuclear metal species but instead has a peak in the pair-distribution function (PDF), generated from the HEXS data, at 3.55 angstrom, indicating Hf4+- Hf4+ solution correlations. The peak intensity is consistent with clusters that are, on average, larger than the tetramic unit [M-4(OH)(8)(H2O)(16)](8+) usually attributed to Zr4+ and Hf4+ solution speciation under these conditions. Addition of sulfate results in a breakup of hydroxo-bridged oligomers into sulfate-capped dimers and, for higher concentrations, Hf-sulfate monomers. The bidentate coordination mode of sulfate dominates the dissolved precursors, although it is not found in the structure of the final crystallized product, which instead is comprised of bridging-bidentate sulfate ligation. Neither the PDF patterns nor the Raman spectra show any evidence of the larger oligomers, such as the octadecameric metal clusters, found in similar Zr4+ solutions. The oligomeric units found in solution provide insights into possible assembly routes for crystallization. In addition to expanding our understanding of synthesis science this study also reveals differences in the aqueous chemistries between Hf and Zr, two elements with ostensibly very similar chemical behavior.

  8. Bacterial Leaf Symbiosis in Angiosperms: Host Specificity without Co-Speciation

    PubMed Central

    Lemaire, Benny; Vandamme, Peter; Merckx, Vincent; Smets, Erik; Dessein, Steven

    2011-01-01

    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5–23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis. PMID:21915326

  9. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

    USGS Publications Warehouse

    Nakazato, Takuya; Rieseberg, Loren H.; Wood, Troy E.

    2013-01-01

    One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,’ all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally.

  10. How sympatric is speciation in the Howea palms of Lord Howe Island?

    PubMed

    Babik, Wiesław; Butlin, Roger K; Baker, William J; Papadopulos, Alexander S T; Boulesteix, Matthieu; Anstett, Marie-Charlotte; Lexer, Christian; Hutton, Ian; Savolainen, Vincent

    2009-09-01

    The two species of the palm genus Howea (Arecaceae) from Lord Howe Island, a minute volcanic island in the Tasman Sea, are now regarded as one of the most compelling examples of sympatric speciation, although this view is still disputed by some authors. Population genetic and ecological data are necessary to provide a more coherent and comprehensive understanding of this emerging model system. Here, we analyse data on abundance, juvenile recruitment, pollination mode and genetic variation and structure in both species. We find that Howea forsteriana is less abundant than Howea belmoreana. The genetic data based on amplified fragment length polymorphisms markers indicate similar levels of variation in the two species, despite the estimated census population size of H. belmoreana being three times larger than that of H. forsteriana. Genetic structure within species is low although some weak isolation by distance is detectable. Gene flow between species appears to be extremely limited and restricted to early-generation hybrids - only three admixed individuals, classified as F2s or first generation backcrosses to a parental species, were found among sampled palms. We conclude that speciation in Howea was indeed sympatric, although under certain strict definitions it may be called parapatric.

  11. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae)

    PubMed Central

    Nakazato, T; Rieseberg, L H; Wood, T E

    2013-01-01

    One of the most powerful drivers of speciation in plants is pollinator-mediated disruptive selection, which leads to the divergence of floral traits adapted to the morphology and behavior of different pollinators. Despite the widespread importance of this speciation mechanism, its genetic basis has been explored in only a few groups. Here, we characterize the genetic basis of pollinator-mediated divergence of two species in genus Ipomopsis, I. guttata and I. tenuifolia, using quantitative trait locus (QTL) analyses of floral traits and other variable phenotypes. We detected one to six QTLs per trait, with each QTL generally explaining small to modest amounts of the phenotypic variance of a backcross hybrid population. In contrast, flowering time and anthocyanin abundance (a metric of color variation) were controlled by a few QTLs of relatively large effect. QTLs were strongly clustered within linkage groups, with 26 of 37 QTLs localized to six marker-interval ‘hotspots,' all of which harbored pleiotropic QTLs. In contrast to other studies that have examined the genetic basis of pollinator shifts, our results indicate that, in general, mutations of small to modest effect on phenotype were involved. Thus, the evolutionary transition between the distinct pollination modes of I. guttata and I. tenuifolia likely proceeded incrementally, rather than saltationally. PMID:23652565

  12. Bacterial leaf symbiosis in angiosperms: host specificity without co-speciation.

    PubMed

    Lemaire, Benny; Vandamme, Peter; Merckx, Vincent; Smets, Erik; Dessein, Steven

    2011-01-01

    Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5-23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis.

  13. Locative inferences in medical texts.

    PubMed

    Mayer, P S; Bailey, G H; Mayer, R J; Hillis, A; Dvoracek, J E

    1987-06-01

    Medical research relies on epidemiological studies conducted on a large set of clinical records that have been collected from physicians recording individual patient observations. These clinical records are recorded for the purpose of individual care of the patient with little consideration for their use by a biostatistician interested in studying a disease over a large population. Natural language processing of clinical records for epidemiological studies must deal with temporal, locative, and conceptual issues. This makes text understanding and data extraction of clinical records an excellent area for applied research. While much has been done in making temporal or conceptual inferences in medical texts, parallel work in locative inferences has not been done. This paper examines the locative inferences as well as the integration of temporal, locative, and conceptual issues in the clinical record understanding domain by presenting an application that utilizes two key concepts in its parsing strategy--a knowledge-based parsing strategy and a minimal lexicon.

  14. Divergence is focused on few genomic regions early in speciation: incipient speciation of sunflower ecotypes.

    PubMed

    Andrew, Rose L; Rieseberg, Loren H

    2013-09-01

    Early in speciation, as populations undergo the transition from local adaptation to incipient species, is when a number of transient, but potentially important, processes appear to be most easily detected. These include signatures of selective sweeps that can point to asymmetry in selection between habitats, divergence hitchhiking, and associations of adaptive genes with environments. In a genomic comparison of ecotypes of the prairie sunflower, Helianthus petiolaris, occurring at Great Sand Dunes National Park and Preserve (Colorado), we found that selective sweeps were mainly restricted to the dune ecotype and that there was variation across the genome in whether proximity to the nondune population constrained or promoted divergence. The major regions of divergence were few and large between ecotypes, in contrast with an interspecific comparison between H. petiolaris and a sympatric congener, Helianthus annuus. In general, the large regions of divergence observed in the ecotypic comparison swamped locus-specific associations with environmental variables. In both comparisons, regions of high divergence occurred in portions of the genetic map with high marker density, probably reflecting regions of low recombination. The difference in genomic distributions of highly divergent regions between ecotypic and interspecific comparisons highlights the value of studies spanning the spectrum of speciation in related taxa.

  15. Did pollination shifts drive diversification in southern African Gladiolus? Evaluating the model of pollinator-driven speciation.

    PubMed

    Valente, Luis M; Manning, John C; Goldblatt, Peter; Vargas, Pablo

    2012-07-01

    The pollinator-driven ecological speciation model has frequently been invoked to explain plant richness in biodiversity hotspots. Here, by focusing on Gladiolus (260 species), a flagship example of a clade with diverse pollination biology, we test the hypothesis that high species diversity in southern Africa, one of the world's most floristically rich regions, has primarily been driven by ecological shifts in pollination systems. We use phylogenetic methods to estimate rates of transition between the seven highly specialized pollination strategies in Gladiolus. We find that pollination systems have evolved multiple times and that some pollination strategies arose by a variety of evolutionary pathways. Pollination shifts account for up to one-third of all lineage splitting events in the genus, providing partial support for the pollinator-driven speciation model. Transitions from the ancestral pollination mode to derived systems have also resulted in increased rates of diversification, suggesting that certain pollination systems may speed up speciation processes, independently of pollination shifts per se. This study suggests that frequent pollination shifts have played a role in driving high phenotypic and species diversity but indicates that additional factors need to be invoked to account for the spectacular diversification in southern African Gladiolus.

  16. How does ecological opportunity influence rates of speciation, extinction, and morphological diversification in New World ratsnakes (tribe Lampropeltini)?

    PubMed

    Burbrink, Frank T; Pyron, R Alexander

    2010-04-01

    Ecological adaptive radiation theory predicts an increase in both morphological and specific diversification when organisms colonize new environments. Accordingly, bursts of morphological diversification, characterized by low within-subclade morphological disparity, may be associated with these increases in speciation rates. Conversely, increasing species density, reduction in available habitat, or increasing extinction rates are expected to cause rates of diversification to decline. We test these hypotheses by examining the tempo and mode of speciation in the lampropeltinine snakes, a morphologically variable group that colonized the New World approximately 24 million years ago and radiated throughout the Miocene. We show that specific diversification increased early in the history of the group, and that most morphological variation is partitioned among, rather than within subclades. These patterns provide further evidence for the hypothesis that morphological variation tends to be strongly partitioned among lineages when clades undergo early bursts of species diversification. A reduction in speciation rates may be indicative of density dependent effects due to a saturation of available ecological opportunity, rather than increases in extinction rates at the onset of the Pleistocene/Pliocene glacial cycles. This evidence runs counter to the general Pleistocene species pump model.

  17. Perception, illusions and Bayesian inference.

    PubMed

    Nour, Matthew M; Nour, Joseph M

    2015-01-01

    Descriptive psychopathology makes a distinction between veridical perception and illusory perception. In both cases a perception is tied to a sensory stimulus, but in illusions the perception is of a false object. This article re-examines this distinction in light of new work in theoretical and computational neurobiology, which views all perception as a form of Bayesian statistical inference that combines sensory signals with prior expectations. Bayesian perceptual inference can solve the 'inverse optics' problem of veridical perception and provides a biologically plausible account of a number of illusory phenomena, suggesting that veridical and illusory perceptions are generated by precisely the same inferential mechanisms.

  18. AD-LIBS: inferring ancestry across hybrid genomes using low-coverage sequence data.

    PubMed

    Schaefer, Nathan K; Shapiro, Beth; Green, Richard E

    2017-04-04

    Inferring the ancestry of each region of admixed individuals' genomes is useful in studies ranging from disease gene mapping to speciation genetics. Current methods require high-coverage genotype data and phased reference panels, and are therefore inappropriate for many data sets. We present a software application, AD-LIBS, that uses a hidden Markov model to infer ancestry across hybrid genomes without requiring variant calling or phasing. This approach is useful for non-model organisms and in cases of low-coverage data, such as ancient DNA. We demonstrate the utility of AD-LIBS with synthetic data. We then use AD-LIBS to infer ancestry in two published data sets: European human genomes with Neanderthal ancestry and brown bear genomes with polar bear ancestry. AD-LIBS correctly infers 87-91% of ancestry in simulations and produces ancestry maps that agree with published results and global ancestry estimates in humans. In brown bears, we find more polar bear ancestry than has been published previously, using both AD-LIBS and an existing software application for local ancestry inference, HAPMIX. We validate AD-LIBS polar bear ancestry maps by recovering a geographic signal within bears that mirrors what is seen in SNP data. Finally, we demonstrate that AD-LIBS is more effective than HAPMIX at inferring ancestry when preexisting phased reference data are unavailable and genomes are sequenced to low coverage. AD-LIBS is an effective tool for ancestry inference that can be used even when few individuals are available for comparison or when genomes are sequenced to low coverage. AD-LIBS is therefore likely to be useful in studies of non-model or ancient organisms that lack large amounts of genomic DNA. AD-LIBS can therefore expand the range of studies in which admixture mapping is a viable tool.

  19. Sexual selection drives speciation in an Amazonian frog

    USGS Publications Warehouse

    Boul, K.E.; Funk, W.C.; Darst, C.R.; Cannatella, D.C.; Ryan, M.J.

    2007-01-01

    One proposed mechanism of speciation is divergent sexual selection, whereby divergence in female preferences and male signals results in behavioural isolation. Despite the appeal of this hypothesis, evidence for it remains inconclusive. Here, we present several lines of evidence that sexual selection is driving behavioural isolation and speciation among populations of an Amazonian frog (Physalaemus petersi). First, sexual selection has promoted divergence in male mating calls and female preferences for calls between neighbouring populations, resulting in strong behavioural isolation. Second, phylogenetic analysis indicates that populations have become fixed for alternative call types several times throughout the species' range, and coalescent analysis rejects genetic drift as a cause for this pattern, suggesting that this divergence is due to selection. Finally, gene flow estimated with microsatellite loci is an average of 30 times lower between populations with different call types than between populations separated by a similar geographical distance with the same call type, demonstrating genetic divergence and incipient speciation. Taken together, these data provide strong evidence that sexual selection is driving behavioural isolation and speciation, supporting sexual selection as a cause for speciation in the wild. ?? 2006 The Royal Society.

  20. Bromine speciation in hydrous haplogranitic melts up to 7 GPa

    NASA Astrophysics Data System (ADS)

    Cochain, B.; de Grouchy, C.; Crepisson, C.; Kantor, I.; Irifune, T.; Sanloup, C.

    2013-12-01

    Halogens are minor volatiles in the Earth's mantle and crust, but they have significant and specific influences on magmatic and degassing processes. They also provide insights about subsurface magma movement and eruption likelihood in subduction-related volcanism. Their speciation in silicate melts affects volatile exsolution, rheology, and the thermodynamic properties of the melts but still remains relatively unknown. A few studies have explored halogen speciation at room conditions, i.e. in glasses but no firm conclusion has yet been reached. Furthermore, halogen speciation remains unexplored at high pressures and temperatures. In this work we investigate the speciation of Br in subduction-related melt (hydrous haplogranite melt) up to 1200°C and 7 GPa using X-ray absorption spectroscopy (XANES and EXAFS) at the Br K-edge. High P-T conditions were generated by the Paris-Edinburgh press. The use of nanocrystalline diamond capsules enabled us to avoid glitches in the EXAFS spectra. The results provide valuable information on Br speciation and its evolution with pressure. It gives insights into solubility mechanisms for halogens in magmas at depth and on their degassing from the melt. In addition, we were able to identify quench effects on the atomic environment of Br by comparison of high P-T in-situ spectra and ex-situ spectra recorded on quenched samples.

  1. Pleistocene phylogeographic effects on avian populations and the speciation process.

    PubMed Central

    Avise, J C; Walker, D

    1998-01-01

    Pleistocene biogeographic events have traditionally been ascribed a major role in promoting speciations and in sculpting the present-day diversity and distributions of vertebrate taxa. However, this paradigm has recently come under challenge from a review of interspecific mtDNA genetic distances in birds: most sister-species separations dated to the Pliocene. Here we summarize the literature on intraspecific mtDNA phylogeographic patterns in birds and reinterpret the molecular evidence bearing on Pleistocene influences. At least 37 of the 63 avian species surveyed (59%) are sundered into recognizable phylogeographic units, and 28 of these separations (76%) trace to the Pleistocene. Furthermore, use of phylogroup separation times within species as minimum estimates of 'speciation durations' also indicates that many protracted speciations, considered individually, probably extended through time from Pliocene origins to Pleistocene completions. When avian speciation is viewed properly as an extended temporal process rather than as a point event, Pleistocene conditions appear to have played an active role both in initiating major phylogeographic separations within species, and in completing speciations that had been inaugurated earlier. Whether the Pleistocene was exceptional in these regards compared with other geological times remains to be determined. PMID:9569664

  2. Speciation with gene flow on Lord Howe Island

    PubMed Central

    Papadopulos, Alexander S. T.; Baker, William J.; Crayn, Darren; Butlin, Roger K.; Kynast, Ralf G.; Hutton, Ian; Savolainen, Vincent

    2011-01-01

    Understanding the processes underlying the origin of species is a fundamental goal of biology. It is widely accepted that speciation requires an interruption of gene flow between populations: ongoing gene exchange is considered a major hindrance to population divergence and, ultimately, to the evolution of new species. Where a geographic barrier to reproductive isolation is lacking, a biological mechanism for speciation is required to counterbalance the homogenizing effect of gene flow. Speciation with initially strong gene flow is thought to be extremely rare, and few convincing empirical examples have been published. However, using phylogenetic, karyological, and ecological data for the flora of a minute oceanic island (Lord Howe Island, LHI), we demonstrate that speciation with gene flow may, in fact, be frequent in some instances and could account for one in five of the endemic plant species of LHI. We present 11 potential instances of species divergence with gene flow, including an in situ radiation of five species of Coprosma (Rubiaceae, the coffee family). These results, together with the speciation of Howea palms on LHI, challenge current views on the origin of species diversity. PMID:21730151

  3. Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes.

    PubMed

    Robertson, D Ross; Karg, Frances; Leao de Moura, Rodrigo; Victor, Benjamin C; Bernardi, Giacomo

    2006-09-01

    Relationships based on mtDNA and nDNA sequences were used to assess effects of two major geographic barriers (the >30 myo Atlantic ocean and the approximately 11 myo Amazon-Orinoco outflow) on speciation among Atlantic parrotfishes (Sparisoma and Nicholsina). Allopatric distributions of sister taxa implicate isolating actions of both barriers in all recent speciation in these fishes, with no clear indications that any speciation resulted from other mechanisms. Molecular clock estimates of the timing of lineage splits indicate that both barriers acted by limiting dispersal well after they formed, although the Amazon barrier also may have been a vicariance agent. Fluctuations in sealevel, climate, and ocean-current dynamics over the past approximately 10 my likely produced marked variation in the effectiveness of both barriers, but particularly the Amazon barrier, allowing intermittent dispersal leading to establishment and allopatric speciation. A dynamic Amazon barrier represents a major engine of West Atlantic faunal enrichment that has repeatedly facilitated bidirectional dispersal, allopatric speciation, and remixing of the Caribbean and Brazilian faunas.

  4. On the origin of species by sympatric speciation

    NASA Astrophysics Data System (ADS)

    Dieckmann, Ulf; Doebeli, Michael

    1999-07-01

    Understanding speciation is a fundamental biological problem. It is believed that many species originated through allopatric divergence, where new species arise from geographically isolated populations of the same ancestral species. In contrast, the possibility of sympatric speciation (in which new species arise without geographical isolation) has often been dismissed, partly because of theoretical difficulties,. Most previous models analysing sympatric speciation concentrated on particular aspects of the problem while neglecting others. Here we present a model that integrates a novel combination of different features and show that sympatric speciation is a likely outcome of competition for resources. We use multilocus genetics to describe sexual reproduction in an individual-based model, and we consider the evolution of assortative mating (where individuals mate preferentially with like individuals) depending either on an ecological character affecting resource use or on a selectively neutral marker trait. In both cases, evolution of assortative mating often leads to reproductive isolation between ecologically diverging subpopulations. When assortative mating depends on a marker trait, and is therefore not directly linked to resource competition, speciation occurs when genetic drift breaks the linkage equilibrium between the marker and the ecological trait. Our theory conforms well with mounting empirical evidence for the sympatric origin of many species.

  5. Extreme changes to gene expression associated with homoploid hybrid speciation.

    PubMed

    Hegarty, Matthew J; Barker, Gary L; Brennan, Adrian C; Edwards, Keith J; Abbott, Richard J; Hiscock, Simon J

    2009-03-01

    Hybridization is an important cause of abrupt speciation. Hybrid speciation without a change in ploidy (homoploid hybrid speciation) is well-established in plants but has also been reported in animals and fungi. A notable example of recent homoploid hybrid speciation is Senecio squalidus (Oxford ragwort), which originated in the UK in the 18th Century following introduction of hybrid material from a hybrid zone between S. chrysanthemifolius and S. aethnensis on Mount Etna, Sicily. To investigate genetic divergence between these taxa, we used complementary DNA microarrays to compare patterns of floral gene expression. These analyses revealed major differences in gene expression between the parent species and wild and resynthesized S. squalidus. Comparisons of gene expression between S. aethnensis, S. chrysanthemifolius and natural S. squalidus identified genes potentially involved in local environmental adaptation. The analysis also revealed non-additive patterns of gene expression in the hybrid relative to its progenitors. These expression changes were more dramatic and widespread in resynthesized hybrids than in natural S. squalidus, suggesting that a unique expression pattern may have been fixed during the allopatric divergence of British S. squalidus. We speculate that hybridization-induced gene-expression change may provide an immediate source of novel phenotypic variation upon which selection can act to facilitate homoploid hybrid speciation in plants.

  6. A speciation gene for left-right reversal in snails results in anti-predator adaptation.

    PubMed

    Hoso, Masaki; Kameda, Yuichi; Wu, Shu-Ping; Asami, Takahiro; Kato, Makoto; Hori, Michio

    2010-01-01

    How speciation genes can spread in a population is poorly understood. In land snails, a single gene for left-right reversal could be responsible for instant speciation, because dextral and sinistral snails have difficulty in mating. However, the traditional two-locus speciation model predicts that a mating disadvantage for the reversal should counteract this speciation. In this study, we show that specialized snake predation of the dextral majority drives prey speciation by reversal. Our experiments demonstrate that sinistral Satsuma snails (Stylommatophora: Camaenidae) survive predation by Pareas iwasakii (Colubroidea: Pareatidae). Worldwide biogeography reveals that stylommatophoran snail speciation by reversal has been accelerated in the range of pareatid snakes, especially in snails that gain stronger anti-snake defense and reproductive isolation from dextrals by sinistrality. Molecular phylogeny of Satsuma snails further provides intriguing evidence of repetitive speciation under snake predation. Our study demonstrates that a speciation gene can be fixed in populations by positive pleiotropic effects on survival.

  7. Improving Explanatory Inferences from Assessments

    ERIC Educational Resources Information Center

    Diakow, Ronli Phyllis

    2013-01-01

    This dissertation comprises three papers that propose, discuss, and illustrate models to make improved inferences about research questions regarding student achievement in education. Addressing the types of questions common in educational research today requires three different "extensions" to traditional educational assessment: (1)…

  8. Perceptual Inference and Autistic Traits

    ERIC Educational Resources Information Center

    Skewes, Joshua C; Jegindø, Else-Marie; Gebauer, Line

    2015-01-01

    Autistic people are better at perceiving details. Major theories explain this in terms of bottom-up sensory mechanisms or in terms of top-down cognitive biases. Recently, it has become possible to link these theories within a common framework. This framework assumes that perception is implicit neural inference, combining sensory evidence with…

  9. The mechanisms of temporal inference

    NASA Technical Reports Server (NTRS)

    Fox, B. R.; Green, S. R.

    1987-01-01

    The properties of a temporal language are determined by its constituent elements: the temporal objects which it can represent, the attributes of those objects, the relationships between them, the axioms which define the default relationships, and the rules which define the statements that can be formulated. The methods of inference which can be applied to a temporal language are derived in part from a small number of axioms which define the meaning of equality and order and how those relationships can be propagated. More complex inferences involve detailed analysis of the stated relationships. Perhaps the most challenging area of temporal inference is reasoning over disjunctive temporal constraints. Simple forms of disjunction do not sufficiently increase the expressive power of a language while unrestricted use of disjunction makes the analysis NP-hard. In many cases a set of disjunctive constraints can be converted to disjunctive normal form and familiar methods of inference can be applied to the conjunctive sub-expressions. This process itself is NP-hard but it is made more tractable by careful expansion of a tree-structured search space.

  10. Word Learning as Bayesian Inference

    ERIC Educational Resources Information Center

    Xu, Fei; Tenenbaum, Joshua B.

    2007-01-01

    The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…

  11. Science Shorts: Observation versus Inference

    ERIC Educational Resources Information Center

    Leager, Craig R.

    2008-01-01

    When you observe something, how do you know for sure what you are seeing, feeling, smelling, or hearing? Asking students to think critically about their encounters with the natural world will help to strengthen their understanding and application of the science-process skills of observation and inference. In the following lesson, students make…

  12. Word Learning as Bayesian Inference

    ERIC Educational Resources Information Center

    Xu, Fei; Tenenbaum, Joshua B.

    2007-01-01

    The authors present a Bayesian framework for understanding how adults and children learn the meanings of words. The theory explains how learners can generalize meaningfully from just one or a few positive examples of a novel word's referents, by making rational inductive inferences that integrate prior knowledge about plausible word meanings with…

  13. Starfish: Robust spectroscopic inference tools

    NASA Astrophysics Data System (ADS)

    Czekala, Ian; Andrews, Sean M.; Mandel, Kaisey S.; Hogg, David W.; Green, Gregory M.

    2015-05-01

    Starfish is a set of tools used for spectroscopic inference. It robustly determines stellar parameters using high resolution spectral models and uses Markov Chain Monte Carlo (MCMC) to explore the full posterior probability distribution of the stellar parameters. Additional potential applications include other types of spectra, such as unresolved stellar clusters or supernovae spectra.

  14. Statistical inference and Aristotle's Rhetoric.

    PubMed

    Macdonald, Ranald R

    2004-11-01

    Formal logic operates in a closed system where all the information relevant to any conclusion is present, whereas this is not the case when one reasons about events and states of the world. Pollard and Richardson drew attention to the fact that the reasoning behind statistical tests does not lead to logically justifiable conclusions. In this paper statistical inferences are defended not by logic but by the standards of everyday reasoning. Aristotle invented formal logic, but argued that people mostly get at the truth with the aid of enthymemes--incomplete syllogisms which include arguing from examples, analogies and signs. It is proposed that statistical tests work in the same way--in that they are based on examples, invoke the analogy of a model and use the size of the effect under test as a sign that the chance hypothesis is unlikely. Of existing theories of statistical inference only a weak version of Fisher's takes this into account. Aristotle anticipated Fisher by producing an argument of the form that there were too many cases in which an outcome went in a particular direction for that direction to be plausibly attributed to chance. We can therefore conclude that Aristotle would have approved of statistical inference and there is a good reason for calling this form of statistical inference classical.

  15. How Forgetting Aids Heuristic Inference

    ERIC Educational Resources Information Center

    Schooler, Lael J.; Hertwig, Ralph

    2005-01-01

    Some theorists, ranging from W. James (1890) to contemporary psychologists, have argued that forgetting is the key to proper functioning of memory. The authors elaborate on the notion of beneficial forgetting by proposing that loss of information aids inference heuristics that exploit mnemonic information. To this end, the authors bring together 2…

  16. Science Shorts: Observation versus Inference

    ERIC Educational Resources Information Center

    Leager, Craig R.

    2008-01-01

    When you observe something, how do you know for sure what you are seeing, feeling, smelling, or hearing? Asking students to think critically about their encounters with the natural world will help to strengthen their understanding and application of the science-process skills of observation and inference. In the following lesson, students make…

  17. Perceptual Inference and Autistic Traits

    ERIC Educational Resources Information Center

    Skewes, Joshua C; Jegindø, Else-Marie; Gebauer, Line

    2015-01-01

    Autistic people are better at perceiving details. Major theories explain this in terms of bottom-up sensory mechanisms or in terms of top-down cognitive biases. Recently, it has become possible to link these theories within a common framework. This framework assumes that perception is implicit neural inference, combining sensory evidence with…

  18. Pressure dependence of the speciation of dissolved water in rhyolitic melts

    NASA Astrophysics Data System (ADS)

    Hui, Hejiu; Zhang, Youxue; Xu, Zhengjiu; Behrens, Harald

    2008-07-01

    Water speciation in rhyolitic melts with dissolved water ranging from 0.8 to 4 wt% under high pressure was investigated. Samples were heated in a piston-cylinder apparatus at 624-1027 K and 0.94-2.83 GPa for sufficient time to equilibrate hydrous species (molecular H 2O and hydroxyl group, H 2O m + O ⇌ 2OH) in the melts and then quenched roughly isobarically. The concentrations of both hydrous species in the quenched glasses were measured with Fourier transform infrared (FTIR) spectroscopy. For the samples with total water content less than 2.7 wt%, the equilibrium constant ( K) is independent of total H 2O concentration. Incorporating samples with higher water contents, the equilibrium constant depends on total H 2O content, and a regular solution model is used to describe the dependence. K changes with pressure nonmonotonically for samples with a given water content at a given temperature. The equilibrium constant does not change much from ambient pressure to 1 GPa, but it increases significantly from 1 to 3 GPa. In other words, more molecular H 2O reacts to form hydroxyl groups as pressure increases from 1 GPa, which is consistent with breakage of tetrahedral aluminosilicate units due to compression of the melt induced by high pressure. The effect of 1.9 GPa (from 0.94 to 2.83 GPa) on the equilibrium constant at 873 K is equivalent to a temperature effect of 49 K (from 873 K to 922 K) at 0.94 GPa. The results can be used to evaluate the role of speciation in water diffusion, to estimate the apparent equilibrium temperature, and to infer viscosity of hydrous rhyolitic melts under high pressure.

  19. Evolutionary divergence and possible incipient speciation in post-glacial populations of a cosmopolitan aquatic plant.

    PubMed

    Nies, G; Reusch, T B H

    2005-01-01

    Habitat configuration is expected to have a major influence on genetic exchange and evolutionary divergence among populations. Aquatic organisms occur in two fundamentally different habitat types, the sea and freshwater lakes, making them excellent models to study the contrasting effects of continuity vs. isolation on genetic divergence. We compared the divergence in post-glacial populations of a cosmopolitan aquatic plant, the pondweed Potamogeton pectinatus that simultaneously occurs in freshwater lakes and coastal marine sites. Relative levels of gene flow were inferred in 12 lake and 14 Baltic Sea populations in northern Germany using nine highly polymorphic microsatellite markers developed for P. pectinatus. We found highly significant isolation-by-distance in both habitat types (P < 0.001). Genetic differentiation increased approximately 2.5-times faster among freshwater populations compared with those from the Baltic Sea. As different levels of genetic drift or population history cannot explain these differences, higher population connectivity in the sea relative to freshwater populations is the most likely source of contrasting evolutionary divergence. These findings are consistent with the notion that freshwater angiosperms are more conducive to allopatric speciation than their life-history counterparts in the sea, the relative species poor seagrasses. Surprisingly, population pairs from different habitat types revealed almost maximal genetic divergence expected for complete reproductive isolation, regardless of their respective geographical distance. Hence, the barrier to gene flow between lake and sea habitat types cannot be due to dispersal limitation. We may thus have identified a case of rapid incipient speciation in post-glacial populations of a widespread aquatic plant.

  20. Pollinator shifts as triggers of speciation in painted petal irises (Lapeirousia: Iridaceae)

    PubMed Central

    Forest, Félix; Goldblatt, Peter; Manning, John C.; Baker, David; Colville, Jonathan F.; Devey, Dion S.; Jose, Sarah; Kaye, Maria; Buerki, Sven

    2014-01-01

    Background and Aims Adaptation to different pollinators has been hypothesized as one of the main factors promoting the formation of new species in the Cape region of South Africa. Other researchers favour alternative causes such as shifts in edaphic preferences. Using a phylogenetic framework and taking into consideration the biogeographical scenario explaining the distribution of the group as well as the distribution of pollinators, this study compares pollination strategies with substrate adaptations to develop hypotheses of the primary factors leading to speciation in Lapeirousia (Iridaceae), a genus of corm-bearing geophytes well represented in the Cape and presenting an important diversity of pollination syndromes and edaphic preferences. Methods Phylogenetic relationships are reconstructed within Lapeirousia using nuclear and plastid DNA sequence data. State-of-the-art methods in biogeography, divergence time estimation, character optimization and diversification rate assessments are used to examine the evolution of pollination syndromes and substrate shifts in the history of the group. Based on the phylogenetic results, ecological factors are compared for nine sister species pairs in Lapeirousia. Key Results Seventeen pollinator shifts and ten changes in substrate types were inferred during the evolution of the genus Lapeirousia. Of the nine species pairs examined, all show divergence in pollination syndromes, while only four pairs present different substrate types. Conclusions The available evidence points to a predominant influence of pollinator shifts over substrate types on the speciation process within Lapeirousia, contrary to previous studies that favoured a more important role for edaphic factors in these processes. This work also highlights the importance of biogeographical patterns in the study of pollination syndromes. PMID:24323246

  1. Neptunium redox speciation at the illite surface

    NASA Astrophysics Data System (ADS)

    Marsac, Rémi; Banik, Nidhu lal; Lützenkirchen, Johannes; Marquardt, Christian Michael; Dardenne, Kathy; Schild, Dieter; Rothe, Joerg; Diascorn, Alexandre; Kupcik, Tomas; Schäfer, Thorsten; Geckeis, Horst

    2015-03-01

    Neptunium (Np(V)) sorption onto a purified illite is investigated as a function of pH (3-10) and [NpVO2+]tot(3 × 10-8-3 × 10-4 M) in 0.1 M NaCl under Ar atmosphere. After about one week reaction time, only insignificant variation of Np sorption is observed and the establishment of reaction equilibrium can be assumed. Surprisingly, solid-liquid distribution ratios (Rd) are clearly higher than those measured for Np(V) sorption onto illite under aerobic conditions. The observation that Rd increases with decreasing pe (pe = -log ae-) suggests partial reduction to Np(IV), although measured redox potentials (pe values) at a first glance suggest the predominance of Np(V). Reduction to Np(IV) at the illite surface could indeed be confirmed by X-ray absorption near-edge spectroscopy (XANES). Np speciation in presence of the purified Na-illite under given conditions is consistently described by applying the 2 sites protolysis non-electrostatic surface complexation and cation exchange model. Measured pe data are taken to calculate Np redox state and surface complexation constants for Np(IV) are derived by applying a data fitting procedure. Constants are very consistent with results obtained by applying an existing linear free energy relationship (LFER). Taking Np(IV) surface complexation constants into account shifts the calculated Np(V)/Np(IV) redox borderline in presence of illite surfaces by 3-5 pe units (0.2-0.3 V) towards redox neutral conditions. Our study suggests that Np(V) reduction in presence of a sorbing mineral phase is thermodynamically favored.

  2. New insights into manganese toxicity and speciation.

    PubMed

    Michalke, Bernhard; Fernsebner, Katharina

    2014-04-01

    Manganese (Mn) is known to be a neurotoxic agent for nearly 175 years now. A lot of research has therefore been carried out over the last century. From preliminary describing only symptoms of Mn-(over)exposed workers, research was preceded to more detail on toxic mechanisms of Mn. Unraveling those neurotoxic mechanisms implicated a number of studies, which were summarized partly in several reviews (e.g. Yokel RA. Neuromol Med 2009;11(4):297-310; Aschner M, et al. Toxicology Appl Pharmacol 2007;221(2):131-47; Michalke B, et al. J Environ Monit 2007;9(7):650). Since our recent review on Mn-speciation in 2007 (Michalke B, et al. J Environ Monit 2007;9(7):650), Mn-research was considerably pushed forward and several new research articles were published. The very recent years though, Mn toxicity investigating science is spreading into different fields with very detailed and complex study designs. Especially the mechanisms of Mn-induced neuronal injury on cellular and molecular level was investigated in more detail, discussing neurotransmitter and enzyme interactions, mechanisms of action on DNA level and even inclusion of genetic influences. Depicting the particular Mn-species was also a big issue to determine which molecule is transporting Mn at the cell membranes and which one is responsible for the injury of neuronal tissue. Other special foci on epidemiologic studies were becoming more and more important: These foci were directed toward environmental influences of Mn on especially Parkinson disease prevalence and the ability to carry out follow-up studies about Mn-life-span exposure. All these very far-reaching research applications may finally lead to a suitable future human Mn-biomonitoring for being able to prevent or at least detect the early onset of manganism at the right time.

  3. Arsenic speciation and reactivity in poultry litter

    USGS Publications Warehouse

    Arai, Y.; Lanzirotti, A.; Sutton, S.; Davis, J.A.; Sparks, D.L.

    2003-01-01

    Recent U.S. government action to lower the maximum concentration levels (MCL) of total arsenic (As) (10 ppb) in drinking water has raised serious concerns about the agricultural use of As-containing biosolids such as poultry litter (PL). In this study, solid-state chemical speciation, desorbability, and total levels of As in PL and long-term amended soils were investigated using novel synchrotronbased probing techniques (microfocused (??) synchrotron X-ray fluorescence (SXRF) and ??-X-ray absorption near-edge structure (XANES) spectroscopies) coupled with chemical digestion and batch experiments. The total As levels in the PL were as high as ???50 mg kg-1, and As(II/III and V) was always concentrated in abundant needle-shaped microscopic particles (???20/ ??m x 850 ??m) associated with Ca, Cu, and Fe and to a lesser extent with S, CI, and Zn. Postedge XANES features of litter particles are dissimilar to those of the organo-As(V) compound in poultry feed (i.e., roxarsone), suggesting possible degradation/transformation of roxarsone in the litter and/or in poultry digestive tracts. The extent of As desorption from the litter increased with increasing time and pH from 4.5 to 7, but at most 15% of the total As was released after 5 d at pH 7, indicating the presence of insoluble phases and/or strongly retained soluble compounds. No significant As accumulation (< 15 mg kg-1) was found in long-term PL-a mended agricultural surface soils. This suggests that As in the PL may have undergone surface and subsurface transport processes. Our research results raise concerns about long-term PL amendment effects on As contamination in surrounding soilwater environments.

  4. Mercury speciation in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Horvat, M.; Kotnik, J.; Ogrinc, N.; Fajon, V.; Logar, M.; Gibicar, D.; Vaupotic, J.; Pirrone, N.

    2004-12-01

    An interesting feature of mercury biogeochemistry in the Mediterranean is that several fish species from the Mediterranean show higher concentrations of Hg in their tissues than same fish species in the Atlantic ocean. although the concentrations of mercury in the open waters of both oceans are similar. It has been suggested that the higher mercury levels noted in many larger pelagic fish species in the Mediterranean are not related to anthropogenic inputs, but rather are due to the higher than average natural environmental levels of this metal originating from the Mediterranean mercury anomaly. Although elevated Hg levels have been noted in environmental matrices from the Mediterranean regions adjacent to known mercury anomalies, the data do not clearly indicate that the effects of these anomalies have been transmitted to open waters or to lower trophic level species living in these waters. In the present contribution data obtained during three oceanographic cruises carried out in the framework of the MERCYMS project (An integrate approach to assess mercury cycling in the Mediterranean basin) funded by EU in the period between 2000 and 2003 will be presented. Measurements included total mercury measurements and its speciation (reactive Hg, total Hg and monomethylmercury (MMHg) in filtered and non-filtered sea water samples, dissolved gaseous mercury (DGM) and dimethylmercury (DMHg) in open and coastal waters of the Mediterranean Sea. Radon, as a tracer gas of tectonic activity was also measured in depth profiles. The results presented clearly show that hg species distribution in surface and deep oceanic waters is affected by several dynamic processes such as photochemical transformation at the surface, phytoplankton biomass stratification in the photic zone, development of an oxygen depletion zone at intermediate depths and diffusion from deeper layers due to biological and/or tectonic activities.

  5. Development of particulate matter speciation profiles for major sources in six cities in India

    NASA Astrophysics Data System (ADS)

    Patil, Rashmi S.; Kumar, Rakesh; Menon, Ratish; Shah, Munna Kumar; Sethi, Virendra

    2013-10-01

    A nationwide study was carried out to develop air pollution source profiles specific to India. Chemical speciation profiles are reported for 27 major non-vehicular sources of particulate matter (combustion and non-combustion) in six cities in India viz. Bengaluru, Chennai, Delhi, Kanpur, Mumbai and Pune. PM10 and PM2.5 samples were collected from these sources using three different modes of sampling viz. dilution, resuspension and source dominated sampling, depending on the nature of the source. Filter samples were analyzed for mass by gravimetric analysis, elements by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), water soluble ions by ion chromatography and elemental (EC) and organic carbon (OC) by thermal/optical reflectance. Reported profiles include 39 elements, 12 ions, EC and OC. Developed profiles are compared with similar profiles that have been reported previously.

  6. Genetic divergence, speciation and biogeography of Mustelus (sharks) in the central Indo-Pacific and Australasia.

    PubMed

    Boomer, Jessica J; Harcourt, Robert G; Francis, Malcolm P; Stow, Adam J

    2012-09-01

    The shark genus Mustelus is speciose, commercially important and systematically troublesome. We use a molecular approach combining inter and intra-specific data to investigate Mustelus species in the central Indo-Pacific and Australasia. Our analysis supports two Mustelus clades, one comprising species with no white spots and a placental reproductive mode and a second clade of white spotted, aplacental species. Levels of genetic divergence are low, especially among species in the white spotted, aplacental clade and this should be taken into account when employing molecular data to delineate species. Our data support the hypothesis of a radiation following dispersal from a northern hemisphere ancestor. Molecular dating suggests that localised speciation in Australasia may have occurred during the Pleistocene. We propose that some of the difficulties associated with Mustelus systematics relate to a recent radiation, particularly in the Australasian region. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Extremophile Poeciliidae: multivariate insights into the complexity of speciation along replicated ecological gradients.

    PubMed

    Riesch, Rüdiger; Tobler, Michael; Lerp, Hannes; Jourdan, Jonas; Doumas, Tess; Nosil, Patrik; Langerhans, R Brian; Plath, Martin

    2016-06-22

    Replicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions. We investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral

  8. Mitochondrial and allozyme genetics of incipient speciation in a landlocked population of Galaxias truttaceus (Pisces: Galaxiidae).

    PubMed

    Ovenden, J R; White, R W

    1990-03-01

    Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life

  9. Mitochondrial and Allozyme Genetics of Incipient Speciation in a Landlocked Population of Galaxias Truttaceus (Pisces: Galaxiidae)

    PubMed Central

    Ovenden, J. R.; White, RWG.

    1990-01-01

    Galaxias truttaceus is found in coastal rivers and streams in south-eastern Australia. It spawns at the head of estuaries in autumn and the larvae spend 3 months of winter at sea before returning to fresh water. In Tasmania there are landlocked populations of G. truttaceus in a cluster of geologically young lakes on the recently glaciated Central Plateau. These populations have no marine larval stage and spawn in the lakes in spring. Speciation due to land locking is thought to be a frequent occurrence within Galaxias. To investigate the nature of the speciation event which may be occurring within lake populations of G. truttaceus we studied the mitochondrial DNA (mtDNA) and allozyme diversity of both lake and stream populations. Using the presence or absence of restriction sites recognized by 13 six-base restriction endonucleases, we found 58 mtDNA haplotypes among 150 fish collected from 13 Tasmanian and one south-east Australian mainland stream populations. The most parsimonious network relating the haplotypes by site loss or gain was starlike in shape. We argue that this arrangement is best explained by selection upon slightly beneficial mutations within the mitochondrial genome. Gene diversity analysis under Wright's island model showed that the populations in each drainage were not genetically subdivided. Only two of these stream haplotypes were found among the 66 fish analyzed from four lake populations. Despite the extreme lack of mtDNA diversity in lake populations, the observed nuclear DNA heterozygosity of 40 lake fish (0.10355) was only slightly less than that of 82 stream fish (0.11635). In the short time (3000-7000 years) that the lake fish have been landlocked, random genetic drift in a finite, stable-sized population was probably not responsible for the lack of mtDNA diversity in the lake populations. We infer the lake populations have probably experienced at least one, severe, but transitory bottleneck possibly induced by natural selection for life

  10. Two Androdioecious and One Dioecious New Species of Pristionchus (Nematoda: Diplogastridae): New Reference Points for the Evolution of Reproductive Mode

    PubMed Central

    Kanzaki, Natsumi; Ragsdale, Erik J.; Herrmann, Matthias; Susoy, Vladislav

    2013-01-01

    Rhabditid nematodes are one of a few animal taxa in which androdioecious reproduction, involving hermaphrodites and males, is found. In the genus Pristionchus, several cases of androdioecy are known, including the model species P. pacificus. A comprehensive understanding of the evolution of reproductive mode depends on dense taxon sampling and careful morphological and phylogenetic reconstruction. In this article, two new androdioecious species, P. boliviae n. sp. and P. mayeri n. sp., and one gonochoristic outgroup, P. atlanticus n. sp., are described on morphological, molecular, and biological evidence. Their phylogenetic relationships are inferred from 26 ribosomal protein genes and a partial SSU rRNA gene. Based on current representation, the new androdioecious species are sister taxa, indicating either speciation from an androdioecious ancestor or rapid convergent evolution in closely related species. Male sexual characters distinguish the new species, and new characters for six closely related Pristionchus species are presented. Male papillae are unusually variable in P. boliviae n. sp. and P. mayeri n. sp., consistent with the predictions of “selfing syndrome.” Description and phylogeny of new androdioecious species, supported by fuller outgroup representation, establish new reference points for mechanistic studies in the Pristionchus system by expanding its comparative context. PMID:24115783

  11. Plutonium Speciation in Support of Oxidative-Leaching Demonstration Test

    SciTech Connect

    Sinkov, Sergey I.

    2007-10-31

    Bechtel National, Inc. (BNI) is evaluating the plutonium speciation in caustic solutions that reasonably represent the process streams from the oxidative-leaching demonstration test. Battelle—Pacific Northwest Division (PNWD) was contracted to develop a spectrophotometric method to measure plutonium speciation at submicromolar (< 10-6 M) concentrations in alkaline solutions in the presence of chromate and carbonate. Data obtained from the testing will be used to identify the oxidation state of Pu(IV), Pu(V), and Pu(VI) species, which potentially could exist in caustic leachates. Work was initially conducted under contract number 24590-101-TSA-W000-00004 satisfying the needs defined in Appendix C of the Research and Technology Plan TSS A-219 to evaluate the speciation of chromium, plutonium, and manganese before and after oxidative leaching. In February 2007, the contract mechanism was switched to Pacific Northwest National Laboratory (PNNL) Operating Contract MOA: 24590-QL-HC9-WA49-00001.

  12. Eutrophication causes speciation reversal in whitefish adaptive radiations.

    PubMed

    Vonlanthen, P; Bittner, D; Hudson, A G; Young, K A; Müller, R; Lundsgaard-Hansen, B; Roy, D; Di Piazza, S; Largiader, C R; Seehausen, O

    2012-02-15

    Species diversity can be lost through two different but potentially interacting extinction processes: demographic decline and speciation reversal through introgressive hybridization. To investigate the relative contribution of these processes, we analysed historical and contemporary data of replicate whitefish radiations from 17 pre-alpine European lakes and reconstructed changes in genetic species differentiation through time using historical samples. Here we provide evidence that species diversity evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Across the radiations, the magnitude of eutrophication explains the pattern of species loss and levels of genetic and functional distinctiveness among remaining species. We argue that extinction by speciation reversal may be more widespread than currently appreciated. Preventing such extinctions will require that conservation efforts not only target existing species but identify and protect the ecological and evolutionary processes that generate and maintain species.

  13. The relationship of selenium tolerance and speciation in Lecythidaceae species.

    PubMed

    Németh, Anikó; García Reyes, Juan Francisco; Kosáry, Judit; Dernovics, Mihály

    2013-12-01

    Comparative study of selenium (Se) speciation in hyperaccumulator plants offers an interesting challenge from the analytical point of view. In our study the application of a sophisticated sample clean-up procedure and the combination of elemental and molecular mass spectrometric methods led to the identification of several new selenocompounds. The difference between the Se speciation of the primary accumulator Lecythis minor and the secondary accumulator Bertholletia excelsa confirmed the current opinion that the speciation pattern in hyperaccumulator plants is principally related to the mechanism of accumulation and not to taxonomy. The most abundant new selenocompounds were found to be the derivatives of selenohomocysteine (SeHCy) and selenomethionine (SeMet), including fatty acid metabolism related compounds. A series of SeHCy derived species containing multiple Se atoms (>2) was also detected and their structures were validated by the synthesis of their S-Se analogues.

  14. Rapid acceleration of plant speciation during the Anthropocene.

    PubMed

    Thomas, Chris D

    2015-08-01

    Speciation rates need to be considered when estimating human impacts on the numbers of species on Earth, given that past mass extinctions have been followed by the accelerated origination of new taxa. Here, I suggest that the Anthropocene is already exhibiting a greatly accelerated plant speciation rate due to agriculture, horticulture, and the human-mediated transport of species, followed by hybridisation. For example, more new plant species have come into existence in Europe over the past three centuries than have been documented as becoming extinct over the same period, even though most new hybrid-origin species are likely to remain undetected. Current speciation rates are unusually high and they could be higher than during or after previous mass extinctions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Computer simulations of sympatric speciation in a simple food web

    NASA Astrophysics Data System (ADS)

    Luz-Burgoa, K.; Dell, Tony; de Oliveira, S. Moss

    2005-07-01

    Galapagos finches, have motivated much theoretical research aimed at understanding the processes associated with the formation of the species. Inspired by them, in this paper we investigate the process of sympatric speciation in a simple food web model. For that we modify the individual-based Penna model that has been widely used to study aging as well as other evolutionary processes. Initially, our web consists of a primary food source and a single herbivore species that feeds on this resource. Subsequently we introduce a predator that feeds on the herbivore. In both instances we manipulate directly a basal resource distribution and monitor the changes in the populations. Sympatric speciation is obtained for the top species in both cases, and our results suggest that the speciation velocity depends on how far up, in the food chain, the focus population is feeding. Simulations are done with three different sexual imprintinglike mechanisms, in order to discuss adaptation by natural selection.

  16. Aluminum speciation in biological environments. The deprotonation of free and aluminum bound citrate in aqueous solution.

    PubMed

    Mujika, J I; Ugalde, J M; Lopez, X

    2012-09-28

    Citrate is the main low mass molecule chelator of aluminum in serum, and knowledge of the interaction mode of this organic molecule with this cation is necessary to understand aluminum speciation in biosystems. However, the 1:1 complexation of citric acid to Al(III) is a complex process due to the myriad of coordination sites and protonation states of this molecule. Moreover, due to the acidic character of the complex, its entire experimental characterization is elusive. The system is also challenging from a computational point of view, due to the difficulties in getting a balanced estimation of the large range of solvation free energies encountered for the different protonation states of a multiprotic acid in both situations, complexed and uncomplexed with a trivalent cation. Herein, the deprotonation process of the free citric acid in solution and that interacting with Al(III) have been investigated considering all possible coordination modes and protonation states of the citric acid. All the structures were optimized in solution combining the B3LYP density function method with the polarizable continuum IEFPCM model. In addition, different schemes have been employed to obtain reliable solvation energies. Taking into account the most stable isomer of each protonation state, the pK(a) values were computationally estimated for the free citric acid and that interacting with Al(III), showing a good agreement with the experimental data. All these results shed light on how the deprotonation process of the citric acid takes place, and show that Al(III) not only increases the acidity of the molecule, but also changes qualitatively the deprotonation pattern of the citric acid. This information is highly relevant to understand aluminum speciation in biological environments, for which citrate is the main low molecular weight chelator, and responsible for its cellular in-take.

  17. Spontaneous evaluative inferences and their relationship to spontaneous trait inferences.

    PubMed

    Schneid, Erica D; Carlston, Donal E; Skowronski, John J

    2015-05-01

    Three experiments are reported that explore affectively based spontaneous evaluative impressions (SEIs) of stimulus persons. Experiments 1 and 2 used modified versions of the savings in relearning paradigm (Carlston & Skowronski, 1994) to confirm the occurrence of SEIs, indicating that they are equivalent whether participants are instructed to form trait impressions, evaluative impressions, or neither. These experiments also show that SEIs occur independently of explicit recall for the trait implications of the stimuli. Experiment 3 provides a single dissociation test to distinguish SEIs from spontaneous trait inferences (STIs), showing that disrupting cognitive processing interferes with a trait-based prediction task that presumably reflects STIs, but not with an affectively based social approach task that presumably reflects SEIs. Implications of these findings for the potential independence of spontaneous trait and evaluative inferences, as well as limitations and important steps for future study are discussed. (c) 2015 APA, all rights reserved).

  18. Inference of Population History by Coupling Exploratory and Model-Driven Phylogeographic Analyses

    PubMed Central

    Garrick, Ryan C.; Caccone, Adalgisa; Sunnucks, Paul

    2010-01-01

    Understanding the nature, timing and geographic context of historical events and population processes that shaped the spatial distribution of genetic diversity is critical for addressing questions relating to speciation, selection, and applied conservation management. Cladistic analysis of gene trees has been central to phylogeography, but when coupled with approaches that make use of different components of the information carried by DNA sequences and their frequencies, the strength and resolution of these inferences can be improved. However, assessing concordance of inferences drawn using different analytical methods or genetic datasets, and integrating their outcomes, can be challenging. Here we overview the strengths and limitations of different types of genetic data, analysis methods, and approaches to historical inference. We then turn our attention to the potentially synergistic interactions among widely-used and emerging phylogeographic analyses, and discuss some of the ways that spatial and temporal concordance among inferences can be assessed. We close this review with a brief summary and outlook on future research directions. PMID:20480016

  19. Sexual selection and speciation in mammals, butterflies and spiders.

    PubMed Central

    Gage, Matthew J G; Parker, Geoffrey A; Nylin, Soren; Wiklund, Christer

    2002-01-01

    Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation

  20. Patterns of plant speciation in the Cape floristic region.

    PubMed

    van der Niet, Timotheüs; Johnson, Steven D

    2009-04-01

    Plant species have accumulated in the Cape region of southern Africa to a much greater degree than in areas of equivalent size in the rest of the subcontinent. Although this could be a consequence simply of lower extinction rates in the Cape, most researchers have invoked high rates of ecological speciation, driven by unique aspects of the Cape environment, as the primary explanation for this richness. To assess these ideas, we analyzed the frequencies of ecological shifts among 188 sister species pairs obtained from molecular phylogenies of eight Cape clades. Ecological shifts were evident in 80% of sister species pairs, with general habitat, pollinator, and fire-survival strategy shifts being especially frequent. Contrary to an established idea that shifts in soil type are frequently associated with speciation of Cape taxa, these shifts were relatively rare, occurring in just 17% of species pairs. More cases of sister species divergence are accompanied solely by floral than by vegetative diversification, suggesting an important role for pollinator-driven speciation. In an analysis of two large orchid genera that have radiated in both the Cape and the rest of southern Africa, the frequency of ecological shifts (general habitat, soil type, altitude and flowering time), did not differ between sister species pairs in the Cape region and those outside it. Despite suggestions that Cape plants tend to have small range sizes and show fine-scale patterns of speciation, range size did not differ significantly between species in the Cape and those outside it. We conclude that ecological speciation is likely to have been important for radiation of the Cape flora, but there is no evidence as yet for special "Cape" patterns of ecological speciation.

  1. Sexual selection and speciation in mammals, butterflies and spiders.

    PubMed

    Gage, Matthew J G; Parker, Geoffrey A; Nylin, Soren; Wiklund, Christer

    2002-11-22

    Recently refined evolutionary theories propose that sexual selection and reproductive conflict could be drivers of speciation. Male and female reproductive optima invariably differ because the potential reproductive rate of males almost always exceeds that of females: females are selected to maximize mate 'quality', while males can increase fitness through mate 'quantity'. A dynamic, sexually selected conflict therefore exists in which 'competitive' males are selected to override the preference tactics evolved by 'choosy' females. The wide variation across taxa in mating systems therefore generates variance in the outcome of intrasexual conflict and the strength of sexual selection: monandry constrains reproductive heterozygosity and allows female choice to select and maintain particular (preferred) genes; polyandry promotes reproductive heterozygosity and will more likely override female choice. Two different theories predict how sexual selection might influence speciation. Traditional ideas indicate that increased sexual selection (and hence conflict) generates a greater diversity of male reproductive strategies to be counteracted by female mate preferences, thus providing elevated potentials for speciation as more evolutionary avenues of male-female interaction are created. A less intuitively obvious theory proposes that increased sexual selection and conflict constrains speciation by reducing the opportunities for female mate choice under polyandry. We use a comparative approach to test these theories by investigating whether two general measures of sexual selection and the potential for sexual conflict have influenced speciation. Sexual size dimorphism (across 480 mammalian genera, 105 butterfly genera and 148 spider genera) and degree of polyandry (measured as relative testes size in mammals (72 genera) and mating frequency in female butterflies (54 genera)) showed no associations with the variance in speciosity. Our results therefore show that speciation

  2. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  3. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  4. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  5. Examination of Arsenic Speciation in Sulfidic Solutions Using X-ray Absorption Spectroscopy

    EPA Science Inventory

    The chemical speciation of arsenic in sulfidic waters is complicated by the existence of thioarsenic species. The purpose of this research was to use advanced spectroscopy techniques along with speciation modeling and chromatography to elucidate the chemical speciation of As in ...

  6. Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  7. Towards General Algorithms for Grammatical Inference

    NASA Astrophysics Data System (ADS)

    Clark, Alexander

    Many algorithms for grammatical inference can be viewed as instances of a more general algorithm which maintains a set of primitive elements, which distributionally define sets of strings, and a set of features or tests that constrain various inference rules. Using this general framework, which we cast as a process of logical inference, we re-analyse Angluin's famous lstar algorithm and several recent algorithms for the inference of context-free grammars and multiple context-free grammars. Finally, to illustrate the advantages of this approach, we extend it to the inference of functional transductions from positive data only, and we present a new algorithm for the inference of finite state transducers.

  8. Mode coupling in solar spicule oscillations

    NASA Astrophysics Data System (ADS)

    Fazel, Zahra

    2016-01-01

    In a real medium which has oscillations, the perturbations can cause an energy transfer between different modes. A perturbation, which is interpreted as an interaction between the modes, is inferred to be mode coupling. The mode coupling process in an inhomogeneous medium such as solar spicules may lead to the coupling of kink waves to local Alfvén waves. This coupling occurs in practically any conditions when there is smooth variation in density in the radial direction. This process is seen as the decay of transverse kink waves in the medium. To study the damping of kink waves due to mode coupling, a 2.5-dimensional numerical simulation of the initial wave is considered in spicules. The initial perturbation is assumed to be in a plane perpendicular to the spicule axis. The considered kink wave is a standing wave which shows an exponential damping in the inhomogeneous layer after the mode coupling occurs.

  9. The evolution of transmission mode

    PubMed Central

    Forbes, Mark R.; Hauffe, Heidi C.; Kallio, Eva R.; Okamura, Beth; Sait, Steven M.

    2017-01-01

    This article reviews research on the evolutionary mechanisms leading to different transmission modes. Such modes are often under genetic control of the host or the pathogen, and often in conflict with each other via trade-offs. Transmission modes may vary among pathogen strains and among host populations. Evolutionary changes in transmission mode have been inferred through experimental and phylogenetic studies, including changes in transmission associated with host shifts and with evolution of the unusually complex life cycles of many parasites. Understanding the forces that determine the evolution of particular transmission modes presents a fascinating medley of problems for which there is a lack of good data and often a lack of conceptual understanding or appropriate methodologies. Our best information comes from studies that have been focused on the vertical versus horizontal transmission dichotomy. With other kinds of transitions, theoretical approaches combining epidemiology and population genetics are providing guidelines for determining when and how rapidly new transmission modes may evolve, but these are still in need of empirical investigation and application to particular cases. Obtaining such knowledge is a matter of urgency in relation to extant disease threats. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289251

  10. Sympatric speciation: compliance with phenotype diversification from a single genotype.

    PubMed Central

    Kaneko, K; Yomo, T

    2000-01-01

    A novel mechanism for sympatric speciation that takes into account complex bioprocesses within each individual organism is proposed. According to dynamical systems theory, organisms with identical genotypes can possess differentiated physiological states and may coexist 'symbiotically' through appropriate mutual interaction. With mutations, the phenotypically differentiated organisms gradually come to possess distinct genotypes while maintaining their symbiotic relationship. This symbiotic speciation is robust against sexual recombination, because offspring of mixed parentage with intermediate genotypes are less fit than their parents. This leads to sterility of the hybrid. Accordingly, a basis for mating preference also arises. PMID:11133025

  11. Hybrid speciation in birds: allopatry more important than ecology?

    PubMed

    Brelsford, Alan

    2011-09-01

    Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved. © 2011 Blackwell Publishing Ltd.

  12. XANES Identification of Plutonium Speciation in RFETS Samples

    SciTech Connect

    LoPresti, V.; Conradson, S.D.; Clark, D.L.

    2009-06-03

    Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

  13. Hybrid speciation and independent evolution in lineages of alpine butterflies.

    PubMed

    Nice, Chris C; Gompert, Zachariah; Fordyce, James A; Forister, Matthew L; Lucas, Lauren K; Buerkle, C Alex

    2013-04-01

    The power of hybridization between species to generate variation and fuel adaptation is poorly understood despite long-standing interest. There is, however, increasing evidence that hybridization often generates biodiversity, including via hybrid speciation. We tested the hypothesis of hybrid speciation in butterflies occupying extreme, high-altitude habitats in four mountain ranges in western North America with an explicit, probabilistic model, and genome-wide DNA sequence data. Using this approach, in concert with ecological experiments and observations and morphological data, we document three lineages of hybrid origin. These lineages have different genome admixture proportions and distinctive trait combinations that suggest unique and independent evolutionary histories.

  14. [Speciation and its mechanisms: conceptual background and recent advances].

    PubMed

    Colley, Eduardo; Fischer, Marta Luciane

    2013-10-01

    This paper presents a historical approach on general concepts of speciation and its mechanisms, from the primordial ideas to the most recent theories that seek to elucidate the origin of biodiversity. It is common knowledge that speciation is a controversial and complex issue that encompasses virtually all the lines of research of biology, in addition to geology and paleontology. The main objective of the paper is to clarify the theoretical concepts on the origin of the animal species, in the chronological order in which they became established throughout the whole of the development of evolutionary biology as a science.

  15. A Global Phylogeny of Leafmining Ectoedemia Moths (Lepidoptera: Nepticulidae): Exploring Host Plant Family Shifts and Allopatry as Drivers of Speciation

    PubMed Central

    Doorenweerd, Camiel; van Nieukerken, Erik J.; Menken, Steph B. J.

    2015-01-01

    Background Host association patterns in Ectoedemia (Lepidoptera: Nepticulidae) are also encountered in other insect groups with intimate plant relationships, including a high degree of monophagy, a preference for ecologically dominant plant families (e.g. Fagaceae, Rosaceae, Salicaceae, and Betulaceae) and a tendency for related insect species to feed on related host plant species. The evolutionary processes underlying these patterns are only partly understood, we therefore assessed the role of allopatry and host plant family shifts in speciation within Ectoedemia. Methodology Six nuclear and mitochondrial DNA markers with a total aligned length of 3692 base pairs were used to infer phylogenetic relationships among 92 species belonging to the subgenus Ectoedemia of the genus Ectoedemia, representing a thorough taxon sampling with a global coverage. The results support monophyletic species groups that are congruent with published findings based on morphology. We used the obtained phylogeny to explore host plant family association and geographical distribution to investigate if host shifts and allopatry have been instrumental in the speciation of these leafmining insects. Significance We found that, even though most species within species groups commonly feed on plants from one family, shifts to a distantly related host family have occasionally occurred throughout the phylogeny and such shifts are most commonly observed towards Betulaceae. The largest radiations have occurred within species groups that feed on Fagaceae, Rosaceae, and Salicaceae. Most species are restricted to one of the seven global biogeographic regions, but within species groups representatives are commonly found in different biogeographic regions. Although we find general patterns with regard to host use and biogeography, there are differences between clades that suggest that different drivers of speciation, and perhaps drivers that we did not examine, have shaped diversity patterns in different

  16. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods

    PubMed Central

    Sharma, Ajay; Gaidamakova, Elena K.; Matrosova, Vera Y.; Bennett, Brian; Daly, Michael J.; Hoffman, Brian M.

    2013-01-01

    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) “antioxidant” Mn2+–metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)–scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn2+ speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn2+ of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn2+ of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn2+ speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn2+ complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn2+ speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants. PMID:23536297

  17. Responses of Mn2+ speciation in Deinococcus radiodurans and Escherichia coli to γ-radiation by advanced paramagnetic resonance methods.

    PubMed

    Sharma, Ajay; Gaidamakova, Elena K; Matrosova, Vera Y; Bennett, Brian; Daly, Michael J; Hoffman, Brian M

    2013-04-09

    The remarkable ability of bacterium Deinococcus radiodurans to survive extreme doses of γ-rays (12,000 Gy), 20 times greater than Escherichia coli, is undiminished by loss of Mn-dependent superoxide dismutase (SodA). D. radiodurans radiation resistance is attributed to the accumulation of low-molecular-weight (LMW) "antioxidant" Mn(2+)-metabolite complexes that protect essential enzymes from oxidative damage. However, in vivo information about such complexes within D. radiodurans cells is lacking, and the idea that they can supplant reactive-oxygen-species (ROS)-scavenging enzymes remains controversial. In this report, measurements by advanced paramagnetic resonance techniques [electron-spin-echo (ESE)-EPR/electron nuclear double resonance/ESE envelope modulation (ESEEM)] reveal differential details of the in vivo Mn(2+) speciation in D. radiodurans and E. coli cells and their responses to 10 kGy γ-irradiation. The Mn(2+) of D. radiodurans exists predominantly as LMW complexes with nitrogenous metabolites and orthophosphate, with negligible EPR signal from Mn(2+) of SodA. Thus, the extreme radiation resistance of D. radiodurans cells cannot be attributed to SodA. Correspondingly, 10 kGy irradiation causes no change in D. radiodurans Mn(2+) speciation, despite the paucity of holo-SodA. In contrast, the EPR signal of E. coli is dominated by signals from low-symmetry enzyme sites such as that of SodA, with a minority pool of LMW Mn(2+) complexes that show negligible coordination by nitrogenous metabolites. Nonetheless, irradiation of E. coli majorly changes LMW Mn(2+) speciation, with extensive binding of nitrogenous ligands created by irradiation. We infer that E. coli is highly susceptible to radiation-induced ROS because it lacks an adequate supply of LMW Mn antioxidants.

  18. Inferring Centrality from Network Snapshots

    NASA Astrophysics Data System (ADS)

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

  19. System Support for Forensic Inference

    NASA Astrophysics Data System (ADS)

    Gehani, Ashish; Kirchner, Florent; Shankar, Natarajan

    Digital evidence is playing an increasingly important role in prosecuting crimes. The reasons are manifold: financially lucrative targets are now connected online, systems are so complex that vulnerabilities abound and strong digital identities are being adopted, making audit trails more useful. If the discoveries of forensic analysts are to hold up to scrutiny in court, they must meet the standard for scientific evidence. Software systems are currently developed without consideration of this fact. This paper argues for the development of a formal framework for constructing “digital artifacts” that can serve as proxies for physical evidence; a system so imbued would facilitate sound digital forensic inference. A case study involving a filesystem augmentation that provides transparent support for forensic inference is described.

  20. Bayesian Inference on Proportional Elections

    PubMed Central

    Brunello, Gabriel Hideki Vatanabe; Nakano, Eduardo Yoshio

    2015-01-01

    Polls for majoritarian voting systems usually show estimates of the percentage of votes for each candidate. However, proportional vote systems do not necessarily guarantee the candidate with the most percentage of votes will be elected. Thus, traditional methods used in majoritarian elections cannot be applied on proportional elections. In this context, the purpose of this paper was to perform a Bayesian inference on proportional elections considering the Brazilian system of seats distribution. More specifically, a methodology to answer the probability that a given party will have representation on the chamber of deputies was developed. Inferences were made on a Bayesian scenario using the Monte Carlo simulation technique, and the developed methodology was applied on data from the Brazilian elections for Members of the Legislative Assembly and Federal Chamber of Deputies in 2010. A performance rate was also presented to evaluate the efficiency of the methodology. Calculations and simulations were carried out using the free R statistical software. PMID:25786259

  1. Inferring biotic interactions from proxies.

    PubMed

    Morales-Castilla, Ignacio; Matias, Miguel G; Gravel, Dominique; Araújo, Miguel B

    2015-06-01

    Inferring biotic interactions from functional, phylogenetic and geographical proxies remains one great challenge in ecology. We propose a conceptual framework to infer the backbone of biotic interaction networks within regional species pools. First, interacting groups are identified to order links and remove forbidden interactions between species. Second, additional links are removed by examination of the geographical context in which species co-occur. Third, hypotheses are proposed to establish interaction probabilities between species. We illustrate the framework using published food-webs in terrestrial and marine systems. We conclude that preliminary descriptions of the web of life can be made by careful integration of data with theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Statistical learning and selective inference

    PubMed Central

    Taylor, Jonathan; Tibshirani, Robert J.

    2015-01-01

    We describe the problem of “selective inference.” This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have “cherry-picked”—searched for the strongest associations—means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis. PMID:26100887

  3. Inferring Centrality from Network Snapshots

    PubMed Central

    Shao, Haibin; Mesbahi, Mehran; Li, Dewei; Xi, Yugeng

    2017-01-01

    The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data. PMID:28098166

  4. Network Plasticity as Bayesian Inference

    PubMed Central

    Legenstein, Robert; Maass, Wolfgang

    2015-01-01

    General results from statistical learning theory suggest to understand not only brain computations, but also brain plasticity as probabilistic inference. But a model for that has been missing. We propose that inherently stochastic features of synaptic plasticity and spine motility enable cortical networks of neurons to carry out probabilistic inference by sampling from a posterior distribution of network configurations. This model provides a viable alternative to existing models that propose convergence of parameters to maximum likelihood values. It explains how priors on weight distributions and connection probabilities can be merged optimally with learned experience, how cortical networks can generalize learned information so well to novel experiences, and how they can compensate continuously for unforeseen disturbances of the network. The resulting new theory of network plasticity explains from a functional perspective a number of experimental data on stochastic aspects of synaptic plasticity that previously appeared to be quite puzzling. PMID:26545099

  5. Statistical learning and selective inference.

    PubMed

    Taylor, Jonathan; Tibshirani, Robert J

    2015-06-23

    We describe the problem of "selective inference." This addresses the following challenge: Having mined a set of data to find potential associations, how do we properly assess the strength of these associations? The fact that we have "cherry-picked"--searched for the strongest associations--means that we must set a higher bar for declaring significant the associations that we see. This challenge becomes more important in the era of big data and complex statistical modeling. The cherry tree (dataset) can be very large and the tools for cherry picking (statistical learning methods) are now very sophisticated. We describe some recent new developments in selective inference and illustrate their use in forward stepwise regression, the lasso, and principal components analysis.

  6. Causal inference based on counterfactuals

    PubMed Central

    Höfler, M

    2005-01-01

    Background The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies. Discussion This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures. Summary Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept. PMID:16159397

  7. Bayesian inference for agreement measures.

    PubMed

    Vidal, Ignacio; de Castro, Mário

    2016-08-25

    The agreement of different measurement methods is an important issue in several disciplines like, for example, Medicine, Metrology, and Engineering. In this article, some agreement measures, common in the literature, were analyzed from a Bayesian point of view. Posterior inferences for such agreement measures were obtained based on well-known Bayesian inference procedures for the bivariate normal distribution. As a consequence, a general, simple, and effective method is presented, which does not require Markov Chain Monte Carlo methods and can be applied considering a great variety of prior distributions. Illustratively, the method was exemplified using five objective priors for the bivariate normal distribution. A tool for assessing the adequacy of the model is discussed. Results from a simulation study and an application to a real dataset are also reported.

  8. Inferring the Why in Images

    DTIC Science & Technology

    2014-01-01

    psychophysics as the theory of mind. In this paper, we strive to build a computational model that predicts the motivation behind the actions of people from...other people?s actions, likely due to cognitive skills known in psychophysics as the theory of mind. In this paper, we strive to build a...18 Humans may be able to make such remarkable inferences partially due to cognitive skills known as the theory of mind [34]. Psychophysics researchers

  9. Inference of reversible tree languages.

    PubMed

    López, Damián; Sempere, José M; García, Pedro

    2004-08-01

    In this paper, we study the notion of k-reversibility and k-testability when regular tree languages are involved. We present an inference algorithm for learning a k-testable tree language that runs in polynomial time with respect to the size of the sample used. We also study the tree language classes in relation to other well known ones, and some properties of these languages are proven.

  10. Statistical Inference in Graphical Models

    DTIC Science & Technology

    2008-06-17

    beliefNetwork> </ hercules> Figure 2 1. BNET XML encoding of a Bayesian Network. 28 The most complete package is Kevin Murphy’s Bayes Net Toolbox ( BNT ), an...networks, and dynamic Bayesian networks. Since 2002, researchers at Intel have been converting BNT to an open-source C++ library called the...of C++, and also offers interfaces for calling the library from MATLAB and R 1361. Notably, both BNT and PNL provide learning and inference algorithms

  11. Cortical circuits for perceptual inference.

    PubMed

    Friston, Karl; Kiebel, Stefan

    2009-10-01

    This paper assumes that cortical circuits have evolved to enable inference about the causes of sensory input received by the brain. This provides a principled specification of what neural circuits have to achieve. Here, we attempt to address how the brain makes inferences by casting inference as an optimisation problem. We look at how the ensuing recognition dynamics could be supported by directed connections and message-passing among neuronal populations, given our knowledge of intrinsic and extrinsic neuronal connections. We assume that the brain models the world as a dynamic system, which imposes causal structure on the sensorium. Perception is equated with the optimisation or inversion of this internal model, to explain sensory input. Given a model of how sensory data are generated, we use a generic variational approach to model inversion to furnish equations that prescribe recognition; i.e., the dynamics of neuronal activity that represents the causes of sensory input. Here, we focus on a model whose hierarchical and dynamical structure enables simulated brains to recognise and predict sequences of sensory states. We first review these models and their inversion under a variational free-energy formulation. We then show that the brain has the necessary infrastructure to implement this inversion and present stimulations using synthetic birds that generate and recognise birdsongs.

  12. An introduction to causal inference.

    PubMed

    Pearl, Judea

    2010-02-26

    This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underlie all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: those about (1) the effects of potential interventions, (2) probabilities of counterfactuals, and (3) direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation.

  13. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  14. Children's and adults' evaluation of the certainty of deductive inferences, inductive inferences, and guesses.